US20100015427A1 - Structural reinforcement material, insert, and reinforced cavity comprising same - Google Patents

Structural reinforcement material, insert, and reinforced cavity comprising same Download PDF

Info

Publication number
US20100015427A1
US20100015427A1 US12/312,786 US31278607A US2010015427A1 US 20100015427 A1 US20100015427 A1 US 20100015427A1 US 31278607 A US31278607 A US 31278607A US 2010015427 A1 US2010015427 A1 US 2010015427A1
Authority
US
United States
Prior art keywords
structural reinforcement
reinforcement material
cavity
insert
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/312,786
Other languages
English (en)
Inventor
Vincent Belpaire
Dominique Mellano
Norman Blank
Juergen Finter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sika Technology AG
Original Assignee
Sika Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38984431&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100015427(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sika Technology AG filed Critical Sika Technology AG
Publication of US20100015427A1 publication Critical patent/US20100015427A1/en
Assigned to SIKA TECHNOLOGY AG reassignment SIKA TECHNOLOGY AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLANK, NORMAN, FINTER, JUERGEN, MELLANO, Dominique, BELPAIRE, VINCENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/18Filling preformed cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/002Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material a foamable synthetic material or metal being added in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0815Acoustic or thermal insulation of passenger compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249923Including interlaminar mechanical fastener
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components

Definitions

  • bodies or housings that include hollow cavities.
  • automobiles, trucks, and other motor vehicles, as well as some consumer appliances have hollow cavities formed between inner and outer panels, in pillars, or within their frame members that form their respective bodies or housings.
  • hollow cavities are often created in these products to reduce overall weight of the final product, as well as to reduce material costs.
  • introducing hollow cavities into a structure involves tradeoffs. For example, introducing a hollow cavity may reduce the overall strength or energy-absorbing characteristics of a structural member.
  • a hollow cavity may result in increased transmission of vibration or sound to other portions of the product.
  • Some current reinforcers include an expansible material applied to a carrier, which typically is a molded component.
  • the expansible material is expanded during the manufacture of the product, securing the reinforcer in place as the expanded material contacts the adjoining surface of the product.
  • the expansible material in such reinforcers may not be securely joined to the carrier, leading to uneven or inadequate sealing.
  • expansion of the material may not reach every nook and cranny of an unusually or irregularly shaped carrier.
  • expansible structural reinforcement materials can be sensitive to a heating process such as a “bake” process.
  • the performance of such expansible materials is linked to the expansion rate, which depends upon the time and temperature of the heating.
  • some known expansible structural reinforcement materials are thick, even before expansion.
  • the thickness of a pre- expansion material plus a gap between a reinforcement insert and a structural cavity can total about 8 to 10 mm to allow for e-coat flow and assembly tolerances.
  • Structural reinforcement materials having reduced thicknesses can improve global system performance.
  • a structural reinforcement material is described herein that comprises a base material.
  • the base material may be selected from the group consisting of thermosets, low viscosity thermoplastics with short transition phases, low melting point metallic alloys, and combinations thereof.
  • STP standard temperature and pressure
  • the structural reinforcement material is either solid or formable dough or a mixture thereof.
  • the structural reinforcement material transitions to a flowable phase, which includes without limitation a liquid or substantially liquid phase, during heating at an activation temperature. Following activation, cure and/or cooling, the structural reinforcement material is a substantially solid and has a strength sufficient to reinforce a cavity.
  • a method of reinforcing a cavity includes a step of attaching a structural reinforcement material to a carrier to form an insert.
  • the structural reinforcement material comprises a base material selected from the group consisting of thermosets, low viscosity thermoplastics with short transition phases, low melting point metallic alloys, and combinations thereof.
  • the structural reinforcement material is a solid, a formable dough, or a mixture thereof.
  • the method includes a step of placing the insert into a cavity. Another step in the method involves heating the insert to an activation temperature such that the structural reinforcement material becomes liquid or substantially liquid and flows into the cavity. A curing process may occur, depending upon the nature of the base material, causing a thermoset to be formed. Following cooling of the insert, the solid structural reinforcement is adhered to at least a portion of the cavity, thereby reinforcing the cavity.
  • a structural reinforcement insert is described herein.
  • the insert comprises a carrier having a first end and a second end opposite the first end, and at least one holding area between the first end and the second end.
  • the holding area(s) contain structural reinforcement material.
  • the structural reinforcement material comprises a base material selected from the group consisting of thermosets, thermoplastics with short transition phases and low viscosities, metallic alloys with low melting points, and combinations thereof.
  • the structural reinforcement material is solid, formable dough, or a mixture thereof.
  • the structural reinforcement material is in a flowable phase following heating to an activation temperature. Following cooling after activation and/or cure, the structural reinforcement material has a strength sufficient to reinforce a cavity and is a solid or a thermoset solid.
  • the insert also includes uncured expansible foam at or near the first end of the carrier.
  • the insert also contains uncured expansible foam at or near the second end of the carrier. Upon heating to an activation temperature, the expanded foam prevents the flow of the liquid structural reinforcement material from the holding area to extend beyond the expanded foam into other regions of a cavity.
  • a reinforced cavity is also described herein.
  • the cavity includes an insert within the cavity.
  • the insert includes a holding area.
  • the cavity includes cured or solidified structural reinforcement material comprising a base material selected from the group consisting of thermosets, low viscosity thermoplastics with short transition phases, metallic alloys with low melting points, and combinations thereof.
  • the cured or solidified structural reinforcement material flowed from the holding area of the insert and is adhered to at least a portion of cavity and reinforces cavity.
  • FIG. 1 is a side view of an insert in a horizontal cavity of a structural body before activation.
  • FIG. 2 is a side view of an insert in a horizontal cavity of a structural body after activation.
  • FIG. 3 is a side view of an insert in a vertical cavity of a structural body before activation.
  • FIG. 4 is a side view of an insert in a vertical cavity of a structural body after activation.
  • FIG. 5 is a perspective view of an automobile frame having multiple cavities therein.
  • FIGS. 1 and 2 depict one embodiment of a horizontally-oriented cavity 10 that can be reinforced using a structural reinforcement material 20 on an insert 111 .
  • Insert 111 can be initially placed or fixed in the cavity 10 using a structural adhesive 33 , or any other chemical adhesive or mechanical fastener. Alternatively, insert 111 may have leg supports (not shown) to retain insert 111 in the cavity 10 .
  • FIG. 1 represents cavity 10 before heating to or at an activation temperature occurs.
  • insert 111 comprises a carrier 11 together with structural reinforcement material 20 and structural foam 12 .
  • the carrier 11 holds structural reinforcement material 20 in a holding area 22 using any available method, including mechanical fasteners such as clips 26 .
  • FIG. 2 represents an embodiment of a horizontally-oriented cavity after heating to an activation temperature.
  • insert 111 comprises a carrier 11 together with structural reinforcement material 20 and structural foam 12 .
  • structural reinforcement material 20 changes from a solid or formable dough phase to a liquid or substantially liquid phase.
  • the structural reinforcement material 20 then flows from holding area 22 onto a surface in cavity 10 due to gravitational force.
  • structural foam 12 on the bottom extremities of carrier 11 expanded during heating and adhered to cavity 10 .
  • the expanded structural foam 12 of carrier 11 acts as a physical barrier, restricting the flow of structural reinforcement material 20 while structural reinforcement material 20 is in, substantially, a liquid phase.
  • structural reinforcement material 20 is a solid or a solid thermoset phase and provides structural reinforcement to cavity 10 .
  • FIGS. 3 and 4 depict one embodiment of a vertically-oriented cavity 10 that can be reinforced using a structural reinforcement material 20 on an insert 111 .
  • Insert 111 can be placed or secured in the cavity 10 by any method, including an adhesive (not shown) or a mechanical fastener (not shown), or a bend in the substantially vertical cavity 10 to provide a ledge (not shown).
  • FIG. 3 represents cavity 10 before heating to an activation temperature occurs.
  • insert 111 comprises a carrier 11 together with structural reinforcement material 20 and structural foam 12 .
  • the carrier 11 holds structural reinforcement material 20 in place before activation using any method, including adhesive 24 .
  • FIG. 4 represents an embodiment of a vertically-oriented cavity after heating to an activation temperature.
  • insert 111 comprises a carrier 11 together with structural reinforcement material 20 and structural foam 12 .
  • structural reinforcement material 20 changes from a solid or formable dough phase to a liquid or substantially liquid phase.
  • the structural reinforcement material 20 then flows from carrier 11 onto a surface of cavity 10 and onto structural foam 12 due to gravitational force.
  • structural foam 12 expanded from carrier 11 and adhered to cavity 10 .
  • the structural foam 12 on carrier 11 acts as a physical barrier, restricting the flow of structural reinforcement material 20 while structural reinforcement material 20 is in, substantially, a liquid phase.
  • structural reinforcement material 20 is a solid or a thermoset phase and provides structural reinforcement to cavity 10 .
  • automobile 2 is shown identifying many (but not all) cavities 10 that can be reinforced with structural reinforcement material 20 .
  • Some such cavities 10 may be vertical or substantially vertical, others may be horizontal or substantially horizontal.
  • Some such cavities 10 are formed form metal, such as steel, but cavities 10 may be formed from any material including plastics.
  • potentially reinforceable structures, having cavities 10 therein, on automobile 2 include but are not limited to A-pillar 4 , rocker 6 , child restraint reinforcer 100 , frame rails 32 , fuel tank sealer 36 , cowl 38 , bumper 40 , B-pillar 42 , and door/liftgate 44 .
  • FIGS. 1-5 are merely exemplary and not intended to limit the appended claims to automotive applications, to particular configurations of inserts, to particular shapes or orientations of cavities, etc.
  • Structural reinforcement material 20 comprises a base material selected from the group consisting of thermosets, thermoplastics with short transition phases and low viscosity, metallic alloys with low melting points, and combinations thereof. At about STP, the structural reinforcement material 20 is solid or is a formable dough or a mixture thereof. This way, manufacturing techniques including injection molding, extrusion, cutting or die stamping may be used to shape the structural reinforcement material 20 for inclusion on or in a carrier 11 to make an insert 111 , or for direct insertion into a cavity 10 .
  • the structural reinforcement material 20 When insert 111 is heated to an activation temperature, the structural reinforcement material 20 transforms to a flowable phase, such a liquid phase or a substantially liquid phase. This way, the structural reinforcement material 20 flows from a carrier 11 onto a surface of cavity 10 and adopts the form of the cavity 10 , however irregular it may be. Gravity controls the flow of structural reinforcement material 20 , along with any physical barriers. When cured and/or cooled, the structural reinforcement material 20 becomes either a solid or a solid thermoset that adheres to cavity 10 and is of sufficient strength to reinforce cavity 10 .
  • Activation temperatures can be as low as about 100° C. (if the structural reinforcement material 20 comprises a metal alloy), about 120° C., about 140° C. or about 150° C., and as high as about 170° C., about 180° C. or about 190° C. Ranges from any one of these temperatures to any other of these temperatures are contemplated. In the case of an automobile, an activation temperature may be reached during the “bake” process.
  • the structural reinforcement material 20 has strength sufficient to reinforce the cavity 10 .
  • the tensile strength and Young modulus of reinforcement material 20 is equal to or greater than that of expansible structural reinforcement foam 12 following activation.
  • the tensile strength of the structural reinforcement material 20 is greater than about 20 MPa, and can range up to about 40 MPa, about 50 MPa or about 70 MPa. In one embodiment, the Young modulus of the structural reinforcement material 20 is greater than about 500 MPa, and can range up to about 1000 MPa or about 1500 MPa or about 3000 MPa.
  • structural reinforcement material 20 is substantially independent of the heating conditions of, for example, a “bake” process.
  • the strength properties of expansible structural reinforcement foam 12 depend substantially on the expansion rate, which in turn depends substantially on heating conditions including time and temperature.
  • structural reinforcement material 20 does not include an expanding agent, also known as a blowing agent, and its strength properties are unrelated to an expansion rate.
  • Other embodiments of structural reinforcement material 20 may optionally include a blowing agent.
  • the thickness of structural reinforcement material 20 is reduced.
  • the thickness of structural reinforcement material 20 plus a gap between an insert 111 and a structural cavity 10 can total about 3 to 5 mm to allow for flowing and assembly tolerances. This reduced thickness can improve global system performance.
  • thermosets comprise the base material
  • crystalline cyclic oligoester-based thermoset polymers may be used, including polymers based upon cyclic oligo(butylterephthalates).
  • oligoesters are commercially available through Cyclics Corp. Thermoset polymers formed from such oligoesters are described in WO 2006/075009 A1,herein incorporated by reference in its entirety.
  • Such oligoesters may optionally be modified by, among other classes of compounds, organophilic clays and nanoclays, epoxy resins, and combinations thereof. Without being limited by theory, it is believed that such modification may provide the material 20 greater strength and increased moldability following polymerization and prior to being activated.
  • the oligoesters are polymerized by a ring-opening melt polymerization process to create a polyester having a high molecular weight.
  • thermoset may comprise a one-component epoxy resin formulation that is a solid or a formable dough at about STP.
  • a suitable formulation includes a mixture comprising from about 1% by weight to about 50% by weight of liquid epoxy resin, from about 10% by weight to about 50% by weight of solid epoxy resin, from about 5% by weight to about 30% by weight of tougheners, from about 2% by weight to about 10% by weight of latent hardener, and from about 5% by weight to about 40% by weight of fillers and additives.
  • Suitable liquid epoxy resins include bisphenol-A epoxy resins such as the DER liquid epoxy resins that are commercially available through the Dow Chemical Co. in Midland Michigan and the EPON liquid epoxy resins that are commercially available through Resolution Performance Products in Houston, Tex.
  • Suitable solid epoxy resins may be of “type 1” to “type 6” (having molecular weights ranging from about 1000 to 6000 Daltons).
  • Suitable solid epoxy resins are solid at room temperature and have a glass transition temperature greater than 30° C.
  • Suitable solid epoxy resins should be substantially liquid when heated to at least about 120° C. or 140° C. or 150° C. and then have a viscosity of between 400 mPas and 15000 mPas.
  • Suitable liquid epoxy resins include bisphenol-A epoxy resins such as the DER liquid epoxy resins that are commercially available through the Dow Chemical Co. in Midland, Mich.
  • Epoxy resin formulations may include thixotropic agents, but the amount of thixotropic agents should be balanced by the presence of a liquid epoxy resin to ensure a good flow in the liquid or substantially liquid phase.
  • Suitable tougheners include reactive nitrile rubbers and polyurethane-based reactive liquid rubbers and the like. Suitable tougheners include the following commercially available liquid, monomeric, reactive rubbers: CTB, CTBN, CTBNX and ATBN, which are commercially available from B. F. Goodrich Chem. Co. in Cleveland Ohio. Core shell particles and polyacrylates may also be used as tougheners.
  • Suitable latent hardeners include dicyandiamide, 4 , 4 ′-diaminodiphenyl sulphone, boron trifluoride amine complexes, latent imidazoles, polycarboxylic acids, polyhydrazides, dicyandiamide, latent epoxy amine adducts and substituted ureas and the like.
  • Suitable fillers include inorganic fillers such as silica, alumina, mica powder, calcium carbonate, aluminum hydroxide, magnesium carbonate, talc, clay, kaolin, dolomite, silicon carbide, glass powder, glass bubbles, titanium dioxide, boron nitride, or silicon nitride, and sheet and tape materials such as mica, glass, polyester, aramide, and/or polyimide and the like.
  • inorganic fillers such as silica, alumina, mica powder, calcium carbonate, aluminum hydroxide, magnesium carbonate, talc, clay, kaolin, dolomite, silicon carbide, glass powder, glass bubbles, titanium dioxide, boron nitride, or silicon nitride
  • sheet and tape materials such as mica, glass, polyester, aramide, and/or polyimide and the like.
  • Suitable additives include pigments, coloring agents, flame retardants, diluents, coupling agents, flexibilizers, chemical blowing agents, physical blowing agents, trace amount of cure accelerators, dispersants, wetting agents, defoaming agents, antioxidants, ultraviolet absorbers, photostabilizers such as HALS, and reinforcing agents such as rubber particles, and the like.
  • any number of optional ingredients may be included in a one-component epoxy system, including triglycidylisocyanurate, terephthalic acid diglycidyl ether, trimellitic acid triglycidyl ether, hydroquinone diglycidyl ether solid adducts of trimethylolpropane-diglycidyl ether and diosocyanates, and mixtures thereof.
  • One-component epoxy resin systems include SikaPower® 493 and SikaPower® 498 which can be used as sold or modified with higher filler loadings.
  • a thermoset may comprise a one-component polyurethane elastomer (PUR) hot melt system.
  • PUR hot melt systems include a crystalline, hydroxy-terminated polyester in combination with low molecular weight poloys or polyetherpolyols.
  • a commercially available cross-linker is VESTAGON BF 1350 and BF 1540 from Degussa, a German company with offices in Parsippany, N.J.. Polyisocyanates blocked with nucleophiles such as caprolactame, phenols or benzoxazolones are also suitable.
  • micro-encapsulated isocyanate particles with an inert shell comprising urethane or urea that releases the isocyanates at elevated temperatures, such as the activation temperatures.
  • the amine moiety from the inert shell reacts with the isocyanate and a polyol upon heating to form a PUR.
  • thermoset Any other thermoset may be used so long as the thermoset changes phases as described herein at an activation temperature and cures to have a strength sufficient to reinforce a cavity 10 .
  • the thermoplastic material should have a short transition phase and low viscosity in its liquid phase.
  • Polystyrene and polystyrene derivatives and the like are suitable, especially for applications calling for higher activation temperatures such as those over 200° C. or 210° C.
  • low density polyethylene and the like may be suitable.
  • Suitable ranges of transition phases include from about 10 min at about 140° C. to about 30 minutes at about 195° C.; about 10 min at about 150° C. to about 30 minutes at about 175° C.; and about 15 min at about 150° C. to about 30 minutes at about 170° C.
  • Suitable ranges of viscosity in the liquid phase include from about 500 mPas to about 100,000 mPas; 5,000 mPas to 50,000 mPas; and 7,000 mPas to 18,000 mPas.
  • thermoplastic Any other thermoplastic may be used so long as the thermpolastic changes phases as described herein at an activation temperature and cures to have a strength sufficient to reinforce a cavity 10 .
  • the metallic base may comprise metal such as tin (Sn), indium (In), lead (Pb), or Bismuth (Bi), or a combination thereof. Most tin-based welding or solder alloys are suitable. In some embodiments, lead-free alloys may be used to avoid potential toxicity concerns. Other alloys may be also used. In embodiments including at least one metallic alloy, the alloy is eutectic or nearly eutectic and has a low melting point. Low melting points can be as low as about 100° C., about 120° C., about 140° C. or about 150° C., and as high as about 170° C., 180° C., or 190° C.
  • Exemplary suitable alloys include Bismuth-Tin-Lead alloys like Rose's Metal, which includes about 50% Bi, 25% Pb, and 25% Sn (Bi50Pb25Sn25). Indalloys available from the Indium Corporation of America that have melting points from 103° C. to 227° C. are also suitable. Other exemplary alloys may include, at least, Orionmetall (Bi42Pb42Sn16), Bibrametall (Pb6020Bi15Sn), and Walker Alloy (Bi45Pb28Sn22Sb5).
  • Any other metal alloy may be used so long as the alloy changes phases as described herein at an activation temperature and solidifies to have a strength sufficient to reinforce a cavity 10 .
  • Structural foam 12 may optionally be used on or in a carrier 11 . As shown in the embodiments depicted in FIGS. 1-4 , expanded structural foam 12 can act as a physical barrier to prevent the flow of liquid-phase structural reinforcement material 20 into certain regions of cavity 10 . In such an embodiment, uncured structural foam 12 expands during activation and adheres to cavity 10 . Structural foam 12 may effectively seal off regions of cavity 10 to prevent the flow of structural reinforcement material 20 into those regions during a heating process such as a “bake” process.
  • Foam 12 may be any of the commercially available expansible foams.
  • the Sika Corporation of Madison Heights, Mich. sells thermally expansible materials under the SikaBaffle® trade name, which are described in U.S. Pat. Nos. 5,266,133 and 5,373,027, both of which are incorporated herein by reference in their entireties.
  • the Sika Corporation also sells thermally expansible reinforcer materials under the trade name SikaReinforcer®.
  • a series of these thermally expansible reinforcer materials, owned by the Sika Corporation are described in the U.S. Pat. No. 6,387,470, incorporated herein by reference in its entirety.
  • one-component epoxy resin formulations are suitable that comprise a chemical or physical blowing agent and a curing agent.
  • foam 12 activates and expands and cures at temperature slightly lower than the temperature at which structural reinforcement material 20 melts. Any expansible foam 12 may be used so long as the foam 12 expands in such a way as to adhere to cavity 10 and is capable of preventing the flow of liquid or substantially liquid structural reinforcement material 20 while the temperature of cavity 10 remains at or about an activation temperature.
  • Structural adhesive 33 may optionally be used to secure an insert 111 into a cavity 10 , where cavity 10 comprises metal such as steel or coated steel. Cavity 10 may also comprise plastics or other materials.
  • the Sika Corporation of Madison Heights, Mich. sells a line of suitable structural adhesives under the tradenames SikaSeal® and Sikaflex®, which are suitable for use with various embodiments of the appended claims.
  • Suitable adhesives may be epoxy-based, but any adhesive 33 may be used so long as it is capable of securing an insert 111 into a cavity 10 at least until the cavity 10 is heated to an activation temperature. Following activation, in the embodiment depicted in FIG. 2 , the insert 111 is additionally held in place by foam 12 and structural reinforcement material 20 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US12/312,786 2006-12-15 2007-12-14 Structural reinforcement material, insert, and reinforced cavity comprising same Abandoned US20100015427A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06126249.9 2006-12-15
EP20060126249 EP1932648A1 (en) 2006-12-15 2006-12-15 Structural reinforcement material, insert, and reinforced cavity comprising same
PCT/EP2007/063974 WO2008071792A1 (en) 2006-12-15 2007-12-14 Structural reinforcement material, insert, and reinforced cavity comprising same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/063974 A-371-Of-International WO2008071792A1 (en) 2006-12-15 2007-12-14 Structural reinforcement material, insert, and reinforced cavity comprising same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/438,444 Continuation US8636870B2 (en) 2006-12-15 2012-04-03 Structural reinforcement material, insert, and reinforced cavity comprising same

Publications (1)

Publication Number Publication Date
US20100015427A1 true US20100015427A1 (en) 2010-01-21

Family

ID=38984431

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/312,786 Abandoned US20100015427A1 (en) 2006-12-15 2007-12-14 Structural reinforcement material, insert, and reinforced cavity comprising same
US13/438,444 Active US8636870B2 (en) 2006-12-15 2012-04-03 Structural reinforcement material, insert, and reinforced cavity comprising same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/438,444 Active US8636870B2 (en) 2006-12-15 2012-04-03 Structural reinforcement material, insert, and reinforced cavity comprising same

Country Status (9)

Country Link
US (2) US20100015427A1 (ja)
EP (2) EP1932648A1 (ja)
JP (1) JP2010513584A (ja)
KR (1) KR20090099539A (ja)
CN (1) CN101557914A (ja)
AU (1) AU2007331449B2 (ja)
BR (1) BRPI0721085A2 (ja)
RU (1) RU2435666C2 (ja)
WO (1) WO2008071792A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156443A1 (en) * 2006-07-25 2011-06-30 Zephyros, Inc. Structural reinforcements
US10106205B2 (en) 2016-07-21 2018-10-23 Zephyros, Inc. Reinforcement structure
US10173727B2 (en) 2016-07-28 2019-01-08 Zephyros, Inc. Multiple stage deformation reinforcement structure for impact absorption
US10427346B2 (en) 2014-04-30 2019-10-01 Zephyros, Inc. Extruded reinforcements
US10940896B2 (en) 2017-01-11 2021-03-09 Zephyros, Inc. Reinforcing devices
US20210221444A1 (en) * 2018-08-31 2021-07-22 Sika Technology Ag Device for reinforcing, sealing or damping a structural element
US12012149B2 (en) 2019-06-07 2024-06-18 Zephyros, Inc. Carrier to reinforce a frame of a vehicle and method of making

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2265484B1 (en) 2008-03-17 2015-09-16 Zephyros Inc. Insert with integrated fastener
EP2159109A1 (en) 2008-09-01 2010-03-03 Sika Technology AG Reinforcement with channel design
EP2159136A1 (en) * 2008-09-01 2010-03-03 Sika Technology AG Bonding with adhesive beads or plots
EP2251250A1 (en) 2009-05-05 2010-11-17 Sika Technology AG Bonding with adhesive beads or plots
US9259867B2 (en) 2010-05-21 2016-02-16 Zephyros, Inc. Method and device for application of structural materials
EP2648882A1 (en) 2010-12-08 2013-10-16 Zephyros Inc. Sealing assembly
PL2684187T3 (pl) * 2011-03-09 2015-10-30 Autoneum Man Ag Motoryzacyjny element wykładzinowy do tłumienia hałasu
EP2497700A1 (en) * 2011-03-11 2012-09-12 Sika Technology AG Reinforced Panel Structure
CN103857511B (zh) 2011-06-17 2016-01-20 泽菲罗斯公司 腔体密封组件
CA2834895A1 (en) 2011-06-21 2012-12-27 Zephyros, Inc. Integrated fastening system
KR102174628B1 (ko) 2011-08-15 2020-11-05 제피로스, 인크. 푸시-핀 공동 밀봉재
US8801079B2 (en) 2012-03-13 2014-08-12 Zephyros, Inc. Load actuated baffle
US8967327B2 (en) 2012-03-20 2015-03-03 Zephyros, Inc. Baffle assembly
GB201207481D0 (en) 2012-04-26 2012-06-13 Zephyros Inc Applying flowable materials to synthetic substrates
CN104349972B (zh) 2012-06-08 2018-02-02 泽费罗斯股份有限公司 具有可膨胀材料的阻挡件
US9490067B2 (en) 2013-11-08 2016-11-08 Cooper Technologies Company Joining dissimilar materials using an epoxy resin composition
US9815499B2 (en) * 2014-10-22 2017-11-14 Ford Global Technologies, Llc Reinforced moldable rivet assembly for a vehicle
USD751887S1 (en) 2015-01-26 2016-03-22 Zephyros, Inc. Sealer
BR112017023238B1 (pt) 2015-04-30 2023-03-28 Zephyros, Inc Artigo e método de formação de um artigo
CN109070950B (zh) * 2016-04-21 2021-07-27 泽菲罗斯有限公司 管状构件密封装置
US11565757B2 (en) 2017-04-21 2023-01-31 Sika Technology Ag Reinforcement element
EP3630585A1 (en) 2017-06-02 2020-04-08 Zephyros, Inc. Anti-flutter baffle
PL3865378T3 (pl) 2017-06-22 2024-06-24 Sika Technology Ag Podłączenie elementów nadwozia w pojazdach mechanicznych
CN110753655B (zh) 2017-06-22 2022-10-28 Sika技术股份公司 增强元件、增强的结构元件的系统以及用于增强结构元件的方法
KR102545428B1 (ko) 2017-08-07 2023-06-20 시카 테크놀러지 아게 밀봉 및 강화 구조 요소의 시스템
EP3486146B1 (de) 2017-11-15 2021-04-14 Sika Technology Ag Vorrichtung zur verstärkung und abdichtung eines strukturelementes
USD938887S1 (en) 2018-06-21 2021-12-21 Zephyros, Inc. Sealing device
KR102618225B1 (ko) 2018-08-31 2023-12-27 시카 테크놀러지 아게 구조 요소를 차폐시키기 위한 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266133A (en) * 1993-02-17 1993-11-30 Sika Corporation Dry expansible sealant and baffle composition and product
US5766719A (en) * 1994-03-14 1998-06-16 Magna Exterior Systems Gmbh Composite material
US6030701A (en) * 1993-04-15 2000-02-29 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
US6058673A (en) * 1996-05-10 2000-05-09 Henkel Corporation Internal reinforcement for hollow structural elements
US6387470B1 (en) * 1998-11-05 2002-05-14 Sika Corporation Sound deadening and structural reinforcement compositions and methods of using the same
US20070138683A1 (en) * 2005-12-15 2007-06-21 Hideki Kanie Holding jig for a foamable material

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788175B2 (ja) 1988-12-28 1995-09-27 日産自動車株式会社 車体構造部材への樹脂注入強化方法および注入樹脂のせき止め構造
FR2646950B1 (fr) * 1989-05-09 1991-08-30 Norton Procede d'isolation phonique de corps creux
CA2115888A1 (en) 1993-04-15 1994-10-16 Clayton A. George Epoxy/polyester hot melt compositions
WO1995013315A1 (en) * 1993-11-10 1995-05-18 Minnesota Mining And Manufacturing Company Melt-flowable materials and method of sealing surfaces
JP3748938B2 (ja) * 1996-04-01 2006-02-22 株式会社ネオックスラボ 中空構造物の中空部遮断方法および中空部遮断用部材
US6341467B1 (en) * 1996-05-10 2002-01-29 Henkel Corporation Internal reinforcement for hollow structural elements
US6114004A (en) 1998-01-26 2000-09-05 Cydzik; Edward A. Cavity sealing article
US6103784A (en) 1998-08-27 2000-08-15 Henkel Corporation Corrosion resistant structural foam
US6272809B1 (en) 1998-09-09 2001-08-14 Henkel Corporation Three dimensional laminate beam structure
US6305136B1 (en) * 2000-01-31 2001-10-23 Sika Corporation Reinforcing member with beam shaped carrier and thermally expansible reinforcing material
GB2375328A (en) 2001-05-08 2002-11-13 L & L Products Reinforcing element for hollow structural member
CA2472727C (en) 2002-01-22 2010-10-26 Dow Global Technologies Inc. Reinforced structural body and manufacturing method thereof
US7318873B2 (en) * 2002-03-29 2008-01-15 Zephyros, Inc. Structurally reinforced members
US7169344B2 (en) * 2002-04-26 2007-01-30 L&L Products, Inc. Method of reinforcing at least a portion of a structure
US7111899B2 (en) 2003-04-23 2006-09-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
EP1591224A1 (de) 2004-04-27 2005-11-02 Sika Technology AG Vorrichtung und Verfahren zur Schalldämpfung in Hohlräumen von Fahrzeugen
EP1679341A1 (de) 2005-01-11 2006-07-12 Sika Technology AG Schlagzähe Zusammensetzung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266133A (en) * 1993-02-17 1993-11-30 Sika Corporation Dry expansible sealant and baffle composition and product
US5373027A (en) * 1993-02-17 1994-12-13 Sika Corporation Dry expansible sealant and baffle composition and product
US6030701A (en) * 1993-04-15 2000-02-29 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
US5766719A (en) * 1994-03-14 1998-06-16 Magna Exterior Systems Gmbh Composite material
US6058673A (en) * 1996-05-10 2000-05-09 Henkel Corporation Internal reinforcement for hollow structural elements
US6387470B1 (en) * 1998-11-05 2002-05-14 Sika Corporation Sound deadening and structural reinforcement compositions and methods of using the same
US20070138683A1 (en) * 2005-12-15 2007-06-21 Hideki Kanie Holding jig for a foamable material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10589795B2 (en) * 2006-07-25 2020-03-17 Zephyros, Inc. Structural reinforcements
US8127506B2 (en) * 2006-07-25 2012-03-06 Zephyros, Inc. Structural reinforcements
US20160348367A1 (en) * 2006-07-25 2016-12-01 Zephyros, Inc. Structural reinforcements
US20110156443A1 (en) * 2006-07-25 2011-06-30 Zephyros, Inc. Structural reinforcements
US10427346B2 (en) 2014-04-30 2019-10-01 Zephyros, Inc. Extruded reinforcements
US10106205B2 (en) 2016-07-21 2018-10-23 Zephyros, Inc. Reinforcement structure
US10800462B2 (en) 2016-07-21 2020-10-13 Zephyros, Inc. Reinforcement structure
US10196097B2 (en) 2016-07-21 2019-02-05 Zephyros, Inc. Reinforcement structure
US10173727B2 (en) 2016-07-28 2019-01-08 Zephyros, Inc. Multiple stage deformation reinforcement structure for impact absorption
US10183699B2 (en) 2016-07-28 2019-01-22 Zephyros, Inc. Multiple stage deformation reinforcement structure for impact absorption
US10875579B2 (en) 2016-07-28 2020-12-29 Zephyros, Inc. Multiple stage deformation reinforcement structure for impact absorption
US11465686B2 (en) 2016-07-28 2022-10-11 Zephyros, Inc. Multiple stage deformation reinforcement structure for impact absorption
US11565755B2 (en) 2016-07-28 2023-01-31 Zephyros, Inc. Multiple stage deformation reinforcement structure for impact absorption
US10940896B2 (en) 2017-01-11 2021-03-09 Zephyros, Inc. Reinforcing devices
US20210221444A1 (en) * 2018-08-31 2021-07-22 Sika Technology Ag Device for reinforcing, sealing or damping a structural element
US12012149B2 (en) 2019-06-07 2024-06-18 Zephyros, Inc. Carrier to reinforce a frame of a vehicle and method of making

Also Published As

Publication number Publication date
EP1932648A1 (en) 2008-06-18
US20120207986A1 (en) 2012-08-16
CN101557914A (zh) 2009-10-14
BRPI0721085A2 (pt) 2014-02-25
JP2010513584A (ja) 2010-04-30
RU2435666C2 (ru) 2011-12-10
WO2008071792A1 (en) 2008-06-19
RU2009127117A (ru) 2011-01-20
US8636870B2 (en) 2014-01-28
EP2121270A1 (en) 2009-11-25
EP2121270B2 (en) 2019-02-06
AU2007331449B2 (en) 2012-10-25
KR20090099539A (ko) 2009-09-22
EP2121270B1 (en) 2014-06-18
AU2007331449A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US8636870B2 (en) Structural reinforcement material, insert, and reinforced cavity comprising same
US7114763B2 (en) Automotive rail/frame energy management system
US7077460B2 (en) Reinforcement system utilizing a hollow carrier
CN100467243C (zh) 加固的结构主体及其制造方法
US20120186721A1 (en) foamed inserts
RU2430852C2 (ru) Усовершенствованный усиленный пустотелый профиль
US11878738B2 (en) Reinforcement devices
WO2009049886A1 (en) Multifunctional vehicle components
US9427902B2 (en) Cavity filling
CA2607839C (en) Method for reinforcing structural members and reinforcement system utilizing a hollow carrier
GB2460040A (en) Fastening component with integral attachment

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIKA TECHNOLOGY AG,SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BELPAIRE, VINCENT;MELLANO, DOMINIQUE;BLANK, NORMAN;AND OTHERS;SIGNING DATES FROM 20090615 TO 20090618;REEL/FRAME:024135/0817

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION