US20090214991A1 - Apparatus and methods for supplying fuel employed by abatement systems to effectively abate effluents - Google Patents

Apparatus and methods for supplying fuel employed by abatement systems to effectively abate effluents Download PDF

Info

Publication number
US20090214991A1
US20090214991A1 US12/372,734 US37273409A US2009214991A1 US 20090214991 A1 US20090214991 A1 US 20090214991A1 US 37273409 A US37273409 A US 37273409A US 2009214991 A1 US2009214991 A1 US 2009214991A1
Authority
US
United States
Prior art keywords
fuel
velocity
manifold
nozzles
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/372,734
Inventor
Daniel O. Clark
Allen G. Fox
Robbert M. Vermeulen
Shaun W. Crawford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to US12/372,734 priority Critical patent/US20090214991A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLARK, DANIEL O., VERMEULEN, ROBBERT M., CRAWFORD, SHAUN W., FOX, ALLEN G.
Publication of US20090214991A1 publication Critical patent/US20090214991A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • F23G2209/142Halogen gases, e.g. silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages

Definitions

  • the present invention relates generally to electronic device manufacturing abatement systems and more particularly to supplying fuel employed by the abatement systems to abate effluents.
  • Conventional electronic device manufacturing abatement systems abate effluents to reduce toxicity, flammability or other undesirable properties of effluents.
  • the effluents may be produced by electronic device fabrication equipment (e.g., flat panel, semiconductor, solar, etc.).
  • Some conventional abatement systems may abate effluents in a combustion zone that burns fuel to provide the heat necessary to abate the effluents.
  • a conventional abatement system may typically employ more than one nozzle for spraying fuel into the combustion zone, and often such conventional abatement systems may not have uniform combustion regions or zones. Non-uniform combustion zones may not sufficiently abate the effluent, which may result in undesirable compounds exhausting from the abatement unit.
  • an apparatus for introducing fuel into an electronic device manufacturing effluent abatement tool including: a manifold; a fuel source adapted to supply fuel to the manifold through a fuel conduit; and a plurality of nozzles adapted to receive fuel from the manifold; wherein the manifold is adapted to supply fuel to the nozzles at a fuel velocity greater than a flame velocity.
  • a method for operating an electronic device manufacturing abatement system including: flowing fuel from a fuel supply into a manifold through a fuel conduit; and flowing the fuel from the manifold through a plurality of nozzles; wherein the manifold is adapted to flow fuel to the nozzles at a fuel velocity greater than a flame velocity.
  • FIG. 1 depicts a schematic side view of an embodiment of an abatement system in accordance with the present invention.
  • FIG. 1B depicts a bottom plan view of an embodiment of a fuel manifold head in accordance with the present invention.
  • FIG. 1C depicts a bottom plan view of an effluent inlet/fuel nozzle cluster in accordance with the present invention.
  • FIG. 2 depicts a cross section side view of an embodiment of a fuel manifold in accordance with the present invention.
  • FIG. 3 depicts a perspective view of the fuel lines inside of an embodiment of a fuel manifold according to the present invention.
  • FIG. 4 is a flow chart which depicts a method of operating an electronic device manufacturing abatement system of the present invention.
  • a conventional fuel burning abatement system may have several nozzles which supply fuel or a fuel/oxidant mixture to the combustion zone.
  • these nozzles will be referred to herein as ‘nozzles’ or ‘fuel nozzles’, but it is understood that they may flow a fuel/oxidant mixture or fuel only.
  • the fuel nozzles in a convention abatement system often flow fuel non-uniformly, thereby creating an uneven temperature profile in the combustion zone.
  • one nozzle may spray fuel at a higher or lower pressure than the other fuel nozzles. This difference in pressure might result in a spray pattern which differs from the spray patterns of the other nozzles.
  • the difference in pressure might also result in an amount of fuel spraying from one nozzle which is different from the amount of fuel spraying from the other nozzles.
  • a different spray pattern or different amounts of fuel spraying from different nozzles may result in a non-uniform temperature profile in the combustion zone.
  • the fuel may typically be supplied to the nozzles through supply pipes, conduits or lines. These supply lines may be of differing lengths, configurations, cross-sectional shape, internal smoothness, and may have other differences.
  • conventional fuel burning abatement systems typically employ a flashback arrestor on each fuel line. Such flashback arrestors may prevent the fuel upstream from the flashback arrestors from igniting, by preventing a flame front from traveling back from the combustion zone through a nozzle into a fuel line or fuel source.
  • Each flashback arrestor may be slightly different from each other flashback arrestor, and having a flashback arrestor on each fuel line may contribute to unequal fuel distribution to the combustion zone. Accordingly, for the above and additional reasons, the combustion zone in the combustion zone may not have a uniform temperature profile.
  • a combustion zone temperature profile may be shaped such that a cooler zone exists on one side of the combustion zone. While chemical species in the effluent may be effectively abated in hotter portions of the combustion zone, chemical species may not be effectively abated in cooler portions of the combustion zone. Thus, in an abatement unit having nonuniform combustion, some unabated chemicals may exit the combustion zone and enter the facility exhaust.
  • the present invention provides methods and apparatus to equalize fuel flow to and fuel pressure at a plurality of fuel nozzles that spray fuel into a combustion zone of an abatement system.
  • equalized we mean to reduce a difference between two fuel flow rates and/or two fuel pressures, even if by doing so the two fuel flow rates and/or two fuel pressures do not actually become equal.
  • an abatement tool may exhibit a more uniform temperature profile in the combustion zone.
  • the fuel flow from each nozzle may be equalized.
  • the pressure and/or flow rate of the fuel exiting each nozzle may be equalized.
  • the spray profile or pattern of the fuel flow exiting each nozzle may be equalized. Still other parameters of the fuel flow exiting each nozzle may be equalized such that a more uniform combustion zone is achieved.
  • the present invention provides a fuel manifold having a plurality of fuel lines which are adapted to supply fuel equally or substantially equally to each of the plurality of nozzles.
  • Fuel lines may be equal in dimension (e.g., length, circumference, etc.), such that the fuel in each line travels an equal distance along similar channels.
  • dimensions other than length may be selected for fuel lines of unequal length so that fuel which flows from the manifold arrives at the nozzles at an equalized flow rate and/or pressure.
  • the fuel may be supplied to each fuel line in the fuel manifold via a single fuel inlet.
  • a single fuel inlet may branch into two or more separate fuel lines, each fuel line being coupled to a different nozzle.
  • the single fuel inlet may include a flashback arrestor.
  • the flashback arrestor may be coupled to the fuel inlet, eliminating the need for a flashback arrestor on each fuel line and eliminating the variation in fuel flow that may result from the use of a different flashback arrestor on each fuel line. Accordingly, fuel may be more equally supplied into a combustion zone via the plurality of nozzles having the features of the present invention. As a result, the temperature profile in the combustion zone may be more uniform than in conventional abatement systems.
  • FIGS. 1-4 These and other aspects of the inventions are described below with reference to FIGS. 1-4 .
  • FIG. 1 depicts, in schematic view, an embodiment of an abatement system 100 provided in accordance with the present invention.
  • abatement system 100 may be a burn/wet process abatement system, including an abatement unit 101 , which may burn a fuel/oxidant mixture to create high temperatures so that an effluent/oxidant mixture can combust in a combustion zone 102 to form abated effluent.
  • the abated effluent may then pass into a quench zone 104 , where it may be cooled and/or scrubbed, and then may pass out of the abatement unit through outlet 106 . From outlet 106 , the abated effluent may be further processed, scrubbed or vented to the atmosphere.
  • Effluent to be abated may be provided to abatement system 100 from an effluent source 108 .
  • the effluent source 108 may be any type of electronic device manufacturing process unit or units (hereinafter referred to as a “process unit”) which exhausts process gases which may be abated by abatement system 100 .
  • Effluent source 108 may contain more than one processing chamber (not shown).
  • Abatement system 100 may receive effluent from more than one effluent source 108 , such as 2, 3, 4, 5, 6, or more sources. Effluent from effluent source 108 may be provided to abatement unit 101 through effluent inlet 110 .
  • effluent inlet 110 More than one effluent inlet 110 may be used, and each effluent inlet may be connected to one or more effluent sources 108 .
  • effluent inlet 110 is adapted to introduce effluent into the combustion zone 102 through the side of the abatement unit, in another embodiment (not shown), effluent inlet 110 may introduce effluent into the combustion zone 102 by passing through fuel manifold head 112 (as described in more detail below).
  • Fuel manifold head 112 may include fuel manifold 113 , which is indicated in FIG. 1 as contained within the fuel manifold head 112 .
  • Fuel may be provided to abatement unit 101 from fuel source 116 , which may be a supply of hydrogen, methane or any other suitable fuel. Fuel may flow from fuel source 116 through conduit 118 into fuel inlet 119 of fuel manifold 113 .
  • fuel source 116 may comprise a pump (not shown) which is adapted to pressurize the fuel.
  • a flashback arrestor 126 may be located between the fuel source 116 and the fuel inlet 119 , and in these embodiments, fuel must flow through the flashback arrestor 126 prior to entering the fuel manifold 113 .
  • Oxidant may be provided to the abatement unit 101 from oxidant source 120 .
  • Oxidant source 120 may be a supply of clean dry air, oxygen, oxygen enriched air, or any other suitable oxidant.
  • oxidant from oxidant source 120 may be mixed with fuel from fuel source 116 in order to increase the temperature in the upper portions of the combustion zone. For reasons of safety, the amount of oxidant mixed with fuel outside of the abatement unit may be limited to an amount which would result in a fuel/air mixture which is sufficiently fuel rich to not be flammable without the addition of more oxygen into the abatement unit 101 .
  • oxidant may enter the manifold (not shown) where it may be mixed with fuel.
  • oxidant may be provided to the abatement unit 101 through conduit 124 .
  • Oxidant supplied to abatement unit 101 through conduit 124 may be introduced into combustion zone 102 , where it can mix with fuel and effluent to form a flammable mixture.
  • oxidant source 120 may comprise a pump (not shown) adapted to pressurize the oxidant.
  • Fuel manifold 113 may receive fuel or a fuel/air mixture, through fuel inlet 119 .
  • fuel may be divided into a plurality of fuel lines (See FIG. 2 ) in fuel manifold 113 and may be provided to fuel nozzles 114 a - d .
  • Fuel may be sprayed from fuel nozzles 114 a - d into combustion zone 102 , where the effluent and fuel may be combined with oxidant and reacted therewith or combusted.
  • Fuel nozzles 114 a - d may spray fuel into the combustion zone 102 , although any suitable apparatus for providing fuel to the combustion zone 102 may be employed.
  • the fuel nozzles 114 a - d may be comprised of machined aluminum with a selectively machined output hole such that a desired spray profile is achieved. As depicted, the fuel nozzles 114 a - d may be partially disposed inside the combustion zone 102 . However, fuel nozzles 114 a - d may be disposed entirely inside the fuel manifold head 112 with only the fuel spray output thereof exposed to an internal portion of the combustion zone 102 .
  • the manner in which the fuel nozzles 114 a - d are disposed may be selected to not only effectively abate the effluent, but also to prevent fuel in the fuel manifold 113 from igniting.
  • the fuel nozzles 114 a - d receive, via the fuel manifold 113 , fuel that passes through the flashback arrestor 126 which may provide additional protection against the ignition of fuel in the fuel source 116 .
  • the plurality of fuel nozzles 114 may be adapted to spray fuel in a desired manner. For example, it may be desired that each of the plurality of fuel nozzles 114 a - d spray fuel in a fan shape (e.g., triangular cross section) spray profile. In such an embodiment, the fuel sprayed from each of the plurality of fuel nozzles 114 a - d may overlap before reaching the combustion zone 102 . Additionally or alternatively, the plurality of fuel nozzles 114 may be adapted to form fuel sprays having a particular fuel velocity for a given fuel pressure. Such fuel velocity may be faster than a flame velocity in the combustion zone 102 . Flame velocity of the combustion zone may be the rate at which flame propagates.
  • the fuel may push the flame away from the plurality of fuel nozzles 114 to ensure that the ignited fuel (the flame) does not ‘flashback’ into the fuel manifold 113 .
  • Such fuel velocity may also be affected by other parameters such as fuel viscosity, pressure, etc. Such other parameters may be affected by the fuel manifold 113 as will be described in more detail below.
  • Flash back arrestor 126 may be any suitable flash back arrestor.
  • FIG. 1B depicts a bottom plan view of an embodiment of a fuel manifold head 112 in accordance with the present invention.
  • the fuel manifold head 112 may include one or more effluent inlet/fuel nozzle clusters 150 a - d .
  • the fuel manifold head 112 has four effluent inlet/fuel nozzle clusters 150 a - d , but it should be understood that the fuel manifold head 112 may have only one effluent inlet/fuel nozzle cluster, or may have as many as two, three, five, six, seven, eight or more effluent inlet/fuel nozzle clusters.
  • Dotted line A indicates a portion of FIG. 1B which is depicted in more detail in FIG. 1C , below.
  • FIG. 1C depicts a bottom plan view of an effluent inlet/fuel nozzle cluster 150 in accordance with the present invention.
  • Effluent inlet/fuel nozzle cluster 150 may include effluent inlet 152 .
  • effluent inlet 152 may enter the abatement unit 101 through the manifold head 112 , and in some instances through the manifold 113 , as well.
  • effluent inlet 152 may be surrounded by four fuel nozzles 114 a - d . It should be understood, however, that more or fewer fuel nozzles 114 may be used.
  • FIG. 2 is a schematic depiction of one embodiment of the fuel manifold 113 of the present invention.
  • fuel from fuel source 116 may flow through conduit 118 and, optionally, through flashback arrestor 126 into fuel inlet 119 .
  • Fuel manifold 113 may be adapted to provide fuel to fuel nozzles 114 a - d in selected, equal, or nearly equal, flow rates and pressures.
  • the selected, equal, or nearly equal provision of fuel to fuel nozzles 114 a - d may enable the fuel nozzles to spray fuel into the abatement unit 101 , and more particularly into combustion zone 102 , in selected, identical, or nearly identical spray patterns.
  • the fuel so sprayed, may create a combustion zone with a more uniform temperature profile than may exist in a conventional abatement unit, or in a selected, non-uniform temperature profile.
  • the fuel manifold of the present invention may reduce flow differences between the fuel nozzles as compared to prior art systems.
  • the fuel manifold may be adapted to provide fuel to nozzles 114 a - d in selected unequal flow rates and/or pressures in order to create a desired uniform or non-uniform temperature profile in the combustion zone 102 .
  • the present invention may provide more uniform fuel delivery (volume and pressure) by including a fuel line 202 a - d to each fuel nozzle 114 a - d and by requiring each fuel line 202 a - d to be equivalent to each other fuel line 202 a - d in length, cross-sectional area, and/or other parameters.
  • a fuel line may include multiple segments.
  • fuel line 202 a may include a primary segment 204 , a secondary segment 206 a , and a tertiary segment 208 a .
  • fuel line 202 b may include primary segment 204 , secondary segment 206 a and a tertiary segment 208 b .
  • each segment level which branches from a fuel inlet i.e., primary segment, secondary segment, etc.
  • one or more segment levels may vary in cross-section over the length of the segment level.
  • the present invention may provide selected fuel delivery by including a fuel line 202 a - d to each fuel nozzle 114 a - d and by selecting parameters of each fuel line 202 a - d , such as length, cross-sectional area, etc., such that each fuel nozzle receives a selected amount of fuel, at a selected rate and a selected pressure.
  • fuel lines 202 a - d may have smoothened or polished internal surfaces, in order to reduce differences in drag on the fuel which flows through the fuel lines.
  • Each of the primary fuel line segment 204 , secondary fuel line segments 206 a,b and tertiary fuel line segments 208 a - d may be formed (e.g., machined, forged, etc.) with a geometry so as equalize the fuel flow from each of the non-combustion zone 102 .
  • the width and length of each fuel nozzle 114 a - d into the secondary fuel line segments 206 a,b may be the same.
  • other geometries e.g., corner radius, inside diameter surface roughness, etc.
  • a fuel manifold 113 of the present invention may have more fuel nozzles 114 than are depicted in FIGS. 1 and 2 .
  • some fuel manifolds of the present invention may have up to about 24 or more fuel nozzles.
  • more fuel nozzles may require a greater number of fuel line segment levels, i.e., more than the three fuel line segment levels (primary, secondary and tertiary) depicted in FIG. 2 .
  • Fuel nozzles 114 a - d are depicted in FIGS. 1 and 2 as descending below the bottom of the fuel manifold head 112 .
  • the fuel nozzles may be machined, or otherwise formed within fuel manifold head 112 . In such embodiments the nozzles may not extend below the bottom of fuel manifold head 112 .
  • FIG. 3 is a schematic depiction of one embodiment a fuel manifold 113 of the present invention.
  • FIG. 3 is a truncated, perspective view of the interior space 300 of a fuel manifold 113 according to the present invention, including fuel nozzles 114 , which may be in fluid communication with interior space 300 .
  • what is shown in FIG. 3 is the surface outline of the empty space of the fuel lines that may be formed in the body of fuel manifold 113 .
  • the structure shown in FIG. 3 may include a primary fuel line segment 204 , which may be in fluid communication with fuel inlet 119 ( FIG. 1 ) and with a secondary fuel line segment 206 a .
  • Secondary fuel line segment 206 a may then be in fluid communication with tertiary fuel line segment 208 b
  • tertiary fuel line 208 b may be in fluid communication with fuel nozzles 114 a - d .
  • the interior space 300 may be machined, forged or cast into the fuel manifold 113 (not shown in FIG. 3 .) Interior space 300 may include tertiary fuel line segment 208 b , which, although shown as truncated along line A-A, may be a mirror image of terminal fuel distribution line 308 a.
  • the interior space 300 may be adapted to allow an effluent inlet 110 (not shown in FIG. 3 ) to pass through the fuel manifold 113 , through ring 302 formed in fuel manifold 113 by tertiary fuel line segment 208 a .
  • the fuel inlet may terminate within abatement unit 101 adjacent to, or in proximity to, fuel nozzles 114 a - d , such that effluent may be sprayed into the abatement unit 101 between multiple fuel sprays from nozzles 114 a - d.
  • the fuel manifold head 112 may be an aluminum block with fuel lines machined into the block, although any suitable fuel manifold head 112 may be employed.
  • the fuel manifold head 112 may be made of anodized aluminum that is manufactured (e.g., machined, forged, cast, etc.) to include fuel lines, e.g., fuel lines 204 , 206 and 208 .
  • the fuel manifold head 112 may also be manufactured to include additional features such as bolts (not shown) for coupling the fuel manifold head 112 to the abatement unit 101 . Other materials may be used to form the fuel manifold head 112 .
  • the branching fuel lines fuel lines which are depicted in FIG. 2 and FIG. 3 as being contained within the manifold head 112 , may be located externally (not shown) to the manifold head 112 . After a final branching, the fuel lines may simply pass straight through the manifold head 112 and terminate at fuel nozzles 114 .
  • fuel may be supplied to the fuel manifold 113 from the fuel source 116 via the flashback arrestor 126 and fuel inlet 119 .
  • a single fuel inlet 119 connected to a single flashback arrestor 126 .
  • the flashback arrestor 126 may be adapted to prevent fuel upstream (e.g., in the fuel source 116 ) from igniting.
  • the flashback arrestor 126 may prevent such ignition from igniting fuel upstream from the flashback arrestor 126 .
  • the flashback arrestor 126 may provide safety features in addition to those present in the fuel manifold 113 , which will be described in more detail below.
  • the fuel may be distributed equally among the fuel lines 202 a - d that terminate in the fuel nozzles 114 a - d .
  • the plurality of fuel lines 202 a - d may have controlled and/or selective differences in one or more attributes such as length, cross-sectional area, angles, internal surface roughness, etc. Accordingly, the fuel may be supplied to the manifold 112 and distributed by the identical or nearly identical fuel lines 202 a - d to the fuel nozzles 114 a - d in identical, nearly identical or similar flow rates and/or pressures.
  • the number of fuel nozzles 114 may equal the number of fuel lines 202 .
  • Fuel may enter the combustion zone 102 via the fuel nozzles 114 a - d that may be part of and/or coupled to the fuel manifold 113 . Accordingly, because the fuel flow rate to, and the fuel pressure at, the fuel nozzles 114 a - d may be more uniform than in conventional abatement units, the fuel spray from the plurality of fuel nozzles 114 a - d may be more uniform, as well.
  • the fuel manifold 113 may affect other parameters of the fuel sprayed from fuel nozzles 114 a - d into combustion zone 102 .
  • a fuel velocity of the fuel sprayed by fuel nozzles 114 a - d may be affected desirably by the features of primary fuel line segment 204 , secondary fuel line segments 206 a,b and tertiary fuel line segments 208 a - d .
  • a more narrow diameter in the higher order fuel line segments i.e., closer to fuel nozzles 114
  • the lower order fuel line segments i.e., closer to fuel inlet 119
  • the fuel velocity may be set higher than a flame velocity of the effluent, fuel and oxidant mixture in the combustion zone 102 .
  • the abatement unit When the abatement unit is operated using a fuel velocity which is higher than the flame velocity of burning fuel which has been sprayed from fuel nozzles 114 , the flame front will not be able move close to the plurality of fuel nozzles 114 , and flame may thus be prevented from traveling back into fuel nozzles 114 .
  • FIG. 4 is a schematic depiction of a method 400 of the present invention.
  • a method for hundred begins in step 402 , where fuel is flowed from a fuel supply into a manifold through conduit.
  • step 404 fuel is flowed from the manifold through a plurality of nozzles at a fuel velocity which is greater than a flame velocity.
  • Method 400 may be extended through optional steps 406 , and 408 .
  • step 406 the fuel which is flowed from the fuel supply into the manifold is flowed through a single fuel inlet.
  • step 408 the fuel which is flowed from the fuel supply into the manifold is flowed through a single flashback arrestor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Gas Burners (AREA)

Abstract

An abatement apparatus for introducing fuel into an electronic device manufacturing effluent abatement tool, including: a manifold; a fuel source adapted to supply fuel to the manifold through a fuel conduit; and a plurality of nozzles adapted to receive fuel from the manifold; wherein the manifold is adapted to supply fuel to the nozzles at a fuel velocity greater than a flame velocity.

Description

  • The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/029,452, filed Feb. 18, 2008, and entitled “APPARATUS AND METHODS FOR SUPPLYING FUEL EMPLOYED BY ABATEMENT SYSTEMS TO EFFECTIVELY ABATE EFFLUENTS” (Attorney Docket No. 11624/L), which is hereby incorporated herein by reference in its entirety for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates generally to electronic device manufacturing abatement systems and more particularly to supplying fuel employed by the abatement systems to abate effluents.
  • BACKGROUND OF THE INVENTION
  • Conventional electronic device manufacturing abatement systems abate effluents to reduce toxicity, flammability or other undesirable properties of effluents. The effluents may be produced by electronic device fabrication equipment (e.g., flat panel, semiconductor, solar, etc.). Some conventional abatement systems may abate effluents in a combustion zone that burns fuel to provide the heat necessary to abate the effluents.
  • A conventional abatement system may typically employ more than one nozzle for spraying fuel into the combustion zone, and often such conventional abatement systems may not have uniform combustion regions or zones. Non-uniform combustion zones may not sufficiently abate the effluent, which may result in undesirable compounds exhausting from the abatement unit.
  • Accordingly, methods and apparatus are desired for improving the uniformity of a combustion region or zone of an abatement system.
  • SUMMARY OF THE INVENTION
  • In one aspect, an apparatus for introducing fuel into an electronic device manufacturing effluent abatement tool is provided, including: a manifold; a fuel source adapted to supply fuel to the manifold through a fuel conduit; and a plurality of nozzles adapted to receive fuel from the manifold; wherein the manifold is adapted to supply fuel to the nozzles at a fuel velocity greater than a flame velocity.
  • In another aspect, a method for operating an electronic device manufacturing abatement system is provided, including: flowing fuel from a fuel supply into a manifold through a fuel conduit; and flowing the fuel from the manifold through a plurality of nozzles; wherein the manifold is adapted to flow fuel to the nozzles at a fuel velocity greater than a flame velocity.
  • Other features and aspects of the present invention will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a schematic side view of an embodiment of an abatement system in accordance with the present invention.
  • FIG. 1B depicts a bottom plan view of an embodiment of a fuel manifold head in accordance with the present invention.
  • FIG. 1C depicts a bottom plan view of an effluent inlet/fuel nozzle cluster in accordance with the present invention.
  • FIG. 2 depicts a cross section side view of an embodiment of a fuel manifold in accordance with the present invention.
  • FIG. 3 depicts a perspective view of the fuel lines inside of an embodiment of a fuel manifold according to the present invention.
  • FIG. 4 is a flow chart which depicts a method of operating an electronic device manufacturing abatement system of the present invention.
  • DETAILED DESCRIPTION
  • As discussed above, a conventional fuel burning abatement system may have several nozzles which supply fuel or a fuel/oxidant mixture to the combustion zone. For ease of description, these nozzles will be referred to herein as ‘nozzles’ or ‘fuel nozzles’, but it is understood that they may flow a fuel/oxidant mixture or fuel only. The fuel nozzles in a convention abatement system often flow fuel non-uniformly, thereby creating an uneven temperature profile in the combustion zone. For example, one nozzle may spray fuel at a higher or lower pressure than the other fuel nozzles. This difference in pressure might result in a spray pattern which differs from the spray patterns of the other nozzles. The difference in pressure might also result in an amount of fuel spraying from one nozzle which is different from the amount of fuel spraying from the other nozzles. A different spray pattern or different amounts of fuel spraying from different nozzles may result in a non-uniform temperature profile in the combustion zone.
  • There may be several reasons for the differences in the manner in which fuel is supplied to the several fuel nozzles in a conventional abatement unit. For example, the fuel may typically be supplied to the nozzles through supply pipes, conduits or lines. These supply lines may be of differing lengths, configurations, cross-sectional shape, internal smoothness, and may have other differences. In addition, conventional fuel burning abatement systems typically employ a flashback arrestor on each fuel line. Such flashback arrestors may prevent the fuel upstream from the flashback arrestors from igniting, by preventing a flame front from traveling back from the combustion zone through a nozzle into a fuel line or fuel source. Each flashback arrestor may be slightly different from each other flashback arrestor, and having a flashback arrestor on each fuel line may contribute to unequal fuel distribution to the combustion zone. Accordingly, for the above and additional reasons, the combustion zone in the combustion zone may not have a uniform temperature profile.
  • Due to such non-uniform combustion, some effluents may escape the combustion zone unabated. For example, a combustion zone temperature profile may be shaped such that a cooler zone exists on one side of the combustion zone. While chemical species in the effluent may be effectively abated in hotter portions of the combustion zone, chemical species may not be effectively abated in cooler portions of the combustion zone. Thus, in an abatement unit having nonuniform combustion, some unabated chemicals may exit the combustion zone and enter the facility exhaust.
  • Accordingly, there is a need for providing a more uniform temperature profile in the combustion zones of electronic device manufacturing effluent abatement systems.
  • The present invention provides methods and apparatus to equalize fuel flow to and fuel pressure at a plurality of fuel nozzles that spray fuel into a combustion zone of an abatement system. By equalized, we mean to reduce a difference between two fuel flow rates and/or two fuel pressures, even if by doing so the two fuel flow rates and/or two fuel pressures do not actually become equal. Accordingly, with use of the present invention, an abatement tool may exhibit a more uniform temperature profile in the combustion zone. Several aspects of the fuel flow from each nozzle may be equalized. For example, the pressure and/or flow rate of the fuel exiting each nozzle may be equalized. Additionally or alternatively, the spray profile or pattern of the fuel flow exiting each nozzle may be equalized. Still other parameters of the fuel flow exiting each nozzle may be equalized such that a more uniform combustion zone is achieved.
  • In order to achieve a more uniform distribution of fuel among the plurality of nozzles, the present invention provides a fuel manifold having a plurality of fuel lines which are adapted to supply fuel equally or substantially equally to each of the plurality of nozzles. Fuel lines may be equal in dimension (e.g., length, circumference, etc.), such that the fuel in each line travels an equal distance along similar channels. Alternatively, dimensions other than length may be selected for fuel lines of unequal length so that fuel which flows from the manifold arrives at the nozzles at an equalized flow rate and/or pressure. Additionally or alternatively, to further promote uniformity of fuel flow to each nozzle, the fuel may be supplied to each fuel line in the fuel manifold via a single fuel inlet. For example, a single fuel inlet may branch into two or more separate fuel lines, each fuel line being coupled to a different nozzle.
  • In one embodiment, the single fuel inlet may include a flashback arrestor. In such an embodiment, the flashback arrestor may be coupled to the fuel inlet, eliminating the need for a flashback arrestor on each fuel line and eliminating the variation in fuel flow that may result from the use of a different flashback arrestor on each fuel line. Accordingly, fuel may be more equally supplied into a combustion zone via the plurality of nozzles having the features of the present invention. As a result, the temperature profile in the combustion zone may be more uniform than in conventional abatement systems.
  • These and other aspects of the inventions are described below with reference to FIGS. 1-4.
  • FIG. 1 depicts, in schematic view, an embodiment of an abatement system 100 provided in accordance with the present invention. In general, abatement system 100 may be a burn/wet process abatement system, including an abatement unit 101, which may burn a fuel/oxidant mixture to create high temperatures so that an effluent/oxidant mixture can combust in a combustion zone 102 to form abated effluent. The abated effluent may then pass into a quench zone 104, where it may be cooled and/or scrubbed, and then may pass out of the abatement unit through outlet 106. From outlet 106, the abated effluent may be further processed, scrubbed or vented to the atmosphere.
  • Effluent to be abated may be provided to abatement system 100 from an effluent source 108. The effluent source 108 may be any type of electronic device manufacturing process unit or units (hereinafter referred to as a “process unit”) which exhausts process gases which may be abated by abatement system 100. Effluent source 108 may contain more than one processing chamber (not shown). Abatement system 100 may receive effluent from more than one effluent source 108, such as 2, 3, 4, 5, 6, or more sources. Effluent from effluent source 108 may be provided to abatement unit 101 through effluent inlet 110. More than one effluent inlet 110 may be used, and each effluent inlet may be connected to one or more effluent sources 108. Although effluent inlet 110, as shown, is adapted to introduce effluent into the combustion zone 102 through the side of the abatement unit, in another embodiment (not shown), effluent inlet 110 may introduce effluent into the combustion zone 102 by passing through fuel manifold head 112 (as described in more detail below). Fuel manifold head 112 may include fuel manifold 113, which is indicated in FIG. 1 as contained within the fuel manifold head 112.
  • Fuel may be provided to abatement unit 101 from fuel source 116, which may be a supply of hydrogen, methane or any other suitable fuel. Fuel may flow from fuel source 116 through conduit 118 into fuel inlet 119 of fuel manifold 113. In some embodiments, fuel source 116 may comprise a pump (not shown) which is adapted to pressurize the fuel. In some embodiments, a flashback arrestor 126 may be located between the fuel source 116 and the fuel inlet 119, and in these embodiments, fuel must flow through the flashback arrestor 126 prior to entering the fuel manifold 113.
  • Oxidant may be provided to the abatement unit 101 from oxidant source 120. Oxidant source 120 may be a supply of clean dry air, oxygen, oxygen enriched air, or any other suitable oxidant. In some embodiments oxidant from oxidant source 120 may be mixed with fuel from fuel source 116 in order to increase the temperature in the upper portions of the combustion zone. For reasons of safety, the amount of oxidant mixed with fuel outside of the abatement unit may be limited to an amount which would result in a fuel/air mixture which is sufficiently fuel rich to not be flammable without the addition of more oxygen into the abatement unit 101. In some embodiments, oxidant may enter the manifold (not shown) where it may be mixed with fuel. In some embodiments, oxidant may be provided to the abatement unit 101 through conduit 124. Oxidant supplied to abatement unit 101 through conduit 124 may be introduced into combustion zone 102, where it can mix with fuel and effluent to form a flammable mixture. In some embodiments, oxidant source 120 may comprise a pump (not shown) adapted to pressurize the oxidant.
  • Fuel manifold 113 may receive fuel or a fuel/air mixture, through fuel inlet 119. For ease of description, both “fuel” and “a fuel/air mixture” may be referred to hereinafter as “fuel”. The fuel received through fuel inlet 119 may be divided into a plurality of fuel lines (See FIG. 2) in fuel manifold 113 and may be provided to fuel nozzles 114 a-d. Fuel may be sprayed from fuel nozzles 114 a-d into combustion zone 102, where the effluent and fuel may be combined with oxidant and reacted therewith or combusted.
  • Fuel nozzles 114 a-d may spray fuel into the combustion zone 102, although any suitable apparatus for providing fuel to the combustion zone 102 may be employed. The fuel nozzles 114 a-d may be comprised of machined aluminum with a selectively machined output hole such that a desired spray profile is achieved. As depicted, the fuel nozzles 114 a-d may be partially disposed inside the combustion zone 102. However, fuel nozzles 114 a-d may be disposed entirely inside the fuel manifold head 112 with only the fuel spray output thereof exposed to an internal portion of the combustion zone 102. The manner in which the fuel nozzles 114 a-d are disposed may be selected to not only effectively abate the effluent, but also to prevent fuel in the fuel manifold 113 from igniting. The fuel nozzles 114 a-d receive, via the fuel manifold 113, fuel that passes through the flashback arrestor 126 which may provide additional protection against the ignition of fuel in the fuel source 116.
  • The plurality of fuel nozzles 114 may be adapted to spray fuel in a desired manner. For example, it may be desired that each of the plurality of fuel nozzles 114 a-d spray fuel in a fan shape (e.g., triangular cross section) spray profile. In such an embodiment, the fuel sprayed from each of the plurality of fuel nozzles 114 a-d may overlap before reaching the combustion zone 102. Additionally or alternatively, the plurality of fuel nozzles 114 may be adapted to form fuel sprays having a particular fuel velocity for a given fuel pressure. Such fuel velocity may be faster than a flame velocity in the combustion zone 102. Flame velocity of the combustion zone may be the rate at which flame propagates. Accordingly, the fuel may push the flame away from the plurality of fuel nozzles 114 to ensure that the ignited fuel (the flame) does not ‘flashback’ into the fuel manifold 113. Such fuel velocity may also be affected by other parameters such as fuel viscosity, pressure, etc. Such other parameters may be affected by the fuel manifold 113 as will be described in more detail below.
  • Flash back arrestor 126 may be any suitable flash back arrestor.
  • FIG. 1B depicts a bottom plan view of an embodiment of a fuel manifold head 112 in accordance with the present invention. The fuel manifold head 112 may include one or more effluent inlet/fuel nozzle clusters 150 a-d. As depicted in FIG. 1B, the fuel manifold head 112 has four effluent inlet/fuel nozzle clusters 150 a-d, but it should be understood that the fuel manifold head 112 may have only one effluent inlet/fuel nozzle cluster, or may have as many as two, three, five, six, seven, eight or more effluent inlet/fuel nozzle clusters. Dotted line A indicates a portion of FIG. 1B which is depicted in more detail in FIG. 1C, below.
  • FIG. 1C depicts a bottom plan view of an effluent inlet/fuel nozzle cluster 150 in accordance with the present invention. Effluent inlet/fuel nozzle cluster 150 may include effluent inlet 152. In some embodiments, effluent inlet 152 may enter the abatement unit 101 through the manifold head 112, and in some instances through the manifold 113, as well. As depicted in FIG. 1C effluent inlet 152 may be surrounded by four fuel nozzles 114 a-d. It should be understood, however, that more or fewer fuel nozzles 114 may be used.
  • FIG. 2 is a schematic depiction of one embodiment of the fuel manifold 113 of the present invention. As discussed above, fuel from fuel source 116 may flow through conduit 118 and, optionally, through flashback arrestor 126 into fuel inlet 119.
  • Fuel manifold 113 may be adapted to provide fuel to fuel nozzles 114 a-d in selected, equal, or nearly equal, flow rates and pressures. The selected, equal, or nearly equal provision of fuel to fuel nozzles 114 a-d may enable the fuel nozzles to spray fuel into the abatement unit 101, and more particularly into combustion zone 102, in selected, identical, or nearly identical spray patterns. The fuel so sprayed, may create a combustion zone with a more uniform temperature profile than may exist in a conventional abatement unit, or in a selected, non-uniform temperature profile. In some embodiments, the fuel manifold of the present invention may reduce flow differences between the fuel nozzles as compared to prior art systems. Alternatively the fuel manifold may be adapted to provide fuel to nozzles 114 a-d in selected unequal flow rates and/or pressures in order to create a desired uniform or non-uniform temperature profile in the combustion zone 102.
  • In some embodiments, the present invention may provide more uniform fuel delivery (volume and pressure) by including a fuel line 202 a-d to each fuel nozzle 114 a-d and by requiring each fuel line 202 a-d to be equivalent to each other fuel line 202 a-d in length, cross-sectional area, and/or other parameters. It should be noted that a fuel line may include multiple segments. For example, fuel line 202 a may include a primary segment 204, a secondary segment 206 a, and a tertiary segment 208 a. Likewise, fuel line 202 b may include primary segment 204, secondary segment 206 a and a tertiary segment 208 b. It will be noted that more or fewer segment levels may be utilized, depending upon the number of nozzles 114 and fuel inlets 119. It should also be noted that although the fuel lines 202 a-d are shown as straight lines, the fuel lines may be any suitable shape, for example, curved or circular. In some embodiments, each segment level which branches from a fuel inlet, i.e., primary segment, secondary segment, etc., may have a different cross-sectional area, as discussed in more detail below. In some embodiments, one or more segment levels may vary in cross-section over the length of the segment level.
  • In an alternative embodiment, the present invention may provide selected fuel delivery by including a fuel line 202 a-d to each fuel nozzle 114 a-d and by selecting parameters of each fuel line 202 a-d, such as length, cross-sectional area, etc., such that each fuel nozzle receives a selected amount of fuel, at a selected rate and a selected pressure.
  • In some embodiments, fuel lines 202 a-d may have smoothened or polished internal surfaces, in order to reduce differences in drag on the fuel which flows through the fuel lines.
  • Each of the primary fuel line segment 204, secondary fuel line segments 206 a,b and tertiary fuel line segments 208 a-d may be formed (e.g., machined, forged, etc.) with a geometry so as equalize the fuel flow from each of the non-combustion zone 102. For example, the width and length of each fuel nozzle 114 a-d into the secondary fuel line segments 206 a,b may be the same. Additionally, other geometries (e.g., corner radius, inside diameter surface roughness, etc.) may also be the same for each of the secondary fuel line segments 206 a,b. Such equalization of the geometries may also be employed in the tertiary fuel line segments 208 a-d. In some embodiments, a fuel manifold 113 of the present invention may have more fuel nozzles 114 than are depicted in FIGS. 1 and 2. For example, some fuel manifolds of the present invention may have up to about 24 or more fuel nozzles. As will be apparent to the reader, more fuel nozzles may require a greater number of fuel line segment levels, i.e., more than the three fuel line segment levels (primary, secondary and tertiary) depicted in FIG. 2.
  • Fuel nozzles 114 a-d are depicted in FIGS. 1 and 2 as descending below the bottom of the fuel manifold head 112. In some embodiments (not shown) the fuel nozzles may be machined, or otherwise formed within fuel manifold head 112. In such embodiments the nozzles may not extend below the bottom of fuel manifold head 112.
  • FIG. 3 is a schematic depiction of one embodiment a fuel manifold 113 of the present invention. Specifically, FIG. 3 is a truncated, perspective view of the interior space 300 of a fuel manifold 113 according to the present invention, including fuel nozzles 114, which may be in fluid communication with interior space 300. In essence, what is shown in FIG. 3 is the surface outline of the empty space of the fuel lines that may be formed in the body of fuel manifold 113. The structure shown in FIG. 3 may include a primary fuel line segment 204, which may be in fluid communication with fuel inlet 119 (FIG. 1) and with a secondary fuel line segment 206 a. Secondary fuel line segment 206 a may then be in fluid communication with tertiary fuel line segment 208 b, tertiary fuel line 208 b may be in fluid communication with fuel nozzles 114 a-d. The interior space 300 may be machined, forged or cast into the fuel manifold 113 (not shown in FIG. 3.) Interior space 300 may include tertiary fuel line segment 208 b, which, although shown as truncated along line A-A, may be a mirror image of terminal fuel distribution line 308 a.
  • The interior space 300 may be adapted to allow an effluent inlet 110 (not shown in FIG. 3) to pass through the fuel manifold 113, through ring 302 formed in fuel manifold 113 by tertiary fuel line segment 208 a. The fuel inlet may terminate within abatement unit 101 adjacent to, or in proximity to, fuel nozzles 114 a-d, such that effluent may be sprayed into the abatement unit 101 between multiple fuel sprays from nozzles 114 a-d.
  • The fuel manifold head 112 may be an aluminum block with fuel lines machined into the block, although any suitable fuel manifold head 112 may be employed. The fuel manifold head 112 may be made of anodized aluminum that is manufactured (e.g., machined, forged, cast, etc.) to include fuel lines, e.g., fuel lines 204, 206 and 208. The fuel manifold head 112 may also be manufactured to include additional features such as bolts (not shown) for coupling the fuel manifold head 112 to the abatement unit 101. Other materials may be used to form the fuel manifold head 112.
  • In an alternative embodiment, the branching fuel lines fuel lines, which are depicted in FIG. 2 and FIG. 3 as being contained within the manifold head 112, may be located externally (not shown) to the manifold head 112. After a final branching, the fuel lines may simply pass straight through the manifold head 112 and terminate at fuel nozzles 114.
  • In operation, referring to FIGS. 1 and 2, fuel may be supplied to the fuel manifold 113 from the fuel source 116 via the flashback arrestor 126 and fuel inlet 119. In some embodiments there may be provided a single fuel inlet 119 connected to a single flashback arrestor 126. The flashback arrestor 126 may be adapted to prevent fuel upstream (e.g., in the fuel source 116) from igniting. For example, in the unlikely event that fuel in the fuel manifold 113 ignites, the flashback arrestor 126 may prevent such ignition from igniting fuel upstream from the flashback arrestor 126. Thus, the flashback arrestor 126 may provide safety features in addition to those present in the fuel manifold 113, which will be described in more detail below.
  • After passing through the flashback arrestor 126 and entering the fuel manifold 113, the fuel may be distributed equally among the fuel lines 202 a-d that terminate in the fuel nozzles 114 a-d. In accordance with the invention, the plurality of fuel lines 202 a-d may have controlled and/or selective differences in one or more attributes such as length, cross-sectional area, angles, internal surface roughness, etc. Accordingly, the fuel may be supplied to the manifold 112 and distributed by the identical or nearly identical fuel lines 202 a-d to the fuel nozzles 114 a-d in identical, nearly identical or similar flow rates and/or pressures. In some embodiments, the number of fuel nozzles 114 may equal the number of fuel lines 202. Fuel may enter the combustion zone 102 via the fuel nozzles 114 a-d that may be part of and/or coupled to the fuel manifold 113. Accordingly, because the fuel flow rate to, and the fuel pressure at, the fuel nozzles 114 a-d may be more uniform than in conventional abatement units, the fuel spray from the plurality of fuel nozzles 114 a-d may be more uniform, as well.
  • Additionally, the fuel manifold 113 may affect other parameters of the fuel sprayed from fuel nozzles 114 a-d into combustion zone 102. For example, a fuel velocity of the fuel sprayed by fuel nozzles 114 a-d may be affected desirably by the features of primary fuel line segment 204, secondary fuel line segments 206 a,b and tertiary fuel line segments 208 a-d. For example, a more narrow diameter in the higher order fuel line segments (i.e., closer to fuel nozzles 114) than in the lower order fuel line segments (i.e., closer to fuel inlet 119) may cause the fuel velocity to increase as the fuel flows into the higher order fuel line segments and into fuel nozzles 114. Thus, by appropriately selecting the dimensions of the primary fuel line segment 204, secondary fuel line segments 206 a,b and tertiary fuel line segments 208 a-d, the fuel velocity may be set higher than a flame velocity of the effluent, fuel and oxidant mixture in the combustion zone 102. When the abatement unit is operated using a fuel velocity which is higher than the flame velocity of burning fuel which has been sprayed from fuel nozzles 114, the flame front will not be able move close to the plurality of fuel nozzles 114, and flame may thus be prevented from traveling back into fuel nozzles 114.
  • FIG. 4 is a schematic depiction of a method 400 of the present invention. A method for hundred begins in step 402, where fuel is flowed from a fuel supply into a manifold through conduit. In step 404, fuel is flowed from the manifold through a plurality of nozzles at a fuel velocity which is greater than a flame velocity. Method 400 may be extended through optional steps 406, and 408. In step 406, the fuel which is flowed from the fuel supply into the manifold is flowed through a single fuel inlet. In step 408, the fuel which is flowed from the fuel supply into the manifold is flowed through a single flashback arrestor.
  • The foregoing description discloses only exemplary embodiments of the invention. Modifications of the above disclosed apparatus and methods which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, the flashback arrestor 126 may not be employed if the fuel manifold 113 is designed such that the flashback arrestor 126 is not necessary. Accordingly, while the present invention has been disclosed in connection with exemplary embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.

Claims (19)

1. An apparatus for introducing fuel into an electronic device manufacturing effluent abatement tool, comprising:
a manifold;
a fuel source adapted to supply fuel to the manifold through a fuel conduit; and
a plurality of nozzles adapted to receive fuel from the manifold;
wherein the manifold is adapted to supply fuel to the nozzles at a fuel velocity greater than a flame velocity.
2. The apparatus of claim 1, further comprising a single flashback arrestor situated between the manifold and the fuel source and adapted to prevent a flame from travelling to the fuel source from the manifold.
3. The apparatus of claim 1, wherein the manifold is further adapted to reduce a variation in fuel velocity between a nozzle having a lowest fuel velocity and a nozzle having a highest fuel velocity to less than about 20% of the highest fuel velocity.
4. The apparatus of claim 1, wherein the manifold is further adapted to reduce a variation in fuel velocity between a nozzle having a lowest fuel velocity and a nozzle having a highest fuel velocity to less than about 15% of the highest fuel velocity.
5. The apparatus of claim 1, wherein the manifold is further adapted to reduce a variation in fuel velocity between a nozzle having a lowest fuel velocity and a nozzle having a highest fuel velocity to less than about 10% of the highest fuel velocity.
6. The apparatus of claim 1, wherein the fuel velocity is at least twice the flame velocity.
7. The apparatus of claim 1, wherein the fuel velocity is at least three times the flame velocity.
8. The apparatus of claim 1, wherein the fuel velocity is at least five times the flame velocity.
9. The apparatus of claim 1, wherein the manifold is further adapted to receive fuel through a single fuel inlet.
10. The apparatus of claim 1, wherein the manifold further comprises fuel lines having properties selected to reduce variation in fuel velocity and pressure at the nozzles.
11. A method for operating an electronic device manufacturing abatement system, comprising:
flowing fuel from a fuel supply into a manifold through a fuel conduit; and
flowing the fuel from the manifold through a plurality of nozzles;
wherein the manifold is adapted to flow fuel to the nozzles at a fuel velocity greater than a flame velocity.
12. The method of claim 11, further comprising flowing fuel through a flashback arrestor situated between the manifold and the fuel source and adapted to prevent a flame from travelling to the fuel source from the manifold.
13. The method of claim 11, further comprising reducing a variation in fuel velocity between a nozzle having a lowest fuel velocity and a nozzle having a highest fuel velocity to less than about 20% of the highest fuel velocity.
14. The method of claim 11, further comprising reducing a variation in fuel velocity between a nozzle having a lowest fuel velocity and a nozzle having a highest fuel velocity to less than about 15% of the highest fuel velocity.
15. The method of claim 11, further comprising reducing a variation in fuel velocity between a nozzle having a lowest fuel velocity and a nozzle having a highest fuel velocity to less than about 10% of the highest fuel velocity.
16. The method of claim 11, further comprising flowing the fuel through the fuel nozzles at a velocity at least twice the flame velocity.
17. The method of claim 11, further comprising flowing the fuel through the fuel nozzles at a velocity at least three times the flame velocity.
18. The method of claim 11, further comprising flowing the fuel through the fuel nozzles at a velocity at least five times the flame velocity.
19. The method of claim 11, wherein the step of flowing fuel from the fuel supply into the manifold through the fuel conduit further comprises flowing the fuel from the fuel supply into the manifold through a single manifold fuel inlet.
US12/372,734 2008-02-18 2009-02-17 Apparatus and methods for supplying fuel employed by abatement systems to effectively abate effluents Abandoned US20090214991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/372,734 US20090214991A1 (en) 2008-02-18 2009-02-17 Apparatus and methods for supplying fuel employed by abatement systems to effectively abate effluents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2945208P 2008-02-18 2008-02-18
US12/372,734 US20090214991A1 (en) 2008-02-18 2009-02-17 Apparatus and methods for supplying fuel employed by abatement systems to effectively abate effluents

Publications (1)

Publication Number Publication Date
US20090214991A1 true US20090214991A1 (en) 2009-08-27

Family

ID=40986147

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/372,734 Abandoned US20090214991A1 (en) 2008-02-18 2009-02-17 Apparatus and methods for supplying fuel employed by abatement systems to effectively abate effluents

Country Status (5)

Country Link
US (1) US20090214991A1 (en)
KR (1) KR20100119805A (en)
CN (1) CN101952933A (en)
TW (1) TW200940909A (en)
WO (1) WO2009105434A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146458A1 (en) * 2013-07-17 2016-05-26 Edwards Limited A head assembly for a radiant burner
WO2019148241A1 (en) * 2018-02-01 2019-08-08 Hydroflex Technologies Pty Ltd An exhaust after-treatment system and method

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2572445A (en) * 1947-10-29 1951-10-23 Emhart Mfg Co Gas burner flame arrester
US2606066A (en) * 1947-04-03 1952-08-05 Bendix Aviat Corp Automatic flow regulator
US2657702A (en) * 1949-11-07 1953-11-03 Bendix Aviat Corp Flow distributor
US2676461A (en) * 1952-04-19 1954-04-27 United Aircraft Corp Head compensating valve for fuel nozzles
US2728650A (en) * 1951-11-09 1955-12-27 Gulf Research Development Co Process for producing gas comprising hydrogen
US2806354A (en) * 1951-04-05 1957-09-17 Rolls Royce Fuel system with means to compensate for variations in liquid head due to accelerations acting on the fuel system
US2821992A (en) * 1947-04-19 1958-02-04 Gen Motors Corp Fuel system for gas turbine
US3558249A (en) * 1969-05-13 1971-01-26 Electric Furnace Co Method and application for preventing flashback in premix gas burner systems
US3607120A (en) * 1969-09-29 1971-09-21 Midland Ross Corp Gas-treating apparatus
US3779689A (en) * 1972-01-10 1973-12-18 Zinc J Co Method and apparatus for non-polluting combustion of waste gases
US3834627A (en) * 1973-04-02 1974-09-10 Avco Corp Flat air-blast fuel injector
US3887324A (en) * 1972-01-10 1975-06-03 Zink Co John Method for non-polluting combustion of waste gases
US4044549A (en) * 1972-12-11 1977-08-30 Zwick Eugene B Low emission combustion process and apparatus
US5211005A (en) * 1992-04-16 1993-05-18 Avco Corporation High density fuel injection manifold
US5412949A (en) * 1993-09-29 1995-05-09 Societe Nationale D'etude Et De Construction De Moteurs D'aviation S.N.E.C.M.A. Fuel-distribution system for a gas turbine engine
US5676712A (en) * 1995-05-16 1997-10-14 Atmi Ecosys Corporation Flashback protection apparatus and method for suppressing deflagration in combustion-susceptible gas flows
US6293105B1 (en) * 1998-06-29 2001-09-25 Asea Brown Boveri Ag Gas turbine with a plurality of burners and a fuel distribution system, and a method for balancing a fuel distribution system
US20030096207A1 (en) * 2001-08-27 2003-05-22 The Esab Group, Inc. Flashback arrestor for use with head of Oxy-fuel torch
US6845619B2 (en) * 2002-12-11 2005-01-25 Advanced Technology Materials, Inc. Integrated system and process for effluent abatement and energy generation
US20070053803A1 (en) * 2005-09-02 2007-03-08 Clean Systems Korea Inc. Scrubber for processing semiconductor waste gas
US20080017108A1 (en) * 2006-06-30 2008-01-24 Czerniak Michael R Gas combustion apparatus
US20080016875A1 (en) * 2006-07-18 2008-01-24 Siemens Power Generation, Inc. System for modulating fuel supply to individual fuel nozzles in a can-annular gas turbine
US20080053063A1 (en) * 2006-09-06 2008-03-06 United Technologies Corporation Three component injector for kerosene-oxygen rocket engine
US20080131824A1 (en) * 2006-10-26 2008-06-05 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Burner device and method for injecting a mixture of fuel and oxidant into a combustion space
US20090035709A1 (en) * 2005-05-16 2009-02-05 Darren Mennie Gas combustion apparatus
US20090064909A1 (en) * 2005-05-05 2009-03-12 Darren Mennie Gas combustion apparatus
US20090216061A1 (en) * 2008-02-05 2009-08-27 Applied Materials, Inc. Systems and methods for treating flammable effluent gases from manufacturing processes
US20100119984A1 (en) * 2008-11-10 2010-05-13 Fox Allen G Abatement system

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2606066A (en) * 1947-04-03 1952-08-05 Bendix Aviat Corp Automatic flow regulator
US2821992A (en) * 1947-04-19 1958-02-04 Gen Motors Corp Fuel system for gas turbine
US2572445A (en) * 1947-10-29 1951-10-23 Emhart Mfg Co Gas burner flame arrester
US2657702A (en) * 1949-11-07 1953-11-03 Bendix Aviat Corp Flow distributor
US2806354A (en) * 1951-04-05 1957-09-17 Rolls Royce Fuel system with means to compensate for variations in liquid head due to accelerations acting on the fuel system
US2728650A (en) * 1951-11-09 1955-12-27 Gulf Research Development Co Process for producing gas comprising hydrogen
US2676461A (en) * 1952-04-19 1954-04-27 United Aircraft Corp Head compensating valve for fuel nozzles
US3558249A (en) * 1969-05-13 1971-01-26 Electric Furnace Co Method and application for preventing flashback in premix gas burner systems
US3607120A (en) * 1969-09-29 1971-09-21 Midland Ross Corp Gas-treating apparatus
US3779689A (en) * 1972-01-10 1973-12-18 Zinc J Co Method and apparatus for non-polluting combustion of waste gases
US3887324A (en) * 1972-01-10 1975-06-03 Zink Co John Method for non-polluting combustion of waste gases
US4044549A (en) * 1972-12-11 1977-08-30 Zwick Eugene B Low emission combustion process and apparatus
US3834627A (en) * 1973-04-02 1974-09-10 Avco Corp Flat air-blast fuel injector
US5211005A (en) * 1992-04-16 1993-05-18 Avco Corporation High density fuel injection manifold
US5412949A (en) * 1993-09-29 1995-05-09 Societe Nationale D'etude Et De Construction De Moteurs D'aviation S.N.E.C.M.A. Fuel-distribution system for a gas turbine engine
US5676712A (en) * 1995-05-16 1997-10-14 Atmi Ecosys Corporation Flashback protection apparatus and method for suppressing deflagration in combustion-susceptible gas flows
US6293105B1 (en) * 1998-06-29 2001-09-25 Asea Brown Boveri Ag Gas turbine with a plurality of burners and a fuel distribution system, and a method for balancing a fuel distribution system
US20030096207A1 (en) * 2001-08-27 2003-05-22 The Esab Group, Inc. Flashback arrestor for use with head of Oxy-fuel torch
US6845619B2 (en) * 2002-12-11 2005-01-25 Advanced Technology Materials, Inc. Integrated system and process for effluent abatement and energy generation
US20090064909A1 (en) * 2005-05-05 2009-03-12 Darren Mennie Gas combustion apparatus
US20090035709A1 (en) * 2005-05-16 2009-02-05 Darren Mennie Gas combustion apparatus
US20070053803A1 (en) * 2005-09-02 2007-03-08 Clean Systems Korea Inc. Scrubber for processing semiconductor waste gas
US20080017108A1 (en) * 2006-06-30 2008-01-24 Czerniak Michael R Gas combustion apparatus
US20080016875A1 (en) * 2006-07-18 2008-01-24 Siemens Power Generation, Inc. System for modulating fuel supply to individual fuel nozzles in a can-annular gas turbine
US7654092B2 (en) * 2006-07-18 2010-02-02 Siemens Energy, Inc. System for modulating fuel supply to individual fuel nozzles in a can-annular gas turbine
US20080053063A1 (en) * 2006-09-06 2008-03-06 United Technologies Corporation Three component injector for kerosene-oxygen rocket engine
US20080131824A1 (en) * 2006-10-26 2008-06-05 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Burner device and method for injecting a mixture of fuel and oxidant into a combustion space
US20090216061A1 (en) * 2008-02-05 2009-08-27 Applied Materials, Inc. Systems and methods for treating flammable effluent gases from manufacturing processes
US20100119984A1 (en) * 2008-11-10 2010-05-13 Fox Allen G Abatement system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146458A1 (en) * 2013-07-17 2016-05-26 Edwards Limited A head assembly for a radiant burner
US11162676B2 (en) * 2013-07-17 2021-11-02 Edwards Limited Head assembly for a radiant burner
WO2019148241A1 (en) * 2018-02-01 2019-08-08 Hydroflex Technologies Pty Ltd An exhaust after-treatment system and method

Also Published As

Publication number Publication date
TW200940909A (en) 2009-10-01
CN101952933A (en) 2011-01-19
WO2009105434A3 (en) 2009-10-15
WO2009105434A2 (en) 2009-08-27
KR20100119805A (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US5360171A (en) Fuel burner apparatus and method employing divergent flow nozzle
US7892506B2 (en) Combustive destruction of noxious substances
US4327547A (en) Fuel injectors
JP6377642B2 (en) Gas injection apparatus and substrate process chamber incorporating the apparatus
WO2001033141A1 (en) Combustor for exhaust gas treatment
TWI661157B (en) Radiant burner and method of treating an effluent gas stream from a manufacturing process tool
US20090214991A1 (en) Apparatus and methods for supplying fuel employed by abatement systems to effectively abate effluents
US7481650B2 (en) Direct gas-fired burner assembly with two-stage combustion
TWI486538B (en) Burner for scrubber
GB2035540A (en) A gas turbine engine fuel injector
TWI398293B (en) Cyclone Oxygen Combustion Unit for Treatment of Emissions from Semiconductor Processes
TW201632790A (en) Inlet assembly
RU2768639C2 (en) Radiation wall burner
KR20220016860A (en) Inlet assembly for abatement devices
CN105627312A (en) Method and device for introducing reactive gasses into a reaction chamber
WO2019093382A1 (en) Burner device
JP3239181U (en) burner
JP7357686B2 (en) compact flame curtain burner
JP7253438B2 (en) Curtain burner and heat treatment equipment
JP6914168B2 (en) Heat storage type gas treatment device
KR20200060842A (en) Flame Piloting Baffle and Gas Heater and Natural Gas Supply Apparatus
KR20190019640A (en) Burner for scrubber
TW202122152A (en) Device for treating gaseous pollutants
TW202302207A (en) Pilot unit, abatement apparatus and method
GB2609436A (en) Inlet head assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLARK, DANIEL O.;FOX, ALLEN G.;VERMEULEN, ROBBERT M.;AND OTHERS;REEL/FRAME:022648/0966;SIGNING DATES FROM 20090226 TO 20090302

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION