US20090321916A1 - Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package - Google Patents
Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package Download PDFInfo
- Publication number
- US20090321916A1 US20090321916A1 US12/484,860 US48486009A US2009321916A1 US 20090321916 A1 US20090321916 A1 US 20090321916A1 US 48486009 A US48486009 A US 48486009A US 2009321916 A1 US2009321916 A1 US 2009321916A1
- Authority
- US
- United States
- Prior art keywords
- hole
- photosensitive material
- conductive
- silicon substrate
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 125
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 125
- 239000010703 silicon Substances 0.000 claims abstract description 125
- 239000000463 material Substances 0.000 claims abstract description 100
- 239000000758 substrate Substances 0.000 claims abstract description 71
- 239000004020 conductor Substances 0.000 claims abstract description 53
- 229910000679 solder Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 2
- 230000005070 ripening Effects 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims 2
- 238000000059 patterning Methods 0.000 claims 2
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/486—Via connections through the substrate with or without pins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/147—Semiconductor insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
Definitions
- the invention relates in general to a semiconductor structure, a method for manufacturing a semiconductor structure and a semiconductor package and more particularly to a semiconductor structure using through silicon via technology, a method for manufacturing a semiconductor structure and a semiconductor package.
- FIGS. 1A ⁇ 1G perspectives of a method for manufacturing a semiconductor structure 900 using through silicon via technology are shown.
- the manufacturing method includes the following steps. Firstly, referring to FIG. 1A , a silicon wafer 910 having a first surface 910 a and a second surface 910 b is provided. Next, referring to FIG. 1B , an indent 910 c is formed on the first surface 910 a by dry etching. Then, referring to FIG.
- an insulating layer 920 made from silicon nitride material for example is formed by chemical vapor deposition (CVD) technology to cover the first surface 910 a and the inner wall of the indent 910 c.
- CVD chemical vapor deposition
- a copper material 940 is electroplated in the indent 910 c.
- a conductive pad 950 is formed on the first surface 910 a and covers the indent 910 c.
- the second surface 910 b is polished until the copper material 940 filled in the indent 910 c is exposed.
- another conductive pad 960 is formed on the second surface 910 b and covers the indent 910 c.
- a semiconductor structure 900 is formed.
- the first surface 910 a and the second surface 910 b of the silicon wafer 910 can be contacted with each other through the conductive pad 950 , the copper material 940 and the conductive pad 960 .
- the copper material 940 and the first surface 910 a are both protected by the insulating layer 920 .
- the insulating layer 920 is formed by CVD technology. As the CVD technology equipment is expensive, more manufacturing costs are incurred.
- the copper material 940 is exposed by way of polishing the second surface 910 b, not only incurring more manufacturing process and more time, but also easily damaging the silicon wafer 910 .
- the through silicon via technology of the silicon wafer 910 that need to be resolved.
- the invention is directed to a semiconductor structure and a method for manufacturing a semiconductor structure and a semiconductor package.
- the photosensitive material is used as an insulating layer
- the method for manufacturing the semiconductor structure does not require the CVD process nor require the step of grinding the silicon substrate, hence largely reducing manufacturing cost and increasing product yield rate.
- a method for manufacturing a semiconductor structure includes the following steps. Firstly, a silicon substrate is provided. Next, a part of the silicon substrate is removed to form a ring hole and a silicon pillar surrounded by the ring hole. Then, a photosensitive material is disposed in the ring hole, wherein the photosensitive material is insulating. After that, the silicon pillar is removed, such that the ring hole forms a through hole and the photosensitive material covers a lateral wall of the through hole. Lastly, a conductive material is disposed in the through hole, wherein an outer surface of the conductive material is surrounded by the photosensitive material.
- a semiconductor structure including a silicon substrate, a photosensitive material and a conductive material.
- the silicon substrate has a through hole.
- the photosensitive material covers a lateral wall of the through hole, wherein the photosensitive material is insulating.
- the conductive material is disposed in the through hole, wherein an outer surface of the conductive material is surrounded by the photosensitive material.
- a semiconductor package comprises a package substrate, a silicon interposer and a chip.
- the silicon interposer is disposed above the package substrate and comprises a silicon substrate, a photosensitive material and a conductive material.
- the silicon substrate has a through hole.
- the photosensitive material covers a lateral wall of the through hole.
- the photosensitive material is insulating.
- the conductive material is disposed in the through hole and an outer surface of the conductive material is surrounded by the photosensitive material.
- the chip is disposed above the silicon interposer.
- FIGS. 1A ⁇ 1G are perspectives of a method for manufacturing a semiconductor structure using through silicon via technology
- FIG. 2 shows a flowchart of a method for manufacturing a semiconductor structure according to the invention
- FIGS. 3A ⁇ 3K are perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention.
- FIG. 4 shows another flowchart of a method for manufacturing a semiconductor structure according to the invention
- FIGS. 5A ⁇ 5K are other perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention.
- FIGS. 6A ⁇ 6K are yet other perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention.
- FIG. 7A ⁇ 7O are further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention.
- FIG. 8 shows a perspective of a second surface of a silicon substrate of FIG. 7C ;
- FIG. 9 shows a perspective of a second surface of a silicon substrate of FIG. 7I ;
- FIGS. 10A ⁇ 10C are further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention.
- FIG. 11 shows a semiconductor package
- the method begins at step S 101 as indicated in FIG. 3A , a silicon substrate 110 is provided.
- a photoresist layer 700 is disposed on the silicon substrate 110 , wherein the silicon substrate 110 may be a silicon wafer having an internal circuit or a dummy silicon wafer having no circuit and the photoresist layer 700 is patterned.
- step S 102 a part of the silicon substrate 110 is removed to form a ring hole 110 c and a silicon pillar 110 d, and as indicated in FIG. 3C , the photoresist layer 700 (shown in FIG. 3B ) is removed.
- the patterned photoresist layer 700 is used as a mask to etch the silicon substrate 110 to form the ring hole 110 c and the silicon pillar 110 d, wherein the ring hole 110 c surrounds the silicon pillar 110 d and the ring hole 110 c may or may not pass through the silicon substrate 110 .
- the ring hole 110 c does not pass through the silicon substrate 110 but such exemplification is not for limiting the invention.
- a photosensitive material 130 is disposed in the ring hole 110 c, wherein the photosensitive material 130 is insulating and the thickness of the photosensitive material is 3-10 ⁇ m.
- the photosensitive material 130 is patterned such that the photosensitive material 130 has an opening 130 a corresponding to the silicon pillar 110 d.
- step S 104 the patterned photosensitive material 130 is used as a mask and the silicon pillar 110 d (shown in FIG. 3E ) is removed, such that the ring hole 110 c (shown in FIG. 3E ) forms a through hole 110 e and the photosensitive material 130 covers a lateral wall 110 h of the through hole 110 e.
- a conductive material 160 (shown in FIG. 3K ) is disposed in the through hole 110 e, wherein the conductive material 160 is surrounded by the photosensitive material 130 .
- a seed layer 131 is disposed on the photosensitive material 130 and the bottom surface of the through hole 110 e.
- a photoresist layer 132 having an opening 132 a is disposed on the seed layer 131 .
- the conductive material 160 is filled in the through hole 110 e.
- the bottom part of the conductive material 160 forms a conductive pillar 160 b, and the top part of the conductive material 160 forms a second conductive wiring 160 a.
- the second conductive wiring 160 a can be used as a redistribution layer (RDL).
- RDL redistribution layer
- the conductive material 160 may fill the entire through hole 110 e or only form a thin film on the photosensitive material 130 .
- the conductive material 160 fills the entire through hole 110 e as an exemplification.
- the method for manufacturing a semiconductor structure according to the invention largely reduces manufacturing cost and increases product yield rate.
- FIG. 4 another flowchart of a method for manufacturing a semiconductor structure according to the invention is shown.
- the manufacturing method of FIG. 4 is a practical embodiment of the manufacturing method of FIG. 2 .
- the method begins at step S 201 , a silicon substrate is provided.
- the method proceeds to step S 202 , a part of the silicon substrate is removed to form a ring hole and a silicon pillar surrounded by the ring hole.
- the method proceeds to step S 203 , a photosensitive material is disposed in the ring hole and the photosensitive material covers the silicon substrate at the same time, wherein the photosensitive material is insulating.
- the method proceeds to step S 204 , the photosensitive material is patterned for exposing the silicon pillar and ripening the photosensitive material.
- step S 205 the silicon pillar is removed such that the ring hole forms a through hole and the photosensitive material covers a lateral wall of the through hole and the silicon substrate to form a continuous surface.
- step S 206 a conductive material is disposed in the through hole and the silicon substrate, and the conductive material is patterned, wherein part of the conductive material in the through hole is surrounded by the photosensitive material, and part of the conductive material disposed on the silicon substrate is located on the photosensitive material.
- FIGS. 5A ⁇ 5K are further disclosed to elaborate the implementations.
- a silicon substrate 210 is provided.
- a photoresist layer 702 is disposed on the silicon substrate 210 , wherein the silicon substrate 210 may be a silicon wafer having an internal circuit or a dummy silicon wafer having no circuit and the photoresist layer 702 is patterned.
- the photoresist layer 702 (shown in FIG. 5B ) is removed.
- the patterned photoresist layer 702 is used as a mask to etch the silicon substrate 210 to form the ring hole 210 c and the silicon pillar 210 d, wherein the ring hole 210 c surrounds the silicon pillar 210 d and the ring hole 210 c may or may not pass through the silicon substrate 210 .
- the ring hole 210 c does not pass through the silicon substrate 210 but such exemplification is not for limiting the invention.
- a photosensitive material 230 is disposed in the ring hole 210 c, wherein the photosensitive material 230 is insulating and the thickness of the photosensitive material is 3-10 ⁇ m.
- the photosensitive material 230 is patterned such that the photosensitive material 230 has an opening 230 a corresponding to the silicon pillar 210 d.
- the patterned photosensitive material 230 is used as a mask and the silicon pillar 210 d (shown in FIG. 5E ) is removed, such that the ring hole 210 c (shown in FIG. 5E ) forms a through hole 210 e and the photosensitive material 230 covers a lateral wall 210 h of the through hole 210 e.
- another patterned photoresist layer 600 is formed on the photosensitive material 230 , wherein the patterned photoresist layer 600 has an opening 600 a corresponding to the through hole 210 e.
- the patterned photoresist layer 600 is used as a mask, and a conductive material 260 is disposed in the through hole 210 e through the opening 600 a, wherein the conductive material 260 is surrounded by the photosensitive material 230 .
- the conductive material 260 which is exemplified as a thin film disposed on the photosensitive material 230 , does not fill up the through hole 210 e.
- the photoresist layer 600 (shown in FIG. 5H ) is removed.
- a photosensitive material 500 is disposed on the conductive material 260 and the photosensitive material 230 .
- the photosensitive material 500 and the photosensitive material 230 are both insulating, but such exemplification is not for limiting the invention.
- the photosensitive material 500 is etched to form an opening 500 a.
- the opening 500 a exposes part of the conductive material 260 .
- part of the conductive material 260 can be use as a redistribution layer (RDL).
- RDL redistribution layer
- FIG. 6A ⁇ 6K yet other perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention are shown.
- a silicon substrate 310 has an internal wire 320 is provided.
- the surface of the silicon substrate 310 is etched to form a ring hole 310 c and a silicon pillar 310 d.
- the ring hole 310 c exposes the internal wire 320 .
- the internal wire 320 is exposed after the silicon pillar 310 d is removed.
- a photosensitive material 330 covers a lateral wall 310 h of the through hole 310 e.
- a conductive material 360 is disposed in the through hole 310 e and on the photosensitive material 330 by taking a photoresist layer 603 as a mask.
- the photoresist layer 603 (shown in FIG. 6H ) is removed and a photosensitive material 503 having an opening 503 a is disposed on the conductive material 360 , such that the conductive material 360 can be use as a redistribution layer (RDL).
- RDL redistribution layer
- FIG. 7A ⁇ 7O further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention are shown.
- a silicon substrate 410 having a first surface 410 a and a second surface 410 b is provided.
- the silicon substrate 410 is a silicon wafer for example.
- a first conductive wiring 420 is formed on the first surface 410 a of the silicon substrate 410 .
- a part of the silicon substrate 410 is removed to form a ring hole 410 c and a silicon pillar 410 d.
- the silicon substrate 410 is etched from the second surface 410 b to the first surface 410 a and forms the ring hole 410 c.
- the ring hole 410 c passes through the first surface 410 a of the silicon substrate 410 , and the first conductive wiring 420 is disposed at a pre-determined position for the ring hole 410 c, so that one end of the ring hole 410 c is sealed by the first conductive wiring 420 .
- FIG. 8 a top view of a second surface 410 b of the silicon substrate 410 of FIG. 7C is shown.
- the silicon pillar 410 d is the remained structure after the ring hole 410 c is formed, wherein the ring hole 410 c surrounds the silicon pillar 410 d.
- the ring hole 410 c has an inner lateral wall 410 f and an outer lateral wall 410 g, wherein the inner lateral wall 410 f is the outer surface of the silicon pillar 410 d.
- a film type photosensitive material 430 is disposed on a second surface 410 b of the silicon substrate 410 , wherein the photosensitive material 430 covers the ring hole 410 c.
- the film type photosensitive material 430 is melted by way of low temperature baking (for example, 30 ⁇ 50° C.) such that part of the melted photosensitive material 430 fills the ring hole 410 c.
- low temperature baking for example, 30 ⁇ 50° C.
- the photosensitive material 430 is ripened by way of high temperature baking (for example, 80° C.).
- a mask 800 is provided.
- the mask 800 has a mask opening 800 a.
- the mask opening 800 a corresponds to the location of the silicon pillar 410 d.
- the diameter D 1 of the mask opening 800 a is greater than or equal to the diameter D 2 of the inner lateral wall 410 f but smaller than the diameter D 3 of the outer lateral wall 410 g.
- the diameter D 1 of the mask opening 800 a satisfies the following expression:
- the diameter D 1 of the mask opening 800 a is exactly equal to the diameter D 2 of the inner lateral wall 410 f.
- the exposed photosensitive material 430 is patterned, such that the photosensitive material 430 forms an opening 430 a, wherein the size and the location of the opening 430 a are determined according to the size and the location of the mask opening 800 a.
- the mask opening 800 a of the present embodiment of the invention corresponds to the silicon pillar 410 d and is equal to the diameter D 2 of the inner lateral wall 410 f
- the opening 430 a also corresponds to the silicon pillar 410 d and the diameter D 4 of the opening 430 a is also equal to the diameter D 2 of the inner lateral wall 410 f.
- the photosensitive material 430 having the opening 430 a is used as a mask to etch the silicon pillar 410 d.
- the opening 430 a corresponds to the silicon pillar 410 d and the diameter D 4 of the opening 430 a is equal to the diameter D 2 of the inner lateral wall 410 f, the silicon pillar 410 d can be completely removed.
- FIG. 9 shows a perspective of a second surface 410 b of a silicon substrate 410 of FIG. 7I .
- the silicon substrate 410 forms a through hole 410 e passing through the first surface 410 a and the second surface 410 b, wherein one end of the through hole 110 e is sealed by the first conductive wiring 120 but the other end of the through hole 410 e is open.
- a seed layer 431 is disposed on the photosensitive material 430 and the bottom surface of the through hole 410 e.
- a photosensensitive layer 432 having an opening 432 a is disposed on the seed layer 431 .
- a conductive material 460 is filled in the through hole 410 e.
- the bottom part of the conductive material 460 forms a conductive pillar 460 b, and the top part of the conductive material 460 forms a second conductive wiring 460 a.
- the photosensensitive layer 432 shown in FIG. 7L
- part of the seed layer 431 is etched.
- the second conductive wiring 460 a can be used as a redistribution layer (RDL).
- the conductive material 460 is disposed in the through hole 410 e by way of electroplating a metal.
- the metal is selected form copper (Cu).
- a conductive bump 470 is implanted on the conductive material 460 to form a conductive point.
- the semiconductor structure 400 manufactured according to the present embodiment of the invention includes the silicon substrate 410 , the photosensitive material 430 , the conductive material 460 , the first conductive wiring 420 and the conductive bump 470 .
- the silicon substrate 410 has the through hole 410 e whose two ends are respectively sealed by the first conductive wiring 420 and the conductive bump 470 .
- the conductive material 460 is disposed in the through hole 410 e.
- the photosensitive material 430 covers a lateral wall 410 h of the through hole 410 e and the second surface 410 b. Thus, the outer surface 460 c of the conductive material 460 and part of the second surface 410 b are completely covered by the photosensitive material 430 .
- FIGS. 10A ⁇ 10C further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention are shown.
- a silicon substrate 910 having a through hole 910 e is provided.
- a first conductive wiring 920 is disposed on the first surface 910 a and covers the through hole 910 e.
- a photosensitive material 930 is cover a lateral wall 910 h of the through hole 910 e and a second surface 910 b.
- the solder paste 960 is disposed in the through hole 910 e. As indicated in FIG. 10C , the solder paste 960 is reflow to form a conductive pillar 970 b and a second conductive wiring 970 a. Wherein the second conductive wiring 970 a can be used as a redistribution layer (RDL).
- RDL redistribution layer
- the semiconductor 1000 includes a package substrate 497 and a silicon interposer 498 and a chip 499 .
- the silicon interposer 498 is exemplified as the semiconductor structure 400 of FIG. 7O .
- the photosensitive material used as an insulating layer is disposed in the through hole and on the second surface by simple procedures without employing expensive CVD equipment, largely reducing manufacturing cost.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
A semiconductor structure, a method for manufacturing a semiconductor structure and a semiconductor package are provided. The method for manufacturing a semiconductor structure includes the following steps. Firstly, a silicon substrate is provided. Next, a part of the silicon substrate is removed to form a ring hole and a silicon pillar surrounded by the silicon pillar. Then, a photosensitive material is disposed in the ring hole, wherein the photosensitive material is insulating. After that, the silicon pillar is removed, such that the ring hole forms a through hole and the photosensitive material covers a lateral wall of the through hole. Lastly, the conductive material is disposed in the through hole, wherein the outer surface of the conductive material is surrounded by the photosensitive material.
Description
- This application claims the benefit of Taiwan application Serial No. 97124100, filed Jun. 27, 2008, the subject matter of which is incorporated herein by reference.
- 1. Field of the Invention
- The invention relates in general to a semiconductor structure, a method for manufacturing a semiconductor structure and a semiconductor package and more particularly to a semiconductor structure using through silicon via technology, a method for manufacturing a semiconductor structure and a semiconductor package.
- 2. Description of the Related Art
- As electronic products are directed towards slimness, light weight and compactness, the semiconductor structure using through silicon via (TSV) technology has become a mainstream trend. Referring to
FIGS. 1A˜1G , perspectives of a method for manufacturing asemiconductor structure 900 using through silicon via technology are shown. The manufacturing method includes the following steps. Firstly, referring toFIG. 1A , asilicon wafer 910 having afirst surface 910 a and asecond surface 910 b is provided. Next, referring toFIG. 1B , anindent 910 c is formed on thefirst surface 910 a by dry etching. Then, referring toFIG. 1C , aninsulating layer 920 made from silicon nitride material for example is formed by chemical vapor deposition (CVD) technology to cover thefirst surface 910 a and the inner wall of theindent 910 c. After that, referring toFIG. 1D , acopper material 940 is electroplated in theindent 910 c. Then, referring toFIG. 1E , aconductive pad 950 is formed on thefirst surface 910 a and covers theindent 910 c. Afterwards, referring toFIG. 1F , thesecond surface 910 b is polished until thecopper material 940 filled in theindent 910 c is exposed. Lastly, referring toFIG. 1G , anotherconductive pad 960 is formed on thesecond surface 910 b and covers theindent 910 c. Thus, asemiconductor structure 900 is formed. - The
first surface 910 a and thesecond surface 910 b of thesilicon wafer 910 can be contacted with each other through theconductive pad 950, thecopper material 940 and theconductive pad 960. Thecopper material 940 and thefirst surface 910 a are both protected by theinsulating layer 920. - However, according to the conventional method for manufacturing the
semiconductor structure 900, theinsulating layer 920 is formed by CVD technology. As the CVD technology equipment is expensive, more manufacturing costs are incurred. - Furthermore, according to the conventional method for manufacturing the
semiconductor structure 900, thecopper material 940 is exposed by way of polishing thesecond surface 910 b, not only incurring more manufacturing process and more time, but also easily damaging thesilicon wafer 910. Thus, there are many bottleneck technologies in the through silicon via technology of thesilicon wafer 910 that need to be resolved. - The invention is directed to a semiconductor structure and a method for manufacturing a semiconductor structure and a semiconductor package. As the photosensitive material is used as an insulating layer, the method for manufacturing the semiconductor structure does not require the CVD process nor require the step of grinding the silicon substrate, hence largely reducing manufacturing cost and increasing product yield rate.
- According to a first aspect of the present invention, a method for manufacturing a semiconductor structure is provided. The manufacturing method includes the following steps. Firstly, a silicon substrate is provided. Next, a part of the silicon substrate is removed to form a ring hole and a silicon pillar surrounded by the ring hole. Then, a photosensitive material is disposed in the ring hole, wherein the photosensitive material is insulating. After that, the silicon pillar is removed, such that the ring hole forms a through hole and the photosensitive material covers a lateral wall of the through hole. Lastly, a conductive material is disposed in the through hole, wherein an outer surface of the conductive material is surrounded by the photosensitive material.
- According to a second aspect of the present invention, a semiconductor structure including a silicon substrate, a photosensitive material and a conductive material is provided. The silicon substrate has a through hole. The photosensitive material covers a lateral wall of the through hole, wherein the photosensitive material is insulating. The conductive material is disposed in the through hole, wherein an outer surface of the conductive material is surrounded by the photosensitive material.
- According to a third aspect of the present invention, a semiconductor package is provided. The semiconductor package comprises a package substrate, a silicon interposer and a chip. The silicon interposer is disposed above the package substrate and comprises a silicon substrate, a photosensitive material and a conductive material. The silicon substrate has a through hole. The photosensitive material covers a lateral wall of the through hole. The photosensitive material is insulating. The conductive material is disposed in the through hole and an outer surface of the conductive material is surrounded by the photosensitive material. The chip is disposed above the silicon interposer.
- The invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
-
FIGS. 1A˜1G (Prior Art) are perspectives of a method for manufacturing a semiconductor structure using through silicon via technology; -
FIG. 2 shows a flowchart of a method for manufacturing a semiconductor structure according to the invention; -
FIGS. 3A˜3K are perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention; -
FIG. 4 shows another flowchart of a method for manufacturing a semiconductor structure according to the invention; -
FIGS. 5A˜5K are other perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention; -
FIGS. 6A˜6K are yet other perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention; -
FIG. 7A˜7O are further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention; -
FIG. 8 shows a perspective of a second surface of a silicon substrate ofFIG. 7C ; -
FIG. 9 shows a perspective of a second surface of a silicon substrate ofFIG. 7I ; -
FIGS. 10A˜10C are further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention; and -
FIG. 11 shows a semiconductor package. - The invention is elaborated in preferred embodiments disclosed below. These embodiments are for exemplification purpose not for limiting the scope of protection of the invention. Also, secondary elements are omitted in the preferred embodiments below for highlighting the technical features of the invention.
- Referring to
FIG. 2 and at the same time comparingFIG. 2 toFIGS. 3A˜3K . Firstly, the method begins at step S101 as indicated inFIG. 3A , asilicon substrate 110 is provided. To be more precisely, aphotoresist layer 700 is disposed on thesilicon substrate 110, wherein thesilicon substrate 110 may be a silicon wafer having an internal circuit or a dummy silicon wafer having no circuit and thephotoresist layer 700 is patterned. - Next, the method proceeds to step S102 as indicated in
FIG. 3B , a part of thesilicon substrate 110 is removed to form aring hole 110 c and asilicon pillar 110 d, and as indicated inFIG. 3C , the photoresist layer 700 (shown inFIG. 3B ) is removed. To be more precisely, the patternedphotoresist layer 700 is used as a mask to etch thesilicon substrate 110 to form thering hole 110 c and thesilicon pillar 110 d, wherein thering hole 110 c surrounds thesilicon pillar 110 d and thering hole 110 c may or may not pass through thesilicon substrate 110. In the present embodiment of the invention, thering hole 110 c does not pass through thesilicon substrate 110 but such exemplification is not for limiting the invention. - Then, the method proceeds to step S103 as indicated in
FIG. 3D , aphotosensitive material 130 is disposed in thering hole 110 c, wherein thephotosensitive material 130 is insulating and the thickness of the photosensitive material is 3-10 μm. As indicated inFIG. 3E , thephotosensitive material 130 is patterned such that thephotosensitive material 130 has anopening 130 a corresponding to thesilicon pillar 110 d. - After that, the method proceeds to step S104 as indicated in FIG. 3F, the patterned
photosensitive material 130 is used as a mask and thesilicon pillar 110 d (shown inFIG. 3E ) is removed, such that thering hole 110 c (shown inFIG. 3E ) forms a throughhole 110 e and thephotosensitive material 130 covers alateral wall 110 h of the throughhole 110 e. - Lastly, the method proceeds to step S105 as indicated in
FIGS. 3G˜3K , a conductive material 160 (shown inFIG. 3K ) is disposed in the throughhole 110 e, wherein theconductive material 160 is surrounded by thephotosensitive material 130. Referring toFIG. 3G , aseed layer 131 is disposed on thephotosensitive material 130 and the bottom surface of the throughhole 110 e. Next, referring toFIG. 3H , aphotoresist layer 132 having an opening 132 a is disposed on theseed layer 131. After that, referring toFIG. 3I , theconductive material 160 is filled in the throughhole 110 e. Wherein, the bottom part of theconductive material 160 forms aconductive pillar 160 b, and the top part of theconductive material 160 forms a secondconductive wiring 160 a. Wherein the secondconductive wiring 160 a can be used as a redistribution layer (RDL). Then, referring toFIG. 3J , the photoresist layer 132 (shown inFIG. 3I ) is removed. Afterwards, referring toFIG. 3K , part of theseed layer 131 is removed. - To be more precisely, the
conductive material 160 may fill the entire throughhole 110 e or only form a thin film on thephotosensitive material 130. In the present embodiment of the invention, theconductive material 160 fills the entire throughhole 110 e as an exemplification. - According to the above arrangement, there is no need to employ expensive CVD equipment or polish the silicon substrate, hence greatly simplifying manufacturing process and avoiding the silicon substrate being damaged. Thus, the method for manufacturing a semiconductor structure according to the invention largely reduces manufacturing cost and increases product yield rate.
- Also, referring to
FIG. 4 , another flowchart of a method for manufacturing a semiconductor structure according to the invention is shown. The manufacturing method ofFIG. 4 is a practical embodiment of the manufacturing method ofFIG. 2 . - Firstly, the method begins at step S201, a silicon substrate is provided. Next, the method proceeds to step S202, a part of the silicon substrate is removed to form a ring hole and a silicon pillar surrounded by the ring hole. Then, the method proceeds to step S203, a photosensitive material is disposed in the ring hole and the photosensitive material covers the silicon substrate at the same time, wherein the photosensitive material is insulating. After that, the method proceeds to step S204, the photosensitive material is patterned for exposing the silicon pillar and ripening the photosensitive material. Afterwards, the method proceeds to step S205, the silicon pillar is removed such that the ring hole forms a through hole and the photosensitive material covers a lateral wall of the through hole and the silicon substrate to form a continuous surface. Lastly, the method proceeds to step S206, a conductive material is disposed in the through hole and the silicon substrate, and the conductive material is patterned, wherein part of the conductive material in the through hole is surrounded by the photosensitive material, and part of the conductive material disposed on the silicon substrate is located on the photosensitive material.
- To further elaborate the flowchart of
FIG. 2 ,FIGS. 5A˜5K are further disclosed to elaborate the implementations. Firstly, referring toFIG. 5A , asilicon substrate 210 is provided. To be more precisely, aphotoresist layer 702 is disposed on thesilicon substrate 210, wherein thesilicon substrate 210 may be a silicon wafer having an internal circuit or a dummy silicon wafer having no circuit and thephotoresist layer 702 is patterned. - Next, referring to
FIG. 5B , a part of thesilicon substrate 210 is removed to form aring hole 210 c and asilicon pillar 210 d, and as indicated inFIG. 5C , the photoresist layer 702 (shown inFIG. 5B ) is removed. To be more precisely, the patternedphotoresist layer 702 is used as a mask to etch thesilicon substrate 210 to form thering hole 210 c and thesilicon pillar 210 d, wherein thering hole 210 c surrounds thesilicon pillar 210 d and thering hole 210 c may or may not pass through thesilicon substrate 210. In the present embodiment of the invention, thering hole 210 c does not pass through thesilicon substrate 210 but such exemplification is not for limiting the invention. - Then, referring to
FIG. 5D , aphotosensitive material 230 is disposed in thering hole 210 c, wherein thephotosensitive material 230 is insulating and the thickness of the photosensitive material is 3-10 μm. As indicated inFIG. 5E , thephotosensitive material 230 is patterned such that thephotosensitive material 230 has anopening 230 a corresponding to thesilicon pillar 210 d. - After that, referring to
FIG. 5F , the patternedphotosensitive material 230 is used as a mask and thesilicon pillar 210 d (shown inFIG. 5E ) is removed, such that thering hole 210 c (shown inFIG. 5E ) forms a throughhole 210 e and thephotosensitive material 230 covers a lateral wall 210 h of the throughhole 210 e. - Next, referring to
FIG. 5G , another patternedphotoresist layer 600 is formed on thephotosensitive material 230, wherein the patternedphotoresist layer 600 has anopening 600 a corresponding to the throughhole 210 e. - Next, as indicated in
FIG. 5H , the patternedphotoresist layer 600 is used as a mask, and aconductive material 260 is disposed in the throughhole 210 e through the opening 600 a, wherein theconductive material 260 is surrounded by thephotosensitive material 230. In the present embodiment of the invention, theconductive material 260, which is exemplified as a thin film disposed on thephotosensitive material 230, does not fill up the throughhole 210 e. - Then, as indicated in
FIG. 5I , the photoresist layer 600 (shown inFIG. 5H ) is removed. - After that, as indicated in
FIG. 5J , aphotosensitive material 500 is disposed on theconductive material 260 and thephotosensitive material 230. Thephotosensitive material 500 and thephotosensitive material 230 are both insulating, but such exemplification is not for limiting the invention. - Next, referring to
FIG. 5K , thephotosensitive material 500 is etched to form anopening 500 a. The opening 500 a exposes part of theconductive material 260. Wherein part of theconductive material 260 can be use as a redistribution layer (RDL). - Furthermore, another embodiment based on the concepts of
FIG. 2 is provided. Referring toFIG. 6A˜6K , yet other perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention are shown. - In
FIG. 6A , asilicon substrate 310 has aninternal wire 320 is provided. Then, inFIG. 6B , the surface of thesilicon substrate 310 is etched to form aring hole 310 c and asilicon pillar 310 d. Wherein thering hole 310 c exposes theinternal wire 320. Next, referring toFIGS. 6C˜6F , theinternal wire 320 is exposed after thesilicon pillar 310 d is removed. Wherein aphotosensitive material 330 covers alateral wall 310 h of the throughhole 310 e. - Next, referring to
FIGS. 6G˜6H , aconductive material 360 is disposed in the throughhole 310 e and on thephotosensitive material 330 by taking aphotoresist layer 603 as a mask. - Then, referring to
FIGS. 6I˜6K , the photoresist layer 603 (shown inFIG. 6H ) is removed and aphotosensitive material 503 having an opening 503 a is disposed on theconductive material 360, such that theconductive material 360 can be use as a redistribution layer (RDL). - Besides, another embodiment based on the concepts of
FIG. 2 is also provided. Referring toFIG. 7A˜7O , further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention are shown. - In
FIG. 7A , asilicon substrate 410 having afirst surface 410 a and asecond surface 410 b is provided. Thesilicon substrate 410 is a silicon wafer for example. - In
FIG. 7B , a firstconductive wiring 420 is formed on thefirst surface 410 a of thesilicon substrate 410. - In
FIG. 7C , a part of thesilicon substrate 410 is removed to form aring hole 410 c and asilicon pillar 410 d. In the present embodiment, thesilicon substrate 410 is etched from thesecond surface 410 b to thefirst surface 410 a and forms thering hole 410 c. Thering hole 410 c passes through thefirst surface 410 a of thesilicon substrate 410, and the firstconductive wiring 420 is disposed at a pre-determined position for thering hole 410 c, so that one end of thering hole 410 c is sealed by the firstconductive wiring 420. - Referring to
FIG. 8 , a top view of asecond surface 410 b of thesilicon substrate 410 ofFIG. 7C is shown. Thesilicon pillar 410 d is the remained structure after thering hole 410 c is formed, wherein thering hole 410 c surrounds thesilicon pillar 410 d. Thering hole 410 c has an innerlateral wall 410 f and an outerlateral wall 410 g, wherein the innerlateral wall 410 f is the outer surface of thesilicon pillar 410 d. - Next, as indicated in
FIG. 7D , a film typephotosensitive material 430 is disposed on asecond surface 410 b of thesilicon substrate 410, wherein thephotosensitive material 430 covers thering hole 410 c. - As indicated in
FIG. 7E , the film typephotosensitive material 430 is melted by way of low temperature baking (for example, 30˜50° C.) such that part of the meltedphotosensitive material 430 fills thering hole 410 c. - As indicated in
FIG. 7F , thephotosensitive material 430 is ripened by way of high temperature baking (for example, 80° C.). - As indicated in
FIG. 7G , amask 800 is provided. Themask 800 has a mask opening 800 a. Themask opening 800 a corresponds to the location of thesilicon pillar 410 d. Also, referring toFIG. 7G andFIG. 8 , the diameter D1 of the mask opening 800 a is greater than or equal to the diameter D2 of the innerlateral wall 410 f but smaller than the diameter D3 of the outerlateral wall 410 g. To be more precisely, the diameter D1 of the mask opening 800 a satisfies the following expression: -
D2≦D1<D3 (1) - In the present embodiment of the invention, the diameter D1 of the mask opening 800 a is exactly equal to the diameter D2 of the inner
lateral wall 410 f. - Then, as indicated in
FIG. 7H , the exposedphotosensitive material 430 is patterned, such that thephotosensitive material 430 forms anopening 430 a, wherein the size and the location of the opening 430 a are determined according to the size and the location of the mask opening 800 a. As the mask opening 800 a of the present embodiment of the invention corresponds to thesilicon pillar 410 d and is equal to the diameter D2 of the innerlateral wall 410 f, the opening 430 a also corresponds to thesilicon pillar 410 d and the diameter D4 of the opening 430 a is also equal to the diameter D2 of the innerlateral wall 410 f. - As indicated in
FIGS. 7H-7I , thephotosensitive material 430 having the opening 430 a is used as a mask to etch thesilicon pillar 410 d. As theopening 430 a corresponds to thesilicon pillar 410 d and the diameter D4 of the opening 430 a is equal to the diameter D2 of the innerlateral wall 410 f, thesilicon pillar 410 d can be completely removed. Meanwhile, referring toFIG. 7I andFIG. 9 .FIG. 9 shows a perspective of asecond surface 410 b of asilicon substrate 410 ofFIG. 7I . Thesilicon substrate 410 forms a throughhole 410 e passing through thefirst surface 410 a and thesecond surface 410 b, wherein one end of the throughhole 110 e is sealed by the first conductive wiring 120 but the other end of the throughhole 410 e is open. - Referring to
FIG. 7J , aseed layer 431 is disposed on thephotosensitive material 430 and the bottom surface of the throughhole 410 e. Next, referring toFIG. 7K , aphotosensensitive layer 432 having an opening 432 a is disposed on theseed layer 431. After that, referring toFIG. 7L , aconductive material 460 is filled in the throughhole 410 e. Wherein, the bottom part of theconductive material 460 forms aconductive pillar 460 b, and the top part of theconductive material 460 forms a secondconductive wiring 460 a. Then, referring toFIG. 7M , the photosensensitive layer 432 (shown inFIG. 7L ) is removed. Afterwards, referring toFIG. 7N , part of theseed layer 431 is etched. Wherein the secondconductive wiring 460 a can be used as a redistribution layer (RDL). - In the present embodiment of the invention, the
conductive material 460 is disposed in the throughhole 410 e by way of electroplating a metal. Wherein the metal is selected form copper (Cu). After the throughhole 410 e is filled by theconductive material 460, theouter surface 460 c of theconductive material 460 is surrounded by thephotosensitive material 430. - As indicated in
FIG. 7O , aconductive bump 470 is implanted on theconductive material 460 to form a conductive point. - Lastly, referring to
FIG. 7O , thesemiconductor structure 400 manufactured according to the present embodiment of the invention includes thesilicon substrate 410, thephotosensitive material 430, theconductive material 460, the firstconductive wiring 420 and theconductive bump 470. Thesilicon substrate 410 has the throughhole 410 e whose two ends are respectively sealed by the firstconductive wiring 420 and theconductive bump 470. Theconductive material 460 is disposed in the throughhole 410 e. Thephotosensitive material 430 covers alateral wall 410 h of the throughhole 410 e and thesecond surface 410 b. Thus, theouter surface 460 c of theconductive material 460 and part of thesecond surface 410 b are completely covered by thephotosensitive material 430. - Besides, another embodiment based on the concepts of
FIG. 2 is also provided. Referring toFIGS. 10A˜10C , further perspectives of a method for manufacturing a semiconductor structure according to a preferred embodiment of the invention are shown. Referring toFIG. 10A , asilicon substrate 910 having a throughhole 910 e is provided. A firstconductive wiring 920 is disposed on thefirst surface 910 a and covers the throughhole 910 e. Aphotosensitive material 930 is cover alateral wall 910 h of the throughhole 910 e and asecond surface 910 b. - As indicated in
FIG. 10B , thesolder paste 960 is disposed in the throughhole 910 e. As indicated inFIG. 10C , thesolder paste 960 is reflow to form aconductive pillar 970 b and a secondconductive wiring 970 a. Wherein the secondconductive wiring 970 a can be used as a redistribution layer (RDL). - In addition, please refer to
FIG. 11 , asemiconductor package 1000 is shown. Thesemiconductor 1000 includes apackage substrate 497 and asilicon interposer 498 and achip 499. Thesilicon interposer 498 is exemplified as thesemiconductor structure 400 ofFIG. 7O . - The semiconductor structure and the method for manufacturing the same disclosed in the above embodiments of the invention have many advantages exemplified as follows:
- Firstly, according to the manufacturing method disclosed above, the photosensitive material used as an insulating layer is disposed in the through hole and on the second surface by simple procedures without employing expensive CVD equipment, largely reducing manufacturing cost.
- Secondly, according to the manufacturing method disclosed above, there is no need to polish the silicon substrate, hence simplifying manufacturing process, avoiding the silicon substrate being damaged and increasing product yield rate.
- While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Claims (22)
1. A method for manufacturing a semiconductor structure, comprising:
providing a silicon substrate;
removing a part of the silicon substrate to form a ring hole and a silicon pillar surrounded by the ring hole;
disposing a photosensitive material in the ring hole, wherein the photosensitive material is insulating;
removing the silicon pillar, such that the ring hole forms a through hole and the photosensitive material covers a lateral wall of the through hole; and
disposing a conductive material in the through hole, wherein the conductive material is surrounded by the photosensitive material.
2. The manufacturing method according to claim 1 , wherein the part of the silicon substrate is removed by etching.
3. The manufacturing method according to claim 1 , wherein before the step of forming the ring hole, the manufacturing method further comprises:
forming a first conductive wiring on a first surface of the silicon substrate, wherein the first conductive wiring is disposed at a pre-determined position corresponding the ring hole.
4. The manufacturing method according to claim 3 , wherein the step of disposing the photosensitive material in the ring hole comprises:
disposing the photosensitive material on a second surface of the silicon substrate, wherein the photosensitive material covers the ring hole;
melting the photosensitive material, such that part of the melted photosensitive material fills in the ring hole; and
ripening the photosensitive material which has been melted and filled in the ring hole.
5. The manufacturing method according to claim 1 , wherein the step of removing the silicon pillar comprises:
patterning the photosensitive material, such that the photosensitive material forms an opening corresponding to the silicon pillar; and
using the patterned photosensitive material as a mask and etching the silicon pillar to remove the silicon pillar.
6. The manufacturing method according to claim 5 , wherein the ring hole has an inner lateral wall and an outer lateral wall and in the step of patterning the photosensitive material, and the diameter of the opening is greater than or equal to the diameter of the inner lateral wall but smaller than the diameter of the outer lateral wall.
7. The manufacturing method according to claim 1 , wherein the step of disposing the conductive material in the through hole comprises:
electroplating a metal in the through hole.
8. The manufacturing method according to claim 1 , wherein the step of disposing the conductive material in the through hole comprises:
filling a solder paste in the through hole; and
reflowing the solder paste.
9. The manufacturing method according to claim 1 , further comprising:
forming a second conductive wiring on a second surface of the silicon substrate, the second conductive wiring electrically connects the conductive material in the through hole.
10. The manufacturing method according to claim 9 , further comprising:
forming a bump on the second conductive wiring.
11. A semiconductor structure, comprising:
a silicon substrate having a through hole;
a photosensitive material disposed on a lateral wall of the through hole, wherein the photosensitive material is insulating; and
a conductive material disposed in the through hole and an outer surface of the conductive material is surrounded by the photosensitive material.
12. The semiconductor structure according to claim 11 , further comprising:
a first conductive wiring formed on a first surface of the silicon substrate, wherein the first conductive wiring connects one end of the through hole; and
a conductive bump disposed on a second surface of the silicon substrate, wherein the conductive bump connects the other end of the through hole;
wherein the first conductive wiring, the conductive material and the conductive bump are electrically connected.
13. The semiconductor structure according to claim 11 , further comprising:
a second conductive wiring formed on the second surface of the silicon substrate;
wherein the conductive bump is disposed on the second conductive wiring.
14. The semiconductor structure according to claim 11 , wherein the outer surface of the conductive material is completely covered by the photosensitive material.
15. The semiconductor structure according to claim 11 , wherein the photosensitive material is further disposed on a second surface of the silicon substrate.
16. The semiconductor structure according to claim 11 , wherein the thickness of the photosensitive material is 3-10 μm.
17. A semiconductor package, comprising:
a package substrate;
a silicon interposer disposed above the package substrate, comprising:
a silicon substrate having a through hole;
a photosensitive material disposed on a lateral wall of the through hole, wherein the photosensitive material is insulating; and
a conductive material disposed in the through hole and an outer surface of the conductive material is surrounded by the photosensitive material; and
a chip disposed above the silicon interposer.
18. The semiconductor package according to claim 17 , wherein the silicon interposer further comprises:
a first conductive wiring formed on a first surface of the silicon substrate, wherein the first conductive wiring connects one end of the through hole; and
a conductive bump disposed on a second surface of the silicon substrate, wherein the conductive bump connects the other end of the through hole;
wherein the first conductive wiring, the conductive material and the conductive bump are electrically connected.
19. The semiconductor package according to claim 17 , wherein the silicon interposer further comprises:
a second conductive wiring formed on the second surface of the silicon substrate;
wherein the conductive bump is disposed on the second conductive wiring.
20. The semiconductor package according to claim 17 , wherein the outer surface of the conductive material is completely covered by the photosensitive material.
21. The semiconductor package according to claim 17 , wherein the photosensitive material is further disposed on a second surface of the silicon substrate.
22. The semiconductor package according to claim 17 , wherein the thickness of the photosensitive material is 3-10 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/088,954 US8039393B2 (en) | 2008-06-27 | 2011-04-18 | Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97124100 | 2008-06-27 | ||
TW097124100A TWI365528B (en) | 2008-06-27 | 2008-06-27 | Semiconductor structure and method for manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/088,954 Division US8039393B2 (en) | 2008-06-27 | 2011-04-18 | Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090321916A1 true US20090321916A1 (en) | 2009-12-31 |
Family
ID=41446391
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/484,860 Abandoned US20090321916A1 (en) | 2008-06-27 | 2009-06-15 | Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package |
US13/088,954 Active US8039393B2 (en) | 2008-06-27 | 2011-04-18 | Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/088,954 Active US8039393B2 (en) | 2008-06-27 | 2011-04-18 | Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package |
Country Status (2)
Country | Link |
---|---|
US (2) | US20090321916A1 (en) |
TW (1) | TWI365528B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110121442A1 (en) * | 2009-11-24 | 2011-05-26 | Advanced Semiconductor Engineering, Inc. | Package structure and package process |
US8541883B2 (en) | 2011-11-29 | 2013-09-24 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having shielded conductive vias |
US8643167B2 (en) | 2011-01-06 | 2014-02-04 | Advanced Semiconductor Engineering, Inc. | Semiconductor package with through silicon vias and method for making the same |
US20140093643A1 (en) * | 2012-09-28 | 2014-04-03 | Tyco Electronics Services Gmbh | Method and system of depositing a viscous material into a surface cavity |
US8692362B2 (en) | 2010-08-30 | 2014-04-08 | Advanced Semiconductor Engineering, Inc. | Semiconductor structure having conductive vias and method for manufacturing the same |
US8786060B2 (en) | 2012-05-04 | 2014-07-22 | Advanced Semiconductor Engineering, Inc. | Semiconductor package integrated with conformal shield and antenna |
US8786098B2 (en) | 2010-10-11 | 2014-07-22 | Advanced Semiconductor Engineering, Inc. | Semiconductor element having conductive vias and semiconductor package having a semiconductor element with conductive vias and method for making the same |
US8841751B2 (en) | 2013-01-23 | 2014-09-23 | Advanced Semiconductor Engineering, Inc. | Through silicon vias for semiconductor devices and manufacturing method thereof |
US8853819B2 (en) | 2011-01-07 | 2014-10-07 | Advanced Semiconductor Engineering, Inc. | Semiconductor structure with passive element network and manufacturing method thereof |
US8865520B2 (en) | 2010-08-27 | 2014-10-21 | Advanced Semiconductor Engineering, Inc. | Carrier bonding and detaching processes for a semiconductor wafer |
US8937387B2 (en) | 2012-11-07 | 2015-01-20 | Advanced Semiconductor Engineering, Inc. | Semiconductor device with conductive vias |
US8952542B2 (en) | 2012-11-14 | 2015-02-10 | Advanced Semiconductor Engineering, Inc. | Method for dicing a semiconductor wafer having through silicon vias and resultant structures |
US8963316B2 (en) | 2012-02-15 | 2015-02-24 | Advanced Semiconductor Engineering, Inc. | Semiconductor device and method for manufacturing the same |
US8975157B2 (en) | 2012-02-08 | 2015-03-10 | Advanced Semiconductor Engineering, Inc. | Carrier bonding and detaching processes for a semiconductor wafer |
US8987734B2 (en) | 2013-03-15 | 2015-03-24 | Advanced Semiconductor Engineering, Inc. | Semiconductor wafer, semiconductor process and semiconductor package |
US9007273B2 (en) | 2010-09-09 | 2015-04-14 | Advances Semiconductor Engineering, Inc. | Semiconductor package integrated with conformal shield and antenna |
US9024445B2 (en) | 2010-11-19 | 2015-05-05 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having conductive vias and semiconductor package having semiconductor device |
US9089268B2 (en) | 2013-03-13 | 2015-07-28 | Advanced Semiconductor Engineering, Inc. | Neural sensing device and method for making the same |
US9153542B2 (en) | 2012-08-01 | 2015-10-06 | Advanced Semiconductor Engineering, Inc. | Semiconductor package having an antenna and manufacturing method thereof |
US9173583B2 (en) | 2013-03-15 | 2015-11-03 | Advanced Semiconductor Engineering, Inc. | Neural sensing device and method for making the same |
US9406552B2 (en) | 2012-12-20 | 2016-08-02 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having conductive via and manufacturing process |
US9953911B2 (en) * | 2016-07-01 | 2018-04-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out package structure and method |
US9978688B2 (en) | 2013-02-28 | 2018-05-22 | Advanced Semiconductor Engineering, Inc. | Semiconductor package having a waveguide antenna and manufacturing method thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2201600B1 (en) * | 2007-10-15 | 2019-01-02 | IMEC vzw | Method for producing through-substrate vias |
US8492901B2 (en) * | 2009-11-06 | 2013-07-23 | International Business Machines Corporation | Metal oxide semiconductor (MOS)-compatible high-aspect ratio through-wafer vias and low-stress configuration thereof |
US8647920B2 (en) * | 2010-07-16 | 2014-02-11 | Imec Vzw | Method for forming 3D-interconnect structures with airgaps |
US20120261805A1 (en) * | 2011-04-14 | 2012-10-18 | Georgia Tech Research Corporation | Through package via structures in panel-based silicon substrates and methods of making the same |
CN102738072A (en) * | 2012-05-22 | 2012-10-17 | 日月光半导体制造股份有限公司 | Semiconductor assembly with through-silicon via and manufacturing method thereof |
US20140138790A1 (en) * | 2012-11-21 | 2014-05-22 | Spansion Llc | Inter-Layer Insulator for Electronic Devices and Apparatus for Forming Same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060118965A1 (en) * | 2004-12-02 | 2006-06-08 | Nec Electronics Corporation | Semiconductor device, semiconductor module employing thereof and method for manufacturing semiconductor device |
US20080079121A1 (en) * | 2006-09-30 | 2008-04-03 | Kwon Whan Han | Through-silicon via and method for forming the same |
US20090014843A1 (en) * | 2007-06-06 | 2009-01-15 | Kawashita Michihiro | Manufacturing process and structure of through silicon via |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090315159A1 (en) * | 2008-06-20 | 2009-12-24 | Donald Charles Abbott | Leadframes having both enhanced-adhesion and smooth surfaces and methods to form the same |
-
2008
- 2008-06-27 TW TW097124100A patent/TWI365528B/en active
-
2009
- 2009-06-15 US US12/484,860 patent/US20090321916A1/en not_active Abandoned
-
2011
- 2011-04-18 US US13/088,954 patent/US8039393B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060118965A1 (en) * | 2004-12-02 | 2006-06-08 | Nec Electronics Corporation | Semiconductor device, semiconductor module employing thereof and method for manufacturing semiconductor device |
US20080079121A1 (en) * | 2006-09-30 | 2008-04-03 | Kwon Whan Han | Through-silicon via and method for forming the same |
US20090014843A1 (en) * | 2007-06-06 | 2009-01-15 | Kawashita Michihiro | Manufacturing process and structure of through silicon via |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8446000B2 (en) | 2009-11-24 | 2013-05-21 | Chi-Chih Shen | Package structure and package process |
US20110121442A1 (en) * | 2009-11-24 | 2011-05-26 | Advanced Semiconductor Engineering, Inc. | Package structure and package process |
US8865520B2 (en) | 2010-08-27 | 2014-10-21 | Advanced Semiconductor Engineering, Inc. | Carrier bonding and detaching processes for a semiconductor wafer |
US8692362B2 (en) | 2010-08-30 | 2014-04-08 | Advanced Semiconductor Engineering, Inc. | Semiconductor structure having conductive vias and method for manufacturing the same |
US9007273B2 (en) | 2010-09-09 | 2015-04-14 | Advances Semiconductor Engineering, Inc. | Semiconductor package integrated with conformal shield and antenna |
US8786098B2 (en) | 2010-10-11 | 2014-07-22 | Advanced Semiconductor Engineering, Inc. | Semiconductor element having conductive vias and semiconductor package having a semiconductor element with conductive vias and method for making the same |
US9024445B2 (en) | 2010-11-19 | 2015-05-05 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having conductive vias and semiconductor package having semiconductor device |
US8643167B2 (en) | 2011-01-06 | 2014-02-04 | Advanced Semiconductor Engineering, Inc. | Semiconductor package with through silicon vias and method for making the same |
US8853819B2 (en) | 2011-01-07 | 2014-10-07 | Advanced Semiconductor Engineering, Inc. | Semiconductor structure with passive element network and manufacturing method thereof |
US8541883B2 (en) | 2011-11-29 | 2013-09-24 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having shielded conductive vias |
US8975157B2 (en) | 2012-02-08 | 2015-03-10 | Advanced Semiconductor Engineering, Inc. | Carrier bonding and detaching processes for a semiconductor wafer |
US8963316B2 (en) | 2012-02-15 | 2015-02-24 | Advanced Semiconductor Engineering, Inc. | Semiconductor device and method for manufacturing the same |
US8786060B2 (en) | 2012-05-04 | 2014-07-22 | Advanced Semiconductor Engineering, Inc. | Semiconductor package integrated with conformal shield and antenna |
US9153542B2 (en) | 2012-08-01 | 2015-10-06 | Advanced Semiconductor Engineering, Inc. | Semiconductor package having an antenna and manufacturing method thereof |
US20140093643A1 (en) * | 2012-09-28 | 2014-04-03 | Tyco Electronics Services Gmbh | Method and system of depositing a viscous material into a surface cavity |
US8937387B2 (en) | 2012-11-07 | 2015-01-20 | Advanced Semiconductor Engineering, Inc. | Semiconductor device with conductive vias |
US8952542B2 (en) | 2012-11-14 | 2015-02-10 | Advanced Semiconductor Engineering, Inc. | Method for dicing a semiconductor wafer having through silicon vias and resultant structures |
US9960121B2 (en) | 2012-12-20 | 2018-05-01 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having conductive via and manufacturing process for same |
US9406552B2 (en) | 2012-12-20 | 2016-08-02 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having conductive via and manufacturing process |
US8841751B2 (en) | 2013-01-23 | 2014-09-23 | Advanced Semiconductor Engineering, Inc. | Through silicon vias for semiconductor devices and manufacturing method thereof |
US9728451B2 (en) | 2013-01-23 | 2017-08-08 | Advanced Semiconductor Engineering, Inc. | Through silicon vias for semiconductor devices and manufacturing method thereof |
US9978688B2 (en) | 2013-02-28 | 2018-05-22 | Advanced Semiconductor Engineering, Inc. | Semiconductor package having a waveguide antenna and manufacturing method thereof |
US9089268B2 (en) | 2013-03-13 | 2015-07-28 | Advanced Semiconductor Engineering, Inc. | Neural sensing device and method for making the same |
US8987734B2 (en) | 2013-03-15 | 2015-03-24 | Advanced Semiconductor Engineering, Inc. | Semiconductor wafer, semiconductor process and semiconductor package |
US9173583B2 (en) | 2013-03-15 | 2015-11-03 | Advanced Semiconductor Engineering, Inc. | Neural sensing device and method for making the same |
US9953911B2 (en) * | 2016-07-01 | 2018-04-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out package structure and method |
US10163770B2 (en) | 2016-07-01 | 2018-12-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out package structure and method |
US10510648B2 (en) | 2016-07-01 | 2019-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out package structure and method |
US11107758B2 (en) | 2016-07-01 | 2021-08-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out package structure and method |
US11715681B2 (en) | 2016-07-01 | 2023-08-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out package structure and method |
Also Published As
Publication number | Publication date |
---|---|
US20110195568A1 (en) | 2011-08-11 |
TWI365528B (en) | 2012-06-01 |
TW201001618A (en) | 2010-01-01 |
US8039393B2 (en) | 2011-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8039393B2 (en) | Semiconductor structure, method for manufacturing semiconductor structure and semiconductor package | |
KR100884238B1 (en) | Semiconductor Package Having Anchor Type Joining And Method Of Fabricating The Same | |
TWI750168B (en) | Interposer, semiconductor package, and method of fabricating interposer | |
US10002815B2 (en) | Multi-chip package structure manufacturing process and wafer level chip package structure manufacturing process | |
TWI429049B (en) | Semiconductor device having backside redistribution layers and method for fabricating the same | |
TWI628727B (en) | Semiconductor structure and manufacturing method thereof | |
US6699787B2 (en) | Semiconductor device and method of production of same | |
US8293635B2 (en) | Method and system for forming conductive bumping with copper interconnection | |
US20160284751A1 (en) | Chip scale sensing chip package and a manufacturing method thereof | |
US20130196501A1 (en) | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods | |
US11419222B2 (en) | Method of manufacturing circuit board | |
US8624383B2 (en) | Integrated circuit package and method for fabrication thereof | |
US20070117343A1 (en) | Semiconductor device having align mark layer and method of fabricating the same | |
KR102412613B1 (en) | Semiconductor package and method for manufacturing the same | |
US11348869B2 (en) | Method of manufacturing chip packaging structure | |
TWI601254B (en) | A wafer-level chip-size package and a method for forming the same | |
TW202131471A (en) | Semiconductor arrangement and method of forming the same | |
CN110676227A (en) | Semiconductor chip including bump structure and semiconductor package including the same | |
JP2007318143A (en) | Semiconductor structure, and its manufacturing method | |
TWI598970B (en) | Semiconductor structure and method for forming the same | |
US11876064B2 (en) | Semiconductor structure and manufacturing method thereof | |
US20200105666A1 (en) | Semiconductor device and method of fabricating the same | |
TWI630712B (en) | Chip package and manufacturing method thereof | |
US11855032B2 (en) | Semiconductor structure and manufacturing method thereof | |
KR20060054689A (en) | Semiconductor device having backside input output terminal and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED SEMICONDUCTOR ENGINEERING, INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, MENG-JEN;CHEN, CHIEN-YU;REEL/FRAME:022828/0206;SIGNING DATES FROM 20090414 TO 20090608 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |