USRE37656E1 - Electrode apparatus containing an integral composite membrane - Google Patents
Electrode apparatus containing an integral composite membrane Download PDFInfo
- Publication number
- USRE37656E1 USRE37656E1 US09/325,135 US32513599A USRE37656E US RE37656 E1 USRE37656 E1 US RE37656E1 US 32513599 A US32513599 A US 32513599A US RE37656 E USRE37656 E US RE37656E
- Authority
- US
- United States
- Prior art keywords
- membrane
- electrode apparatus
- microns
- ion exchange
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 388
- 239000002131 composite material Substances 0.000 title claims abstract description 58
- 239000000463 material Substances 0.000 claims abstract description 101
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 claims description 72
- 238000005342 ion exchange Methods 0.000 claims description 60
- 239000000446 fuel Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 25
- -1 perfluoro Chemical group 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 20
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 19
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 19
- 239000000843 powder Substances 0.000 claims description 16
- 239000003014 ion exchange membrane Substances 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 238000000909 electrodialysis Methods 0.000 claims description 5
- 238000005470 impregnation Methods 0.000 claims description 5
- 229920000831 ionic polymer Polymers 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 150000003460 sulfonic acids Chemical class 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000012982 microporous membrane Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims 2
- 229920003303 ion-exchange polymer Polymers 0.000 abstract description 13
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 abstract description 11
- 239000003456 ion exchange resin Substances 0.000 abstract description 11
- 239000000243 solution Substances 0.000 description 101
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 85
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 74
- 239000000523 sample Substances 0.000 description 60
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- 239000004094 surface-active agent Substances 0.000 description 31
- 239000012153 distilled water Substances 0.000 description 29
- 239000006260 foam Substances 0.000 description 19
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 19
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 18
- 239000002904 solvent Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 238000011282 treatment Methods 0.000 description 16
- 229920000557 Nafion® Polymers 0.000 description 15
- 229920006026 co-polymeric resin Polymers 0.000 description 15
- 239000011148 porous material Substances 0.000 description 15
- 239000013504 Triton X-100 Substances 0.000 description 14
- 229920004890 Triton X-100 Polymers 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 11
- 239000002736 nonionic surfactant Substances 0.000 description 11
- 239000012530 fluid Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 230000008961 swelling Effects 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- 230000032258 transport Effects 0.000 description 9
- 229920000554 ionomer Polymers 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 8
- 239000011877 solvent mixture Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000005325 percolation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229920002313 fluoropolymer Polymers 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000005341 cation exchange Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 235000011056 potassium acetate Nutrition 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229920004466 Fluon® PCTFE Polymers 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- UYDLBVPAAFVANX-UHFFFAOYSA-N octylphenoxy polyethoxyethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCO)C=C1 UYDLBVPAAFVANX-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000005373 pervaporation Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- UTPYTEWRMXITIN-YDWXAUTNSA-N 1-methyl-3-[(e)-[(3e)-3-(methylcarbamothioylhydrazinylidene)butan-2-ylidene]amino]thiourea Chemical compound CNC(=S)N\N=C(/C)\C(\C)=N\NC(=S)NC UTPYTEWRMXITIN-YDWXAUTNSA-N 0.000 description 1
- 238000003855 Adhesive Lamination Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- YNVXQUQREUMOAH-UHFFFAOYSA-N CC(C)(C)CCCC(C)(C)O Chemical compound CC(C)(C)CCCC(C)(C)O YNVXQUQREUMOAH-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000723418 Carya Species 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229920000544 Gore-Tex Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000007759 kiss coating Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005026 oriented polypropylene Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005371 permeation separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
- C08J5/2243—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
- C08J5/225—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/08—Diaphragms; Spacing elements characterised by the material based on organic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1044—Mixtures of polymers, of which at least one is ionically conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/106—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/1062—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- An electrode apparatus containing an integral composite membrane is provided which is useful in electrolytic processes and other chemical separations.
- Ion exchange membranes are used in polymer electrolyte fuel cells as solid electrolytes.
- a membrane located between a cathode and an anode of such a fuel cell transpods protons formed near the catalyst at the hydrogen electrode to the oxygen electrode, thereby allowing a current to be drawn from the fuel cell.
- These polymer electrolyte fuel cells are particularly advantageous because they operate at lower temperatures than other fuel cells. Also, these polymer electrolyte fuel cells do not contain any corrosive acids which are found in phosphoric acid fuel cells. In these type fuel cells, there is a need to eliminate the bulk transfer of reactants from one electrode to the other, i.e. fluid percolation.
- Ion exchange membranes are also used in chloralkali applications to separate brine mixtures to form chlorine gas and sodium hydroxide. For best performance, it is preferred that the membrane selectively transport the sodium ions across the membrane while rejecting the chloride ions. Also, the ion exchange membrane must eliminate bulk transfer of electrolytic solution across the membrane, i.e. fluid percolation.
- IEMs are useful in the areas of diffusion dialysis, electrodialysis and in pervaporation and vapor permeation separations. IEMs may also be used for selective transpod of polar compounds from mixtures containing both polar and non-polar compounds.
- IEMs must have sufficient strength to be useful in their various applications. Often, this need for increased strength requires that an IEM be made relatively thick in cross section, or that the IEM be reinforced with woven fabrics (macro-reinforcements), both of which decreases the ionic conductance of the IEM. Additionally, conventional IEMs exhibit inherent dimensional instability due to the absorbance of solvents, such as water, for example. Such dimensional instability renders conventional IEMs substantially ineffective for many commercial applications.
- U.S. Pat. No. 3,692,569 relates to the use of a coating of a copolymer of fluorinated ethylene and a sulfonyl-containing fluorinated vinyl monomer on a fluorocarbon polymer that was previously non-wettable.
- the fluorocarbon polymer may include tetrafluoroethylene polymers.
- This coating provides a topical treatment to the surface so as to decrease the surface tension of the fluorocarbon polymer.
- U.S. Pat. No. 3,692,569 provides for a fluid percolating structure.
- U.S. Pat. No. 4,453,991 relates to a process for making articles coated with a liquid composition of a perfluorinated polymer, having sulfonic acid or sulfonate groups in a liquid medium, by contacting the polymer with a mixture of 25 to 100% by weight of water and 0 to 75% by weight of a second liquid component, such as a low molecular weight alcohol, in a closed system.
- a second liquid component such as a low molecular weight alcohol
- U.S. Pat. No. 4,902,308 relates to a film of porous expanded polytetrafluoroethylene (PTFE) having its surfaces, both exterior and internal, coated with a metal salt of perfluoro-cation exchange polymer.
- PTFE porous expanded polytetrafluoroethylene
- Such a composite product is permeable to air.
- the air flow of such a structure as measured by the Gurley densometer ATSM D726-58, is about 12 to 22 seconds. Therefore, this structure provides for fluid percolation.
- U.S. Pat. No. 5,082,472 relates to a composite material of a microporous membrane, such as porous expanded PTFE, in laminar contact with a continuous ion exchange resin layer, wherein both layers have similar area dimensions. Surfaces of internal nodes and fibrils of the expanded PTFE may be coated, at least in part, with an ion exchange resin coating.
- the expanded PTFE layer of this composite membrane imparts mechanical strength to the composite structure. However, the interior of the expanded PTFE membrane is untilled so as to not block the flow of fluids. Therefore, U.S. Pat. No. 5,082,472 provides for fluid percolation.
- U.S. Pat. Nos. 5,094,895 and 5,183,545 relate to a composite porous liquid-permeable article having multiple layers of porous expanded PTFE, which are bonded together, and which have interior and exterior surfaces coated with an ion exchange polymer. Such a composite article is particularly useful as a diaphragm in electrolytic cells. However, diaphragms are inherently percolating structures.
- Japanese Patent Application No. 62-240627 relates to a coated or an impregnated membrane formed with a perfluoro type ion exchange resin and a porous PTFE film to form an integral structure. The resulting composite is not fully occlusive. Furthermore, the teachings of this application do not provide for permanent adhesion of the ion exchange resin to the inside surface of the PTFE film.
- the present invention is an advancement over presently known ion exchange membranes.
- this is accomplished by providing a composite membrane comprising an expanded polytetrafluoroethylene (PTFE) membrane having a porous microstructure of polymeric fibrils.
- the composite membrane is impregnated with an ion exchange material throughout the membrane.
- the impregnated expanded polytetrafluoroethylene membrane has a Gurley number of greater than 10,000 seconds.
- the ion exchange material substantially impregnates the membrane so as to render an interior volume of the membrane substantially occlusive.
- the expanded PTFE membrane may comprise a microstructure of nodes interconnected by fibrils.
- the ion exchange material may be selected from a group consisting of perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers, and metal salts with or without a polymer.
- the ion exchange material may also be comprised of at least in part a powder, such as but not limited to, carbon black, graphite, nickel, silica, titanium dioxide, and platinum black.
- a purpose of the present invention is to provide an improved alternative to the macro-reinforcement of ionomer materials.
- Another purpose of the present invention is to provide an ion exchange membrane having a single integral structure that does not allow for fluid percolation.
- FIG. 1 is a schematic cross-section of a composite membrane of the present invention that is fully impregnated with an ion exchange material.
- FIG. 2 is a schematic cross-section of the composite membrane of the present invention that is fully impregnated with an ion exchange material and which includes a backing material attached thereto.
- FIG. 3 is a photomicrograph, at a magnification of 2.5 kX, of a cross-section of an expanded PTFE membrane that has not been treated with an ion exchange material.
- FIG. 4 is a photomicrograph, at a magnification of 5.1 kX, of a cross-section of an expanded PTFE membrane impregnated with an ion exchange material, such that the interior volume of the membrane is substantially occluded.
- FIG. 5 is a photomicrograph, at a magnification of 20.0 kx, of a cross-section of an expanded PTFE membrane, comprised substantially of fibrils with no nodes present, which has not been treated with an ion exchange material.
- a composite membrane which includes a base material 4 and an ion exchange material or ion exchange resin 2 .
- the base material 4 is a membrane which is defined by a porous microstructure characterized by nodes interconnected by fibrils (FIG. 3 ), or a porous microstructure characterized substantially by fibrils (FIG. 5 ).
- the ion exchange resin substantially impregnates the membrane so as to render the interior volume substantially occlusive.
- the ion exchange resin is securely adhered to both the external and internal membrane surfaces, i.e. the fibrils and/or nodes of the base material.
- the composite membrane of the present invention may be employed in various applications, including but not limited to, polarity-based chemical separations; electrolysis; fuel cells and batteries; pervaporation; gas separation; dialysis separation; industrial electrochemistry, such as chloralkali production and other electrochemical applications; use as a super acid catalyst; or use as a medium in enzyme immobilization, for example.
- the composite membrane of the present invention is uniform and mechanically strong.
- the term “uniform” is defined as continuous impregnation with the ion exchange material such that no pin holes or other discontinuities exist within the composite structure.
- the membrane should be “occlusive”, meaning that the interior volume of the porous membrane is impregnated such that the interior volume is filled with the ion exchange material and the final membrane is essentially air impermeable having a Gurley number of greater than 10,000 seconds. A fill of 90% or more of the interior volume of the membrane should provide adequate occlusion for purposes of the present invention.
- a preferred base material 4 is an expanded polytetrafluoroethylene (ePTFE) which may be made in accordance with the teachings of U.S. Pat. No. 3,593,566, incorporated herein by reference.
- ePTFE expanded polytetrafluoroethylene
- Such a base material has a porosity of greater than 35%.
- the porosity is between 70-95%.
- the thickness is between 0.06 mils (0.19 ⁇ m) and 0.8 mils (0.02 mm), and most preferably the thickness is between 0.50 mils (0.013 mm) and 0.75 mils (0.019 mm).
- This material is commercially available in a variety of forms from W. L. Gore & Associates, Inc., of Elkton, Md., under the trademark GORE-TEX®, FIG.
- the porous microstructure comprises nodes interconnected by fibrils which define an interior volume of the base material 4 .
- the base material 4 may comprise an ePTFE material having a porous microstructure defined substantially of fibrils with no nodes present.
- a PTFE that has a low amorphous content and a degree of crystallization of at least 98% is used as the raw material. More particularly, a coagulated dispersion or fine powder PTFE may be employed, such as but not limited to FLUON® CD-123 and FLUON® CD-1 available from ICI Americas, Inc., or TEFLON® fine powders available from E. I. DuPont de Nemours and Co., Inc. (TEFLON is a registered trademark of E. I.
- the dried tape is then expanded longitudinally between banks of rolls in a space heated to a temperature that is below the polymer melting point (approximately 327° C.).
- the longitudinal expansion is such that the ratio of speed of the second bank of rolls to the first bank is from about 10-100 to 1.
- the longitudinal expansion is repeated at about 1-1.5 to 1 ratio.
- the tape is expanded traversely, at a temperature that is less than about 327° C., to at least 1.5 times, and preferably to 6 to 15 times, the width of the original extrudate, while restraining the membrane from longitudinal contraction. While still under constraint, the membrane is preferably heated to above the polymer melting point (approximately 342° C.) and then cooled.
- This ePTFE membrane is characterized by the following properties:
- Suitable ion exchange materials 2 include, but are not limited to, perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers and metal salts with or without a polymer. A mixture of these ion exchange materials may also be employed in treating the membrane 4 . Solvents that are suitable for use with the ion exchange material, include for example, alcohols, carbonates, THF (tetrahydrofuran), water, and combinations thereof. Optionally, ion exchange materials may be complemented by finely divided powders or other (non-ionic) polymers to provide final composites.
- Such a finely divided powder may be selected from a wide range of organic and inorganic compounds such as, but not limited to, carbon black, graphite, nickel, silica, titanium dioxide, platinum black, for example, to provide specific added effects such as different aesthetic appearance (color), electrical conductivity, thermal conductivity, catalytic effects, or enhanced or reduced reactant transport properties.
- non-ionic polymers include, but are not limited to, polyolefins, other fluoropolymers such as polyvinylidene (PVDF), or other thermoplastics and thermoset resins. Such non-ionic polymers may be added to aid occlusion of the substrate matrix, or to enhance or reduce reactant transport properties.
- a surfactant having a molecular weight of greater than 100 is preferably employed with the ion exchange material 2 to ensure impregnation of the interior volume of the base material 4 .
- Surfactants or surface active agents having a hydrophobic portion and a hydrophilic portion may be utilized.
- a most preferred surfactant is a nonionic material, octylphenoxy polyethoxyethanol having a chemical structure:
- Triton X-100 which is commercially available from Rohm & Haas of Philadelphia, Pa.
- the final composite membrane of the present invention has a uniform thickness free of any discontinuities or pinholes on the surface.
- the interior volume of the membrane is occluded such that the composite membrane is impermeable to non-polar gases and to bulk flow of liquids.
- the composite membrane may be reinforced with a woven or non-woven material 6 bonded to one side of the base material 4 .
- Suitable woven materials may include, for example, scrims made of woven fibers of expanded porous polytetrafluoroethylene; webs made of extruded or oriented polypropylene or polypropylene netting, commercially available from Conwed, Inc. of Minneapolis, Minn.; and woven materials of polypropylene and polyester, from Tetko Inc., of Briarcliff Manor, N.Y.
- Suitable non-woven materials may include, for example, a spun-bonded polypropylene from Reemay Inc. of Old Hickory, Tenn.
- the treated membrane may be further processed to remove any surfactant which may have been employed in processing the base material as described in detail herein. This is accomplished by soaking or submerging the membrane in a solution of, for example, water, isopropyl alcohol, hydrogen peroxide, methanol, and/or glycerin. During this step, the surfactant, which was originally mixed in solution with the ion exchange material, is removed. This soaking or submerging causes a slight swelling of the membrane, however the ion exchange material remains within the interior volume of the base material 4 .
- the membrane is further treated by boiling in a suitable swelling agent, preferably water, causing the membrane to slightly swell in the x and y direction. Additional swelling occurs in the z-direction.
- a suitable swelling agent preferably water
- Additional swelling occurs in the z-direction.
- a composite membrane results having a higher ion transport rate that is also strong.
- the swollen membrane retains its mechanical integrity and dimensional stability, unlike the membranes consisting only of the ion exchange material. Also, the membrane maintains desired ionic transport characteristics.
- the membrane has excellent long term chemical stability, it can be susceptible to poisoning by organics. Accordingly, it is often desirable to remove such organics from the membrane. For example, organics can be removed by regeneration in which the membrane is boiled in a strong acid, such as nitric or chromic acid.
- a support structure such as a polypropylene woven fabric
- a support structure may first be laminated to the untreated base material 4 by any conventional technique, such as, hot roll lamination, ultrasonic lamination, adhesive lamination, or forced hot air lamination so long as the technique does not damage the integrity of the base material.
- a solution is prepared containing an ion exchange material in solvent mixed with one or more surfactants.
- the solution may be applied to the base material 4 by any conventional coating technique including forwarding roll coating, reverse roll coating, gravure coating, doctor coating, kiss coating, as well as dipping, brushing, painting, and spraying so long as the liquid solution is able to penetrate the interstices and interior volume of the base material.
- Excess solution from the surface of the membrane may be removed.
- the treated membrane is then immediately placed into an oven to dry.
- Oven temperatures may range from 60°-200° C., but preferably 120°-160° C. Drying the treated membrane in the oven causes the ion exchange resin to become securely adhered to both the external and internal membrane surfaces, i.e., the fibrils and/or nodes of the base material. Additional solution application steps, and subsequent drying, may be repeated until the membrane becomes completely transparent. Typically, between 2 to 8 treatments are required, but the actual number of treatments is dependent on the surfactant concentration and thickness of the membrane. If the membrane is prepared without a support structure, both sides of the membrane may be treated simultaneously thereby reducing the number of treatments required.
- the oven treated membrane is then soaked in a solvent, such as the type described hereinabove, to remove the surfactant. Thereafter the membrane is boiled in a swelling agent and under a pressure ranging from about 1 to about 20 atmospheres absolute thereby increasing the amount of swelling agent the treated membrane is capable of holding.
- the ion exchange material may be applied to the membrane without the use of a surfactant.
- This procedure requires additional treatment with the ion exchange resin. However, this procedure does not required that the oven treated membrane be soaked in a solvent, thereby reducing the total number of process steps.
- a vacuum may also be used to draw the ion exchange material into the membrane. Treatment without surfactant is made easier if the water content of the solution is lowered.
- Partial solution dewatering is accomplished by slow partial evaporation of the ion exchange material solution at room temperature followed by the addition of a nonaqueous solvent. Ideally, a fully dewatered solution can be used. This is accomplished in several steps. First, the ion exchange material is completely dried at room temperature. The resulting resin is ground to a fine powder. Finally, this powder is redissolved in a solvent, preferably a combination of methanol and isopropanol.
- the composite membrane of the present invention can be made thinner than a fabric or non-woven reinforced structure, it is possible to transport ions at a faster rate than previously has been achieved, with only a slight lowering of the selectivity characteristics of the membrane.
- Specimens were stamped out to conform with Type (II) of ASTM D638.
- the specimens had a width of 0.635 cm, and a gauge length of 2.54 cm.
- Thickness of the base material was determined with the use of a snap gauge (Johannes Kafer Co. Model No. F1000/302). Measurements were taken in at least four areas of each specimen. Thickness of the dried composite membrane was also obtained with the use of the snap gauge. Thicknesses of swollen samples were not measurable with the snap gauge due to the compression or residual water on the surface of the swollen membrane. Thickness measurements of the swollen membranes were also not able to be obtained with the use of scanning electron microscopy due to interferences with the swelling agents.
- a potassium acetate solution having a paste like consistency, was prepared from potassium acetate and distilled water. (Such a paste may be obtained by combining 230 g potassium acetate with 100 g of water, for example.) This solution was placed into a 133 ml. polypropylene cup, having an inside diameter of 6.5 cm, at its mouth.
- An expanded polytetrafluoroethylene (ePTFE) membrane was provided having a minimum MVTR of approximately 85,000 g/m 2 ⁇ 24 hr. as tested by the method described in Crosby U.S. Pat. No. 4,862,730. The ePTFE was heat sealed to the lip of the cup to create a taut, leakproof, microporous barrier containing the solution.
- a similar ePTFE membrane was mounted to the surface of a water bath.
- the water bath assembly was controlled at 23° C. ⁇ plus or minus 0.2° C., utilizing a temperature controlled room and a water circulating bath.
- a sample to be tested Prior to performing the MVTR test procedure, a sample to be tested was allowed to condition at a temperature of 23° C. and a relative humidity of 50%. The sample to be tested was placed directly on the ePTFE membrane mounted to the surface of the water bath and allowed to equilibrate for 15 minutes prior to the introduction of the cup assembly.
- the cup assembly was weighed to the nearest ⁇ fraction (1/1000) ⁇ g. and was placed in an inverted manner onto the center of the test sample.
- Water transport was provided by a driving force defined by the difference in relative humidity existing between the water in the water bath and the saturated salt solution of the inverted cup assembly.
- the sample was tested for 10 minutes and the cup assembly was then removed and weighed again within ⁇ fraction (1/1000) ⁇ g.
- the MVTR of the sample was calculated from the weight gain of the cup assembly and was expressed in grams of water per square meter of sample surface area per 24 hours.
- Peel strength or membrane adhesion strength tests were conducted on membrane samples prepared with reinforced backings. Test samples were prepared having dimensions of 3 inches by 3.5 inches (7.62 cm ⁇ 8.89 cm). Double coated vinyl tape (type—#419 available from the 3M Company of Saint Paul, Minn.) having a width of 1 inch (2.54 cm) was placed over the edges of a 4 inch by 4 inch (10.2 cm ⁇ 10.2 cm.) chrome steel plate so that tape covered all edges of the plate. The membrane sample was then mounted on top of the adhesive exposed side of the tape and pressure was applied so that sample was adhesively secured to the chrome plate.
- Double coated vinyl tape type—#419 available from the 3M Company of Saint Paul, Minn.
- the ionic conductance of the membrane was tested using a Palico 9100-2 type test system.
- This test system consisted of a bath of 1 molar sulfuric acid maintained at a constant temperature of 25° C. Submerged in the bath were four probes used for imposing current and measuring voltage by a standard “Kelvin” four-terminal measurement technique. A device capable of holding a separator, such as the sample membrane to be tested, was located between the probes. First, a square wave current signal was introduced into the bath, without a separator in place, and the resulting square wave voltage was measured. This provided an indication of the resistance of the acid bath. The sample membrane was then placed in the membrane-holding device, and a second square wave current signal was introduced into the bath. The resulting square wave voltage was measured between the probes. This was a measurement of the resistance due to the membrane and the bath. By subtracting this number from the first, the resistance due to the membrane alone was found.
- Reverse expansion in the x and y direction upon dehydration was measured using a type Thermomechanical Analyzer 2940, made by TA Instruments, Inc., of New Castle, Del. This instrument was used to apply a predetermined force to a sample that had been boiled in water for 30 minutes. A quartz probe placed in contact with the sample measured any linear changes in the sample as it dried. A sample was placed in a holder and then dried at 75° C. for greater than 10 min. The change in dimension (i.e., the shrinkage) was recorded as a percentage of the original weight.
- Liquids with surface free energies less than that of stretched porous PTFE can be forced out of the structure with the application of a differential pressure. This clearing will occur from the largest passageways first. A passageway is then created through which bulk air flow can take place. The air flow appears as a steady stream of small bubbles through the liquid layer on top of the sample. The pressure at which the first bulk air flow takes place is called the bubble point and is dependent on the surface tension of the test fluid and the size of the largest opening.
- the bubble point can be used as a relative measure of the structure of a membrane and is often correlated with some other type of performance criteria, such as filtration efficiency.
- the Bubble Point was measured according to the procedures of ASTM F316-86. Isopropyl alcohol was used as the wetting fluid to fill the pores of the test specimen.
- the Bubble Point is the pressure of air required to displace the isopropyl alcohol from the largest pores of the test specimen and create the first continuous stream of bubbles detectable by their rise through a layer of isopropyl alcohol covering the porous media. This measurement provides an estimation of maximum pore size.
- Pore size measurements are made by the Coulter PorometerTM, manufactured by Coulter Electronics, Inc., Hialeah, Fla.
- the Coulter Poremeter is an instrument that provides automated measurement of pore size distributions in porous media using the liquid displacement method (described in ASTM Standard E1298-89).
- the Poremeter determines the pore size distribution of a sample by increasing air pressure on the sample and measuring the resulting flow. This distribution is a measure of the degree of uniformity of the membrane (i.e., a narrow distribution means there is little difference between the smallest and largest pore size).
- the Porometer also calculates the mean flow pore size. By definition, half of the fluid flow through the filter occurs through pores that are above or below this size. It is the mean flow pore size which is most often linked to other filter properties, such as retention of particulates in a liquid stream. The maximum pore size is often linked to the Bubble Point because bulk air flow is first seen through the largest pore.
- This text measures the relative strength of a sample by determining the maximum load at break.
- the sample is challenged with a 1 inch diameter ball while being clamped between two plates.
- the material is placed taut in the measuring device and pressure applied with the ball burst probe. Pressure at break is recorded.
- the Gurley air flow test measures the time in seconds for 100 cc of air to flow through a one square inch sample at 4.88 inches of water pressure. The sample is measured in a Gurley Densometer (ASTM 0726-58). The sample is placed between the clamp plates. The cylinder is then dropped gently. The automatic timer (or stopwatch) is used to record the time (seconds) required for a specific volume recited above to be displaced by the cylinder. This time is the Gurley number.
- the Frazier air flow test is similar but is mostly used for much thinner or open membranes.
- the test reports flow in cubic feet per minute per square foot of material at 0.5 inches water pressure. Air flow can also be measured with the Coulter Porometer. In this test, the operator can select any pressure over a wide range.
- the Porometer can also perform a pressure hold test that measures air flow during a decreasing pressure curve.
- the present invention provides for an integral composite membrane. No porous surfaces are exposed in the present invention.
- the integral composite membrane of the present invention can be advantageously employed in electrolytic processes and chemical separations.
- the membrane of the present invention would take the place of existing cation exchange membranes.
- This membrane could be of the type which is laminated to a spacer screen in accordance with a specific application. Due to the higher conductance of this membrane feasible with thinner membranes, an electrodialysis unit could employ less membrane to achieve a given flux rate, thereby saving space and cost. If equipment is retrofitted with this membrane, the voltage requirements would be reduced at a given current, or higher current could be run at a given voltage. Also, in a diffusion dialysis system, a given unit employing the membrane of the present invention would provide a higher flux.
- a fuel cell utilizing the membrane of the present invention, operates at a higher voltage for a given current density due to the improved ionic conductance of thinner versions of the membrane of this invention.
- the membrane of the present invention Due to improved water transport across the membrane of the present invention, high limiting current may be achieved with less fuel gas humidification, as compared to membranes which have been employed heretofore.
- the membrane of the present invention has a resistance of 0.044 ohm-sq cm. At a current density of 1 A/cm 2 , this causes a voltage drop of about 44 mV, or about a 99 mV improvement in cell voltage compared to NAFION 117 membranes which have a resistance of 0.143 ⁇ -cm 3 .
- NAFION is a registered trademark of E. I. DuPont de Nemours and Co., Inc.
- NAFION 117 means a membrane having a thickness of 7 mils made from perfluorosulfonic acid/tetrafluoroethylene (TFE)/copolymer. This may reduce losses by about 99 mW/sq cm at this operating condition for resistance. If the cell operating voltage increased from 500 mV to 599 mV, the cell voltage efficiency would increase from 41% to 49% of the theoretical 1.23 V. The decrease in the internal resistance of the cell allows the design of smaller or more efficient cells.
- TFE perfluorosulfonic acid/tetrafluoroethylene
- ePTFE membranes can be made with a wide range of physical property values, with ranges far exceeding the two examples given above.
- An ion exchange material/surfactant solution was prepared comprising 95% by volume of a perfluorosulfonic acid/tetrafluoroethylene copolymer resin solution (in H+ form, which itself is comprised of 5% perfluorosulfonic acid/tetrafluoroethylene copolymer resin, 45% water, and 50% a mixture of low molecular weight alcohols, commercially available from E.I. DuPont de Nemours, Inc.
- NR-50 NAFION® type NR-50 (1100 EW) hereinafter “NR-50”) and 5% of a nonionic surfactant of octylphenoxy polyethoxyethanol (Triton X-100, commercially available from Rohm & Haas of Philadelphia, Pa.).
- NR-50 octylphenoxy polyethoxyethanol
- Triton X-100 commercially available from Rohm & Haas of Philadelphia, Pa.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene obtained from Conwed Plastics Corp. of Minneapolis, Minn. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200° C. No adhesives were used. The reinforced membrane sample was then placed on a 6 inch wooden embroidery hoop. A solution was prepared of 96% by volume of a perfluorosulfonic acid/TFE copolymer resin in alcohol, and 4% of the nonionic surfactant Triton X-100.
- a solution of 100% by volume of NR-50 was brushed onto both sides of the membrane, without the addition of any surfactants, to substantially occlude the interior volume of the membrane.
- the sample was then placed in an oven at 140° C. to dry. This procedure was repeated four more times until the membrane was completely transparent and the interior volume of the membrane was fully occluded.
- the sample was then boiled in distilled water for 30 minutes at atmospheric pressure causing the membrane to swell. Gurley numbers for this material are summarized in Table 3.
- a solution was prepared of 95% by volume NR-50 and 5% of the nonionic surfactant, Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the solution was applied.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm), was mounted onto a 6 inch diameter wooden embroidery hoop.
- the Gurley Densometer air flow for this membrane was 2-4 seconds.
- a solution was prepared of 95% by volume NR-50 and 5% Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in the oven at 140° C. for 30 seconds. Three additional coats of solution were applied in the same manner. The membrane was then soaked in isopropanol for 2 minutes. After rinsing with distilled water and allowing to dry at room temperature, a final coat of the solution was applied.
- the wet membrane was dried in the oven at 140° C. for 30 seconds, then soaked in isopropanol for 2 minutes. This material was not boiled. No swelling other than the minor swelling during the surfactant removal occurred.
- the ionic conduction rate for this material is presented in Table 4.
- the Gurley Densometer air flow for this membrane was 2-4 seconds.
- a solution was prepared of 95% NR-50 and 5% Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in the oven at 140° C. for 30 seconds. Two additional coats of solution were applied in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes. After rinsing with distilled water and allowing to dry at room temperature, a final coat of the solution was applied. The wet membrane was dried in the oven at 140° C. for 30 seconds, and then soaked in isopropanol for 2 minutes to remove the surfactant. The sample was rinsed and dried at room temperature.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene which was obtained from Applied Extrusion Technologies, Inc. of Middletown, Del. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200° C. The reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop.
- a solution was prepared consisting of the following: 95% by volume NR-50, containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol; and 5% of Triton X-100 non-ionic surfactant.
- the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
- the membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the ion exchange material/surfactant solution was applied. The wet membrane was dried in the oven at 140 C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- a solution was prepared consisting of the following: 95% NR-50, containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture being isopropanol and normal propanol; and 5% of Triton X-100 non-ionic surfactant.
- the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol.
- a solution of NR-50 was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of surfactant solution followed by a coat of NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- the membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
- the membrane was rinsed with distilled water and allowed to dry at room temperature.
- a final treatment of the ion exchange material/surfactant was applied to the membrane.
- the wet membrane was dried in the oven at 140° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol.
- a 95% by weight NR-50 solution containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol, was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of surfactant solution followed by the NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the NR-50 solution was applied. The wet membrane was dried in the oven at 140° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene.
- the two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200° C.
- the reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop.
- the membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol. Next, a solution of NR-50 was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of the surfactant solution followed by the NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the NR-50 solution was applied. The wet membrane was dried in the oven at 140° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the resulting resin was ground to a powder with a mortar and pestle. This resin was then dissolved in methanol under low heat (less than 70° C.).
- the final solution contained the original resin content in a base solvent of methanol such that the resin content of the solution was 5% by weight.
- the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- the membrane was boiled in distilled water for 5 minutes.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the resulting resin was ground to a powder with a mortar and pestle. This resin was then dissolved in methanol under low heat (less than 70° C.).
- the final solution contained the original resin content in a base solvent of methanol such that the resin content of the solution was 5% by weight.
- This solution was used to prepare a new solution comprised of a 95% dewatered resin solution, and 5% Triton X-100 non-ionic surfactant.
- the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Two additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- the membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
- the membrane was rinsed with distilled water and allowed to dry at room temperature.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- the membrane was boiled in distilled water for 5 minutes.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200° C. The reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop. A solution consisting of 5% by weight of perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water and the remainder a mixture of isopropanol and normal propanol, was allowed to partially evaporate slowly at room temperature.
- the viscous liquid was mixed with methanol.
- the water content of the resulting solution was estimated at 5%.
- the resin content of the solution was 5%.
- the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was boiled in distilled water for 5 minutes.
- a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- This solution was used to prepare a new solution comprised of 95% of the low-water resin solution, and 5% of the nonionic surfactant, Triton X-100.
- the new solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Two additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- the membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
- the membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the new solution was applied.
- the wet membrane was dried in the oven at 140° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
- thermoplastic frame was cut and a membrane of ePTFE was placed at a center location of the frame.
- the ePTFE membrane was heat sealed to the frame.
- the membrane was then treated in accordance with Example 1.
- a fluoroionomer membrane made in accordance with Example 1 was secured mechanically within a frame.
- This “framed” fluoroionomer composite has utility, by providing a unitary construction which can be placed in a device, which beyond serving as an ion exchange medium, can also serve as a sealant between various components of a cell assembly.
- TEFLON® fine powder was blended with ISOPAR K mineral spirit at a rate of 115 cc per pound of fine powder.
- the lubricated powder was compressed into a cylinder and was ram extruded at 70° C. to provide a tape.
- the tape was split into two rolls, layered together and compressed between rolls to a thickness of 0.030 inch. Next, the tape was stretched transversely to 2.6 times its original width.
- the ISOPAR K was driven off by heating to 210° C.
- the dry tape was expanded longitudinally between banks of rolls in a heat zone heated to 300° C.
- the ratio of speed of the second bank of rolls to the first bank of rolls was 35:1 and the third bank of rolls to the second bank of rolls was 1.5:1, for a total of 52:1 longitudinal expansion producing a tape having a width of 3.5 inches.
- This tape was heated to 295° C. and transversely expanded 13.7 times in width, while being constrained from shrinkage and then heated to 365° C. while still constrained.
- This process produced a web-like membrane having a porous microstructure composed substantially of fibrils in which no nodes were present
- An ePTFE membrane having a nominal thickness of 2.2 mils (0.6 mm) and a Gurley Densometer air flow of 6-9 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- An ePTFE membrane having a nominal thickness of 3 mils (0.8 mm) and a Gurley Densometer air flow of 6-9 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- An ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- a second composite membrane prepared in the same manner, however using a 950 EW perfluorosulfonic acid/TFE copolymer in a solvent such as ethanol.
- the two membranes were then combined (laminated) by use of heat and pressure. For example, at 190° C. (375° F.) @100 psi for 1 minute in a heated press or a comparable arrangement in a heated roll.
- An ePTFE membrane having a nominal thickness of 0.75 mils (0.002 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- An alcohol solution consisting of 5% by weight of ionomer, and a finely divided powder, such as carbon black (10%), was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The final composite had a dark appearance.
- An ePTFE membrane having a nominal thickness of 0.75 mils (0.002 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
- a solution consisting of 5% by weight of ionomer was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
- the wet membrane was dried in an oven at 140° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
- This composite membrane was then combined (laminated) to another ePTFE membrane having a nominal thickness of 0.75 (0.002) mm and a Gurley Densometer air flow of 2-4 second, by use of heat and pressure (for example 190 C. [375 F.] @100 psi) using a heated press or a comparable arrangement.
- NAFION 117 a perfluorosulfonic acid cation exchange membrane, unreinforced film of 1100 equivalent weight commercially available from E. I. DuPont de Nemours Co., Inc., having a quoted nominal thickness of 7 mils (0.18 mm) was obtained.
- Example 1 72 NAFION 117* 75
- Example 6 98 NAFION 117** 98 *sample was boiled in distilled water for 30 minutes. **sample was tested as received from E. I. DuPont de Nemours, Inc.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Composite Materials (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Laminated Bodies (AREA)
- Fuel Cell (AREA)
Abstract
Description
TYPE 1 | |
||
Gurley (sec.) | 3.3 | 0.9 | ||
Bubble Point (psi) | 28.3 | 32.6 | ||
Mass/Area (g/m2) | 6.1 | 4.4 | ||
Density (g/cc) | 0.65 | 0.77 | ||
Longitudinal Maximum Load (lbs.) | 1.76 | 2.18 | ||
Transverse Maximum Load (lbs.) | 2.33 | 1.31 | ||
TABLE 1 |
Moisture Vapor Transmission Rates (MVTR) |
Sample ID* | MVTR (grams/m2-24 hrs.) | ||
4 | 25,040 | ||
NAFION 117 | 23,608 | ||
*Measurements were obtained on samples in their swollen state. |
TABLE 2 |
Tensile Test |
(Avg) Normalized | ||
Stress @ Max | ||
Load (psi) |
Sample ID | M-Dir | XM-Dir | ||
Example 1 | 4706 | 2571 | ||
NAFION 117* | 2308 | 1572 | ||
Example 6 | 4988 | 3463 | ||
NAFION 117** | 4314 | 3581 | ||
*sample was boiled in distilled water for 30 minutes. | ||||
**sample was tested as received from E. I. DuPont de Nemours, Inc. |
TABLE 3 |
Gurley Numbers |
Base Material | Final Swollen Membrane | ||
Sample | Thickness | Gurley No. | Gurley Number |
ID | (mm)* | (sec) | (sec) |
1 | 0.02 | 2-4 | |
2 | 0.02 | 2-4 | Total occlusion |
3 | 0.01 | 2-4 | Total occlusion |
*Thickness measurements were obtained on samples prior to swelling in dried state. |
TABLE 4 |
Ionic Conductance |
Ionic Conductance | |||
Sample ID | (mhos/sq. cm) | ||
Example 1 | 22.7 | ||
NAFION 117* | 7.0 | ||
Example 5 | 8.5 | ||
NAFION 117** | 4.7 | ||
*sample was boiled in distilled water for 30 minutes. | |||
**sample was tested as received from E. I. DuPont de Nemours, Inc. |
TABLE 5 |
Weight Loss With Temperature |
Final Weight | |||
Sample ID | (% of Orig. Wt. @ 100° C.) | ||
Example 1 | 72 | ||
NAFION 117* | 75 | ||
Example 6 | 98 | ||
NAFION 117** | 98 | ||
*sample was boiled in distilled water for 30 minutes. | |||
**sample was tested as received from E. I. DuPont de Nemours, Inc. |
TABLE 6 |
Selectivity |
Sample ID | Selectivity (millivolts) | ||
NAFION 117, dry | 16.3 | ||
NAFION 117, boiled | 10.8 | ||
Example 1, boiled | 3.8 | ||
Example 2, dry | 15.7 | ||
TABLE 7 | |||
Transverse Direction | Machine Direction | ||
Example 1 | 2.95% | 2.90% | ||
NAFION 117 | 11.80% | 10.55% | ||
Claims (70)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/325,135 USRE37656E1 (en) | 1995-03-15 | 1999-06-03 | Electrode apparatus containing an integral composite membrane |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/404,853 US5547551A (en) | 1995-03-15 | 1995-03-15 | Ultra-thin integral composite membrane |
US08/567,466 US5635041A (en) | 1995-03-15 | 1995-12-05 | Electrode apparatus containing an integral composite membrane |
US09/325,135 USRE37656E1 (en) | 1995-03-15 | 1999-06-03 | Electrode apparatus containing an integral composite membrane |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/567,466 Reissue US5635041A (en) | 1995-03-15 | 1995-12-05 | Electrode apparatus containing an integral composite membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37656E1 true USRE37656E1 (en) | 2002-04-16 |
Family
ID=23601323
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/404,853 Ceased US5547551A (en) | 1994-11-14 | 1995-03-15 | Ultra-thin integral composite membrane |
US08/567,466 Ceased US5635041A (en) | 1995-03-15 | 1995-12-05 | Electrode apparatus containing an integral composite membrane |
US09/325,135 Expired - Lifetime USRE37656E1 (en) | 1995-03-15 | 1999-06-03 | Electrode apparatus containing an integral composite membrane |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/404,853 Ceased US5547551A (en) | 1994-11-14 | 1995-03-15 | Ultra-thin integral composite membrane |
US08/567,466 Ceased US5635041A (en) | 1995-03-15 | 1995-12-05 | Electrode apparatus containing an integral composite membrane |
Country Status (1)
Country | Link |
---|---|
US (3) | US5547551A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040067402A1 (en) * | 1994-11-14 | 2004-04-08 | Barndad Bahar | Ultra-thin integral composite membrane |
US20040115587A1 (en) * | 2002-11-01 | 2004-06-17 | Bas Medical, Inc. | Methods and systems for enabling and stabilizing tooth movement |
US6866952B2 (en) * | 2001-04-18 | 2005-03-15 | Mti Microfuel Cells Inc. | Apparatus and method for controlling undesired water and fuel transport in a fuel cell |
US20050096442A1 (en) * | 2003-10-30 | 2005-05-05 | Arne Thaler | Aqueous emulsion polymerization of functionalized fluoromonomers |
US20050107532A1 (en) * | 2003-11-13 | 2005-05-19 | 3M Innovative Properties Company | Reinforced polymer electrolyte membrane |
US20050107490A1 (en) * | 2003-11-13 | 2005-05-19 | Yandrasits Michael A. | Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam |
US20050107489A1 (en) * | 2003-11-13 | 2005-05-19 | Yandrasits Michael A. | Polymer electrolyte membranes crosslinked by nitrile trimerization |
US20050113528A1 (en) * | 2003-11-24 | 2005-05-26 | 3M Innovative Properties Company | Polymer electrolyte with aromatic sulfone crosslinking |
US20050118469A1 (en) * | 2003-12-02 | 2005-06-02 | Leach David H. | Electrostatically actuated shutter and array for use in a direct oxidation fuel cell |
US20050131097A1 (en) * | 2003-12-11 | 2005-06-16 | 3M Innovative Properties Company | Polymer electrolytes crosslinked by ultraviolet radiation |
US20050131096A1 (en) * | 2003-12-08 | 2005-06-16 | 3M Innovative Properties Company | Crosslinked polymer |
US20050137351A1 (en) * | 2003-12-17 | 2005-06-23 | 3M Innovative Properties Company | Polymer electrolyte membranes crosslinked by direct fluorination |
US7179847B2 (en) | 2003-11-13 | 2007-02-20 | 3M Innovative Properties Company | Polymer electrolytes crosslinked by e-beam |
US20070072036A1 (en) * | 2005-09-26 | 2007-03-29 | Thomas Berta | Solid polymer electrolyte and process for making same |
US7205059B2 (en) | 2001-03-27 | 2007-04-17 | Mti Microfuel Cells, Inc. | Methods and apparatuses for managing effluent products in a fuel cell system |
US7407721B2 (en) | 2003-04-15 | 2008-08-05 | Mti Microfuel Cells, Inc. | Direct oxidation fuel cell operating with direct feed of concentrated fuel under passive water management |
US20090093602A1 (en) * | 2007-10-04 | 2009-04-09 | Gore Enterprise Holdings, Inc. | Expandable TFE copolymers, method of making, and porous, expended articles thereof |
US7541109B2 (en) | 2003-04-15 | 2009-06-02 | Mti Microfuel Cells, Inc. | Passive water management techniques in direct methanol fuel cells |
US20090258958A1 (en) * | 2007-10-04 | 2009-10-15 | Ford Lawrence A | Expandable TFE Copolymers, Methods of Making, and Porous, Expanded Articles Thereof |
US7638215B2 (en) | 2002-02-19 | 2009-12-29 | Mti Microfuel Cells Inc. | Method of controlling delivery of fuel to a direct oxidation fuel cell |
US20100167100A1 (en) * | 2008-12-26 | 2010-07-01 | David Roger Moore | Composite membrane and method for making |
US7931995B2 (en) | 1997-09-12 | 2011-04-26 | Gore Enterprise Holdings, Inc. | Solid electrolyte composite for electrochemical reaction apparatus |
US8323675B2 (en) | 2004-04-20 | 2012-12-04 | Genzyme Corporation | Soft tissue prosthesis for repairing a defect of an abdominal wall or a pelvic cavity wall |
US9419300B2 (en) | 2010-04-16 | 2016-08-16 | 3M Innovative Properties Company | Proton conducting materials |
US9644054B2 (en) | 2014-12-19 | 2017-05-09 | W. L. Gore & Associates, Inc. | Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same |
US9650479B2 (en) | 2007-10-04 | 2017-05-16 | W. L. Gore & Associates, Inc. | Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same |
WO2017156293A1 (en) | 2016-03-11 | 2017-09-14 | W. L. Gore & Associates, Inc. | Reflective laminates |
WO2017172824A1 (en) | 2016-03-28 | 2017-10-05 | University Of Delaware | Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers |
Families Citing this family (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5834523A (en) * | 1993-09-21 | 1998-11-10 | Ballard Power Systems, Inc. | Substituted α,β,β-trifluorostyrene-based composite membranes |
US5547551A (en) * | 1995-03-15 | 1996-08-20 | W. L. Gore & Associates, Inc. | Ultra-thin integral composite membrane |
US6054230A (en) * | 1994-12-07 | 2000-04-25 | Japan Gore-Tex, Inc. | Ion exchange and electrode assembly for an electrochemical cell |
US6159533A (en) * | 1997-09-11 | 2000-12-12 | Southwest Research Institute | Method of depositing a catalyst on a fuel cell electrode |
US6153327A (en) * | 1995-03-03 | 2000-11-28 | Southwest Research Institute | Amorphous carbon comprising a catalyst |
US5945192A (en) * | 1995-06-29 | 1999-08-31 | Japan Gore-Tex, Inc. | Sealing assembly for a solid polymer ion exchange membrane |
MY123761A (en) * | 1995-11-15 | 2006-06-30 | Asahi Kasei Emd Corp | Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same |
JP2944504B2 (en) * | 1996-04-03 | 1999-09-06 | 三菱電機株式会社 | Insulating paint and printed wiring board having coating film of the paint |
US5667562A (en) * | 1996-04-19 | 1997-09-16 | Kimberly-Clark Worldwide, Inc. | Spunbond vacuum cleaner webs |
WO1997043117A1 (en) | 1996-05-16 | 1997-11-20 | Lockheed Martin Energy Systems, Inc. | Low temperature material bonding technique |
US5871461A (en) * | 1996-07-12 | 1999-02-16 | Empi, Inc. | Method of making an iontophoresis electrode |
WO1998002207A1 (en) * | 1996-07-12 | 1998-01-22 | Empi, Inc. | Iontophoresis electrode |
JPH1092444A (en) † | 1996-09-13 | 1998-04-10 | Japan Gore Tex Inc | Solid high molecular electrolyte complex for electrochemical reaction device and electrochemical reaction device using it |
GB9708365D0 (en) * | 1997-04-25 | 1997-06-18 | Johnson Matthey Plc | Proton conducting membranes |
US6130175A (en) * | 1997-04-29 | 2000-10-10 | Gore Enterprise Holdings, Inc. | Integral multi-layered ion-exchange composite membranes |
US5928792A (en) * | 1997-05-01 | 1999-07-27 | Millipore Corporation | Process for making surface modified porous membrane with perfluorocarbon copolymer |
US6354443B1 (en) | 1997-05-01 | 2002-03-12 | Millipore Corporation | Surface modified porous membrane and process |
US5976380A (en) * | 1997-05-01 | 1999-11-02 | Millipore Corporation | Article of manufacture including a surface modified membrane and process |
US6110333A (en) * | 1997-05-02 | 2000-08-29 | E. I. Du Pont De Nemours And Company | Composite membrane with highly crystalline porous support |
US6248469B1 (en) | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
EP1021296A4 (en) * | 1997-08-29 | 2001-05-23 | Foster Miller Inc | Composite solid polymer electrolyte membranes |
US6042959A (en) | 1997-10-10 | 2000-03-28 | 3M Innovative Properties Company | Membrane electrode assembly and method of its manufacture |
US5879827A (en) * | 1997-10-10 | 1999-03-09 | Minnesota Mining And Manufacturing Company | Catalyst for membrane electrode assembly and method of making |
US5879828A (en) * | 1997-10-10 | 1999-03-09 | Minnesota Mining And Manufacturing Company | Membrane electrode assembly |
US6136412A (en) * | 1997-10-10 | 2000-10-24 | 3M Innovative Properties Company | Microtextured catalyst transfer substrate |
US5910378A (en) * | 1997-10-10 | 1999-06-08 | Minnesota Mining And Manufacturing Company | Membrane electrode assemblies |
US6495209B1 (en) | 1998-02-20 | 2002-12-17 | Lynntech, Inc. | Process of making a composite membrane |
JP4150867B2 (en) * | 1998-05-13 | 2008-09-17 | ダイキン工業株式会社 | Materials for solid polymer electrolytes suitable for use in fuel cells |
US6110613A (en) * | 1998-07-23 | 2000-08-29 | International Fuel Cells Corporation | Alcohol and water recovery system for a direct aqueous alcohol fuel cell power plant |
US6500571B2 (en) * | 1998-08-19 | 2002-12-31 | Powerzyme, Inc. | Enzymatic fuel cell |
US6383671B1 (en) | 1998-09-08 | 2002-05-07 | Lynntech, Inc. | Gas humidification device for operation testing and evaluation of fuel cells |
ATE227642T1 (en) | 1998-09-08 | 2002-11-15 | Brookwood Companies Inc | BREATHABLE WATERPROOF LAMINATE AND METHOD FOR PRODUCING SAME |
US6821660B2 (en) * | 1998-09-08 | 2004-11-23 | Fideris, Inc. | Gas humidification device for operation, testing, and evaluation of fuel cells |
US6610436B1 (en) * | 1998-09-11 | 2003-08-26 | Gore Enterprise Holdings | Catalytic coatings and fuel cell electrodes and membrane electrode assemblies made therefrom |
US20040266299A1 (en) * | 1998-10-16 | 2004-12-30 | Fongalland Dharshini Chryshatha | Substrate |
US20040209965A1 (en) * | 1998-10-16 | 2004-10-21 | Gascoyne John Malcolm | Process for preparing a solid polymer electrolyte membrane |
GB9822569D0 (en) * | 1998-10-16 | 1998-12-09 | Johnson Matthey Plc | Substrate |
US6287717B1 (en) | 1998-11-13 | 2001-09-11 | Gore Enterprise Holdings, Inc. | Fuel cell membrane electrode assemblies with improved power outputs |
US7550216B2 (en) * | 1999-03-03 | 2009-06-23 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US6692857B2 (en) | 1999-04-21 | 2004-02-17 | Dsm N.V. | Process for the production of a composite membrane |
NL1011855C2 (en) * | 1999-04-21 | 2000-10-24 | Dsm Nv | Method of manufacturing a composite membrane. |
US6638659B1 (en) | 1999-04-30 | 2003-10-28 | University Of Connecticut | Membrane electrode assemblies using ionic composite membranes |
AU4500500A (en) * | 1999-04-30 | 2000-11-17 | University Of Connecticut, The | Membranes, membrane electrode assemblies and fuel cells employing same, and process for preparing |
US6300000B1 (en) | 1999-06-18 | 2001-10-09 | Gore Enterprise Holdings | Fuel cell membrane electrode assemblies with improved power outputs and poison resistance |
US6277512B1 (en) | 1999-06-18 | 2001-08-21 | 3M Innovative Properties Company | Polymer electrolyte membranes from mixed dispersions |
GB9914499D0 (en) | 1999-06-22 | 1999-08-25 | Johnson Matthey Plc | Non-woven fibre webs |
JP2001102089A (en) * | 1999-09-29 | 2001-04-13 | Tdk Corp | Solid electrolyte, electrolyte chemical device, lithium secondary cell and electricity double-layer capacitor |
US6770394B2 (en) * | 2000-02-11 | 2004-08-03 | The Texas A&M University System | Fuel cell with monolithic flow field-bipolar plate assembly and method for making and cooling a fuel cell stack |
US6828054B2 (en) | 2000-02-11 | 2004-12-07 | The Texas A&M University System | Electronically conducting fuel cell component with directly bonded layers and method for making the same |
GB0006429D0 (en) * | 2000-03-17 | 2000-05-03 | Johnson Matthey Plc | Electrochemical cell |
KR100343209B1 (en) * | 2000-03-27 | 2002-07-10 | 윤종용 | Reinforced compositie ion conducting polymer membrane and fuel cell adopting the same |
US6558828B1 (en) | 2000-05-26 | 2003-05-06 | Eveready Battery Company, Inc. | Zn/air cell performance in extreme humidity by controlling hydrophobic layer porosity |
JP4974403B2 (en) | 2000-05-31 | 2012-07-11 | 日本ゴア株式会社 | Solid polymer electrolyte fuel cell |
US6860976B2 (en) | 2000-06-20 | 2005-03-01 | Lynntech International, Ltd. | Electrochemical apparatus with retractable electrode |
US6613215B2 (en) | 2000-09-27 | 2003-09-02 | Proton Energy Systems, Inc. | Method for electrolysis of water using a polytetrafluoroethylene supported membrane in electrolysis cells |
US7045044B2 (en) * | 2000-09-27 | 2006-05-16 | Asahi Kasei Chemicals Corporation | Dispersion composition containing perfluorocarbon-based copolymer |
EP1327272A2 (en) | 2000-09-27 | 2003-07-16 | Proton Energy Systems, Inc. | Electrode catalyst composition, electrode and membrane electrode assembly for electrochemical cells |
US6524736B1 (en) | 2000-10-18 | 2003-02-25 | General Motors Corporation | Methods of preparing membrane electrode assemblies |
US7125620B2 (en) * | 2000-11-30 | 2006-10-24 | Mti Microfuel Cells, Inc. | Fuel cell membrane and fuel cell system with integrated gas separation |
US6964739B2 (en) * | 2000-12-12 | 2005-11-15 | Tersano Inc. | Device and method for generating and applying ozonated water |
ITMI20010383A1 (en) * | 2001-02-26 | 2002-08-26 | Ausimont Spa | POROUS HYDROPHILIC MEMBRANES |
WO2002072678A1 (en) * | 2001-03-14 | 2002-09-19 | Princeton University | High temperature, carbon monoxide-tolerant perfluorosulfonic acid composite membranes and methods of making same |
JP2002280012A (en) * | 2001-03-15 | 2002-09-27 | Matsushita Electric Ind Co Ltd | Method of manufacturing for electrolyte membrane electrode joint body for fuel cell |
US6607647B2 (en) | 2001-04-25 | 2003-08-19 | United States Filter Corporation | Electrodeionization apparatus with expanded conductive mesh electrode and method |
US6649037B2 (en) | 2001-05-29 | 2003-11-18 | United States Filter Corporation | Electrodeionization apparatus and method |
BR0210803B1 (en) * | 2001-07-05 | 2011-11-29 | ionomer, method of preparation and polymer electrolytic membrane comprising the same, membrane electrode assembly and fuel cell comprising such an assembly. | |
CN100523062C (en) * | 2001-07-13 | 2009-08-05 | 纳幕尔杜邦公司 | Process for dissolution of highly fluorinated ion-exchange polymers |
US20050131116A1 (en) * | 2002-07-12 | 2005-06-16 | Qun Sun | Process for dissolution of highly fluorinated ion-exchange polymers |
ITMI20011745A1 (en) * | 2001-08-09 | 2003-02-09 | Ausimont Spa | PROCESS FOR IMPREGNATING MEDIA |
US7147761B2 (en) * | 2001-08-13 | 2006-12-12 | Mine Safety Appliances Company | Electrochemical sensor |
US20030047282A1 (en) * | 2001-09-10 | 2003-03-13 | Yasumi Sago | Surface processing apparatus |
US6613203B1 (en) | 2001-09-10 | 2003-09-02 | Gore Enterprise Holdings | Ion conducting membrane having high hardness and dimensional stability |
US6939640B2 (en) * | 2001-09-21 | 2005-09-06 | E. I. Dupont De Nemours And Company | Anode electrocatalysts for coated substrates used in fuel cells |
ES2361004T3 (en) | 2001-10-15 | 2011-06-13 | Siemens Water Technologies Holding Corp. | APPARATUS AND METHOD FOR PURIFICATION OF FLUIDS. |
US7422646B2 (en) * | 2001-10-22 | 2008-09-09 | Perkinelmer Las, Inc. | Electrochemical sensor with dry ionomer membrane and methodfor making the same |
US7094851B2 (en) * | 2001-12-06 | 2006-08-22 | Gore Enterprise Holdings, Inc. | Low equivalent weight ionomer |
US6861489B2 (en) | 2001-12-06 | 2005-03-01 | Gore Enterprise Holdings, Inc. | Low equivalent weight ionomer |
KR100441066B1 (en) * | 2001-12-31 | 2004-07-21 | 한국과학기술연구원 | Mosaic Polymer Electrolyte Membranes and Method for Preparing the Same |
US20040159544A1 (en) * | 2002-03-14 | 2004-08-19 | Andrew Bocarsly | High temperature, carbon monoxide-tolerant perfluorosulfonic acid composite membranes and methods of making same |
US6902839B2 (en) * | 2002-05-31 | 2005-06-07 | Korea Advanced Institute Of Science And Technology | Polymer electrolyte membrane for fuel cell and method for producing the same |
US20040018410A1 (en) * | 2002-06-10 | 2004-01-29 | Hongli Dai | Additive for direct methanol fuel cells |
US7402351B2 (en) * | 2002-06-10 | 2008-07-22 | E.I. Du Pont De Nemours And Company | Carboxylic acid-based ionomer fuel cells |
US6933003B2 (en) * | 2002-06-13 | 2005-08-23 | General Motors Corporation | Method of making membrane electrode assemblies |
US20030235737A1 (en) * | 2002-06-19 | 2003-12-25 | Yoocharn Jeon | Metal-coated polymer electrolyte and method of manufacturing thereof |
CA2488724A1 (en) * | 2002-07-01 | 2004-03-18 | E.I. Du Pont De Nemours And Company | Vapor deposited catalysts and their use in fuel cells |
US6630265B1 (en) * | 2002-08-13 | 2003-10-07 | Hoku Scientific, Inc. | Composite electrolyte for fuel cells |
US20040053100A1 (en) * | 2002-09-12 | 2004-03-18 | Stanley Kevin G. | Method of fabricating fuel cells and membrane electrode assemblies |
DE10246461A1 (en) | 2002-10-04 | 2004-04-15 | Celanese Ventures Gmbh | Polymer electrolyte membrane containing a polyazole blend for use, e.g. in fuel cells, obtained by processing a mixture of polyphosphoric acid, polyazole and non-polyazole polymer to form a self-supporting membrane |
DE10246373A1 (en) | 2002-10-04 | 2004-04-15 | Celanese Ventures Gmbh | Polymer electrolyte membrane for use, e.g. in fuel cells, manufactured by heating a mixture of sulfonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane |
US6841283B2 (en) * | 2002-10-21 | 2005-01-11 | Utc Fuel Cells, Llc | High water permeability proton exchange membrane |
US20040081886A1 (en) * | 2002-10-25 | 2004-04-29 | David Zuckerbrod | Separator for electrochemical devices |
US6737158B1 (en) * | 2002-10-30 | 2004-05-18 | Gore Enterprise Holdings, Inc. | Porous polymeric membrane toughened composites |
US7345005B2 (en) * | 2003-02-13 | 2008-03-18 | E.I. Du Pont De Nemours And Company | Electrocatalysts and processes for producing |
CA2520477A1 (en) * | 2003-03-28 | 2004-10-14 | Sumitomo Chemical Company, Limited | Process for continuously producing polymerelectrolyte membrane and producing apparatus therefor |
CA2527871C (en) * | 2003-06-27 | 2010-08-17 | Asahi Kasei Chemicals Corporation | Polymer electrolyte membrane having high durability and method for producing the same |
DE10330232A1 (en) * | 2003-07-04 | 2005-01-20 | Bayer Materialscience Ag | Electrochemical half cell |
TW200509447A (en) * | 2003-07-22 | 2005-03-01 | Du Pont | Process for making planar framed membrane electrode assembly arrays, and fuel cells containing the same |
US6962959B2 (en) * | 2003-08-28 | 2005-11-08 | Hoku Scientific, Inc. | Composite electrolyte with crosslinking agents |
DE10340927A1 (en) * | 2003-09-04 | 2005-03-31 | Celanese Ventures Gmbh | Proton-conducting polymer membrane comprising polymers having covalently bonded to aromatic groups sulfonic acid groups, membrane-electrode unit and their application in fuel cells |
DE10340929A1 (en) * | 2003-09-04 | 2005-04-07 | Celanese Ventures Gmbh | Proton-conducting polymer membrane comprising at least one porous carrier material and its application in fuel cells |
WO2005045976A1 (en) * | 2003-11-06 | 2005-05-19 | Renault S.A.S | Ion-conducting composite membranes |
US7563351B2 (en) | 2003-11-13 | 2009-07-21 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7083733B2 (en) | 2003-11-13 | 2006-08-01 | Usfilter Corporation | Water treatment system and method |
US8377279B2 (en) | 2003-11-13 | 2013-02-19 | Siemens Industry, Inc. | Water treatment system and method |
US7862700B2 (en) | 2003-11-13 | 2011-01-04 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US20050103717A1 (en) | 2003-11-13 | 2005-05-19 | United States Filter Corporation | Water treatment system and method |
US7846340B2 (en) | 2003-11-13 | 2010-12-07 | Siemens Water Technologies Corp. | Water treatment system and method |
KR100590967B1 (en) * | 2003-12-30 | 2006-06-19 | 현대자동차주식회사 | High Temperature Proton Exchange Membrane using Ionomer/Soild Proton Conductor by nano-templating, Preparation Method thereof and Fuel Cell Containing the Same |
WO2005071779A2 (en) * | 2004-01-20 | 2005-08-04 | E.I. Du Pont De Nemours And Company | Processes for preparing stable proton exchange membranes and catalyst for use therein |
US8721894B2 (en) * | 2005-02-07 | 2014-05-13 | Drake Water Technologies, Inc. | Methods for hydrodynamic control of a continuous water purification system |
US20050173314A1 (en) * | 2004-02-09 | 2005-08-11 | Drake Ronald N. | Controlled liquid purification system |
US7368059B2 (en) * | 2004-02-09 | 2008-05-06 | Drake Engineering Incorporated | Method for preferentially removing monovalent cations from contaminated water |
US7862715B2 (en) | 2004-02-09 | 2011-01-04 | Drake Engineering Incorporated | Apparatus for removing undesirable components from a contaminated solution containing both desirable and undesirable components |
US7582240B2 (en) * | 2004-04-01 | 2009-09-01 | E. I. Du Pont De Nemours And Company | Rotary process for forming uniform material |
US7378176B2 (en) * | 2004-05-04 | 2008-05-27 | Angstrom Power Inc. | Membranes and electrochemical cells incorporating such membranes |
US7632587B2 (en) | 2004-05-04 | 2009-12-15 | Angstrom Power Incorporated | Electrochemical cells having current-carrying structures underlying electrochemical reaction layers |
JP2005332672A (en) * | 2004-05-19 | 2005-12-02 | Aisin Seiki Co Ltd | Membrane electrode assembly and polymer electrolyte fuel cell |
WO2005119828A2 (en) * | 2004-05-27 | 2005-12-15 | E.I. Dupont De Nemours And Company | Sol-gel derived composites comprising oxide or oxyhydroxide matrices with noble metal components and carbon for fuel cell catalysts |
US20060286435A1 (en) * | 2004-05-27 | 2006-12-21 | Kostantinos Kourtakis | Fuel cells and their components using catalysts having a high metal to support ratio |
US7422813B2 (en) * | 2004-06-08 | 2008-09-09 | Microcell Corporation | Fuel cell systems comprising microfibrous fuel cell elements and methods of making and using same |
US8785013B2 (en) * | 2004-08-20 | 2014-07-22 | E I Du Pont De Nemours And Company | Compositions containing modified fullerenes |
US20070111084A1 (en) * | 2004-10-05 | 2007-05-17 | Law Clarence G | Methanol tolerant catalyst material containing membrane electrode assemblies and fuel cells prepared therewith |
JP5010823B2 (en) | 2004-10-14 | 2012-08-29 | 三星エスディアイ株式会社 | POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME |
US7910260B2 (en) * | 2004-11-01 | 2011-03-22 | GM Global Technology Operations LLC | Method for stabilizing polyelectrolyte membrane films used in fuel cells |
KR20070086373A (en) * | 2004-12-03 | 2007-08-27 | 니토 덴코 가부시키가이샤 | Electrolyte membrance and solid polymer fuel cell using same |
US8278011B2 (en) | 2004-12-09 | 2012-10-02 | Nanosys, Inc. | Nanostructured catalyst supports |
CA2588548A1 (en) | 2004-12-09 | 2006-06-15 | Nanosys, Inc. | Nanowire-based membrane electrode assemblies for fuel cells |
US7939218B2 (en) * | 2004-12-09 | 2011-05-10 | Nanosys, Inc. | Nanowire structures comprising carbon |
US7842432B2 (en) * | 2004-12-09 | 2010-11-30 | Nanosys, Inc. | Nanowire structures comprising carbon |
US7606184B2 (en) * | 2005-01-04 | 2009-10-20 | Tdk Corporation | Multiplexers employing bandpass-filter architectures |
US7588796B2 (en) * | 2005-03-11 | 2009-09-15 | Bha Group, Inc. | Method of making a composite membrane |
US20060205301A1 (en) * | 2005-03-11 | 2006-09-14 | Bha Technologies, Inc. | Composite membrane having hydrophilic properties and method of manufacture |
US7635062B2 (en) * | 2005-03-11 | 2009-12-22 | Bha Group, Inc. | Composite membrane |
ITMI20050445A1 (en) | 2005-03-17 | 2006-09-18 | Solvay Solexis Spa | COMPONENT IONOMERIC MEMBRANE |
CN101147292A (en) * | 2005-03-23 | 2008-03-19 | 株式会社东芝 | Fuel cell |
US20070202764A1 (en) * | 2005-04-01 | 2007-08-30 | Marin Robert A | Rotary process for forming uniform material |
US7658828B2 (en) | 2005-04-13 | 2010-02-09 | Siemens Water Technologies Holding Corp. | Regeneration of adsorption media within electrical purification apparatuses |
CN100344350C (en) * | 2005-04-19 | 2007-10-24 | 武汉理工大学 | Prepn process of polymer reinforced porous proton exchange membrane |
CN100359738C (en) * | 2005-05-20 | 2008-01-02 | 武汉理工大学 | Composite proton exchange membrane for high-temp proton exchange membrane fuel cell and preparation method |
CN100338807C (en) * | 2005-05-20 | 2007-09-19 | 武汉理工大学 | Composite proton exchang membrane in use for fuel cell and preparation method |
WO2006130786A2 (en) | 2005-06-01 | 2006-12-07 | Siemens Water Technologies Holding Corp. | Water treatment system and process |
US7306729B2 (en) * | 2005-07-18 | 2007-12-11 | Gore Enterprise Holdings, Inc. | Porous PTFE materials and articles produced therefrom |
DE202005011301U1 (en) | 2005-07-19 | 2005-09-22 | Hidde, Axel R., Dr.-Ing. | Cable or hose through guide for buildings and vehicles has an air channel closed by a semi permeable filter membrane valve |
US20070087245A1 (en) * | 2005-10-14 | 2007-04-19 | Fuller Timothy J | Multilayer polyelectrolyte membranes for fuel cells |
KR101390619B1 (en) | 2005-11-21 | 2014-04-30 | 나노시스, 인크. | Nanowire structures comprising carbon |
KR100766896B1 (en) * | 2005-11-29 | 2007-10-15 | 삼성에스디아이 주식회사 | Polymer electrolyte for fuel cell and fuel cell system comprising same |
JP4496160B2 (en) * | 2005-12-13 | 2010-07-07 | 株式会社東芝 | Proton conductive inorganic material, electrolyte membrane, electrode, membrane electrode composite, and fuel cell |
JP4719015B2 (en) * | 2006-01-20 | 2011-07-06 | 株式会社東芝 | Electrolyte membrane, membrane electrode assembly and fuel cell |
US20070188841A1 (en) * | 2006-02-10 | 2007-08-16 | Ntera, Inc. | Method and system for lowering the drive potential of an electrochromic device |
US8663866B2 (en) | 2006-03-13 | 2014-03-04 | E I Du Pont De Nemours And Company | Stable proton exchange membranes and membrane electrode assemblies |
KR100833056B1 (en) * | 2006-03-31 | 2008-05-27 | 주식회사 엘지화학 | Reinforced composite electrolyte membrane for fuel cell |
ATE504954T1 (en) * | 2006-04-07 | 2011-04-15 | Utc Power Corp | COMPOSITE WATER MANAGEMENT ELECTROLYTE MEMBRANE FOR A FUEL CELL |
US10252923B2 (en) | 2006-06-13 | 2019-04-09 | Evoqua Water Technologies Llc | Method and system for water treatment |
US8277627B2 (en) | 2006-06-13 | 2012-10-02 | Siemens Industry, Inc. | Method and system for irrigation |
US10213744B2 (en) | 2006-06-13 | 2019-02-26 | Evoqua Water Technologies Llc | Method and system for water treatment |
US20080067069A1 (en) | 2006-06-22 | 2008-03-20 | Siemens Water Technologies Corp. | Low scale potential water treatment |
US7820024B2 (en) | 2006-06-23 | 2010-10-26 | Siemens Water Technologies Corp. | Electrically-driven separation apparatus |
KR20080020259A (en) * | 2006-08-31 | 2008-03-05 | 삼성에스디아이 주식회사 | Membrane-electrode assembly for fuel cell, method of preparing same and fuel cell system comprising same |
US7744760B2 (en) | 2006-09-20 | 2010-06-29 | Siemens Water Technologies Corp. | Method and apparatus for desalination |
US7868086B2 (en) * | 2006-10-04 | 2011-01-11 | E. I. Du Pont De Nemours And Company | Arylene fluorinated sulfonimide polymers and membranes |
US7838612B2 (en) * | 2006-10-04 | 2010-11-23 | E. I. Du Pont De Nemours And Company | Arylene fluorinated sulfonimide compositions |
US7838594B2 (en) | 2006-10-04 | 2010-11-23 | E.I. Du Pont De Nemours And Company | Bridged arylene fluorinated sulfonimide compositions and polymers |
US7910653B2 (en) * | 2006-10-04 | 2011-03-22 | E.I. Du Pont De Nemours And Company | Process for the preparation of arylene fluorinated sulfonimide polymers and membranes |
KR100821789B1 (en) * | 2006-10-31 | 2008-04-14 | 현대자동차주식회사 | A high intensity complex membrane and a membrane-electrode assmbly using it |
US8058383B2 (en) | 2006-12-18 | 2011-11-15 | E. I. Du Pont De Nemours And Company | Arylene-fluorinated-sulfonimide ionomers and membranes for fuel cells |
US7989513B2 (en) * | 2006-12-20 | 2011-08-02 | E.I. Du Pont De Nemours And Company | Process for producing dispersions of highly fluorinated polymers |
US7973091B2 (en) * | 2006-12-20 | 2011-07-05 | E. I. Du Pont De Nemours And Company | Process for producing re-dispersable particles of highly fluorinated polymer |
US8415070B2 (en) * | 2006-12-21 | 2013-04-09 | E I Du Pont De Nemours And Company | Partially fluorinated cyclic ionic polymers and membranes |
US7456314B2 (en) * | 2006-12-21 | 2008-11-25 | E.I. Du Pont De Nemours And Company | Partially fluorinated ionic compounds |
US20080217182A1 (en) * | 2007-03-08 | 2008-09-11 | E. I. Dupont De Nemours And Company | Electroplating process |
US8496121B2 (en) * | 2007-03-26 | 2013-07-30 | The Purolite Company | Macroporous copolymers with large pores |
US20090039048A1 (en) * | 2007-08-06 | 2009-02-12 | Tien Linsheng W | Venting System and the Use Thereof |
CN101836316A (en) * | 2007-09-25 | 2010-09-15 | 昂斯特罗姆动力公司 | Fuel cell cover |
JP5453274B2 (en) * | 2007-09-25 | 2014-03-26 | ソシエテ ビック | Fuel cell system including space-saving fluid plenum and method related thereto |
EP2060315A3 (en) * | 2007-11-15 | 2009-08-12 | DSMIP Assets B.V. | High performance membrane |
MX2010005876A (en) | 2007-11-30 | 2010-06-15 | Siemens Water Tech Corp | Systems and methods for water treatment. |
EP2222761A1 (en) * | 2007-12-20 | 2010-09-01 | E. I. du Pont de Nemours and Company | Process to prepare crosslinkable trifluorostyrene polymers and membranes |
WO2009082661A1 (en) * | 2007-12-20 | 2009-07-02 | E. I. Du Pont De Nemours And Company | Crosslinkable trifluorostyrene polymers and membranes |
EP2220038A1 (en) * | 2007-12-20 | 2010-08-25 | E. I. du Pont de Nemours and Company | Crosslinkable monomer |
US8071254B2 (en) * | 2007-12-27 | 2011-12-06 | E. I. Du Pont De Nemours And Company | Crosslinkable fluoropolymer, crosslinked fluoropolymers and crosslinked fluoropolymer membranes |
US20100093878A1 (en) * | 2007-12-27 | 2010-04-15 | E.I. Du Pont De Nemours And Company | Crosslinkable fluoropolymer, crosslinked fluoropolymers and crosslinked fluoropolymer membranes |
KR101063215B1 (en) | 2008-02-20 | 2011-09-07 | 한국과학기술원 | Reinforced composite membrane for polymer electrolyte fuel cell |
WO2009105896A1 (en) * | 2008-02-29 | 2009-09-03 | Angstrom Power Incorporated | Electrochemical cell and membranes related thereto |
CN101978540B (en) | 2008-03-21 | 2015-10-21 | 旭硝子株式会社 | Membrane-electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell |
US20090312175A1 (en) * | 2008-04-29 | 2009-12-17 | University Of Connecticut | Increased Activity of Catalyst Using Inorganic Acids |
JP5277740B2 (en) * | 2008-06-10 | 2013-08-28 | 旭硝子株式会社 | Method for forming catalyst layer and method for producing membrane electrode assembly for polymer electrolyte fuel cell |
CN100595960C (en) * | 2008-07-22 | 2010-03-24 | 山东东岳神舟新材料有限公司 | Microporous-film-reinforced multilayer fluorine-containing cross-linking ionic membrane and preparation method thereof |
US9006133B2 (en) | 2008-10-24 | 2015-04-14 | Oned Material Llc | Electrochemical catalysts for fuel cells |
GB2478084B (en) * | 2008-12-02 | 2015-06-24 | Xergy Inc | Electrochemical compressor and refrigeration system |
US9599364B2 (en) | 2008-12-02 | 2017-03-21 | Xergy Ltd | Electrochemical compressor based heating element and hybrid hot water heater employing same |
WO2010075492A1 (en) | 2008-12-23 | 2010-07-01 | E. I. Du Pont De Nemours And Company | Process to produce catalyst coated membranes for fuel cell applications |
US20100227250A1 (en) * | 2009-03-03 | 2010-09-09 | Clearedge Power, Inc. | Rigidity & Inplane Electrolyte Mobility Enhancement for Fuel Cell Eletrolyte Membranes |
US9464822B2 (en) * | 2010-02-17 | 2016-10-11 | Xergy Ltd | Electrochemical heat transfer system |
US8640492B2 (en) * | 2009-05-01 | 2014-02-04 | Xergy Inc | Tubular system for electrochemical compressor |
WO2010127270A2 (en) * | 2009-05-01 | 2010-11-04 | Xergy Incorporated | Self-contained electrochemical heat transfer system |
JP5686988B2 (en) * | 2009-05-04 | 2015-03-18 | シャープ株式会社 | Catalyst layer used for membrane electrode assembly for fuel cell, membrane electrode assembly for fuel cell using the same, fuel cell, and production method thereof |
KR102067922B1 (en) | 2009-05-19 | 2020-01-17 | 원드 매터리얼 엘엘씨 | Nanostructured materials for battery applications |
KR101741243B1 (en) | 2009-08-26 | 2017-06-15 | 에보쿠아 워터 테크놀로지스 피티이. 리미티드 | Ion exchange membranes |
US20120202135A1 (en) * | 2009-09-03 | 2012-08-09 | E.I. Du Pont De Nemours And Company | Improved catalyst coated membranes having composite, thin membranes and thin cathodes for use in direct methanol fuel cells |
CN102668207B (en) | 2009-12-18 | 2015-03-18 | Lg化学株式会社 | Macromolecular electrolyte membrane for a fuel cell, and a membrane electrode assembly and a fuel cell comprising the same |
US20120296065A1 (en) | 2009-12-29 | 2012-11-22 | Ei Du Pont De Nemours And Company | Polyarylene ionomers membranes |
WO2011082158A1 (en) | 2009-12-29 | 2011-07-07 | E. I. Du Pont De Nemours And Company | Polyarylene ionomers |
US8927612B2 (en) | 2010-06-18 | 2015-01-06 | Shandong Huaxia Shenzhou New Material Co., Ltd. | Composite having ion exchange function and preparation method and use thereof |
CA2802973C (en) | 2010-06-18 | 2017-09-12 | Shandong Huaxia Shenzhou New Material Co., Ltd | Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof |
CA2802948C (en) | 2010-06-18 | 2018-08-07 | Shandong Huaxia Shenzhou New Material Co., Ltd | Fluorine-containing ionomer composite material with ion exchange function, preparation method and use thereof |
US20120045704A1 (en) | 2010-08-18 | 2012-02-23 | E.I. Du Pont De Nemours And Company | Durable ionomeric polymer for proton exchange membrane and membrane electrode assemblies for electrochemical fuel cell applications |
EP2424015A1 (en) | 2010-08-30 | 2012-02-29 | Solvay SA | Assembly for reversible fuel cell |
US9570773B2 (en) | 2010-10-07 | 2017-02-14 | Asahi Kasei E-Materials Corporation | Fluorine-based polymer electrolyte membrane |
US9716285B2 (en) | 2011-01-19 | 2017-07-25 | Audi Ag | Porous nano-fiber mats to reinforce proton conducting membranes for PEM applications |
JP2012206062A (en) * | 2011-03-30 | 2012-10-25 | Nihon Gore Kk | Composite membrane |
US9151283B2 (en) | 2011-08-08 | 2015-10-06 | Xergy Ltd | Electrochemical motive device |
US10024590B2 (en) | 2011-12-21 | 2018-07-17 | Xergy Inc. | Electrochemical compressor refrigeration appartus with integral leak detection system |
GB2517587B (en) | 2011-12-21 | 2018-01-31 | Xergy Ltd | Electrochemical compression system |
WO2013101299A1 (en) | 2011-12-29 | 2013-07-04 | E. I. Du Pont De Nemours And Company | Flow battery comprising a composite polymer separator membrane |
US9457324B2 (en) | 2012-07-16 | 2016-10-04 | Xergy Ltd | Active components and membranes for electrochemical compression |
JP6358597B2 (en) * | 2012-12-25 | 2018-07-18 | 株式会社クラレ | Ion exchange membrane, method for producing the same, and electrodialysis apparatus |
CN105283993B (en) | 2013-04-29 | 2018-06-15 | Lg化学株式会社 | Polymer dielectric film, the membrane electrode assembly including the polymer dielectric film and the fuel cell including the membrane electrode assembly |
EP2842620A1 (en) | 2013-08-26 | 2015-03-04 | Agfa-Gevaert | A method for preparing a composite membrane |
US20150096884A1 (en) | 2013-10-07 | 2015-04-09 | W. L. Gore & Associates, Inc. | Humidification Control Device |
EP3076466B1 (en) | 2013-11-26 | 2018-02-28 | LG Chem, Ltd. | Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly |
WO2015080289A1 (en) | 2013-11-29 | 2015-06-04 | ダイキン工業株式会社 | Modified polytetrafluoroethylene fine powder and uniaxially oriented porous body |
JP5823601B2 (en) | 2013-11-29 | 2015-11-25 | 旭化成イーマテリアルズ株式会社 | Polymer electrolyte membrane |
KR20160091386A (en) | 2013-11-29 | 2016-08-02 | 아사히 가세이 가부시키가이샤 | Polymer electrolyte membrane |
JP5862751B2 (en) | 2013-11-29 | 2016-02-16 | ダイキン工業株式会社 | Porous body, polymer electrolyte membrane, filter medium for filter and filter unit |
US10766004B2 (en) | 2013-12-30 | 2020-09-08 | 3M Innovative Properties Company | Composite membranes and methods of use |
US9399195B2 (en) | 2014-01-31 | 2016-07-26 | Paragon Space Development Corporation | Ionomer-membrane water processing apparatus |
US9695066B2 (en) | 2014-01-31 | 2017-07-04 | Paragon Space Development Corporation | Ionomer-membrane water processing apparatus |
US9931584B2 (en) | 2015-02-10 | 2018-04-03 | Drake Water Technologies, Inc. | Methods and apparatus for counter-current leaching of finely divided solids |
US10478778B2 (en) | 2015-07-01 | 2019-11-19 | 3M Innovative Properties Company | Composite membranes with improved performance and/or durability and methods of use |
US10618008B2 (en) | 2015-07-01 | 2020-04-14 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
JP2018522718A (en) | 2015-07-01 | 2018-08-16 | スリーエム イノベイティブ プロパティズ カンパニー | PVP-containing and / or PVL-containing composite membrane and method of use |
CN106861457A (en) * | 2015-12-13 | 2017-06-20 | 中国科学院大连化学物理研究所 | A kind of preparation method of the Ho llow fiber membrane for gas separation of mixed-matrix containing MOFs |
DE102016014692A1 (en) | 2015-12-18 | 2017-06-22 | Daimler Ag | Improved structures and manufacturing processes for catalyst coated membranes for fuel cells |
GB2550018B (en) * | 2016-03-03 | 2021-11-10 | Xergy Ltd | Anion exchange polymers and anion exchange membranes incorporating same |
US10386084B2 (en) | 2016-03-30 | 2019-08-20 | Xergy Ltd | Heat pumps utilizing ionic liquid desiccant |
US11826748B2 (en) | 2016-08-10 | 2023-11-28 | Ffi Ionix Ip, Inc. | Ion exchange polymers and ion exchange membranes incorporating same |
US10752523B2 (en) | 2016-09-16 | 2020-08-25 | Paragon Space Development Corporation | Systems and methods for recovery of purified water and concentrated brine |
US11168013B2 (en) | 2016-09-16 | 2021-11-09 | Paragon Space Development Corporation | In-situ resource utilization-derived water purification and hydrogen and oxygen production |
KR102001470B1 (en) | 2016-10-12 | 2019-10-01 | 한국과학기술연구원 | Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same |
EP3556801A4 (en) | 2016-12-19 | 2020-07-29 | Nitto Denko Corporation | Polytetrafluoroethylene porous membrane, and waterproof breathable membrane and waterproof breathable member using same |
KR101851643B1 (en) | 2017-02-20 | 2018-04-25 | 한국과학기술연구원 | Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same |
CA3055013C (en) | 2017-04-04 | 2021-08-03 | W. L. Gore & Associates Gmbh | Dielectric composite with reinforced elastomer and integrated electrode |
DE102018003424A1 (en) | 2017-05-06 | 2018-11-08 | Daimler Ag | Improved catalyst coated membranes and fuel cell fabrication processes |
WO2019030557A1 (en) | 2017-08-11 | 2019-02-14 | Daimler Ag | Free-standing oer anode catalyst layers for fuel cells |
EA202090132A1 (en) | 2017-08-21 | 2020-08-03 | Эвокуа Уотер Текнолоджиз Ллк | TREATMENT OF SALT WATER FOR ITS USE FOR AGRICULTURAL AND INDUSTRIAL NEEDS |
US10153507B1 (en) | 2018-07-30 | 2018-12-11 | Kuwait Institute For Scientific Research | Method of making a nanocomposite polyelectrolyte membrane |
US11103864B2 (en) * | 2018-09-04 | 2021-08-31 | Xergy Inc. | Multilayered ion exchange membranes |
DE102019104561A1 (en) | 2019-02-22 | 2020-08-27 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Method for producing a composite layer, electrochemical unit and use of the composite layer |
US11454458B1 (en) | 2019-04-12 | 2022-09-27 | Xergy Inc. | Tube-in-tube ionic liquid heat exchanger employing a selectively permeable tube |
CN110867593B (en) * | 2019-11-29 | 2023-02-28 | 江苏恒安储能科技有限公司 | Composite diaphragm for flow battery and preparation method |
US11642629B2 (en) | 2020-03-20 | 2023-05-09 | Saudi Arabian Oil Company | Multi-layer composite gas separation membranes, methods for preparation, and use |
CN112723640A (en) * | 2020-12-28 | 2021-04-30 | 中国长江三峡集团有限公司 | System and method for clean energy sea water desalination coupling salt difference energy power generation device |
CA3213093A1 (en) | 2021-03-29 | 2022-10-06 | Huisheng Wu | Composite membrane of special highly-enhanced fluorine-containing proton or ion exchange membrane, composite membrane electrode, special highly-enhanced fluorine-containing chlor-alkali battery membrane, special release membrane, and preparation method therefor |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2965697A (en) | 1956-11-05 | 1960-12-20 | Electric Storage Battery Co | Battery diaphragm |
US3692569A (en) | 1970-02-12 | 1972-09-19 | Du Pont | Surface-activated fluorocarbon objects |
JPS5171888A (en) | 1974-12-19 | 1976-06-22 | Sumitomo Electric Industries | Sekisokozokaranaru fuirumu oyobi sonoseizohoho |
US4218542A (en) | 1977-06-03 | 1980-08-19 | Asahi Glass Company Limited | Cation exchange membrane of fluorinated polymer containing polytetrafluoroethylene fibrils for electrolysis and preparation thereof |
US4341615A (en) | 1980-01-29 | 1982-07-27 | Chloe Chimie | Diaphragm for electrolysis and process for the preparation thereof |
GB2091166A (en) | 1981-01-16 | 1982-07-28 | Du Pont | Membrane, electrochemical cell, and electrolysis process |
US4453991A (en) | 1981-05-01 | 1984-06-12 | E. I. Du Pont De Nemours And Company | Process for making articles coated with a liquid composition of perfluorinated ion exchange resin |
US4469744A (en) | 1980-07-11 | 1984-09-04 | E. I. Du Pont De Nemours And Company | Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer |
US4518650A (en) | 1980-07-11 | 1985-05-21 | E. I. Du Pont De Nemours And Company | Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer |
US4604170A (en) | 1984-11-30 | 1986-08-05 | Asahi Glass Company Ltd. | Multi-layered diaphragm for electrolysis |
US4698243A (en) | 1986-06-20 | 1987-10-06 | The Dow Chemical Company | Method for sizing and hydrolyzing polytetrafluoroethylene fabrics, fibers, yarns, or threads |
JPS62240627A (en) | 1986-02-18 | 1987-10-21 | エクソバ−,インコ−ポレイテイド | Composition for treating viral and cancerous skin troubles and method of using same |
US4849311A (en) | 1986-09-24 | 1989-07-18 | Toa Nenryo Kogyo Kabushiki Kaisha | Immobilized electrolyte membrane |
JPH01194927A (en) | 1988-01-27 | 1989-08-04 | Japan Gore Tex Inc | Steam permselective membrane |
US4865925A (en) | 1987-12-14 | 1989-09-12 | Hughes Aircraft Company | Gas permeable electrode for electrochemical system |
US4865930A (en) | 1988-10-27 | 1989-09-12 | Hughes Aircraft Company | Method for forming a gas-permeable and ion-permeable membrane |
US4902308A (en) | 1988-06-15 | 1990-02-20 | Mallouk Robert S | Composite membrane |
US4954388A (en) | 1988-11-30 | 1990-09-04 | Mallouk Robert S | Fabric reinforced composite membrane |
WO1991014021A1 (en) | 1990-03-13 | 1991-09-19 | Japan Gore-Tex Inc. | Sheet electrode material containing ion exchange resin, composite material thereof, and production thereof |
US5066403A (en) | 1990-07-12 | 1991-11-19 | The United States Of America As Represented By The Secretary Of Commerce | Process for separating azeotropic or close-boiling mixtures by use of a composite membrane, the membrane, and its process of manufacture |
US5082472A (en) | 1990-11-05 | 1992-01-21 | Mallouk Robert S | Composite membrane for facilitated transport processes |
US5094895A (en) | 1989-04-28 | 1992-03-10 | Branca Phillip A | Composite, porous diaphragm |
US5183545A (en) | 1989-04-28 | 1993-02-02 | Branca Phillip A | Electrolytic cell with composite, porous diaphragm |
US5190813A (en) | 1991-03-15 | 1993-03-02 | W. L. Gore & Associates, Inc. | Porous fluorores in material plated with a metal |
US5256503A (en) | 1986-04-07 | 1993-10-26 | Scimat Limited | Process for making a composite membrane |
JPH0629032A (en) | 1992-07-08 | 1994-02-04 | Sumitomo Electric Ind Ltd | High polymer electrolyte film and its manufacture |
US5288384A (en) | 1991-11-08 | 1994-02-22 | E. I. Du Pont De Nemours And Company | Wetting of diaphragms |
US5356663A (en) | 1992-08-28 | 1994-10-18 | E. I. Du Pont De Nemours And Company | Process for making and repairing ion exchange membranes and films |
US5415888A (en) | 1993-04-26 | 1995-05-16 | E. I. Du Pont De Nemours And Company | Method of imprinting catalytically active particles on membrane |
US5425865A (en) | 1990-09-20 | 1995-06-20 | Scimated Limited | Polymer membrane |
WO1995016730A1 (en) | 1993-12-14 | 1995-06-22 | E.I. Du Pont De Nemours And Company | Method for making reinforced ion exchange membranes |
US5472799A (en) | 1992-09-22 | 1995-12-05 | Tanaka Kikinzoku Kogyo K.K. | Solid polymer electrolyte fuel cell |
US5523181A (en) | 1992-09-25 | 1996-06-04 | Masahiro Watanabe | Polymer solid-electrolyte composition and electrochemical cell using the composition |
US5545475A (en) | 1994-09-20 | 1996-08-13 | W. L. Gore & Associates | Microfiber-reinforced porous polymer film and a method for manufacturing the same and composites made thereof |
US5547551A (en) * | 1995-03-15 | 1996-08-20 | W. L. Gore & Associates, Inc. | Ultra-thin integral composite membrane |
US5597659A (en) | 1993-10-07 | 1997-01-28 | Matsushita Electric Industrial Co., Ltd. | Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator |
US5766787A (en) | 1993-06-18 | 1998-06-16 | Tanaka Kikinzoku Kogyo K.K. | Solid polymer electrolyte composition |
US5795668A (en) | 1994-11-10 | 1998-08-18 | E. I. Du Pont De Nemours And Company | Fuel cell incorporating a reinforced membrane |
-
1995
- 1995-03-15 US US08/404,853 patent/US5547551A/en not_active Ceased
- 1995-12-05 US US08/567,466 patent/US5635041A/en not_active Ceased
-
1999
- 1999-06-03 US US09/325,135 patent/USRE37656E1/en not_active Expired - Lifetime
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2965697A (en) | 1956-11-05 | 1960-12-20 | Electric Storage Battery Co | Battery diaphragm |
US3692569A (en) | 1970-02-12 | 1972-09-19 | Du Pont | Surface-activated fluorocarbon objects |
JPS5171888A (en) | 1974-12-19 | 1976-06-22 | Sumitomo Electric Industries | Sekisokozokaranaru fuirumu oyobi sonoseizohoho |
US4218542A (en) | 1977-06-03 | 1980-08-19 | Asahi Glass Company Limited | Cation exchange membrane of fluorinated polymer containing polytetrafluoroethylene fibrils for electrolysis and preparation thereof |
US4255523A (en) | 1977-06-03 | 1981-03-10 | Asahi Glass Company, Limited | Cation exchange membrane of fluorinated polymer for electrolysis and preparation thereof |
US4341615A (en) | 1980-01-29 | 1982-07-27 | Chloe Chimie | Diaphragm for electrolysis and process for the preparation thereof |
US4469744A (en) | 1980-07-11 | 1984-09-04 | E. I. Du Pont De Nemours And Company | Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer |
US4518650A (en) | 1980-07-11 | 1985-05-21 | E. I. Du Pont De Nemours And Company | Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer |
GB2091166A (en) | 1981-01-16 | 1982-07-28 | Du Pont | Membrane, electrochemical cell, and electrolysis process |
US4453991A (en) | 1981-05-01 | 1984-06-12 | E. I. Du Pont De Nemours And Company | Process for making articles coated with a liquid composition of perfluorinated ion exchange resin |
US4604170A (en) | 1984-11-30 | 1986-08-05 | Asahi Glass Company Ltd. | Multi-layered diaphragm for electrolysis |
JPS62240627A (en) | 1986-02-18 | 1987-10-21 | エクソバ−,インコ−ポレイテイド | Composition for treating viral and cancerous skin troubles and method of using same |
US5256503A (en) | 1986-04-07 | 1993-10-26 | Scimat Limited | Process for making a composite membrane |
US4698243A (en) | 1986-06-20 | 1987-10-06 | The Dow Chemical Company | Method for sizing and hydrolyzing polytetrafluoroethylene fabrics, fibers, yarns, or threads |
US4849311A (en) | 1986-09-24 | 1989-07-18 | Toa Nenryo Kogyo Kabushiki Kaisha | Immobilized electrolyte membrane |
US4865925A (en) | 1987-12-14 | 1989-09-12 | Hughes Aircraft Company | Gas permeable electrode for electrochemical system |
JPH01194927A (en) | 1988-01-27 | 1989-08-04 | Japan Gore Tex Inc | Steam permselective membrane |
US4902308A (en) | 1988-06-15 | 1990-02-20 | Mallouk Robert S | Composite membrane |
US4865930A (en) | 1988-10-27 | 1989-09-12 | Hughes Aircraft Company | Method for forming a gas-permeable and ion-permeable membrane |
US4954388A (en) | 1988-11-30 | 1990-09-04 | Mallouk Robert S | Fabric reinforced composite membrane |
US5094895A (en) | 1989-04-28 | 1992-03-10 | Branca Phillip A | Composite, porous diaphragm |
US5183545A (en) | 1989-04-28 | 1993-02-02 | Branca Phillip A | Electrolytic cell with composite, porous diaphragm |
WO1991014021A1 (en) | 1990-03-13 | 1991-09-19 | Japan Gore-Tex Inc. | Sheet electrode material containing ion exchange resin, composite material thereof, and production thereof |
US5066403A (en) | 1990-07-12 | 1991-11-19 | The United States Of America As Represented By The Secretary Of Commerce | Process for separating azeotropic or close-boiling mixtures by use of a composite membrane, the membrane, and its process of manufacture |
US5425865A (en) | 1990-09-20 | 1995-06-20 | Scimated Limited | Polymer membrane |
US5082472A (en) | 1990-11-05 | 1992-01-21 | Mallouk Robert S | Composite membrane for facilitated transport processes |
US5190813A (en) | 1991-03-15 | 1993-03-02 | W. L. Gore & Associates, Inc. | Porous fluorores in material plated with a metal |
US5288384A (en) | 1991-11-08 | 1994-02-22 | E. I. Du Pont De Nemours And Company | Wetting of diaphragms |
JPH0629032A (en) | 1992-07-08 | 1994-02-04 | Sumitomo Electric Ind Ltd | High polymer electrolyte film and its manufacture |
US5356663A (en) | 1992-08-28 | 1994-10-18 | E. I. Du Pont De Nemours And Company | Process for making and repairing ion exchange membranes and films |
US5472799A (en) | 1992-09-22 | 1995-12-05 | Tanaka Kikinzoku Kogyo K.K. | Solid polymer electrolyte fuel cell |
US5523181A (en) | 1992-09-25 | 1996-06-04 | Masahiro Watanabe | Polymer solid-electrolyte composition and electrochemical cell using the composition |
US5415888A (en) | 1993-04-26 | 1995-05-16 | E. I. Du Pont De Nemours And Company | Method of imprinting catalytically active particles on membrane |
US5766787A (en) | 1993-06-18 | 1998-06-16 | Tanaka Kikinzoku Kogyo K.K. | Solid polymer electrolyte composition |
US5597659A (en) | 1993-10-07 | 1997-01-28 | Matsushita Electric Industrial Co., Ltd. | Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator |
WO1995016730A1 (en) | 1993-12-14 | 1995-06-22 | E.I. Du Pont De Nemours And Company | Method for making reinforced ion exchange membranes |
US5545475A (en) | 1994-09-20 | 1996-08-13 | W. L. Gore & Associates | Microfiber-reinforced porous polymer film and a method for manufacturing the same and composites made thereof |
US5795668A (en) | 1994-11-10 | 1998-08-18 | E. I. Du Pont De Nemours And Company | Fuel cell incorporating a reinforced membrane |
US5547551A (en) * | 1995-03-15 | 1996-08-20 | W. L. Gore & Associates, Inc. | Ultra-thin integral composite membrane |
Non-Patent Citations (3)
Title |
---|
"Composite Membranes for Fuel-Cell Applications," Verbrugge, et al., AIChE Journal, Jan. 1992, vol. 38, No. 1, pp. 93-100. |
"Ion Transporting Composite Membranes", Penner, et al., Journal Electrochem Soc., vol. 132, No. 2, Feb. 1985, pp. 514-515. |
"Ion Transporting Composite Membranes," Liu, et al., J. Electrochem. Soc., vol. 137, No. 2, Feb. 1990 The Electrochemical Society, Inc., pp. 510-515. |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040067402A1 (en) * | 1994-11-14 | 2004-04-08 | Barndad Bahar | Ultra-thin integral composite membrane |
US7931995B2 (en) | 1997-09-12 | 2011-04-26 | Gore Enterprise Holdings, Inc. | Solid electrolyte composite for electrochemical reaction apparatus |
US7205059B2 (en) | 2001-03-27 | 2007-04-17 | Mti Microfuel Cells, Inc. | Methods and apparatuses for managing effluent products in a fuel cell system |
US6866952B2 (en) * | 2001-04-18 | 2005-03-15 | Mti Microfuel Cells Inc. | Apparatus and method for controlling undesired water and fuel transport in a fuel cell |
US7638215B2 (en) | 2002-02-19 | 2009-12-29 | Mti Microfuel Cells Inc. | Method of controlling delivery of fuel to a direct oxidation fuel cell |
US6984128B2 (en) | 2002-11-01 | 2006-01-10 | Bas Medical, Inc. | Methods for enabling and stabilizing tooth movement |
US20040115587A1 (en) * | 2002-11-01 | 2004-06-17 | Bas Medical, Inc. | Methods and systems for enabling and stabilizing tooth movement |
US20060269892A1 (en) * | 2002-11-01 | 2006-11-30 | Bas Medical, Inc. | Methods and systems for enabling and stabilizing tooth movement |
US7407721B2 (en) | 2003-04-15 | 2008-08-05 | Mti Microfuel Cells, Inc. | Direct oxidation fuel cell operating with direct feed of concentrated fuel under passive water management |
US7541109B2 (en) | 2003-04-15 | 2009-06-02 | Mti Microfuel Cells, Inc. | Passive water management techniques in direct methanol fuel cells |
US20050096442A1 (en) * | 2003-10-30 | 2005-05-05 | Arne Thaler | Aqueous emulsion polymerization of functionalized fluoromonomers |
US7071271B2 (en) | 2003-10-30 | 2006-07-04 | 3M Innovative Properties Company | Aqueous emulsion polymerization of functionalized fluoromonomers |
US20050107490A1 (en) * | 2003-11-13 | 2005-05-19 | Yandrasits Michael A. | Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam |
US7435498B2 (en) | 2003-11-13 | 2008-10-14 | 3M Innovative Properties Company | Polymer electrolyte membranes crosslinked by nitrile trimerization |
US7411022B2 (en) | 2003-11-13 | 2008-08-12 | 3M Innovative Properties Company | Reinforced polymer electrolyte membrane |
US7514481B2 (en) | 2003-11-13 | 2009-04-07 | 3M Innovative Properties Company | Polymer electrolytes crosslinked by e-beam |
US7074841B2 (en) | 2003-11-13 | 2006-07-11 | Yandrasits Michael A | Polymer electrolyte membranes crosslinked by nitrile trimerization |
US20050107489A1 (en) * | 2003-11-13 | 2005-05-19 | Yandrasits Michael A. | Polymer electrolyte membranes crosslinked by nitrile trimerization |
US7259208B2 (en) | 2003-11-13 | 2007-08-21 | 3M Innovative Properties Company | Reinforced polymer electrolyte membrane |
US20070264561A1 (en) * | 2003-11-13 | 2007-11-15 | 3M Innovative Properties Company | Reinforced polymer electrolyte membrane |
US7179847B2 (en) | 2003-11-13 | 2007-02-20 | 3M Innovative Properties Company | Polymer electrolytes crosslinked by e-beam |
US7265162B2 (en) | 2003-11-13 | 2007-09-04 | 3M Innovative Properties Company | Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam |
US20050107532A1 (en) * | 2003-11-13 | 2005-05-19 | 3M Innovative Properties Company | Reinforced polymer electrolyte membrane |
US7060756B2 (en) | 2003-11-24 | 2006-06-13 | 3M Innovative Properties Company | Polymer electrolyte with aromatic sulfone crosslinking |
US7847035B2 (en) | 2003-11-24 | 2010-12-07 | 3M Innovative Properties Company | Polymer electrolyte with aromatic sulfone crosslinking |
US20110045384A1 (en) * | 2003-11-24 | 2011-02-24 | 3M Innovative Properties Company | Polymer electrolyte with aromatic sulfone crosslinking |
US8802793B2 (en) | 2003-11-24 | 2014-08-12 | 3M Innovative Properties Company | Polymer electrolyte with aromatic sulfone crosslinking |
US20050113528A1 (en) * | 2003-11-24 | 2005-05-26 | 3M Innovative Properties Company | Polymer electrolyte with aromatic sulfone crosslinking |
US20050118469A1 (en) * | 2003-12-02 | 2005-06-02 | Leach David H. | Electrostatically actuated shutter and array for use in a direct oxidation fuel cell |
US7306869B2 (en) | 2003-12-02 | 2007-12-11 | Mti Microfuel Cells Inc. | Electrostatically actuated shutter and array for use in a direct oxidation fuel cell |
US7112614B2 (en) | 2003-12-08 | 2006-09-26 | 3M Innovative Properties Company | Crosslinked polymer |
US20050131096A1 (en) * | 2003-12-08 | 2005-06-16 | 3M Innovative Properties Company | Crosslinked polymer |
US7060738B2 (en) | 2003-12-11 | 2006-06-13 | 3M Innovative Properties Company | Polymer electrolytes crosslinked by ultraviolet radiation |
US20050131097A1 (en) * | 2003-12-11 | 2005-06-16 | 3M Innovative Properties Company | Polymer electrolytes crosslinked by ultraviolet radiation |
US7326737B2 (en) | 2003-12-17 | 2008-02-05 | 3M Innovative Properties Company | Polymer electrolyte membranes crosslinked by direct fluorination |
US20050137351A1 (en) * | 2003-12-17 | 2005-06-23 | 3M Innovative Properties Company | Polymer electrolyte membranes crosslinked by direct fluorination |
US7173067B2 (en) | 2003-12-17 | 2007-02-06 | 3M Innovative Properties Company | Polymer electrolyte membranes crosslinked by direct fluorination |
US8323675B2 (en) | 2004-04-20 | 2012-12-04 | Genzyme Corporation | Soft tissue prosthesis for repairing a defect of an abdominal wall or a pelvic cavity wall |
US8460695B2 (en) | 2004-04-20 | 2013-06-11 | Genzyme Corporation | Making a soft tissue prosthesis for repairing a defect of an abdominal wall or a pelvic cavity wall |
US20070072036A1 (en) * | 2005-09-26 | 2007-03-29 | Thomas Berta | Solid polymer electrolyte and process for making same |
US20100086675A1 (en) * | 2005-09-26 | 2010-04-08 | Thomas Berta | Solid Polymer Electrolyte and Process for Making Same |
US9847533B2 (en) | 2005-09-26 | 2017-12-19 | W.L. Gore & Associates, Inc. | Solid polymer electrolyte and process for making same |
US8652705B2 (en) | 2005-09-26 | 2014-02-18 | W.L. Gore & Associates, Inc. | Solid polymer electrolyte and process for making same |
US20090093602A1 (en) * | 2007-10-04 | 2009-04-09 | Gore Enterprise Holdings, Inc. | Expandable TFE copolymers, method of making, and porous, expended articles thereof |
US9593223B2 (en) | 2007-10-04 | 2017-03-14 | W. L. Gore & Associates, Inc. | Expandable TFE copolymers, method of making, porous, expanded article thereof |
US9988506B2 (en) | 2007-10-04 | 2018-06-05 | W. L. Gore & Associates, Inc. | Dense articles formed tetrafluoroethylene core shell copolymers and methods of making the same |
US8911844B2 (en) | 2007-10-04 | 2014-12-16 | W. L. Gore & Associates, Inc. | Expanded TFE copolymers, method of making and porous, expanded articles thereof |
US9040646B2 (en) | 2007-10-04 | 2015-05-26 | W. L. Gore & Associates, Inc. | Expandable TFE copolymers, methods of making, and porous, expanded articles thereof |
US9193811B2 (en) | 2007-10-04 | 2015-11-24 | W. L. Gore & Associates, Inc. | Expandable TFE copolymers, method of making, and porous, expanded articles thereof |
US20090258958A1 (en) * | 2007-10-04 | 2009-10-15 | Ford Lawrence A | Expandable TFE Copolymers, Methods of Making, and Porous, Expanded Articles Thereof |
US8637144B2 (en) | 2007-10-04 | 2014-01-28 | W. L. Gore & Associates, Inc. | Expandable TFE copolymers, method of making, and porous, expended articles thereof |
US9650479B2 (en) | 2007-10-04 | 2017-05-16 | W. L. Gore & Associates, Inc. | Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same |
US20100167100A1 (en) * | 2008-12-26 | 2010-07-01 | David Roger Moore | Composite membrane and method for making |
US9419300B2 (en) | 2010-04-16 | 2016-08-16 | 3M Innovative Properties Company | Proton conducting materials |
US9644054B2 (en) | 2014-12-19 | 2017-05-09 | W. L. Gore & Associates, Inc. | Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same |
WO2017156293A1 (en) | 2016-03-11 | 2017-09-14 | W. L. Gore & Associates, Inc. | Reflective laminates |
WO2017172824A1 (en) | 2016-03-28 | 2017-10-05 | University Of Delaware | Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers |
Also Published As
Publication number | Publication date |
---|---|
US5635041A (en) | 1997-06-03 |
US5547551A (en) | 1996-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37656E1 (en) | Electrode apparatus containing an integral composite membrane | |
US5599614A (en) | Integral composite membrane | |
USRE37701E1 (en) | Integral composite membrane | |
USRE37307E1 (en) | Ultra-thin integral composite membrane | |
US6254978B1 (en) | Ultra-thin integral composite membrane | |
US6130175A (en) | Integral multi-layered ion-exchange composite membranes | |
EP0900249B1 (en) | Integral multi-layered ion-exchange composite membranes | |
US6110333A (en) | Composite membrane with highly crystalline porous support | |
US4954388A (en) | Fabric reinforced composite membrane | |
CA2459984C (en) | Ion conducting membrane having high hardness and dimensional stability | |
US6156451A (en) | Process for making composite ion exchange membranes | |
US6613215B2 (en) | Method for electrolysis of water using a polytetrafluoroethylene supported membrane in electrolysis cells | |
JP7566813B2 (en) | Highly reinforced ionomer membranes for high selectivity and strength | |
AU2002323440A1 (en) | Ion conducting membrane having high hardness and dimensional stability | |
WO1997040924A1 (en) | Integral ion-exchange composite membranes | |
WO1998051733A1 (en) | Process for making composite ion exchange membranes | |
ITMI962422A1 (en) | INTEGRAL COMPOSITE MEMBRANE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: W.L. GORE & ASSOCIATES, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLOUK, ROBERT S.;REEL/FRAME:011728/0237 Effective date: 20010404 |
|
AS | Assignment |
Owner name: GORE ENTERPRISE HOLDINGS, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:W. L. GORE & ASSOCIATES, INC.;REEL/FRAME:013380/0048 Effective date: 20020923 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
DD | Disclaimer and dedication filed |
Effective date: 20060317 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508 Effective date: 20120130 |