JP3669172B2 - Tetrafluoroethylene copolymer, production method thereof and use thereof - Google Patents

Tetrafluoroethylene copolymer, production method thereof and use thereof Download PDF

Info

Publication number
JP3669172B2
JP3669172B2 JP24397798A JP24397798A JP3669172B2 JP 3669172 B2 JP3669172 B2 JP 3669172B2 JP 24397798 A JP24397798 A JP 24397798A JP 24397798 A JP24397798 A JP 24397798A JP 3669172 B2 JP3669172 B2 JP 3669172B2
Authority
JP
Japan
Prior art keywords
polymer
tetrafluoroethylene
polymerization
fine particles
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24397798A
Other languages
Japanese (ja)
Other versions
JPH11240918A (en
Inventor
浩樹 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24397798A priority Critical patent/JP3669172B2/en
Publication of JPH11240918A publication Critical patent/JPH11240918A/en
Application granted granted Critical
Publication of JP3669172B2 publication Critical patent/JP3669172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はテトラフルオロエチレン系共重合体(以下、PTFEという)とその製造方法、それから得られるファインパウダおよび多質体に関する。
【0002】
【従来の技術】
PTFEのファインパウダは、水性媒体中で乳化剤を使用して重合する、いわゆる乳化重合法によって得られる重合体微粒子を凝集させて製造される。テトラフルオロエチレン(以下、TFEという)と、それと共重合可能なコモノマの比較的少量とを共重合してPTFEを変性することは技術的に公知である。また、ファインパウダに適当な助剤を添加してペースト押し出し加工する際の加工性を改良するため、PTFEの変性は有効であることが知られている。
【0003】
特公昭56−26242、特公昭56−26243には、クロロトリフルオロエチレン(以下、CTFEという)などのコモノマとTFEを使用する変性PTFEの製造において、実質重合終期に生成する重合体中のCTFEなどのコモノマに基づく重合単位の割合を多くする方法が提案されている。
【0004】
特公昭59−34724には、変性PTFEの各種コモノマに基づく重合単位の割合を重合初期に高くする方法が提案されているが、得られる変性PTFEの標準比重は2.2以上であり分子量が低く延伸加工に充分でない。
【0005】
特公昭56−26242には、重合中、終始コモノマを添加しつつ、かつ初期の段階での添加量を多くする方法が提案されている。この場合、PTFE中のコモノマに基づく重合単位の割合が多く延伸加工には不充分と推測される。
【0006】
また、特公平3−66926には、Rf−CH=CH2(Rfはペルフルオロアルキル基)をコモノマとしてPTFEを変性する方法が提案されている。ここでは初期に変性度が大きくなるように、コモノマを重合途中まで連続添加する方法が記載されている。
【0007】
上記の変性は、主にファインパウダのペースト押し出し加工性の改良、例えば押し出し圧の低減などを目的として行われており、実質的に溶融成形性は示されていないが、かなりの結晶性の低下を伴っている。また、変性されたPTFEは、導入されたコモノマ構造による耐熱性が低下する問題がある。
【0008】
【発明が解決しようとする課題】
本発明は、押し出し加工性に優れ均一な延伸加工ができ、耐熱性および強度に優れるPTFEの提供を目的とする。
【0009】
【課題を解決するための手段】
発明者は、TFEと共重合する2個の重合性基を有するコモノマに基づく重合単位の導入量を加工性に影響を及ぼさない程度に限定することで延伸加工による多孔質体の製造に適切な耐熱性の改良された変性PTFEが得られることを見いだした。
【0010】
すなわち、本発明は、TFEと式1で表されるフッ素化コモノマ(ただし、mは0、1または2、nは1、2または3。)との共重合体であって、フッ素化コモノマに基づく重合単位の含有量が0.005モル%以上0.5モル%以下であることを特徴とするPTFEを提供する。また、PTFEの標準比重が2.155未満である上記PTFEを提供する。
【0011】
【化2】

Figure 0003669172
【0012】
また、本発明は、上記PTFEの製造方法において、フッ素化コモノマを重合初期に一括して添加して製造することを特徴とするPTFEの製造方法を提供する。また、上記PTFEからなる重合体微粒子から得られるファインパウダをペースト押し出し後、250℃以上の温度で延伸されたものであることを特徴とするPTFEの多孔質体を提供する。
【0013】
フッ素化コモノマは下記の方法により製造される。
すなわち、ヨウ素とTFEの反応によりジヨージド(ICF2CF2CF2CF2I)が得られ、さらにこれにTFEを付加してI(CF2CF2)nI(nが2または3)のジヨージドが得られる。これらのジヨージドを発煙硫酸で酸化してそれぞれに対応するペルフルオロ(γ−ラクトン)を合成する(nが2のペルフルオロ(γ−ブチロラクトン)の合成は特公昭55−12907参照)。それらにヘキサフルオロプロピレン(以下、HFPOという)を付加しHFPOの2モル付加体、3モル付加体または4モル付加体を製造する(HFPOの2モル付加体またはHFPOの3モル付加体の製造は特公昭54−4931参照)。
【0014】
次いで、上記HFPO付加体をKOHのメタノール分散液にて中和し、メタノールおよび水を除去した後、減圧下、250〜300℃で脱炭酸反応を行い、HFPOの2モル付加体からは式1においてm=0のフッ素化コモノマが、HFPOの3モル付加体からは式1においてm=1のフッ素化コモノマが、HFPOの4モル付加体からは式1においてm=2のフッ素化コモノマが、得られる。
【0015】
フッ素化コモノマとしては、ペルフルオロ(1,4−ブタンジオールジビニルエーテル)(以下、PFBDVEという)(式1のm=0、n=2の化合物)や式1のm=1、n=2の化合物が、得られるPTFEの延伸加工性、また延伸加工した加工物の耐熱性、均一性の観点から特に好ましい。フッ素化コモノマは、重合性基を2つ有しており、生成する重合体中には微少量の架橋構造を導入できる。
【0016】
本発明のPTFEにおけるフッ素化コモノマに基づく重合単位の含有量は、延伸加工性の観点から厳密に制御される必要がある。含有量はPTFE中0.005モル%以上0.5モル%以下の範囲である。含有量が0.5モル%超ではポリマの結晶性が微妙に低下し、ペースト押し出し圧は低下するが延伸加工性が著しく低下する。また、重合反応時の乳化分散液の安定性を実質的に低下させ、重合途中で微粒子が凝集し、分散液が破壊しやすい。特に、0.1モル%以下の範囲が好ましい。また、0.005モル%未満では、延伸加工品の物性改良など実質的に変性の効果が得られにくい。したがって、0.005〜0.1モル%、特に0.01〜0.07モル%であることが好ましい。
【0017】
さらに、延伸加工性の点からPTFEの分子量が充分高いことが好ましい。一般に分子量と相関のある重合体の標準比重をもって分子量の尺度としている。すなわち、分子量が高いほど標準比重は小さい値となる。共重合体の場合はその原理上標準比重による分子量は、厳密には単独重合体とは異なるが、本発明では、添加するフッ素化コモノマ量が少ないことから便宜上分子量の目安として標準比重を採用している。
【0018】
本発明のPTFEの標準比重は2.155未満である、すなわち高分子量であることが好ましい。あまりに高分子量では、結晶化度が極端に低下して耐熱性が低下するためPTFEの標準比重は2.130以上であることが好ましい。
【0019】
本発明のPTFEは、PTFEの製造に通常に使用される乳化重合により製造される。この重合方法は、米国特許3142665、米国特許3391099などに記載されている。
【0020】
オートクレーブに水、通常の遊離基重合開始剤、凝集物の生成を抑制するための分散安定剤(例えばパラフィンワックスや溶媒)および乳化剤を仕込んだ後、撹拌しながらTFEを圧入する。この後、オートクレーブを穏やかに撹拌し、適当な温度および圧力で重合を行う。重合完了時に得られる乳化分散液はそのままでも使用できるが、一般に成形用途には、通常重合体微粒子を公知の方法によって凝集させて得られるファインパウダを使用する。
【0021】
本発明のPTFEの製造方法においては、フッ素化コモノマを連続添加や途中添加を行わず、初期に一括して必要量だけ添加することが好ましい。初期一括添加することで、重合初期に生成する重合体微粒子のコア部のフッ素化コモノマに基づく重合単位の割合が高く、重合の進行とともに徐々にその割合が低下し、重合終期の重合体微粒子のシェル部では実質的にフッ素化コモノマを含まないホモポリマが生成する。このような構造の重合体微粒子は、延伸性、延伸加工品の物性の観点で好ましい。
テトラフルオロエチレンとフッ素化コモノマとの乳化重合により得られる重合体微粒子、少なくともコア部が本発明のPTFEであることが好ましい。
【0022】
フッ素化コモノマを連続添加する方法や重合のある時期まで添加する方法は、フッ素化コモノマに基づく重合単位の割合の比較的高い部分が全体の粒子に占め、ペースト押し出し加工には有利であっても延伸加工に有利なファインパウダが得られにくい。
【0023】
また、TFEを初期に一括添加し重合して製造できるが、重合初期に生成する重合体微粒子のコア部のフッ素化コモノマに基づく重合単位の割合を高くするためにTFEを連続添加や途中分割添加し重合して製造することが好ましい。
【0024】
本発明において、TFEと共重合可能なフッ素化コモノマは1種または2種以上使用でき、またこれ以外の共重合可能なモノマと併用することもできる。この場合に併用されるモノマはTFEと共重合する重合性化合物であればその構造は特に限定されないが、得られる変性PTFEの耐熱性の観点から、フッ素を含んだ構造、例えばペルフルオロの重合性化合物が好ましい。
【0025】
乳化分散液中の重合体微粒子の大きさは、公知の方法で制御できる。例えば、米国特許3391099記載のように、乳化剤の添加を制御することで所望の粒子径が得られる。また、特開昭60−76516に示されるように重合中のTFE圧力を変動させることで制御できる。
【0026】
乳化剤には、連鎖移動に関与しないペルフルオロアルカンカルボン酸の塩またはペルフルオロアルカンスルホン酸の塩を用いうる。特に炭素数7〜9のペルフルオロアルカンカルボン酸アンモニウムが好ましく用いられる。
【0027】
開始剤はジコハク酸ペルオキシド、ジグルタル酸ペルオキシドなどのペルオキシドまたは過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩を単独でまたは併用して用いられる。また、亜硫酸ナトリウムなどの還元剤と共用しレドックス系にして用いられる。
さらに、重合中に、ヒドロキノン、カテコールなどのラジカル捕捉剤を添加したり、亜硫酸アンモニウムなどのペルオキシドの分解剤を添加するなどにより重合中のラジカル濃度を調節することもできる。
【0028】
重合は、通常、温度50〜120℃で、圧力6〜40kg/cm2 で行われる。通常、重合体微粒子濃度が20〜40重量%となった時点で系外に未反応モノマを放出し撹拌を停止し、重合を終了した後、重合体微粒子を凝集させる。
凝集は公知の方法により行いうる。すなわち、重合体微粒子の濃度を10〜20重量%になるように水で希釈した後、激しく撹拌して凝集させる。場合によってはpHを調節してもよく、電解質や水溶性の有機溶剤などの凝集助剤を加えて行ってもよい。その後、適度な撹拌を行うことによって、凝集した重合体微粒子を水から分離し、造粒および整粒され、次いで乾燥される。
【0029】
乾燥は、通常凝集で得られた湿潤粉末をあまり流動させない状態、好ましくは静置し、真空、高周波、熱風などで行う。ファインパウダは小さな剪断力でも簡単にフィブリル化して、元の重合終了後の結晶構造の状態を失う性質を有している。特に延伸加工用途において、加工性の低下を防止するため、特に高い温度での粉体どうしの接触ないし摩擦は好ましくない。乾燥は、10〜250℃、特には100〜250℃で行うことが好ましい。
本発明のファインパウダは、コア部分のフッ素化コモノマに基づく重合単位の含有割合が、シェル部分のフッ素化コモノマに基づく重合単位の含有割合よりも大きい構造を有する重合体微粒子から得られる本発明のテトラフルオロエチレン系共重合体からなるファインパウダである。
【0030】
本発明のPTFEの延伸多孔質体は、下記のような一般的な方法で製造しうる。すなわち、ファインパウダに対して5〜20重量%の潤滑剤を添加し、混合した後、密閉容器内で充分に熟成する。
【0031】
用いられる潤滑剤は、例えばソルベントナフサ、ホワイトオイルなどの石油系溶剤、トルオール類、ケトン類、エステル類などの炭化水素油、シリコーンオイル、フッ素オイル、含フッ素化合物などであり、ファインパウダを濡らし、かつ押し出し後容易に押し出し成形体から蒸発除去されるものであればよい。
【0032】
潤滑剤を添加したファインパウダを、1〜50kg/cm2 程度の圧力で予備成形したのち、ペースト押し出しする。場合によっては押し出し物をカレンダリング等によってシート化する。
【0033】
押し出しにおいてファインパウダ粒子の配向を促進することが重要で、押し出し機のリダクションレシオR/R(バレル面積と押し出しダイの面積比)を充分とることが好ましい。R/R=50〜800で行うのがよく、好ましくは80〜200で行われる。このとき、ペーストにかかる圧力、すなわち押し出し圧力は通常100〜1000kg/cm2 である。押し出し圧力が小さいほど押し出し加工性が良好であるが、あまりに小さいと重合体粒子の配向が充分でなく、延伸性が低下する。この点から、R/Rを設定することが好ましい。
【0034】
この後、押し出し成形体に含まれる潤滑剤を蒸発除去し、250℃以上の温度にて2〜50倍に延伸することによって好ましい多孔質体が得られる。250℃未満では延伸倍率の小さな多孔質体のみ得られやすく、また350℃以上ではPTFEが融解するため多孔質体が得られにくい。
本発明の多孔質体は、本発明のファインパウダをペースト押し出し後、250℃以上の温度で延伸されたものであることを特徴とするテトラフルオロエチレン系共重合体の多孔質体である。
【0035】
多孔質体は延伸が均一に行われることが好ましい。ここでいう均一とは、成形体全体が均等に延伸されることであり、具体的には多孔質体の延伸方向に対する重量分布や孔径分布などが均一であることをいう。
延伸倍率は特に限定されないが、延伸倍率2倍以下では実質的に多孔構造とならず、50倍以上では安定した多孔構造とならず場合によっては延伸時に破断等がおこりやすく、2〜50倍程度で行うことが好ましい。また、延伸速度は特に限定されないが、通常50〜1000%/秒にて行われる。
【0036】
本発明のPTFEの乳化分散液を塗料原料とすることもでき、ロール、調理器具への塗装、ガラスクロス含浸加工などに使用できる。特に、延伸加工品に好適に使用できる。
本発明のPTFEの多孔質体は耐熱耐久性が特に優れた特徴を有する。この多孔質体は、特に耐久性の要求される工業用品、例えば、バグフィルタ、パッキン、ガスケット、その他被覆用途などに有用である。
【0037】
【実施例】
以下に、本発明を実施例(例1、2、3、6)、比較例(例4、5)で説明するが、本発明はこれらによって限定されない。
【0038】
[フッ素化コモノマの合成]
ジヨージド(ICF2CF2CF2CF2I)を発煙硫酸で酸化してペルフルオロ(γ−ブチロラクトン)を合成し(特公昭55−12907参照)、それにHFPOを付加しHFPOの2モル付加体またはHFPOの3モル付加体を製造した(特公昭54−4931参照)。次いで、上記HFPO付加体をKOHのメタノール分散液にて中和し、メタノールおよび水を除去した後、減圧下、250〜300℃で脱炭酸反応を行い、HFPOの2モル付加体からPFBDVE(式1においてm=0、n=2の化合物)を、HFPOの3モル付加体から前記式1においてm=1かつn=2で表されるフッ素化コモノマを得た。これらのフッ素化コモノマを蒸留精製して、ガスクロマトグラフ測定による純度99%以上のものを用いた。
【0039】
[例1]
邪魔板、撹拌機を備えた、100リットルのステンレス鋼製オートクレーブに、ペルフルオロオクタン酸アンモニウム35g、脱イオン水63.4リットル、溶媒ペルフルオロトリブチルアミン(住友スリーエム社製、FC−43)1.5kgに溶解したPFBDVE5gを仕込んだ。オートクレーブを窒素置換し、さらにTFEで再度置換後、撹拌しながら72℃に昇温した。TFEを19kg/cm2まで昇圧し、水3リットルに溶解した5.4gのジコハク酸ペルオキシドを注入した。約3分ほどで内圧が18.5kg/cm2まで降下した。
【0040】
オートクレーブ内圧を19kg/cm2に保つようにTFEを添加しながら重合を進行させた。TFEの添加量が720gになったところで、水3リットルに溶解した65gのペルフルオロオクタン酸アンモニウムを圧入した。TFEの添加量が25kgになったところで反応を終了させ、オートクレーブ中のTFEを大気放出した。
【0041】
得られた乳化分散液を冷却し、沈降しているFC−43を除去した。乳化分散液の重合体微粒子濃度は約26.8重量%であり、重合体微粒子の平均粒子径は0.256μmであった。
この乳化分散液をイオン交換水で重合体微粒子濃度10重量%に希釈し、凝固するまで激しく撹拌した。凝固後さらに5分間撹拌し、ついで凝固した重合体を200℃で乾燥した。得られた重合体の標準比重は2.151であった。
【0042】
また、重合体微粒子を除去したFC−43および水中にPFBDVEはガスクロマトグラフィにて検出できなかった。また、大気放出したTFE中にPFBDVEはガスクロマトグラフィにて検出できなかった。したがって、すべてのPFBDVEが重合したとした。これにより、重合体中のPFBDVEに基づく重合単位の含量は0.02モル%であった。得られた重合体を用い、多孔質体の延伸加工性試験および耐熱耐久性試験を行った結果を表1、2に示す。
【0043】
得られた重合体の特性を下記の方法で測定した。
(1)標準比重:粉末状の重合体の標準比重はASTM D1457−69法に従い標準の成形試験試料で置換される水量によって測定した。この標準の成形試験試料は次のようにして作成した。まず、粉末状重合体12.0gを直径2.86cmの金型に充填し352kg/cm2 の圧力下に2分間保持し予備成形する。次にこの予備成形体をオーブン中で300℃から380℃まで2℃/分で加熱し、380℃で30分保持し、次に1℃/分の速度で294℃まで冷却した後オーブンから取り出し23℃にて3時間以上保持したのち試験試料とした。
【0044】
(2)微粒子粒子径:レーザ回折式の粒径測定装置(大塚電子製、LPA−3000/3100)を用い微粒子濃度約0.1重量%にて25℃で積算回数100回の測定を3回行い、その平均値を微粒子粒子径とした。
【0045】
(3)延伸加工性評価試料の作成:重合体50gと炭化水素油である押し出し潤滑剤(出光石油化学製、スーパーゾルFP)11.8gを混合し、25℃で1時間以上熟成する。次にシリンダ(内径9.95mm)付きの押し出しダイ(絞り角度30℃で内径1mmのオリフィスを有する)に上記混合物を充填し、20kgの負荷をシリンダに挿入したピストンに加え10分保持する。この後ラムスピード100mm/分にて押し出しロッド状物を得る。押し出し後半において圧力が平衡状態になる部分における押し出し物をオーブンに入れ、180℃にて潤滑剤を蒸発除去する。これを約50mmに切断し延伸加工評価用試料とした。
【0046】
(4)延伸加工性試験:上記試料を高温槽付きの引張試験器を用い、チャック間距離10mm、温度250℃、引張速度1000%/秒にて10倍の長さに延伸した。この条件での延伸性を外観、均一性の観点から評価した。外観は、A:滑らか、B:わずかにムラあり、C:かなりムラあり、D:延伸中に切断、の基準で評価した。
(5)延伸ロッドの強度評価:上記(3)、(4)において得られた延伸ロッド5本の強度を測定し、平均値をロッド1本当たりの強度(kg)とした。
【0047】
(6)多孔質体の均一性評価:延伸前試料(チャック間10mm)の中心(チャックより5mm)にマーキングして延伸し、延伸後試料(100mm)の中心(チャックより50mm)の位置からマーキングまでのずれの距離L(mm)を測定し、式2による値を均一性(%)の指標とした。この値が大きいほど均一性が高い。
【0048】
【数1】
Figure 0003669172
【0049】
(7)耐熱耐久性試験:延伸して得られた多孔質体ロッドの両端を固定し(両端距離50mm)、400℃の高温槽に入れ3分から10分まで1分おきに熱処理した試料を作成した。熱処理後の多孔質体ロッドの目視観察により耐熱性を評価した。処理時間が長くなると、一般にロッドの径が収縮により細くなる段階を経て破断に至ることが観察された。処理時間が長くても多孔質体ロッド形状の変化がなく、破断さない多孔質体が高温での耐久性が高いと判断できる。
【0050】
[例2]
PFBDVEを2g用いること以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約27.8重量%であり、重合体微粒子の平均粒子径は0.251μmであり、重合体の標準比重は2.150であった。例1と同様の方法で求めた、重合体中のPFBDVEに基づく重合単位の含量は0.008モル%であった。また、例1と同様にした延伸加工試験および耐熱耐久性試験の結果を表1、2に示す。
【0051】
[例3]
PFBDVEを40g用いること以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約25.6重量%であり、重合体微粒子の平均粒子径は0.239μmであり、重合体の標準比重は2.149であった。例1と同様の方法で求めた、重合体中のPFBDVEに基づく重合単位の含量は0.16モル%であった。また、例1と同様にした延伸加工試験および耐熱耐久性試験の結果を表1、2に示す。
【0052】
[例4(比較例)
PFBDVEを用いないこと以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約28.0重量%であり、重合体微粒子の平均粒子径は0.258μmであり、重合体の標準比重は2.151であった。また、例1と同様にした延伸加工試験および耐熱耐久性試験の結果を表1、2に示す。
【0053】
[例5(比較例)
PFBDVEを150g用いる(PFBDVEに基づく重合単位の含量が0.6モル%に相当)こと以外は例1と同様にして重合を行ったが、重合中に微粒子が凝集し分散液の破壊が起こり重合を継続できなかった。
【0054】
例1、2、3、4においては、いずれも延伸多孔質体が得られた。例1、2では例4と同様の押し出し加工性を有し、さらに向上した均一性、強度および耐熱耐久性を有する。PFBDVE含量の高い例3はペースト押し出し圧が低く、押し出し加工性に優れるものであった。しかし延伸後の外観は悪く、均一性、耐熱耐久性も他の実施例より低かった。PFBDVEの入っていない例4においては短い熱処理時間でロッド径が細くなるが、例1、2においては形状変化は見られなかった。
【0055】
[例6]
PFBDVEを用いる代わりに合成例で製造した前記式1においてm=1かつn=2で表されるフッ素化コモノマ5gを用いる以外は例1と同様にして重合を行った。乳化分散液の重合体微粒子濃度は約27.1重量%であり、重合体微粒子の平均粒子径は0.240μmであり、重合体の標準比重は2.151であった。例1と同様の方法で求めた、重合体中の上記フッ素化コモノマに基づく重合単位の含量は0.02モル%であった。また、例1と同様にした延伸加工試験および耐熱耐久性試験の結果を表1、2に示す。
例6では、例1、2、4と同様の押し出し加工性を有し、さらに向上した均一性、強度および耐熱耐久性を有する。
【0056】
表1
Figure 0003669172
【0057】
表2
Figure 0003669172
【0058】
【発明の効果】
テトラフルオロエチレンに2個の重合性基を有する特定構造のフッ素化コモノマを微量共重合させることにより、特に延伸加工に有用なポリテトラフルオロエチレン重合体が得られる。この重合体よりなる多孔質体は、耐熱耐久性に優れた性を有す。[0001]
BACKGROUND OF THE INVENTION
The present invention is tetrafluoroethylene copolymer (hereinafter referred to as PTFE) method and preparation, to then obtain fine powder and multi-hole Shitsutai.
[0002]
[Prior art]
A fine powder of PTFE is produced by agglomerating polymer fine particles obtained by a so-called emulsion polymerization method in which an emulsifier is used in an aqueous medium. It is known in the art to modify PTFE by copolymerizing tetrafluoroethylene (hereinafter referred to as TFE) and a relatively small amount of a comonomer copolymerizable therewith. Further, it is known that PTFE modification is effective in order to improve workability when paste extrusion processing is performed by adding an appropriate auxiliary agent to fine powder.
[0003]
JP-B-56-26242 and JP-B-56-26243 include CTFE in a polymer produced at the end of substantial polymerization in the production of modified PTFE using a comonomer such as chlorotrifluoroethylene (hereinafter referred to as CTFE) and TFE. There has been proposed a method for increasing the proportion of polymerized units based on these comonomers.
[0004]
Japanese Examined Patent Publication No. SHO 59-34724 proposes a method in which the ratio of polymerized units based on various comonomers of modified PTFE is increased at the initial stage of polymerization, but the standard specific gravity of the obtained modified PTFE is 2.2 or more and the molecular weight is low. Not enough for drawing.
[0005]
Japanese Examined Patent Publication No. 56-26242 proposes a method of adding a comonomer throughout the polymerization and increasing the amount added in the initial stage. In this case, it is presumed that the ratio of polymerized units based on the comonomer in PTFE is large and is insufficient for stretching.
[0006]
Japanese Patent Publication No. 3-66926 proposes a method of modifying PTFE using R f —CH═CH 2 (R f is a perfluoroalkyl group) as a comonomer. Here, a method is described in which a comonomer is continuously added to the middle of polymerization so as to increase the degree of modification in the initial stage.
[0007]
The above modification is performed mainly for the purpose of improving the process of extruding fine powder paste, for example, reducing the extrusion pressure. Although substantially no melt moldability is shown, the crystallinity is considerably lowered. Is accompanied. Further, the modified PTFE has a problem that the heat resistance due to the introduced comonomer structure is lowered.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide PTFE which is excellent in extrusion processability and can be uniformly stretched and has excellent heat resistance and strength.
[0009]
[Means for Solving the Problems]
The present inventor is suitable for producing a porous body by stretching by limiting the amount of polymerized units based on a comonomer having two polymerizable groups copolymerized with TFE to such an extent that the processability is not affected. It has been found that modified PTFE with improved heat resistance can be obtained.
[0010]
That is, the present invention is a copolymer of TFE and a fluorinated comonomer represented by Formula 1 (where m is 0, 1 or 2, n is 1, 2 or 3), The PTFE is characterized in that the content of the polymerized units based on it is 0.005 mol% or more and 0.5 mol% or less. Moreover, the said PTFE whose standard specific gravity of PTFE is less than 2.155 is provided.
[0011]
[Chemical formula 2]
Figure 0003669172
[0012]
The present invention also provides a method for producing PTFE, characterized in that, in the method for producing PTFE, a fluorinated comonomer is added all at once in the initial stage of polymerization. Further, the present invention provides a porous PTFE material, wherein a fine powder obtained from polymer fine particles made of the PTFE is extruded and then stretched at a temperature of 250 ° C. or higher.
[0013]
The fluorinated comonomer is produced by the following method.
That is, a diiodide (ICF 2 CF 2 CF 2 CF 2 I) is obtained by the reaction of iodine and TFE, and further, TFE is added to the diiodide of I (CF 2 CF 2 ) n I (n is 2 or 3). Is obtained. These diiodides are oxidized with fuming sulfuric acid to synthesize the corresponding perfluoro (γ-lactone) (see Japanese Patent Publication No. 55-12907 for the synthesis of perfluoro (γ-butyrolactone) with n = 2). Hexafluoropropylene (hereinafter referred to as HFPO) is added to them to produce a 2 mol adduct, a 3 mol adduct or a 4 mol adduct of HFPO (production of a 2 mol adduct of HFPO or a 3 mol adduct of HFPO is (See Japanese Patent Publication No. 54-4931).
[0014]
Next, the HFPO adduct was neutralized with a methanol dispersion of KOH to remove methanol and water, and then decarboxylated at 250 to 300 ° C. under reduced pressure. From the 2 mol adduct of HFPO, the formula 1 A fluorinated comonomer of m = 0 in Formula 1 from the HFPO 3-mole adduct, and a fluorinated comonomer of m = 2 in Formula 1 from the 4-mole adduct of HFPO, can get.
[0015]
Examples of the fluorinated comonomer include perfluoro (1,4-butanediol divinyl ether) (hereinafter referred to as PFBDVE) (a compound in which m = 0 in formula 1 and n = 2) and a compound in which m = 1 and n = 2 in formula 1. Is particularly preferable from the viewpoint of the stretchability of the obtained PTFE and the heat resistance and uniformity of the stretched workpiece. The fluorinated comonomer has two polymerizable groups, and a very small amount of a crosslinked structure can be introduced into the resulting polymer.
[0016]
The content of polymerized units based on the fluorinated comonomer in the PTFE of the present invention needs to be strictly controlled from the viewpoint of stretch processability. Content is 0.005 mol% or more and 0.5 mol% or less in PTFE . If the content exceeds 0.5 mol%, the crystallinity of the polymer is slightly lowered, and the paste extrusion pressure is lowered, but the drawing processability is markedly lowered. In addition, the stability of the emulsified dispersion during the polymerization reaction is substantially reduced, and the fine particles are aggregated during the polymerization, so that the dispersion is easily broken. The range of 0.1 mol% or less is particularly preferable. On the other hand, if it is less than 0.005 mol%, it is difficult to substantially obtain the effect of modification such as improvement of physical properties of the stretched product. Therefore, it is preferable that it is 0.005-0.1 mol%, especially 0.01-0.07 mol%.
[0017]
Furthermore, it is preferable that the molecular weight of PTFE is sufficiently high from the viewpoint of stretch processability. In general, the standard specific gravity of a polymer having a correlation with the molecular weight is used as a measure of the molecular weight. That is, the higher the molecular weight, the smaller the standard specific gravity. In the case of a copolymer, the molecular weight based on the standard specific gravity is strictly different from that of the homopolymer in principle, but in the present invention, the standard specific gravity is adopted as a standard for the molecular weight for convenience because the amount of fluorinated comonomer to be added is small. ing.
[0018]
The standard specific gravity of the PTFE of the present invention is preferably less than 2.155, that is , high molecular weight. If the molecular weight is too high, the crystallinity is extremely lowered and the heat resistance is lowered, so that the standard specific gravity of PTFE is preferably 2.130 or more.
[0019]
The PTFE of the present invention is produced by emulsion polymerization usually used for the production of PTFE. This polymerization method is described in US Pat. No. 3,142,665, US Pat.
[0020]
Water, a normal free radical polymerization initiator, a dispersion stabilizer (for example, paraffin wax or solvent) and an emulsifier for suppressing the formation of aggregates are charged into an autoclave, and then TFE is injected with stirring. Thereafter, the autoclave is gently stirred and polymerized at an appropriate temperature and pressure. Although the emulsified dispersion obtained upon completion of the polymerization can be used as it is, generally a fine powder obtained by agglomerating polymer fine particles by a known method is generally used for molding.
[0021]
In the method for producing PTFE of the present invention, it is preferable that the fluorinated comonomer is not added continuously or in the middle, but is added in a necessary amount all at once in the initial stage. By the initial batch addition, the ratio of the polymer units based on the fluorinated comonomer at the core of the polymer fine particles generated at the initial stage of polymerization is high, and the ratio gradually decreases with the progress of the polymerization. In the shell part, a homopolymer substantially free of fluorinated comonomer is produced. Polymer fine particles having such a structure are preferable from the viewpoints of stretchability and physical properties of stretched products.
Polymer particles obtained by emulsion polymerization of tetrafluoroethylene and fluorinated comonomers, it is preferable that at least the core portion is PTFE of the present invention.
[0022]
The method of continuously adding the fluorinated comonomer or the method of adding until a certain time of polymerization is advantageous for paste extrusion processing because the relatively large portion of the polymerized units based on the fluorinated comonomer accounts for the entire particle. It is difficult to obtain fine powder that is advantageous for stretching.
[0023]
In addition, TFE can be added and polymerized at the initial stage for polymerization, but in order to increase the proportion of polymer units based on the fluorinated comamer in the core part of the polymer fine particles produced at the initial stage of polymerization, TFE is added continuously or partly in the middle. It is preferable to produce by polymerization.
[0024]
In the present invention, one or more fluorinated monomers copolymerizable with TFE can be used, or they can be used in combination with other copolymerizable monomers. The monomer used in this case is not particularly limited as long as it is a polymerizable compound copolymerized with TFE, but from the viewpoint of the heat resistance of the resulting modified PTFE, a structure containing fluorine, for example, a perfluoro polymerizable compound. Is preferred.
[0025]
The size of the polymer fine particles in the emulsified dispersion can be controlled by a known method. For example, as described in US Pat. No. 3,391,099, a desired particle size can be obtained by controlling the addition of an emulsifier. Further, as shown in JP-A-60-76516, it can be controlled by changing the TFE pressure during polymerization.
[0026]
As the emulsifier, a salt of perfluoroalkanecarboxylic acid or a salt of perfluoroalkanesulfonic acid that does not participate in chain transfer can be used. In particular, an ammonium perfluoroalkanecarboxylate having 7 to 9 carbon atoms is preferably used.
[0027]
As the initiator, a peroxide such as disuccinic acid peroxide or diglutaric acid peroxide or a persulfate such as ammonium persulfate or potassium persulfate may be used alone or in combination. It is also used as a redox system in common with a reducing agent such as sodium sulfite.
Furthermore, the radical concentration during the polymerization can be adjusted by adding a radical scavenger such as hydroquinone or catechol or adding a peroxide decomposing agent such as ammonium sulfite during the polymerization.
[0028]
The polymerization is usually carried out at a temperature of 50 to 120 ° C. and a pressure of 6 to 40 kg / cm 2 . Usually, when the polymer fine particle concentration reaches 20 to 40% by weight, unreacted monomers are discharged out of the system, stirring is stopped, and after the polymerization is completed, the polymer fine particles are aggregated.
Aggregation can be performed by a known method. That is, after diluting with water so that the concentration of the polymer fine particles becomes 10 to 20% by weight, the mixture is vigorously stirred and aggregated. In some cases, the pH may be adjusted, or an aggregating aid such as an electrolyte or a water-soluble organic solvent may be added. Thereafter, the agglomerated polymer fine particles are separated from water by moderate stirring, granulated and sized, and then dried.
[0029]
Drying is usually carried out in a state where the wet powder obtained by agglomeration does not flow so much, preferably still, under vacuum, high frequency, hot air, or the like. Fine powder has the property of easily fibrillating even with a small shearing force and losing the crystal structure after the original polymerization. Particularly in stretching applications, contact or friction between powders at a particularly high temperature is not preferable in order to prevent deterioration of workability. Drying is preferably performed at 10 to 250 ° C, particularly 100 to 250 ° C.
The fine powder of the present invention is obtained from polymer fine particles obtained from polymer fine particles having a structure in which the content ratio of the polymer units based on the fluorinated comonomer in the core part is larger than the content ratio of the polymer units based on the fluorinated comonomer in the shell part. It is a fine powder made of a tetrafluoroethylene copolymer.
[0030]
The expanded porous body of PTFE of the present invention can be produced by the following general method. That is, 5 to 20% by weight of a lubricant is added to the fine powder, mixed, and then sufficiently aged in a sealed container.
[0031]
The lubricant used is, for example, petroleum-based solvents such as solvent naphtha and white oil, hydrocarbon oils such as toluols, ketones and esters, silicone oil, fluorine oil, fluorine-containing compounds, etc., which wet fine powder, And what is necessary is just to be evaporated and removed from an extrusion molded object easily after extrusion.
[0032]
A fine powder to which a lubricant is added is preformed at a pressure of about 1 to 50 kg / cm 2 and then extruded. In some cases, the extrudate is made into a sheet by calendering or the like.
[0033]
It is important to promote the orientation of fine powder particles during extrusion, and it is preferable to take a reduction ratio R / R (barrel area to extrusion die area ratio) of the extruder sufficiently. R / R is preferably 50 to 800, and preferably 80 to 200. At this time, the pressure applied to the paste, that is, the extrusion pressure is usually 100 to 1000 kg / cm 2 . The extrusion processability is better as the extrusion pressure is smaller. However, if the extrusion pressure is too small, the orientation of the polymer particles is not sufficient and the stretchability is lowered. From this point, it is preferable to set R / R.
[0034]
Thereafter, the lubricant contained in the extruded molded body is removed by evaporation, and a preferred porous body is obtained by stretching 2 to 50 times at a temperature of 250 ° C. or higher. If it is less than 250 ° C., it is easy to obtain only a porous body having a small draw ratio, and if it is 350 ° C. or more, PTFE is melted, so that it is difficult to obtain a porous body.
The porous body of the present invention is a porous body of a tetrafluoroethylene copolymer, which is obtained by extruding the fine powder of the present invention after being paste-extruded and stretched at a temperature of 250 ° C. or higher.
[0035]
The porous body is preferably stretched uniformly. The term “uniform” as used herein means that the entire molded body is uniformly stretched. Specifically, the weight distribution, pore size distribution, and the like in the stretching direction of the porous body are uniform.
Although the stretching ratio is not particularly limited, the expansion ratio was less than twice does not become substantially porous structure easily occur breakage during stretching in some cases not at 50 times or more and stable porous structure, 2-50 It is preferable to carry out at about twice. The stretching speed is not particularly limited, but it is usually performed at 50 to 1000% / second.
[0036]
The emulsified dispersion of PTFE of the present invention can also be used as a coating material, and can be used for coating on rolls, cooking utensils, glass cloth impregnation processing, and the like. In particular, it can be suitably used for stretched products.
Multi porous body of PTFE of the present invention is characterized in heat durability was particularly superior. This porous body is particularly useful for industrial products that require durability, such as bag filters, packings, gaskets, and other coating applications.
[0037]
【Example】
Hereinafter, the present invention will be described with reference to Examples (Examples 1, 2, 3, and 6) and Comparative Examples (Examples 4 and 5), but the present invention is not limited thereto.
[0038]
[Synthesis of fluorinated comonomers]
Diiodide (ICF 2 CF 2 CF 2 CF 2 I) is oxidized with fuming sulfuric acid to synthesize perfluoro (γ-butyrolactone) (see Japanese Examined Patent Publication No. 55-12907), and HFPO is added thereto to give a 2-mol adduct of HFPO or HFPO. 3 mol adduct was produced (see Japanese Examined Patent Publication No. 54-4931). Next, the HFPO adduct was neutralized with a methanol dispersion of KOH to remove methanol and water, and then decarboxylated at 250 to 300 ° C. under reduced pressure. From the HFPO 2 mol adduct, PFBDVE (formula 1), a fluorinated comonomer represented by m = 1 and n = 2 in Formula 1 was obtained from a 3-mol adduct of HFPO. These fluorinated comonomers were purified by distillation, and those having a purity of 99% or more as measured by gas chromatography were used.
[0039]
[Example 1]
In a 100 liter stainless steel autoclave equipped with a baffle and a stirrer, 35 g of ammonium perfluorooctanoate, 63.4 liters of deionized water, 1.5 kg of solvent perfluorotributylamine (Sumitomo 3M, FC-43) 5 g of dissolved PFBDVE was charged. The autoclave was purged with nitrogen and further replaced with TFE, and then heated to 72 ° C. with stirring. The pressure of TFE was increased to 19 kg / cm 2 and 5.4 g of disuccinic acid peroxide dissolved in 3 liters of water was injected. The inner pressure dropped to 18.5 kg / cm 2 in about 3 minutes.
[0040]
Polymerization was allowed to proceed while adding TFE so as to keep the internal pressure of the autoclave at 19 kg / cm 2 . When the amount of TFE added reached 720 g, 65 g of ammonium perfluorooctanoate dissolved in 3 liters of water was injected. The reaction was terminated when the amount of TFE added reached 25 kg, and TFE in the autoclave was released into the atmosphere.
[0041]
The obtained emulsified dispersion was cooled to remove precipitated FC-43. The polymer fine particle concentration in the emulsified dispersion was about 26.8% by weight, and the average particle size of the polymer fine particles was 0.256 μm.
This emulsified dispersion was diluted with ion exchange water to a polymer fine particle concentration of 10% by weight and stirred vigorously until solidified. After solidification, the mixture was further stirred for 5 minutes, and then the solidified polymer was dried at 200 ° C. The standard specific gravity of the obtained polymer was 2.151.
[0042]
Further, FC-43 from which the polymer fine particles had been removed and PFBDVE in water could not be detected by gas chromatography. Further, PFBDVE could not be detected by gas chromatography in TFE released into the atmosphere. Therefore, all PFBDVE was polymerized. Thereby, the content of polymerized units based on PFBDVE in the polymer was 0.02 mol%. Tables 1 and 2 show the results of conducting a stretching processability test and a heat durability test of the porous body using the obtained polymer.
[0043]
The characteristics of the obtained polymer were measured by the following method.
(1) Standard specific gravity: The standard specific gravity of the powdered polymer was measured by the amount of water replaced with a standard molding test sample according to ASTM D1457-69 method. This standard molding test sample was prepared as follows. First, 12.0 g of a powdery polymer is filled in a 2.86 cm diameter mold and held for 2 minutes under a pressure of 352 kg / cm 2 and preformed. The preform is then heated in an oven from 300 ° C. to 380 ° C. at 2 ° C./minute, held at 380 ° C. for 30 minutes, then cooled to 294 ° C. at a rate of 1 ° C./minute and then removed from the oven. A test sample was prepared after holding at 23 ° C. for 3 hours or more.
[0044]
(2) Fine particle diameter: Three times of measurement of 100 times at 25 ° C. at a fine particle concentration of about 0.1% by weight using a laser diffraction type particle size measuring device (manufactured by Otsuka Electronics, LPA-3000 / 3100). The average value was defined as the particle size of the fine particles.
[0045]
(3) Preparation of stretch processability evaluation sample: 50 g of polymer and 11.8 g of extrusion lubricant (made by Idemitsu Petrochemical Co., Ltd., Supersol FP) as a hydrocarbon oil are mixed and aged at 25 ° C. for 1 hour or longer. Next, the above mixture is filled in an extrusion die with a cylinder (inner diameter: 9.95 mm) (having an orifice with an inner diameter of 1 mm at a throttle angle of 30 ° C.), and a load of 20 kg is added to the piston inserted in the cylinder and held for 10 minutes. Thereafter, an extruded rod-like product is obtained at a ram speed of 100 mm / min. The extrudate in the portion where the pressure is in an equilibrium state in the second half of the extrusion is put in an oven, and the lubricant is removed by evaporation at 180 ° C. This was cut to about 50 mm and used as a sample for evaluation of stretch processing.
[0046]
(4) Stretching workability test: The above sample was stretched to a length of 10 times at a distance between chucks of 10 mm, a temperature of 250 ° C., and a tensile speed of 1000% / second using a tensile tester with a high-temperature tank. The stretchability under these conditions was evaluated from the viewpoints of appearance and uniformity. The appearance was evaluated on the basis of A: smooth, B: slightly uneven, C: considerably uneven, and D: cut during stretching.
(5) Strength evaluation of stretched rods: The strength of 5 stretched rods obtained in the above (3) and (4) was measured, and the average value was defined as the strength (kg) per rod.
[0047]
(6) Uniformity evaluation of porous body: Marking and stretching the center (5 mm from chuck) of the sample before stretching (10 mm between chucks) and marking from the center (50 mm from chuck) of the sample (100 mm) after stretching. The distance L (mm) of the deviation up to is measured, and the value according to Equation 2 is used as an index of uniformity (%). The greater this value, the higher the uniformity.
[0048]
[Expression 1]
Figure 0003669172
[0049]
(7) Heat resistance durability test: Samples were prepared by fixing both ends of a porous rod obtained by stretching (both ends distance 50 mm), placing in a high temperature bath at 400 ° C., and heat treating every 3 minutes to 10 minutes. did. The heat resistance was evaluated by visual observation of the porous rod after the heat treatment. It has been observed that when the treatment time is increased, the rod generally breaks through a stage where the diameter of the rod is reduced by shrinkage. Even if the treatment time is long, there is no change in the shape of the porous body rod, and it can be determined that a porous body that does not break is highly durable at high temperatures.
[0050]
[Example 2]
A polymer was obtained in the same manner as in Example 1 except that 2 g of PFBDVE was used. The polymer fine particle concentration of the emulsified dispersion was about 27.8% by weight, the average particle size of the polymer fine particles was 0.251 μm, and the standard specific gravity of the polymer was 2.150. The content of polymerized units based on PFBDVE in the polymer determined by the same method as in Example 1 was 0.008 mol%. Tables 1 and 2 show the results of the stretching process test and the heat durability test performed in the same manner as in Example 1.
[0051]
[Example 3]
A polymer was obtained in the same manner as in Example 1 except that 40 g of PFBDVE was used. The polymer fine particle concentration of the emulsified dispersion was about 25.6% by weight, the average particle size of the polymer fine particles was 0.239 μm, and the standard specific gravity of the polymer was 2.149. The content of polymerized units based on PFBDVE in the polymer determined by the same method as in Example 1 was 0.16 mol%. Tables 1 and 2 show the results of the stretching process test and the heat durability test performed in the same manner as in Example 1.
[0052]
[Example 4 (comparative example) ]
A polymer was obtained in the same manner as in Example 1 except that PFBDVE was not used. The polymer fine particle concentration of the emulsified dispersion was about 28.0 wt%, the average particle size of the polymer fine particles was 0.258 μm, and the standard specific gravity of the polymer was 2.151. Tables 1 and 2 show the results of the stretching process test and the heat durability test performed in the same manner as in Example 1.
[0053]
[Example 5 (comparative example) ]
Polymerization was carried out in the same manner as in Example 1 except that 150 g of PFBDVE was used (the content of polymerized units based on PFBDVE corresponds to 0.6 mol%). Could not continue.
[0054]
In Examples 1, 2, 3, and 4, stretched porous bodies were obtained. Examples 1 and 2 have the same extrudability as in Example 4 and further improved uniformity, strength, and heat durability. In Example 3 having a high PFBDVE content, the paste extrusion pressure was low, and the extrusion processability was excellent. However, the appearance after stretching was poor, and the uniformity and heat resistance were also lower than in the other examples. In Example 4 in which PFBDVE was not contained, the rod diameter was reduced in a short heat treatment time, but in Examples 1 and 2, no change in shape was observed.
[0055]
[Example 6]
Polymerization was carried out in the same manner as in Example 1 except that 5 g of the fluorinated comonomer represented by m = 1 and n = 2 in the above-mentioned formula 1 produced in the synthesis example instead of using PFBDVE. The polymer fine particle concentration of the emulsified dispersion was about 27.1% by weight, the average particle size of the polymer fine particles was 0.240 μm, and the standard specific gravity of the polymer was 2.151. The content of polymerized units based on the fluorinated comonomer in the polymer determined by the same method as in Example 1 was 0.02 mol%. Tables 1 and 2 show the results of the stretching process test and the heat durability test performed in the same manner as in Example 1.
Example 6 has the same extrusion processability as Examples 1, 2, and 4, and further has improved uniformity, strength, and heat durability.
[0056]
[ Table 1 ]
Figure 0003669172
[0057]
[ Table 2 ]
Figure 0003669172
[0058]
【The invention's effect】
A polytetrafluoroethylene- based polymer particularly useful for stretching is obtained by microcopolymerizing a fluorinated comonomer having a specific structure having two polymerizable groups with tetrafluoroethylene. The polymerization that Do from body multi Anashitsutai may have a good sexual heat durability.

Claims (7)

テトラフルオロエチレンと式1で表されるフッ素化コモノマ(ただし、mは0、1または2、nは1、2または3。)との共重合体であって、フッ素化コモノマに基づく重合単位の含有割合が0.005モル%以上0.5モル%以下であることを特徴とするテトラフルオロエチレン系共重合体。
Figure 0003669172
A copolymer of tetrafluoroethylene and a fluorinated comonomer represented by Formula 1 (where m is 0, 1 or 2, n is 1, 2 or 3), and is a polymer unit based on the fluorinated comonomer A tetrafluoroethylene copolymer having a content ratio of 0.005 mol% or more and 0.5 mol% or less.
Figure 0003669172
mが0であり、nが2である請求項1に記載のテトラフルオロエチレン系共重合体。  The tetrafluoroethylene copolymer according to claim 1, wherein m is 0 and n is 2. テトラフルオロエチレンとフッ素化コモノマとの乳化重合により得られる重合体微粒子であって該重合体微粒子の少なくともコア部が請求項1または2に記載のテトラフルオロエチレン系共重合体である重合体微粒子 A polymer fine particles obtained by emulsion polymerization of tetrafluoroethylene and fluorinated comonomers, at least the core portion is a polymer Ru tetrafluoroethylene copolymer der according to claim 1 or 2 of the polymer particles Fine particles . 標準比重が2.155未満である請求項1またはに記載のテトラフルオロエチレン系共重合体。Tetrafluoroethylene copolymer according to claim 1 or 2 standard specific gravity is less than 2.155. 請求項1、2または4に記載のテトラフルオロエチレン系共重合体からなる重合体微粒子から得られるファインパウダであって、コア部分のフッ素化コモノマに基づく重合単位の含有割合が、シェル部分のフッ素化コモノマに基づく重合単位の含有割合よりも大きい構造を有する重合体微粒子から得られるファインパウダ。 A fine powder obtained from polymer fine particles comprising the tetrafluoroethylene-based copolymer according to claim 1, 2, or 4, wherein the content of polymerized units based on the fluorinated comonomer in the core portion is fluorine in the shell portion. is that off Ainpauda from polymer microparticles having a larger structure than the proportion of the polymerized units based on reduction comonomers. 請求項1、2または4に記載のテトラフルオロエチレン系共重合体の製造方法において、フッ素化コモノマを重合初期に一括して添加して製造することを特徴とするテトラフルオロエチレン系共重合体の製造方法。Claim 1, 2 or in the production process of tetrafluoroethylene copolymer according to 4, tetrafluoroethylene copolymerization, characterized by prepared by adding collectively the fluorinated comonomer in the polymerization initial Manufacturing method of coalescence. 請求項5に記載のファインパウダをペースト押し出し後、250℃以上の温度で延伸されたものであることを特徴とするテトラフルオロエチレン系共重合体の多孔質体。After the paste extruded full Ainpauda according to claim 5, tetrafluoroethylene copolymer porous material, characterized in that one which is stretched at 250 ° C. or higher.
JP24397798A 1997-12-25 1998-08-28 Tetrafluoroethylene copolymer, production method thereof and use thereof Expired - Fee Related JP3669172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24397798A JP3669172B2 (en) 1997-12-25 1998-08-28 Tetrafluoroethylene copolymer, production method thereof and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35805197 1997-12-25
JP9-358051 1997-12-25
JP24397798A JP3669172B2 (en) 1997-12-25 1998-08-28 Tetrafluoroethylene copolymer, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JPH11240918A JPH11240918A (en) 1999-09-07
JP3669172B2 true JP3669172B2 (en) 2005-07-06

Family

ID=26536515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24397798A Expired - Fee Related JP3669172B2 (en) 1997-12-25 1998-08-28 Tetrafluoroethylene copolymer, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP3669172B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040646B2 (en) 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
US8637144B2 (en) * 2007-10-04 2014-01-28 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
US9650479B2 (en) 2007-10-04 2017-05-16 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
JP2009203172A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Method for producing perfluoro multifunctional vinyl ether compound
US9139669B2 (en) 2009-03-24 2015-09-22 W. L. Gore & Associates, Inc. Expandable functional TFE copolymer fine powder, the expandable functional products obtained therefrom and reaction of the expanded products
US8658707B2 (en) 2009-03-24 2014-02-25 W. L. Gore & Associates, Inc. Expandable functional TFE copolymer fine powder, the expanded functional products obtained therefrom and reaction of the expanded products
GB201007043D0 (en) * 2010-04-28 2010-06-09 3M Innovative Properties Co Process for producing ptfe and articles thereof
JP5012990B2 (en) * 2010-06-17 2012-08-29 ダイキン工業株式会社 Filter medium provided with porous membrane, manufacturing method thereof, filter pack, and filter unit
EP2840115B1 (en) 2012-04-20 2018-06-06 Daikin Industries, Ltd. Composition mainly composed of ptfe, mixed powder, molding material, filtering medium for filter, air filter unit, and porous membrane manufacturing method
JP5804172B2 (en) 2013-10-23 2015-11-04 ダイキン工業株式会社 Embossed filter material for air filter, filter pack, air filter unit, and method for producing embossed filter material for air filter
US9644054B2 (en) 2014-12-19 2017-05-09 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
JP6673230B2 (en) 2017-01-12 2020-03-25 ダイキン工業株式会社 Air filter media
KR20200021921A (en) * 2017-06-27 2020-03-02 에이지씨 가부시키가이샤 Fluorine-containing elastomer and its manufacturing method, fluorine-containing elastomer copolymer composition and crosslinked rubber article
JP7255591B2 (en) * 2018-05-15 2023-04-11 住友電気工業株式会社 Method for producing microporous membrane
JP6816746B2 (en) 2018-07-20 2021-01-20 ダイキン工業株式会社 Air filter Filter media, filter pack, and air filter unit
US20220040614A1 (en) 2018-09-28 2022-02-10 Daikin Industries, Ltd. Air filter medium, filter pack, air filter unit, and method for producing the same
JP7181480B2 (en) 2021-02-04 2022-12-01 ダイキン工業株式会社 Air filter medium, method for manufacturing air filter medium, filter medium for mask, and filter medium for pleated mask
CN117412799A (en) 2021-06-04 2024-01-16 大金工业株式会社 Air filter medium, pleated filter medium, air filter unit, filter medium for mask, and method for regenerating air filter medium

Also Published As

Publication number Publication date
JPH11240918A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP3613024B2 (en) Tetrafluoroethylene copolymer for stretching and its use
JP3669172B2 (en) Tetrafluoroethylene copolymer, production method thereof and use thereof
RU2425056C2 (en) Aqeuous polytetrafluoroethylene emulsion, fine polytetrafluoroethylene powder and porous material produced therefrom
EP1444277B1 (en) Tetrafluoroethene-perfluorobutylethene-copolymer
JP5983633B2 (en) Method for producing polytetrafluoroethylene fine powder
RU2478654C2 (en) Method of producing fine polytetrafluorethylene powder
US7009018B2 (en) Tetrafluoroethylene copolymer
JPH043765B2 (en)
JP4686861B2 (en) Method for producing modified polytetrafluoroethylene fine powder
JP3271524B2 (en) Modified polytetrafluoroethylene fine powder and method for producing the same
US4129618A (en) Tetrafluoroethylene polymers
JP4466002B2 (en) Tetrafluoroethylene copolymer, process for producing the same, and paste extrusion molding
CN110662778B (en) Modified polytetrafluoroethylene and process for producing the same
EP1245594B1 (en) Process for producing a tetrafluoroethylene polymer excellent in strenght
JP5581569B2 (en) Polytetrafluoroethylene fine powder, polytetrafluoroethylene production method
US5756620A (en) Tetrafluoroethylene polymer for improved paste extrusion
EP1065223A1 (en) Process for producing aqueous dispersion containing polytetrafluoroethylene
JP3791223B2 (en) Ethylene / tetrafluoroethylene copolymer composition
JP2001064304A (en) Production of aqueous dispersion containing polytetrafluoroethylene
CN116813828A (en) High molecular weight tetrafluoroethylene copolymer dispersion resin and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees