US20100316494A1 - Turbine housing for gas turbochargers - Google Patents

Turbine housing for gas turbochargers Download PDF

Info

Publication number
US20100316494A1
US20100316494A1 US12/792,951 US79295110A US2010316494A1 US 20100316494 A1 US20100316494 A1 US 20100316494A1 US 79295110 A US79295110 A US 79295110A US 2010316494 A1 US2010316494 A1 US 2010316494A1
Authority
US
United States
Prior art keywords
sealing ring
outlet pipe
neck
turbine housing
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/792,951
Inventor
Elmar Grussmann
Christian Smatloch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Assigned to BENTELER AUTOMOBILTECHNIK GMBH reassignment BENTELER AUTOMOBILTECHNIK GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRUSSMANN, ELMAR, SMATLOCH, CHRISTIAN
Publication of US20100316494A1 publication Critical patent/US20100316494A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within

Definitions

  • the present invention relates to a turbine housing for exhaust gas turbochargers and the like.
  • turbochargers Internal combustion engines for motor vehicles are increasingly charged by turbochargers in order to reduce fuel consumption.
  • the weight of the exhaust system itself also affects fuel consumption.
  • Turbochargers should therefore be as lightweight as possible. This need for a lightweight construction conflicts with the fact that when in use, turbochargers are subjected to significant mechanical stresses and especially extremely high thermal loads that demand a robust construction. Thermally induced stresses have a significant effect on the service life of a turbocharger.
  • appropriate thermal compensating elements must be provided, although the same often have leaks.
  • DE 100 22 052 A1 proposes to solve this problem by decoupling the components that conduct exhaust gas, and supporting and sealing the external structures.
  • DE 103 52 960 A1 provides a number of options for solving the problem of tightness against leaks and simultaneous durability. More specifically, a sliding seat is disclosed that prevents the thermal stresses between the rotor housing and the overflow areas leading the exhaust gas to the outlet flange. DE 103 52 960 A1 indicates how the expansion can be compensated, but economic fabrication of the subject housing may be jeopardized by the thermomechanical loads that occur as result of this construction, by the required material properties, and by the production tolerances required for smooth operation.
  • an object of the present invention is to provide a turbine housing for an exhaust turbocharger which compensates for temperature expansion between the rotor housing and the exhaust gas outlet, has maximum sealing effect for the internal system, while at the same time uses very thin materials, and avoids welding in the sensitive outlet area of the rotor housing.
  • the inventive turbine housing for an exhaust gas turbocharger includes an external housing.
  • a rotor housing having a pipe-shaped neck is arranged therein.
  • the turbine housing furthermore includes an outlet pipe.
  • Exhaust gas can be conducted from the rotor housing towards an outlet flange via this outlet pipe.
  • the outlet pipe can be displaced relative to the rotor housing to compensate for thermally induced longitudinal or axial expansion and contraction between the two parts.
  • a separate sealing ring is provided between the neck and the outlet pipe, and can be connected to the outlet pipe as a separate component. The sealing ring seals the transition between the neck and the outlet pipe.
  • a distinctive aspect of the inventive turbine housing is that the sealing ring is turned inwardly.
  • the sealing ring is pushed elastically over the outlet area of the neck, i.e., the internal system that conducts the exhaust gas.
  • the sealing ring provides sealing, and renders the neck axially moveable or displaceable relative to the outlet pipe.
  • the very good sealing effect achieved by the sealing ring configured in this manner is a result of the radially oriented elastic tension applied by the sealing ring to the outside surface of the neck.
  • the high elasticity of the sealing ring results from the end thereof being turned inwardly.
  • the inward turning of the sealing ring end shall be construed to mean inverted across an angular area of at least 180°.
  • the turned sealing ring end functions like a spring that resiliently urges the same axially under tension against the outside of the neck. It can be assured that the neck is positioned securely against the sealing ring, or the sealing ring against the neck, by using an expanding mandrel that is inserted into the neck after assembly to expand the neck. With this construction, it is also possible to use greater production tolerances with respect to the neck, because the sealing effect that is generated between the neck and the outlet pipe is attained by adjusting the sealing gap through use of the expanding mandrel.
  • the turned end of the sealing ring extends across an angular area of at least 180°. There is a line of contact between the neck and the sealing ring at an angle of 180°.
  • the contact surface between the sealing ring and the neck is preferably disposed at a certain distance from the free end segment of the turned end to limit the material abrasion that can occur in an exhaust gas turbocharger when there are frequent axial displacements. It is therefore provided that the sealing ring has a free end segment on its turned end. This free end segment is expanded in a funnel shape.
  • the free end segment is preferably at an angle of 5° to 20° to the outside of the neck.
  • the free end segment forms a type of inclined or tapered lead-in surface that is located in front of the contact surface.
  • the sealing ring has a turned end, the contact surface immediately adjacent thereto, and the subsequent funnel-shaped expanded free end segment.
  • the contact surface is at least annular, so that the contact surface is a line of contact with the neck. However, it can also be flat. In this case, the contact surface extends across a certain longitudinal segment of the neck, so that the actual sealing seat is not just annular, it is barrel-shaped.
  • the end of the sealing ring that faces away from the inwardly turned end fastens to the outlet pipe.
  • the sealing ring can encompass the outside of the outlet pipe.
  • the sealing ring can be fixed to the outlet pipe using thermal joining, such as soldering or welding.
  • thermal joining such as soldering or welding.
  • the support ring can also be employed in combination with a thermal joining method, such as a fusion welding method, because the effects of the weld seam can be used, e.g. weld notches.
  • the sealing ring basically preferably comprises a metal material. There is some freedom in selecting the material because the sealing ring is a separate component that is joined to the outlet pipe. Thus, it is possible to employ particularly suitable materials, especially inexpensive materials.
  • the sealing ring can comprise e.g. a nickel-based alloy.
  • the sealing ring can be made of a very thin-walled material.
  • the thickness may be less than 1.0 mm. This has a positive effect on starting the catalytic converter.
  • the outlet pipe may be a integral component of a flange for connecting to the exhaust system, and therefore is generally thicker than the sealing ring. Because of this, fusion welding of the sealing ring and the outlet pipe may be improved by using a support ring that surrounds the sealing ring, in addition to the sealing ring. In this manner, components that essentially have the same thickness are welded to one another. This facilitates the welding due to more uniform heat input.
  • the support ring may also be embodied in a double layer to increase the thickness. This also further enhances the elastic properties of the sealing ring.
  • FIG. 1 is a section through a turbine housing
  • FIG. 2 is a detail of the sealing area in FIG. 1 .
  • the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1 .
  • the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary.
  • the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
  • FIG. 1 depicts a turbine housing 1 for an exhaust gas turbocharger.
  • the turbine housing 1 includes an external housing 2 that extends from a housing flange 3 to an outlet flange 4 .
  • the external housing 2 is welded both to the housing flange 3 and to the outlet flange 4 and defines or delimits a gas-tight interior.
  • a rotor housing 5 is disposed within external housing 2 , and is formed from two sheet metal shells 6 , 7 that are welded to one another on the outer circumference of the rotor housing 5 .
  • the sheet metal shell 7 depicted on the left has a tubular neck 8 that extends towards the outlet flange 4 .
  • a turbine rotor 9 projects into the neck 8 .
  • the contour of the neck 8 is adapted to the outer contour of the turbine rotor 9 .
  • the neck 8 feeds the exhaust gas exiting from the rotor housing 5 via an outlet pipe 10 to the outlet flange 4 , where the exhaust gas exits from the turbocharger 1 .
  • the outlet pipe 10 is an integral component of the outlet flange 4 .
  • the outlet pipe 10 is joined at its end that is adjacent to the neck 8 to a sealing ring 11 that surrounds the outside of the neck 8 , as can be seen in the enlarged depiction in FIG. 2 .
  • the sealing ring 11 has one end 12 that faces the neck 8 and is turned inwardly. Sealing ring 11 also has an opposite end 13 that faces the outlet pipe 10 , surrounds the outside of the outlet pipe 10 , and fixes the sealing ring 11 thereon.
  • the end 13 of the sealing ring 11 on the outlet pipe side is surrounded by a support ring 14 .
  • the support ring 14 , the end 13 of the sealing ring 11 , and the outlet pipe 10 are welded to one another via a weld seam 15 .
  • the sealing ring 11 initially extends cylindrically from the end 13 on the outlet pipe side towards the turned end 12 .
  • the turned end 12 is generally J-shaped, and is inwardly inverted or doubled over around 180°.
  • the bend radius in the area of the turned end 12 corresponds to about half the thickness of the sealing ring 11 , which is produced from a material with a thickness that is uniform.
  • the thickness of the sealing ring 11 may be significantly thinner than the thickness of the outlet pipe 10 .
  • a contact surface 16 is located on the turned end 12 of sealing ring 11 .
  • This contact surface 16 extends essentially parallel to the outer areas of the sealing ring 11 , and is therefore somewhat barrel-shaped, and leads to a flat sealing seat that provides a very tight seal.
  • a free end segment 17 of sealing ring 11 is connected to this contact surface 16 .
  • the free end segment 17 tapers or expands in a funnel shape.
  • the angle “W” is from 5° to 20° to the outside 18 of the neck 8 .
  • the free end segment 17 terminates at a preselected distance from the end face 19 of the outlet pipe 10 .
  • the neck 8 also terminates at a preselected distance from the end face 19 of the outlet pipe 10 . The distance is selected such that length compensation due to thermal expansion and contraction is possible with no problem under normal operating temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A turbine housing for exhaust gas turbochargers includes an outlet pipe and an external housing connected therewith. A rotor housing is disposed in the external housing and has a pipe-shaped neck operably coupled with the outlet pipe and axially displaceable relative to the same. A separate sealing ring is positioned operably between the neck and the outlet pipe, supported by the outlet pipe, and has an inwardly turned sealing portion sealingly and slidingly engaging the neck to form a secure gas seal therebetween.

Description

    CLAIM OF PRIORITY
  • Applicants hereby claim the priority benefits under the provisions of 35 U.S.C. §119, basing said claim of priority on German Patent Application Serial No. 10 2009025054.9, filed Jun. 10, 2009. In accordance with the provisions of 35 U.S.C. §119 and Rule 55(b), a certified copy of the above-listed German patent application will be filed before grant of a patent.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a turbine housing for exhaust gas turbochargers and the like.
  • Internal combustion engines for motor vehicles are increasingly charged by turbochargers in order to reduce fuel consumption. However, the weight of the exhaust system itself also affects fuel consumption. Turbochargers should therefore be as lightweight as possible. This need for a lightweight construction conflicts with the fact that when in use, turbochargers are subjected to significant mechanical stresses and especially extremely high thermal loads that demand a robust construction. Thermally induced stresses have a significant effect on the service life of a turbocharger. Thus, appropriate thermal compensating elements must be provided, although the same often have leaks. DE 100 22 052 A1, for instance, proposes to solve this problem by decoupling the components that conduct exhaust gas, and supporting and sealing the external structures. The arrangement depicted in DE 100 22 052 A1 makes it possible to connect the internal system to the external system in a sealed manner, but it does not address the thermal stress problems that occur, except by deforming the components. This results in the risk that the internal system or the rotor housing will collide with the turbine rotor.
  • In practice, however, it has been demonstrated that the internal system must also satisfy certain requirements in terms of tightness against leaks in order to assure that the turbocharger works efficiently. DE 103 52 960 A1 provides a number of options for solving the problem of tightness against leaks and simultaneous durability. More specifically, a sliding seat is disclosed that prevents the thermal stresses between the rotor housing and the overflow areas leading the exhaust gas to the outlet flange. DE 103 52 960 A1 indicates how the expansion can be compensated, but economic fabrication of the subject housing may be jeopardized by the thermomechanical loads that occur as result of this construction, by the required material properties, and by the production tolerances required for smooth operation.
  • SUMMARY OF THE INVENTION
  • Hence, an object of the present invention is to provide a turbine housing for an exhaust turbocharger which compensates for temperature expansion between the rotor housing and the exhaust gas outlet, has maximum sealing effect for the internal system, while at the same time uses very thin materials, and avoids welding in the sensitive outlet area of the rotor housing.
  • This object is attained using a turbine housing with the features in patent claim 1.
  • The inventive turbine housing for an exhaust gas turbocharger includes an external housing. A rotor housing having a pipe-shaped neck is arranged therein. The turbine housing furthermore includes an outlet pipe.
  • Exhaust gas can be conducted from the rotor housing towards an outlet flange via this outlet pipe. The outlet pipe can be displaced relative to the rotor housing to compensate for thermally induced longitudinal or axial expansion and contraction between the two parts. A separate sealing ring is provided between the neck and the outlet pipe, and can be connected to the outlet pipe as a separate component. The sealing ring seals the transition between the neck and the outlet pipe.
  • A distinctive aspect of the inventive turbine housing is that the sealing ring is turned inwardly. The sealing ring is pushed elastically over the outlet area of the neck, i.e., the internal system that conducts the exhaust gas. The sealing ring provides sealing, and renders the neck axially moveable or displaceable relative to the outlet pipe. The very good sealing effect achieved by the sealing ring configured in this manner is a result of the radially oriented elastic tension applied by the sealing ring to the outside surface of the neck. The high elasticity of the sealing ring results from the end thereof being turned inwardly.
  • The inward turning of the sealing ring end shall be construed to mean inverted across an angular area of at least 180°. The turned sealing ring end functions like a spring that resiliently urges the same axially under tension against the outside of the neck. It can be assured that the neck is positioned securely against the sealing ring, or the sealing ring against the neck, by using an expanding mandrel that is inserted into the neck after assembly to expand the neck. With this construction, it is also possible to use greater production tolerances with respect to the neck, because the sealing effect that is generated between the neck and the outlet pipe is attained by adjusting the sealing gap through use of the expanding mandrel.
  • The turned end of the sealing ring extends across an angular area of at least 180°. There is a line of contact between the neck and the sealing ring at an angle of 180°. The contact surface between the sealing ring and the neck is preferably disposed at a certain distance from the free end segment of the turned end to limit the material abrasion that can occur in an exhaust gas turbocharger when there are frequent axial displacements. It is therefore provided that the sealing ring has a free end segment on its turned end. This free end segment is expanded in a funnel shape. The free end segment is preferably at an angle of 5° to 20° to the outside of the neck. Thus, the free end segment forms a type of inclined or tapered lead-in surface that is located in front of the contact surface.
  • Thus, the sealing ring has a turned end, the contact surface immediately adjacent thereto, and the subsequent funnel-shaped expanded free end segment. The contact surface is at least annular, so that the contact surface is a line of contact with the neck. However, it can also be flat. In this case, the contact surface extends across a certain longitudinal segment of the neck, so that the actual sealing seat is not just annular, it is barrel-shaped.
  • The end of the sealing ring that faces away from the inwardly turned end fastens to the outlet pipe. The sealing ring can encompass the outside of the outlet pipe. The sealing ring can be fixed to the outlet pipe using thermal joining, such as soldering or welding. However, it is also possible to press fit the sealing ring to the outlet pipe using a support ring. However, the support ring can also be employed in combination with a thermal joining method, such as a fusion welding method, because the effects of the weld seam can be used, e.g. weld notches.
  • The sealing ring basically preferably comprises a metal material. There is some freedom in selecting the material because the sealing ring is a separate component that is joined to the outlet pipe. Thus, it is possible to employ particularly suitable materials, especially inexpensive materials. The sealing ring can comprise e.g. a nickel-based alloy.
  • In addition, the sealing ring can be made of a very thin-walled material. The thickness may be less than 1.0 mm. This has a positive effect on starting the catalytic converter.
  • The outlet pipe may be a integral component of a flange for connecting to the exhaust system, and therefore is generally thicker than the sealing ring. Because of this, fusion welding of the sealing ring and the outlet pipe may be improved by using a support ring that surrounds the sealing ring, in addition to the sealing ring. In this manner, components that essentially have the same thickness are welded to one another. This facilitates the welding due to more uniform heat input.
  • The support ring may also be embodied in a double layer to increase the thickness. This also further enhances the elastic properties of the sealing ring.
  • These and other advantages of the invention will be further understood and appreciated by those skilled in the art by reference to the following written specification, claims, and appended drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention shall be explained in greater detail in the following using an exemplary embodiment that is illustrated in the drawings.
  • FIG. 1 is a section through a turbine housing; and
  • FIG. 2 is a detail of the sealing area in FIG. 1.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
  • FIG. 1 depicts a turbine housing 1 for an exhaust gas turbocharger. The turbine housing 1 includes an external housing 2 that extends from a housing flange 3 to an outlet flange 4. The external housing 2 is welded both to the housing flange 3 and to the outlet flange 4 and defines or delimits a gas-tight interior. A rotor housing 5 is disposed within external housing 2, and is formed from two sheet metal shells 6, 7 that are welded to one another on the outer circumference of the rotor housing 5. The sheet metal shell 7 depicted on the left has a tubular neck 8 that extends towards the outlet flange 4. A turbine rotor 9 projects into the neck 8. The contour of the neck 8 is adapted to the outer contour of the turbine rotor 9.
  • The neck 8 feeds the exhaust gas exiting from the rotor housing 5 via an outlet pipe 10 to the outlet flange 4, where the exhaust gas exits from the turbocharger 1. In the illustrated example, the outlet pipe 10 is an integral component of the outlet flange 4. The outlet pipe 10 is joined at its end that is adjacent to the neck 8 to a sealing ring 11 that surrounds the outside of the neck 8, as can be seen in the enlarged depiction in FIG. 2.
  • The sealing ring 11 has one end 12 that faces the neck 8 and is turned inwardly. Sealing ring 11 also has an opposite end 13 that faces the outlet pipe 10, surrounds the outside of the outlet pipe 10, and fixes the sealing ring 11 thereon. The end 13 of the sealing ring 11 on the outlet pipe side is surrounded by a support ring 14. The support ring 14, the end 13 of the sealing ring 11, and the outlet pipe 10 are welded to one another via a weld seam 15.
  • The sealing ring 11 initially extends cylindrically from the end 13 on the outlet pipe side towards the turned end 12. The turned end 12 is generally J-shaped, and is inwardly inverted or doubled over around 180°. The bend radius in the area of the turned end 12 corresponds to about half the thickness of the sealing ring 11, which is produced from a material with a thickness that is uniform. The thickness of the sealing ring 11 may be significantly thinner than the thickness of the outlet pipe 10.
  • A contact surface 16 is located on the turned end 12 of sealing ring 11. This contact surface 16 extends essentially parallel to the outer areas of the sealing ring 11, and is therefore somewhat barrel-shaped, and leads to a flat sealing seat that provides a very tight seal. A free end segment 17 of sealing ring 11 is connected to this contact surface 16. The free end segment 17 tapers or expands in a funnel shape. The angle “W” is from 5° to 20° to the outside 18 of the neck 8. The free end segment 17 terminates at a preselected distance from the end face 19 of the outlet pipe 10. The neck 8 also terminates at a preselected distance from the end face 19 of the outlet pipe 10. The distance is selected such that length compensation due to thermal expansion and contraction is possible with no problem under normal operating temperatures.
  • In the foregoing description, it will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed herein. Such modifications are to be considered as included in the following claims, unless these claims by their language expressly state otherwise.
  • LEGEND
    • 1—Turbocharger
    • 2—External housing
    • 3—Housing flange
    • 4—Outlet flange
    • 5—Rotor housing
    • 6—Sheet metal shell
    • 7—Sheet metal shell
    • 8—Neck
    • 9—Turbine rotor
    • 10—Outlet pipe
    • 11—Sealing ring
    • 12—Flanged end
    • 13—End
    • 14—Support ring
    • 15—Weld seam
    • 16—Contact surface
    • 17—Free end segment
    • 18—Outside
    • 19—End face
    • W—Angle

Claims (11)

1-10. (canceled)
11. A turbine housing for exhaust gas turbochargers, comprising:
an outlet pipe through which exhaust gas flows;
an external housing connected with said outlet pipe;
a rotor housing disposed in said external housing and having a pipe-shaped neck operably coupled with said outlet pipe and axially displaceable relative thereto; and
a separate sealing ring disposed operably between said neck and said outlet pipe, being supported by said outlet pipe and having an inwardly turned sealing portion sealingly and slidingly engaging said neck to form a secure gas seal therebetween.
12. A turbine housing as set forth in claim 11, wherein:
said inwardly turned sealing portion of said sealing ring has a contact surface positioned abuttingly against an outside portion of said neck.
13. A turbine housing as set forth in claim 11, wherein:
said inwardly turned portion of said sealing ring is configured to apply radial tension to said neck.
14. A turbine housing as set forth in claim 11, wherein:
said inwardly turned portion of said sealing ring has a free end segment with a tapered funnel shape.
15. A turbine housing as set forth in claim 14, wherein:
said free end segment is disposed at an angle in the range of 5° to 20° relative to an outside portion of said neck.
16. A turbine housing as set forth in claim 11, wherein:
said sealing ring encircles said outlet pipe.
17. A turbine housing as set forth in claim 16, including:
a support ring surrounding said sealing ring; and
a thermal fusion seam joining said support ring and said sealing ring to said outlet pipe.
18. A turbine housing as set forth in claim 16, including:
a clamp attaching said sealing ring to said outlet pipe.
19. A turbine housing as set forth in claim 11, wherein:
said sealing ring is constructed from a nickel-based alloy.
20. A turbine housing as set forth in claim 11, wherein:
said sealing ring has a double wall construction.
US12/792,951 2009-06-10 2010-06-03 Turbine housing for gas turbochargers Abandoned US20100316494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009025054.9A DE102009025054B4 (en) 2009-06-10 2009-06-10 turbine housing
DE102009025054.9 2009-06-10

Publications (1)

Publication Number Publication Date
US20100316494A1 true US20100316494A1 (en) 2010-12-16

Family

ID=43069847

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/792,951 Abandoned US20100316494A1 (en) 2009-06-10 2010-06-03 Turbine housing for gas turbochargers

Country Status (5)

Country Link
US (1) US20100316494A1 (en)
JP (1) JP5052649B2 (en)
DE (1) DE102009025054B4 (en)
FR (1) FR2946688B1 (en)
IT (1) IT1400823B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110083433A1 (en) * 2009-10-14 2011-04-14 Peter Stroph Explosion protection for a turbine and combustion engine
US20120023928A1 (en) * 2010-01-25 2012-02-02 Benteler Automobiltechnik Gmbh Modular exhaust gas assembly
US20120294709A1 (en) * 2011-05-19 2012-11-22 Benteler Automobiltechnik Gmbh Turbine housing of an exhaust-gas turbocharger
US20130156567A1 (en) * 2010-02-01 2013-06-20 Mitsubishi Heavy Industries, Ltd. Sheet metal turbine housing
US20140099196A1 (en) * 2011-06-06 2014-04-10 Borgwarner Inc. Exhaust-gas turbocharger
CN104040141A (en) * 2012-01-17 2014-09-10 博格华纳公司 Exhaust turbocharger
CN105545426A (en) * 2014-10-28 2016-05-04 现代自动车株式会社 Welding structure of warm-up catalytic converter
US20160201513A1 (en) * 2015-01-14 2016-07-14 Benteler Automobiltechnik Gmbh Turbine housing for an exhaust turbocharger
US20160326893A1 (en) * 2015-05-07 2016-11-10 Icr Turbine Engine Corporation Ceramic turbine volute
US9810238B2 (en) 2015-03-09 2017-11-07 Caterpillar Inc. Turbocharger with turbine shroud
US20190136717A1 (en) * 2017-11-08 2019-05-09 Aisin Takaoka Co., Ltd. Turbine housing
US20190301304A1 (en) * 2018-03-27 2019-10-03 Man Energy Solutions Se Turbocharger
US10519806B2 (en) * 2015-11-06 2019-12-31 Calsonic Kansei Corporation Turbine housing
US10570779B2 (en) * 2015-03-23 2020-02-25 Calsonic Kansei Corporation Turbine housing
US10677096B2 (en) * 2017-02-27 2020-06-09 Man Energy Solutions Se Turbocharger
US10690037B2 (en) 2016-10-04 2020-06-23 Ford Global Technologies, Llc Protective device for preventing exhaust gas escape
US11221022B2 (en) 2017-09-27 2022-01-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing and turbocharger including the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011105408T5 (en) * 2011-07-06 2014-04-10 Toyota Jidosha Kabushiki Kaisha Turbine housing and turbocharger
JP5910114B2 (en) * 2012-01-27 2016-04-27 トヨタ自動車株式会社 Turbine housing and exhaust turbine supercharger
DE102012109807A1 (en) * 2012-10-15 2014-04-17 Benteler Automobiltechnik Gmbh turbocharger
JP6322038B2 (en) * 2014-04-16 2018-05-09 カルソニックカンセイ株式会社 Turbocharger
JP2015203398A (en) * 2014-04-16 2015-11-16 カルソニックカンセイ株式会社 Turbocharger
JP2015224570A (en) * 2014-05-27 2015-12-14 カルソニックカンセイ株式会社 Turbocharger
CN105715312A (en) 2014-09-26 2016-06-29 现代自动车株式会社 Sealing-Coupled Apparatus Of Turbocharger
DE102014116445B4 (en) 2014-11-11 2016-08-11 Benteler Automobiltechnik Gmbh Turbine housing for an exhaust gas turbocharger
JP2016156329A (en) * 2015-02-25 2016-09-01 カルソニックカンセイ株式会社 Turbocharger and manufacturing method of the same
US10472988B2 (en) 2017-01-30 2019-11-12 Garrett Transportation I Inc. Sheet metal turbine housing and related turbocharger systems
US10436069B2 (en) 2017-01-30 2019-10-08 Garrett Transportation I Inc. Sheet metal turbine housing with biaxial volute configuration
US10544703B2 (en) 2017-01-30 2020-01-28 Garrett Transportation I Inc. Sheet metal turbine housing with cast core
US10494955B2 (en) 2017-01-30 2019-12-03 Garrett Transportation I Inc. Sheet metal turbine housing with containment dampers
US10690144B2 (en) 2017-06-27 2020-06-23 Garrett Transportation I Inc. Compressor housings and fabrication methods
US11732729B2 (en) 2021-01-26 2023-08-22 Garrett Transportation I Inc Sheet metal turbine housing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1811277A (en) * 1929-06-15 1931-06-23 Bessie K Stoll Pipe connecter
US2685460A (en) * 1950-11-17 1954-08-03 Automatic Bending Company Expansion coupling
US3173710A (en) * 1962-05-02 1965-03-16 Western Piping & Engineering C Exhaust system for vehicles
US4268046A (en) * 1979-02-23 1981-05-19 Muskegon Piston Ring Company Multiple seal stationary sealing ring
US4613170A (en) * 1984-12-20 1986-09-23 Nelson Industries, Inc. Adaptor for connecting tubular members in an exhaust system
EP1357278A2 (en) * 2002-04-25 2003-10-29 Benteler Automobiltechnik GmbH & Co. KG Exhaust gas turbine for a turbocharger
US7198459B2 (en) * 2003-11-13 2007-04-03 Benteler Automobiltechnik Gmbh Casing arrangement for a turbocharger of an internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172888U (en) * 1983-05-07 1984-11-19 三菱樹脂株式会社 pipe fittings
JPS63193703U (en) * 1987-06-03 1988-12-13
JPH11229886A (en) * 1998-02-13 1999-08-24 Taiho Kogyo Co Ltd Turbocharger sealing unit
JPH11344170A (en) * 1998-06-01 1999-12-14 Nishikawa Rubber Co Ltd Pipe joint
DE29909018U1 (en) * 1999-05-26 2000-09-28 Gillet Heinrich Gmbh Turbine housing for exhaust gas turbochargers
JP4448064B2 (en) * 2005-06-24 2010-04-07 トヨタ自動車株式会社 Turbine housing
JP2007309139A (en) * 2006-05-16 2007-11-29 Toyota Motor Corp Turbocharger
DE102008052552B4 (en) * 2008-10-21 2015-06-11 Benteler Automobiltechnik Gmbh Turbine housing and method for its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1811277A (en) * 1929-06-15 1931-06-23 Bessie K Stoll Pipe connecter
US2685460A (en) * 1950-11-17 1954-08-03 Automatic Bending Company Expansion coupling
US3173710A (en) * 1962-05-02 1965-03-16 Western Piping & Engineering C Exhaust system for vehicles
US4268046A (en) * 1979-02-23 1981-05-19 Muskegon Piston Ring Company Multiple seal stationary sealing ring
US4613170A (en) * 1984-12-20 1986-09-23 Nelson Industries, Inc. Adaptor for connecting tubular members in an exhaust system
EP1357278A2 (en) * 2002-04-25 2003-10-29 Benteler Automobiltechnik GmbH & Co. KG Exhaust gas turbine for a turbocharger
US7198459B2 (en) * 2003-11-13 2007-04-03 Benteler Automobiltechnik Gmbh Casing arrangement for a turbocharger of an internal combustion engine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110083433A1 (en) * 2009-10-14 2011-04-14 Peter Stroph Explosion protection for a turbine and combustion engine
US8528328B2 (en) * 2009-10-14 2013-09-10 Mtu Friedrichshafen Gmbh Explosion protection for a turbine and combustion engine
US8726655B2 (en) * 2010-01-25 2014-05-20 Benteler Automobiltechnik Gmbh Modular exhaust gas assembly
US20120023928A1 (en) * 2010-01-25 2012-02-02 Benteler Automobiltechnik Gmbh Modular exhaust gas assembly
US9581045B2 (en) * 2010-02-01 2017-02-28 Mitsubishi Heavy Industries, Ltd. Sheet metal turbine housing
US20130156567A1 (en) * 2010-02-01 2013-06-20 Mitsubishi Heavy Industries, Ltd. Sheet metal turbine housing
US20120294709A1 (en) * 2011-05-19 2012-11-22 Benteler Automobiltechnik Gmbh Turbine housing of an exhaust-gas turbocharger
US9097181B2 (en) * 2011-05-19 2015-08-04 Benteler Automobil Technik Gmbh Turbine housing of an exhaust-gas turbocharger
US20140099196A1 (en) * 2011-06-06 2014-04-10 Borgwarner Inc. Exhaust-gas turbocharger
US10309415B2 (en) * 2011-06-06 2019-06-04 Borgwarner Inc. Exhaust-gas turbocharger
CN104040141A (en) * 2012-01-17 2014-09-10 博格华纳公司 Exhaust turbocharger
CN105545426A (en) * 2014-10-28 2016-05-04 现代自动车株式会社 Welding structure of warm-up catalytic converter
US20160201513A1 (en) * 2015-01-14 2016-07-14 Benteler Automobiltechnik Gmbh Turbine housing for an exhaust turbocharger
CN105781634A (en) * 2015-01-14 2016-07-20 本特勒尔汽车技术有限公司 Turbine housing for an exhaust turbocharger
US10094243B2 (en) * 2015-01-14 2018-10-09 Benteler Automobiltechnik Gmbh Turbine housing for an exhaust turbocharger
US9810238B2 (en) 2015-03-09 2017-11-07 Caterpillar Inc. Turbocharger with turbine shroud
US10570779B2 (en) * 2015-03-23 2020-02-25 Calsonic Kansei Corporation Turbine housing
US20160326893A1 (en) * 2015-05-07 2016-11-10 Icr Turbine Engine Corporation Ceramic turbine volute
US10519806B2 (en) * 2015-11-06 2019-12-31 Calsonic Kansei Corporation Turbine housing
US10690037B2 (en) 2016-10-04 2020-06-23 Ford Global Technologies, Llc Protective device for preventing exhaust gas escape
US10677096B2 (en) * 2017-02-27 2020-06-09 Man Energy Solutions Se Turbocharger
US11221022B2 (en) 2017-09-27 2022-01-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing and turbocharger including the same
US20190136717A1 (en) * 2017-11-08 2019-05-09 Aisin Takaoka Co., Ltd. Turbine housing
US10704420B2 (en) * 2017-11-08 2020-07-07 Aisin Takaoka Co., Ltd. Turbine housing
US20190301304A1 (en) * 2018-03-27 2019-10-03 Man Energy Solutions Se Turbocharger
US11041408B2 (en) * 2018-03-27 2021-06-22 Man Energy Solutions Se Turbocharger

Also Published As

Publication number Publication date
JP2010285989A (en) 2010-12-24
DE102009025054A1 (en) 2010-12-16
IT1400823B1 (en) 2013-07-02
FR2946688A1 (en) 2010-12-17
DE102009025054B4 (en) 2015-12-03
FR2946688B1 (en) 2014-11-21
JP5052649B2 (en) 2012-10-17
ITRM20100277A1 (en) 2010-12-11

Similar Documents

Publication Publication Date Title
US20100316494A1 (en) Turbine housing for gas turbochargers
US8382429B2 (en) Turbine housing, and method of making a turbine housing
JP5531159B2 (en) Exhaust gas turbocharger
JP5384692B2 (en) Exhaust turbocharger
US9447698B2 (en) Double-walled turbocharger housing, flange and connection thereof
US7198459B2 (en) Casing arrangement for a turbocharger of an internal combustion engine
EP1777461B1 (en) Attachement of a ceramic combustor can
US20110286837A1 (en) Exhaust-gas turbocharger
JP2010071466A (en) Gas turbine seal
JP2000205464A (en) Tube fitting
US20140165544A1 (en) Modular manifold for motor vehicles
US10247022B2 (en) Sealing and retention system
EP2622278B1 (en) Gas turbine assembly and method therefor
US8678445B2 (en) Component connection
JPH08312924A (en) Radiant tube for industrial furnace
WO2016136312A1 (en) Connector
JP4080752B2 (en) Expansion joints
US9488105B2 (en) Gas turbine assembly and method therefor
JP2004190610A (en) Joint structure of double piping
JPS6114573Y2 (en)
RU202147U1 (en) EXHAUST MANIFOLD OF INTERNAL COMBUSTION ENGINE
JPH0874570A (en) Connecting structure of exhaust manifold and turbosupercharger
EP3002519B1 (en) Combustor arrangement with fastening system for combustor parts
KR200402033Y1 (en) Clamp structure
JP2009228474A (en) Double pipe structure and exhaust pipe structure of internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: BENTELER AUTOMOBILTECHNIK GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRUSSMANN, ELMAR;SMATLOCH, CHRISTIAN;SIGNING DATES FROM 20100615 TO 20100621;REEL/FRAME:024808/0321

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION