US20090258958A1 - Expandable TFE Copolymers, Methods of Making, and Porous, Expanded Articles Thereof - Google Patents

Expandable TFE Copolymers, Methods of Making, and Porous, Expanded Articles Thereof Download PDF

Info

Publication number
US20090258958A1
US20090258958A1 US12408153 US40815309A US2009258958A1 US 20090258958 A1 US20090258958 A1 US 20090258958A1 US 12408153 US12408153 US 12408153 US 40815309 A US40815309 A US 40815309A US 2009258958 A1 US2009258958 A1 US 2009258958A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
tfe
added
kg
copolymer
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12408153
Other versions
US9040646B2 (en )
Inventor
Lawrence A. Ford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gore W L and Associates Inc
Original Assignee
Gore Enterprise Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene, Gore Tex (R)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/02Adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing

Abstract

A true tetrafluoroethylene (TFE) copolymer of the fine powder type is provided, wherein the copolymer contains polymerized comonomer units of at least one comonomer other than TFE in concentrations of at least or exceeding 1.0 weight percent, and which can exceed 5.0 weight percent, wherein the copolymer is expandable, that is, the copolymer may be expanded to produce strong, useful, expanded TFE copolymeric articles having a microstructure of nodes interconnected by fibrils. Articles made from the expandable copolymer may include tapes, membranes, films, fibers, and are suitable in a variety of end applications, including medical devices.

Description

    RELATED APPLICATIONS
  • [0001]
    The present application is a continuation-in-part application based on co-pending U.S. patent application Ser. No. 11/906,877, filed Oct. 4, 2007, the subject matter of which is specifically incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The invention relates to fluorocopolymers, as defined herein to denote any fluoropolymer containing tetrafluoroethylene monomer units and at least or more than 1.0% by weight of units of at least one other comonomer,* polymerized to produce an expandable tetrafluoroethylene copolymer of the fine powder type. A process of polymerization of these monomers is described, as well as the porous products produced by expansion (stretching under controlled conditions) of the aforesaid copolymers. See, e.g., Fluoroplastics—Vol 1: Non-Melt Processible Fluoroplastics; Williams Andrew, Inc., Norwich, N.Y., at p. 25 19 (2000); see, also, ISO 12086.
  • [0003]
    Techniques for the dispersion polymerization of tetrafluoroethylene (TFE) monomer are known. Dispersion polymerization of TFE produces a resin that has come to be known as “fine powder”. See, e.g., U.S. Pat. No. 4,016,345 (Holmes, 1977). In such processes, generally, sufficient dispersing agent is introduced into a water carrier such that, upon addition of tetrafluoroethylene monomer in the presence of a suitable polymerization initiator
  • [0000]
    and, upon agitation and under autogenous tetrafluoroethylene pressure of 10 to 40 kg/cm2, the polymerization proceeds until the level of colloidally dispersed polymer particles is reached and the reaction is then stopped.
  • [0004]
    In contrast, particulate tetrafluoroethylene resins have also been produced by a process of suspension polymerization wherein tetrafluoroethylene monomer is polymerized in a highly agitated aqueous suspension in which little or no dispersing agent is employed. The type of particles produced in suspension polymerization has been termed “granular” resin or “granular powder”. See, e.g., U.S. Pat. No. 3,655,611 (Mueller, 1972).
  • [0005]
    For both polymerization processes, copolymerization of tetrafluoroethylene with various fluorinated alkyl ethylene comonomers has been described. See, for example, U.S. Pat. No. 4,792,594 (Gangal, et al., 1988). However, the present invention relates, specifically, to the aqueous dispersion polymerization technique, in which the product of the polymerization reaction is the copolymer of the invention dispersed within an aqueous colloidal dispersion. In this process, tetrafluoroethylene monomer is pressured into an autoclave containing water and polymerization initiators, along with paraffin wax to suppress coagulum formation and an emulsifying agent. The reaction mixture is agitated and the polymerization is carried out at suitable temperatures and pressures. Polymerization results in the formation of an aqueous dispersion of polymer particles, and the dispersed polymer particles may subsequently be coagulated by techniques known in the art to obtain what has become known as the fine powder form of the polymer.
  • [0006]
    Various prior patents have disclosed techniques for the homopolymerization of tetrafluoroethylene and for the polymerization of TFE with small amounts (<1.0% by weight) of other monomers. Among those are included U.S. Pat. No. 4,576,869 (Malhotra, 1986) and U.S. Pat. No. 6,177,533B1 (Jones, 2001).
  • [0007]
    Fine powder resins are known to be useful in paste extrusion processes and in stretching (expansion) processes in which the paste-extruded extrudate, after removal of extrusion aid lubricant, is stretched to produce porous, strong products of various cross-sectional shapes such as rods, filaments, sheets, tubes, etc. Such a stretching process is disclosed in the pioneering U.S. Pat. No. 3,953,566 (Gore, 1976), assigned commonly with the instant invention.
  • [0008]
    The expansion process as it applies to fluorocarbon polymers is fully described in the aforesaid '566 patent, and that process has come to identify what is currently termed the “expanded” form of TFE fluoropolymers, and will serve to define what is meant herein as an expanded or expandable TFE polymer or copolymer.
  • [0009]
    The term “copolymer” as it has been used in connection with fluoropolymers in the prior art has been inconsistently applied. For all purposes herein, as set out in the Fluoroplastics text cited above and in the ISO 12086 classification cited above, the normal convention of polymer science will be followed, and the term “copolymer” will apply to any fluoropolymer containing more than 1.0% by weight of at least one comonomer in addition to TFE. A fluoropolymer containing less than 1.0% comonomer is properly categorized as a “modified” homopolymer (Id.), although the term “copolymer” has been misapplied in the literature when referring, in fact, to “modified” homopolymers. One must examine each particular instance of such use to determine the actual concentrations of comonomers employed to determine whether, in fact, the referenced composition is a “modified” homopolymer or a true copolymer, that is, whether or not the polymeric product, in fact, contains more than 1.0 weight percent comonomeric units.
  • [0010]
    By definition herein, the invention provides a true TFE copolymer, of the fine powder type, that is expandable, as defined above, to produce useful, expanded TFE copolymeric products.
  • [0011]
    U.S. Pat. No. 4,837,267 (Malhotra, 1989) discloses a three-component composition termed “core-shell TFE copolymers”, which are described as non-melt processable, including chlorotrifluoroethylene (CTFE) monomer residing in the core and having recurring units of a comonomer of perfluoro(n-alkylvinyl)ether of 3-7 carbon atoms (col. 1, lines 45-55). The total comonomer content in the particles is said to be between 0.001 and 2 weight percent. The examples presented all relate to terpolymers having comonomeric concentrations much less than the range described, namely 0.23% CTFE and 0.0145% PPVE (total of 0.2445 wt %) in Example 1, and 0.13% HFP and a minute, undeterminable amount of PPVE in Example 2. The stated upper limit of 2% is therefore unsupported by the specification and examples presented. Moreover, there is no disclosure or suggestion in the '267 patent of an expanded or an expandable TFE copolymeric composition.
  • [0012]
    Japanese Patent Application (Kokai) 2005-306033A, published Nov. 4, 2005, discloses thin films of PTFE which are said to be non-porous, non-gas-permeable (p. 5), and to contain “trace monomer units” in the range of 0.001-2 mol % (p. 7) described as “modified” PTFE. The objective of the invention is said to be obtained by “heat treatment” of “porous PTFE resin film” to render the film “substantially nonporous”. There is no disclosure or suggestion in this reference of a porous, expandable TFE copolymeric composition.
  • [0013]
    U.S. Pat. No. 4,391,940 (Hoechst, 1983) discloses and describes a partially modified tetrafluoroethylene polymer having a “three-shell” particle structure. The resins are said to be suitable for paste extrusion to produce cable insulation and highly stretchable, unsintered tapes ('940 patent, Abstract). This patent describes fluorinated modifying monomers which are capable of copolymerizing with tetrafluoroethylene, such as perfluoropropane, perfluoroalkyl vinyl ether, and halogen-substituted or hydrogen-substituted fluoroolefins. The specification cautions that the total amount of the comonomer modifying agent should be so low that the specific properties of the pure polytetrafluoroethylene are retained, that is, there remains no possibility of processing from the melt because of the extremely high melt viscosity for such modified polymers. ('940 patent, col. 1, I. 62 et seq.) Products disclosed include modified polymer particles having a core of a polymer of “0.05 to 6% by weight” of at least one modifying fluoroolefin comonomer, a first, inner shell, immediately adjacent the core, of TFE units, and a second, outer shell, immediately adjacent the inner shell, of a polymer comprising “0.1 to 15% by weight” of units of at least one modifying fluoroolefin (col. 3, I. 5, et seq.). Examples of the “three-shell” products provided in this reference for illustration of the principles disclosed therein show that tapes, upon stretching, after removal of lubricant, developed defects or tore completely at relatively modest stretch ratios. For example, the detailed procedure described in Example 31, at col. 14, I. 60 to col. 16, I. 6, produced a product which developed defects at a 4:1 stretch ratio and tore completely at a stretch ratio of 8:1 ('940 patent, Table III).
  • [0014]
    For comparison and to place various of the prior art disclosures in context, recently issued U.S. Pat. No. 6,841,594 (Jones, 2005) instructs that polytetrafluoroethylene (PTFE) refers to the polymerized tetrafluoroethylene by itself without any significant comonomer present, and that “modified” PTFE refers to TFE polymers having such small concentrations of comonomer that the melting point of the resultant polymer is not substantially reduced below that of PTFE. The concentration of such comonomer, consistent with prior citations above, is preferably less than 1 weight %, more preferably less than 0.5 weight %. The modifying comonomers cited include, for example, hexafluoropropylene (HFP), perfluoro(methyl vinyl ether) (PMVE), perfluoro (propyl vinyl ether) (PPVE), perfluoro (ethyl vinyl ether) (PEVE), chlorotrifluoroethylene (CTFE), perfluoro-butyl ethylene (PFBE), or other monomer that introduces side groups into the molecule. These instructions are consistent with the disclosures above and with the definitions contained herein, i.e., that the term “copolymer”, as contrasted with the term “modified homopolymer”, shall mean any fluoropolymer containing more than 1.0% by weight of at least one comonomer in addition to TFE.
  • [0015]
    U.S. Pat. No. 6,127,486 (Burger, et. al., 2000) discloses a blend of a fluoropolymer and a “thermoplastic”, wherein the “thermoplastic” is said to include a “PTFE copolymer” (col. 4, I. 46). The specification instructs that, for the resins described therein, the amount of comonomer is limited such that the [modified] PTFE exhibits properties of “not being processable in the melt.” (Emphasis in original). The PTFE is referred to as modified PTFE “in which the comonomers are contained in an amount below 2, preferably 1 wt. % in PTFE.” (Col. 4, I. 50) No examples are provided of any copolymer having greater than 1.0 weight % of an additional comonomer, and the patent concerns blends of polymers, a different physical form entirely from the true copolymers which form the subject matter of the present invention.
  • [0016]
    Another recent reference, Japanese Patent Application No. 10-243976 (Asahi Glass Co., Ltd., claiming priority to Dec. 26, 1997) is still further instructive of the state of the art in the field of copolymers and modified homopolymers of TFE. That patent application, titled “Tetrafluoroethylene Copolymer and Application Thereof”, contains claims to polymers having, inter alia, additional comonomer content in the range of 0.005 to 0.05 mol % (about 0.012 to 0.123 wt %). The patent discusses known copolymerization techniques and discloses that a further, related Japanese application, JP (Kokoku) 3-66926, proposes a method for modifying PTFE by employing Rf—CH═CH2 (where Rf is a c1-10perfluoroalkyl group) as a comonomer. In the proposed method, the comonomer is continuously added during the polymerization process in order to enhance modification in the initial period. The modification is said to be primarily performed in order to improve the paste extrudability of fine powders, for example, to reduce extrusion pressure, and the content of polymerization units based on comonomers, while less than 0.5 wt %, is “still comparatively high in substantial terms” (0.1 wt % or higher). Consequently, the product has substantially no melt moldability and possesses markedly reduced crystallinity. The reference describes “another drawback”, that such modified PTFE becomes less heatresistant because of the structure of the comonomers introduced. Finally, the Asahi patent application concludes, quoting therefrom:
      • In addition, the comonomer structure impairs molecular orientation, causing breakage during stretching and making the product substantially unusable for the manufacture of stretched porous articles. An object of the present invention is to provide a PTFE product that has excellent extrudability, can be uniformly stretched, and yields high-strength porous articles.
  • [0018]
    This objective is then said to be obtained by limiting the introduction of polymerization units based on comonomers copolymerizable with TFE to an amount that has no discernible effect on processability.
  • [0019]
    Specifically, the Asahi application provides a product of TFE and a fluorinated comonomer expressed by the general formula CH2═CH—Rf (where Rf is a C1-10 perfluoroalkyl group, wherein this polymer contains 0.005 to 0.05 mol % polymerization units based on the fluorinated comonomer. Further, a porous polymer article is provided, obtained by a process in which a powder composed of the aforementioned modified PTFE is paste-extruded and then stretched at a temperature of 250° C. or higher. This reference, however, specifically cautions against polymerization in which the amount of copolymerized monomer exceeds certain limits. The application states, again quoting directly:
      • The content of the polymerization units based on fluorinated comonomer in the present invention must be rigorously controlled because of considerations related to stretchability. The content of the units in the PTFE must fall within a range of 0.005 to 0.05 mol %. A content above 0.05 mol % brings about a slight reduction in polymer crystallinity, results in a lower paste extrusion pressure, and has a markedly adverse effect on stretchability. A content below 0.005 mol % makes it substantially more difficult to improve the physical properties of a stretched article or to obtain other modification effects. A range of 0.01 to 0.04 mol % is particularly preferred.
  • [0021]
    This, again, is consistent with the other teachings of the prior art references discussed hereinabove. In Example 4 of this Asahi reference, in which a “high” content (by applicant's definition), 0.42 wt %, of perfluorobutylethylene comonomer was employed, the paste extrusion pressure was desirably low, and “excellent” extrudability was obtained. However, a test specimen, on stretching, broke. The specification discloses, at this “high” level of comonomer concentration of 0.42 wt %, “ . . . breakage occurred during stretching, and it was impossible to obtain a porous article.” (p. 12, § 0050). In spite of these cautionary teachings, and in contrast thereto, the present invention is directed to true TFE copolymers, all containing in excess of 1.0 weight percent comonomer units, all of which are expandable to form porous expanded articles, to a process for their manufacture, and to the expanded articles produced thereby. No known prior art reference discloses or suggests such porous, expanded copolymeric articles or the resins from which they are produced.
  • [0022]
    It is wholly unexpected, and contrary to prior art teachings, that a TFE copolymer, having comonomeric unit concentrations in the high ranges claimed herein, can be expanded as disclosed hereinbelow, to and beyond a 25:1 stretch ratio, to form a uniform, viable shaped article. This synergistic result is truly surprising to one skilled in this art.
  • SUMMARY OF THE INVENTION
  • [0023]
    A process is provided for the copolymerization of an expandable tetrafluoroethylene (TFE) copolymer of the fine powder type, the copolymer containing 99.0% or less by weight tetrafluoroethylene (TFE) monomer units and at least, or greater than, 1.0% by weight, of units of at least one other comonomer, that is, other than tetrafluoroethylene. The other comonomer is an ethylenically unsaturated comonomer having a sufficiently high reactivity ratio to TFE to enable polymerization therewith. The process includes the steps of copolymerizing the TFE monomer and the at least one other monomer in a pressurized reactor by feeding 99.0% or less by weight of the TFE monomer into the reactor, feeding at least or greater than 1.0% by weight of the other comonomer into the pressurized reactor, wherein percentages are based upon total weight of monomers fed, initiating polymerization of the monomers with a free radical initiator, and stopping the feeding of the other monomer at a point in time in the polymerization reaction prior to completion of the reaction. In one embodiment, optionally, excess comonomer is removed (evacuated) from the reactor, as needed, prior to completion of the reaction. The at least one other comonomer may be an olefin such as ethylene, propylene or isobutylene, a fluorinated monomer selected from the group consisting of chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), vinylidene fluoride (CFH═CH2), vinylidene difluoride (CF2═CH2), hexafluoroisobutylene (HFIB) and trifluoro-ethylene (CF2═CFH), a fluorodioxole of the general formula:
  • [0000]
    Figure US20090258958A1-20091015-C00001
  • [0000]
    wherein R1 and R2═F or a 1-3 carbon alkyl group containing at least one fluorine, and X, Y may be F 10 and/or H;
    a fluorodioxole of the general formula:
  • [0000]
    Figure US20090258958A1-20091015-C00002
  • [0000]
    wherein Rf is a perfluoroalkyl carbon of 1-5 atoms, and R1, R2 may be F and/or CF3; and
  • [0024]
    a fluorodioxalane of the general formula:
  • [0000]
    Figure US20090258958A1-20091015-C00003
  • [0000]
    wherein R1, R2 may be F and/or a perfluoroalkyl carbon of 1-5 atoms. Alternatively, the at least one other comonomer may be a perfluoroalkyl ethylene monomer such as a monomer selected from the group perfluorobutylethylene (PFBE), perfluorohexylethylene (PFHE) and perfluoro-octylethylene (PFOE), or it may be a perfluoroalkyl vinyl ether monomer such as a monomer selected from the group consisting of perfluoro(methyl vinyl ether) (PMVE), perfluoro(ethyl vinyl ether) (PEVE), and perfluoro(propyl vinyl ether) (PPVE). More than one other comonomer may be fed into the pressurized reactor, to produce multicomponent copolymers, i.e., terpolymers, etc.
  • [0025]
    The monomer feeds may be introduced as a precharge in the polymerization, or the at least one other comonomer may be introduced incrementally or intermittently during the reaction.
  • [0026]
    The process in one embodiment preferably includes stopping the feeding of the at least one other comonomer at less than 90% of the reaction completion.
  • [0027]
    Higher concentrations of comonomer in the copolymer produced are achieved by feeding the at least one other comonomer at higher concentration levels, such as at least 1.5% by weight, at least 2.0% by weight, and exceeding 5.0% by weight of the at least one other comonomer to the reactor.
  • [0028]
    The aforesaid process produces an expandable tetrafluoroethylene (TFE) copolymer of the fine powder type containing 99.0% or less by weight of polymerized tetrafluoroethylene (TFE) monomer units and at least, or greater than, 1.0% by weight, of polymerized comonomer units of the at least one other comonomer fed into the reaction, based on total weight of polymer produced. This true copolymer is expandable to a porous, expanded copolymeric material having a microstructure characterized by nodes 1 interconnected by fibrils 2, as shown in FIG. 1, described more fully below. Further views of alternative unique node, 1, and fibril, 2, microstructures are shown in FIGS. 2 and 3.
  • [0029]
    The expandable copolymer produced contains at least one other polymerized comonomer within the following group: olefins such as ethylene, propylene and isobutylene; fluorinated comonomers such as chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), vinylidene fluoride (CFH═CH2), vinylidene difluoride (CF2═CH2), hexafluoroisobutylene (HFIB), trifluoroethylene (CF2═CFH), fluorodioxoles and fluorodioxalanes; and perfluoroalkyl ethylene monomers, including perfluorobutylethylene (PFBE), perfluorohexylethylene (PFHE) and perfluorooctylethylene (PFOE), and a perfluoroalkyl vinyl ether monomer, including perfluoro(methyl vinyl ether) (PMVE), perfluoro(ethyl vinyl ether) (PEVE), and perfluoro(propyl vinyl ether) (PPVE). The copolymer produced may include more than one other polymerized comonomer, and the comonomer content in the copolymer always exceeds 1.0% by weight, may exceed 1.5% by weight polymerized units of the other comonomer and, indeed, may exceed 5.0 weight % of polymerized units of the other comonomer(s).
  • [0030]
    In a further embodiment of the invention, copolymer materials are produced which exhibit unique adhesion characteristics which cannot be achieved in PTFE homopolymers. That is, the copolymer can be adhered to itself or other materials after subjecting it to lower temperature and/or shorter time and/or lower pressure than what is required for adhering PTFE homopolymer to itself. For example, as described later herein with respect to room temperature adhesion testing, this adhesion, or bonding, can be achieved at temperatures at or below about 290° C. with these unique copolymers (hence, at lower temperatures than required for PTFE homopolymers).
  • [0031]
    The copolymer of the invention is produced in the form of fine particles dispersed within an aqueous medium which may be coagulated using known techniques to produce fine powder resins. Porous, expanded TFE copolymer materials having a microstructure of nodes interconnected by fibrils are further provided according to the invention. These porous, expanded copolymeric materials can be produced in the form of shaped articles such as sheets or films, tubes, rods, and continuous filaments, and these articles are generally strong, that is, their matrix tensile strengths in at least one direction exceed 5,000 psi. Matrix tensile strengths in at least one direction can, for certain products, exceed 30,000 psi, thus providing extremely strong, porous, true copolymeric expanded TFE articles useful in many applications.
  • [0032]
    The copolymer of the invention is produced in the form of fine particles dispersed within an aqueous medium which may be coagulated using known techniques to produce fine powder resins. Porous, expanded TFE copolymer materials having a microstructure of nodes interconnected by fibrils are further provided according to the invention. These porous, expanded copolymeric materials can be produced in the form of shaped articles such as sheets or films, tubes, rods, and continuous filaments, and these articles are generally strong, that is, their matrix tensile strengths in at least one direction exceed 5,000 psi. Matrix tensile strengths in at least one direction can, for certain products, exceed 30,000 psi., thus providing extremely strong, porous, true copolymeric expanded TFE articles useful in many applications. In a further embodiment, such expanded TFE materials may be compressed or otherwise processed to achieve a reduction in porosity utilizing processing techniques known in the art.
  • [0033]
    The copolymer of the present invention can be used in a wide variety of medical and commercial devices. Medical devices include the incorporation of the inventive copolymer into long and short term implantable devices, as well as in disposable, or single use, supplies and devices. These devices include, but are not limited to, vascular grafts (to repair, replace, bypass or augment a blood vessel or another vascular graft), other shunting conduits, surgical and laparoscopic sheets and patches, endoluminal prostheses (e.g., stent-grafts), components of cell containment devices, and substrates for drug delivery, catheters, space filling or augmentation devices, joint spacers, surface coatings for devices, lenses, work surface or clean room surface coatings, seals, gaskets, blood contact surfaces, bags, containers and fabric liners.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0034]
    In the accompanying drawings,
  • [0035]
    FIG. 1, is a SEM photomicrograph of an expanded sheet of a copolymeric resin produced according the invention herein, taken at 200× magnification, showing the node 1 and fibril 2 microstructure of this material, the respective nodal intersections being interconnected by the multiplicity of fibrils 2;
  • [0036]
    FIG. 2 is a SEM photomicrograph of the expanded beading specimen of the copolymeric resin produced in Example 6, taken at 200× magnification, showing the node 1 and fibril 2 microstructure of this material, the respective nodal intersections being interconnected by the multiplicity of fibrils 2;
  • [0037]
    FIG. 3 is another SEM photomicrograph of the expanded sheet specimen of the copolymeric resin produced in Example 6, taken at 20,000× magnification, showing a node 1 and fibril 2 microstructure; and
  • [0038]
    FIG. 4 includes differential scanning calorimetry (DSC) scans showing the melt transition temperature peaks of the materials of Examples 10, 12 and 13, as well as that of a comparative PTFE homopolymer.
  • DESCRIPTION OF THE INVENTION
  • [0039]
    A process for the polymerization of a true tetrafluoroethylene (TFE) copolymer of the fine powder type is provided, wherein the copolymer contains polymerized comonomer units of at least one comonomer other than TFE in concentrations of at least or exceeding 1.0 weight percent, and which can exceed 5.0 weight percent, wherein the copolymer is expandable, that is, the copolymer may be expanded to produce strong, useful, expanded TFE copolymeric articles having a microstructure of nodes interconnected by fibrils.
  • [0040]
    The copolymer of this invention is produced by a polymerization process wherein the copolymerization reaction is started by a suitable initiator, after which initiator addition is stopped, allowing the reaction to slow down and proceed to completion, at a point between 15% and 90% of the progression of the reaction toward completion. Preferably the initiator addition is stopped at about the mid-point of the reaction, i.e., at 20-60% to completion.
  • [0041]
    Substantially non-telogenic dispersing agents are used. Ammonium perfluoro octanoic acid (APFO or “C-8”) is one acceptable dispersing agent. Programmed addition (precharge and pumping) is known and is preferred. Attention must be paid to ingredient purity to achieve the desired properties in polymerizations as described herein. Ionic impurities, which can increase ionic strength, in addition to soluble organic impurities, which can cause chain transfer or termination, must be minimized. It is clearly important to employ ultra pure water in all such polymerization reactions.
  • [0042]
    The break strength associated with an extruded and expanded (stretched) TFE polymeric beading produced from a particular resin is directly related to that resin's general suitability for expansion, and various methods have been employed to measure break strength. The following procedure was used to produce and test expanded beading specimens made from the copolymers of this invention, the data for which are reported hereinbelow.
  • [0043]
    For a given resin, 113.4 g of fine powder resin is blended together with 130 cc/lb (24.5 g) of Isopar® K. The blend is aged for about 2 hours at 22° C. in a constant temperature water bath. A 1-in. diameter cylindrical preform is made by applying about 270 psig of preforming pressure for about 20 seconds. The preform is inspected to ensure it is crack free. An extruded beading is produced by extruding the preformed, lubricated resin through a 0.100 in. diameter die having a 30 degree included inlet angle. The extruder barrel is 1-in. in diameter and the ram rate of movement is 20 in./min. The -extruder barrel and die are at room temperature, maintained at 23° C., plus or minus 1.5° C. The Isopar K is removed from the beading by drying it for about 25 minutes at 225-230° C. Approximately the first and last 8 ft. of the extruded beading are discarded to eliminate end effects. A 2.0 in. section of the extruded beading is expanded by stretching at 290° C. to a final length of 50 in. (expansion ratio of 25:1) and at an initial rate of stretch of 100% per second, which is a constant rate of 2 in. per second. Approximately a 1 ft. length from near the center of the expanded beading is removed, and the maximum break load of the removed sample held at room temperature (23° C. plus or minus 1.5° C.) is measured using an Instron® tensile tester using an initial sample length of 2 in and a crosshead speed of 12 in/min. Measurements in duplicate are obtained and reported as the average value for the two samples. This procedure is similar to that described in U.S. Pat. No. 6,177,533B1. The expansion here is carried out at 290° C. instead of 300° C.
  • [0044]
    Core-shell resin structures containing polymerized monomers additional to TFE, structurally similar to those produced by the techniques described herein, and as described earlier herein, have been known for some time. See, e.g., U.S. Pat. Nos. 4,576,869 (Malhotra), 6,541,589B1 (Baillie) and 6,841,594B2 (Jones). In the examples which follow, and for the claimed compositions, the resins produced according to the present invention are all true copolymers, i.e., comonomer content exceeding 1.0 weight percent, verified using solid state NMR spectroscopy, as well as mass balance and detection of residual monomer in the gas phase of the polymerization batch, through gas chromatography. The compositions are all expandable to a stretch ratio of at least 25:1, to form expanded copolymeric articles having their unique node, 1, and fibril, 2, microstructure as shown in FIG. 1, verifiable through SEM examination, as demonstrated below. Further views of alternative unique node, 1, and fibril, 2, microstructures are shown in FIGS. 2 and 3.
  • [0045]
    Characterization of copolymer materials can be performed via standard analytical techniques available in the art including, but not limited to, DCS, NMR (including fluorine, proton, carbon and other known NMR techniques), TGA, IR, FTIR, Raman spectroscopy, and other suitable techniques.
  • Tests Differential Scanning Calorimetry (DSC)
  • [0046]
    This test was performed using a TA Instruments Q2000 DSC and TA Instruments standard aluminum pans and lids for Differential Scanning Calorimetry (DSC). Weight measurements were performed on a Sartorius MC 210P microbalance.
  • [0047]
    Calibration of the Q2000 was performed by utilizing the Calibration Wizard available through the Thermal Advantage software supplied with the device. All calibration and resulting scans were performed under a constant nitrogen flow of 50 ml/min.
  • [0048]
    The sample was loaded into the pan and the weight was recorded to 0.01 mg precision, with samples ranging from 5.00 mg to 10.00 mg. These values were entered into the Thermal Advantage control software for the Q2000. The lid was placed on the pan and crimped using a standard press. A similar pan for reference was prepared, with the exception of the sample article, and its weight was also entered into the software. The pan containing the sample article was loaded onto the sample sensor in the Q2000 and the empty pan was loaded onto the reference sensor. The samples were then equilibrated at −50° C. and ramped at 20° C./min to 400° C. Data were analyzed using Universal Analysis 2000 v.3.9A from TA Instruments.
  • Adhesion Testing
  • [0049]
    Extruded PTFE tapes were cut into rectangles with dimensions of 20 mm width×75 mm length and were thermally bonded in a Carver press model #3895, from Fred S. Carver Inc, Wabash, Ind. to aluminum foil substrates to create 90 degree peel samples. The tapes were bonded to 23 micron thick Heavy Strength aluminum foil from Reynolds Consumer Products Co, Richmond, Va. 23230. Polyimide release film, Upilex grade 25SDADB, 25 microns thick, available from UBE Industries, LTD., Tokyo, Japan was used to prevent adhesion to the press plates and provide a pre-crack to initiate peel during 90 degree peel testing. Melt press time, and normal force were 30 minutes and 450 Kg. Samples were prepared at melt press temperatures of 195° C., 290° C., and 350° C. Once bonded the samples were cooled PTFE tape peel samples at each bonding temperature were prepared simultaneously to maintain a common thermal history. A 90 degree peel test is conducted at a test speed of 1 mm/sec using an Imass SP-2000 Slip-Peel Tester, available from Instrumentors Inc., Strongsville, Ohio. Results were reported in J/m2, and any measurable value defined that the material exhibits adhesion. For samples where the sample fell apart prior to testing, a “no adhesion” value was reported.
  • NMR Analysis
  • [0050]
    A sample of 10 to 25 mg was packed into a 2.5 mm ZrO spinner using standard Bruker 2.5 mm packing accessories (Bruker BioSpin Inc., Boston, Mass.). 19F spectra were collected at about 296 Kelvin on a Bruker-BioSpin 2.5 mm cross polarization magic angle spinning (CPMAS) probe positioned in a standard bore 7.05 T Bruker ultra shielded superconducting magnet. The samples were positioned at the magic angle and spun at 32.5 kHz. A Bruker BioSpin Avance II 300 MHz system was used to collect 19F NMR data at 282.4 MHz. Software used for data acquisition and data processing was Topspin 1.3. The data was collected using the conditions specified in Table B. The spectra were externally referenced to PTFE at −123 ppm.
  • [0000]
    TABLE A
    NMR Instrument Used
    Manufacturer Bruker BioSpin
    Model Avance II 300 MHz
    Magnet 7.05 T Ultrashielded
    Probe Bruker 2.5 mm CPMAS Multinuclear
    Rotor Standard Bruker 2.5 mm
    19F Frequency 282.4 MHz
    Software Topspin 1.3
  • [0000]
    TABLE B:
    NMR Acquisition Parameters
    Parameter Value
    MAS Spinning speed 32.5 kHz
    Pulse length (11°) 0.4 □s
    Spectral Window 113636 Hz (402 PPM)
    Transmitter offset −100 PPM
    Number of scans 2000
    Recycle delay 3 s
    Acquisition Time 150 ms
    Acquired Data Points used in Fourier 8000
    Transform
    Zero Fill before Fourier Transform 32k
    Line broadening 15 Hz

    The following examples are intended to be illustrative of the invention, but are not to be construed as limiting the scope of the invention in any way.
  • Example 1
  • [0051]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0052]
    The reactor was heated to 83 C and agitated at 60 rpm. Subsequently, 0.8 MPa of VDF was added followed by addition of TFE until the pressure reached 2.8 MPa. At this time, KMNO4 in a DI water solution (0.063 g/L) was injected at 80 mL/min until approximately 2 kg of TFE was added. After addition of the 2nd Kg of TFE, the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. The KMnO4 was added at 20 mL/min for the 3rd Kg of TFE and further reduced to 10 mL/min for the 4th Kg of TFE. After the 4th Kg of TFE was added, KMnO4 was no longer added.
  • [0053]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0054]
    The polymerization reaction was then allowed to continue and the reaction stopped after 14.3Kg of TFE had been added to the reactor. The weight of the dispersion produced was 44.73 Kg containing 32.6% solids. The dispersion was coagulated with Nitric acid and dried at 170° C. The raw dispersion particle size (RDPS) of the polymer particle was 0.296 microns and the standard specific gravity was 2.156. The VDF concentration in the copolymer was measured to be 3.48 mol % (2.26 wt %). The break strength of the beading was 6.6 lbs.
  • [0055]
    The matrix tensile strength of the specimen was measured to be 37,299 psi.
  • Example 2
  • [0056]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluoro-octanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0057]
    The reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, 0.8 MPa of trifluoroethylene (herein designated TrFE) was added followed by addition of TFE until the pressure reached 2.8 MPa. At this time, KMNO4 in a DI water solution (0.1 g/L) was injected at 80 mL/min until approximately 0.5 kg of TFE was consumed. At this time, the rate was reduced to 40 mL/min until a second Kg of TFE was consumed. The pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. The KMnO4 was again added at 40 mL/min for the next 0.5 Kg of TFE and continued until 4 Kg of TFE was consumed. After 4 Kg of TFE was consumed, KMnO4 was no longer added.
  • [0058]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0059]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 45.74 Kg containing 35.8% solids. The dispersion was coagulated with Nitric acid and dried at 170 C.
  • [0060]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.283 microns and the standard specific gravity was 2.213. The trifluoroethylene concentration in the copolymer was measured to be 3.2 mol % (2.6 wt %). The break strength of the beading specimen was 7.24 lbs.
  • [0061]
    The matrix tensile strength of the specimen was measured to be 28,602 psi.
  • Example 3
  • [0062]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0063]
    To the evacuated reactor, 8 mL of PFBE was charged, and the reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, 0.8 MPa of VDF was added followed by addition of TFE until the pressure reached 2.8 MPa. At this time, KMNO4 in a DI water solution (0.1 g/L) was injected at 80 mL/min until approximately 2 kg of TFE was added. After addition of the second Kg of TFE, the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. The KMnO4 was added at 40 mL/min until the 4th Kg of TFE was consumed. After the 4th Kg of TFE was added, KMnO4 was no longer added.
  • [0064]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0065]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 42.76 Kg containing 29.0% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0066]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.263 microns and the standard specific gravity was 2.157. The VDF concentration in the copolymer was measured to be 4.30 mol % (2.80 wt %). The PFBE concentration in the copolymer was measured to be 0.03 mol % (0.07 wt %), yielding a total copolymer concentration in the composition of 2.87 wt %. The break strength of the beading specimen was 13.6 lbs.
  • [0067]
    The matrix tensile strength of the specimen was measured to be 44,878 psi.
  • Example 4
  • [0068]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0069]
    To the evacuated reactor, 19.94 g of PFOE was charged, and the reactor was heated to 83 C and agitated at 60 rpm. Subsequently, 0.8 MPa of VDF was added followed by addition of TFE until the pressure reached 2.8 MPa. At this time, KMNO4 in a DI water solution (0.1 g/L) was injected at 80 mL/min until approximately 2 kg of TFE was added. After addition of the second Kg of TFE, the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. The KMnO4 was again added at 40 mL/min until an additional 0.5 Kg of TFE was consumed and reduced to 20 mL/min until 4Kg of TFE was consumed. After the 4th Kg of TFE was added, KMnO4 was no longer added.
  • [0070]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0071]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 42.82 Kg containing 28.4% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0072]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.240 microns and the standard specific gravity was 2.159. The VDF concentration in the copolymer was measured to be 3.50 mol % (2.20 wt %). The PFOE concentration in the copolymer was measured to be 0.03 mol % (0.16 wt %), yielding a total copolymer concentration in the composition of 2.36 wt %. The break strength of the beading specimen was 14.1 lbs.
  • [0073]
    The matrix tensile strength of the specimen was measured to be 48,236 psi.
  • Example 5
  • [0074]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0075]
    To the evacuated reactor, 8 mL of PFBE were charged, and the reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, TFE was added until the pressure reached 2.8 MPa. At this time, KMnO4 in a DI water solution (0.063 g/L) was injected at 80 mL/min until approximately 1 kg of TFE was added. At this time the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with 0.8 MPa of VDF followed by addition of TFE until the pressure reached 2.8 MPa. The KMnO4 was again added at 80 mL/min until an additional 1 Kg of TFE was consumed at which time it was reduced to 40 mL/min until 4Kg of TFE was consumed. After the fourth Kg of TFE was consumed the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. An additional amount of KMnO4 was added at 10 mL/min until the fifth Kg of TFE was consumed. After the consumption of the fifth Kg of TFE, no more KMnO4 was added.
  • [0076]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0077]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 48.8 Kg containing 34.5% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0078]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.234 microns and the standard specific gravity was 2.151. The VDF concentration in the copolymer was measured to be 3.15 mol % (2.04 wt %), and the PFBE concentration in the copolymer was measured to be 0.03 mol % (0.07 wt %), yielding a total copolymer concentration in the composition of 2.11 wt %. The break strength of the beading specimen was 8.6 lbs.
  • [0079]
    The matrix tensile strength of the specimen was 10 measured to be 31,342 psi.
  • Example 6
  • [0080]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0081]
    The reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, TFE was added until the pressure reached 2.8 MPa. At this time, KMnO4 in a DI water solution (0.063 g/L) was injected at 80 mL/min until approximately 1 kg of TFE was added. At this time the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with 0.8 MPa of VDF followed by addition of TFE until the pressure reached 2.8 MPa. The KMnO4 was again added at 80 mL/min until an additional 2 Kg of TFE was consumed at which time it was reduced to 40 mL/min until 4Kg of TFE was consumed. After the fourth Kg of TFE was consumed the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. An additional amount of KMnO4 was added at 40 mL/min until the fifth Kg of TFE was consumed. After the consumption of the fifth Kg of TFE, no more KMnO4 was added.
  • [0082]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0083]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 46.86 Kg containing 35.0% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0084]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.265 microns and the standard specific gravity was 2.158. The VDF concentration in the copolymer was measured to be 3.35 mol % (2.17 wt %). The break strength of the beading specimen was 6.6 lbs. An SEM of the microstructure of the beading specimen is shown in FIG. 2.
  • [0085]
    The matrix tensile strength of the specimen was measured to be 26,053 psi.
  • [0086]
    The copolymer material formed in this example was then blended with Isopar K (Exxon Mobil Corp., Fairfax, Va.) in the proportion of 0.196 g/g of fine powder. The lubricated powder was compressed into a cylinder to form a pellet and placed into an oven set at 49° C. for approximately 12 hours. The compressed and heated pellet was ram extruded to produce a tape approximately 16.0 cm wide by 0.73 mm thick. The extruded tape was then rolled down between compression rolls to a thickness of 0.256 mm. The tape was then transversely stretched to approximately 56 cm wide (i.e., at a ratio of 3.5:1) and dried at a temperature of 250° C. The dry tape was longitudinally expanded between banks of rolls over a heated plate set to a temperature of 345° C. The speed ratio between the second bank of rolls and the first bank of rolls was 10:1. The width of the expanded tape was 12.1 cm. The longitudinally expanded tape was then expanded transversely at a temperature of approximately 360° C. to a ratio of approximately 25:1 and then constrained from shrinkage and heated in an oven set at 380° C. for approximately 24 seconds. An SEM of the resulting sheet is shown in FIG. 3, taken at 20,000× magnification, showing a node 1 and fibril 2 microstructure.
  • Example 7
  • [0087]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0088]
    To the evacuated reactor, 8 mL of PFBE was charged, and the reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, TFE was added until the pressure reached 2.8 MPa. At this time, KMnO4 in a DI water solution (0.063 g/L) was injected at 80 mL/min until approximately 1 kg of TFE was added. At this time the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with 0.8 MPa of TrFE followed by addition of TFE until the pressure reached 2.8 MPa. The KMnO4 was again added at 80 mL/min until an additional 3 Kg of TFE was consumed. After the fourth Kg of TFE was consumed the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. An additional amount of KMnO4 was added at 40 mL/min until the fifth Kg of TFE was consumed. After the consumption of the fifth Kg of TFE, no more KMnO4 was added.
  • [0089]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0090]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 46.9 Kg containing 33.1% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0091]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.227 microns and the standard specific gravity was 2.217. The TrFE concentration in the copolymer was measured to be 4.2 mol % (3.5 wt %), and the PFBE concentration in the copolymer was measured to be 0.03 mol % (0.07 wt %), yielding a total copolymer concentration in the composition of 3.57 wt %. The break strength of the beading specimen was 3.48 lbs.
  • [0092]
    The matrix tensile strength of the specimen was measured to be 13,382 psi.
  • Example 8
  • [0093]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0094]
    The reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, TFE was added until the pressure reached 2.8 MPa. At this time, KMnO4 in a DI water solution (0.063 g/L) was injected at 80 mL/min until approximately 1 kg of TFE was added. At this time the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with 0.8 MPa of TrFE followed by addition of TFE until the pressure reached 2.8 MPa. The KMnO4 was again added at 80 mL/min until an additional 3 Kg of TFE was consumed. After the fourth Kg of TFE was consumed the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. An additional amount of KMnO4 was added at 40 mL/min until the fifth Kg of TFE was consumed. After the consumption of the fifth Kg of TFE, no more KMnO4 was added.
  • [0095]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0096]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 47.22 Kg containing 34.8% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0097]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.276 microns and the standard specific gravity was 2.219. The TrFE concentration in the copolymer was measured to be 4.17 mol % (3.5 wt %). The break strength of the beading specimen was 3.95 lbs.
  • [0098]
    The matrix tensile strength of the specimen was measured to be 15,329 psi.
  • Example 9
  • [0099]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0100]
    The reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, TFE was added until the pressure reached 2.8 MPa. At this time, KMnO4 in a DI water solution (0.063 g/L) was injected at 80 mL/min until approximately 1 kg of TFE was added. At this time the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with 1.2 Kg of HFP followed by addition of TFE until the pressure reached 1.9 MPa. The KMnO4 was again added at 80 mL/min until an additional three Kg of TFE was consumed. After the 4th Kg of TFE was consumed the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. An additional amount of KMnO4 was added at 80 mL/min until the fifth Kg of TFE was consumed. After the consumption of the fifth Kg of TFE, no more KMnO4 was added.
  • [0101]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0102]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 48.54 Kg containing 30.4% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0103]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.302 microns and the standard specific gravity was 2.157. The HFP concentration in the copolymer was measured to be 0.77 mol % (1.25 wt %). The break strength of the beading specimen was 7.60 lbs.
  • [0104]
    The matrix tensile strength of the specimen was measured to be 34,178 psi.
  • Example 10
  • [0105]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO), 0.2 g FeSO4 and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0106]
    The reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, 0.81 MPa of CTFE was added followed by addition of TFE until the pressure reached 2.8 MPa. At this time, a solution containing 3 g ammonium persulfate and 3 g sodium hydrosulfite in 2000 mL of DI water was injected at 40 mL/min until 2Kg of TFE was consumed. After addition of the second Kg of TFE, the pressure in the reactor was reduced to 50 Kpa using vacuum and pressurized with fresh TFE to 2.8 MPa. Additional initiator solution was again added at 20 mL/Min until a total of 2.5Kg of TFE was consumed. At this time the rate was reduced to 10 mL/min. After 3Kg of total TFE was consumed no more initiator was added.
  • [0107]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0108]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16Kg of TFE had been added to the reactor. The weight of the dispersion produced was 48.07 Kg containing 35.0% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0109]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.245 microns and the standard specific gravity was 2.228. The CTFE concentration in the copolymer was measured to be 3.9 mol % (4.5 wt %). The break strength of the beading specimen was 7.6 lbs.
  • [0110]
    The matrix tensile strength of the specimen was measured to be 23,991 psi.
  • [0111]
    Adhesion testing was performed, and the results are reported in Table 2. A DSC scan for this material is included in FIG. 4, which shows a first melt transition for the material at about 247° C.
  • Example 11
  • [0112]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO), 0.2 g FeSO4 and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0113]
    To the evacuated reactor, 8 mL of PFBE was charged, and the reactor was heated to 83N C. and agitated at 60 rpm. Subsequently, 0.81 MPa of CTFE was added followed by addition of TFE until the pressure reached 2.8 MPa. A solution containing 3 g ammonium persulfate and 3 g sodium hydrosulfite in 200 mL of DI water was injected at 40 mL/min until 2 Kg of TFE were consumed. After addition of the second Kg of TFE, the pressure in the reactor was reduced to 50 KPa using vacuum and pressurized with fresh TFE to 2.8 MPa. Additional initiator solution was again added at 20 mL/Min until a total of 3.0 Kg of TFE was consumed. After the third Kg of TFE was consumed, no more initiator was added.
  • [0114]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1 Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8 kg of TFE had been reacted.
  • [0115]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16 Kg of TFE had been added to the reactor. The weight of the dispersion produced was 47.19 Kg containing 36.6% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0116]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.178 microns and the standard specific gravity was 2.247. The CTFE concentration in the copolymer was measured to be 3.1 mol % (3.70 wt %) and the PFBE concentration in the polymer was measured to be 0.03 mol % (0.07 wt %), yielding a total copolymer concentration in the composition of 3.77 wt %.
  • [0117]
    The break strength of the beading specimen was 3.48 lbs.
  • Example 12
  • [0118]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO) and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax.
  • [0119]
    The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0120]
    The reactor was heated to 83° C., and agitated at 60 rpm. Subsequently, 2.0 MPa of VDF was added followed by addition of TFE until the pressure reached 2.8 MPa. At this time, KMnO4 in a DI water solution (0.063 g/L) was injected at 80 mL/min until approximately 4 kg of TFE were added. The KMnO4 was added at 40 mL/min during addition of the next 2 kg of TFE. After 6 Kg of TFE was consumed, no more KMnO4 was added.
  • [0121]
    Approximately 320 g of 20% APFO solution were added in 40 mL increments, the first increment being added after about 1 kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8 kg of TFE had been reacted.
  • [0122]
    The polymerization reaction was then allowed to continue and the reaction stopped after 16 Kg of TFE had been added to the reactor. The weight of the dispersion produced was 48.64 Kg containing 31.2% solids. The dispersion was coagulated with Nitric acid and dried at 170° C.
  • [0123]
    The raw dispersion particle size (RDPS) of the polymer particle was 0.321 microns and the standard specific gravity was 2.137. The VDF concentration in the copolymer was measured to be 11.8 mol % (7.90 wt %).
  • [0124]
    The break strength of the beading specimen was 10.53 lbs. The matrix tensile strength of the specimen was measured to be 37,000 psi.
  • [0125]
    Adhesion testing was performed, and the results are reported in Table 2. A DSC scan for this material is included in FIG. 4, which shows a first melt transition for the material at about 185° C.
  • Example 13
  • [0126]
    To a 50-liter, horizontal polymerization reactor equipped with a 3-bladed agitator was added 1.5 Kg wax, 28 Kg of deionized (DI) water, 18 g of ammonium perfluorooctanoic acid (APFO), 1.5 g of ZnCl2, and 5 g of succinic acid dissolved in about 50 g of DI water. The reactor and contents were heated above the melting point of the wax. The reactor was repeatedly evacuated and pressurized (to about 1 Atm or less) with TFE until the oxygen level was reduced to 20 ppm or less. The contents were briefly agitated at about 60 rpm between evacuation and purge cycles to ensure that the water was deoxygenated.
  • [0127]
    The reactor was heated to 83° C. and agitated at 60 rpm. Subsequently, 2.0 MPa of VDF was added followed by addition of TFE until the pressure reached 2.8 MPa. At this time, KMnO4 in a DI water solution (0.1 g/L) was injected at 80 mL/min until was approximately 4 kg of TFE were added. The KMnO4 was added at 40 mL/min during the next 2 Kg TFE addition. After 5 Kg of TFE was consumed an additional 200 g of initiator solution was added. The total amount of KMnO4 solution added was 3.375 Kg.
  • [0128]
    Approximately 320 g of 20% APFO solution was added in 40 mL increments, the first increment being added after about 1Kg of TFE had been added, followed by increments after each additional Kg of TFE, so that the final increment was added after 8Kg of TFE had been reacted.
  • [0129]
    The polymerization reaction was then allowed to continue and the reaction stopped after 9Kg of TFE had been added to the reactor. The weight of the dispersion produced was 40.18 Kg containing 19.6% solids. The dispersion was coagulated with Nitric acid and dried at 170° C. The raw dispersion particle size (RDPS) of the polymer particle was 0.339 microns. The VDF concentration in the copolymer was measured to be 23.8 mol % (16.7 wt %). The Break strength of the beading specimen was 8.62 lbs. The matrix tensile strength of the specimen was measured to be 23,511 psi.
  • [0130]
    Adhesion testing was performed, and the results are reported in Table 2. A DSC scan for this material is included in FIG. 4, which shows a first melt transition for the material at about 193° C.
  • [0131]
    A summary of the results given in the above Examples is provided in Table 1. Adhesion results are reported in Table 2. The foregoing examples are provided to illustrate, without limitation, certain preferred embodiments of copolymers produced according to the principles described herein. Additional copolymers, terpolymers, etc., incorporating comonomers that are known to be reactive with TFE, can also be used. These additional comonomers can be added in a predetermined concentration and allowed to react, with or without evacuation, based on the monomers' reactivity ratio to TFE, all of which is known to one skilled in the art, as illustrated in the published literature (see, e.g., Well-Architectured Fluoropolymers: Synthesis, Properties, and Applications; Elsevier; Amsterdam 2004, pp. 209).
  • [0132]
    While the invention has been disclosed herein in connection with certain embodiments and detailed descriptions, it will be clear to one skilled in the art that modifications or variations of such details can be made without deviating from the gist of this invention, and such modifications or variations are considered to be within the scope of the claims hereinbelow.
  • [0000]
    TABLE 1
    Particle Extrusion Extrudate Break
    Added size, pressure strength, strength, MTS,
    Example comonomer(s) microns SSG psig psi lbs psi
    1 VDF 0.296 2.156 3500 1046 10.40 37,299
    2 TrFE 0.283 2.213 3501 926 7.24 28,602
    3 VDF/PFBE 0.263 2.157 3956 1139 13.60 44,878
    4 VDF/PFOE 0.240 2.159 4294 1257 14.10 48,236
    5 VDF/PFBE 0.234 2.151 3434 944 8.60 31,342
    6 VDF 0.265 2.158 3123 862 6.60 26,053
    7 TrFE/PFBE 0.227 2.217 3522 963 3.48 13,382
    8 TrFE 0.276 2.219 3085 847 3.95 15,329
    9 HFP 0.300 2.157 3350 988 7.60 34,178
    10 CTFE 0.245 2.228 3640 953 7.60 23,991
    11 CTFE/PFBE 0.177 2.247 3817 1071 5.50 15,722
    12 VDF 0.321 2.137 4110 1044 10.53 37,000
    13 VDF 0.339 n/a 5680 1061 8.62 23,511
  • [0000]
    TABLE 2
    Adhesion Adhesion Adhesion
    measure at measure at measure at
    Materials 195° C. (J/m2) 290° C. (J/m2) 350° C. (J/m2)
    PTFE Homopolymer No Adhesion No Adhesion 69.2
    Example 10 No Adhesion 88.5 89.2
    Example 12 87.2 221 521
    Example 13 15.3 105.3 383.5

Claims (58)

  1. 1. An expandable tetrafluoroethylene (TFE) copolymer, said copolymer containing 99.0% or less by weight tetrafluoroethylene monomer units and at least 1.0% by weight of at least one other comonomer other than tetrafluoroethylene, wherein said copolymer exhibits adhesion.
  2. 2. The expandable tetrafluoroethylene (TFE) copolymer of claim 1, wherein said adhesion is exhibited after subjecting the copolymer to a temperature at or below about 290° C.
  3. 3. The expandable tetrafluoroethylene (TFE) copolymer of claim 1, wherein said copolymer exhibits adhesion after subjecting the copolymer to its first melt transition temperature or above.
  4. 4. The expandable tetrafluoroethylene (TFE) copolymer of claim 1, wherein said copolymer exhibits adhesion after subjecting the copolymer to a temperature between its first melt transition temperature and about 290° C.
  5. 5. The copolymer of claim 1, wherein said at least one other comonomer is an olefin selected from the group consisting of ethylene, propylene and isobutylene.
  6. 6. The copolymer of claim 1, wherein said at least one other comonomer is a fluorinated monomer selected from the group consisting of chlorotrifluoroethylene (CTFE), hexafluoro-propylene (HFP), vinylidene fluoride (CFH═CH2), vinylidene difluoride (CF2═CH2), hexafluoroisobutylene(HFIB), trifluoroethylene (CF2═CFH), a fluorodioxole and a fluorodioxalane.
  7. 7. The copolymer of claim 1, wherein said at least one other comonomer is a perfluoroalkyl ethylene monomer.
  8. 8. The copolymer of claim 7, wherein said perfluoroalkyl ethylene monomer is selected from the group consisting of perfluorobutylethylene (PFBE), perfluorohexyl ethylene (PFHE) and perfluorooctylethylene (PFOE).
  9. 9. The copolymer of claim 1, wherein said at least one other comonomer is a perfluoroalkyl vinyl ether monomer.
  10. 10. The copolymer of claim 9, wherein said perfluoroalkyl vinyl ether monomer is PMVE.
  11. 11. The copolymer of claim 9, wherein said perfluoroalkyl vinyl ether monomer is PEVE.
  12. 12. The copolymer of claim 9, wherein said perfluoroalkyl vinyl ether monomer is PPVE.
  13. 13. The copolymer of claim 1, including more than one other comonomer.
  14. 14. The copolymer of claim 1, having at least 1.5% by weight polymerized units of at least one other comonomer.
  15. 15. The copolymer of claim 1, having at least 2.0% by weight polymerized units of at least one other comonomer.
  16. 16. The copolymer of claim 1, having at least 3.0% by weight polymerized units of at least one other comonomer.
  17. 17. The copolymer of claim 1, having at least 5.0% by weight polymerized units of at least one other comonomer.
  18. 18. The copolymer of claim 1, in the form of fine particles dispersed within an aqueous medium.
  19. 19. The copolymer of claim 1, in the form of fine powder.
  20. 20. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 1.
  21. 21. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 5.
  22. 22. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 6.
  23. 23. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 7.
  24. 24. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 8.
  25. 25. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 9.
  26. 26. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 10.
  27. 27. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 11.
  28. 28. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 12.
  29. 29. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 13.
  30. 30. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 14.
  31. 31. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 15.
  32. 32. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 16.
  33. 33. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 17.
  34. 34. A porous material having a microstructure of nodes interconnected by fibrils comprising the expanded TFE copolymer of claim 19.
  35. 35. The porous material of claim 20 in the form of a shaped article.
  36. 36. The article of claim 35 in the form of a sheet or film.
  37. 37. The article of claim 35 in the form of a tube.
  38. 38. The article of claim 35 in the form of a rod.
  39. 39. The article of claim 35 in the form of a continuous filament.
  40. 40. The shaped article of claim 35 having a matrix tensile strength in at least one direction exceeding 5,000 psi.
  41. 41. The shaped article of claim 35 having a matrix tensile strength in at least one direction exceeding 15,000 psi.
  42. 42. The shaped article of claim 35 having a matrix tensile strength in at least one direction exceeding 30,000 psi.
  43. 43. A shaped article comprising the fine powder of claim 19 which is paste-extrudable and expandable by stretching to a stretch ratio of at least 25:1 without breaking, which article has a matrix tensile strength in at least one direction exceeding 5000 psi.
  44. 44. The article of claim 35 in the form of a medical device.
  45. 45. The article of claim 35 in the form of an implantable medical device.
  46. 46. The article of claim 35 in the form of a vascular graft.
  47. 47. The article of claim 35 in the form of an endoluminal prosthesis.
  48. 48. A medical device comprising an expandable tetrafluoroethylene (TFE) copolymer, said copolymer containing 99.0% or less by weight tetrafluoroethylene monomer units and at least 1.0% by weight of at least one other comonomer other than tetrafluoroethylene.
  49. 49. The medical device of claim 48 in the form of an implantable medical device.
  50. 50. The medical device of claim 48 in the form of a vascular graft.
  51. 51. The medical device of claim 48 in the form of an endoluminal prosthesis.
  52. 52. The medical device of claim 48, having a matrix tensile strength in at least one direction exceeding 13,000 psi.
  53. 53. The medical device of claim 52 having a matrix tensile strength in at least one direction exceeding 15,000 psi.
  54. 54. The medical device of claim 52 having a matrix tensile strength in at least one direction exceeding 25,000 psi.
  55. 55. The medical device of claim 52 having a matrix tensile strength in at least one direction exceeding 30,000 psi.
  56. 56. The medical device of claim 48 in the form of an implantable medical device.
  57. 57. The medical device of claim 48 in the form of a vascular graft.
  58. 58. The medical device of claim 48 in the form of an endoluminal prosthesis.
US12408153 2007-10-04 2009-03-20 Expandable TFE copolymers, methods of making, and porous, expanded articles thereof Active 2029-01-12 US9040646B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11906877 US8637144B2 (en) 2007-10-04 2007-10-04 Expandable TFE copolymers, method of making, and porous, expended articles thereof
US12408153 US9040646B2 (en) 2007-10-04 2009-03-20 Expandable TFE copolymers, methods of making, and porous, expanded articles thereof

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US12408153 US9040646B2 (en) 2007-10-04 2009-03-20 Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
JP2012500788A JP5756079B2 (en) 2009-03-20 2010-03-17 Stretchability tfe copolymers, their production and their porous expanded articles
EP20100723366 EP2408827B1 (en) 2009-03-20 2010-03-17 Expandable tfe copolymers, method of making, and porous, expanded articles thereof
RU2011142289A RU2523455C2 (en) 2009-03-20 2010-03-17 Expandable copolymers tfe, method of their obtaining, and porous, expanded products from these copolymers
PCT/US2010/000811 WO2010107494A1 (en) 2009-03-20 2010-03-17 Expandable tfe copolymers, method of making, and porous, expanded articles thereof
CA 2754020 CA2754020C (en) 2009-03-20 2010-03-17 Expandable tfe copolymers, method of making, and porous, expanded articles thereof
KR20117024590A KR101705920B1 (en) 2009-03-20 2010-03-17 Expandable tfe copolymers, method of making, and porous, expanded articles thereof
CN 201080013571 CN102395611B (en) 2009-03-20 2010-03-17 Expandable tfe copolymers, method of making, and porous, expanded articles thereof
US13792398 US8911844B2 (en) 2007-10-04 2013-03-11 Expanded TFE copolymers, method of making and porous, expanded articles thereof
US14096089 US9193811B2 (en) 2007-10-04 2013-12-04 Expandable TFE copolymers, method of making, and porous, expanded articles thereof
US14577566 US9650479B2 (en) 2007-10-04 2014-12-19 Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
US14883772 US9593223B2 (en) 2007-10-04 2015-10-15 Expandable TFE copolymers, method of making, porous, expanded article thereof
US15478817 US9988506B2 (en) 2007-10-04 2017-04-04 Dense articles formed tetrafluoroethylene core shell copolymers and methods of making the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11906877 Continuation-In-Part US8637144B2 (en) 2007-10-04 2007-10-04 Expandable TFE copolymers, method of making, and porous, expended articles thereof

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13792398 Division US8911844B2 (en) 2007-10-04 2013-03-11 Expanded TFE copolymers, method of making and porous, expanded articles thereof
US14096089 Continuation US9193811B2 (en) 2007-10-04 2013-12-04 Expandable TFE copolymers, method of making, and porous, expanded articles thereof
US14577566 Continuation-In-Part US9650479B2 (en) 2007-10-04 2014-12-19 Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same

Publications (2)

Publication Number Publication Date
US20090258958A1 true true US20090258958A1 (en) 2009-10-15
US9040646B2 US9040646B2 (en) 2015-05-26

Family

ID=42318683

Family Applications (4)

Application Number Title Priority Date Filing Date
US12408153 Active 2029-01-12 US9040646B2 (en) 2007-10-04 2009-03-20 Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
US13792398 Active US8911844B2 (en) 2007-10-04 2013-03-11 Expanded TFE copolymers, method of making and porous, expanded articles thereof
US14096089 Active 2027-12-15 US9193811B2 (en) 2007-10-04 2013-12-04 Expandable TFE copolymers, method of making, and porous, expanded articles thereof
US14883772 Active US9593223B2 (en) 2007-10-04 2015-10-15 Expandable TFE copolymers, method of making, porous, expanded article thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13792398 Active US8911844B2 (en) 2007-10-04 2013-03-11 Expanded TFE copolymers, method of making and porous, expanded articles thereof
US14096089 Active 2027-12-15 US9193811B2 (en) 2007-10-04 2013-12-04 Expandable TFE copolymers, method of making, and porous, expanded articles thereof
US14883772 Active US9593223B2 (en) 2007-10-04 2015-10-15 Expandable TFE copolymers, method of making, porous, expanded article thereof

Country Status (8)

Country Link
US (4) US9040646B2 (en)
EP (1) EP2408827B1 (en)
JP (1) JP5756079B2 (en)
KR (1) KR101705920B1 (en)
CN (1) CN102395611B (en)
CA (1) CA2754020C (en)
RU (1) RU2523455C2 (en)
WO (1) WO2010107494A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130251930A1 (en) * 2010-12-17 2013-09-26 Gregg D. Dahlke Fluorine-containing polymer comprising a sulfinate-containing molecule
US9034031B2 (en) 2009-08-07 2015-05-19 Zeus Industrial Products, Inc. Prosthetic device including electrostatically spun fibrous layer and method for making the same
US9333073B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery method
US9339377B2 (en) 2008-09-29 2016-05-17 Edwards Lifesciences Cardiaq Llc Body cavity prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US9597183B2 (en) 2008-10-01 2017-03-21 Edwards Lifesciences Cardiaq Llc Delivery system for vascular implant
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9713529B2 (en) 2011-04-28 2017-07-25 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9770329B2 (en) 2010-05-05 2017-09-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9856588B2 (en) 2009-01-16 2018-01-02 Zeus Industrial Products, Inc. Electrospinning of PTFE

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650479B2 (en) 2007-10-04 2017-05-16 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
CN107106730A (en) * 2014-12-19 2017-08-29 W.L.戈尔及同仁股份有限公司 Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
US9040646B2 (en) 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
CN103619891B (en) * 2011-06-22 2016-04-27 大金工业株式会社 The fluorine-containing polymer, and a method for producing a fluorine-containing polymer molecular porous membrane
WO2015080290A1 (en) * 2013-11-29 2015-06-04 ダイキン工業株式会社 Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
CN105793336A (en) * 2013-11-29 2016-07-20 大金工业株式会社 Biaxially-oriented porous film
CN103665240B (en) * 2013-12-11 2015-09-30 中昊晨光化工研究院有限公司 The method of dispersing a polytetrafluoroethylene resin prepared
US9441088B2 (en) 2014-07-29 2016-09-13 W. L. Gore & Associates, Inc. Articles produced from VDF-co-(TFE or TrFE) polymers
US9644054B2 (en) * 2014-12-19 2017-05-09 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196194A (en) * 1964-06-04 1965-07-20 Pennsylvania Fluorocarbon Co I Fep-fluorocarbon tubing process
US3654210A (en) * 1968-08-07 1972-04-04 Hoechst Ag Aqueous polymer dispersions on the basis of polytetra-fluoroethylene
US3655611A (en) * 1968-08-09 1972-04-11 Allied Chem Cold flow resistant homogeneous polymers of tetrafluoroethylene and hexafluoropropene and process for preparing them
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4016345A (en) * 1972-12-22 1977-04-05 E. I. Du Pont De Nemours And Company Process for polymerizing tetrafluoroethylene in aqueous dispersion
US4036802A (en) * 1975-09-24 1977-07-19 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer fine powder resin
US4038231A (en) * 1974-05-16 1977-07-26 Imperial Chemical Industries Limited Process for aqueous dispersion of perfluoroalkyl- or perfluoroalkoxy trifluoroethylene polymers
US4194041A (en) * 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
US4381384A (en) * 1981-08-17 1983-04-26 E. I. Du Pont De Nemours And Company Continuous polymerization process
US4391940A (en) * 1979-12-12 1983-07-05 Hoechst Aktiengesellschaft Fluoropolymers with shell-modified particles, and processes for their preparation
US4469744A (en) * 1980-07-11 1984-09-04 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4518650A (en) * 1980-07-11 1985-05-21 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
USRE31907E (en) * 1975-09-24 1985-06-04 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer fine powder resin
US4576869A (en) * 1984-06-18 1986-03-18 E. I. Du Pont De Nemours And Company Tetrafluoroethylene fine powder and preparation thereof
US4675380A (en) * 1985-10-25 1987-06-23 E. I. Du Pont De Nemours And Company Melt-processible tetrafluoroethylene/perfluoroolefin copolymer granules and processes for preparing them
US4742122A (en) * 1985-10-25 1988-05-03 E. I. Du Pont De Nemours And Company Melt-processible tetrafluoroethylene/perfluoroolefin copolymers and processes for preparing them
US4770927A (en) * 1983-04-13 1988-09-13 Chemical Fabrics Corporation Reinforced fluoropolymer composite
US4780490A (en) * 1985-11-06 1988-10-25 Daikin Industries, Ltd. Aqueous dispersion of particles of a fluorine-containing-copolymer and its use
US4824511A (en) * 1987-10-19 1989-04-25 E. I. Du Pont De Nemours And Company Multilayer circuit board with fluoropolymer interlayers
US4830062A (en) * 1986-05-28 1989-05-16 Daikin Industries, Ltd. Porous heat-shrinkable tetrafluoroethylene polymer tube and process for producing the same
US4837267A (en) * 1988-03-21 1989-06-06 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymers
US4840998A (en) * 1986-08-27 1989-06-20 Daikin Industries Ltd. Modified polytetrafluoroethylene fine powder and production of the same
US4879362A (en) * 1987-12-31 1989-11-07 E. I. Dupont De Nemours And Company Modified polytetrafluoroethylene resins
US4904726A (en) * 1987-12-31 1990-02-27 E. I. Dupont Denemours And Company Modified polytetrafluoroethylene resins and blends thereof
US4952636A (en) * 1987-12-31 1990-08-28 E. I. Du Pont De Nemours And Company Modified polytetrafluoroethylene resins and blends thereof
US4952630A (en) * 1987-12-31 1990-08-28 E. I. Du Pont De Nemours And Company Modified polytetrafluoroethylene resins and blends thereof
US5188764A (en) * 1988-12-12 1993-02-23 Daikin Industries Ltd. Organosol of fluorine-containing polymer
US5230937A (en) * 1983-04-13 1993-07-27 Chemfab Corporation Reinforced fluoropolymer composite
US5397829A (en) * 1992-08-28 1995-03-14 E. I. Du Pont De Nemours And Company Low-melting tetrafluoroethylene copolymer and its uses
US5494752A (en) * 1992-07-09 1996-02-27 Daikin Industries, Ltd. Composite microparticle of fluorine containing resins
US5506281A (en) * 1994-07-12 1996-04-09 Hoechst Aktiengesellschaft Copolymer of the tetrafluoroethylene-ethylene type having a core-shell particle structure
US5547761A (en) * 1992-08-28 1996-08-20 E. I. Du Pont De Nemours And Company Low melting tetrafluoroethylene copolymer and its uses
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US5637663A (en) * 1995-02-06 1997-06-10 E. I. Du Pont De Nemours And Company Amorphous tetrafluoroethylene-hexafluoropropylene copolymers
US5681402A (en) * 1994-11-04 1997-10-28 Canon Kabushiki Kaisha Photovoltaic element
US5731394A (en) * 1995-06-30 1998-03-24 E. I. Du Pont De Nemours And Company Modified polytetrafluoroethylene fine powder
US5756620A (en) * 1995-11-15 1998-05-26 E. I. Du Pont De Nemours And Company Tetrafluoroethylene polymer for improved paste extrusion
WO1999007307A1 (en) * 1997-08-07 1999-02-18 Zakrytoe Aktsionernoe Obschestvo 'nauchno-Proizvodstvenny Komplex 'ekoflon' Prosthesis for implantation and method for preparing the same
US5898042A (en) * 1994-04-01 1999-04-27 Toagosei Co., Ltd. Aqueous fluororesin coating composition and process for producing same
US5922425A (en) * 1996-05-28 1999-07-13 Minnesota Mining And Manufacturing Company Multi-layer compositions and articles comprising fluorine-containing polymer
US5922468A (en) * 1995-07-13 1999-07-13 E. I. Du Pont De Nemours And Company Tetrafluoroethylene polymer dispersion composition
US5925705A (en) * 1993-09-20 1999-07-20 Daikin Industries, Ltd. Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof
US5972449A (en) * 1991-06-04 1999-10-26 Donaldson Company, Inc. Porous products manufactured from polytetrafluoroethylene treated with a perfluoroether fluid and methods of manufacturing such products
US6025092A (en) * 1998-02-13 2000-02-15 E. I. Du Pont De Nemours And Company Fluorinated ionomers and their uses
US6060167A (en) * 1994-03-02 2000-05-09 E. I. Du Pont De Nemours And Company Non-chalking release/wear coating
US6071600A (en) * 1995-10-20 2000-06-06 W. L. Gore & Associates, Inc. Low dielectric constant material for use as an insulation element in an electronic device
US6103361A (en) * 1997-09-08 2000-08-15 E. I. Du Pont De Nemours And Company Patterned release finish
US6107423A (en) * 1997-10-15 2000-08-22 E. I. Du Pont De Nemours And Company Copolymers of maleic anhydride or acid and fluorinated olefins
US6114452A (en) * 1996-11-25 2000-09-05 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having excellent heat stability
US6127486A (en) * 1996-09-19 2000-10-03 W. L. Gore & Associates, Gmbh Co-continuous blend of a fluoropolymer and a thermoplastic and method
US6133389A (en) * 1995-02-06 2000-10-17 E. I. Du Pont De Nemours And Company Amorphous tetrafluoroethylene-hexafluoropropylene copolymers
US6177196B1 (en) * 1996-09-13 2001-01-23 E. I. Du Pont De Nemours And Company Phosphorus-containing fluoromonomers and polymers thereof
US6177533B1 (en) * 1998-11-13 2001-01-23 E. I. Du Pont De Nemours And Company Polytetrafluoroethylene resin
US6191208B1 (en) * 1998-05-20 2001-02-20 Dupont Dow Elastomers L.L.S. Thermally stable perfluoroelastomer composition
US6197904B1 (en) * 1998-02-26 2001-03-06 E. I. Du Pont De Nemours And Company Low-melting tetrafluoroethylene copolymer
US6211319B1 (en) * 1996-11-25 2001-04-03 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having improved processability
US6221970B1 (en) * 1998-08-10 2001-04-24 E.I. Dupont De Nemours And Company Curable perfluoroelastomer composition
US6232372B1 (en) * 1998-03-18 2001-05-15 E. I. Du Pont De Nemours And Company Multicomponent particles of fluoropolymer and high temperature resistant non-dispersed polymer binder
US6248435B1 (en) * 1998-09-01 2001-06-19 E. I. Du Pont De Nemours And Company Heat transfer release finish
USRE37307E1 (en) * 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6281296B1 (en) * 1998-08-10 2001-08-28 Dupont Dow Elastomers L.L.C. Curable perfluoroelastomer composition
US6287702B1 (en) * 1997-09-09 2001-09-11 E. I. Du Pont De Nemours And Company Fluoropolymer composition
US6291054B1 (en) * 1999-02-19 2001-09-18 E. I. Du Pont De Nemours And Company Abrasion resistant coatings
US6359030B1 (en) * 1997-10-24 2002-03-19 Daikin Industries, Ltd. Aqueous resin dispersion composition
EP1192957A2 (en) * 2000-09-29 2002-04-03 Ethicon Inc. Coating for medical devices
USRE37701E1 (en) * 1994-11-14 2002-05-14 W. L. Gore & Associates, Inc. Integral composite membrane
US6395848B1 (en) * 1999-05-20 2002-05-28 E. I. Du Pont De Nemours And Company Polymerization of fluoromonomers
US6403758B1 (en) * 1997-08-18 2002-06-11 Scimed Life Systems, Inc. Bioresorbable compositions for implantable prostheses
US6403213B1 (en) * 1999-05-14 2002-06-11 E. I. Du Pont De Nemours And Company Highly filled undercoat for non-stick finish
US6416698B1 (en) * 1999-02-18 2002-07-09 E. I. Du Pont De Nemours And Company Fluoropolymer finishing process
US6429258B1 (en) * 1999-05-20 2002-08-06 E. I. Du Pont De Nemours & Company Polymerization of fluoromonomers
US6509429B1 (en) * 1998-07-07 2003-01-21 Daikin Industries, Ltd. Process for preparing fluorine-containing polymer
US6518381B2 (en) * 2000-10-30 2003-02-11 Asahi Glass Company, Limited Tetrafluoroethylene polymer for stretching
US6518349B1 (en) * 1999-03-31 2003-02-11 E. I. Du Pont De Nemours And Company Sprayable powder of non-fibrillatable fluoropolymer
US6538058B2 (en) * 2000-09-25 2003-03-25 Asahi Glass Company, Limited Polytetrafluoroethylene composition, method for its production and granulated product
US6541589B1 (en) * 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
US6551708B2 (en) * 1995-12-18 2003-04-22 Daikin Industries, Ltd. Powder coating composition containing vinylidene fluoride copolymer and methyl methacrylate copolymer
US6582628B2 (en) * 2001-01-17 2003-06-24 Dupont Mitsui Fluorochemicals Conductive melt-processible fluoropolymer
US6689833B1 (en) * 1997-04-09 2004-02-10 E. I. Du Pont De Nemours And Company Fluoropolymer stabilization
US6730762B2 (en) * 2000-02-02 2004-05-04 Molly S. Shoichet Linear copolymers of fluorocarbon-hydrocarbon monomers synthesized in carbon dioxide
US6750294B2 (en) * 2000-06-12 2004-06-15 Asahi Glass Company, Limited Plastic optical fiber
US6761964B2 (en) * 2001-04-02 2004-07-13 E. I. Du Pont De Nemours And Company Fluoropolymer non-stick coatings
US6770404B1 (en) * 1999-11-17 2004-08-03 E. I. Du Pont De Nemours And Company Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
US6841594B2 (en) * 2002-01-04 2005-01-11 E. I. Du Pont De Nemours And Company Core-shell fluoropolymer dispersions
US6870020B2 (en) * 2002-04-30 2005-03-22 E. I. Du Pont De Nemours And Company High vinyl ether modified sinterable polytetrafluoroethylene
US6914105B1 (en) * 1999-11-12 2005-07-05 North Carolina State University Continuous process for making polymers in carbon dioxide
US6921606B2 (en) * 2002-04-16 2005-07-26 Gore Enterprise Holdings, Inc. Composite films for electrochemical devices
US7049365B2 (en) * 2003-01-06 2006-05-23 E. I. Du Pont De Nemours And Company Fluoropolymer sealant
US7064170B2 (en) * 2002-10-31 2006-06-20 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization to produce copolymers of a fluorinated olefin and hydrocarbon olefin
US7063839B2 (en) * 1999-11-12 2006-06-20 North Carolina State University Continuous method and apparatus for separating polymer from a high pressure carbon dioxide fluid stream
US20060148912A1 (en) * 2003-04-16 2006-07-06 Takumi Katsurao Porous film of vinylidene fluoride resin and method for producing same
US7531611B2 (en) * 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922472A (en) 1972-06-22 1974-02-27
US4129618A (en) 1974-05-16 1978-12-12 Imperial Chemical Industries Limited Tetrafluoroethylene polymers
JPS5692943U (en) 1979-12-20 1981-07-24
JPS5982144U (en) 1982-11-27 1984-06-02
US4792594A (en) 1982-12-13 1988-12-20 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymers
DE3478856D1 (en) 1983-04-28 1989-08-10 Du Pont Modified fine powder polytetrafluoroethylene
GB2168981B (en) 1984-12-27 1988-07-06 Asahi Chemical Ind Porous fluorine resin membrane and process for preparation thereof
JPH0464938B2 (en) * 1985-03-26 1992-10-16 Daikin Kogyo Kk
JPS6332806B2 (en) * 1985-11-01 1988-07-01 Kogyo Gijutsuin
JP2729837B2 (en) 1988-07-25 1998-03-18 旭化成工業株式会社 Polytetrafluoroethylene filamentous materials and their preparation
JPH078926B2 (en) 1989-12-07 1995-02-01 ダイキン工業株式会社 Method for producing a polytetrafluoroethylene multilayer porous membrane
JPH03191100A (en) 1989-12-21 1991-08-21 Fuji Photo Film Co Ltd Production of support for printing plate
US5374473A (en) 1992-08-19 1994-12-20 W. L. Gore & Associates, Inc. Dense polytetrafluoroethylene articles
WO1995014719A1 (en) 1992-08-28 1995-06-01 E.I. Du Pont De Nemours And Company Low-melting tetrafluoroethylene copolymer and its uses
US5374683A (en) 1992-08-28 1994-12-20 E. I. Du Pont De Nemours And Company Low-melting tetrafluoroethylene copolymer and its uses
US5266639A (en) 1992-08-28 1993-11-30 E. I. Du Pont De Nemours And Company Low-melting tetrafluorethylene copolymer and its uses
US5523346A (en) 1994-06-10 1996-06-04 W. L. Gore & Associates, Inc. Seeded microemulsion polymerization for the production of small polymer particles
JP3336839B2 (en) 1995-04-10 2002-10-21 ダイキン工業株式会社 Water repellent and a battery for a battery
DE69604663D1 (en) 1995-06-07 1999-11-18 Gore W L & Ass Uk Porous composite material
EP0759446B1 (en) * 1995-08-17 1999-01-13 E.I. Du Pont De Nemours And Company Tetrafluoroethylene terpolymer
GB9606818D0 (en) 1996-03-30 1996-06-05 Gore W L & Ass Uk Granular-type modified polytetrafluoroethlyene dispersions and fused articles prepared therefrom (Case A)
DE69737600T2 (en) * 1996-08-14 2007-12-13 Memcath Technologies LLC, West St.Paul Membranes for medical applications
US5866711A (en) 1996-09-13 1999-02-02 E. I. Du Pont De Nemours And Company Fluorocyanate and fluorocarbamate monomers and polymers thereof
RU2117459C1 (en) * 1996-12-23 1998-08-20 Закрытое акционерное общество "Научно-производственный комплекс "Экофлон" Implanted hollow prosthesis
JPH10243976A (en) 1997-03-04 1998-09-14 Atsushi Kawano Combustible medical waste processing container
US6312814B1 (en) 1997-09-09 2001-11-06 E. I. Du Pont De Nemours And Company Fluoropolymer laminate
US6140410A (en) 1997-09-09 2000-10-31 E. I. Du Pont De Nemours And Company Fluoropolymer composition
JP3669172B2 (en) 1997-12-25 2005-07-06 旭硝子株式会社 Tetrafluoroethylene copolymer, its preparation and its use
JP3613024B2 (en) 1997-12-26 2005-01-26 旭硝子株式会社 Draw tetrafluoroethylene copolymer and their uses
GB9811894D0 (en) 1998-06-04 1998-07-29 Gore W L & Ass Uk Fine powder-type ptfe material
US6136933A (en) 1998-11-13 2000-10-24 E. I. Du Pont De Nemours And Company Process for polymerizing tetrafluoroethylene
US7049380B1 (en) * 1999-01-19 2006-05-23 Gore Enterprise Holdings, Inc. Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
US6824930B1 (en) 1999-11-17 2004-11-30 E. I. Du Pont De Nemours And Company Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
US6638999B2 (en) 2000-02-08 2003-10-28 Dupont Dow Elastomers Llc. Curable perfluoroelastomer composition
RU2271367C2 (en) * 2000-10-30 2006-03-10 Асахи Гласс Компани, Лимитед Stretchable tetrafluoroethylene polymer
JP4042390B2 (en) 2001-03-26 2008-02-06 旭硝子株式会社 Method for producing a tetrafluoroethylene polymer which is excellent in strength
JP5329013B2 (en) 2001-04-12 2013-10-30 旭硝子株式会社 Method for producing a high strength tetrafluoroethylene polymer
JP4058668B2 (en) 2001-12-27 2008-03-12 旭硝子株式会社 Rigid porous compact fluororesin
JP4291157B2 (en) 2002-01-04 2009-07-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Concentrated fluoropolymer dispersions
US6822059B2 (en) 2002-04-05 2004-11-23 3M Innovative Properties Company Dispersions containing bicomponent fluoropolymer particles and use thereof
US6833418B2 (en) 2002-04-05 2004-12-21 3M Innovative Properties Company Dispersions containing perfluorovinyl ether homopolymers and use thereof
DE60303980T2 (en) * 2002-07-16 2006-11-09 Solvay Solexis S.P.A. TFE copolymers
JP4466002B2 (en) * 2002-12-06 2010-05-26 旭硝子株式会社 Tetrafluoroethylene copolymer, its preparation and paste extrudate
US20040173978A1 (en) 2003-03-06 2004-09-09 Christopher Bowen PTFE membranes and gaskets made therefrom
ES2635270T3 (en) 2003-12-12 2017-10-03 C.R.Bard, Inc. Implantable medical devices fluoropolymer coatings and coating methods thereof
JP4951970B2 (en) * 2003-12-22 2012-06-13 ダイキン工業株式会社 Non-melt processible polytetrafluoroethylene and fine powder
JP2005306033A (en) 2004-03-26 2005-11-04 Daikin Ind Ltd Polytetrafluorethylene resin film and its manufacturing process
WO2005096989A1 (en) 2004-03-31 2005-10-20 Cook Incorporated Graft material and stent graft comprising extra collagen matrix and method of preparation
US20050238872A1 (en) 2004-04-23 2005-10-27 Kennedy Michael E Fluoropolymer barrier material
US8012555B2 (en) 2004-07-21 2011-09-06 Maztech, Inc. Fluoroplastic composite elastomer
US20060047311A1 (en) 2004-08-26 2006-03-02 Lutz David I Expanded PTFE articles and method of making same
US20060233990A1 (en) * 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
EP1746130B1 (en) 2005-07-21 2011-08-10 Solvay Solexis S.p.A. Fine fluoropolymer powders
US20070027551A1 (en) 2005-07-29 2007-02-01 Farnsworth Ted R Composite self-cohered web materials
US8637144B2 (en) 2007-10-04 2014-01-28 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
US9650479B2 (en) 2007-10-04 2017-05-16 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
US9040646B2 (en) * 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
JP5473824B2 (en) 2010-08-05 2014-04-16 ニチアス株式会社 High density polytetrafluoroethylene tape, and a manufacturing method thereof
US9775933B2 (en) 2012-03-02 2017-10-03 W. L. Gore & Associates, Inc. Biocompatible surfaces and devices incorporating such surfaces

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196194A (en) * 1964-06-04 1965-07-20 Pennsylvania Fluorocarbon Co I Fep-fluorocarbon tubing process
US3654210A (en) * 1968-08-07 1972-04-04 Hoechst Ag Aqueous polymer dispersions on the basis of polytetra-fluoroethylene
US3655611A (en) * 1968-08-09 1972-04-11 Allied Chem Cold flow resistant homogeneous polymers of tetrafluoroethylene and hexafluoropropene and process for preparing them
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4187390A (en) * 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
US4016345A (en) * 1972-12-22 1977-04-05 E. I. Du Pont De Nemours And Company Process for polymerizing tetrafluoroethylene in aqueous dispersion
US4038231A (en) * 1974-05-16 1977-07-26 Imperial Chemical Industries Limited Process for aqueous dispersion of perfluoroalkyl- or perfluoroalkoxy trifluoroethylene polymers
US4036802A (en) * 1975-09-24 1977-07-19 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer fine powder resin
USRE31907E (en) * 1975-09-24 1985-06-04 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer fine powder resin
US4194041A (en) * 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
US4391940A (en) * 1979-12-12 1983-07-05 Hoechst Aktiengesellschaft Fluoropolymers with shell-modified particles, and processes for their preparation
US4469744A (en) * 1980-07-11 1984-09-04 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4518650A (en) * 1980-07-11 1985-05-21 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4381384A (en) * 1981-08-17 1983-04-26 E. I. Du Pont De Nemours And Company Continuous polymerization process
US5230937A (en) * 1983-04-13 1993-07-27 Chemfab Corporation Reinforced fluoropolymer composite
US4770927A (en) * 1983-04-13 1988-09-13 Chemical Fabrics Corporation Reinforced fluoropolymer composite
US4576869A (en) * 1984-06-18 1986-03-18 E. I. Du Pont De Nemours And Company Tetrafluoroethylene fine powder and preparation thereof
US4675380A (en) * 1985-10-25 1987-06-23 E. I. Du Pont De Nemours And Company Melt-processible tetrafluoroethylene/perfluoroolefin copolymer granules and processes for preparing them
US4742122A (en) * 1985-10-25 1988-05-03 E. I. Du Pont De Nemours And Company Melt-processible tetrafluoroethylene/perfluoroolefin copolymers and processes for preparing them
US4780490A (en) * 1985-11-06 1988-10-25 Daikin Industries, Ltd. Aqueous dispersion of particles of a fluorine-containing-copolymer and its use
US4830062A (en) * 1986-05-28 1989-05-16 Daikin Industries, Ltd. Porous heat-shrinkable tetrafluoroethylene polymer tube and process for producing the same
US4840998A (en) * 1986-08-27 1989-06-20 Daikin Industries Ltd. Modified polytetrafluoroethylene fine powder and production of the same
US4824511A (en) * 1987-10-19 1989-04-25 E. I. Du Pont De Nemours And Company Multilayer circuit board with fluoropolymer interlayers
US4879362A (en) * 1987-12-31 1989-11-07 E. I. Dupont De Nemours And Company Modified polytetrafluoroethylene resins
US4904726A (en) * 1987-12-31 1990-02-27 E. I. Dupont Denemours And Company Modified polytetrafluoroethylene resins and blends thereof
US4952630A (en) * 1987-12-31 1990-08-28 E. I. Du Pont De Nemours And Company Modified polytetrafluoroethylene resins and blends thereof
US4952636A (en) * 1987-12-31 1990-08-28 E. I. Du Pont De Nemours And Company Modified polytetrafluoroethylene resins and blends thereof
US4837267A (en) * 1988-03-21 1989-06-06 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymers
US5188764A (en) * 1988-12-12 1993-02-23 Daikin Industries Ltd. Organosol of fluorine-containing polymer
US5972449A (en) * 1991-06-04 1999-10-26 Donaldson Company, Inc. Porous products manufactured from polytetrafluoroethylene treated with a perfluoroether fluid and methods of manufacturing such products
US5494752A (en) * 1992-07-09 1996-02-27 Daikin Industries, Ltd. Composite microparticle of fluorine containing resins
US5397829A (en) * 1992-08-28 1995-03-14 E. I. Du Pont De Nemours And Company Low-melting tetrafluoroethylene copolymer and its uses
US5547761A (en) * 1992-08-28 1996-08-20 E. I. Du Pont De Nemours And Company Low melting tetrafluoroethylene copolymer and its uses
US5925705A (en) * 1993-09-20 1999-07-20 Daikin Industries, Ltd. Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof
US6060167A (en) * 1994-03-02 2000-05-09 E. I. Du Pont De Nemours And Company Non-chalking release/wear coating
US5898042A (en) * 1994-04-01 1999-04-27 Toagosei Co., Ltd. Aqueous fluororesin coating composition and process for producing same
US5506281A (en) * 1994-07-12 1996-04-09 Hoechst Aktiengesellschaft Copolymer of the tetrafluoroethylene-ethylene type having a core-shell particle structure
US5861324A (en) * 1994-11-04 1999-01-19 Canon Kabushiki Kaisha Method for producing photovoltaic element
US5681402A (en) * 1994-11-04 1997-10-28 Canon Kabushiki Kaisha Photovoltaic element
USRE37701E1 (en) * 1994-11-14 2002-05-14 W. L. Gore & Associates, Inc. Integral composite membrane
USRE37307E1 (en) * 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6133389A (en) * 1995-02-06 2000-10-17 E. I. Du Pont De Nemours And Company Amorphous tetrafluoroethylene-hexafluoropropylene copolymers
US5637663A (en) * 1995-02-06 1997-06-10 E. I. Du Pont De Nemours And Company Amorphous tetrafluoroethylene-hexafluoropropylene copolymers
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5635041A (en) * 1995-03-15 1997-06-03 W. L. Gore & Associates, Inc. Electrode apparatus containing an integral composite membrane
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
USRE37656E1 (en) * 1995-03-15 2002-04-16 W.L. Gore & Associates, Inc. Electrode apparatus containing an integral composite membrane
US5731394A (en) * 1995-06-30 1998-03-24 E. I. Du Pont De Nemours And Company Modified polytetrafluoroethylene fine powder
US5922468A (en) * 1995-07-13 1999-07-13 E. I. Du Pont De Nemours And Company Tetrafluoroethylene polymer dispersion composition
US6071600A (en) * 1995-10-20 2000-06-06 W. L. Gore & Associates, Inc. Low dielectric constant material for use as an insulation element in an electronic device
US5756620A (en) * 1995-11-15 1998-05-26 E. I. Du Pont De Nemours And Company Tetrafluoroethylene polymer for improved paste extrusion
US6551708B2 (en) * 1995-12-18 2003-04-22 Daikin Industries, Ltd. Powder coating composition containing vinylidene fluoride copolymer and methyl methacrylate copolymer
US5922425A (en) * 1996-05-28 1999-07-13 Minnesota Mining And Manufacturing Company Multi-layer compositions and articles comprising fluorine-containing polymer
US6177196B1 (en) * 1996-09-13 2001-01-23 E. I. Du Pont De Nemours And Company Phosphorus-containing fluoromonomers and polymers thereof
US6127486A (en) * 1996-09-19 2000-10-03 W. L. Gore & Associates, Gmbh Co-continuous blend of a fluoropolymer and a thermoplastic and method
US6114452A (en) * 1996-11-25 2000-09-05 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having excellent heat stability
US6211319B1 (en) * 1996-11-25 2001-04-03 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having improved processability
US6689833B1 (en) * 1997-04-09 2004-02-10 E. I. Du Pont De Nemours And Company Fluoropolymer stabilization
WO1999007307A1 (en) * 1997-08-07 1999-02-18 Zakrytoe Aktsionernoe Obschestvo 'nauchno-Proizvodstvenny Komplex 'ekoflon' Prosthesis for implantation and method for preparing the same
US6403758B1 (en) * 1997-08-18 2002-06-11 Scimed Life Systems, Inc. Bioresorbable compositions for implantable prostheses
US6103361A (en) * 1997-09-08 2000-08-15 E. I. Du Pont De Nemours And Company Patterned release finish
US6114028A (en) * 1997-09-08 2000-09-05 E. I. Du Pont De Nemours And Company Cooking vessel with patterned release finish having improved heat transfer
US6287702B1 (en) * 1997-09-09 2001-09-11 E. I. Du Pont De Nemours And Company Fluoropolymer composition
US6228963B1 (en) * 1997-10-15 2001-05-08 E. I. Du Pont De Nemours And Company Copolymers of maleic anhydride or acid and fluorinated olefins
US6423798B2 (en) * 1997-10-15 2002-07-23 E. I. Du Pont De Nemours And Company Copolymers of maleic anhydride or acid and fluorinated oleffins
US6107423A (en) * 1997-10-15 2000-08-22 E. I. Du Pont De Nemours And Company Copolymers of maleic anhydride or acid and fluorinated olefins
US6359030B1 (en) * 1997-10-24 2002-03-19 Daikin Industries, Ltd. Aqueous resin dispersion composition
US6025092A (en) * 1998-02-13 2000-02-15 E. I. Du Pont De Nemours And Company Fluorinated ionomers and their uses
US6197904B1 (en) * 1998-02-26 2001-03-06 E. I. Du Pont De Nemours And Company Low-melting tetrafluoroethylene copolymer
US6232372B1 (en) * 1998-03-18 2001-05-15 E. I. Du Pont De Nemours And Company Multicomponent particles of fluoropolymer and high temperature resistant non-dispersed polymer binder
US6191208B1 (en) * 1998-05-20 2001-02-20 Dupont Dow Elastomers L.L.S. Thermally stable perfluoroelastomer composition
US6509429B1 (en) * 1998-07-07 2003-01-21 Daikin Industries, Ltd. Process for preparing fluorine-containing polymer
US6221970B1 (en) * 1998-08-10 2001-04-24 E.I. Dupont De Nemours And Company Curable perfluoroelastomer composition
US6281296B1 (en) * 1998-08-10 2001-08-28 Dupont Dow Elastomers L.L.C. Curable perfluoroelastomer composition
US6248435B1 (en) * 1998-09-01 2001-06-19 E. I. Du Pont De Nemours And Company Heat transfer release finish
US6177533B1 (en) * 1998-11-13 2001-01-23 E. I. Du Pont De Nemours And Company Polytetrafluoroethylene resin
US6416698B1 (en) * 1999-02-18 2002-07-09 E. I. Du Pont De Nemours And Company Fluoropolymer finishing process
US6592977B2 (en) * 1999-02-19 2003-07-15 E. I. Du Pont De Nemours And Company Abrasion resistant coatings
US6291054B1 (en) * 1999-02-19 2001-09-18 E. I. Du Pont De Nemours And Company Abrasion resistant coatings
US6518349B1 (en) * 1999-03-31 2003-02-11 E. I. Du Pont De Nemours And Company Sprayable powder of non-fibrillatable fluoropolymer
US6403213B1 (en) * 1999-05-14 2002-06-11 E. I. Du Pont De Nemours And Company Highly filled undercoat for non-stick finish
US6395848B1 (en) * 1999-05-20 2002-05-28 E. I. Du Pont De Nemours And Company Polymerization of fluoromonomers
US6429258B1 (en) * 1999-05-20 2002-08-06 E. I. Du Pont De Nemours & Company Polymerization of fluoromonomers
US7063839B2 (en) * 1999-11-12 2006-06-20 North Carolina State University Continuous method and apparatus for separating polymer from a high pressure carbon dioxide fluid stream
US6914105B1 (en) * 1999-11-12 2005-07-05 North Carolina State University Continuous process for making polymers in carbon dioxide
US6770404B1 (en) * 1999-11-17 2004-08-03 E. I. Du Pont De Nemours And Company Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
US6730762B2 (en) * 2000-02-02 2004-05-04 Molly S. Shoichet Linear copolymers of fluorocarbon-hydrocarbon monomers synthesized in carbon dioxide
US6750294B2 (en) * 2000-06-12 2004-06-15 Asahi Glass Company, Limited Plastic optical fiber
US6538058B2 (en) * 2000-09-25 2003-03-25 Asahi Glass Company, Limited Polytetrafluoroethylene composition, method for its production and granulated product
EP1192957A2 (en) * 2000-09-29 2002-04-03 Ethicon Inc. Coating for medical devices
US6518381B2 (en) * 2000-10-30 2003-02-11 Asahi Glass Company, Limited Tetrafluoroethylene polymer for stretching
US6582628B2 (en) * 2001-01-17 2003-06-24 Dupont Mitsui Fluorochemicals Conductive melt-processible fluoropolymer
US6761964B2 (en) * 2001-04-02 2004-07-13 E. I. Du Pont De Nemours And Company Fluoropolymer non-stick coatings
US6541589B1 (en) * 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
US7084225B2 (en) * 2001-10-15 2006-08-01 Gore Enterprise Holdings, Inc. Process for preparation of a tetrafluoroethylene copolymer
US6841594B2 (en) * 2002-01-04 2005-01-11 E. I. Du Pont De Nemours And Company Core-shell fluoropolymer dispersions
US6921606B2 (en) * 2002-04-16 2005-07-26 Gore Enterprise Holdings, Inc. Composite films for electrochemical devices
US6870020B2 (en) * 2002-04-30 2005-03-22 E. I. Du Pont De Nemours And Company High vinyl ether modified sinterable polytetrafluoroethylene
US7064170B2 (en) * 2002-10-31 2006-06-20 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization to produce copolymers of a fluorinated olefin and hydrocarbon olefin
US7049365B2 (en) * 2003-01-06 2006-05-23 E. I. Du Pont De Nemours And Company Fluoropolymer sealant
US20060148912A1 (en) * 2003-04-16 2006-07-06 Takumi Katsurao Porous film of vinylidene fluoride resin and method for producing same
US7531611B2 (en) * 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339377B2 (en) 2008-09-29 2016-05-17 Edwards Lifesciences Cardiaq Llc Body cavity prosthesis
US9456896B2 (en) 2008-09-29 2016-10-04 Edwards Lifesciences Cardiaq Llc Body cavity prosthesis
US9597183B2 (en) 2008-10-01 2017-03-21 Edwards Lifesciences Cardiaq Llc Delivery system for vascular implant
US9856588B2 (en) 2009-01-16 2018-01-02 Zeus Industrial Products, Inc. Electrospinning of PTFE
US9339380B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant
US9339379B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9333074B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9339378B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9333073B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery method
US9585747B2 (en) 2009-04-15 2017-03-07 Edwards Lifesciences Cardiaq Llc Vascular implant
US9034031B2 (en) 2009-08-07 2015-05-19 Zeus Industrial Products, Inc. Prosthetic device including electrostatically spun fibrous layer and method for making the same
US9770329B2 (en) 2010-05-05 2017-09-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US20130251930A1 (en) * 2010-12-17 2013-09-26 Gregg D. Dahlke Fluorine-containing polymer comprising a sulfinate-containing molecule
US9713529B2 (en) 2011-04-28 2017-07-25 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart

Also Published As

Publication number Publication date Type
CN102395611A (en) 2012-03-28 application
US9193811B2 (en) 2015-11-24 grant
EP2408827B1 (en) 2016-07-06 grant
RU2011142289A (en) 2013-05-10 application
CA2754020C (en) 2016-06-07 grant
CA2754020A1 (en) 2010-09-23 application
KR20110138247A (en) 2011-12-26 application
US8911844B2 (en) 2014-12-16 grant
US9040646B2 (en) 2015-05-26 grant
CN102395611B (en) 2015-07-08 grant
KR101705920B1 (en) 2017-02-10 grant
RU2523455C2 (en) 2014-07-20 grant
US20140094557A1 (en) 2014-04-03 application
US9593223B2 (en) 2017-03-14 grant
WO2010107494A1 (en) 2010-09-23 application
EP2408827A1 (en) 2012-01-25 application
US20130189464A1 (en) 2013-07-25 application
JP5756079B2 (en) 2015-07-29 grant
US20160039989A1 (en) 2016-02-11 application
JP2012520920A (en) 2012-09-10 application

Similar Documents

Publication Publication Date Title
US3654210A (en) Aqueous polymer dispersions on the basis of polytetra-fluoroethylene
US7049380B1 (en) Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
US4029868A (en) Tetrafluoroethylene terpolymers
US5677404A (en) Tetrafluoroethylene terpolymer
US4380618A (en) Batch polymerization process
US4789717A (en) Process for the polymerization in aqueous dispersion of fluorinated monomers
US4879362A (en) Modified polytetrafluoroethylene resins
US5093427A (en) Copolymers of vinylidene fluoride and hexafluoropropylene and process for preparing the same
US5932673A (en) Tetrafluoroethylene copolymer
US6429258B1 (en) Polymerization of fluoromonomers
US4952630A (en) Modified polytetrafluoroethylene resins and blends thereof
US5543217A (en) Amorphous copolymers of tetrafluoroethylene and hexafluoropropylene
US6342569B1 (en) Chlorotrifluoroethylene copolymers
US4612357A (en) Melt-processible tetrafluoroethylene copolymers and process for preparing them
US6395848B1 (en) Polymerization of fluoromonomers
US4952636A (en) Modified polytetrafluoroethylene resins and blends thereof
US5731394A (en) Modified polytetrafluoroethylene fine powder
US20100248324A1 (en) Expandable Functional TFE Copolymer Fine Powder, the Expandable Functional Products Obtained Therefrom and Reaction of the Expanded Products
US6242547B1 (en) Vinyl fluoride interpolymers of low crystallinity
US6197904B1 (en) Low-melting tetrafluoroethylene copolymer
US6927265B2 (en) Melt-processible thermoplastic fluoropolymers having improved processing characteristics and method of producing same
US6586547B1 (en) Low crystallinity vinylidene fluoride hexafluoropropylene copolymers
US5283302A (en) Vinylidene fluoride polymer and method of making same
US6465577B2 (en) Agent for minimizing size of spherulite of crystalline fluorine-containing resin and crystalline resin and crystalline fluorine-containing resin composition comprising said agent
US4129618A (en) Tetrafluoroethylene polymers

Legal Events

Date Code Title Description
AS Assignment

Owner name: GORE ENTERPRISE HOLDINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORD, LAWRENCE A., MR;REEL/FRAME:022903/0768

Effective date: 20090608

AS Assignment

Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508

Effective date: 20120130

CC Certificate of correction