US20100290581A1 - Shift Registers - Google Patents

Shift Registers Download PDF

Info

Publication number
US20100290581A1
US20100290581A1 US12/841,785 US84178510A US2010290581A1 US 20100290581 A1 US20100290581 A1 US 20100290581A1 US 84178510 A US84178510 A US 84178510A US 2010290581 A1 US2010290581 A1 US 2010290581A1
Authority
US
United States
Prior art keywords
shift register
signal
output signal
voltage
switch device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/841,785
Inventor
Kuo-Hsing Cheng
Yao-Jen Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to US12/841,785 priority Critical patent/US20100290581A1/en
Assigned to AU OPTRONICS CORP. reassignment AU OPTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENG, KUO-HSING, HSIEH, YAO-JEN
Publication of US20100290581A1 publication Critical patent/US20100290581A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit

Definitions

  • the invention relates to a shift register, and more particularly to a control method for compensating for shifting of threshold voltage of transistors in the shift register.
  • gate drivers and drain drivers are arranged to provide scan signals and data signals.
  • a shift register which has the same function as a gate driver is arranged in a glass panel.
  • Most shift registers are formed by amorphous silicon thin-film processes. When a display panel is lit, transistors of a shift register in the display panel are affected by stress, and the display panel thus operates irregularly.
  • FIG. 1 shows a conventional shift register unit of a shift register.
  • FIG. 2 is a timing chart of signals of the shift register unit in FIG. 1 .
  • a shift register unit 1 is controlled by clock signals CK and XCK opposite to each other, that is, the clock signals CK and XCK have inverse phases, and are coupled to a low voltage source Vss.
  • the shift register unit 1 receives output signals S N ⁇ 1 and S N+1 respectively from the previous shift register unit and the next shift register unit and generates an output signal S N .
  • the output signal S N ⁇ 1 is activated, that is, the output signal S N ⁇ 1 is at a high level, and a transistor T 10 is turned on.
  • a voltage V N10 at a node N 10 is changed to a high level according to the output signal S N ⁇ 1 to turn on transistors T 11 and T 12 .
  • a voltage V N11 at a node N 11 is at a low level to turn off a transistor T 13 .
  • a transistor T 15 is turned on by the clock signal XCK with a high level, and the output signal S N is de-activated, that is, the output signal S N is at a low level.
  • the output signal S N ⁇ 1 is de-activated, and the transistor T 10 is turned off.
  • the clock signal CK is changed to a high level.
  • the clock signal CK with the high level couples to the node N 10 through a capacitor C 10 and the transistor T 13 , so that the voltage V N10 at the node N 10 is raised to a higher level according to the clock signal CK to turn on the transistors T 11 and T 12 .
  • the voltage V N11 at the node N 11 remains at the low level to turn off the transistor T 13 .
  • the clock signal CK with the high level is transmitted to an output node N 12 through the turned-on transistor T 11 to serve as the output signal S N , in other words, the output signal S N is activated.
  • the clock signal XCK with a low level turns off a transistor T 15 , and the voltage V N11 with the low level turns off a transistor T 16 . Accordingly, the output signal S N can stably remain in the activated state.
  • the clock signal CK is changed to a low level, and the output signal S N+1 is activated to turn on the transistor T 14 .
  • the voltage V N10 at the node N 10 is gradually decreased according to the low voltage source Vss to turn off the transistors T 11 and T 12 .
  • the clock signal XCK with a high level turns on the transistor T 15 , so that the voltage of the low voltage source Vss is provided to the output node N 12 to serve as the output signal S N , in other words, the output signal S N is de-activated.
  • the clock signal CK is changed to a high level, and the voltage V N11 at the node N 11 is changed to a high level to turn on the transistor T 13 .
  • the voltage N 10 remains at a low level.
  • the voltage V N11 with the high level turns on the transistor T 16 , so that the output signal S N remains in the de-activated state.
  • the shift register unit 1 operates according to the clock signal CK and XCK.
  • the voltage V N10 at the node N 11 is switched between a high level and a low level.
  • the high level and the low level of the clock signal CK is 15V and ⁇ 9V respectively, and the voltage of the low voltage source Vss is ⁇ 7V.
  • the clock signal CK is at the high level to turn on the transistor T 13 , the voltage difference between a gate and a source of the transistor T 13 is 22V. If the gate-source voltage Vgs of the transistor T 13 is under positive base stress for a long time, the threshold voltage of the transistor T 13 shifts, and the voltages V N10 and V N11 become irregular, as shown by the dotted line in V N10 and V N11 in FIG. 2 .
  • An exemplary embodiment of a shift register operating in an active period and a blanking period comprising a plurality of substantially cascaded shift register units.
  • Each of the shift register units is controlled by a first clock signal and a second clock signal for generating an output signal. The output signal is periodically activated.
  • Each of the shift register units comprises first and second switch devices and first and second driving devices.
  • the first switch device provides the output signal through an output node.
  • the first driving device drives the first switch device according to a first input signal to activate the output signal in the active period.
  • the second driving device is coupled to a voltage signal and provides the voltage signal according to the first clock signal to drive the first switch device to de-activate the output signal in the active period.
  • the second switch device is coupled to the voltage signal.
  • the first switch device de-activates the output signal the second switch device provides the voltage signal to the output node according to the second clock signal.
  • the active period the voltage signal is at a low level, and the first and second clock signals are set as alternating-current signals and are opposite to each other.
  • the blanking period the voltage signal is at a high level, and each of the first and second clock signals is set as a direct-current signal.
  • a shift register comprises substantially cascaded first, second, and third shift register units.
  • Each of the first, second, and third shift register unit is controlled by a first clock signal and a second clock signal opposite to each other for generating an output signal. The output signal is periodically activated.
  • Each of the first, second, and third shift register units comprises first and second switch devices and first and second devices.
  • the first switch device provides the output signal through an output node.
  • the first driving device drives the first switch device according to a first input signal to activate the output signal.
  • the second driving device is coupled to the second clock signal and provides the second clock signal according to the first clock signal to drive the first switch device to de-activate the output signal.
  • the second switch device is coupled to the voltage signal. When the first switch device de-activates the output signal, the second switch device provides the voltage signal to the output node according to the second clock signal.
  • the shift register operates in an active period and a blanking period and comprises a plurality of substantially cascaded shift register units.
  • Each of the shift register units is controlled by a first clock signal and a second clock signal for generating an output signal.
  • the output signal is periodically activated.
  • Each of the shift register units comprises first and second switch devices and first and second driving devices.
  • the first switch device provides the output signal through an output node.
  • the second driving device and the second switch devices are coupled to a voltage signal.
  • the control method comprises: switching the voltage signal to a low level and setting the first and second clock signals as alternating-current signals, wherein the first and second are opposite to each other; driving the first switch device to activate the output signal by the first driving device according to a first input signal; providing the voltage signal to drive the first switch device to de-activate the output signal by the second driving device according to the first clock signal; and providing the voltage signal to the output node by the second switch device according to the second clock signal when the first switch device de-activates the output signal.
  • the control method comprises switching the voltage to a high level, and setting each of the first and second clock signals as a direct-current signal.
  • FIG. 1 shows a conventional shift register unit of a shift register
  • FIG. 2 is a timing chart of signals of the shift register unit in FIG. 1 ;
  • FIG. 3 shows an exemplary embodiment of a shift register
  • FIG. 4 shows an exemplary embodiment of a shift register unit
  • FIG. 5 is a timing chart of signals of the shift register unit in FIG. 4 ;
  • FIG. 6 is a flow chart of an exemplary embodiment of a control method for a shift register.
  • FIG. 7 shows another exemplary embodiment of a shift register unit.
  • Shift registers are provided.
  • a shift register 3 is applied in a liquid crystal display panel and operates an active period and a blanking period.
  • the shift register 3 comprises a plurality of substantially cascaded shift register units 30 1 - 30 M .
  • Each of the shift register units 30 1 - 30 M is controlled by clock signals CK and XCK and coupled to a voltage source.
  • Each of the shift register units 30 1 - 30 M receives a first input signal and a second input signal and generates an output signal according to the clock signals CK and XCK.
  • Output signals S 1 -S M generated by the shift register units 30 1 - 30 M are substantially activated, and each of the output signals S i -S M is periodically activated.
  • Each ( 30 N ) of the shift register units 30 1 - 30 M receives an output signal S N ⁇ 1 generated by the previous shift register units 30 N ⁇ 1 to serve as the first input signal and an output signal S N+1 generated by the next shift register units 30 N+1 to serve as the second input signal, wherein 1 ⁇ N ⁇ M, and N is an integer.
  • the output signals S N ⁇ 1 , S N , and S N+1 are substantially activated.
  • the shift register units 30 2 receives the output signal S 1 generated by the previous shift register units 30 1 and the output signal S 3 generated by the next shift register units 30 3 and generates the output signal S 2 .
  • the output signal S 2 generated by the shift register units 30 2 is received by the next shift register units 30 3 .
  • the shift register units 30 1 which is the first stage of the shift register 3 , receives the output signal S 2 from the shift register units 30 2 to serve as the second input signal.
  • the shift register units 30 1 further receives a driving signal S D generated by an external or internal circuit to serve as the first input signal.
  • the driving signal S D , the output signal S 1 , and the output signal S 2 are substantially activated.
  • the shift register units 30 M which is the last stage of the shift register 3 , receives the output signal S M ⁇ 1 from the shift register units 30 M ⁇ 1 to serve as the first input signal.
  • the shift register units 30 M ⁇ 1 further receives a control signal S C generated by an external or internal circuit to serve as the second input signal.
  • the output signal S M ⁇ 1 , the output signal S M , and the control signal S C are substantially activated.
  • FIG. 4 shows an exemplary embodiment of a shift register unit.
  • the shift register unit 30 2 of the shift register 3 is given as an example for description, and the other shift register units 30 1 and 30 3 - 30 M have the same circuitry as the shift register units 30 2 .
  • the shift register units 30 2 receives the output signal S 1 generated by the previous shift register units 30 1 to serve as the first input signal and the output signal S 3 generated by the next shift register units 30 3 serve as the second input signal.
  • the shift register unit 30 2 comprises driving devices 40 - 42 , switch devices 43 - 47 , and a capacitor C 40 .
  • the driving devices 40 - 42 and the switch devices 43 - 47 are implemented respectively by NMOS transistors T 40 -T 42 and T 43 -T 47 .
  • Sources of the transistors T 42 and T 44 -T 47 are coupled to a voltage source Vss.
  • a signal state at a high level indicates that the signal is activated, while a signal state at a low level indicates that the signal is de-activated.
  • FIG. 5 is a timing chart of signals of the shift register unit in FIG. 4 .
  • the shift register unit 30 2 operates an active period PA and a blanking period PB.
  • the voltage source Vss provides a low-level voltage signal
  • the clock signals CK and XCK are alternating-current signals and are opposite to each other, that is, the clock signals CK and XCK have inverse phases.
  • the voltage source Vss is changed to provide a high-level voltage signal
  • the clock signals CK and XCK are changed to direct-current signals with a low level.
  • the output signal S 1 is changed to a high level, and a transistor T 40 is turned on.
  • a voltage V N40 at a node N 40 is changed to a high level according to the output signal S 1 to turn on transistors T 43 and T 45 .
  • a voltage V N41 at a node N 41 is at the low level to turn off a transistor T 41 .
  • a transistor T 46 is turned on by the clock signal XCK with a high level, so that the output signal S 2 is at a low level, that is, the output signal S 2 is de-activated.
  • the output signal S 1 is changed to a low level, and the transistor T 40 is turned off.
  • the clock signal CK is changed to a high level.
  • the clock signal CK with the high level couples to the node N 40 through a capacitor C 40 and the transistor T 41 , so that the voltage V N40 at the node N 40 is raised to a higher level according to the clock signal CK to turn on the transistors T 43 and T 45 .
  • a low-level voltage signal provided by the voltage source Vss is transmitted to the node N 41 to turn off the transistor T 41 , that is, the transistor T 41 is disabled.
  • the clock signal CK with the high level is transmitted to an output node N 42 through the turned-on transistor T 43 to serve as the output signal S 2 , in other words, the output signal S 1 is activated by the transistor T 43 .
  • the low-level voltage signal provided by the voltage source Vss is transmitted to the node N 41 , and voltage V N41 remains at the low level to turn off the transistor T 47 .
  • the clock signal XCK with a low level turns off the transistor T 46 . Accordingly, the output signal S 1 can stably remain in the activated state.
  • the clock signal CK is changed to the low level, and the output signal S 3 is activated to turn on the transistor T 42 .
  • the voltage V N40 at the node N 40 is gradually decreased according to the low-level voltage signal of the voltage source Vss to turn off the transistors T 43 and T 45 , so that the transistor T 43 does not activate the output signal S 2 .
  • the clock signal XCK with the high level turns on the transistor T 46 , so that the low-level voltage signal of the voltage source Vss is provided to the output node N 42 to serve as the output signal S 2 , in other words, the output signal S 2 is de-activated.
  • the clock signal CK is changed to the high level, and the voltage V N41 at the node N 41 is changed to a high level to turn on the transistor T 41 .
  • the low-level voltage signal of the voltage source Vss is coupled to the node N 40 through the turned-on transistor T 41 .
  • the voltage V N40 at the node N 40 remains at a low level to turn off the transistor T 43 , so that the transistor T 43 does not activate the output signal S 2 .
  • the voltage V N41 with the high level turns on the transistor T 46
  • the low-level voltage signal of the voltage source Vss is provided to the output node N 42 to serve as the output signal S 2 .
  • the output signal S 2 remains in the de-activated state.
  • the shift register unit 30 2 operates according to the clock signal CK and XCK.
  • the voltage V N41 at the node N 41 is switched between a high level and a low level.
  • the high level and the low level of the clock signal CK is 15V and ⁇ 9V, respectively, and the voltage signal of the voltage source Vss 1 is ⁇ 7V.
  • the voltage difference between a gate and a source of the transistor T 41 is 22V, that is, the gate-source voltage Vgs of the transistor T 41 is under large positive base stress.
  • the gate-source voltages Vgs of the transistors T 42 , T 43 , and T 45 -T 47 are also under large positive base stress. The large positive base stress results in the shifting of the threshold voltages of these transistors.
  • the output signals S 1 -S 3 are at a low level, and the clock signals CK and XCK are changed to direct-current signals with a low level.
  • the voltage signal provided by the voltage source Vss is at the same level as the high level of the clock signal CK in the active period PA.
  • the gate-source voltage Vgs of the transistor T 41 is under a negative base stress in the blanking period PB, which induces compensation for the shifting of the threshold voltage of the transistor T 41 .
  • the gate-source voltages Vgs of the transistors T 42 , and T 45 -T 47 are also under a negative base stress for compensation for the shifting of the threshold voltage of the transistors.
  • a gate and a source of the transistor T 44 are coupled to the voltage source Vss.
  • the high-level voltage signal of the voltage source Vss turns on the transistor T 44 , so that the output node N 42 is at a high level.
  • the gate-source voltage Vgs of the transistor T 43 is under a negative base stress for compensation for the shifting of the threshold voltage.
  • FIG. 6 is a flow chart of an exemplary embodiment of a control method for a shift register. The control method is described according to FIGS. 4-6 .
  • the voltage signal provided by the voltage source Vss is switched to a low level, and the clock signals CK and XCK are set as alternating-current signals (step S 60 ).
  • the driving device 40 drives the switch device 42 to activate the output signal S 2 according to the output signal S 1 (step S 61 ).
  • the driving device 41 provides the voltage signal of the voltage source Vss according to the clock signal CK to drive the switch device 43 to de-activate the output signal S 2 (step s 62 ).
  • the switch device 46 When the switch device 43 de-activates the output signal S 2 , the switch device 46 provides the voltage signal of the voltage source Vss to the output node N 42 according to the clock signal XCK for serving as the output signal S 2 (step S 63 ). In a blanking period PB, the voltage signal of the voltage source Vss is switched to a high voltage level, and the clock signals CK and XCK are set as direct-current signals with a low level (step S 64 ).
  • FIG. 7 shows another exemplary embodiment of a shift register unit.
  • the shift register unit 30 2 of the shift register 3 is given as an example for description.
  • the same elements and the same signals are represented by the same labels. Referring to FIGS. 4 and 7 , a majority of the element connections and the signal timings are the same.
  • the shift register of FIG. 7 does not comprise the switch device 44 .
  • the sources of the transistors T 41 , T 42 , and T 45 -T 47 of FIG. 4 are coupled to the voltage source Vss, while the source of the transistor T 41 of FIG. 7 is coupled to the clock signal XCK and not the voltage source Vss.
  • the voltage signal provided by the voltage source Vss is at a low level and is not changed to a high level.
  • the clock signal XCK is transmitted to the node N 41 to turn off the transistor T 43 , so that the transistor T 43 does not de-activate the output signals S 2 .
  • the source of the transistor T 41 is coupled to the clock signal XCK, and the gate thereof is coupled to the clock signal CK.
  • the gate-source voltage Vgs of the transistor T 41 is alternately under a positive base stress and a negative base stress, reducing the effect from the shifting of the threshold voltage of the transistor T 41 .
  • the shifting of the threshold voltages of transistors which resulted from a positive base stress, can be reduced by a negative base stress on the transistors.

Abstract

A shift register including shift register units controlled by first and second clock signals for generating an output signal. For each unit, in an active period, the first driving device drives the first switch device to activate the output signal, and the second driving device provides a voltage signal according to the first clock signal to drive the first switch device to de-activate the output signal. When the first switch device de-activates the output signal, the second switch device provides the voltage signal to serve as the output signal according to the second clock signal. In the active period, the voltage signal has a low level, and the first and second clock signals are set as alternating-current signals and are opposite to each other. In a blanking period, the voltage signal has a high level, and each of the first and second clock signals is set as a direct-current signal.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of pending U.S. application Ser. No. 12/402,719, filed Mar. 12, 2009, and entitled “Shift Registers,” which claims the benefit of Taiwan application Ser. No. 97110961 filed Mar. 27, 2008, the subject matters of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a shift register, and more particularly to a control method for compensating for shifting of threshold voltage of transistors in the shift register.
  • 2. Description of the Related Art
  • In current liquid crystal display panels, gate drivers and drain drivers are arranged to provide scan signals and data signals. In order to decrease costs, a shift register which has the same function as a gate driver is arranged in a glass panel. Most shift registers are formed by amorphous silicon thin-film processes. When a display panel is lit, transistors of a shift register in the display panel are affected by stress, and the display panel thus operates irregularly.
  • FIG. 1 shows a conventional shift register unit of a shift register. FIG. 2 is a timing chart of signals of the shift register unit in FIG. 1. Referring to FIGS. 1 and 2, a shift register unit 1 is controlled by clock signals CK and XCK opposite to each other, that is, the clock signals CK and XCK have inverse phases, and are coupled to a low voltage source Vss. The shift register unit 1 receives output signals SN−1 and SN+1 respectively from the previous shift register unit and the next shift register unit and generates an output signal SN. At a time point P10, the output signal SN−1 is activated, that is, the output signal SN−1 is at a high level, and a transistor T10 is turned on. A voltage VN10 at a node N10 is changed to a high level according to the output signal SN−1 to turn on transistors T11 and T12. At this time, since the clock signal CK is at a low level and the transistor T12 is turned on, a voltage VN11 at a node N11 is at a low level to turn off a transistor T13. A transistor T15 is turned on by the clock signal XCK with a high level, and the output signal SN is de-activated, that is, the output signal SN is at a low level.
  • At a time point P11, the output signal SN−1 is de-activated, and the transistor T10 is turned off. The clock signal CK is changed to a high level. In the period between the time points P11 and P12, the clock signal CK with the high level couples to the node N10 through a capacitor C10 and the transistor T13, so that the voltage VN10 at the node N10 is raised to a higher level according to the clock signal CK to turn on the transistors T11 and T12. According to the low voltage source Vss and the turned-on transistor T12, the voltage VN11 at the node N11 remains at the low level to turn off the transistor T13. The clock signal CK with the high level is transmitted to an output node N12 through the turned-on transistor T11 to serve as the output signal SN, in other words, the output signal SN is activated. The clock signal XCK with a low level turns off a transistor T15, and the voltage VN11 with the low level turns off a transistor T16. Accordingly, the output signal SN can stably remain in the activated state.
  • At a time point P12, the clock signal CK is changed to a low level, and the output signal SN+1 is activated to turn on the transistor T14. The voltage VN10 at the node N10 is gradually decreased according to the low voltage source Vss to turn off the transistors T11 and T12. At this time, the clock signal XCK with a high level turns on the transistor T15, so that the voltage of the low voltage source Vss is provided to the output node N12 to serve as the output signal SN, in other words, the output signal SN is de-activated.
  • At a time point P13, the clock signal CK is changed to a high level, and the voltage VN11 at the node N11 is changed to a high level to turn on the transistor T13. Thus, the voltage N10 remains at a low level. Moreover, the voltage VN11 with the high level turns on the transistor T16, so that the output signal SN remains in the de-activated state. After the time point P13, the shift register unit 1 operates according to the clock signal CK and XCK. The voltage VN10 at the node N11 is switched between a high level and a low level.
  • It is assumed that the high level and the low level of the clock signal CK is 15V and −9V respectively, and the voltage of the low voltage source Vss is −7V. When the clock signal CK is at the high level to turn on the transistor T13, the voltage difference between a gate and a source of the transistor T13 is 22V. If the gate-source voltage Vgs of the transistor T13 is under positive base stress for a long time, the threshold voltage of the transistor T13 shifts, and the voltages VN10 and VN11 become irregular, as shown by the dotted line in VN10 and VN11 in FIG. 2. Similarly, if the gate-source voltages Vgs of the transistors T11, T12, and T14-16 are under positive base stress for a long time, their threshold voltages also shift. Thus, when the threshold voltages of the transistors in the shift register unit 1 shift, the shift register unit 1 operates irregularly and outputs an incorrect output signal SN.
  • BRIEF SUMMARY OF THE INVENTION
  • An exemplary embodiment of a shift register operating in an active period and a blanking period is provided, comprising a plurality of substantially cascaded shift register units. Each of the shift register units is controlled by a first clock signal and a second clock signal for generating an output signal. The output signal is periodically activated. Each of the shift register units comprises first and second switch devices and first and second driving devices.
  • The first switch device provides the output signal through an output node. The first driving device drives the first switch device according to a first input signal to activate the output signal in the active period. The second driving device is coupled to a voltage signal and provides the voltage signal according to the first clock signal to drive the first switch device to de-activate the output signal in the active period. The second switch device is coupled to the voltage signal. When the first switch device de-activates the output signal, the second switch device provides the voltage signal to the output node according to the second clock signal. In the active period, the voltage signal is at a low level, and the first and second clock signals are set as alternating-current signals and are opposite to each other. In the blanking period, the voltage signal is at a high level, and each of the first and second clock signals is set as a direct-current signal.
  • Another exemplary embodiment of a shift register comprises substantially cascaded first, second, and third shift register units. Each of the first, second, and third shift register unit is controlled by a first clock signal and a second clock signal opposite to each other for generating an output signal. The output signal is periodically activated. Each of the first, second, and third shift register units comprises first and second switch devices and first and second devices.
  • The first switch device provides the output signal through an output node. The first driving device drives the first switch device according to a first input signal to activate the output signal. The second driving device is coupled to the second clock signal and provides the second clock signal according to the first clock signal to drive the first switch device to de-activate the output signal. The second switch device is coupled to the voltage signal. When the first switch device de-activates the output signal, the second switch device provides the voltage signal to the output node according to the second clock signal.
  • Another exemplary embodiment of a control method for a shift register is provided. The shift register operates in an active period and a blanking period and comprises a plurality of substantially cascaded shift register units. Each of the shift register units is controlled by a first clock signal and a second clock signal for generating an output signal. The output signal is periodically activated. Each of the shift register units comprises first and second switch devices and first and second driving devices. The first switch device provides the output signal through an output node. The second driving device and the second switch devices are coupled to a voltage signal. In the active period, the control method comprises: switching the voltage signal to a low level and setting the first and second clock signals as alternating-current signals, wherein the first and second are opposite to each other; driving the first switch device to activate the output signal by the first driving device according to a first input signal; providing the voltage signal to drive the first switch device to de-activate the output signal by the second driving device according to the first clock signal; and providing the voltage signal to the output node by the second switch device according to the second clock signal when the first switch device de-activates the output signal. In the blanking period, the control method comprises switching the voltage to a high level, and setting each of the first and second clock signals as a direct-current signal.
  • A detailed description is given in the following embodiments with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
  • FIG. 1 shows a conventional shift register unit of a shift register;
  • FIG. 2 is a timing chart of signals of the shift register unit in FIG. 1;
  • FIG. 3 shows an exemplary embodiment of a shift register;
  • FIG. 4 shows an exemplary embodiment of a shift register unit;
  • FIG. 5 is a timing chart of signals of the shift register unit in FIG. 4;
  • FIG. 6 is a flow chart of an exemplary embodiment of a control method for a shift register; and
  • FIG. 7 shows another exemplary embodiment of a shift register unit.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
  • Shift registers are provided. In an exemplary embodiment of a shift register in FIG. 3, a shift register 3 is applied in a liquid crystal display panel and operates an active period and a blanking period. Referring to FIG. 3, the shift register 3 comprises a plurality of substantially cascaded shift register units 30 1-30 M. Each of the shift register units 30 1-30 M is controlled by clock signals CK and XCK and coupled to a voltage source. Each of the shift register units 30 1-30 M receives a first input signal and a second input signal and generates an output signal according to the clock signals CK and XCK. Output signals S1-SM generated by the shift register units 30 1-30 M are substantially activated, and each of the output signals Si-SM is periodically activated.
  • Each (30 N) of the shift register units 30 1-30 M receives an output signal SN−1 generated by the previous shift register units 30 N−1 to serve as the first input signal and an output signal SN+1 generated by the next shift register units 30 N+1 to serve as the second input signal, wherein 1<N<M, and N is an integer. The output signals SN−1, SN, and SN+1 are substantially activated. For example, the shift register units 30 2 receives the output signal S1 generated by the previous shift register units 30 1 and the output signal S3 generated by the next shift register units 30 3 and generates the output signal S2. The output signal S2 generated by the shift register units 30 2 is received by the next shift register units 30 3.
  • The shift register units 30 1, which is the first stage of the shift register 3, receives the output signal S2 from the shift register units 30 2 to serve as the second input signal. The shift register units 30 1 further receives a driving signal SD generated by an external or internal circuit to serve as the first input signal. The driving signal SD, the output signal S1, and the output signal S2 are substantially activated. Similarly, the shift register units 30 M, which is the last stage of the shift register 3, receives the output signal SM−1 from the shift register units 30 M−1 to serve as the first input signal. The shift register units 30 M−1 further receives a control signal SC generated by an external or internal circuit to serve as the second input signal. The output signal SM−1, the output signal SM, and the control signal SC are substantially activated.
  • FIG. 4 shows an exemplary embodiment of a shift register unit. In the embodiment in FIG. 4, the shift register unit 30 2 of the shift register 3 is given as an example for description, and the other shift register units 30 1 and 30 3-30 M have the same circuitry as the shift register units 30 2. The shift register units 30 2 receives the output signal S1 generated by the previous shift register units 30 1 to serve as the first input signal and the output signal S3 generated by the next shift register units 30 3 serve as the second input signal.
  • The shift register unit 30 2 comprises driving devices 40-42, switch devices 43-47, and a capacitor C40. In the embodiment, the driving devices 40-42 and the switch devices 43-47 are implemented respectively by NMOS transistors T40-T42 and T43-T47. Sources of the transistors T42 and T44-T47 are coupled to a voltage source Vss. In the following description, a signal state at a high level indicates that the signal is activated, while a signal state at a low level indicates that the signal is de-activated. FIG. 5 is a timing chart of signals of the shift register unit in FIG. 4. The shift register unit 30 2 operates an active period PA and a blanking period PB. In the active period PA, the voltage source Vss provides a low-level voltage signal, and the clock signals CK and XCK are alternating-current signals and are opposite to each other, that is, the clock signals CK and XCK have inverse phases. In the blanking period PB, the voltage source Vss is changed to provide a high-level voltage signal, and the clock signals CK and XCK are changed to direct-current signals with a low level. The detailed operation of the shift register unit 30 2 is described in following.
  • At a time point P50 in the active period PA, the output signal S1 is changed to a high level, and a transistor T40 is turned on. A voltage VN40 at a node N40 is changed to a high level according to the output signal S1 to turn on transistors T43 and T45. At this time, since the clock signal CK is at a low level and the transistor T45 is turned on, a voltage VN41 at a node N41 is at the low level to turn off a transistor T41. A transistor T46 is turned on by the clock signal XCK with a high level, so that the output signal S2 is at a low level, that is, the output signal S2 is de-activated.
  • At a time point P51 in the active period PA, the output signal S1 is changed to a low level, and the transistor T40 is turned off. The clock signal CK is changed to a high level. Between the time points P51 and P52, the clock signal CK with the high level couples to the node N40 through a capacitor C40 and the transistor T41, so that the voltage VN40 at the node N40 is raised to a higher level according to the clock signal CK to turn on the transistors T43 and T45. A low-level voltage signal provided by the voltage source Vss is transmitted to the node N41 to turn off the transistor T41, that is, the transistor T41 is disabled. The clock signal CK with the high level is transmitted to an output node N42 through the turned-on transistor T43 to serve as the output signal S2, in other words, the output signal S1 is activated by the transistor T43. The low-level voltage signal provided by the voltage source Vss is transmitted to the node N41, and voltage VN41 remains at the low level to turn off the transistor T47. The clock signal XCK with a low level turns off the transistor T46. Accordingly, the output signal S1 can stably remain in the activated state.
  • At a time point P52 in the active period PA, the clock signal CK is changed to the low level, and the output signal S3 is activated to turn on the transistor T42. The voltage VN40 at the node N40 is gradually decreased according to the low-level voltage signal of the voltage source Vss to turn off the transistors T43 and T45, so that the transistor T43 does not activate the output signal S2. At this time, the clock signal XCK with the high level turns on the transistor T46, so that the low-level voltage signal of the voltage source Vss is provided to the output node N42 to serve as the output signal S2, in other words, the output signal S2 is de-activated.
  • At a time point P53 in the active period PA, the clock signal CK is changed to the high level, and the voltage VN41 at the node N41 is changed to a high level to turn on the transistor T41. The low-level voltage signal of the voltage source Vss is coupled to the node N40 through the turned-on transistor T41. Thus, the voltage VN40 at the node N40 remains at a low level to turn off the transistor T43, so that the transistor T43 does not activate the output signal S2. Moreover, the voltage VN41 with the high level turns on the transistor T46, and the low-level voltage signal of the voltage source Vss is provided to the output node N42 to serve as the output signal S2. Thus, the output signal S2 remains in the de-activated state. In the active period and after the time point P53, the shift register unit 30 2 operates according to the clock signal CK and XCK. The voltage VN41 at the node N41 is switched between a high level and a low level.
  • It is assumed that the high level and the low level of the clock signal CK is 15V and −9V, respectively, and the voltage signal of the voltage source Vss1 is −7V. In the active period PA, when the clock signal CK is at a high level to turn on the transistor T41, the voltage difference between a gate and a source of the transistor T41 is 22V, that is, the gate-source voltage Vgs of the transistor T41 is under large positive base stress. Similarly, the gate-source voltages Vgs of the transistors T42, T43, and T45-T47 are also under large positive base stress. The large positive base stress results in the shifting of the threshold voltages of these transistors.
  • In the blanking period PB, the output signals S1-S3 are at a low level, and the clock signals CK and XCK are changed to direct-current signals with a low level. Particularly, in the blanking period PB, the voltage signal provided by the voltage source Vss is at the same level as the high level of the clock signal CK in the active period PA. Thus, the gate-source voltage Vgs of the transistor T41 is under a negative base stress in the blanking period PB, which induces compensation for the shifting of the threshold voltage of the transistor T41. Similarly, in the blanking period PB the gate-source voltages Vgs of the transistors T42, and T45-T47 are also under a negative base stress for compensation for the shifting of the threshold voltage of the transistors.
  • In this embodiment, a gate and a source of the transistor T44 are coupled to the voltage source Vss. In the blanking period PB, the high-level voltage signal of the voltage source Vss turns on the transistor T44, so that the output node N42 is at a high level. Thus, the gate-source voltage Vgs of the transistor T43 is under a negative base stress for compensation for the shifting of the threshold voltage.
  • FIG. 6 is a flow chart of an exemplary embodiment of a control method for a shift register. The control method is described according to FIGS. 4-6. In an active period PA, the voltage signal provided by the voltage source Vss is switched to a low level, and the clock signals CK and XCK are set as alternating-current signals (step S60). The driving device 40 drives the switch device 42 to activate the output signal S2 according to the output signal S1 (step S61). The driving device 41 provides the voltage signal of the voltage source Vss according to the clock signal CK to drive the switch device 43 to de-activate the output signal S2 (step s62). When the switch device 43 de-activates the output signal S2, the switch device 46 provides the voltage signal of the voltage source Vss to the output node N42 according to the clock signal XCK for serving as the output signal S2 (step S63). In a blanking period PB, the voltage signal of the voltage source Vss is switched to a high voltage level, and the clock signals CK and XCK are set as direct-current signals with a low level (step S64).
  • FIG. 7 shows another exemplary embodiment of a shift register unit. In the embodiment in FIG. 7, the shift register unit 30 2 of the shift register 3 is given as an example for description. In FIGS. 4 and 7, the same elements and the same signals are represented by the same labels. Referring to FIGS. 4 and 7, a majority of the element connections and the signal timings are the same. One difference between FIGS. 4 and 7 is that the shift register of FIG. 7 does not comprise the switch device 44. Another difference is that the sources of the transistors T41, T42, and T45-T47 of FIG. 4 are coupled to the voltage source Vss, while the source of the transistor T41 of FIG. 7 is coupled to the clock signal XCK and not the voltage source Vss. Moreover, the voltage signal provided by the voltage source Vss is at a low level and is not changed to a high level. When the transistor T41 is turned on according to the clock signal CK, the clock signal XCK is transmitted to the node N41 to turn off the transistor T43, so that the transistor T43 does not de-activate the output signals S2.
  • The source of the transistor T41 is coupled to the clock signal XCK, and the gate thereof is coupled to the clock signal CK. Thus, in the active period, the gate-source voltage Vgs of the transistor T41 is alternately under a positive base stress and a negative base stress, reducing the effect from the shifting of the threshold voltage of the transistor T41.
  • According to the embodiments, the shifting of the threshold voltages of transistors, which resulted from a positive base stress, can be reduced by a negative base stress on the transistors.
  • While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (7)

1. A shift register, comprising
a plurality of substantially cascaded shift register units, each controlled by a first clock signal and a second clock signal opposite to each other for generating an output signal, wherein the output signal is periodically activated, and each of the shift register units comprises:
a first switch device for providing the output signal through an output node;
a first driving device for driving the first switch device according to a first input signal to activate the output signal;
a second driving device, coupled to the second clock signal, for providing the second clock signal according to the first clock signal to drive the first switch device to de-activate the output signal; and
a second switch device, coupled to the voltage signal, for providing the voltage signal to the output node according to the second clock signal when the first switch device de-activates the output signal.
2. The shift register as claimed in claim 1,
wherein each of the shift register units further comprises a third driving device, coupled to the voltage signal, for driving the first switch device to de-activate the output signal by the voltage signal according to a second input signal, and
wherein each of the first and second input signals is periodically activated, and the first input signal, the output signal, and the second input signal are substantially activated.
3. The shift register as claimed in claim 2, wherein the plurality of shift register units comprises first, second, and third substantially cascaded shift register units, the output signal of the first shift register unit serves as the first input signal of the second shift register unit, the output signal of the second shift register unit serves as the first input signal of the third shift register unit and the second input signal of the first shift register, and the output signal of the third shift register unit serves as the second input signal of the second shift register unit.
4. The shift register as claimed in claim 1, wherein each of the shift register units further comprises a third switch device, coupled to the voltage signal, for providing the voltage signal to the output node according to the first clock signal when the first switch device de-activates the output signal.
5. The shift register as claimed in claim 1, wherein each of the shift register units further comprises a fourth switch device, coupled to the voltage signal, for disabling the second driving device by the voltage signal when the first driving device drives the first switch device to activate the output signal.
6. The shift register as claimed in claim 1, wherein the plurality of shift register units comprises first, second, and third substantially cascaded shift register units, the output signal of the first shift register unit serves as the first input signal of the second shift register unit, and the output signal of the second shift register unit.
7. The shift register as claimed in claim 1, wherein the voltage signal is at a low level.
US12/841,785 2008-03-27 2010-07-22 Shift Registers Abandoned US20100290581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/841,785 US20100290581A1 (en) 2008-03-27 2010-07-22 Shift Registers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW97110961 2008-03-27
TW097110961A TWI390540B (en) 2008-03-27 2008-03-27 Shift registers and control methods thereof
US12/402,719 US7787585B2 (en) 2008-03-27 2009-03-12 Shift registers
US12/841,785 US20100290581A1 (en) 2008-03-27 2010-07-22 Shift Registers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/402,719 Division US7787585B2 (en) 2008-03-27 2009-03-12 Shift registers

Publications (1)

Publication Number Publication Date
US20100290581A1 true US20100290581A1 (en) 2010-11-18

Family

ID=41117204

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/402,719 Active US7787585B2 (en) 2008-03-27 2009-03-12 Shift registers
US12/841,785 Abandoned US20100290581A1 (en) 2008-03-27 2010-07-22 Shift Registers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/402,719 Active US7787585B2 (en) 2008-03-27 2009-03-12 Shift registers

Country Status (2)

Country Link
US (2) US7787585B2 (en)
TW (1) TWI390540B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935220A (en) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 Shift register and its driving method, gate drive apparatus
CN107093399A (en) * 2017-02-16 2017-08-25 友达光电股份有限公司 shift register circuit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407443B (en) * 2009-03-05 2013-09-01 Au Optronics Corp Shift register
KR102318235B1 (en) * 2010-02-23 2021-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP5473686B2 (en) * 2010-03-11 2014-04-16 三菱電機株式会社 Scan line drive circuit
KR101768485B1 (en) * 2011-04-21 2017-08-31 엘지디스플레이 주식회사 Shift register
CN104766586B (en) * 2015-04-29 2017-08-29 合肥京东方光电科技有限公司 Shift register cell, its driving method, gate driving circuit and display device
TWI681378B (en) * 2018-11-15 2020-01-01 友達光電股份有限公司 Display panel
CN112309340A (en) * 2019-08-01 2021-02-02 京东方科技集团股份有限公司 Compensation module and method, shift register unit, driving circuit and display device
CN111128075B (en) * 2020-01-02 2022-06-17 京东方科技集团股份有限公司 Driving method and driving device of OLED display panel and display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165692A1 (en) * 2003-02-10 2004-08-26 Seung-Hwan Moon Method of driving transistor and shift register performing the same
US20060291610A1 (en) * 2005-06-28 2006-12-28 Wintek Corporation High-stability shift circuit using amorphous silicon thin film transistors
US20080101529A1 (en) * 2006-10-26 2008-05-01 Mitsubishi Electric Corporation Shift register and image display apparatus containing the same
US7420536B2 (en) * 2003-12-30 2008-09-02 Lg Display Co., Ltd. Active matrix display device
US7436923B2 (en) * 2007-03-05 2008-10-14 Mitsubishi Electric Corporation Shift register circuit and image display apparatus containing the same
US20090041177A1 (en) * 2007-08-07 2009-02-12 Au Optronics Corp. Shift register arrays
US7583247B2 (en) * 2005-04-11 2009-09-01 Lg Display Co., Ltd. Gate driver for a display device and method of driving the same
US7636412B2 (en) * 2006-04-25 2009-12-22 Mitsubishi Electric Corporation Shift register circuit and image display apparatus equipped with the same
US7656194B2 (en) * 2005-11-04 2010-02-02 Samsung Mobile Display Co., Ltd. Shift register circuit
US7697655B2 (en) * 2007-04-11 2010-04-13 Wintek Corporation Shift register and level controller

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165692A1 (en) * 2003-02-10 2004-08-26 Seung-Hwan Moon Method of driving transistor and shift register performing the same
US7420536B2 (en) * 2003-12-30 2008-09-02 Lg Display Co., Ltd. Active matrix display device
US7583247B2 (en) * 2005-04-11 2009-09-01 Lg Display Co., Ltd. Gate driver for a display device and method of driving the same
US20060291610A1 (en) * 2005-06-28 2006-12-28 Wintek Corporation High-stability shift circuit using amorphous silicon thin film transistors
US7656194B2 (en) * 2005-11-04 2010-02-02 Samsung Mobile Display Co., Ltd. Shift register circuit
US7636412B2 (en) * 2006-04-25 2009-12-22 Mitsubishi Electric Corporation Shift register circuit and image display apparatus equipped with the same
US20080101529A1 (en) * 2006-10-26 2008-05-01 Mitsubishi Electric Corporation Shift register and image display apparatus containing the same
US7664218B2 (en) * 2006-10-26 2010-02-16 Mitsubishi Electric Corporation Shift register and image display apparatus containing the same
US7436923B2 (en) * 2007-03-05 2008-10-14 Mitsubishi Electric Corporation Shift register circuit and image display apparatus containing the same
US7697655B2 (en) * 2007-04-11 2010-04-13 Wintek Corporation Shift register and level controller
US20090041177A1 (en) * 2007-08-07 2009-02-12 Au Optronics Corp. Shift register arrays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093399A (en) * 2017-02-16 2017-08-25 友达光电股份有限公司 shift register circuit
CN106935220A (en) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 Shift register and its driving method, gate drive apparatus

Also Published As

Publication number Publication date
TWI390540B (en) 2013-03-21
US7787585B2 (en) 2010-08-31
US20090245455A1 (en) 2009-10-01
TW200941485A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
US7787585B2 (en) Shift registers
US7612754B2 (en) Shift register units, display panels utilizing the same, and methods for improving current leakage thereof
US7978809B2 (en) Shift register of a display device
US7050036B2 (en) Shift register with a built in level shifter
US7289594B2 (en) Shift registrer and driving method thereof
WO2018129932A1 (en) Shift register unit circuit and drive method therefor, gate drive circuit, and display device
US9147370B2 (en) Image display apparatus
US9583065B2 (en) Gate driver and display device having the same
KR101129614B1 (en) Electronic apparatus having a display device
JP4321266B2 (en) Inverter circuit and display device
KR20080011896A (en) Gate on voltage generation circuit and gate off voltage generation circuit and liquid crystal display having the same
US20160275849A1 (en) Display devices
US20200294436A1 (en) Shift register circuit and gate driver
US7382348B2 (en) Shift register
US8922460B2 (en) Level shift circuit, data driver, and display device
KR20180072041A (en) Gate driving circuit and display device using the same
US7848477B2 (en) Shift registers
US8199871B2 (en) Electronic system with shift register
CN113077832A (en) Shift register unit and driving method thereof, scanning driving circuit and display device
JP2014153532A (en) Display device and drive circuit
KR20030051209A (en) Shift register with level shifter
KR102634178B1 (en) Gate driving circuit and display device using the same
KR20180056459A (en) Scan driver and driving method thereof
KR101073263B1 (en) Shift register and method for driving the same
US11200862B2 (en) Shift register and display device provided with the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: AU OPTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHENG, KUO-HSING;HSIEH, YAO-JEN;REEL/FRAME:024728/0390

Effective date: 20090218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION