US20090286191A1 - Dispositif de combustion - Google Patents

Dispositif de combustion Download PDF

Info

Publication number
US20090286191A1
US20090286191A1 US11/915,792 US91579206A US2009286191A1 US 20090286191 A1 US20090286191 A1 US 20090286191A1 US 91579206 A US91579206 A US 91579206A US 2009286191 A1 US2009286191 A1 US 2009286191A1
Authority
US
United States
Prior art keywords
chamber
combustion
primary reactor
combustion device
postcombustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/915,792
Inventor
Jean Julien Leonard Guillot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20090286191A1 publication Critical patent/US20090286191A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B10/00Combustion apparatus characterised by the combination of two or more combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B5/00Combustion apparatus with arrangements for burning uncombusted material from primary combustion
    • F23B5/04Combustion apparatus with arrangements for burning uncombusted material from primary combustion in separate combustion chamber; on separate grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B50/00Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
    • F23B50/02Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom
    • F23B50/08Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom with fuel-deflecting bodies forming free combustion spaces inside the fuel layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the disclosed embodiments relate to a combustion device comprising a combustion reactor and postcombustion of the gases produced by the combustion of combustible materials.
  • the disclosed embodiments relate to a combustion device comprising a combustion chamber, a primary reactor and a gas suction and exhaust tube in which the gas suction and exhaust tube passes through the primary reactor.
  • the primary reactor terminates in a postcombustion chamber and the gas suction and exhaust tube passing through the primary reactor removes the postcombustion gases from the postcombustion chamber.
  • the gas suction and exhaust tube is concentric with the primary reactor.
  • This configuration serves to warm the oxidizer by sweeping said tube, which is advantageously concentric with the combustion reactor.
  • This device also serves to pass the postcombustion gases through the discharge tube, which is itself externally subjected to the heat of primary combustion.
  • the combustion chamber is a primary combustion chamber receiving the fuel and is connected to the postcombustion chamber by the primary reactor.
  • the burned gases are sucked out by venturi effect at the gas outlet.
  • a conventional fan type suction system sucks the gases from the suction and exhaust tube.
  • said suction and exhaust tube is configured so that the burned gases are sucked independently by chimney effect once the combustion is initiated.
  • the primary reactor preferably comprises inlet slits through which the oxidizer is sucked in.
  • the reactor is further advantageously provided with slits placed around the primary reactor and through which the oxidizer makes contact with the fuel present in the combustion chamber.
  • FIG. 1 an exemplary embodiment of a reactor according to the disclosed embodiments in cross section;
  • FIG. 2 an exemplary embodiment of a primary reactor for the reactor in FIG. 1 ;
  • FIG. 3 an exemplary embodiment of an improved reactor according to the disclosed embodiments
  • FIG. 4 a perspective cross section view of a combustion chamber and a primary reactor according to a particular embodiment
  • FIG. 5 a schematic cross section view of an exemplary embodiment of an improved postcombustion chamber.
  • the disclosed embodiments relate to a combustion device comprising a combustion reactor and a postcombustion chamber of which an example is shown in FIG. 1 .
  • It comprises a combustion chamber 1 , a primary combustion reactor 2 , a fresh gas inlet consisting of first slits, inlet slits 5 of the primary reactor 2 .
  • the oxidizer (air) is sucked in through the air inlets formed by the inlet slits 5 of the primary reactor 2 and makes contact with the fuel 11 through second slits 3 , placed around the primary reactor 2 , and shown more particularly in Figure 2 in the case of a cylindrical primary reactor.
  • the combustion chamber 1 is connected to the postcombustion chamber 7 by the primary reactor 2 .
  • the flames and the combustion gases 8 flow from the primary reactor 2 into the postcombustion chamber 7 .
  • the device according to the example comprises a gas exhaust and removal tube 4 concentric with the tube of the primary reactor 2 .
  • This arrangement serves to heat the oxidizer by sweeping the gas exhaust tube, a tube concentric with the primary combustion reactor 2 .
  • This device also serves to send the postcombustion gases through the removal tube, which is itself externally subjected to the heat of primary combustion.
  • the lean gases produced by the combustion chamber 1 may be either reintroduced into the primary combustion reactor 2 , or recovered for another use.
  • the suction 9 of the burned gases 12 can be carried out by a venturi effect or by a conventional fan type suction system.
  • the operating principle of the device is as follows:
  • the suction 9 of the burned gases 12 is started.
  • the fuel 11 is introduced into the combustion chamber 1 and on starting, it is ignited by externally produced fire provided either by a gas, heating oil or other energy burner 10 , the flame being introduced either into an air inlet 5 of the primary reactor, or directly into the combustion chamber 1 similar to the lighting of a wood fire.
  • the combustion reaction takes place through second slits 3 and is carried out around the postcombustion gas removal tube 4 .
  • the combustion participates in the heating of the gas removal tube 4 and the gas removal tube, passing inside the tube of the primary reactor 2 , is heated and its temperature rises, at the inlet of the primary reactor 2 , the oxidizer (air) entering via the inlet slits 5 .
  • the combustion is improved by heating the oxidizer (air) by the gas removal tube 4 .
  • the postcombustion gases 12 are burned better because they pass into the removal tube 4 heated to redness during the passage through the primary reactor 2 .
  • the lean gases produced in the combustion chamber 1 may be either reintroduced into the primary postcombustion reactor 2 , or recovered for another use.
  • the combustion is adjusted by the variable closing of the slits 3 present on the tube of the primary reactor 2 .
  • the air inlet slits 6 at the beginning of the primary reactor tube may be more or less blocked to increase or reduce the quantity of oxidizer (air) introduced into the primary reactor 2 and the adjustment of the postcombustion gas 12 suction capacity accelerates or slows down the combustion.
  • one or more adjustable air inlets 6 are advantageously provided at the end of the tube of the primary reactor 2 .
  • the postcombustion chamber 7 accommodates the tube of the primary reactor 2 via a contiguous seal.
  • the installation operates in the horizontal, vertical or oblique position, the only requirement being to change the loading position of the combustion chamber 1 .
  • FIG. 3 shows an improved device according to the disclosed embodiments in which the chamber is equipped with a refractory steel tube 13 provided with a feed screw 14 , for products to be dried and/or requiring pyrolysis, enabling certain products to be dried and subjected to pyrolysis.
  • the tube is loaded outside the chamber using a tank 24 , the product passing through the chamber and terminating at the top of the primary reactor.
  • the water vapor generated during drying is sucked by the negative pressure and passes into combustion.
  • the feed screw is rotated by a motor 25 .
  • FIG. 4 shows an improvement of the combustion chamber.
  • the primary reactor due to its configuration, is suitable for pyrolyzing a fuel in its upper part. This pyrolysis allows ideal combustion but, depending on the products, may create a “vault” liable to prevent the descent of the fuel.
  • the device comprises fuel grinding means comprising at least one tubular spindle 15 passing through the chamber 1 and equipped with mixing means 16 .
  • the fuel grinding means comprise two tubular spindles 15 .
  • the spindles are, for example, driven by a geared motor controlled by a timer, not shown.
  • FIG. 5 corresponds to an improved embodiment of the postcombustion chamber 7 .
  • This improved postcombustion chamber firstly comprises the addition of an adjustable air inlet 17 for air entering directly into the postcombustion chamber to permit the complete combustion of certain fuels requiring more oxidizer than others, for example tires.
  • This air inlet is adjustable according to the example by a flap 26 .
  • the improved chamber secondly comprises the addition of a device for regulating the temperature of the postcombustion chamber by creating a void 21 between the chamber 7 itself and a thermal insulation 20 surrounding it, and the addition of means for blowing fresh air into this void 21 between the outer walls of the chamber surrounding the chamber 7 and the inner wall of the thermal insulation, and thereby for cooling the vessel surrounding the chamber 7 .
  • This device is particularly useful for reducing the temperature of the vessel surrounding the postcombustion chamber 7 during the combustion of used tires or other products which may cause the temperature of this vessel to rise above 1260° C., whereas the materials of construction of the vessel are possibly subject to temperature limits, for example, a material such as refractory steel cannot withstand a temperature above 1200° C., entailing the need to limit the temperature of the vessel.
  • the temperature regulation device serves to control the temperature of the chamber of the postcombustion chamber 7 when it reaches or exceeds critical temperature thresholds for the materials from which it is constructed (1200° C. for refractory steel as stated above).
  • the means for blowing air into the void 21 are provided according to the example by a first duct 19 open to the exterior, a fan 18 serving to adjust the quantity of intake air and an actual air intake duct 23 placed between the fan and the chamber 7 .
  • the recovery of this superheated air leaving the void via a duct 22 can also participate in the provision of an energy recovery device.
  • the device shown in FIGS. 3 and 4 comprises a recovery tank 27 .
  • the primary combustion chamber 1 receiving the fuel 11 may be cylindrical, square, conical or oval, rectangular or parallelepipedal
  • the primary reactor 2 may itself be cylindrical, square, frustoconical, oval, rectangular, or parallelepipedal and perforated with slits 3 enabling the contact of the fuel 11 and the oxidizer (air) having any geometrical shape whatsoever, round, oval, rectangle, square, parallelepipedal
  • the gas removal tube 4 placed inside this primary reactor 2 may be cylindrical, square, frustoconical, oval, rectangle or parallelepipedal shaped or may have any other cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Incineration Of Waste (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

A combustion device including a combustion chamber, a primary reactor and a suction and exhaust tube for gases wherein the gas suction and exhaust tube passes through the primary reactor. In a preferred embodiment, the primary reactor emerges into a post-combustion chamber whereby the post-combustion gases are discharged from the post-combustion chamber through the suction tube passing through the primary reactor.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is the National Stage of International Application No. PCT/FR2006/50496, International Filing date, 31 May 2006, which designated the United States of America, and which International Application was published under PCT Article 21 (2) as WO Publication No. WO2007/003830 and which claims priority from French Application No. 0505513, filed 31 May 2005, the disclosures of which are incorporated herein by reference in their entireties.
  • BACKGROUND
  • 1. Field
  • The disclosed embodiments relate to a combustion device comprising a combustion reactor and postcombustion of the gases produced by the combustion of combustible materials.
  • SUMMARY
  • During the combustion of combustible materials, greater efficiency and a reduction of polluting combustion wastes are desirable.
  • The disclosed embodiments relate to a combustion device comprising a combustion chamber, a primary reactor and a gas suction and exhaust tube in which the gas suction and exhaust tube passes through the primary reactor.
  • More particularly, the primary reactor terminates in a postcombustion chamber and the gas suction and exhaust tube passing through the primary reactor removes the postcombustion gases from the postcombustion chamber.
  • According to a preferred embodiment, the gas suction and exhaust tube is concentric with the primary reactor.
  • This configuration serves to warm the oxidizer by sweeping said tube, which is advantageously concentric with the combustion reactor.
  • This device also serves to pass the postcombustion gases through the discharge tube, which is itself externally subjected to the heat of primary combustion.
  • According to a particular embodiment, the combustion chamber is a primary combustion chamber receiving the fuel and is connected to the postcombustion chamber by the primary reactor.
  • According to a first embodiment, the burned gases are sucked out by venturi effect at the gas outlet.
  • According to an alternative or complementary embodiment, a conventional fan type suction system sucks the gases from the suction and exhaust tube.
  • Advantageously, once the combustion is initiated, said suction and exhaust tube is configured so that the burned gases are sucked independently by chimney effect once the combustion is initiated.
  • The primary reactor preferably comprises inlet slits through which the oxidizer is sucked in.
  • The reactor is further advantageously provided with slits placed around the primary reactor and through which the oxidizer makes contact with the fuel present in the combustion chamber.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features and advantageous of the disclosed embodiments will appear better from a reading of the description of a nonlimiting exemplary embodiment in conjunction with the figures which show:
  • in FIG. 1: an exemplary embodiment of a reactor according to the disclosed embodiments in cross section;
  • in FIG. 2: an exemplary embodiment of a primary reactor for the reactor in FIG. 1;
  • in FIG. 3: an exemplary embodiment of an improved reactor according to the disclosed embodiments;
  • in FIG. 4: a perspective cross section view of a combustion chamber and a primary reactor according to a particular embodiment;
  • in FIG. 5: a schematic cross section view of an exemplary embodiment of an improved postcombustion chamber.
  • DETAILED DESCRIPTION OF THE DISCLOSED EMBODIMENTS
  • The disclosed embodiments relate to a combustion device comprising a combustion reactor and a postcombustion chamber of which an example is shown in FIG. 1.
  • It comprises a combustion chamber 1, a primary combustion reactor 2, a fresh gas inlet consisting of first slits, inlet slits 5 of the primary reactor 2.
  • The oxidizer (air) is sucked in through the air inlets formed by the inlet slits 5 of the primary reactor 2 and makes contact with the fuel 11 through second slits 3, placed around the primary reactor 2, and shown more particularly in Figure 2 in the case of a cylindrical primary reactor.
  • The combustion chamber 1 is connected to the postcombustion chamber 7 by the primary reactor 2.
  • The flames and the combustion gases 8 flow from the primary reactor 2 into the postcombustion chamber 7.
  • The device according to the example comprises a gas exhaust and removal tube 4 concentric with the tube of the primary reactor 2.
  • This arrangement serves to heat the oxidizer by sweeping the gas exhaust tube, a tube concentric with the primary combustion reactor 2.
  • This device also serves to send the postcombustion gases through the removal tube, which is itself externally subjected to the heat of primary combustion.
  • The lean gases produced by the combustion chamber 1 may be either reintroduced into the primary combustion reactor 2, or recovered for another use.
  • The suction 9 of the burned gases 12 can be carried out by a venturi effect or by a conventional fan type suction system.
  • Once the combustion is initiated, the suction, removal and exhaust of the gases may become independent by the chimney effect.
  • The operating principle of the device is as follows:
  • The suction 9 of the burned gases 12 is started.
  • The fuel 11 is introduced into the combustion chamber 1 and on starting, it is ignited by externally produced fire provided either by a gas, heating oil or other energy burner 10, the flame being introduced either into an air inlet 5 of the primary reactor, or directly into the combustion chamber 1 similar to the lighting of a wood fire.
  • By creating a negative pressure in the postcombustion chamber 1, the combustion reaction takes place through second slits 3 and is carried out around the postcombustion gas removal tube 4.
  • The combustion participates in the heating of the gas removal tube 4 and the gas removal tube, passing inside the tube of the primary reactor 2, is heated and its temperature rises, at the inlet of the primary reactor 2, the oxidizer (air) entering via the inlet slits 5.
  • The combustion is improved by heating the oxidizer (air) by the gas removal tube 4.
  • The postcombustion gases 12 are burned better because they pass into the removal tube 4 heated to redness during the passage through the primary reactor 2.
  • The lean gases produced in the combustion chamber 1 may be either reintroduced into the primary postcombustion reactor 2, or recovered for another use.
  • The combustion is adjusted by the variable closing of the slits 3 present on the tube of the primary reactor 2.
  • When the slits are more or less blocked, the quantity of fuel 11 placed in contact with the oxidizer (air) is reduced or increased.
  • The air inlet slits 6 at the beginning of the primary reactor tube may be more or less blocked to increase or reduce the quantity of oxidizer (air) introduced into the primary reactor 2 and the adjustment of the postcombustion gas 12 suction capacity accelerates or slows down the combustion.
  • To assist the postcombustion, one or more adjustable air inlets 6 are advantageously provided at the end of the tube of the primary reactor 2.
  • The postcombustion chamber 7 accommodates the tube of the primary reactor 2 via a contiguous seal.
  • The installation operates in the horizontal, vertical or oblique position, the only requirement being to change the loading position of the combustion chamber 1.
  • FIG. 3 shows an improved device according to the disclosed embodiments in which the chamber is equipped with a refractory steel tube 13 provided with a feed screw 14, for products to be dried and/or requiring pyrolysis, enabling certain products to be dried and subjected to pyrolysis.
  • In the example, the tube is loaded outside the chamber using a tank 24, the product passing through the chamber and terminating at the top of the primary reactor. The water vapor generated during drying is sucked by the negative pressure and passes into combustion.
  • The feed screw is rotated by a motor 25.
  • FIG. 4 shows an improvement of the combustion chamber.
  • The primary reactor, due to its configuration, is suitable for pyrolyzing a fuel in its upper part. This pyrolysis allows ideal combustion but, depending on the products, may create a “vault” liable to prevent the descent of the fuel.
  • In FIG. 4, the device comprises fuel grinding means comprising at least one tubular spindle 15 passing through the chamber 1 and equipped with mixing means 16. In the example, the fuel grinding means comprise two tubular spindles 15.
  • The spindles are, for example, driven by a geared motor controlled by a timer, not shown.
  • FIG. 5 corresponds to an improved embodiment of the postcombustion chamber 7.
  • This improved postcombustion chamber firstly comprises the addition of an adjustable air inlet 17 for air entering directly into the postcombustion chamber to permit the complete combustion of certain fuels requiring more oxidizer than others, for example tires.
  • This air inlet is adjustable according to the example by a flap 26.
  • The improved chamber secondly comprises the addition of a device for regulating the temperature of the postcombustion chamber by creating a void 21 between the chamber 7 itself and a thermal insulation 20 surrounding it, and the addition of means for blowing fresh air into this void 21 between the outer walls of the chamber surrounding the chamber 7 and the inner wall of the thermal insulation, and thereby for cooling the vessel surrounding the chamber 7.
  • This device is particularly useful for reducing the temperature of the vessel surrounding the postcombustion chamber 7 during the combustion of used tires or other products which may cause the temperature of this vessel to rise above 1260° C., whereas the materials of construction of the vessel are possibly subject to temperature limits, for example, a material such as refractory steel cannot withstand a temperature above 1200° C., entailing the need to limit the temperature of the vessel.
  • The temperature regulation device serves to control the temperature of the chamber of the postcombustion chamber 7 when it reaches or exceeds critical temperature thresholds for the materials from which it is constructed (1200° C. for refractory steel as stated above).
  • The means for blowing air into the void 21 are provided according to the example by a first duct 19 open to the exterior, a fan 18 serving to adjust the quantity of intake air and an actual air intake duct 23 placed between the fan and the chamber 7.
  • Furthermore, the recovery of this superheated air leaving the void via a duct 22 can also participate in the provision of an energy recovery device.
  • To recover the combustion wastes, the device shown in FIGS. 3 and 4 comprises a recovery tank 27.
  • The disclosed embodiments are not limited to the examples shown and, in particular, the primary combustion chamber 1 receiving the fuel 11 may be cylindrical, square, conical or oval, rectangular or parallelepipedal, the primary reactor 2 may itself be cylindrical, square, frustoconical, oval, rectangular, or parallelepipedal and perforated with slits 3 enabling the contact of the fuel 11 and the oxidizer (air) having any geometrical shape whatsoever, round, oval, rectangle, square, parallelepipedal, and the gas removal tube 4 placed inside this primary reactor 2 may be cylindrical, square, frustoconical, oval, rectangle or parallelepipedal shaped or may have any other cross section.

Claims (12)

1. A combustion device comprising a combustion chamber, a primary reactor and a gas suction and exhaust tube 4 in which the gas suction and exhaust tube 4 passes through the primary reactor.
2. The combustion device as claimed in claim 1, in which the primary reactor terminates in a postcombustion chamber and in which the gas suction and exhaust tube 4 passing through the primary reactor removes the postcombustion gases from the postcombustion chamber.
3. The combustion device as claimed in claim 1, in which the gas exhaust tube is concentric with the primary reactor.
4. The combustion device as claimed in claim 2, in which the combustion chamber is a primary combustion chamber receiving the fuel and is connected to the postcombustion chamber by the primary reactor.
5. The combustion device as claimed in one of the preceding claims, in which the burned gases are sucked out by venturi effect at the gas outlet 9.
6. The combustion device as claimed in one of the preceding claims, in which the exhaust tube is configured so that the burned gases are sucked independently by chimney effect once the combustion is initiated.
7. The combustion device as claimed in one of the preceding claims, in which the primary reactor comprises first inlet slits through which the oxidizer is sucked in.
8. The combustion device as claimed in one of the preceding claims, wherein it is provided with second slits placed around the primary reactor and through which the oxidizer makes contact with the fuel present in the combustion chamber.
9. The combustion device as claimed in one of the preceding claims, in which the chamber is equipped with a tube for incoming products, made from refractory steel provided with a feed screw for products to be dried and/or requiring pyrolysis.
10. The combustion device as claimed in one of the preceding claims, wherein it comprises fuel grinding means which comprise at least one tubular spindle passing through the chamber and are equipped with mixing means.
11. The combustion device as claimed in one of the preceding claims, wherein it comprises an adjustable air inlet for air entering directly into the postcombustion chamber.
12. The combustion device as claimed in one of the preceding claims, wherein it comprises a device for regulating the temperature of the postcombustion chamber by creating a void between the chamber itself and a thermal insulation surrounding it, and means for blowing fresh air into this void between the outer walls of the chamber and the inner wall of the thermal insulation.
US11/915,792 2005-05-31 2006-05-31 Dispositif de combustion Abandoned US20090286191A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0505513A FR2886377B1 (en) 2005-05-31 2005-05-31 COMBUSTION DEVICE WITH PREHEATING OF THE COMBUSTION AIR BY THE POSTCOMBUSTION GAS THEY ARE OVERHEATED BY THEIR PASSAGE AT THE HEART OF THE COMBUSTION
FR0505513 2005-05-31
PCT/FR2006/050496 WO2007003830A2 (en) 2005-05-31 2006-05-31 Combustion device

Publications (1)

Publication Number Publication Date
US20090286191A1 true US20090286191A1 (en) 2009-11-19

Family

ID=35839020

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/915,792 Abandoned US20090286191A1 (en) 2005-05-31 2006-05-31 Dispositif de combustion

Country Status (6)

Country Link
US (1) US20090286191A1 (en)
EP (1) EP1896772A2 (en)
ES (1) ES2333922B1 (en)
FR (1) FR2886377B1 (en)
PT (1) PT103483A (en)
WO (1) WO2007003830A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA020432B1 (en) * 2012-01-09 2014-11-28 Жиргалбек Омуралиевич САРЫМСАКОВ Heating boiler
US20180329292A1 (en) * 2015-11-20 2018-11-15 Asml Netherlands B.V. Lithographic Apparatus and Method of Operating a Lithographic Apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2114566A (en) * 1936-11-21 1938-04-19 Underpinning & Foundation Comp Incineration
US3680503A (en) * 1969-10-02 1972-08-01 Gunnar Danielsson Incinerator
US4261795A (en) * 1979-11-16 1981-04-14 Reilly Bertram B Apparatus for solid waste pyrolysis
US4922839A (en) * 1988-11-28 1990-05-08 Boucher Robert J Fuel reactor
US6152050A (en) * 1995-12-14 2000-11-28 Pyrogenesis Inc. Lightweight compact waste treatment furnace
US20010006036A1 (en) * 1999-09-14 2001-07-05 Kleiss Richard L. Waste tire gasification in a negative ambient pressure environment
US6321743B1 (en) * 2000-06-29 2001-11-27 Institute Of Gas Technology Single-ended self-recuperated radiant tube annulus system
US7018287B2 (en) * 2004-07-22 2006-03-28 Minel Kupferberg High velocity and high dilution exhaust system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH230015A (en) * 1942-07-21 1943-11-30 Spladis Societe Pour L Applic Apparatus for the combustion of solid fuels with high efficiency.
GB586635A (en) * 1943-07-15 1947-03-26 Spladis Soc Pour L Applic D In Improvements in or relating to processes and apparatus for the combustion of fragmentary solid combustibles
JPS60105815A (en) * 1983-11-14 1985-06-11 Saburo Katayose Small-sized dust incinerator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2114566A (en) * 1936-11-21 1938-04-19 Underpinning & Foundation Comp Incineration
US3680503A (en) * 1969-10-02 1972-08-01 Gunnar Danielsson Incinerator
US4261795A (en) * 1979-11-16 1981-04-14 Reilly Bertram B Apparatus for solid waste pyrolysis
US4922839A (en) * 1988-11-28 1990-05-08 Boucher Robert J Fuel reactor
US6152050A (en) * 1995-12-14 2000-11-28 Pyrogenesis Inc. Lightweight compact waste treatment furnace
US20010006036A1 (en) * 1999-09-14 2001-07-05 Kleiss Richard L. Waste tire gasification in a negative ambient pressure environment
US6321743B1 (en) * 2000-06-29 2001-11-27 Institute Of Gas Technology Single-ended self-recuperated radiant tube annulus system
US7018287B2 (en) * 2004-07-22 2006-03-28 Minel Kupferberg High velocity and high dilution exhaust system

Also Published As

Publication number Publication date
WO2007003830A3 (en) 2007-02-22
EP1896772A2 (en) 2008-03-12
PT103483A (en) 2006-11-30
FR2886377B1 (en) 2007-11-23
WO2007003830A2 (en) 2007-01-11
ES2333922A1 (en) 2010-03-02
FR2886377A1 (en) 2006-12-01
ES2333922B1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5091612B2 (en) Burner
CN206244626U (en) Pyrolyzing sludge device
JP2009162414A (en) Combustion furnace
JP2010101599A (en) Hybrid hot air device
EP2884200B1 (en) Central heating boiler
CN100432532C (en) Combined incineration treatment method for refuse and special vertical oxygen-enriched continuous incinerator
KR101527682B1 (en) Clean Pellet Stove of High Efficiency
WO2001009547A1 (en) Burners with high turndown ratio and gas combustor
CN101776286A (en) Cooking range
WO2012096900A2 (en) Devices for and methods of producing renewable thermal energy and biochar
US20090286191A1 (en) Dispositif de combustion
CN201724256U (en) Environment-friendly biomass energy particle burning furnace with easy discharging of fuel black dirt
CN203718792U (en) Environment-friendly incinerator
JP3155768U (en) Hot air heater
US8459192B2 (en) Device for gasification and combustion of solid fuel
CN204757014U (en) Back formula living beings warm gasifier of cooking a meal
CN100430647C (en) Tech. for biomass fuel sectionally suspending burning
CN206504318U (en) Chimney-free combustion furnace
RU183190U1 (en) LONG-BURNING WATER-SOLID FUEL BOILER
RU2452905C2 (en) Water-heating boiler and method of its operation
JP5840318B1 (en) Pressurized combustion device
CN205535756U (en) Environment -friendly biomass combustion device
CN202938363U (en) Combined type coal-to-gas combustion heating furnace
CN103742920A (en) Environmental-friendly combustion furnace
CN210511640U (en) Solid fuel combustion device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION