US20090197925A1 - O-cyclopropyl-carboxanilides and their use - Google Patents

O-cyclopropyl-carboxanilides and their use Download PDF

Info

Publication number
US20090197925A1
US20090197925A1 US12/420,440 US42044009A US2009197925A1 US 20090197925 A1 US20090197925 A1 US 20090197925A1 US 42044009 A US42044009 A US 42044009A US 2009197925 A1 US2009197925 A1 US 2009197925A1
Authority
US
United States
Prior art keywords
formula
compound
hydrogen
optionally substituted
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/420,440
Inventor
Josef Ehrenfreund
Hans Tobler
Harald Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Crop Protection LLC
Original Assignee
Syngenta Crop Protection LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27790183&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090197925(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB0205127A external-priority patent/GB0205127D0/en
Priority claimed from GB0300705A external-priority patent/GB0300705D0/en
Application filed by Syngenta Crop Protection LLC filed Critical Syngenta Crop Protection LLC
Priority to US12/420,440 priority Critical patent/US20090197925A1/en
Publication of US20090197925A1 publication Critical patent/US20090197925A1/en
Assigned to SYNGENTA CROP PROTECTION LLC reassignment SYNGENTA CROP PROTECTION LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOBLER, HANS, WALTER, HARALD, EHRENFREUND, JOSEF
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/24Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms
    • A01N43/32Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/84Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/16Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/06Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to novel ortho-substituted-cyclopropyl-azol-carboxamides which have microbiocidal activity, in particular fungicidal activity.
  • the invention also relates to the preparation of these compounds, to novel intermediates used in the preparation of these compounds, to agrochemical compositions which comprise at least one of the novel compounds as active ingredient, to the preparation of the compositions mentioned and to the use of the active ingredients or compositions in agriculture or horticulture for controlling or preventing infestation of plants by phytopathogenic microorganisms, preferably fungi.
  • EP0545099A2 JP06220035 and JP02129171 disclose certain ortho-unsubstituted-cyclopropyl-azol-carboxamides
  • the present invention provides a compound of formula (I):
  • Het is a 5- or 6-membered heterocyclic ring containing one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, the ring being substituted by groups R 4 , R 5 and R 6 ;
  • R 1 is hydrogen or halo;
  • R 2 is hydrogen or halo;
  • R 3 is optionally substituted C 2-12 alkyl, optionally substituted C 2-12 alkenyl, optionally substituted C 2-12 alkynyl, optionally substituted C 3-12 cycloalkyl, optionally substituted phenyl or optionally substituted heterocyclyl; and
  • R 4 , R 5 and R 6 are, independently, selected from hydrogen, halo, cyano, nitro, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy(C 1-4 )alkyl and C 1-4 haloalkoxy(C 1-4 )alkyl, provided that at least one of R 4 , R 5 and R 6 is not hydrogen.
  • Halo is fluoro, chloro or bromo.
  • Each alkyl moiety is a straight or branched chain and is, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl or neo-pentyl.
  • each optional substituent on an alkyl moiety is, independently, selected from halo, hydroxy, cyano, C 1-4 alkoxyC( ⁇ O), formyl, nitro, C 1-4 alkoxy, C 1-4 haloalkoxy, C 1-4 alkylthio, C 1-4 haloalkylthio, HC(OR′) ⁇ N and R′R′′NN ⁇ C(H); where R′ and R′′ are, independently, hydrogen or C 1-4 alkyl.
  • Alkenyl and alkynyl moieties can be in the form of straight or branched chains.
  • the alkenyl moieties where appropriate, can be of either the ( E )- or ( Z )-configuration. Examples are vinyl, allyl and propargyl.
  • each optional substituent on alkenyl or on alkynyl is, independently, selected from those optional substituents given above for an alkyl moiety.
  • Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • each optional substituent on cycloalkyl is, independently, selected from C 1-3 alkyl and those optional substituents given above for an alkyl moiety.
  • heterocyclyl refers to a non-aromatic or aromatic ring containing up to 10 atoms including one or more (preferably one or two) heteroatoms selected, each independently, from O, S and N.
  • heteroatoms selected, each independently, from O, S and N.
  • examples of such rings include 1,3-dioxolanyl, tetrahydrofuranyl, morpholinyl, thienyl and furyl.
  • each optional substituent on phenyl or on heterocyclyl is, independently, selected from C 1-6 alkyl and those optional substituents given above for an alkyl moiety. When present, there are up to four optional substituents on phenyl, each independently selected.
  • each optional substituent on an alkyl moiety is, independently, selected from the preferred list of halo, hydroxy, methoxy, trifluoromethoxy, difluoromethoxy, cyano and nitro.
  • each optional substituent on alkenyl or on alkynyl is, independently, selected from the preferred list of halo and cyano.
  • each optional substituent on cycloalkyl is, independently, selected from the preferred list of methyl, ethyl, trifluoromethyl, methoxy, trifluoromethoxy and cyano.
  • each optional substituent on phenyl or on a heterocyclyl group is, independently, selected from the preferred list of halo, hydroxy, methoxy, trifluoromethoxy, difluoromethoxy and cyano.
  • Het is pyrrolyl, pyrazolyl, thiazolyl, pyridinyl, pyrimidinyl, thiophenyl, furyl, isothiazolyl or isoxazolyl (more preferably pyrrolyl, pyrazolyl or thiazolyl), each being substituted by groups R 4 , R 5 and R 6 .
  • R 1 and R 2 are, independently, hydrogen or fluoro.
  • R 3 is C 2-6 alkyl, optionally substituted C 3-8 cycloalkyl, phenyl, thienyl or furyl.
  • R 4 , R 5 and R 6 are, independently, selected from hydrogen, halogen, C 1-4 alkyl, C 1-4 haloalkyl and C 1-4 alkoxy(C 1-4 )alkyl; provided that at least one of R 4 , R 5 and R 6 is not hydrogen. More preferably R 4 , R 5 and R 6 are, independently, selected from hydrogen, halogen, methyl, C 1-2 haloalkyl and methoxymethyl; provided that at least one of R 4 , R 5 and R 6 is not hydrogen.
  • R 3 is as defined above for a compound of formula (I), are also novel and are useful as intermediates in the preparation of compounds of formula (I).
  • the present invention provides a compound of formula (II) where R 3 is as defined above for a compound of formula (I).
  • the compounds of formula (I) and of formula (II) may exist as different geometric or optical isomers or in different tautomeric forms. This invention covers all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds.
  • Table 1 provides 22 compounds of formula (II) wherein R 3 is as defined in Table 1.
  • Table X represents Table 2 (when X is 2) and represents Table 3 (when X is 3).
  • Table 2 provides 80 compounds of formula (1a):
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined in Table 2.
  • Table 3 provides 80 compounds of formula (1b):
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined in Table 3.
  • Table 4 provides 50 compounds of formula (1c):
  • R 1 , R 2 , R 3 , R 4 and R 5 are as defined in Table 4.
  • Table 5 provides 54 compounds of formula (1d):
  • R 1 , R 2 , R 3 and R 4 are as defined in Table 5.
  • R 1 , R 2 , R 3 and R 4 are as defined in Table 6.
  • Table 7 shows selected melting point and selected NMR data, all with CDCl 3 as the solvent (unless otherwise stated; if a mixture of solvents is present, this is indicated as, for example, (CDCl 3 /d 6 -DMSO)), (no attempt is made to list all characterising data in all cases) for compounds of Tables 1 to 6.
  • the data relate to a cis/trans mixture of each compound; a compound number which ends with the letter ‘c’ relates only to its cis-isomer and a compound number which ends with the letter ‘t’ relates only to its trans-isomer.
  • the compounds according to formula (I) may be prepared according to the following reaction schemes.
  • a compound of formula (II) [where R 3 is as defined above for a compound of formula (I)] may be prepared by a reaction sequence starting with a crossed-aldol condensation of benzaldehyde with a ketone of formula CH 3 C(O)R 3 [where R 3 is as defined above for a compound of formula (I)] in the presence of NaOH or KOH in a solvent (such as water or ethanol) and usually under reflux conditions or alternatively by reaction of benzaldehyde with a Wittig reagent under standard conditions.
  • a solvent such as water or ethanol
  • a compound of formula (II) may then be separated and catalytically reduced (Pt/C/H 2 or Ra—Ni/H 2 ) in a solvent (such as methanol, ethanol or THF) at room temperature, to produce a crude o/p-mixture of a compound of formula (II), which may be further purified by standard techniques.
  • a solvent such as methanol, ethanol or THF
  • a compound of formula (II) [where R 3 is as defined above for a compound of formula (I)] may be prepared by a process as illustrated by the following reaction sequence and which involves a Pd(II)-catalysed imination step.
  • a compound of formula (VIII) [where R 3 is as defined above for a compound of formula (I)] is added to bromine and methanol at a temperature of 5-10° C., after which triphenylphosphine in a solvent [such as tetrahydrofuran] is added, to produce a compound of formula (IX) [where R 3 is as defined above for a compound of formula (I)], which in turn is added to sodium hydride, in a solvent [such as DMSO], and then reacted with 2-bromobenzaldehyde or 2-iodobenzaldehyde to yield a compound of formula (X) [where R 3 is as defined above for a compound of formula (I) and Hal is bromo or iodo].
  • the resultant compound of formula (X) is then mixed with hydrazine hydrate in a solvent [such as ethanol] and heated to reflux, after which potassium hydroxide is added and the resultant reaction mixture is maintained at 200-220° C. for several hours.
  • a standard extraction and purification procedure yields a compound of formula (XI) [where R 3 is as defined above for a compound of formula (I) and Hal is bromo or iodo] which may then be converted to a compound of formula (II) by mixing with benzophenone imine, sodium tertiary butoxide, tris-dibenzylideneacetone-dipalladium (Pd 2 dba 3 ), racemic 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP) and a solvent [such as benzene or toluene] and heating at reflux temperature, typically for several hours, and adding the resultant [usually crude isolated] imine to a mixture
  • the resultant mixture is stirred, preferably for about an hour at room temperature, after which a cis-/trans-mixture of a compound of formula (II) may be extracted and subsequent separation of the cis- and trans-isomers achieved by using flash chromatography.
  • Reaction scheme 1B is novel and inventive, particularly the use of a Pd(II)-catalysed imination step. Therefore in a still further aspect the present invention provides a process for preparing a compound of formula (II), where R 3 is as defined above, comprising at least one of the steps of reaction scheme 1B; in particular a step using a Pd(II)catalyst-ligand-system [where the ligand is selected from a suitable sterically demanding phosphine (for example BINAP or dppf)] to react a compound of formula (XI) [where Hal is bromo or iodo; and R 3 is as defined above] with benzophenone imine optionally in the presence of a base [such as sodium-tert-butanolate, potassium-tert-butananolate, sodium carbonate, potassium carbonate or cesium carbonate] to produce a compound of formula (XII) [where R 3 is as defined above].
  • a base such as sodium-
  • R 3A is hydrogen or methyl
  • R 3A may be accomplished by a reaction sequence started by a Wittig reaction of o-nitrobenzaldehyde with an ylide [prepared from a cyclopropylmethlytriphenylphosphonium bromide in the presence of a strong base, such as NaH in a solvent such as DMSO, in the range 0-85° C.].
  • a strong base such as NaH in a solvent such as DMSO
  • a compound of formula (I) may be prepared by reacting a compound of formula Het-C( ⁇ O)—R* [where R* is halogen, hydroxy or C 1-6 alkoxy, but preferably chloro] with a compound of formula (II) as prepared above in the presence of a base (such as triethylamine, Hunig base, sodium bicarbonate, sodium carbonate, potassium carbonate, pyridine or quinoline, but preferably triethylamine) and in a solvent (such as diethylether, TBME, THF, dichloromethane, chloroform, DMF or NMP) for between 10 minutes and 48 hours (preferably 12 to 24 hours) and between 0° C. and reflux (preferably 20 to 25° C.).
  • a base such as triethylamine, Hunig base, sodium bicarbonate, sodium carbonate, potassium carbonate, pyridine or quinoline, but preferably triethylamine
  • a solvent such as diethylether, TBME, T
  • a coupling agent such as benzotriazol-1-yloxytris(dimethylamino) phosphoniumhexafluorophosphate, bis-(2-oxo-3-oxazolidinyl)-phosphinic acid chloride, N,N′-dicyclohexylcarbodiimide or 1,1′-carbonyl-diimidazole] may be used.
  • R 3A is hydrogen or methyl
  • a compound of formula (VI) [where R 3A is hydrogen or methyl]
  • standard conditions for example, catalytic reduction or Béchamp-reduction
  • amidation with an acid chloride to provide a compound of formula (VII) [where R 3A is hydrogen or methyl]
  • novel compounds of formula (I) have, for practical purposes, a very advantageous spectrum of activities for protecting plants against diseases that are caused by fungi as well as by bacteria and viruses.
  • the compounds of formula (I) can be used in the agricultural sector and related fields of use as active ingredients for controlling plant pests.
  • the novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and are used for protecting numerous cultivated plants.
  • the compounds of formula I can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.
  • compounds of formula (I) as dressing agents for the treatment of plant propagation material, in particular of seeds (fruit, tubers, grains) and plant cuttings (e.g. rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.
  • the compounds according to present invention may be used for controlling fungi in related areas, for example in the protection of technical materials, including wood and wood related technical products, in food storage, in hygiene management, etc.
  • the compounds of formula (I) are, for example, effective against the phytopathogenic fungi of the following classes: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria ) and Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia ). Additionally, they are also effective against the Ascomycetes classes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula ) and of the Oomycetes classes (e.g. Phytophthora, Pythium, Plasmopara ).
  • Fungi imperfecti e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria
  • Basidiomycetes e.g. Rhizoctonia, Hemileia, Puccinia
  • novel compounds of formula I are effective against phytopathogenic bacteria and viruses (e.g. against Xanthomonas spp, Pseudomonas spp, Erwinia amylovora as well as against the tobacco mosaic virus).
  • target crops to be protected typically comprise the following species of plants: cereal (wheat, barley, rye, oat, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, drupes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucumber plants (pumpkins, cucumbers, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado, cinnamomum, camphor) or plants such as tobacco
  • the compounds of formula (I) are used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they are conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances.
  • the methods of application such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.
  • the compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
  • Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO 97/33890.
  • the compounds of formula (I) are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds.
  • further compounds can be e.g. fertilizers or micronutrient donors or other preparations which influence the growth of plants. They can also be selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
  • the compounds of formula (I) can be mixed with other fungicides, resulting in some cases in unexpected synergistic activities.
  • Mixing components which are particularly preferred are azoles, such as azaconazole, BAY 14120, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole; pyrimidinyl carbino
  • a preferred method of applying a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application.
  • the frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen.
  • the compounds of formula I can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granular form (soil application). In crops of water rice such granulates can be applied to the flooded rice field.
  • the compounds of formula I may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.
  • a formulation that is, a composition containing the compound of formula (I)] and, if desired, a solid or liquid adjuvant, is prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • extenders for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • the agrochemical formulations will usually contain from 0.1 to 99% by weight, preferably from 0.1 to 95% by weight, of the compound of formula I, 99.9 to 1% by weight, preferably 99.8 to 5% by weight, of a solid or liquid adjuvant, and from 0 to 25% by weight, preferably from 0.1 to 25% by weight, of a surfactant.
  • Advantageous rates of application are normally from 5 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg a.i./ha, most preferably from 20 g to 600 g a.i./ha.
  • convenient dosages are from 10 mg to 1 g of active substance per kg of seeds.
  • hydroxylamine hydrochloride (0.35 g; 0.0048 mol)
  • sodium acetate (0.53 g; 0.0064 mol)
  • absolute methanol (30 ml) were stirred at room temperature for about 15 minutes.
  • benzhydrilidene (2-bicyclopropyl-2-yl-phenyl)amine (0.9 g; 0.00267 mol) in methanol (15 ml) was added dropwise.
  • the resultant mixture was stirred for 1 hour at room temperature. After dilution with ethylacetate (250 ml), the organic phase was washed twice with water.
  • Botrytis cinerea /Apple Botrytis on Apple Fruits
  • Botrytis cinerea /Grape Botrytis on Grapes
  • Botrytis cinerea /Tomato Botrytis on Tomatoes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Pyrrole Compounds (AREA)

Abstract

A compound of formula (I):
Figure US20090197925A1-20090806-C00001
Het is a 5- or 6-membered heterocyclic ring containing one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, the ring being substituted by groups R4, R5 and R6; R1 is hydrogen or halo; R2 is hydrogen or halo; R3 is optionally substituted C2-12 alkyl, optionally substituted C2-12 alkenyl, optionally substituted C2-12 alkynyl, optionally substituted C3-12 cycloalkyl, optionally substituted phenyl or optionally substituted heterocyclyl; and R4, R5 and R6 are, independently, selected from hydrogen, halo, cyano, nitro, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy(C1-4)alkyl and C1-4 haloalkoxy(C1-4)alkyl, provided that at least one of R4, R5 and R6 is not hydrogen. The compounds of formula (I) have plant-protective properties and are suitable for protecting plants against infestations by phytopathogenic microorganisms.

Description

  • The present invention relates to novel ortho-substituted-cyclopropyl-azol-carboxamides which have microbiocidal activity, in particular fungicidal activity. The invention also relates to the preparation of these compounds, to novel intermediates used in the preparation of these compounds, to agrochemical compositions which comprise at least one of the novel compounds as active ingredient, to the preparation of the compositions mentioned and to the use of the active ingredients or compositions in agriculture or horticulture for controlling or preventing infestation of plants by phytopathogenic microorganisms, preferably fungi.
  • EP0545099A2, JP06220035 and JP02129171 disclose certain ortho-unsubstituted-cyclopropyl-azol-carboxamides
  • The present invention provides a compound of formula (I):
  • Figure US20090197925A1-20090806-C00002
  • Het is a 5- or 6-membered heterocyclic ring containing one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, the ring being substituted by groups R4, R5 and R6; R1 is hydrogen or halo; R2 is hydrogen or halo; R3 is optionally substituted C2-12 alkyl, optionally substituted C2-12 alkenyl, optionally substituted C2-12 alkynyl, optionally substituted C3-12 cycloalkyl, optionally substituted phenyl or optionally substituted heterocyclyl; and R4, R5 and R6 are, independently, selected from hydrogen, halo, cyano, nitro, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy(C1-4)alkyl and C1-4 haloalkoxy(C1-4)alkyl, provided that at least one of R4, R5 and R6 is not hydrogen.
  • Halo is fluoro, chloro or bromo.
  • Each alkyl moiety is a straight or branched chain and is, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl or neo-pentyl.
  • When present, each optional substituent on an alkyl moiety is, independently, selected from halo, hydroxy, cyano, C1-4 alkoxyC(═O), formyl, nitro, C1-4 alkoxy, C1-4 haloalkoxy, C1-4 alkylthio, C1-4 haloalkylthio, HC(OR′)═N and R′R″NN═C(H); where R′ and R″ are, independently, hydrogen or C1-4 alkyl.
  • Alkenyl and alkynyl moieties can be in the form of straight or branched chains. The alkenyl moieties, where appropriate, can be of either the (E)- or (Z)-configuration. Examples are vinyl, allyl and propargyl.
  • When present, each optional substituent on alkenyl or on alkynyl is, independently, selected from those optional substituents given above for an alkyl moiety.
  • Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • When present, each optional substituent on cycloalkyl is, independently, selected from C1-3 alkyl and those optional substituents given above for an alkyl moiety.
  • The term heterocyclyl refers to a non-aromatic or aromatic ring containing up to 10 atoms including one or more (preferably one or two) heteroatoms selected, each independently, from O, S and N. Examples of such rings include 1,3-dioxolanyl, tetrahydrofuranyl, morpholinyl, thienyl and furyl.
  • When present, each optional substituent on phenyl or on heterocyclyl is, independently, selected from C1-6 alkyl and those optional substituents given above for an alkyl moiety. When present, there are up to four optional substituents on phenyl, each independently selected.
  • When present, each optional substituent on an alkyl moiety is, independently, selected from the preferred list of halo, hydroxy, methoxy, trifluoromethoxy, difluoromethoxy, cyano and nitro.
  • When present, each optional substituent on alkenyl or on alkynyl is, independently, selected from the preferred list of halo and cyano.
  • When present, each optional substituent on cycloalkyl is, independently, selected from the preferred list of methyl, ethyl, trifluoromethyl, methoxy, trifluoromethoxy and cyano.
  • When present, each optional substituent on phenyl or on a heterocyclyl group is, independently, selected from the preferred list of halo, hydroxy, methoxy, trifluoromethoxy, difluoromethoxy and cyano.
  • It is preferred that Het is pyrrolyl, pyrazolyl, thiazolyl, pyridinyl, pyrimidinyl, thiophenyl, furyl, isothiazolyl or isoxazolyl (more preferably pyrrolyl, pyrazolyl or thiazolyl), each being substituted by groups R4, R5 and R6.
  • Preferably R1 and R2 are, independently, hydrogen or fluoro.
  • Preferably R3 is C2-6 alkyl, optionally substituted C3-8 cycloalkyl, phenyl, thienyl or furyl.
  • Preferably R4, R5 and R6 are, independently, selected from hydrogen, halogen, C1-4 alkyl, C1-4 haloalkyl and C1-4 alkoxy(C1-4)alkyl; provided that at least one of R4, R5 and R6 is not hydrogen. More preferably R4, R5 and R6 are, independently, selected from hydrogen, halogen, methyl, C1-2 haloalkyl and methoxymethyl; provided that at least one of R4, R5 and R6 is not hydrogen.
  • Compounds of formula (II):
  • Figure US20090197925A1-20090806-C00003
  • where R3 is as defined above for a compound of formula (I), are also novel and are useful as intermediates in the preparation of compounds of formula (I).
  • Therefore, in another aspect the present invention provides a compound of formula (II) where R3 is as defined above for a compound of formula (I).
  • The compounds of formula (I) and of formula (II) may exist as different geometric or optical isomers or in different tautomeric forms. This invention covers all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds.
  • The compounds in Tables 1 to 6 below illustrate compounds of the invention.
  • Table 1 provides 22 compounds of formula (II) wherein R3 is as defined in Table 1.
  • TABLE 1
    Compound Number R3
    1.1 CH2CH3
    1.2 CH2CH2CH3
    1.3 CH(CH3)2
    1.4 CH2CH2CH2CH3
    1.5 CH2CH(CH3)2
    1.6 C(CH3)3
    1.7 CH2CH2CH2CH2CH3
    1.8 CH2CH2CH(CH3)2
    1.9 CH2CH2CH(CH3)2
    1.10 cyclopropyl
    1.11 cyclobutyl
    1.12 cyclopentyl
    1.13 cyclohexyl
    1.14 cycloheptyl
    1.15 cyclooctyl
    1.16 phenyl
    1.17 p-Cl-phenyl
    1.18 p-F-phenyl
    1.19 p-Br-phenyl
    1.20 thienyl
    1.21 furyl
    1.22 α-methylcyclopropyl
  • Table X represents Table 2 (when X is 2) and represents Table 3 (when X is 3).
  • TABLE X
    Com-
    pound
    Number R1 R2 R3 R4 R5 R6
    X.1 H H CH2CH3 CF3 CH3 H
    X.2 H H CH2CH3 CF3 CH2OCH3 H
    X.3 H H CH2CH2CH3 CF3 CH3 H
    X.4 H H CH2CH2CH3 CF2H CH3 H
    X.5 H H CH(CH3)2 CF3 CH3 H
    X.6 H H CH(CH3)2 CF2H CH3 H
    X.7 H H CH(CH3)2 CFH2 CH3 H
    X.8 H H CH(CH3)2 CH3 CH3 Cl
    X.9 H H CH(CH3)2 CH3 CH2CH3 Cl
    X.10 H H CH(CH3)2 CH3 CH3 F
    X.11 H H CH(CH3)2 CH3 CH2CH3 F
    X.12 H H CH(CH3)2 CH2Cl CH3 F
    X.13 H H CH2CH2CH2CH3 CF3 CH3 H
    X.14 H H CH2CH2CH2CH3 CF2H CH3 H
    X.15 H H CH2CH2CH2CH3 CH3 CH3 F
    X.16 H H CH2CH2CH2CH3 CH3 CH3 Cl
    X.17 H H CH2CH(CH3)2 CF3 CH3 H
    X.18 H H CH2CH(CH3)2 CF2H CH3 H
    X.19 H H CH2CH(CH3)2 CFH2 CH3 H
    X.20 H H CH2CH(CH3)2 CF3 CH2OCH3 H
    X.21 H H CH2CH(CH3)2 CH3 CH3 F
    X.22 H H CH2CH(CH3)2 CH3 CH3 Cl
    X.23 H H C(CH3)3 CF3 CH3 H
    X.24 H H C(CH3)3 CF2H CH3 H
    X.25 H H C(CH3)3 CF2H CH3 H
    X.26 H H C(CH3)3 CH3 CH3 F
    X.27 H H C(CH3)3 CH3 CH3 Cl
    X.28 H H C(CH3)3 CF2Cl CH3 H
    X.29 H H CH2CH2CH2CH2CH3 CF3 CH3 H
    X.30 H H CH2CH2CH(CH3)2 CF3 CH3 H
    X.31 H H CH2CH2CH(CH3)2 CF2H CH3 H
    X.32 H H CH2CH2CH2CH2CH2CH3 CF3 CH3 H
    X.33 H H cyclopropyl CF3 CH3 H
    X.34 H H cyclopropyl CF2H CH3 H
    X.35 H H cyclopropyl CH3 CH3 F
    X.36 H H cyclopropyl CH3 CH3 Cl
    X.37 H H cyclobutyl CF3 CH3 H
    X.38 H H cyclobutyl CF2H CH3 H
    X.39 H H cyclopentyl CF3 CH3 H
    X.40 H H cyclopentyl CF2H CH3 H
    X.41 H H cyclopentyl CFH2 CH3 H
    X.42 H H cyclopentyl CF2Cl CH3 H
    X.43 H H cyclopentyl CH3 CH3 F
    X.44 H H cyclopentyl CH3 CH3 Cl
    X.45 H H cyclohexyl CF3 CH3 H
    X.46 H H cyclohexyl CF2H CH3 H
    X.47 H H cyclohexyl CFH2 CH3 H
    X.48 H H cyclohexyl CF2Cl CH3 H
    X.49 F F cyclohexyl CF3 CH3 H
    X.50 H H cyclohexyl CH3 CH3 F
    X.51 H H cyclohexyl CH3 CH3 Cl
    X.52 H H cycloheptyl CF3 CH3 H
    X.53 H H cycloheptyl CF3 CH2CH3 H
    X.54 H H cycloheptyl CF2H CH3 H
    X.55 H H cycloheptyl CFH2 CH3 H
    X.56 H H cycloheptyl CF2Cl CH3 F
    X.57 H H cycloheptyl CH3 CH3 F
    X.58 H H cycloheptyl CH3 CH3 Cl
    X.59 H H cyclooctyl CF3 CH3 H
    X.60 H H cyclooctyl CF2H CH3 H
    X.61 H H phenyl CF3 CH3 H
    X.62 H H phenyl CF2H CH3 H
    X.63 H H phenyl CFH2 CH3 H
    X.64 H H phenyl CH3 CH3 F
    X.65 H H phenyl CH3 CH3 Cl
    X.66 H H 4-fluorophenyl CF3 CH3 H
    X.67 H H 4-fluorophenyl CF2H CH3 H
    X.68 H H 4-chlorophenyl CF3 CH3 H
    X.69 H H 4-chlorophenyl CF2H CH3 H
    X.70 H H 4-bromophenyl CF3 CH3 H
    X.71 H H 4-bromophenyl CF2H CH3 H
    X.72 H H 2-thienyl CF3 CH3 H
    X.73 H H 3-thienyl CF3 CH3 H
    X.74 H H 2-furyl CF3 CH3 H
    X.75 H H 2-furyl CF3 CH3 H
    X.76 H H α-methylcyclopropyl CF3 CH3 H
    X.77 H H α-methylcyclopropyl CF2H CH3 H
    X.78 H H α-methylcyclopropyl CH3 CH3 F
    X.79 H H α-methylcyclopropyl CH3 CH3 Cl
    X.80 H H α-methylcyclopropyl CF3 CH3 Cl
  • Table 2 provides 80 compounds of formula (1a):
  • Figure US20090197925A1-20090806-C00004
  • wherein R1, R2, R3, R4, R5 and R6 are as defined in Table 2.
  • Table 3 provides 80 compounds of formula (1b):
  • Figure US20090197925A1-20090806-C00005
  • wherein R1, R2, R3, R4, R5 and R6 are as defined in Table 3.
  • Table 4 provides 50 compounds of formula (1c):
  • Figure US20090197925A1-20090806-C00006
  • wherein R1, R2, R3, R4 and R5 are as defined in Table 4.
  • TABLE 4
    Com-
    pound
    Number R1 R2 R3 R4 R5
    4.1 H H CH2CH3 CF3 CH3
    4.2 H H CH2CH3 CH3 CH3
    4.3 H H CH2CH2CH3 CF3 CH3
    4.4 H H CH2CH2CH3 CH3 CH3
    4.5 H H CH(CH3)2 CF3 CH3
    4.6 H H CH(CH3)2 CH3 CH3
    4.7 H H CH(CH3)2 CH2CH3 CH3
    4.8 H H CH2CH2CH2CH3 CF3 CH3
    4.9 H H CH2CH2CH2CH3 CH3 CH3
    4.10 H H CH2CH(CH3)2 CF3 CH3
    4.11 H H CH2CH(CH3)2 CH3 CH3
    4.12 H H C(CH3)3 CF3 CH3
    4.13 H H CH2CH2CH2CH2CH3 CF3 CH3
    4.14 H H CH2CH2CH2CH2CH3 CH3 CH3
    4.15 H H CH2CH2CH(CH3)2 CF3 CH3
    4.16 H H CH2CH2CH(CH3)2 CH3 CH3
    4.17 H H CH2CH2CH(CH3)2 CH3 CH2CH3
    4.18 H H CH2CH2CH2CH2CH2CH3 CF3 CH3
    4.19 H H CH2CH2CH2CH2CH2CH3 CH3 CH3
    4.20 H H cyclopropyl CF3 CH3
    4.21 H H cyclopropyl CH3 CH3
    4.22 H H cyclobutyl CF3 CH3
    4.23 H H cyclobutyl CH3 CH3
    4.24 H H cyclopentyl CF3 CH3
    4.25 H H cyclopentyl CH3 CH3
    4.26 H H cyclohexyl CF3 CH3
    4.27 H H cyclohexyl CH3 CH3
    4.28 H H cyclohexyl CF3 CH2CH3
    4.29 H H cycloheptyl CF3 CH3
    4.30 H H cycloheptyl CH3 CH3
    4.31 H H cycloctyl CF3 CH3
    4.32 H H cyclooctyl CH3 CH3
    4.33 H H phenyl CF3 CH3
    4.34 H H phenyl CH3 CH3
    4.35 H H 4-fluorophenyl CF3 CH3
    4.36 H H 4-fluorophenyl CH3 CH3
    4.37 H H 4-chlorophenyl CF3 CH3
    4.38 H H 4-chlorophenyl CH3 CH3
    4.39 H H 4-bromophenyl CF3 CH3
    4.40 H H 4-bromophenyl CH3 CH3
    4.41 H H 2-thienyl CF3 CH3
    4.42 H H 2-thienyl CH3 CH3
    4.43 H H 3-thienyl CF3 CH3
    4.44 H H 3-thienyl CH3 CH3
    4.45 H H 2-furyl CF3 CH3
    4.46 H H 2-furyl CH3 CH3
    4.47 H H 3-furyl CF3 CH3
    4.48 H H 3-furyl CH3 CH3
    4.49 H H α-methylcyclopropyl CF3 CH3
    4.50 H H α-methylcyclopropyl CH3 CH3
  • Table 5 provides 54 compounds of formula (1d):
  • Figure US20090197925A1-20090806-C00007
  • wherein R1, R2, R3 and R4 are as defined in Table 5.
  • TABLE 5
    Compound
    Number R1 R2 R3 R4
    5.1 H H CH2CH3 Cl
    5.2 H H CH2CH2CH3 Cl
    5.3 H H CH2CH2CH3 Br
    5.4 H H CH2CH2CH3 CF3
    5.5 H H CH(CH3)2 Cl
    5.6 H H CH(CH3)2 Br
    5.7 H H CH(CH3)2 CF3
    5.8 H H CH2CH2CH2CH3 Cl
    5.9 H H CH2CH2CH2CH3 Br
    5.10 H H CH2CH2CH2CH3 CF3
    5.11 H H C(CH3)3 Cl
    5.12 H H CH2CH(CH3)2 Cl
    5.13 H H CH2CH(CH3)2 Br
    5.14 H H CH2CH(CH3)2 CF3
    5.15 H H CH2CH2CH2CH2CH3 Cl
    5.16 H H CH2CH2CH2CH2CH3 Br
    5.17 H H CH2CH2CH(CH3)2 Cl
    5.18 H H CH2CH2CH(CH3)2 Br
    5.19 H H CH2CH2CH2CH2CH2CH3 Cl
    5.20 H H CH2CH2CH2CH2CH2CH3 Br
    5.21 H H cyclopropyl Cl
    5.22 H H cyclopropyl Br
    5.23 H H cyclobutyl Cl
    5.24 H H cyclobutyl Br
    5.25 H H cyclopentyl Cl
    5.26 H H cyclopentyl Br
    5.27 F F cyclopentyl CF3
    5.28 H H cyclohexyl Cl
    5.29 H H cyclohexyl Br
    5.30 H H cyclohexyl CF3
    5.31 H H cycloheptyl Cl
    5.32 H H cycloheptyl Br
    5.33 H H cycloheptyl CF3
    5.34 H H cyclooctyl Cl
    5.35 H H phenyl Cl
    5.36 H H phenyl Br
    5.37 H H 4-fluorophenyl Cl
    5.38 H H 4-fluorophenyl Br
    5.39 H H 4-fluorophenyl CF3
    5.40 H H 4-chlorophenyl Cl
    5.41 H H 4-chlorophenyl Br
    5.42 H H 4-chlorophenyl CF3
    5.43 H H 4-bromophenyl Cl
    5.44 H H 2-thienyl Cl
    5.45 H H 2-thienyl Br
    5.46 H H 3-thienyl Cl
    5.47 H H 3-thienyl Cl
    5.48 H H 2-furyl Cl
    5.49 H H 2-furyl Br
    5.50 H H 3-furyl Cl
    5.51 H H 3-furyl Br
    5.52 H H 2-pyridyl Cl
    5.53 H H α-methylcyclopropyl Cl
    5.54 H H α-methylcyclopropyl Br
  • Table 6 provides 45 compounds of formula (1e):
  • Figure US20090197925A1-20090806-C00008
  • wherein R1, R2, R3 and R4 are as defined in Table 6.
  • TABLE 6
    Compound
    Number R1 R2 R3 R4
    6.1 H H CH2CH3 CH3
    6.2 H H CH2CH2CH3 CF3
    6.3 H H CH2CH2CH3 CH3
    6.4 H H CH(CH3)2 CF3
    6.5 H H CH(CH3)2 CH3
    6.6 H H CH2CH2CH2CH3 CF3
    6.7 H H CH2CH2CH2CH3 CH3
    6.8 H H CH2CH(CH3)2 CF3
    6.9 H H CH2CH(CH3)2 CH3
    6.10 H H C(CH3)3 CF3
    6.11 H H C(CH3)3 CH3
    6.12 H H CH2CH2CH2CH2CH3 CF3
    6.13 H H CH2CH2CH2CH2CH3 CH3
    6.14 H H CH2CH2CH(CH3)2 CF3
    6.15 H H CH2CH2CH(CH3)2 CH3
    6.16 H H CH2CH2CH2CH2CH2CH3 CF3
    6.17 H H CH2CH2CH2CH2CH2CH3 CH3
    6.18 H H cyclopropyl CF3
    6.19 H H cyclopropyl CH3
    6.20 H H cyclobutyl CF3
    6.21 H H cyclobutyl CH3
    6.22 H H cyclohexyl CF3
    6.23 H H cyclohexyl CH3
    6.24 H H cycloheptyl CF3
    6.25 F F cycloheptyl CH3
    6.26 H H cyclooctyl CF3
    6.27 H H cyclooctyl CH3
    6.28 F F cyclooctyl CF3
    6.29 H H phenyl CF3
    6.30 H H phenyl CH3
    6.31 H H 4-fluorophenyl CF3
    6.32 H H 4-flurophenyl CH3
    6.33 H H 4-chlorophenyl CF3
    6.34 H H 4-chlorophenyl CH3
    6.35 H H 4-bromophenyl CF3
    6.36 H H 2-thienyl CF3
    6.37 H H 2-thienyl CH3
    6.38 H H 3-thienyl CF3
    6.39 H H 3-thienyl CH3
    6.40 H H 2-furyl CF3
    6.41 H H 3-furyl CF3
    6.42 H H 2-pyridyl CF3
    6.43 H H 4-pyridyl CF3
    6.44 H H α-methylcyclopropyl CF3
    6.45 H H α-methylcyclopropyl CH3
  • Throughout this description, temperatures are given in degrees Celsius; “NMR” means nuclear magnetic resonance spectrum; MS stands for mass spectrum; and “%” is percent by weight, unless corresponding concentrations are indicated in other units.
  • The following abbreviations are used throughout this description:
  • m.p. = melting point b.p. = boiling point.
    S = singlet br = broad
    d = doublet dd = doublet of doublets
    t = triplet q = quartet
    m = multiplet ppm = parts per million
  • Table 7 shows selected melting point and selected NMR data, all with CDCl3 as the solvent (unless otherwise stated; if a mixture of solvents is present, this is indicated as, for example, (CDCl3/d6-DMSO)), (no attempt is made to list all characterising data in all cases) for compounds of Tables 1 to 6. Unless otherwise stated, the data relate to a cis/trans mixture of each compound; a compound number which ends with the letter ‘c’ relates only to its cis-isomer and a compound number which ends with the letter ‘t’ relates only to its trans-isomer.
  • TABLE 7
    Compound
    Number 1H-NMR data: (ppm/multiplicity/number of Hs). m.p./(° C.)
    1.3 0.6-0.90/m/8H(cis and trans); 1.02/d/6H(cis); oil
    1.11/6H(trans); 1.48/m/1H(trans); 1.78/m/1H(cis);
    3.83/s/4H(NH2 cis and trans); 6.68/m/4H(cis and trans);
    7.0/m/4H(cis and trans).
    1.5 0.6-1.1/m/6H(cis and trans); 0.95-101/2d/12H(cis and trans); oil
    1.25/m/2H(cis or trans); 1.40/m/2H(cis or trans);
    1.78/m/2H(cis or trans); 3.85/s/4H(NH2 cis and trans);
    6.70/m/4H(cis and trans); 7.0/m/4H(cis and trans).
    1.6t 0.52/m/1H; 0.80/m/1H; 0.97/s/9H; 1.08/m/1H; 1.57/m/1H; oil
    3.85/s/2H; 6.68/m/2H; 7.0/m/2H.
    1.10c 0.01/m/2H, 0.11/m/1H; 0.22/m/1H; 0.58/m/1H; 0.69/m/1H; oil
    0.85/m/1H; 1.67/m/1H; 3.75/s/2H(NH2); 6.49-6.60/m/2H;
    6.82-7.00/m/2H.
    1.10t 0.01/m/2H; 0.30/m/2H; 0.55/m/2H; 0.72/m/2H; 1.28/m/1H; oil
    3.70/s/2H(NH2); 6.45-6.55/m/2H; 6.77-6.85/m/2H.
    1.12 0.75/m/4H (cis and trans); 0.97/m/2H (cis and trans); oil
    1.3-1.95/m/20H (cis and trans); 3.88/s/4H (cis and trans);
    6.68/m/4H (cis and trans); 7.01/m/4H (cis and trans).
    1.13 0.62-1.98/m/30H(cis and trans); 3.80/s/4H(cis and trans); oil
    6.65/m/4H(cis and trans); 6.97/m/4H(cis and trans).
    1.17c 110-112
    1.17t 69-70
    1.18c 1.29/m/1H; 1.52/m/1H; 2.20/m/1H; 2.42/m/1H; 3.55/s/2H; oil
    6.50/d/1H; 6.65-6.85/m/5H; 6.99/t/1H; 7.09/d/1H.
    1.18t 95-97
    1.22c 60-62
    1.22t 0.01-0.1/m/4H; 0.42/m/2H; 0.99/s/3H; 1.01/m/1H; oil
    1.21/m/1H; 3.55/s/2H; 6.45/m/2H; 6.78/m/2H.
    2.5  99-102
    2.17 75-78
    2.18 74-79
    2.23 134-136
    2.24 110-112
    2.33 88-92
    2.34c 111-113
    2.34t 116-118
    2.35c 93-95
    2.35t 134-136
    2.45 0.6-1.90/m/30H(cis and trans); 4.0/s/6H(cis and trans); resin
    7.0-7.28/m/6H(cis and trans); 8.0/s/1H(trans);
    8.05/s/1H(cis); 8.12/d/2H(trans); 8.20/d/2H(cis).
    2.46t 116-118
    2.52 116-118
    2.54 129-131
    2.57 107-109
    2.66c resin
    2.66t 145-147
    2.67c 104-106
    2.67t 160-161
    2.68c resin
    2.68t 148-150
    2.69c 145-147
    2.69t 149-150
    2.76c 119-121
    2.76t 107-108
    2.77c 82-84
    2.77t 109-111
    2.78c 119-122
    2.78t 96-97
    3.5 74-78
    3.17 61-65
    3.23 92-96
    3.33 −0.1-0.90/m/16H(cis and trans); 1.45/m/1H(trans); resin
    1.79/m/1H(cis); 3.58/s/6H (cis and trans);
    6.82-7.13/m/10H(cis and trans); 7.92/s/1 (NH-trans);
    8.03/dd/1H(trans); 8.10/s/1H(NH-cis); 8.19/dd/1H (cis).
    3.39 0.63-1.83/m/26H(cis and trans); 3.72/s/6H(cis and trans); resin
    6.95-7.38/m/10H(cis and trans); 8.05/s/1H(NH-trans);
    8.18/dd/1H(trans); 8.30/dd/1H(cis).
    3.45 0.6-1.90/m/30H(cis and trans); 3.70/s/6H(cis and trans); resin
    6.98-7.35/m/8H(cis and trans); 8.08/s(broad)/2H(cis and
    trans); 8.17/d/2H(trans); 8.25/d/2H(cis).
    3.66c 1.40/m/1H; 1.50-1.65/m/1H; 2.37/m/1H, 2.50/m/1H; resin
    3.73/s/3H; 6.60-6.70/m/5/H; 6.97/m/2H; 7.18/m/3H;
    7.82/s/1H(NH); 8.02/d/1H.
    3.66t 146-148
    3.68c 1.40/m/1H; 1.57/m/1H; 2.40/m/2H; 3.72/s/3H; 6.68/d/2H; resin
    6.90-7.08/m/4H; 7.18/m/3H; 7.80/s/1H; 8.02/d/1H.
    3.68t 150-152
    3.76 resin
    3.80c 123-126
    3.80t 94-96
    4.10 69-74
    4.12 resin
    4.24 113-115
    4.26 138-142
    5.5 resin
    5.12 83-86
    5.21c 75-77
    5.21t 80-82
    5.25 131-133
    5.28 115-119
    5.37c 164-166
    5.37t 133-135
    5.40c 160-162
    5.40t 136-138
    5.53c −0.25/m/1H; −0.01-0.03/m/3H; 0.60/s/3H; 0.65/m/1H; resin
    0.79/m/1H; 1.25/m/1H; 1.80/m/1H; 6.95/t/1H; 7.08/m/2H;
    7.28/m/1H; 8.15/d/2H; 8.38/m/1H; 8.62/s/1H(NH).
    5.53t 0.01/m/4H; 0.58/m/2H; 0.94/s/3H; 1.11/m/1H; 1.44/m/1H; resin
    6.98/m/2H; 7.09/m/1H; 7.23/m/1H; 8.01/dd/1H; 8.10/d/1H;
    8.35/dd/1H; 8.40/s/1H.
    6.10 resin
  • The compounds according to formula (I) may be prepared according to the following reaction schemes.
  • Scheme 1A
  • A compound of formula (II) [where R3 is as defined above for a compound of formula (I)] may be prepared by a reaction sequence starting with a crossed-aldol condensation of benzaldehyde with a ketone of formula CH3C(O)R3 [where R3 is as defined above for a compound of formula (I)] in the presence of NaOH or KOH in a solvent (such as water or ethanol) and usually under reflux conditions or alternatively by reaction of benzaldehyde with a Wittig reagent under standard conditions. The resulting α,β-unsaturated ketone of formula (III) [where R3 is as defined above for a compound of formula (I)]:
  • Figure US20090197925A1-20090806-C00009
  • may then be converted into a compound of formula (IV) [where R3 is as defined above for a compound of formula (I)]:
  • Figure US20090197925A1-20090806-C00010
  • by reacting first with hydrazine hydrate in ethanol under reflux conditions and then heating (in the range 150 to 250° C.) in the presence of KOH (distilling off the solvent). After nitration with HNO3/H2O or HNO3/acetic anhydride in a cooled vessel (in the range −30° C. to 0° C.), the resultant o/p-mixture of nitrobenzene of formula (V) [where R3 is as defined above for a compound of formula (I)]:
  • Figure US20090197925A1-20090806-C00011
  • may then be separated and catalytically reduced (Pt/C/H2 or Ra—Ni/H2) in a solvent (such as methanol, ethanol or THF) at room temperature, to produce a crude o/p-mixture of a compound of formula (II), which may be further purified by standard techniques.
  • Alternatively, a compound of formula (II) [where R3 is as defined above for a compound of formula (I)] may be prepared by a process as illustrated by the following reaction sequence and which involves a Pd(II)-catalysed imination step.
  • Figure US20090197925A1-20090806-C00012
  • A compound of formula (VIII) [where R3 is as defined above for a compound of formula (I)] is added to bromine and methanol at a temperature of 5-10° C., after which triphenylphosphine in a solvent [such as tetrahydrofuran] is added, to produce a compound of formula (IX) [where R3 is as defined above for a compound of formula (I)], which in turn is added to sodium hydride, in a solvent [such as DMSO], and then reacted with 2-bromobenzaldehyde or 2-iodobenzaldehyde to yield a compound of formula (X) [where R3 is as defined above for a compound of formula (I) and Hal is bromo or iodo]. The resultant compound of formula (X) is then mixed with hydrazine hydrate in a solvent [such as ethanol] and heated to reflux, after which potassium hydroxide is added and the resultant reaction mixture is maintained at 200-220° C. for several hours. A standard extraction and purification procedure yields a compound of formula (XI) [where R3 is as defined above for a compound of formula (I) and Hal is bromo or iodo] which may then be converted to a compound of formula (II) by mixing with benzophenone imine, sodium tertiary butoxide, tris-dibenzylideneacetone-dipalladium (Pd2 dba3), racemic 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP) and a solvent [such as benzene or toluene] and heating at reflux temperature, typically for several hours, and adding the resultant [usually crude isolated] imine to a mixture of hydroxylamine hydrochloride, sodium acetate and a solvent [such as methanol]. The resultant mixture is stirred, preferably for about an hour at room temperature, after which a cis-/trans-mixture of a compound of formula (II) may be extracted and subsequent separation of the cis- and trans-isomers achieved by using flash chromatography.
  • In the above illustrated Pd-catalysed imination process, instead of the catalyst-ligand-system Pd2dba3/BINAP, the system palladium diacetate/1,1′-bis(diphenyl-phosphino)ferrocene (dppf) could be used as an alternative.
  • Reaction scheme 1B is novel and inventive, particularly the use of a Pd(II)-catalysed imination step. Therefore in a still further aspect the present invention provides a process for preparing a compound of formula (II), where R3 is as defined above, comprising at least one of the steps of reaction scheme 1B; in particular a step using a Pd(II)catalyst-ligand-system [where the ligand is selected from a suitable sterically demanding phosphine (for example BINAP or dppf)] to react a compound of formula (XI) [where Hal is bromo or iodo; and R3 is as defined above] with benzophenone imine optionally in the presence of a base [such as sodium-tert-butanolate, potassium-tert-butananolate, sodium carbonate, potassium carbonate or cesium carbonate] to produce a compound of formula (XII) [where R3 is as defined above].
  • Examples of imination reactions with benzophenone imine are provided in the literature (Journal of Organometallic Chemistry, 1999, 576, 125-146 and Tetrahedron Letters 1997, 38, 6367-6370).
  • Scheme 2
  • The synthesis of an amine of formula (IIA)
  • Figure US20090197925A1-20090806-C00013
  • [where R3A is hydrogen or methyl] may be accomplished by a reaction sequence started by a Wittig reaction of o-nitrobenzaldehyde with an ylide [prepared from a cyclopropylmethlytriphenylphosphonium bromide in the presence of a strong base, such as NaH in a solvent such as DMSO, in the range 0-85° C.]. The resulting E/Z-mixture of a compound of formula (VI)
  • Figure US20090197925A1-20090806-C00014
  • [where R3A is hydrogen or methyl] may be converted to a compound of formula (VII)
  • Figure US20090197925A1-20090806-C00015
  • by the application of the Simmons Smith reaction (Zn/Cu, CH2I2, ether as solvent) to the olefin group of the compound of formula (VI). The reduction of the nitro group of the corresponding compound of formula (VII) may be performed using the conditions described in Scheme 1, to produce a compound of formula (IIA).
  • Scheme 3
  • A compound of formula (I) may be prepared by reacting a compound of formula Het-C(═O)—R* [where R* is halogen, hydroxy or C1-6 alkoxy, but preferably chloro] with a compound of formula (II) as prepared above in the presence of a base (such as triethylamine, Hunig base, sodium bicarbonate, sodium carbonate, potassium carbonate, pyridine or quinoline, but preferably triethylamine) and in a solvent (such as diethylether, TBME, THF, dichloromethane, chloroform, DMF or NMP) for between 10 minutes and 48 hours (preferably 12 to 24 hours) and between 0° C. and reflux (preferably 20 to 25° C.). When R* is hydroxy, a coupling agent [such as benzotriazol-1-yloxytris(dimethylamino) phosphoniumhexafluorophosphate, bis-(2-oxo-3-oxazolidinyl)-phosphinic acid chloride, N,N′-dicyclohexylcarbodiimide or 1,1′-carbonyl-diimidazole] may be used.
  • Scheme 4
  • A compound of formula (IA)
  • Figure US20090197925A1-20090806-C00016
  • [where R3A is hydrogen or methyl] may be prepared by the reduction of the nitro group of a compound of formula (VI) [where R3A is hydrogen or methyl] using standard conditions (for example, catalytic reduction or Béchamp-reduction) followed by amidation with an acid chloride to provide a compound of formula (VII) [where R3A is hydrogen or methyl]
  • Figure US20090197925A1-20090806-C00017
  • which is subsequently used in a Simmons-Smith reaction (Zn/Cu, CH2I2, ether as solvent) to provide a compound of formula (IA).
  • Surprisingly, it has now been found that the novel compounds of formula (I) have, for practical purposes, a very advantageous spectrum of activities for protecting plants against diseases that are caused by fungi as well as by bacteria and viruses.
  • The compounds of formula (I) can be used in the agricultural sector and related fields of use as active ingredients for controlling plant pests. The novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and are used for protecting numerous cultivated plants. The compounds of formula I can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.
  • It is also possible to use compounds of formula (I) as dressing agents for the treatment of plant propagation material, in particular of seeds (fruit, tubers, grains) and plant cuttings (e.g. rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.
  • Furthermore the compounds according to present invention may be used for controlling fungi in related areas, for example in the protection of technical materials, including wood and wood related technical products, in food storage, in hygiene management, etc.
  • The compounds of formula (I) are, for example, effective against the phytopathogenic fungi of the following classes: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria) and Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia). Additionally, they are also effective against the Ascomycetes classes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and of the Oomycetes classes (e.g. Phytophthora, Pythium, Plasmopara). Outstanding activity has been observed against powdery mildew (Erysiphe spp.). Furthermore, the novel compounds of formula I are effective against phytopathogenic bacteria and viruses (e.g. against Xanthomonas spp, Pseudomonas spp, Erwinia amylovora as well as against the tobacco mosaic virus).
  • Within the scope of present invention, target crops to be protected typically comprise the following species of plants: cereal (wheat, barley, rye, oat, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, drupes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucumber plants (pumpkins, cucumbers, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado, cinnamomum, camphor) or plants such as tobacco, nuts, coffee, eggplants, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamentals.
  • The compounds of formula (I) are used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they are conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
  • Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO 97/33890.
  • The compounds of formula (I) are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds. These further compounds can be e.g. fertilizers or micronutrient donors or other preparations which influence the growth of plants. They can also be selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
  • The compounds of formula (I) can be mixed with other fungicides, resulting in some cases in unexpected synergistic activities. Mixing components which are particularly preferred are azoles, such as azaconazole, BAY 14120, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole; pyrimidinyl carbinole, such as ancymidol, fenarimol, nuarimol; 2-amino-pyrimidines, such as bupirimate, dimethirimol, ethirimol; morpholines, such as dodemorph, fenpropidine, fenpropimorph, spiroxamine, tridemorph; anilinopyrimidines, such as cyprodinil, mepanipyrim, pyrimethanil; pyrroles, such as fenpiclonil, fludioxonil; phenylamides, such as benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl; benzimidazoles, such as benomyl, carbendazim, debacarb, fuberidazole, thiabendazole; dicarboximides, such as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone, vinclozoline; carboxamides, such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide; guanidines, such as guazatine, dodine, iminoctadine; strobilurines, such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, trifloxystrobin, picoxystrobin, BAS 500F (proposed name pyraclostrobin), BAS 520; dithiocarbamates, such as ferbam, mancozeb, maneb, metiram, propineb, thiram, zineb, ziram; N-halomethylthiotetrahydrophthalimides, such as captafol, captan, dichlofluanid, fluoromides, folpet, tolyfluanid; Cu-compounds, such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper, oxine-copper; nitrophenol-derivatives, such as dinocap, nitrothal-isopropyl; organo-p-derivatives, such as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos, tolclofos-methyl; various others, such as acibenzolar-S-methyl, anilazine, benthiavalicarb, blasticidin-S, chinomethionate, chloroneb, chlorothalonil, cyflufenamid, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, SYP-LI90 (proposed name: flumorph), dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, fenoxanil, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, IKF-916 (cyazofamid), kasugamycin, methasulfocarb, metrafenone, nicobifen, pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxyfen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin, zoxamide (RH7281).
  • A preferred method of applying a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application. The frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen. However, the compounds of formula I can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granular form (soil application). In crops of water rice such granulates can be applied to the flooded rice field. The compounds of formula I may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.
  • A formulation [that is, a composition containing the compound of formula (I)] and, if desired, a solid or liquid adjuvant, is prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • The agrochemical formulations will usually contain from 0.1 to 99% by weight, preferably from 0.1 to 95% by weight, of the compound of formula I, 99.9 to 1% by weight, preferably 99.8 to 5% by weight, of a solid or liquid adjuvant, and from 0 to 25% by weight, preferably from 0.1 to 25% by weight, of a surfactant.
  • Advantageous rates of application are normally from 5 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg a.i./ha, most preferably from 20 g to 600 g a.i./ha. When used as seed drenching agent, convenient dosages are from 10 mg to 1 g of active substance per kg of seeds.
  • Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.
  • The following non-limiting Examples illustrate the above-described invention in more detail.
  • EXAMPLE 1
  • This Example illustrates the preparation of Compound No. 1.5.
  • To a mixture of 17.4 g (0.1 mol) (2-isobutyl-cyclopropyl)benzene and 80 ml of acetic acid anhydride was added a solution of 6.0 g (0.095 mol) nitric acid and 40 ml acetic acid anhydride in such a manner that the internal temperature was kept constant at −30° C. The resulting reaction mixture was stirred for 1 hour at −30° C. and then for 2 hours at 0° C. Then the mixture was poured onto 500 ml of ice water and extracted three times with hexane. The hexane phases were combined and twice washed with 5% aqueous bicarbonate solution. After drying of the organic phase over sodium sulphate and distilling off the solvent in a water jet vacuum, the crude reaction product was obtained. Purification by flash chromatography over silica get (eluant: ethylacetate/hexane 1:10) yielded 10.5 g of a yellow oil (mixture of para- and ortho-nitroisomers) which was directly used in the next step. This isomeric mixture [consisting of 10.5 g (0.048 mol) 1-(2-isobutyl-cycloproply)2-nitrobenzene and 1-(2-isobutyl-cyclopropyl)-4-nitrobenzene] was dissolved in 110 ml of ethanol and hydrogenated over 5% Pt/C catalyst for 45 minutes. After the theoretical uptake of hydrogen had occurred, the catalyst was filtered off and the solvent was removed in vacuo. The crude isomeric aniline mixture was purified by flash chromatography (eluant: ethylacetate/hexane 1:2).
  • Yield: 6.38 g of 2-(2-isobutyl-cyclopropyl)phenyl amine was obtained as a yellow oil (cis/trans mixture).
  • EXAMPLE 2
  • This Example illustrates the preparation of Compound 3.17.
  • A solution of 0.35 g (0.0018 mol) 1-methyl-4-trifluoromethyl-pyrrole-3-carboxylic acid and 0.24 g (0.0019 mol) oxalylchloride in 15 ml methylenechloride was stirred for 3 hours at room temperature in the presence of two drops of absolute DMF. Then the acid chloride solution was slowly added to a solution of 0.34 g (0.0018 mol) 2-(2-isobutyl-cyclopropyl)phenylamine, 0.27 g (0.0027 mol) triethylamine and 10 ml methylene chloride. The resulting mixture was then stirred for 16 hours at room temperature. After removal of the solvent in vacuo, the crude material was taken up in ca. 100 ml ethylacetate. The ethylacetate phase was twice washed with water and after drying the organic phase, the solvent was again distilled off in a waterjet vacuum. The crude product was purified by flash chromatography (eluant: hexane/ethylacetate/methylene chloride 1:2:2).
  • Yield: 0.52 g 1-methyl-4-trifluoromethyl-1H-pyrrole-3-carboxylic acid [2-(2-isobutyl-cyclopropyl)phenyl]amide in the form of a white powder (cis/trans-mixture).
  • EXAMPLE 3
  • This Example illustrates the preparation of Compound Nos. 1.10c and 1.10t.
  • Step 1:
  • In a sulfonation flask, NaH (12.8 g; 0.32 mol) was added to absolute DMSO (600 ml). After heating at 80° C. for 90 minutes, cyclopropylcarbonylmethyltriphenyl phosphoniumbromide (136.5 g; 0.32 mol) was added portionwise at room temperature. The resultant suspension was stirred for 30 minutes at room temperature and then a solution of 2-bromobenzaldehyde (59.4 g; 0.32 mol) in absolute DMSO (100 ml) was added dropwise. After heating the resultant mixture for 4 hours at 50° C., the mixture was poured onto 2.5 litres of ice water. Extraction with ethylacetate, drying over sodium sulfate and distilling off the solvent in a water jet vacuum yielded the crude product. Purification was achieved by vacuum distillation.
  • Yield: 77.6 g of E-3-(2-bromophenyl)-1-cyclopropylpropenone as a yellow oil (b.p.: 125-130° C. at 0.3 mbar).
  • Step 2:
  • In a sulfonation flask, a mixture of E-3-(2-bromophenyl)-1-cyclo-propylpropenone (77.6 g; 0.309 mol) and hydrazine hydrate (23.2 g; 0.464 mol) in ethanol (25 ml) was heated at reflux temperature for 2 hours. Then powdered potassium hydroxide (85%) (24.4 g; 0.37 mol) was added and the excesses of hydrazine hydrate and solvent were distilled out of the flask. The remaining mixture was then heated at a temperature of 205-210° C. for 3 hours. The resultant resin was dissolved in ethylacetate (500 ml) at a temperature of 50° C. and the organic phase was washed twice with water. Drying of the ethylacetate phase over sodium sulfate and distilling off the solvent in a water jet vacuum gave the raw material, which was purified by flash chromatography over silica gel (eluant: hexane/methylene chloride 7:1).
  • Yield: 61.2 g of 2-(2-bromophenyl)bicyclopropyl in the form of a slightly yellowish oil (cis/trans-mixture).
  • Step 3:
  • A mixture of 2-(2-bromophenyl)bicyclopropyl (28.5 g; 0.12 mol), benzophenoneimine (26.1 g; 0.144 mol), sodium tertiary butoxide (16.1 g; 0.168 mol), tris-dibenzyl-ideneacetonedipalladium (Pd2 dba3) (0.43 g; 0.474 mmol), racemic 2,2′-bis(diphenylphosphino)1,1′-binaphthyl (BINAP) (0.83 g; 1.34 mmol) and absolute toluene (450 ml) was heated at reflux temperature under an atmosphere of nitrogen for 6 hours. Then the solvent was removed in a water jet vacuum and the residue was taken up in ethylacetate (750 ml). The organic layer was washed three times with brine and then dried over sodium sulfate. After evaporation of the solvent, the crude product was obtained. Purification was achieved by using flash chromatography over silica gel (eluant: hexane/methylene chloride 5:1).
  • Yield: 39.9 g of cis-/trans-mixture of benzhydrilidene (2-bi-cyclopropyl-2-yl-phenyl)amine in the form of a brownish oil.
  • Step 4:
  • In a sulfonation flask, hydroxylamine hydrochloride (0.35 g; 0.0048 mol), sodium acetate (0.53 g; 0.0064 mol) and absolute methanol (30 ml) were stirred at room temperature for about 15 minutes. Then a solution of benzhydrilidene (2-bicyclopropyl-2-yl-phenyl)amine (0.9 g; 0.00267 mol) in methanol (15 ml) was added dropwise. The resultant mixture was stirred for 1 hour at room temperature. After dilution with ethylacetate (250 ml), the organic phase was washed twice with water. After drying the organic phase (sodium sulfate) and distilling off the solvent in a water jet vacuum, the crude product was obtained. The final purification and separation of the cis- and trans-isomers was achieved by using flash chromatography (eluant: hexane/ethylacetate 5:1).
  • Yield: 0.21 g of trans- and 0.15 g of cis-2-bicyclopropyl-2-yl-phenylamine in the form of brownish oils.
  • FORMULATION EXAMPLES FOR COMPOUNDS OF FORMULA (I)
  • Working procedures for preparing formulations of the compounds of formula I such as Emulsifiable concentrates, Solutions, Granulates, Dusts and Wettable powders are described in WO 97/33890.
  • BIOLOGICAL EXAMPLES Fungicidal Actions Example B-1 Action Against Puccinia recondita/Wheat (Brownrust on Wheat)
  • 1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application wheat plants are inoculated by spraying a spore suspension (1×105 uredospores/ml) on the test plants. After an incubation period of 2 days at 20° C. and 95% r. h. plants are kept in a greenhouse for 8 days at 20° C. and 60% r.h. The disease incidence is assessed 10 days after inoculation.
  • Compounds of Tables 2, 3, 4 and 5 show good activity in this test (<20% infestation). Infestation is prevented virtually completely (0-5% infestation) with each of compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.33, 2.45, 2.46t, 2.76c, 2.76t, 2.77c, 2.77t, 3.5, 3.17, 3.23, 3.33, 3.45, 3.76, 4.10, 4.12, 4.26, 5.5, 5.12, 5.21c and 5.37c.
  • Example B-2 Action Against Podosphaera leucotricha/Apple (Powdery Mildew on Apple)
  • 5 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. One day after application apple plants are inoculated by shaking plants infected with apple powdery mildew above the test plants. After an incubation period of 12 days at 22° C. and 60% r.h. under a light regime of 14/10 hours (light/dark) the disease incidence is assessed.
  • Compounds of Tables 2, 3 and 4 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.33, 2.45, 2.46t, 3.5, 3.17, 3.23, 3.33, 3.45, 4.10 and 4.12 each exhibit strong efficacy (<20% infestation).
  • Example B-3 Action Against Venturia inaequalis/Apple (Scab on Apple)
  • 4 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application apple plants are inoculated by spraying a spore suspension (4×105 conidia/ml) on the test plants. After an incubation period of 4 days at 21° C. and 95% r.h. the plants are placed for 4 days at 21° C. and 60% r.h. in a greenhouse. After another 4 day incubation period at 21° C. and 95% r.h. the disease incidence is assessed.
  • Compounds of Tables 2 and 3 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.33, 2.45, 2.46t, 3.5, 3.17, 3.23, 3.33 and 3.45 each exhibit strong efficacy
  • (<20% infestation).
  • Example B-4 Action Against Erysiphe graminis/Barley (Powdery Mildew on Barley)
  • 1 week old barley plants cv. Express are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application barley plants are inoculated by shaking powdery mildew infected plants above the test plants. After an incubation period of 6 days at 20° C./18° C. (day/night) and 60% r. h. in a greenhouse the disease incidence is assessed.
  • Compounds of Tables 2, 3 and 4 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.45, 2.46t, 2.77c, 2.77t, 3.5, 3.17, 3.23, 3.45, 4.10 and 4.12 each exhibit strong efficacy (<20% infestation).
  • Example B-5 Action Against Botrytis cinerea/Apple (Botrytis on Apple Fruits)
  • In an apple fruit cv. Golden Delicious 3 holes are drilled and each filled with 30 μl droplets of the formulated test compound (0.002% active ingredient). Two hours after application 50 μl of a spore suspension of B. cinerea (4×105 conidia/ml) are pipetted on the application sites. After an incubation period of 7 days at 22° C. in a growth chamber the disease incidence is assessed.
  • Compounds of Tables 2, 3, 4, 5 and 6 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.33, 2.45, 2.46t, 2.76c, 2.76t, 2.77c, 2.77t, 3.5, 3.17, 3.23, 3.33, 3.76, 3.45, 3.76, 4.10, 4.12, 4.26, 5.5, 5.12, 5.21c and 5.37 each exhibit very strong efficacy (<10% infestation).
  • Example B-6 Action Against Botrytis cinerea/Grape (Botrytis on Grapes)
  • 5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. Two days after application grape plants are inoculated by spraying a spore suspension (1×106 conidia/ml) on the test plants. After an incubation period of 4 days at 21° C. and 95% r.h. in a greenhouse the disease incidence is assessed.
  • Compounds of Tables 2, 3, 4, 5 and 6 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.45, 2.46t, 2.76c, 2.76t, 2.77c, 2.77t, 3.5, 3.17, 3.23, 3.33, 3.39, 3.76, 4.10, 4.12, 4.26, 5.5, 5.12, 5.21c and 5.37c each exhibit very strong efficacy (<10% infestation).
  • Example B-7 Action Against Botrytis cinerea/Tomato (Botrytis on Tomatoes)
  • 4 week old tomato plants cv. Roter Gnom are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. Two days after application tomato plants are inoculated by spraying a spore suspension (1×105 conidia/ml) on the test plants. After an incubation period of 4 days at 20° C. and 95% r.h. in a growth chamber the disease incidence is assessed.
  • Compounds of Tables 2, 3, 4, 5 and 6 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.33, 2.45, 2.46t, 2.76c, 2.76t, 2.77c, 2.77t, 3.5, 3.17, 3.23, 3.39, 3.45, 3.76, 4.10, 4.12, 4.26, 5.5, 5.12, 5.21c and 5.37c each exhibit very strong efficacy (<10% infestation).
  • Example B-8 Action Against Pyrenophora teres/Barley (Net Blotch on Barley)
  • 1 week old barley plants cv. Express are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. Two days after application barley plants are inoculated by spraying a spore suspension (3×104 conidia/ml) on the test plants. After an incubation period of 2 days at 20° C. and 95% r.h. plants are kept for 2 days at 20° C. and 60% r.h. in a greenhouse. The disease incidence is assessed 4 days after inoculation.
  • Compounds of Tables 2, 3, 4, 5 and 6 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.33, 2.45, 2.46t, 2.76c, 2.76t, 2.77c, 2.77t, 3.5, 3.17, 3.23, 3.39, 3.45, 3.76, 4.10, 4.12, 4.26, 5.5, 5.12, 5.21c and 5.37c each exhibit very strong efficacy (<20% infestation).
  • Example B-9 Action Against Septoria nodorum/Wheat (Septoria Leaf Spot on Wheat)
  • 1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application wheat plants are inoculated by spraying a spore suspension (5×105 conidia/ml) on the test plants. After an incubation period of 1 day at 20° C. and 95% r.h. plants are kept for 10 days at 20° C. and 60% r.h. in a greenhouse. The disease incidence is assessed 11 days after inoculation.
  • Compounds of Tables 2, 3 and 4 show good activity in this test. The compounds 2.5, 2.17, 2.18, 2.23, 2.24, 2.33, 2.45, 2.46t, 2.76c, 2.76t, 2.77c, 2.77t, 3.5, 3.17, 3.23, 3.33, 3.39, 3.45, 3.76, 4.10 and 4.12 each exhibit strong efficacy (<20% infestation).

Claims (10)

1. A compound of formula (I):
Figure US20090197925A1-20090806-C00018
Het is a 5- or 6-membered heterocyclic ring containing one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, the ring being substituted by groups R4, R5 and R6; R1 is hydrogen or halo; R2 is hydrogen or halo; R3 is optionally substituted C2-12 alkyl, optionally substituted C2-12 alkenyl, optionally substituted C2-12 alkynyl, optionally substituted C3-12 cycloalkyl, optionally substituted phenyl or optionally substituted heterocyclyl; and R4, R5 and R6 are, independently, selected from hydrogen, halo, cyano, nitro, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy(C1-4)alkyl and C1-4 haloalkoxy(C1-4)alkyl, provided that at least one of R4, R5 and R6 is not hydrogen.
2. A compound of formula (I) as claimed in claim 1 where Het is pyrrolyl, pyrazolyl, thiazolyl, pyridinyl, pyrimidinyl, thiophenyl, furyl, isothiazolyl or isoxazolyl, each being substituted by groups R4, R5 and R6.
3. A compound of formula (I) as claimed in claim 1 where R1 is hydrogen or fluoro.
4. A compound of formula (I) as claimed in claim 1 where R2 is hydrogen or fluoro.
5. A compound of formula (I) as claimed in claim 1 where R3 is C2-6 alkyl, optionally substituted C3-8 cycloalkyl, phenyl, thienyl or furyl.
6. A compound of formula (I) as claimed in claim 1 where R4, R5 and R6 are, independently, selected from hydrogen, halogen, C1-4 alkyl, C1-4 haloalkyl and C1-4 alkoxy(C1-4)alkyl; provided that at least one of R4, R5 and R6 is not hydrogen.
7. A compound of formula (II):
Figure US20090197925A1-20090806-C00019
where R3 is as defined in claim 1.
8. A process for preparing a compound of formula (II) as claimed in claim 7 which comprises a step using a Pd(II)catalyst-ligand-system where the ligand is selected from a suitable sterically demanding phosphine to react a compound of formula (XI)
Figure US20090197925A1-20090806-C00020
with benzophenone imine optionally in the presence of a base to produce a compound of formula (XII)
Figure US20090197925A1-20090806-C00021
where Hal is bromo or iodo; and R3 is as defined in claim 7.
9. A composition for controlling microorganisms and preventing attack and infestation of plants therewith, wherein the active ingredient is a compound of formula (I) as claimed in claim 1 together with a suitable carrier.
10. A method of controlling or preventing infestation of cultivated plants by phytopathogenic microorganisms by application of a compound of formula (I) as claimed in claim 1 to plants, to parts thereof or the locus thereof.
US12/420,440 2002-03-05 2009-04-08 O-cyclopropyl-carboxanilides and their use Abandoned US20090197925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/420,440 US20090197925A1 (en) 2002-03-05 2009-04-08 O-cyclopropyl-carboxanilides and their use

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GB0205127.4 2002-03-05
GB0205127A GB0205127D0 (en) 2002-03-05 2002-03-05 Chemical compounds
GB0300705A GB0300705D0 (en) 2003-01-13 2003-01-13 Chemical compounds
GB0300705.1 2003-01-13
PCT/IB2003/000687 WO2003074491A1 (en) 2002-03-05 2003-02-21 O-cyclopropyl-carboxanilides and their use as fungicides
US50691805A 2005-04-28 2005-04-28
US12/420,440 US20090197925A1 (en) 2002-03-05 2009-04-08 O-cyclopropyl-carboxanilides and their use

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2003/000687 Continuation WO2003074491A1 (en) 2002-03-05 2003-02-21 O-cyclopropyl-carboxanilides and their use as fungicides
US50691805A Continuation 2002-03-05 2005-04-28

Publications (1)

Publication Number Publication Date
US20090197925A1 true US20090197925A1 (en) 2009-08-06

Family

ID=27790183

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/506,918 Active 2025-01-08 US7951752B2 (en) 2002-03-05 2003-02-21 O-cyclopropyl-carboxanilides and their use as fungicides
US12/420,440 Abandoned US20090197925A1 (en) 2002-03-05 2009-04-08 O-cyclopropyl-carboxanilides and their use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/506,918 Active 2025-01-08 US7951752B2 (en) 2002-03-05 2003-02-21 O-cyclopropyl-carboxanilides and their use as fungicides

Country Status (30)

Country Link
US (2) US7951752B2 (en)
EP (2) EP1480955B1 (en)
JP (1) JP4511191B2 (en)
KR (1) KR100818540B1 (en)
CN (1) CN1293058C (en)
AR (2) AR038717A1 (en)
AT (1) ATE365719T1 (en)
BR (1) BR0308230B1 (en)
CA (1) CA2477931C (en)
CO (1) CO5611120A2 (en)
CR (2) CR7454A (en)
CY (1) CY1106867T1 (en)
DE (1) DE60314600T2 (en)
DK (1) DK1480955T3 (en)
EC (1) ECSP045276A (en)
EG (1) EG23424A (en)
ES (1) ES2288597T3 (en)
FR (1) FR12C0019I2 (en)
HK (1) HK1079785B (en)
HU (1) HUS1800002I1 (en)
IL (1) IL163692A0 (en)
MX (1) MXPA04008314A (en)
NL (1) NL350085I2 (en)
PL (1) PL215167B1 (en)
PT (1) PT1480955E (en)
RU (1) RU2323931C2 (en)
SI (1) SI1480955T1 (en)
TW (1) TWI332820B (en)
WO (1) WO2003074491A1 (en)
ZA (1) ZA200406395B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9049865B2 (en) 2010-04-14 2015-06-09 Bayer Intellectual Property Gmbh Use of fungicidal active substances for controlling mycoses on plants of the palm family
US10239841B2 (en) 2015-03-26 2019-03-26 AGC Inc. Method for producing pyrazole derivative

Families Citing this family (460)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10250110A1 (en) * 2002-10-28 2004-05-13 Bayer Cropscience Ag Thiazole (bi) cycloalkylcarboxanilides
GB0225554D0 (en) * 2002-11-01 2002-12-11 Syngenta Participations Ag Chemical compounds
WO2005063710A1 (en) * 2003-12-23 2005-07-14 Basf Aktiengesellschaft 3-trifluoromethyl picolinic acid anilides, and use thereof as fungicides
GB0418048D0 (en) * 2004-08-12 2004-09-15 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
GB0418047D0 (en) 2004-08-12 2004-09-15 Syngenta Participations Ag Fungicidal compositions
GB0422401D0 (en) 2004-10-08 2004-11-10 Syngenta Participations Ag Fungicidal compositions
UA86284C2 (en) * 2004-12-10 2009-04-10 Сингента Партисипэйшнс Аг Process for the production of anilines, use of ammonia in this process and amination process
AR053439A1 (en) * 2005-02-21 2007-05-09 Syngenta Participations Ag PROCESS FOR THE PREPARATION OF NITROBENZOLS
AR053136A1 (en) * 2005-02-21 2007-04-25 Syngenta Participations Ag PROCESOPARA THE PREPARATION OF NITROBENZOLS
AR053137A1 (en) * 2005-02-21 2007-04-25 Syngenta Participations Ag PROCESS FOR THE PREPARATION OF ANILINES
DE102005025989A1 (en) * 2005-06-07 2007-01-11 Bayer Cropscience Ag carboxamides
KR20080033280A (en) * 2005-07-18 2008-04-16 신젠타 파티서페이션즈 아게 Pyrazole-4-carboxamide derivatives as microbiocides
CN102057917B (en) 2005-07-21 2013-03-20 先正达参股股份有限公司 Fungicidal combinations
ES2328517T3 (en) * 2005-08-30 2009-11-13 Syngenta Participations Ag PROCEDURE FOR THE PRODUCTION OF ANILINES.
UA88992C2 (en) * 2005-11-15 2009-12-10 Синджента Партисипейшнс Аг Process for the production of carboxanilides
US7723371B2 (en) 2005-11-15 2010-05-25 Syngenta Crop Protection, Inc. Microbiocides
UY30090A1 (en) 2006-01-16 2007-08-31 Syngenta Participations Ag NEW INSECTICIDES
UA90209C2 (en) 2006-02-09 2010-04-12 Синджента Партисипейшнс Аг Fungicidal composition, method for controlling diseases of useful plants and method for protecting goods
DE102006042437A1 (en) 2006-03-30 2007-10-04 Bayer Cropscience Ag Agro chemical composition, useful to combat e.g. pests, comprises e.g. 2-(3-chloro-pyridin-2-yl)-5-trifluoromethyl-2H-pyrazole-3-carboxylic acid-(2-carbamoyl-4-cyano-6-methyl-phenyl)-amide, and other agents e.g. insecticides
DE102006033090A1 (en) 2006-07-14 2008-01-24 Bayer Cropscience Ag Process for preparing alkylanilides from halobenzene derivatives
DE102006033092A1 (en) * 2006-07-14 2008-01-24 Bayer Cropscience Ag Process for the preparation of unbranched in the 1'-position alkylnitrobenzenes and alkylanilines from nitrotoluene
DE102006039909A1 (en) * 2006-08-25 2008-03-13 Bayer Cropscience Ag Process for the preparation of 3-dihalomethyl-pyrazole-4-carboxylic acid derivatives
NZ589395A (en) 2007-04-25 2011-04-29 Syngenta Participations Ag Fungicidal compositions containing cyprodinil and a benzonobornene amide derivative useful for controlling diseases on plants caused by phytopathogens
EP2014642A1 (en) * 2007-07-12 2009-01-14 Syngeta Participations AG Process for the production of amines
CN101743237A (en) 2007-07-16 2010-06-16 先正达参股股份有限公司 The condensed anthranilamide derivatives as insectisides
GB0716414D0 (en) 2007-08-22 2007-10-03 Syngenta Participations Ag Novel insecticides
EP2614717A1 (en) 2007-09-20 2013-07-17 Basf Se Combinations comprising a fungicidal strain and at least one additional fungicide
EP2053045A1 (en) 2007-10-26 2009-04-29 Syngenta Participations AG Novel imidazole derivatives
EP2053044A1 (en) 2007-10-26 2009-04-29 Syngenta Participations AG Novel imidazole derivatives
GB0800762D0 (en) 2008-01-16 2008-02-27 Syngenta Participations Ag Novel pyridazine derivatives
JP2011511032A (en) * 2008-02-05 2011-04-07 ビーエーエスエフ ソシエタス・ヨーロピア Plant health composition
BRPI0905841A2 (en) * 2008-02-05 2015-06-30 Basf Se "method for improving the health of a plant, use of an amide, fungicidal mixtures, method for controlling pests and seeds"
EP2285779B1 (en) * 2008-05-08 2013-03-27 Basf Se Method for manufacturing aryl carboxamides
JP2011520828A (en) * 2008-05-14 2011-07-21 シンジェンタ リミテッド Method for producing amides
EA020599B1 (en) 2008-07-04 2014-12-30 Басф Се Fungicidal mixtures comprising substituted 1-methylpyrazol-4-ylcarboxanilides and abamectin
BRPI0923401B1 (en) 2008-12-24 2021-11-23 Syngenta Limited METHOD FOR THE PREPARATION OF ARIL AMIDES AND COMPOUND
BRPI1007937B1 (en) 2009-01-30 2017-11-21 Bayer Intellectual Property Gmbh USE OF FLUOPIRAM TO CONTROL PRIMARY EYE INFLAMMATIONS
CN102316736B (en) 2009-02-13 2016-06-01 拜耳知识产权有限责任公司 The purposes of succinate dehydrogenase inhibitors extending fruit and vegetable shelf life
WO2010103065A1 (en) 2009-03-11 2010-09-16 Basf Se Fungicidal compositions and their use
GB0904315D0 (en) 2009-03-12 2009-04-22 Syngenta Participations Ag Novel imidazole derivatives
US9012360B2 (en) 2009-03-25 2015-04-21 Bayer Intellectual Property Gmbh Synergistic combinations of active ingredients
EP2413691A2 (en) 2009-04-02 2012-02-08 Basf Se Method for reducing sunburn damage in plants
GB0908435D0 (en) 2009-05-15 2009-06-24 Syngenta Ltd Processes
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
BRPI1011983A2 (en) 2009-06-02 2015-09-22 Bayer Cropscience Ag use of succinate dehydrogenase inhibitors for sclerotinia ssp control.
WO2010142779A1 (en) 2009-06-12 2010-12-16 Basf Se Antifungal 1,2,4-triazolyl derivatives having a 5- sulfur substituent
WO2010146032A2 (en) 2009-06-16 2010-12-23 Basf Se Fungicidal mixtures
JP2012530111A (en) 2009-06-18 2012-11-29 ビーエーエスエフ ソシエタス・ヨーロピア Antibacterial 1,2,4-triazolyl derivatives having a 5-sulfur substituent
CN102803231A (en) 2009-06-18 2012-11-28 巴斯夫欧洲公司 Antifungal 1,2,4-triazolyl derivatives
WO2010146116A1 (en) 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
CN102459241A (en) 2009-06-18 2012-05-16 巴斯夫欧洲公司 Triazole compounds carrying a sulfur substituent
EP2443097A1 (en) 2009-06-18 2012-04-25 Basf Se Antifungal 1, 2, 4-triazolyl derivatives
WO2010146115A1 (en) 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
CA2764541A1 (en) 2009-06-18 2010-12-23 Basf Se Fungicidal mixtures
WO2010149758A1 (en) 2009-06-25 2010-12-29 Basf Se Antifungal 1, 2, 4-triazolyl derivatives
BR112012001001A2 (en) 2009-07-14 2016-11-16 Basf Se azole compounds of formulas i and ii, compounds of formulas i and i, compounds of formula ix, agricultural composition, use of a pharmaceutical compound, method for treating cancer or virus infections to combat zoopathogenic or humanopathogenic fungi
AU2010272872B2 (en) 2009-07-16 2014-08-28 Bayer Intellectual Property Gmbh Synergistic active substance combinations containing phenyl triazoles
BR112012001595B1 (en) 2009-07-28 2018-06-05 Basf Se PESTICIDE SUSPOEMULSION COMPOSITION, METHOD FOR PREPARING PESTICIDE SUSPOEMULSION COMPOSITION, USE OF A SUSPOEMULSION COMPOSITION, METHODS FOR COMBATING PHYTOPATHOGENIC FUNGI AND METHOD FOR TREATING SEEDS
BR112012008128B8 (en) 2009-07-31 2019-07-16 Syngenta Participations Ag processes for the preparation of a compound of the formula | and process for regioselective alkylation of a compound of the formula ||
WO2011026796A1 (en) 2009-09-01 2011-03-10 Basf Se Synergistic fungicidal mixtures comprising lactylates and method for combating phytopathogenic fungi
EP2301350A1 (en) 2009-09-16 2011-03-30 Bayer CropScience AG Use of succinate dehydrogenase inhibitors for increasing the content of desired ingredients in crops
WO2011069912A1 (en) 2009-12-07 2011-06-16 Basf Se Triazole compounds, use thereof and agents containing said compounds
BR112012013096A2 (en) 2009-12-08 2015-09-15 Basf Se agrochemical mixture to increase plant health, pesticide composition, method for improving plant health, and use of plant
WO2011069894A1 (en) 2009-12-08 2011-06-16 Basf Se Triazole compounds, use thereof, and agents containing same
WO2011069916A1 (en) 2009-12-08 2011-06-16 Basf Se Triazole compounds, use thereof as a fungicide, and agents comprising same
JP2013512934A (en) 2009-12-08 2013-04-18 ビーエーエスエフ ソシエタス・ヨーロピア Pesticide mixture
GB0922376D0 (en) 2009-12-22 2010-02-03 Syngenta Participations Ag Novel compounds
WO2011077514A1 (en) 2009-12-22 2011-06-30 三井化学アグロ株式会社 Plant disease control composition and method for controlling plant diseases by applying the composition
US20120270734A1 (en) * 2009-12-25 2012-10-25 Makoto Kurahashi Composition and method for controlling plant diseases
US8658644B2 (en) 2010-02-04 2014-02-25 Syngenta Crop Protection, Llc Pyridazine derivatives, processes for their preparation and their use as fungicides
WO2011095459A1 (en) 2010-02-04 2011-08-11 Syngenta Participations Ag Pyridazine derivatives, process for their preparation and their use as fungicides
EP2353387A1 (en) 2010-02-05 2011-08-10 Bayer CropScience AG Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant types in the sweet grass family
US20120316184A1 (en) 2010-02-24 2012-12-13 Syngenta Crop Protection Llc Novel microbicides
JP5793883B2 (en) 2010-03-03 2015-10-14 住友化学株式会社 Plant disease control composition and plant disease control method
WO2011110583A2 (en) 2010-03-10 2011-09-15 Basf Se Fungicidal mixtures comprising triazole derivatives
BR112012023500B8 (en) 2010-03-18 2018-05-22 Basf Se synergistic composition, method for controlling phytopathogenic harmful fungi and method for protecting plant propagation material from plant pathogenic fungi
EP2366289A1 (en) 2010-03-18 2011-09-21 Basf Se Synergistic fungicidal mixtures
DE102011017670A1 (en) 2010-04-29 2011-11-03 Basf Se Composition, useful e.g. for combating phytopathogenic harmful fungi, e.g. soil-borne pathogens, from classes of Plasmodiophoromycetes, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and fluxapyroxad
DE102011017541A1 (en) 2010-04-29 2011-11-10 Basf Se Composition useful for controlling phytopathogenic harmful fungi, and protecting a plant propagation material, comprises2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazole-5-carboxanilide and silthiofam
DE102011017715A1 (en) 2010-04-29 2012-03-08 Basf Se Composition useful for controlling phytopathogenic harmful fungi, and protecting plant propagation materials, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and pyrimethanil as active ingredients
DE102011017669A1 (en) 2010-04-29 2011-11-03 Basf Se Composition, useful e.g. for combating phytopathogenic harmful fungi, e.g. soil-borne pathogens, from classes of Plasmodiophoromycetes, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and fludioxonil
DE102011017716A1 (en) 2010-04-29 2011-11-03 Basf Se Composition, useful e.g. for combating phytopathogenic harmful fungi, e.g. soil-borne pathogens, from classes of Plasmodiophoromycetes, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and triticonazole
WO2011147953A1 (en) 2010-05-28 2011-12-01 Basf Se Pesticidal mixtures
US8653114B2 (en) 2010-06-03 2014-02-18 Bayer Intellectual Property Gmbh O-cyclopropylcyclohexyl-carboxanilides and their use as fungicides
EP2402343A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazole-fused bicyclic compounds
EP2402335A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402338A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402336A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402345A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazole fused bicyclic compounds
EP2402340A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402344A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazole fused bicyclic compounds
EP2401915A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402339A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402337A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
WO2012001040A1 (en) 2010-07-02 2012-01-05 Syngenta Participations Ag Novel microbiocidal dioxime ether derivatives
CA2806419C (en) 2010-07-26 2018-08-21 Lorianne Fought Use of succinate dehydrogenase inhibitors and/or respiratory chain complex iii inhibitors for improving the ratio of harmful to beneficial microorganisms
AR082405A1 (en) 2010-07-29 2012-12-05 Syngenta Participations Ag DIOXYM ETERES MICROBICIDE DERIVATIVES
WO2012016989A2 (en) 2010-08-03 2012-02-09 Basf Se Fungicidal compositions
AR083112A1 (en) 2010-10-01 2013-01-30 Syngenta Participations Ag METHOD FOR CONTROLLING PHYTOPATHOGEN DISEASES AND COMPOSITIONS USEFUL FUNGICIDES FOR SUCH CONTROL
WO2012055864A1 (en) 2010-10-27 2012-05-03 Solvay Sa Process for the preparation of pyrazole-4-carboxamides
EP2447261A1 (en) 2010-10-29 2012-05-02 Basf Se Pyrrole, furane and thiophene derivatives and their use as fungicides
EP2447262A1 (en) 2010-10-29 2012-05-02 Basf Se Pyrrole, furane and thiophene derivatives and their use as fungicides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
AR083874A1 (en) 2010-11-15 2013-03-27 Bayer Cropscience Ag 5-HALOGENOPIRAZOL (UNCLE) CARBOXAMIDS
BR112013012080A2 (en) * 2010-11-15 2016-07-19 Bayer Ip Gmbh n-aryl pyrazole (thio) carboxamides
WO2012066122A1 (en) 2010-11-18 2012-05-24 Syngenta Participations Ag 2 - (pyridin- 2 -yl) -quinazoline derivatives and their use as microbicides
WO2012069652A2 (en) 2010-11-26 2012-05-31 Syngenta Participations Ag Fungicide mixtures
EP2465350A1 (en) 2010-12-15 2012-06-20 Basf Se Pesticidal mixtures
AU2011347752A1 (en) 2010-12-20 2013-07-11 Basf Se Pesticidal active mixtures comprising pyrazole compounds
EP2481284A3 (en) 2011-01-27 2012-10-17 Basf Se Pesticidal mixtures
GB201102289D0 (en) 2011-02-09 2011-03-23 Syngenta Participations Ag New use
CN103476256B (en) 2011-02-17 2016-01-20 拜耳知识产权有限责任公司 SDHI fungicide is used for the stem canker resistance of ASR tolerance and/or the purposes of frogeye leaf spot resistant soybean kind of conventional breeding
US9510594B2 (en) 2011-02-17 2016-12-06 Bayer Intellectual Property Gmbh Use of SDHI fungicides on conventionally bred ASR-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
JP6049684B2 (en) 2011-03-23 2016-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Compositions containing polymeric ionic compounds containing imidazolium groups
BR112013026394B1 (en) * 2011-04-15 2019-12-24 Syngenta Participations Ag method of protecting a plant propagating material, a plant, a part of a plant and / or a plant organ against damage from pests
US9137997B2 (en) 2011-04-15 2015-09-22 Basf Se Use of substituted dithiine-dicarboximides for combating phytopathogenic fungi
JP2014516356A (en) 2011-04-15 2014-07-10 ビーエーエスエフ ソシエタス・ヨーロピア Use of substituted dithiine-tetracarboximides to control phytopathogenic fungi
CN103491775A (en) 2011-04-21 2014-01-01 巴斯夫欧洲公司 3, 4-disubstituted pyrrole 2,5-diones and their use as fungicides
BR112013030476A2 (en) 2011-06-17 2017-06-20 Basf Se mixture, agrochemical composition, method for controlling phytopathogenic harmful fungi and plant propagation material
JP2014523425A (en) * 2011-06-21 2014-09-11 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Production of pyrazolylcarboxyanilide
MY163323A (en) 2011-07-13 2017-09-15 Basf Agro Bv Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
WO2013010885A1 (en) 2011-07-15 2013-01-24 Basf Se Fungicidal alkyl- and aryl-substituted 2-[2-chloro-4-(dihalo-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
PE20140837A1 (en) 2011-07-15 2014-07-10 Basf Se FUNGICIDE COMPOUNDS 2- [2-CHLORO-4- (4-CHLORO-PHENOXY) -PHENYL] -1- [1,2,4] TRIAZOL-1-IL-ETHANOL ALKYL SUBSTITUTE
CN103814017A (en) 2011-07-15 2014-05-21 巴斯夫欧洲公司 Fungicidal phenylalkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
WO2013011010A1 (en) 2011-07-19 2013-01-24 Syngenta Participations Ag Fungizide mixtures
EP2744789A1 (en) 2011-08-15 2014-06-25 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-alkoxy-hexyl}-1h [1,2,4]triazole compounds
EP2744791B1 (en) 2011-08-15 2015-10-28 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-alkoxy-3-methyl-butyl}-1h-[1,2,4]triazole compounds
BR112014003412A2 (en) 2011-08-15 2017-03-14 Basf Se compounds of formula i, process, compounds of formula xii, viii and xi, agrochemical compositions, use and coated seed
EP2744790B1 (en) 2011-08-15 2016-04-27 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-alkoxy-2-alkynyl/alkenyl-ethyl}-1h-[1,2,4]triazole compounds
US20140162876A1 (en) 2011-08-15 2014-06-12 Basf Se Fungicidal substituted 1--1H-[1,2,4]triazole compounds
MX2014001671A (en) 2011-08-15 2014-05-27 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl] -2-alkynyloxy-ethyl}-1h-[1,2,4]triazole compounds.
EA201400232A1 (en) 2011-08-15 2014-07-30 Басф Се FUNGICIDAL SUBSTITUTED 1- {2- [2-HALOGEN-4- (4-HALOGENPHENOXY) PHENYL] -2-ALKOXI-2-CYCLYLETHYL} -1H- [1,2,4] TRIASOLE COMPOUNDS
EP2559688A1 (en) 2011-08-15 2013-02-20 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-butoxy-ethyl}-1h [1,2,4]triazole compounds
UY34279A (en) 2011-08-23 2013-04-05 Syngenta Participations Ag HETEROCYCLIC COMPOUNDS ACTIVE AS MICROBIOCIDES, INTERMEDIARIES, COMPOSITIONS AND USES
CN103987261A (en) 2011-09-02 2014-08-13 巴斯夫欧洲公司 Agricultural mixtures comprising arylquinazolinone compounds
LT3329919T (en) 2011-11-11 2020-02-10 Gilead Apollo, Llc Acc inhibitors and uses thereof
US9271501B2 (en) 2011-12-21 2016-03-01 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi resistant to QO inhibitors
WO2013113778A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113788A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
EP2809659A1 (en) 2012-02-03 2014-12-10 Basf Se Fungicidal pyrimidine compounds
WO2013113773A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113782A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113716A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
AR089884A1 (en) 2012-02-03 2014-09-24 Basf Se PIRIMIDINE FUNGICIDE COMPOUNDS
WO2013113719A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds ii
WO2013113776A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113781A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds i
WO2013113720A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013124250A2 (en) 2012-02-20 2013-08-29 Basf Se Fungicidal substituted thiophenes
WO2013135672A1 (en) 2012-03-13 2013-09-19 Basf Se Fungicidal pyrimidine compounds
EA201491667A1 (en) 2012-03-13 2015-03-31 Басф Се FUNGICIDE PYRIMIDINE COMPOUNDS
WO2013144223A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyrimidinylidene compounds and derivatives for combating animal pests
US9334238B2 (en) 2012-03-30 2016-05-10 Basf Se N-substituted pyridinylidenes for combating animal pests
WO2013149940A1 (en) 2012-04-02 2013-10-10 Basf Se Acrylamide compounds for combating invertebrate pests
WO2013149903A1 (en) 2012-04-03 2013-10-10 Basf Se N- substituted hetero - bicyclic furanone derivatives for combating animal
WO2013150115A1 (en) 2012-04-05 2013-10-10 Basf Se N- substituted hetero - bicyclic compounds and derivatives for combating animal pests
BR112014025484A2 (en) 2012-05-04 2017-08-08 Basf Se substituted compounds and of formula (i). agricultural composition, mixing, pest control or control methods, crop protection, seed protection, seed use, compost use and method of treating an animal.
KR20150021536A (en) 2012-05-24 2015-03-02 바스프 에스이 N-thio-anthranilamide compounds and their use as pesticides
WO2013186089A2 (en) 2012-06-14 2013-12-19 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests
JPWO2013187423A1 (en) 2012-06-15 2016-02-04 住友化学株式会社 Harmful arthropod control composition and harmful arthropod control method
BR122019015130B1 (en) 2012-06-20 2020-04-07 Basf Se pesticide mixture, composition, agricultural composition, methods for combating or controlling invertebrate pests, for the protection of growing plants or plant propagation material, for the protection of plant propagation material, use of a pesticide mixture and methods for combating harmful phytopathogenic fungi and to protect plants from harmful phytopathogenic fungi
WO2014009137A1 (en) 2012-07-13 2014-01-16 Basf Se Substituted thiadiazoles and their use as fungicides
WO2014009293A1 (en) 2012-07-13 2014-01-16 Basf Se New substituted thiadiazoles and their use as fungicides
WO2014053407A1 (en) 2012-10-01 2014-04-10 Basf Se N-thio-anthranilamide compounds and their use as pesticides
KR20150067270A (en) 2012-10-01 2015-06-17 바스프 에스이 Pesticidally active mixtures comprising anthranilamide compounds
AR093771A1 (en) 2012-10-01 2015-06-24 Basf Se METHOD TO CONTROL INSECTICIDE RESISTANT INSECTS
AR093828A1 (en) 2012-10-01 2015-06-24 Basf Se ACTIVE MIXTURES AS PESTICIDES, WHICH INCLUDE ANTRANILAMIDE COMPOUNDS
US20150250174A1 (en) 2012-10-01 2015-09-10 Basf Se Use of n-thio-anthranilamide compounds on cultivated plants
WO2014053401A2 (en) 2012-10-01 2014-04-10 Basf Se Method of improving plant health
EP2903439A1 (en) 2012-10-01 2015-08-12 Basf Se Method of controlling ryanodine-modulator insecticide resistant insects
US20150257383A1 (en) 2012-10-12 2015-09-17 Basf Se Method for combating phytopathogenic harmful microbes on cultivated plants or plant propagation material
WO2014060177A1 (en) 2012-10-16 2014-04-24 Syngenta Participations Ag Fungicidal compositions
EP2919586B1 (en) 2012-11-19 2019-03-20 Arch Wood Protection, Inc. Succinate dehydrogenase inhibitor containing compositions
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
CN102919232A (en) * 2012-11-26 2013-02-13 联保作物科技有限公司 Insecticidal disease-preventing composition and preparations thereof
US20150307459A1 (en) 2012-11-27 2015-10-29 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol Compounds and Their Use as Fungicides
EP2925732A1 (en) 2012-11-27 2015-10-07 Basf Se Substituted [1,2,4]triazole compounds
WO2014082879A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted [1,2,4]triazole compounds
EP2928873A1 (en) 2012-11-27 2015-10-14 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014086856A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a biopesticide
WO2014086850A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a fungicidal inhibitor of respiratory complex ii
WO2014086601A1 (en) 2012-12-04 2014-06-12 Basf Se New substituted 1,4-dithiine derivatives and their use as fungicides
WO2014086854A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a plant growth regulator
EP2746279A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746266A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746263A1 (en) 2012-12-19 2014-06-25 Basf Se Alpha-substituted triazoles and imidazoles
EP2746274A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole compounds
EP2746276A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
US20150307460A1 (en) 2012-12-19 2015-10-29 Basf Se Substituted Triazoles and Imidazoles and Their Use as Fungicides
WO2014095555A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746277A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746255A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2014095534A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746278A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2935237A1 (en) 2012-12-19 2015-10-28 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
WO2014095548A1 (en) 2012-12-19 2014-06-26 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
EP2746262A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds for combating phytopathogenic fungi
EP2746264A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746256A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746275A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
WO2014095381A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2745691A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted imidazole compounds and their use as fungicides
EP2934147B1 (en) 2012-12-20 2019-11-27 BASF Agro B.V. Compositions comprising a triazole compound
EP2746259A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746257A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746258A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746260A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
US20150368236A1 (en) 2012-12-27 2015-12-24 Basf Se 2-(pyridin-3-yl)-5-hetaryl-thiazole compounds carrying an imine or imine-derived substituent for combating invertebrate pests
WO2014118099A1 (en) 2013-01-30 2014-08-07 Basf Se Fungicidal naphthoquinones and derivatives
TWI614242B (en) 2013-01-31 2018-02-11 住友化學股份有限公司 Composition and method for controlling pests
WO2014124850A1 (en) 2013-02-14 2014-08-21 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EA035069B1 (en) 2013-03-20 2020-04-23 Басф Корпорейшн Synergistic compositions comprising a bacillus subtilis strain and a biopesticide
US20160270405A1 (en) 2013-03-20 2016-09-22 Basf Corporation Synergistic Compositions Comprising a Bacillus Subtilis Strain and a Pesticide
EP2783569A1 (en) 2013-03-28 2014-10-01 Basf Se Compositions comprising a triazole compound
US20160050923A1 (en) 2013-04-19 2016-02-25 Basf Se N-substituted acyl-imino-pyridine compounds and derivatives for combating animal pests
CA2911932A1 (en) 2013-05-10 2014-11-13 Nimbus Apollo, Inc. Acc inhibitors and uses thereof
JP6417402B2 (en) 2013-05-10 2018-11-07 ギリアド アポロ, エルエルシー ACC inhibitors and uses thereof
EP2813499A1 (en) 2013-06-12 2014-12-17 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2815647A1 (en) 2013-06-18 2014-12-24 Basf Se Novel strobilurin-type compounds for combating phytopathogenic fungi
EP2815649A1 (en) 2013-06-18 2014-12-24 Basf Se Fungicidal mixtures II comprising strobilurin-type fungicides
BR112015031439A2 (en) 2013-06-21 2017-07-25 Basf Se methods for pest control or control, for the treatment, prevention and protection of soybean crops, for the control and protection of soybean propagating material, for the control or control of pests and the use of a compound of formula I
HUE049733T2 (en) 2013-07-02 2020-10-28 Syngenta Participations Ag Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents
PL3022185T3 (en) 2013-07-15 2018-02-28 Basf Se Pesticide compounds
WO2015011615A1 (en) 2013-07-22 2015-01-29 Basf Corporation Mixtures comprising a trichoderma strain and a pesticide
EP2835052A1 (en) 2013-08-07 2015-02-11 Basf Se Fungicidal mixtures comprising pyrimidine fungicides
EP2839745A1 (en) 2013-08-21 2015-02-25 Basf Se Agrochemical formulations comprising a 2-ethyl-hexanol alkoxylate
WO2015036059A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
CA2923101A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
CA2922506A1 (en) 2013-09-19 2015-03-26 Basf Se N-acylimino heterocyclic compounds
EA201600326A1 (en) 2013-10-18 2016-10-31 Басф Агрокемикэл Продактс Б.В. APPLICATION OF PESTICIDAL ACTIVE DERIVATIVE CARBOXAMIDE IN METHODS OF APPLICATION AND TREATMENT OF SEEDS AND SOIL
BR112016008525B1 (en) * 2013-10-18 2022-03-22 Basf Agrochemical Products B.V AGRICULTURAL MIXTURES, METHODS FOR THE PROTECTION OF VEGETABLES FROM ATTACK OR INFESTATION, METHOD FOR THE CONTROL OF INSECTS, METHOD FOR THE PROTECTION OF VEGETABLES PROPAGATION MATERIAL, METHOD FOR THE CONTROL OF HARMFUL PHYTOPATOGENIC FUNGI, METHOD FOR THE PROTECTION OF VEGETABLES FROM PHYTOPATOGENIC FUNGI HARMFUL, USES OF AN AGRICULTURAL MIXTURE AND COMPOSITION
EP2873668A1 (en) 2013-11-13 2015-05-20 Syngenta Participations AG. Pesticidally active bicyclic heterocycles with sulphur containing substituents
CN104649973B (en) 2013-11-25 2017-02-15 沈阳中化农药化工研发有限公司 Pyrazole amide compound and application thereof
CN105873909A (en) 2013-12-12 2016-08-17 巴斯夫欧洲公司 Substituted [1,2,4]triazole and imidazole compounds
CN105829296A (en) 2013-12-18 2016-08-03 巴斯夫欧洲公司 Azole compounds carrying an imine-derived substituent
JP2017502022A (en) 2013-12-18 2017-01-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se N-substituted imino heterocyclic compounds
WO2015091945A1 (en) 2013-12-20 2015-06-25 Syngenta Participations Ag Pesticidally active substituted 5,5-bicyclic heterocycles with sulphur containing substituents
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
UA117521C2 (en) 2014-03-26 2018-08-10 Басф Се Substituted [1,2,4]triazole and imidazole compounds as fungicides
EP2924027A1 (en) 2014-03-28 2015-09-30 Basf Se Substituted [1,2,4]triazole and imidazole fungicidal compounds
EP2949649A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicide substituted [1,2,4]triazole and imidazole compounds
EP2949216A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicidal substituted alkynyl [1,2,4]triazole and imidazole compounds
EP2952512A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP3756464A1 (en) 2014-06-06 2020-12-30 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
AR100743A1 (en) 2014-06-06 2016-10-26 Basf Se COMPOUNDS OF [1,2,4] SUBSTITUTED TRIAZOL
EP2952506A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2952507A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2980078A1 (en) 2014-07-29 2016-02-03 Solvay SA Process for the preparation of pyrazole-4-carboxamides
EP2979549A1 (en) 2014-07-31 2016-02-03 Basf Se Method for improving the health of a plant
EP3204390B1 (en) 2014-10-06 2019-06-05 Basf Se Substituted pyrimidinium compounds for combating animal pests
RU2707051C2 (en) 2014-10-24 2019-11-21 Басф Се Non-ampholytic, quaternizable and water-soluble polymers for modifying surface charge of solid particles
US20180368404A1 (en) 2014-11-06 2018-12-27 Basf Se 3-pyridyl heterobicyclic compound for controlling invertebrate pests
EP3028573A1 (en) 2014-12-05 2016-06-08 Basf Se Use of a triazole fungicide on transgenic plants
WO2016124769A1 (en) 2015-02-06 2016-08-11 Basf Se Pyrazole compounds as nitrification inhibitors
BR112017015061B1 (en) 2015-02-11 2022-09-27 Basf Se PESTICIDE MIXTURE COMPRISING AN ACTIVE COMPOUND OF FORMULA IA AND BROFLANILIDE
WO2016128240A1 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound and two fungicides
US11064696B2 (en) 2015-04-07 2021-07-20 Basf Agrochemical Products B.V. Use of an insecticidal carboxamide compound against pests on cultivated plants
RU2017143177A (en) 2015-05-12 2019-06-13 Басф Се Thioether compounds as inhibitors of nitrification
WO2016198611A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino heterocyclic compounds
WO2016198613A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino compounds
WO2017016883A1 (en) 2015-07-24 2017-02-02 Basf Se Process for preparation of cyclopentene compounds
KR20180059891A (en) 2015-10-02 2018-06-05 바스프 에스이 An imino compound having a 2-chloropyrimidin-5-yl substituent as an antipruritic agent
CN108137533A (en) 2015-10-05 2018-06-08 巴斯夫欧洲公司 Prevent the pyridine compounds of plant pathogenic fungi
WO2017072013A1 (en) 2015-10-27 2017-05-04 Bayer Cropscience Aktiengesellschaft Composition comprising a safener, a fungicide and metalaxyl
EP3371177A1 (en) 2015-11-02 2018-09-12 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3165094A1 (en) 2015-11-03 2017-05-10 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
BR112018008288A2 (en) 2015-11-04 2018-10-30 Basf Se use of formula compounds, formula compounds, mixture, agrochemical composition and method for combating fungi
EP3165093A1 (en) 2015-11-05 2017-05-10 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3167716A1 (en) 2015-11-10 2017-05-17 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
BR112018009579A2 (en) 2015-11-13 2018-11-06 Basf Se compound of formula i, mixture, agrochemical composition, compound use and fungal control method
EP3373732A1 (en) 2015-11-13 2018-09-19 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10499644B2 (en) 2015-11-19 2019-12-10 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
CA3003949A1 (en) 2015-11-19 2017-05-26 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
PT3380480T (en) 2015-11-25 2023-03-14 Gilead Apollo Llc Pyrazole acc inhibitors and uses thereof
MX2018006288A (en) 2015-11-25 2018-09-07 Gilead Apollo Llc Ester acc inhibitors and uses thereof.
MX2018006287A (en) 2015-11-25 2018-09-07 Gilead Apollo Llc Triazole acc inhibitors and uses thereof.
US11076600B2 (en) 2015-11-30 2021-08-03 Basf Se Mixtures of cis-jasmone and bacillus amyloliquefaciens
BR112018010140A8 (en) 2015-12-01 2019-02-26 Basf Se compounds of formula, composition, use of a compound of formula, method for combating phytopathogenic fungi and seed
CN108290840A (en) 2015-12-01 2018-07-17 巴斯夫欧洲公司 Pyridine compounds as fungicide
EP3205208A1 (en) 2016-02-09 2017-08-16 Basf Se Mixtures and compositions comprising paenibacillus strains or fusaricidins and chemical pesticides
US20190077809A1 (en) 2016-03-09 2019-03-14 Basf Se Spirocyclic Derivatives
BR112018017034A2 (en) 2016-03-10 2018-12-26 Basf Se mixtures and their use, agrochemical composition, method of controlling phytopathogenic weeds and plant propagation material
BR112018068042A2 (en) 2016-03-11 2019-01-08 Basf Se methods for controlling plant pests, plant propagating material and use of one or more compounds of formula i
WO2017167832A1 (en) 2016-04-01 2017-10-05 Basf Se Bicyclic compounds
US10986839B2 (en) 2016-04-11 2021-04-27 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2017198588A1 (en) 2016-05-18 2017-11-23 Basf Se Capsules comprising benzylpropargylethers for use as nitrification inhibitors
KR20190033515A (en) 2016-07-29 2019-03-29 에이지씨 가부시키가이샤 Preparation of fluorinated pyrazolecarboxylic acid halides
WO2018050421A1 (en) 2016-09-13 2018-03-22 Basf Se Fungicidal mixtures i comprising quinoline fungicides
WO2018054723A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018054721A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018054711A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018065182A1 (en) 2016-10-04 2018-04-12 Basf Se Reduced quinoline compounds as antifuni agents
WO2018073110A1 (en) 2016-10-20 2018-04-26 Basf Se Quinoline compounds as fungicides
CN110291072A (en) 2016-12-16 2019-09-27 巴斯夫欧洲公司 Agricultural chemical compound
BR112019011293A2 (en) 2016-12-19 2019-10-08 Basf Se compounds of formula I, intermediates, agrochemical composition, use and method for combating phytopathogenic harmful fungi
EP3339297A1 (en) 2016-12-20 2018-06-27 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3338552A1 (en) 2016-12-21 2018-06-27 Basf Se Use of a tetrazolinone fungicide on transgenic plants
BR112019014061A2 (en) 2017-01-23 2020-02-04 Basf Se compounds of formula i, intermediates b, intermediates c, intermediates ii and intermediates d, composition, use, method to combat phytopathogenic fungi, seed and process for the synthesis of the compounds of formula i
WO2018149754A1 (en) 2017-02-16 2018-08-23 Basf Se Pyridine compounds
BR112019015338B1 (en) 2017-02-21 2023-03-14 Basf Se COMPOUNDS OF FORMULA I, AGROCHEMICAL COMPOSITION, COATED SEED, USE OF THE COMPOUNDS AND METHOD TO COMBAT HARMFUL PHYTOPATHOGENIC FUNGI
WO2018162312A1 (en) 2017-03-10 2018-09-13 Basf Se Spirocyclic derivatives
WO2018166855A1 (en) 2017-03-16 2018-09-20 Basf Se Heterobicyclic substituted dihydroisoxazoles
ES2950451T3 (en) 2017-03-28 2023-10-10 Basf Se Pesticide compounds
MX2019011785A (en) 2017-03-31 2019-11-18 Basf Se Process for preparing chiral 2,3-dihydrothiazolo[3,2-a]pyrimidin- 4-ium compounds.
EP3606914A1 (en) 2017-04-06 2020-02-12 Basf Se Pyridine compounds
CA3056347A1 (en) 2017-04-07 2018-10-11 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2018188962A1 (en) 2017-04-11 2018-10-18 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
MX2019012468A (en) 2017-04-20 2019-12-11 Pi Industries Ltd Novel phenylamine compounds.
WO2018192793A1 (en) 2017-04-20 2018-10-25 Basf Se Substituted rhodanine derivatives
JP2020517672A (en) 2017-04-26 2020-06-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Substituted succinimide derivatives as pesticides
EP3618629A1 (en) 2017-05-02 2020-03-11 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
CN110621669A (en) 2017-05-04 2019-12-27 巴斯夫欧洲公司 Substituted 5-haloalkyl-5-hydroxyisoxazoles for controlling phytopathogenic fungi
WO2018202491A1 (en) 2017-05-04 2018-11-08 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2018202737A1 (en) 2017-05-05 2018-11-08 Basf Se Fungicidal mixtures comprising triazole compounds
JP2020519607A (en) 2017-05-10 2020-07-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Bicyclic pesticide compounds
WO2018210661A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2018210659A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2018210658A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2018210660A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
EP3625215B1 (en) 2017-05-18 2023-09-13 PI Industries Ltd Formimidamidine compounds useful against phytopathogenic microorganisms
US11737463B2 (en) 2017-05-30 2023-08-29 Basf Se Pyridine and pyrazine compounds
WO2018219797A1 (en) 2017-06-02 2018-12-06 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2018224455A1 (en) 2017-06-07 2018-12-13 Basf Se Substituted cyclopropyl derivatives
CN110770235A (en) 2017-06-16 2020-02-07 巴斯夫欧洲公司 Mesoionic imidazolium compounds and derivatives for combating animal pests
US20200190043A1 (en) 2017-06-19 2020-06-18 Basf Se 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi
WO2018234202A1 (en) 2017-06-19 2018-12-27 Basf Se Substituted pyrimidinium compounds and derivatives for combating animal pests
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se Substituted cyclopropyl derivatives
WO2019002158A1 (en) 2017-06-30 2019-01-03 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019025250A1 (en) 2017-08-04 2019-02-07 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019038042A1 (en) 2017-08-21 2019-02-28 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
EP3915379A1 (en) 2017-08-29 2021-12-01 Basf Se Pesticidal mixtures
WO2019042932A1 (en) 2017-08-31 2019-03-07 Basf Se Method of controlling rice pests in rice
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
US11076596B2 (en) 2017-09-18 2021-08-03 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019057660A1 (en) 2017-09-25 2019-03-28 Basf Se Indole and azaindole compounds with substituted 6-membered aryl and heteroaryl rings as agrochemical fungicides
US11399543B2 (en) 2017-10-13 2022-08-02 Basf Se Substituted 1,2,3,5-tetrahydroimidazo[1,2-a]pyrimidiniumolates for combating animal pests
EP3713936B1 (en) 2017-11-23 2021-10-20 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019115511A1 (en) 2017-12-14 2019-06-20 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
WO2019115343A1 (en) 2017-12-15 2019-06-20 Basf Se Fungicidal mixture comprising substituted pyridines
EP3728204A1 (en) 2017-12-20 2020-10-28 PI Industries Ltd. Fluoralkenyl compounds, process for preparation and use thereof
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
CN111491925B (en) 2017-12-21 2023-12-29 巴斯夫欧洲公司 Pesticidal compounds
UA127764C2 (en) 2018-01-09 2023-12-27 Басф Се Silylethynyl hetaryl compounds as nitrification inhibitors
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
EP3746439A2 (en) 2018-01-30 2020-12-09 PI Industries Ltd. Oxadiazoles for use in controlling phytopathogenic fungi
WO2019150311A1 (en) 2018-02-02 2019-08-08 Pi Industries Ltd. 1-3 dithiol compounds and their use for the protection of crops from phytopathogenic microorganisms
WO2019154665A1 (en) 2018-02-07 2019-08-15 Basf Se New pyridine carboxamides
US20200354321A1 (en) 2018-02-07 2020-11-12 Basf Se New pyridine carboxamides
EP3530118A1 (en) 2018-02-26 2019-08-28 Basf Se Fungicidal mixtures
EP3530116A1 (en) 2018-02-27 2019-08-28 Basf Se Fungicidal mixtures comprising xemium
CA3089381A1 (en) 2018-02-28 2019-09-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
CA3093781A1 (en) 2018-02-28 2019-09-06 Basf Se Use of n-functionalized alkoxy pyrazole compounds as nitrification inhibitors
BR112020015467A2 (en) 2018-02-28 2020-12-08 Basf Se FUNGICIDAL MIXTURES, FUNGICIDAL COMPOSITION, METHODS TO CONTROL PHYTOPATOGENIC FUNGI, TO IMPROVE PLANT HEALTH AND TO PROTECT PLANT PROPAGATION MATERIAL AGAINST PHYTOPHOGENIC FUNGI AND PLANT PROPAGATION MATERIAL
KR20200128052A (en) 2018-02-28 2020-11-11 바스프 에스이 Use of alkoxypyrazoles as nitrification inhibitors
CN111801014B (en) 2018-03-01 2022-05-27 巴斯夫农业公司 Fungicidal compositions of cloroxen
EP3533331A1 (en) 2018-03-02 2019-09-04 Basf Se Fungicidal mixtures comprising pydiflumetofen
EP3533333A1 (en) 2018-03-02 2019-09-04 Basf Se Fungicidal mixtures comprising pydiflumetofen
EP3536150A1 (en) 2018-03-06 2019-09-11 Basf Se Fungicidal mixtures comprising fluxapyroxad
BR112020018403A2 (en) 2018-03-09 2020-12-22 Pi Industries Ltd. HETEROCYCLIC COMPOUNDS WITH FUNGICIDES
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019185413A1 (en) 2018-03-27 2019-10-03 Basf Se Pesticidal substituted cyclopropyl derivatives
WO2019202459A1 (en) 2018-04-16 2019-10-24 Pi Industries Ltd. Use of 4-substituted phenylamidine compounds for controlling disease rust diseases in plants
WO2019219464A1 (en) 2018-05-15 2019-11-21 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
CN112423590B (en) 2018-05-15 2022-07-08 巴斯夫欧洲公司 Mixtures and use comprising benzpyrimoxan and oxazosulfyl and methods for their application
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
DK3826982T3 (en) 2018-07-23 2024-01-22 Basf Se USE OF A SUBSTITUTED THIAZOLIDE COMPOUND AS A NITRIFICATION INHIBITOR
CN112424148B (en) 2018-07-23 2023-08-11 巴斯夫欧洲公司 Use of substituted 2-thiazolines as nitrification inhibitors
WO2020035826A1 (en) 2018-08-17 2020-02-20 Pi Industries Ltd. 1,2-dithiolone compounds and use thereof
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
EP3628157A1 (en) 2018-09-28 2020-04-01 Basf Se Method of controlling insecticide resistant insects and virus transmission to plants
EP3628156A1 (en) 2018-09-28 2020-04-01 Basf Se Method for controlling pests of sugarcane, citrus, rapeseed, and potato plants
BR112021004526A2 (en) 2018-09-28 2021-06-08 Basf Se use of compost, methods of plant protection, control or combating invertebrate pests, and seed and seed treatment
US20210392895A1 (en) 2018-10-01 2021-12-23 Pi Industries Limited Novel oxadiazoles
MX2021003430A (en) 2018-10-01 2021-06-15 Pi Industries Ltd Oxadiazoles as fungicides.
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
WO2020095161A1 (en) 2018-11-05 2020-05-14 Pi Industries Ltd. Nitrone compounds and use thereof
EP3887357A1 (en) 2018-11-28 2021-10-06 Basf Se Pesticidal compounds
EP3670501A1 (en) 2018-12-17 2020-06-24 Basf Se Substituted [1,2,4]triazole compounds as fungicides
US20230031024A1 (en) 2018-12-18 2023-02-02 Basf Se Substituted pyrimidinium compounds for combating animal pests
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
BR112021020232A2 (en) 2019-04-08 2021-12-07 Pi Industries Ltd Innovative Oxadiazole Compounds to Control or Prevent Phytopathogenic Fungi
CN109970652A (en) * 2019-04-08 2019-07-05 天津大学 1- methyl -3- list methyl fluoride pyrazoles -4- benzoic acid amides compound and preparation method thereof, purposes
KR20210150405A (en) 2019-04-08 2021-12-10 피아이 인더스트리스 엘티디. Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi
MX2021012325A (en) 2019-04-08 2022-05-18 Pi Industries Ltd Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi.
EP3730489A1 (en) 2019-04-25 2020-10-28 Basf Se Heteroaryl compounds as agrochemical fungicides
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
US20220202017A1 (en) 2019-05-29 2022-06-30 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
KR20220017940A (en) 2019-06-06 2022-02-14 바스프 에스이 fungicidal N-(pyrid-3-yl)carboxamide
WO2020244969A1 (en) 2019-06-06 2020-12-10 Basf Se Pyridine derivatives and their use as fungicides
WO2020244970A1 (en) 2019-06-06 2020-12-10 Basf Se New carbocyclic pyridine carboxamides
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
AR119774A1 (en) 2019-08-19 2022-01-12 Pi Industries Ltd OXADIAZOLE COMPOUNDS CONTAINING A 5-MEMBER HETEROAROMATIC RING TO CONTROL OR PREVENT PHYTOPATHOGENIC FUNGI
WO2021063736A1 (en) 2019-10-02 2021-04-08 Basf Se Bicyclic pyridine derivatives
WO2021063735A1 (en) 2019-10-02 2021-04-08 Basf Se New bicyclic pyridine derivatives
CN113615693B (en) * 2019-11-05 2022-11-29 山东康惠植物保护有限公司 Anti-anthracnose respiratory inhibitor
AR120374A1 (en) 2019-11-08 2022-02-09 Pi Industries Ltd OXADIAZOLE COMPOUNDS CONTAINING FUSED HETEROCYCYL RINGS TO CONTROL OR PREVENT PHYTOPATHOGENIC FUNGI
JP2023507527A (en) 2019-12-23 2023-02-22 ビーエーエスエフ ソシエタス・ヨーロピア Enzyme-enhanced root uptake of pesticide compounds
WO2021170463A1 (en) 2020-02-28 2021-09-02 BASF Agro B.V. Methods and uses of a mixture comprising alpha-cypermethrin and dinotefuran for controlling invertebrate pests in turf
BR112022017563A2 (en) 2020-03-04 2022-10-18 Basf Se USE OF COMPOUNDS, AGROCHEMICAL COMPOSITION AND METHOD TO FIGHT HARMFUL PHYTOPATOGENIC FUNGI
WO2021209360A1 (en) 2020-04-14 2021-10-21 Basf Se Fungicidal mixtures comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
EP4143167B1 (en) 2020-04-28 2024-05-15 Basf Se Pesticidal compounds
EP3903583A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii
EP3903584A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv
EP3903582A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii
EP3903581A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i
EP3909950A1 (en) 2020-05-13 2021-11-17 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3945089A1 (en) 2020-07-31 2022-02-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v
WO2021249800A1 (en) 2020-06-10 2021-12-16 Basf Se Substituted [1,2,4]triazole compounds as fungicides
EP3939961A1 (en) 2020-07-16 2022-01-19 Basf Se Strobilurin type compounds and their use for combating phytopathogenic fungi
WO2022017836A1 (en) 2020-07-20 2022-01-27 BASF Agro B.V. Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol
EP3970494A1 (en) 2020-09-21 2022-03-23 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii
AR123264A1 (en) 2020-08-18 2022-11-16 Pi Industries Ltd NEW HETEROCYCLIC COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
UY39424A (en) 2020-09-15 2022-03-31 Pi Industries Ltd NEW PICOLINAMIDE COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
AR123501A1 (en) 2020-09-15 2022-12-07 Pi Industries Ltd NEW PICOLINAMIDE COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
AR123594A1 (en) 2020-09-26 2022-12-21 Pi Industries Ltd NEMATICIDAL COMPOUNDS AND THEIR USE
WO2022089969A1 (en) 2020-10-27 2022-05-05 BASF Agro B.V. Compositions comprising mefentrifluconazole
WO2022090069A1 (en) 2020-11-02 2022-05-05 Basf Se Compositions comprising mefenpyr-diethyl
WO2022090071A1 (en) 2020-11-02 2022-05-05 Basf Se Use of mefenpyr-diethyl for controlling phytopathogenic fungi
WO2022106304A1 (en) 2020-11-23 2022-05-27 BASF Agro B.V. Compositions comprising mefentrifluconazole
EP4018830A1 (en) 2020-12-23 2022-06-29 Basf Se Pesticidal mixtures
AR124796A1 (en) 2021-02-02 2023-05-03 Basf Se SYNERGIC ACTION OF DCD AND ALCOXYPYRAZOLES AS INHIBITORS OF NITRIFICATION
EP4043444A1 (en) 2021-02-11 2022-08-17 Basf Se Substituted isoxazoline derivatives
AR125764A1 (en) 2021-05-05 2023-08-09 Pi Industries Ltd NEW CONDENSED HETEROCYCLIC COMPOUNDS TO COMBAT PHYTOPATHOGENOUS FUNGI
EP4337012A1 (en) 2021-05-11 2024-03-20 Basf Se Fungicidal mixtures comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
IL308534A (en) 2021-05-18 2024-01-01 Basf Se New substituted pyridines as fungicides
CA3218900A1 (en) 2021-05-18 2022-11-24 Wassilios Grammenos New substituted pyridines as fungicides
CA3219311A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted quinolines as fungicides
CN117355504A (en) 2021-05-21 2024-01-05 巴斯夫欧洲公司 Use of ethynyl pyridine compounds as nitrification inhibitors
CN117440946A (en) 2021-05-21 2024-01-23 巴斯夫欧洲公司 Use of N-functionalized alkoxypyrazole compounds as nitrification inhibitors
AR125925A1 (en) 2021-05-26 2023-08-23 Pi Industries Ltd FUNGICIDAL COMPOSITION CONTAINING OXADIAZOLE COMPOUNDS
EP4094579A1 (en) 2021-05-28 2022-11-30 Basf Se Pesticidal mixtures comprising metyltetraprole
EP4358725A1 (en) 2021-06-21 2024-05-01 Basf Se Metal-organic frameworks with pyrazole-based building blocks
EP4119547A1 (en) 2021-07-12 2023-01-18 Basf Se Triazole compounds for the control of invertebrate pests
CN117794908A (en) 2021-08-02 2024-03-29 巴斯夫欧洲公司 (3-quinolinyl) -quinazolines
WO2023011958A1 (en) 2021-08-02 2023-02-09 Basf Se (3-pirydyl)-quinazoline
EP4140986A1 (en) 2021-08-23 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4140995A1 (en) 2021-08-27 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4151631A1 (en) 2021-09-20 2023-03-22 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2023072671A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix
WO2023072670A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x
EP4194453A1 (en) 2021-12-08 2023-06-14 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4198023A1 (en) 2021-12-16 2023-06-21 Basf Se Pesticidally active thiosemicarbazone compounds
AR127972A1 (en) 2021-12-17 2024-03-13 Pi Industries Ltd NOVEL FUSED SUBSTITUTED BICYCLIC CARBOXAMIDE PYRIDINE COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
EP4238971A1 (en) 2022-03-02 2023-09-06 Basf Se Substituted isoxazoline derivatives
CN114751879B (en) * 2022-04-18 2023-06-23 中原工学院 Furanyl double-long-chain quaternary ammonium salt compound, preparation method and application thereof
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
WO2024028243A1 (en) 2022-08-02 2024-02-08 Basf Se Pyrazolo pesticidal compounds
EP4342885A1 (en) 2022-09-20 2024-03-27 Basf Se N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides
EP4361126A1 (en) 2022-10-24 2024-05-01 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv
WO2024104813A1 (en) 2022-11-14 2024-05-23 Basf Se Fungicidal mixture comprising substituted pyridines
WO2024104815A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104823A1 (en) 2022-11-16 2024-05-23 Basf Se New substituted tetrahydrobenzoxazepine
WO2024104822A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted tetrahydrobenzodiazepine as fungicides
WO2024104818A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104814A1 (en) 2022-11-16 2024-05-23 Basf Se Fungicidal mixture comprising substituted pyridines
EP4389210A1 (en) 2022-12-21 2024-06-26 Basf Se Heteroaryl compounds for the control of invertebrate pests

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330995A (en) * 1991-11-22 1994-07-19 Basf Aktiengesellschaft Anilide derivatives and their use for combating botrytis
US5438070A (en) * 1992-09-21 1995-08-01 Basf Aktiengesellschaft Carboxanilides, their preparation and compositions containing them for controlling harmful fungi
US5498624A (en) * 1995-05-03 1996-03-12 Monsanto Company Selected pyrazolyl derivatives
US7618952B2 (en) * 2003-09-19 2009-11-17 Syngenta Crop Protection, Inc. Silicon compounds with microbiocidal activity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129171A (en) * 1988-11-08 1990-05-17 Nissan Chem Ind Ltd Pyrazolecarboxanilide derivative and agent for controlling harmful life
PH27357A (en) * 1989-09-22 1993-06-21 Fujisawa Pharmaceutical Co Pyrazole derivatives and pharmaceutical compositions comprising the same
US5223526A (en) * 1991-12-06 1993-06-29 Monsanto Company Pyrazole carboxanilide fungicides and use
RU94030477A (en) * 1991-12-06 1997-04-27 Монсанто Компани (US) Pyrazolecarboxanilide fungicides, composition and a method of inhibition of fungal diseases
GB0001447D0 (en) * 2000-01-21 2000-03-08 Novartis Ag Organic compounds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330995A (en) * 1991-11-22 1994-07-19 Basf Aktiengesellschaft Anilide derivatives and their use for combating botrytis
US5480897A (en) * 1991-11-22 1996-01-02 Basf Aktiengesellschaft Anilide derivatives and their use for combating botrytis
US5556988A (en) * 1991-11-22 1996-09-17 Basf Aktiengesellschaft Anilide derivatives and their use for combating botrytis
US5438070A (en) * 1992-09-21 1995-08-01 Basf Aktiengesellschaft Carboxanilides, their preparation and compositions containing them for controlling harmful fungi
US5498624A (en) * 1995-05-03 1996-03-12 Monsanto Company Selected pyrazolyl derivatives
US7618952B2 (en) * 2003-09-19 2009-11-17 Syngenta Crop Protection, Inc. Silicon compounds with microbiocidal activity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9049865B2 (en) 2010-04-14 2015-06-09 Bayer Intellectual Property Gmbh Use of fungicidal active substances for controlling mycoses on plants of the palm family
US10239841B2 (en) 2015-03-26 2019-03-26 AGC Inc. Method for producing pyrazole derivative

Also Published As

Publication number Publication date
CR20120481A (en) 2012-11-16
CR7454A (en) 2008-10-27
WO2003074491A1 (en) 2003-09-12
DE60314600T2 (en) 2007-12-27
DK1480955T3 (en) 2007-10-29
JP2005532271A (en) 2005-10-27
PL372493A1 (en) 2005-07-25
ECSP045276A (en) 2004-10-26
IL163692A0 (en) 2005-12-18
SI1480955T1 (en) 2007-12-31
ZA200406395B (en) 2005-11-30
HK1079785A1 (en) 2006-04-13
US7951752B2 (en) 2011-05-31
ATE365719T1 (en) 2007-07-15
JP4511191B2 (en) 2010-07-28
NL350085I2 (en) 2018-03-20
PL215167B1 (en) 2013-10-31
CO5611120A2 (en) 2006-02-28
EP1480955A1 (en) 2004-12-01
AU2003208490A1 (en) 2003-09-16
CA2477931A1 (en) 2003-09-12
CA2477931C (en) 2011-02-01
BR0308230A (en) 2004-12-28
FR12C0019I1 (en) 2012-04-27
CN1639128A (en) 2005-07-13
CY1106867T1 (en) 2012-09-26
AR087049A2 (en) 2014-02-12
TW200408626A (en) 2004-06-01
MXPA04008314A (en) 2004-11-26
HUS1800002I1 (en) 2018-02-28
EG23424A (en) 2005-07-12
BR0308230B1 (en) 2014-05-20
AR038717A1 (en) 2005-01-26
RU2004129580A (en) 2005-04-10
PT1480955E (en) 2007-09-28
KR100818540B1 (en) 2008-04-01
EP1829865A2 (en) 2007-09-05
EP1480955B1 (en) 2007-06-27
KR20040091090A (en) 2004-10-27
EP1829865A3 (en) 2007-09-19
FR12C0019I2 (en) 2013-08-16
US20050221989A1 (en) 2005-10-06
DE60314600D1 (en) 2007-08-09
RU2323931C2 (en) 2008-05-10
TWI332820B (en) 2010-11-11
CN1293058C (en) 2007-01-03
HK1079785B (en) 2007-08-10
ES2288597T3 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
US7951752B2 (en) O-cyclopropyl-carboxanilides and their use as fungicides
US7241721B2 (en) Biphenyl derivatives and their use as fungicides
US20040138265A1 (en) Carboxamides as fungicides in agriculture
US8357816B2 (en) Chemical compounds
US7312179B2 (en) Cyclopropyl-thienyl-carboxamide as fungicides
US7618952B2 (en) Silicon compounds with microbiocidal activity
EP1360176B1 (en) Pyrrolecarboxamides for use as fungicides
EP1620431B1 (en) 3-carbonylaminothiophenes and their use as fungicides
AU2003208490B2 (en) O-cyclopropyl-carboxanilides and their use as fungicides
AU2002250905A1 (en) Pyrrolecarboxamides for the use as fungicides

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNGENTA CROP PROTECTION LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EHRENFREUND, JOSEF;TOBLER, HANS;WALTER, HARALD;SIGNING DATES FROM 20040906 TO 20040930;REEL/FRAME:026392/0235

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION