US20100068239A1 - Osteogenic Device for Inducing Bone Formation in Clinical Contexts - Google Patents
Osteogenic Device for Inducing Bone Formation in Clinical Contexts Download PDFInfo
- Publication number
- US20100068239A1 US20100068239A1 US12/083,684 US8368406A US2010068239A1 US 20100068239 A1 US20100068239 A1 US 20100068239A1 US 8368406 A US8368406 A US 8368406A US 2010068239 A1 US2010068239 A1 US 2010068239A1
- Authority
- US
- United States
- Prior art keywords
- bone
- osteogenic
- mammal
- delivery vehicle
- novo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1841—Transforming growth factor [TGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/32—Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/227—Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3608—Bone, e.g. demineralised bone matrix [DBM], bone powder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/495—Transforming growth factor [TGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
- A61L2300/414—Growth factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Definitions
- This invention relates to an osteogenic device for inducing de novo bone formation or osteogenesis in mammals, particularly primates, in clinical contexts.
- neoplastic masses of either primary or secondary metastatic tumours require complex surgical procedures which are often unsuccessful in completely debriding the tumoral masses due to adhesion, metastatic growth and invasion into surrounding tissues, in particular vascular tissue. Unsuccessful debridement of neoplastic tumours leads to further secondary masses growth, invasion and metastatic tumoral growth with ultimate death.
- Bone regeneration in clinical contexts requires three key components: an osteoinductive signal, a suitable substratum with which the signal is to be delivered and which acts as a scaffold for new bone to form, and host responding cells capable of differentiation into bone cells as a response to the osteoinductive signal.
- the signals responsible for osteoinduction are proteins collectively called the bone morphogenetic and osteogenic proteins (BMPs/OPs).
- BMPs/OPs are members of the transforming growth factor- ⁇ supergene family (TGF- ⁇ ).
- TGF- ⁇ transforming growth factor- ⁇ supergene family
- the superfamily also includes four TGF- ⁇ isoforms, the transforming growth factor- ⁇ family per se [ref. 1-3 for reviews].
- TGF- ⁇ transforming growth factor- ⁇ supergene family
- the superfamily also includes four TGF- ⁇ isoforms, the transforming growth factor- ⁇ family per se [ref. 1-3 for reviews].
- Members of both BMP/OP and TGF- ⁇ families are pleiotropic factors that
- TGF- ⁇ 1, ⁇ 2 and ⁇ 3 The three mammalian TGF- ⁇ isoforms (TGF- ⁇ 1, ⁇ 2 and ⁇ 3) share limited homology with members of the BMP/OP family (BMP-2 through BMP-6 and osteogenic protein-1 and -2 [OP-1 and OP-2]) [1-3].
- BMP-2 BMP-2 through BMP-6 and osteogenic protein-1 and -2 [OP-1 and OP-2]
- OP-1 and OP-2 BMP-2 through BMP-6 and osteogenic protein-1 and -2 [OP-1 and OP-2]
- h Recombinant human
- BMP-2, BMP-4 and OP-1 also known as BMP-7 singly initiate endochondral bone formation in the subcutaneous space of the rat [1-3].
- the TGF- ⁇ isoforms either purified from natural sources or expressed by recombinant techniques, do not initiate endochondral bone formation in the in vivo bioassay in rodents [3-6].
- TGF- ⁇ isoforms are most abundant in the extracellular matrix of bone as well as in many other tissues [3,4] and that the isoforms synergise in inducing large ossicles in the primate [1,3,7,8], the applicant envisages that the use of TGF- ⁇ isoforms in conjunction with a physiologically acceptable delivery vehicle is of paramount importance for inducing new bone formation in primates including man. Indeed, although BMPs/OPs can initiate bone formation following a single local application, the generation of new bone may not be rapid, and furthermore, substantial amounts of recombinantly produced BMPs/OPs may be required to achieve the desired effect in terms of bone volume and bone mass at site of skeletal defects.
- TGF- ⁇ isoforms
- TGF- ⁇ 1 and TGF- ⁇ 2 induce endochondral bone formation when implanted heterotopically in the rectus abdominis muscle of adult primates of the genus Papio [ 3,7,8,9].
- a site-specificity of induction of TGF- ⁇ 1 and TGF- ⁇ 2 has been found, however [3,9,10], i.e.
- TGF- ⁇ isoforms in different tissue sites, i.e. the calvarium and the rectus abdominis muscle, may be explained by the paucity of TGF- ⁇ responding cells at the site of orthotopic calvarial implantation and/or by an increase expression of Smad-6 and Smad-7 gene products in calvarial sites down regulating the activity of the implanted TGF- ⁇ proteins [9, 11].
- an osteogenic device for the de novo induction of bone formation in a mammal said osteogenic device comprising an effective concentration of at least one transforming growth factor (TGF) and a retention matrix, the device being introducible, in use, into a mammal at a site where de novo induction of bone is desired, the retention matrix acting to retain the TGF substantially at its place of introduction and to form a scaffold for generated bone, the induction of which is promoted by the TGF.
- TGF transforming growth factor
- the osteogenic device to be delivered into the mammal by implantation, preferably by direct injection, alternatively by surgical implantation, into an area where de novo bone formation is desired.
- the osteogenic device to be used to generate bone orthotopically, preferably at a site where bone has been removed such as, for example, in a debridement procedure carried out to treat neoplastic or inflammatory or infective lesions, particularly of the mandible in human primates.
- the osteogenic device to be used to generate bone heterotopically, preferably in the rectus abdominis muscle of a primate.
- the osteogenic device to be used, when injected directly into neoplastic primary and/or metastatic secondary masses, to cause direct transformation of the neoplastic mass into bone thus facilitating surgical debridement thereof.
- the osteogenic device to include morsellised muscle fragments, preferably rectus abdominis muscle fragments, which contain large numbers of responding cells.
- morsellised muscle fragments preferably rectus abdominis muscle fragments, which contain large numbers of responding cells.
- the osteogenic device to include morsellized fragments of bone, preferably autogenous bone.
- the osteogenic device to include morsellised muscle and bone fragments.
- the TGF is also provided for the TGF to be a TGF- ⁇ isoform, preferably a TGF- ⁇ 3 isoform, and further preferably, a human TGF ⁇ 3 isoform which may be a recombinant isoform.
- a further aspect of the present invention provides a method of producing an osteogenic delivery vehicle for the de novo induction of bone formation in a mammal, said method comprising combining an effective concentration of a TGF and a retention matrix to form a delivery vehicle which is introducible, in use, into a mammal at a site where de novo induction of bone is desired, the retention matrix acting to retain the TGF substantially at its place of introduction and to form a scaffold for generated bone, the induction of which is initiated by the TGF.
- the osteogenic delivery vehicle to be deliverable into the mammal by implantation, preferably by direct injection, alternatively by surgical implantation, into an area where de novo bone formation is desired.
- the osteogenic delivery vehicle to be used to generate bone orthotopically, preferably at a site where bone has been removed such as, for example, in a debridement procedure carried out to treat neoplastic or inflammatory or infective lesions, particularly of the mandible in human primates.
- the osteogenic device to be used to generate bone heterotopically, preferably in the rectus abdominis muscle of a primate.
- the osteogenic device to be used, when injected directly into neoplastic primary and/or metastatic secondary masses, to cause direct transformation of the neoplastic mass into bone thus facilitating surgical debridement thereof.
- the osteogenic delivery vehicle to include morsellised muscle fragments, preferably rectus abdominis muscle fragments, which contain large numbers of responding cells.
- the osteogenic delivery vehicle to include morsellized fragments of bone, preferably induced autogenous bone.
- the osteogenic delivery vehicle to include morsellised muscle and bone fragments.
- the TGF is also provided for the TGF to be a TGF- ⁇ isoform, preferably a TGF- ⁇ 3 isoform, and further preferably, a human TGF- ⁇ 3 isoform which may be a recombinant isoform.
- Another aspect of the present invention provides for the use of an effective concentration of a TGF and a retention matrix in the manufacture of osteogenic device for use in the de novo induction of bone formation in a mammal comprising introducing said osteogenic device into the mammal at a site where de novo induction of bone is desired, the retention matrix acting to retain the TGF substantially at its place of introduction and to form a scaffold for generated bone, the induction of which is promoted by the TGF.
- the osteogenic device to be deliverable into the mammal by implantation, preferably by direct injection, alternatively by surgical implantation, into an area where de novo bone formation is desired.
- the osteogenic device to be usable to generate bone orthotopically, preferably at a site where bone has been removed such as, for example, in a debridement procedure carried out to treat neoplastic or inflammatory or infective lesions, particularly of the mandible in human primates.
- the osteogenic device to be used to generate bone heterotopically, preferably in the rectus abdominis muscle of a primate.
- the osteogenic device to be used, when injected directly into neoplastic primary and/or metastatic secondary masses, to cause direct transformation of the neoplastic mass into bone thus facilitating surgical debridement thereof.
- the osteogenic device to include morsellised muscle fragments, preferably rectus abdominis muscle fragments, which contain large numbers of responding cells.
- morsellised muscle fragments preferably rectus abdominis muscle fragments, which contain large numbers of responding cells.
- the osteogenic device to include morsellized fragments of bone, preferably induced autogenous bone.
- the osteogenic device to include morsellised muscle and bone fragments.
- the TGF is also provided for the TGF to be a TGF- ⁇ isoform, preferably a TGF- ⁇ 3 isoform, and further preferably, a human TGF- ⁇ 3 isoform which may be a recombinant isoform.
- a further aspect of the present invention provides for a method of inducing de novo bone formation in a mammal comprising introducing an above described osteogenic device into a mammal at a site where de novo induction of bone is desired, either at a site where bone has been removed, alternatively at a heterotopical site, preferably within the rectus abdominis muscle which heterotopically produced bone is usable in forming bone grafts and the like.
- the present invention also provides for a method of treating cancer comprising injecting an above described osteogenic device directly into neoplastic primary and/or metastatic secondary masses, inducing the transformation of the mass into bone and surgically debriding the transformed mass.
- FIG. 1 is a clinical photomacrograph illustrating the induction of a large corticalized ossicle upon the implantation of 125 ⁇ g hTGF- ⁇ 3 and delivered by insoluble collagenous bone matrix as a physiologically acceptable delivery vehicle and harvested from the rectus abdominis 30 days after implantation in an adult primate;
- FIG. 2 is a photomicrograph of a histological section of the ossicle shown in FIG. 1 with large quantities of newly formed and mineralized bone in blue with large osteoid seams in orange/red upon the implantation of 125 ⁇ g hTGF- ⁇ 3 and delivered by insoluble collagenous bone matrix as carrier.
- FIG. 3 is a photomicrograph of a histological section of large quantities of newly formed bone upon the implantation of 125 ⁇ g hTGF- ⁇ 3 and delivered by highly crystalline sintered porous hydroxyapatite as a physiologically acceptable delivery vehicle and harvested from the rectus abdominis 90 days after implantation in an adult primate;
- FIG. 4 is a photomicrograph of a histological section of a calvarial specimen upon implantation of 125 ⁇ g hTGF- ⁇ 3 delivered by insoluble collagenous bone matrix as a physiologically acceptable delivery vehicle and harvested 30 days after implantation in an adult primate showing complete lack of bone formation at the interface of the defect;
- FIG. 5 is a photomicrograph of a histological section of a calvarial specimen upon implantation of 125 ⁇ g hTGF- ⁇ 3 delivered by insoluble collagenous bone matrix as a physiologically acceptable delivery vehicle and harvested 90 days after implantation in an adult primate. Limited osteogenesis is found across the specimen and with bone formation only pericranially;
- FIG. 6 is a photomicrograph of a histological section of a calvarial specimen upon implantation of 125 ⁇ g hTGF- ⁇ 3 delivered by insoluble collagenous bone matrix as a physiologically acceptable delivery vehicle with the addition of morsellised fragments of rectus abdominis and harvested 90 days after implantation in an adult primate. Osteogenesis is found across the specimen and both pericranially and endocranially;
- FIG. 7 is a composite photograph depicting the messenger RNA expression of Smad-6 and Smad-7 as determined by polymerase chain reaction (PCR) showing that the inhibitory gene products Smad-6 and Smad-7 are poorly expressed in ossicles generated heterotopically in the rectus abdominis by the osteogenic device and highly expressed on the other hand in tissue harvested from orthotopic calvarial defects.
- Panels A and B show mRNA expression of the inhibitory gene products Smad-6 and Smad-7 on day 30 and 90, respectively.
- FIG. 8 is a clinical macrophotograph depicting fragments of morcellized bone after the harvesting of induced heterotopic ossicles generated in the rectus abdominis muscle of adult primates Papio ursinus upon the implantation of 125 ⁇ g doses of the hTGF- ⁇ 3 isoform in the rectus abdoininis muscle;
- FIG. 9 is a clinical photograph depicting the full thickness segmental mandibular defect of a primate Papio ursinus transplanted with morcellized fragments of autogenous bone previously induced in the rectus abdominis muscle by 125 ⁇ g hTGF- ⁇ 3 osteogenic device.
- FIG. 10 is the clinical photograph of the treated mandibular defect 30 days after implantation of the newly formed and fragmented ossicle induced by doses of the hTGF- ⁇ 3 osteogenic device showing regeneration and corticalization of the newly formed mandibular bone;
- FIG. 11 is the clinical photograph depicting a mandibular full thickness segmental defect treated with 125 ⁇ g doses of the hTGF- ⁇ 3 osteogenic device delivered by grams of insoluble collagenous bone matrix;
- FIG. 12 is the clinical macrophotograph of the treated defect 30 days after implantation of the 125 ⁇ g hTGF- ⁇ 3 osteogenic device showing complete regeneration of the segmental defect.
- hTGF- ⁇ 3 recombinant human transforming growth factor- ⁇ 3
- physiologically acceptable delivery vehicles i.e. insoluble collagenous matrix, demineralized bone matrix, biphasic sintered tricalcium phosphate and hydroxyapatite in a ratio of 40 to 60 and 60 to 40, respectively and highly crystalline sintered porous hydroxyapatite biomimetic matrix [13], 5 mM hydrochloric acid and morsellised fragments of rectus abdominis muscle.
- hTGF- ⁇ 3 is prepared by recombinant techniques.
- hTGF- ⁇ 3 Stock solutions hTGF- ⁇ 3 were prepared in 5 mM hydrochloric acid.
- a carrier matrix is required for the local delivery of hTGF- ⁇ 3 to evoke a desired osteogenic response.
- a collagenous bone matrix was used for the preparation of the osteogenic device.
- Collagenous bone matrix was prepared from diaphyseal segments of baboon and bovine cortical bones. After demineralization, the bone matrix was dissociatively extracted in 4 M guanidinium-HCl (Gdn-HCl), containing protease inhibitors [14].
- hTGF- ⁇ 3 dissolved in 5 mMi hydrochloric acid was combined with insoluble collagenous bone matrix and lyophilized.
- hTGF- ⁇ 3 was also combined with allogeneic demineralized bone matrix so as to exploit the synergistic interaction with BMPs/OPs contained within the demineralized bone matrix [1,3,7,8,11].
- Three doses of hTGF- ⁇ 3 were used: 5, 25 and 125 ⁇ g of hTGF- ⁇ 3 per 100 mg of carrier matrix.
- hTGF- ⁇ 3 dissolved in 5 mM hydrochloric acid was also combined with discs of highly crystalline sintered porous hydroxyapatite for heterotopic extraskeletal implantation.
- hTGF- ⁇ 3 in 5 mM hydrochloric acid was added to 1 gram of insoluble collagenous bone matrix for implantation in non-healing calvarial defects 25 mm in diameter of adult primates Papio ursinus , 25 and 125 ⁇ g hTGF- ⁇ 3 per 1 gram of carrier matrix. Fragments of morsellised rectus abdominis muscle were added to the insoluble collagenous matrix containing doses of hTGF- ⁇ 3 to form the osteogenic device. Doses of 125 ⁇ g hTGF- ⁇ 3 combined with grams of insoluble collagenous bone matrix and/or demineralized bone matrix were implanted in segmental mandibular defects of the primate Papio ursinus.
- hTGF- ⁇ 3 Doses of hTGF- ⁇ 3 were also implanted bilaterally in ventral intramuscular pouches created by sharp and blunt dissection in the rectus abdominis muscle of the primate Papio ursinus . Implants were harvested on day 30 and 90 after surgery. The greater portion of each specimen was processed for undecalcified and decalcified histology and serial sections, cut at 4 ⁇ m, were stained using the free-floating method with Goldners trichrome for undecalcified bone. Consecutive sections were mounted and stained with 0.1% toluidine blue in 30% ethanol for histological visualization of cartilage. Histological sections were analyzed to determine the mineralized bone, osteoid, and residual collagenous matrix volumes (in %).
- the osteogenic device made of combinations of hTGF- ⁇ 3 delivered by both insoluble collagenous matrix or sintered porous hydroxyapatite and implanted extraskeletally in the rectus abdominis muscle resulted in the generation of massive ossicles displacing both the dorsal and ventral fasciae of the rectus abdominis. Cut surfaces showed mineralization of the external cortex and were red-brownish in the gross indicating bone marrow and associated highly vascular tissue. Mineralization of the newly formed enveloping cortex was evident as early as day 30 after implantation of 25 ⁇ g hTGF- ⁇ 3.
- Implantation of 125 ⁇ g hTGF- ⁇ 3 delivered by 100 mg of insoluble collagenous bone matrix resulted in the induction of massive corticalized mineralized ossicles of several cm in diameter within the rectus abdominis muscle. Histological analysis on undecalcified sections showed corticalization and mineralization of newly formed bone with extensive osteoid deposition on mineralized trabeculae as illustrated in FIG. 1 .
- Implantation of 25pg and 125 pg hTGF-63 delivered by sintered porous hydroxyapatites and harvested on day 90 after implantation in the rectus abdominis muscle generated large ossicles with extensive bone formation surrounding the porous hydroxyapatite biomatrices as shown in Sheet FIG. 2 and FIG. 3 .
- cartilage was observed within porous spaces of the hydroxyapatite biomatrices as aggregation of chondroblastic cells on specimens harvested on day 90 from the rectus abdominis muscle.
- Implantation of doses of hTGF- ⁇ 3 delivered by the insoluble collagenous matrix in non-healing calvarial defects of the primate Papio ursinus showed lack of bone formation on undecalcified sections prepared on day 30 after implantation as shown in FIG. 3 .
- bone formation in hTGF- ⁇ 3 calvarial specimens remained limited, with a scattered zone of osteogenesis below the pericranium FIG. 5 .
- Histological analysis of specimens treated with 125 ⁇ g hTGF- ⁇ 3 showed osteogenesis albeit to a limited extent across the treated defects but only pericranially FIG. 5 .
- Histological analysis revealed a recurrent pattern of histological features as seen extending from the pericranial to the endocranial surfaces of the specimens.
- the specimens facing the pericranium showed newly-formed and mineralized bone with osteoclastic activity facing the pericranium.
- Just below the mineralized bone there was more trabecular woven bone with large osteoid seams and a marked vascular component.
- the subjacent inactive collagenous bone matrix supported the newly formed bone and rested above an area of loose fibrovascular tissue, with scattered particles of collagenous carrier.
- the endocranial layer was characterized by the presence of more compact but inactive collagenous matrix ending just above the dura mater FIG. 5 .
- the bone inductive activity of the hTGF- ⁇ 3 isoform in the primate is site and tissue specific, with rather substantial bone induction in heterotopic sites i.e. the rectus abdominis muscle but limited osteinductivity in non-healing calvarial defects.
- the addition of morsellised fragments of rectus abdominis muscle cells and the reconstitution of the hTGF- ⁇ 3 isoform combined with physiologically acceptable delivery systems with morsellised muscle fragments restored the osteogenic activity of the TGF- ⁇ 3 isoform in cranial sites and constitutes one aspect the osteogenic device of the present invention.
- a fragment of rectus abdominis muscle tissue is harvested by sharp dissection: 2 cm in length and 0.5 cm in diameter.
- the fragment is placed on a hard sterilized surface and using two scalpels is morsellised to form a paste of fragmented muscle and cells.
- the above can also be achieved by freezing the fragment in liquid nitrogen and the frozen muscle is then fragmented to small cellular pieces with a sterile mortar and pestle.
- Fragments containing multiple rectus abdominis muscle cells are then added to the insoluble collagenous bone matrix containing doses of hTGF- ⁇ 3 isoform and mixed with 1 gram of the insoluble matrix additionally blended by adding 300 ⁇ l of sterile dehyonized water to facilitate the implantation to the bone defect.
- Specimens treated with the osteogenic device as described were implanted in calvarial defects of the primate Papio ursinus to demonstrate the therapeutic utility of the osteogenic device for bone repair and regeneration.
- Specimens were harvested 30 and 90 days after implantation. Undecalcified sections of the specimens showed bone induction across the defect FIG. 6 and areas of chondrogenesis in the membranous bone of the calvaria.
- muscle cells restored the biological activity of the hTGF- ⁇ 3 isoform and induced a sequential cascade of events as seen in heterotopic specimens, i.e. the induction of endochondral bone and in bones of membranous origin as the calvaria.
- the hTGF- ⁇ 3 osteogenic device can directly induce bone formation even without the addition of rectus abdominis cells/fragments.
- FIG. 7 (Panels A and B).
- Ligand's receptors analyses on day 30 and 90 are shown in FIG. 7 Panels C and D indicating receptors' expression both heterotopically and orthotopically.
- the described osteogenic device demonstrates the restoration of the osteogenic activity of the TGF- ⁇ 3 isoform in calvarial sites by reconstituting the TGF- ⁇ 3 isoform with morsellised fragments of rectus abdominis muscle which provides the responding cells for the sequential induction cascade by the hTGF- ⁇ 3 isoform.
- the osteogenic device is capable of inducing rapid new bone formation in skeletal sites of the primate in a manner which supersedes bone formation capabilities of BMPs/OPs.
- Rapid bone formation is achieved by adding a multitude of responding cells with specific cell surface receptors for the TGF- ⁇ 3 isoform, harvested from the rectus abdominis muscle of the same primate, whereby new bone formation is raised several fold as compared to the isoform alone.
- the present patent application demonstrates bone induction by the hTGF- ⁇ 3 isoform in heterotopic sites of the primate, a biological activity as yet unreported in any animal species so far tested using the TGF- ⁇ 3 isoform.
- the rapid endochondral bone induction by the hTGF- ⁇ 3 isoform can be used for the generation of large ossicles, as shown in FIG. 1 in the rectus abdominis muscle of human patients. Generated ossicles are then harvested 30 days after heterotopic implantation and morsellised fragments of the newly generated bone are transplanted into bony defects affecting the same patient, defects either of the axial and craniofacial skeleton including periodontal osseous defects.
- the rapid and massive induction of endochondral bone formation by the described osteogenic device in heterotopic extraskeletal sites is used for the transformation into bone of neoplastic and metastatic tumoral masses of mammals including humans with surgical delineation of the surgical masses to be surgically enucleated as well as with reduction and complete inhibition of biochemical paraneoplastic parameters after tissue transformation into bone.
- a major advantage of the invention is the capacity of the inventive osteogenic device to induce rapid bone formation and to induce a greater amount of bone formation both in extraskeletal heterotopic and skeletal orthotopic sites. It is of great importance to note that the invention provides an osteogenic device for oncologic, orthopaedic, craniofacial and periodontal applications that is capable of rapid bone formation when implanted into the primate Papio ursinus , a primate that has bone physiology and remodelling comparable to man [15], the ultimate recipient of the osteogenic device of the present invention.
- the rapidity of tissue morphogenesis and induction of bone formation complete with mineralization of the outer cortex of the ossicles and bone marrow formation by day 30 is of particular importance for osseous transformation of neoplastic masses and repair and regeneration of bone in the elderly, where repair phenomena are temporally delayed and healing progresses slower than in younger patients.
- the composition of the osteogenic device is not limited to hTGF- ⁇ 3 but extend to the other TGF- ⁇ isoforms including the amphibian TGF- ⁇ 5 isoform which has been shown to be osteoinductive in the rectus abdominis muscle of adult primates at doses of 5 ⁇ ig per 100 mg of collagenous matrix as carrier and extends to all BMP/OP family members (BMP-2 through BMP-14) and the newly chracterized TGF- ⁇ 3 superfamily member i.e. Ebaf/Lefty-A , singly or in combination.
- the application of the osteogenic device is not limited to the transformation of neoplastic tumours into bone for rapid surgical debridement and to local applications where bone growth and regeneration is desired (i.e. at a bone defect site), but extend to specific administration using local injection routes for restoration of systemic bone loss in conditions such as osteoporosis.
- this invention extends to the osteogenic device composed of osteogenic proteins of the TGF- ⁇ 3 superfamily i.e. hBMPs/OPs and TGF- ⁇ s and specifically hTGF- ⁇ 3 to be injected locally for the treatment of systemic bone loss, i.e. hTGF-3 in conjunction with the delivery system of Matrigel and morsellised rectus abdominis cellular fragments as exemplified in South African patent number 2002/2307 and PCT WO 03/079964 patent applications both entitled Composition for Stimulating de novo Bone Induction.
- TGF- ⁇ 3 superfamily i.e. hBMPs/OPs and TGF- ⁇ s and specifically hTGF- ⁇ 3
- hTGF-3 systemic bone loss
- This invention describes an osteogenic device made of a combination of the hTGF- ⁇ 3 isoform, the most powerful inducer of endochondral bone formation so far tested and found in primate species.
- the endochondral osteoinductivity of the TGF- ⁇ 3 isoform has been discovered yet never published after implementation of research experiments in 1999 as per the relevant record book.
- the osteogenic device as described supersedes the bone inductive capabilities of the previously known osteogenic BMPs/OPs and as such, the device as presented, is a paradigmatic shift from EMPs/OPs to the TGF-3 isoform for rapid craniofacial and axial skeletal regeneration.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Urology & Nephrology (AREA)
- Gastroenterology & Hepatology (AREA)
- Botany (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Rheumatology (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Toxicology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Physical Education & Sports Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA200508378 | 2005-10-17 | ||
ZA2005/08378 | 2005-10-17 | ||
PCT/IB2006/002864 WO2007045955A2 (en) | 2005-10-17 | 2006-10-13 | Osteogenic device for inducing bone formation in clinical contexts |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2006/002864 A-371-Of-International WO2007045955A2 (en) | 2005-10-17 | 2006-10-13 | Osteogenic device for inducing bone formation in clinical contexts |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/463,018 Division US9084757B2 (en) | 2005-10-17 | 2012-05-03 | Osteogenic device for inducing bone formation in clinical contexts |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100068239A1 true US20100068239A1 (en) | 2010-03-18 |
Family
ID=37962876
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/083,684 Abandoned US20100068239A1 (en) | 2005-10-17 | 2006-10-13 | Osteogenic Device for Inducing Bone Formation in Clinical Contexts |
US13/463,018 Expired - Fee Related US9084757B2 (en) | 2005-10-17 | 2012-05-03 | Osteogenic device for inducing bone formation in clinical contexts |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/463,018 Expired - Fee Related US9084757B2 (en) | 2005-10-17 | 2012-05-03 | Osteogenic device for inducing bone formation in clinical contexts |
Country Status (4)
Country | Link |
---|---|
US (2) | US20100068239A1 (de) |
EP (2) | EP1948218B1 (de) |
WO (1) | WO2007045955A2 (de) |
ZA (1) | ZA200804147B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120004594A1 (en) * | 2010-07-02 | 2012-01-05 | Wright Medical Technology, Inc. | Methods of treating degenerative bone conditions |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011154882A1 (en) * | 2010-06-06 | 2011-12-15 | University Of The Witwatersrand, Johannesburg | Induction of bone formation |
US10314594B2 (en) | 2012-12-14 | 2019-06-11 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US10307167B2 (en) | 2012-12-14 | 2019-06-04 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US10813630B2 (en) | 2011-08-09 | 2020-10-27 | Corquest Medical, Inc. | Closure system for atrial wall |
US20140142689A1 (en) | 2012-11-21 | 2014-05-22 | Didier De Canniere | Device and method of treating heart valve malfunction |
US9566443B2 (en) | 2013-11-26 | 2017-02-14 | Corquest Medical, Inc. | System for treating heart valve malfunction including mitral regurgitation |
US10842626B2 (en) | 2014-12-09 | 2020-11-24 | Didier De Canniere | Intracardiac device to correct mitral regurgitation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5158934A (en) * | 1989-09-01 | 1992-10-27 | Genentech, Inc. | Method of inducing bone growth using TGF-β |
US20010038848A1 (en) * | 2000-02-18 | 2001-11-08 | Donda Russell S. | Implantable tissues infused with growth factors and other additives |
US20030143258A1 (en) * | 2001-10-12 | 2003-07-31 | David Knaack | Bone graft |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6911212B2 (en) | 1998-02-27 | 2005-06-28 | Musculoskeletal Transplant Foundation | Malleable putty and flowable paste with allograft bone having residual calcium for filling bone defects |
EP1161257A2 (de) * | 1999-03-17 | 2001-12-12 | Novartis AG | Tgf-beta enthaltende pharmazeutische zusammensetzungen |
ATE420671T1 (de) * | 2001-10-25 | 2009-01-15 | Univ Connecticut | Fibroinzusammensetzungen und verfahren zu deren herstellung |
US20030175410A1 (en) * | 2002-03-18 | 2003-09-18 | Campbell Phil G. | Method and apparatus for preparing biomimetic scaffold |
WO2003079964A2 (en) | 2002-03-22 | 2003-10-02 | University Of Witwatersrand | Composition for stimulating de novo bone induction |
EP1660663A4 (de) * | 2003-08-12 | 2007-07-11 | Brigham & Womens Hospital | Verfahren und zusammensetzungen zur gewebereparatur |
-
2006
- 2006-10-13 EP EP06809015.8A patent/EP1948218B1/de not_active Not-in-force
- 2006-10-13 EP EP15157455.5A patent/EP2907519A1/de not_active Withdrawn
- 2006-10-13 US US12/083,684 patent/US20100068239A1/en not_active Abandoned
- 2006-10-13 WO PCT/IB2006/002864 patent/WO2007045955A2/en active Application Filing
-
2008
- 2008-05-14 ZA ZA200804147A patent/ZA200804147B/xx unknown
-
2012
- 2012-05-03 US US13/463,018 patent/US9084757B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5158934A (en) * | 1989-09-01 | 1992-10-27 | Genentech, Inc. | Method of inducing bone growth using TGF-β |
US20010038848A1 (en) * | 2000-02-18 | 2001-11-08 | Donda Russell S. | Implantable tissues infused with growth factors and other additives |
US20030143258A1 (en) * | 2001-10-12 | 2003-07-31 | David Knaack | Bone graft |
Non-Patent Citations (1)
Title |
---|
Kao et al., Ophthalmic Surgery and Lasers, 1999, Vol. 30(1):69-71 (see Abstract). * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120004594A1 (en) * | 2010-07-02 | 2012-01-05 | Wright Medical Technology, Inc. | Methods of treating degenerative bone conditions |
KR20160147059A (ko) * | 2010-07-02 | 2016-12-21 | 아그노보스 헬스케어 엘엘씨 | 골 퇴행 상태의 치료에서 사용되는 인산칼슘 및 황산칼슘 분말 및 트리칼슘 포스페이트 입자를 포함하는 조성물 |
US9550010B2 (en) * | 2010-07-02 | 2017-01-24 | Agnovos Healthcare, Llc | Methods of treating degenerative bone conditions |
EP2588154B1 (de) | 2010-07-02 | 2017-10-18 | Agnovos Healthcare, LLC | Zusammensetzung mit calciumphosphat- , sulfatpulvern oder dbm zur behandlung von degenerativen knochenerkrankungen |
KR101898795B1 (ko) * | 2010-07-02 | 2018-09-13 | 아그노보스 헬스케어 엘엘씨 | 골 퇴행 상태의 치료에서 사용되는 인산칼슘 및 황산칼슘 분말 및 트리칼슘 포스페이트 입자를 포함하는 조성물 |
KR101910785B1 (ko) | 2010-07-02 | 2018-10-22 | 아그노보스 헬스케어 엘엘씨 | 골 퇴행 상태의 치료에서 사용되는 인산칼슘 및 황산칼슘 분말 및 트리칼슘 포스페이트 입자를 포함하는 조성물 |
Also Published As
Publication number | Publication date |
---|---|
WO2007045955A2 (en) | 2007-04-26 |
EP1948218A2 (de) | 2008-07-30 |
EP1948218A4 (de) | 2012-06-06 |
WO2007045955A3 (en) | 2009-04-16 |
EP2907519A1 (de) | 2015-08-19 |
ZA200804147B (en) | 2009-10-28 |
EP1948218B1 (de) | 2015-04-15 |
US20120277879A1 (en) | 2012-11-01 |
US9084757B2 (en) | 2015-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9084757B2 (en) | Osteogenic device for inducing bone formation in clinical contexts | |
DE69403439T2 (de) | Tgf-beta zusammensetzung zum herbeiführen von knochenwachstum | |
US5422340A (en) | TGF-βformulation for inducing bone growth | |
JP4703926B2 (ja) | 骨形成蛋白をデリバリーするためのヒアルロン酸の処方 | |
US20040176287A1 (en) | Bmp binding proteins for use in bone or cartilage regeneration | |
Vukičević et al. | Discovery and clinical applications of bone morphogenetic proteins | |
JP2000502336A (ja) | 形態形成タンパク質および刺激因子を使用する組成物および治療方法 | |
WO1991005802A1 (en) | Osteogenic devices | |
Ripamonti et al. | The induction of endochondral bone formation by transforming growth factor‐β3: experimental studies in the non‐human primate Papio ursinus | |
JPH07500487A (ja) | 骨形成ペプチド | |
Ripamonti et al. | Limited chondro‐osteogenesis by recombinant human transforming growth factor‐β1 in calvarial defects of adult baboons (Papio ursinus) | |
Vandersteenhoven et al. | Histological investigation of bone induction by demineralized allogeneic bone matrix: a natural biomaterial for osseous reconstruction | |
JP2005536489A (ja) | 骨誘導性の生体材料 | |
Yiğiter et al. | The effects of type I collagen on bone defects and gene expression changes for osteogenesis: In a rat model | |
Salata et al. | Recent outcomes and perspectives of the application of bone morphogenetic proteins in implant dentistry | |
NZ248446A (en) | Bone growth composition containing transforming growth factor beta (tgf-beta) and demineralised bone | |
WO2010120332A1 (en) | Agents and methods to stimulate bone healing | |
WO1999027977A2 (de) | Knochenmatrix, deren verwendung, therapeutische zubereitung und kit | |
Lindholm et al. | The Skull Defect Model in Measuring Osteoinductivity. | |
Rubianto | Induction of Angiogenesis Process in Mandible Using Anadara granosa Shell Graft (Experimental Laboratory Study on Rattus norvegicus) | |
Lullo | Source and Carrier Effect on the Bioactivity of BMP Bio-implants | |
Sonobe et al. | Bone Morphogenetic Proteins~ BMP-2 and BMP-7 | |
AU648997C (en) | Osteogenic devices | |
Vafaei et al. | Transforming growth factor-beta 3 and recombinant human bone morphogenetic protein-7 for the regeneration of segmental mandibular defects in Papio ursinus | |
Ripamonti et al. | Bone Induction by TGF-β in the Primate and Synergistic Interaction with BMP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG,SOUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RIPAMONTI, UGO;REEL/FRAME:023194/0977 Effective date: 20080423 Owner name: RIPAMONTI, UGO,SOUTH AFRICA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RIPAMONTI, UGO;REEL/FRAME:023194/0977 Effective date: 20080423 Owner name: MEDICAL RESEARCH COUNCIL OF SOUTH AFRICA,SOUTH AFR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RIPAMONTI, UGO;REEL/FRAME:023194/0977 Effective date: 20080423 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |