US20090178762A1 - Substrate processing apparatus - Google Patents
Substrate processing apparatus Download PDFInfo
- Publication number
- US20090178762A1 US20090178762A1 US12/382,402 US38240209A US2009178762A1 US 20090178762 A1 US20090178762 A1 US 20090178762A1 US 38240209 A US38240209 A US 38240209A US 2009178762 A1 US2009178762 A1 US 2009178762A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- heating
- processing apparatus
- boat
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 82
- 238000010438 heat treatment Methods 0.000 claims abstract description 52
- 230000008878 coupling Effects 0.000 claims abstract description 18
- 238000010168 coupling process Methods 0.000 claims abstract description 18
- 238000005859 coupling reaction Methods 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 5
- 230000020169 heat generation Effects 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 57
- 239000007789 gas Substances 0.000 description 28
- 230000005855 radiation Effects 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000003028 elevating effect Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000036544 posture Effects 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68792—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
Definitions
- the present invention relates to a substrate processing apparatus applying processing such as generating a thin film, diffusing impurities, annealing, and etching, to a substrate such as a silicon wafer.
- a batch type substrate processing apparatus for processing substrates of required numbers at once is given as an example of the substrate processing apparatus for processing the substrate such as a silicon wafer and a glass substrate.
- the batch type substrate processing apparatus for example, a vertical substrate processing apparatus has a vertical processing furnace, and the required processing is applied to the substrate in such a manner that the substrate is contained in a processing chamber of this processing furnace, and the processing chamber is exhausted while heating the substrate and introducing processing gas into the processing chamber, in a state that the processing chamber is sealed hermetically.
- the substrate to be processed is held in multiple stages in a horizontal posture by a substrate holding means (boat), and inserting and releasing the substrate into/from this processing chamber by the boat is performed through a furnace port at the lower end of the processing furnace.
- a substrate holding means boat
- FIG. 8 shows a sectional face of the lower end part of this processing furnace 1 .
- a short tube-like metal manifold 3 is provided at the lower side of a heater base 2 , a quartz reaction tube 4 is airtightly erected on an upper end of this manifold 3 , and a cylindrical heating apparatus 5 is erected on the heater base 2 concentrically with the aforementioned reaction tube 4 .
- a processing chamber is formed inside the reaction tube 4 .
- a furnace port 6 is formed at a lower end opening part of the manifold 3 , and this furnace port 6 is airtightly sealed by a seal cap 7 .
- This seal cap 7 is attached to an elevating platform 8 which goes up and down by a boat elevator not shown, and a rotating means 9 is airtightly provided in the seal cap 7 .
- a boat seat 12 is provided at the upper end of a rotation shaft 11 of the rotating means 9 , and a boat 13 made of quartz is placed on this boat seat 12 .
- This boat 13 has a heat insulating part 14 of a lower part and a substrate holding part 15 placed on this heat insulating part 14 , and required numbers of heat insulating boards 16 made of quartz or SiC are loaded on the heat insulating part 14 .
- a wafer 17 to be processed is loaded on this substrate holding part 15 in a horizontal posture at a specified pitch.
- processing is applied to the wafer 17 , a specified processing is performed in such a manner that as shown in the figure, the wafer 17 is heated by the heating apparatus 5 , with the furnace port 6 airtightly sealed by the seal cap 7 , and the processing chamber is exhausted from an exhaust pipe not shown, while introducing the processing gas by a processing gas introducing nozzle 19 .
- the temperature in the surface of the wafer needs to be constant.
- heat radiation occurs from the upper end part of the heating apparatus 5 or from the furnace port 6 , and particularly, the periphery of the manifold 3 is not surrounded by the heating apparatus 5 , and further the manifold 3 is made of metal, thus increasing the heat radiation from the furnace port 6 .
- the heat insulating part 14 is provided in the boat 13 , and the heat insulating board 16 is provided for preventing the heat radiation. Further, in order to prevent the heat radiation from the seal cap, a heater 18 is sometimes provided between the seal cap 7 and the elevating platform 8 .
- the heating apparatus 5 has a temperature distribution in which the temperature is decreased from the peripheral edge of the wafer to the center thereof.
- a conventional substrate processing apparatus by providing the heat insulating part 14 , the heat radiation from the furnace port 6 is prevented.
- the heat radiation itself can not be prevented, and therefore a dummy wafer is loaded on the lower part of the substrate holding part 15 , and the wafer is processed by a uniformly heating member in the processing chamber.
- the uniformly heating member uniformity among wafers and uniformity in the wafer surfaces are guaranteed.
- an object of the present invention is to prevent heat radiation from a furnace port in a processing furnace, increase a uniform temperature length of a processing chamber and improve uniformity of a temperature distribution in a surface of a substrate, and improve a processing quality and yield.
- the present invention relates to a substrate processing apparatus including:
- a gas supply/exhaust part that supplies or exhausts a required gas into the processing chamber
- a first heating part provided in the substrate holding part so as to face at least an upper surface of each substrate held by the substrate holding part
- a power feeder that supplies power to the first heating part by electromagnetic coupling, in a non-contact state.
- FIG. 1 is an outlined explanatory view of a substrate processing apparatus according to an embodiment of the present invention.
- FIG. 2 is a sectional view showing an example of a processing furnace used in this substrate processing apparatus.
- FIG. 3 is a sectional view showing a boat used in a first embodiment of the present invention.
- FIG. 4 is a view shown by an arrow taken along A-A of FIG. 3 .
- FIG. 5 is a sectional view showing the boat used in a second embodiment of the present invention.
- FIG. 6 is a sectional view showing the boat used in a third embodiment of the present invention.
- FIG. 7 is an explanatory view of a power feeder and a power receiver in a third embodiment of the present invention.
- FIG. 8 is a sectional view showing a lower part of the processing furnace of a conventional example.
- FIG. 1 An outline of a substrate processing apparatus to which the present invention is applied will be explained by using FIG. 1 .
- a cassette stage 23 as a container transferring means for transferring a cassette 22 as a substrate storage container between the substrate processing apparatus and an external carrying apparatus not shown is provided at a front side in a case 21
- a cassette elevator 24 as an elevating means is provided at a rear side of this cassette stage 23
- a cassette carrying machine 25 as a cassette carrying means is attached to this cassette elevator 24
- a cassette shelf 26 as a storing means of the cassette 22 is provided at the rear side of the cassette elevator 24
- a spare cassette shelf 27 as the cassette storing means is provided in an upper part of the cassette stage 23 .
- a fan and a clean unit 28 constituted of a dust-proof filter are provided in an upper part of this spare cassette shelf 27 , so that clean air is circulated into the case 21 , for example, into a region where the cassette 22 is carried.
- a processing furnace 29 is provided at the rear upper part of the case 21 , and a boat elevator 33 as an elevating means for inserting and releasing a boat 32 as a substrate holding means for holding a wafer 17 as a substrate in multiple stages in a horizontal posture into/from the processing furnace 29 , is provided in the lower part of this processing furnace 29 .
- a seal cap 35 as a lid for sealing a furnace port of the processing furnace 29 is attached to the tip part of an elevating member 34 attached to this boat elevator 33 .
- the boat 32 is vertically supported by this seal cap 35 , and this boat 32 holds the wafer 17 as will be described later in multiple stages in a horizontal posture.
- a transferring elevator 36 as an elevating means is provided between the boat elevator 33 and the cassette shelf 26 , and a wafer transferring machine 37 as a substrate transferring means is attached to the transferring elevator 36 .
- This wafer transferring machine 37 has substrate carrying plates 40 of required numbers (such as five) on which the substrate is placed, and these substrate carrying plates 40 are rotatably and forward/backward movably formed.
- a furnace port shutter 38 as a shielding member having an opening/closing mechanism for shielding a furnace port of the processing furnace 29 is provided in the vicinity of the lower part of the processing furnace 29 .
- a clean unit 30 constituted of the fan and the dust-proof filter is provided on the side face of the case 21 that faces the transferring elevator 36 , and the clean air sent from this clean unit 30 circulates through the region including the wafer transferring machine 37 , the boat 32 , and the boat elevator 33 , and thereafter is exhausted outside of the case 21 by an exhaust device not shown.
- a controller 41 performs a driving control of the cassette carrying machine 25 , the wafer transferring machine 37 , and the boat elevator 33 , etc, and a heating control of the processing furnace 29 .
- the cassette 22 on which the wafer 17 is loaded in a vertical posture, is carried into the cassette stage 23 from the external carrying apparatus not shown, and is rotated at 90° on the cassette stage 23 , so that the wafer 17 takes a horizontal posture. Further, the cassette 22 is carried from the cassette stage 23 to the cassette shelf 26 or the spare cassette shelf 27 , by a cooperation of an elevating action and a traversing action of the cassette elevator 24 , advancing/retreating action and a rotating action of the cassette carrying machine 25 .
- the cassette shelf 26 has a transferring shelf 39 in which the cassette 22 , being a carrying object of the wafer transferring machine 37 is stored, and the cassette 22 provided for transferring of the wafer is transferred to the transferring shelf 39 by the cassette elevator 24 and the cassette carrying machine 25 .
- the wafer transferring machine 37 transfers the wafer 17 to the boat 32 in a descent state from the transferring shelf 39 by the cooperation of the advancement/retreating action and the rotating action of the substrate carrying plates 40 and the elevating action of the transferring elevator 36 .
- the boat 32 When wafers 17 of required numbers are transferred to the boat 32 , the boat 32 is lifted by the boat elevator 33 , and this boat 32 is inserted into the processing furnace 29 . With the boat 32 completely inserted, the processing furnace 29 is airtightly sealed by the seal cap 35 .
- the wafer 17 is heated and the processing gas is supplied into the processing furnace 29 . Then, processing is applied to the wafer 17 , while exhausting an atmosphere in the processing chamber 46 as will be described later from an exhaust pipe 55 as will be described later by the exhaust devise not shown.
- FIG. 2 An example of the processing furnace 29 used in the above-described substrate processing apparatus will be explained by using FIG. 2 .
- the processing furnace 29 has a heater 31 as a heating mechanism.
- This heater 31 is formed in a cylindrical shape, and is supported by a heater base 42 as a holding plate, thereby being set vertically.
- a process tube 43 as a reaction tube is disposed concentrically with the heater 31 , in the inside of the heater 31 .
- This process tube 43 is constituted of an inner tube 44 as an internal reaction tube and an outer tube 45 as an external reaction tube provided outside the inner tube 44 .
- the inner tube 44 is made of a heat resistance material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with upper end and lower end opened.
- the processing chamber 46 is demarcated in the inside of the inner tube 44 , and the boat 32 is inserted into the processing chamber 46 .
- the outer tube 45 is made of the heat resistance material such as quartz or silicon carbide, and is formed in the cylindrical shape, with inner diameter larger than outer diameter of the inner tube 44 , and with the upper end sealed and lower end opened, and is provided concentrically with the inner tube 44 .
- a cylindrical space 47 is formed between the inner tube 44 and the outer tube 45 .
- a single tube-shaped manifold 48 is disposed in the lower part of the outer tube 45 concentrically with the outer tube 45 .
- This manifold 48 is made of stainless for example, and the inner tube 44 and the outer tube 45 are supported by the manifold 48 .
- an O-ring 49 as a seal member is provided between the manifold 48 and the outer tube 48 .
- the manifold 48 is supported by the heater base 42 and the process tube 43 is thereby vertically set.
- a reaction container is formed by this process tube 43 and the manifold 48 .
- a nozzle 51 as a gas introducing part is penetrated through the seal cap 35 so as to communicate with an interior of the processing chamber 46 , and a gas supply pipe 52 is connected to the nozzle 51 .
- a processing gas supply source and an inactive gas supply source not shown are connected to the upstream side of this gas supply pipe 52 through a mass flow controller 53 .
- a gas flow controller 54 is electrically connected to the mass flow controller 53 , and a gas flow rate is controlled so as to be a desired quantity at a desired timing.
- An exhaust pipe 55 for exhausting the atmosphere in the processing chamber 46 is communicated with the manifold 48 .
- This exhaust pipe 55 is communicated with the lower end part of the cylindrical space 47 .
- a pressure sensor 56 and a pressure adjusting device 57 as a pressure detector are provided toward the downstream side of the exhaust pipe 55 , and the exhaust pipe 55 is connected to a vacuum exhaust device 58 such as a vacuum pump.
- a pressure controller 59 is electrically connected to the pressure adjusting device 57 and the pressure sensor 56 , and based on a pressure detected by the pressure sensor 56 , the pressure controller 59 controls the pressure, so that the pressure in the processing chamber 46 is set to a desired pressure (vacuum) by the pressure adjusting device 57 .
- the seal cap 35 for opening and closing the furnace port is made of metal such as stainless, and is formed in a circular disc.
- An O-ring 61 as a seal member that abuts on the lower end of the manifold 48 is provided on the upper surface of this seal cap 35 .
- a rotation mechanism 62 for rotating the boat 32 is set at the lower side of the seal cap 35 .
- a rotation shaft 63 of this rotation mechanism 62 penetrates through the seal cap 35 , and is connected to the boat 32 , so as to make the boat 32 rotatable.
- the seal cap 35 is liftably supported by the boat elevator 33 , and the boat 32 can be inserted or released into/from the processing chamber 46 by this boat elevator 33 .
- a drive controller 64 is electrically connected to the rotation mechanism 62 and the boat elevator 33 , and controls driving so as to perform a desired action at a desired timing.
- the boat 32 is made of the heat resistance material such as quartz or silicon carbide, and is formed so that a plurality of wafers 17 can be held in horizontal postures, with centers aligned with one another in multiple stages.
- At least three boat supports 72 are erected on a boat seat 71 , and a heating plate 73 is horizontally provided vertically on the boat supports 72 at a specified interval.
- the boat seat 71 , the boat support 72 , and the heating plate 73 are formed in a hollow structure, and interiors of the boat support 72 and the heating plate 73 are communicated with each other.
- Heaters 74 are internally provided in the inside of the heating plate 73 . As shown in FIG. 4 , the heaters 74 are constituted so that a linear heat generator is disposed in a concentric multiple overlapped circles, thereby making it possible to uniformly heat the wafers by an entire surface of the heating plate 73 .
- the heater 74 of each stage is electrically connected by a lead 75 arranged in the boat support 72 , and is connected to a power receiver 76 provided at an undersurface center of the boat seat 71 .
- the heating plate 73 and the heaters 74 constitute a substrate heating means 80 .
- a substrate receptacle member 77 is protrusively provided below the heating plate 73 of the boat support 72 , the wafer 17 is placed on the substrate receptacle member 77 , and the wafer 17 is held so as to face each heating plate 73 .
- the rotation shaft 63 is protrusively provided downward at the undersurface center of the boat seat 71 .
- This rotation shaft 63 has a hollow cylindrical shape, and a connecting coil is internally provided in the inside of the rotation shaft 63 as the power receiver 76 .
- the rotation shaft 63 is connected to a cylindrical shaped rotor 78 of the rotation mechanism 62 , and this rotor 78 is rotatably supported through a bearing 81 and the rotor 78 is rotated by an actuator 82 constituted of a decelerator and a motor.
- a power feeder 83 is provided in the center of the rotation shaft 63 in a manner of non-contact with the rotation shaft 63 , and this power feeder 83 is disposed so as to face the power receiver 76 .
- the power feeder 83 is composed of an induction coil, for example, and the power feeder 83 is connected to a high frequency power source 84 as a power feeding means.
- the power receiver 76 and the power feeder 83 form an induction coupling, which is an electromagnetic coupling, and when a high frequency power is applied to the power feeder 83 , a high frequency wave is inducted and excited to the power receiver 76 , and the high frequency power is transferred to the power receiver 76 .
- the heater 74 and the high frequency power source 84 are coupled to each other by the electromagnetic coupling.
- the inactive gas is enclosed in the interior of the heating plate 73 , the interior of the boat support 72 , and the interior of the rotation shaft 63 , respectively. It is preferable to set an enclosing pressure at 100 Torr or more and further 760 Torr or more.
- the heaters 74 when the heaters 74 are internally provided in the heating plate 73 , the heaters 74 may be integrally formed with the heating plate 73 so as to be enclosed in the interior thereof.
- the lead 75 may be integrally formed with the boat support 72
- the power receiver 76 may be integrally formed with the rotation shaft 63 , so as to be enclosed in the interiors thereof, respectively.
- the high frequency power source 84 is electrically connected to a temperature controller 66 , and this temperature controller 66 controls the high frequency power source 84 and controls a heating state of the heating plate 73 .
- a temperature sensor 65 is set in the process tube 43 , and the temperature controller 66 is electrically connected to the temperature sensor 65 and the heater 31 . Thus, based on temperature information detected by the temperature sensor 65 , a power feeding condition to the heater 31 is adjusted, thereby controlling the temperature of the processing chamber 46 to have a desired temperature distribution at a desired timing.
- the gas flow controller 54 , the pressure controller 59 , the drive controller 64 , the temperature controller 66 , and an operation part and an input/output part not shown are electrically connected to a main control apparatus 67 for controlling an entire body of the substrate processing apparatus.
- this boat 32 When a plurality of numbers of wafers 17 are loaded on the boat 32 , this boat 32 is inserted into the processing chamber 46 by the boat elevator 33 (boat loading). In this state, the seal cap 35 airtightly seals the furnace port through the O-ring 61 .
- the processing chamber 46 is evacuated by the vacuum exhaust device 58 so that the interior thereof is set at a desired pressure (vacuum). At this time, the pressure in the processing chamber 46 is measured by the pressure sensor 56 , and based on this measured pressure, the pressure adjusting device 57 is feedback-controlled.
- the wafer 17 and the processing chamber 46 are heated by the heater 31 so as to be set at a desired temperature.
- the power feeding condition to the heater 31 is feedback-controlled based on the temperature information detected by the temperature sensor 65 , so that the interior of the processing chamber 46 has a desired temperature distribution.
- the power for heating is supplied to the heaters 74 from the high frequency power source 84 through the power feeder 83 and the power receiver 76 , and the wafer 17 facing the heating plate 73 is heated through the heating plate 73 .
- the heating plate 73 has the heaters 74 disposed on an entire surface thereof, to uniformly heat the wafer 17 . Note that the wafer 17 is heated from the peripheral edge by the heater 31 . Therefore, it may be so structured that the heaters 74 are disposed so that heat generation quantity becomes large at the center, and consequently, heating temperature in the surface of the wafer 17 becomes uniform.
- the heat radiation from the furnace port is suppressed by heating by the heating plate 73 of the lower part of the boat 32 , and a temperature drop at the lower part of the boat 32 is prevented. Therefore, the uniform temperature length of the processing furnace 1 is increased, and the temperature uniformity between wafers 17 and the uniformity of the temperature distribution in the surface of the wafer 17 are improved.
- the boat 32 is rotated by the rotation mechanism 62 , and the wafer 17 is simultaneously rotated.
- the boat 32 is rotated without any problem, because the power feeder 83 and the power receiver 76 are in the non-contact state.
- the processing gas is supplied from the processing gas supply source, and the processing gas controlled to be a desired flow rate by the mass flow controller 53 is circulated through the gas supply pipe 52 and is introduced into the processing chamber 46 from the nozzle 51 .
- the introduced processing gas drifts upward in the processing chamber 46 , turns back at the upper opening of the inner tube 44 , then flows down the cylindrical space 47 and is exhausted from the exhaust pipe 55 .
- the processing gas is brought into contact with the surface of the wafer 17 during passing thorough the processing chamber 46 , and by a thermal CVD reaction that occurs at this time, the thin film is deposited on the surface of the wafer 17 .
- the inactive gas is supplied from an inactive gas supply source, and an atmosphere of the processing chamber 46 is replaced with the inactive gas and the pressure in the processing chamber 46 is returned to a normal pressure.
- the seal cap 35 is descended by the boat elevator 33 , the furnace port is opened, and the already processed wafer 17 is pulled out from the processing chamber 46 in a state of being held by the boat 32 . Thereafter, the already processed wafer 17 is delivered from the boat 32 by the wafer transferring machine 37 .
- the processing temperature is set at 300 to 600° C.
- the processing pressure is set at 40 to 933 Pa
- type of the gas is determined
- a gas supply flow rate is set at DCS 4 to 6 slm, NH3 0.5 to 1 slm. Then, by setting a certain value in a range of each processing condition and maintaining this value constant, the wafer is processed.
- FIG. 5 shows a second embodiment
- FIG. 5 the same signs and numerals are assigned to the equivalent part of FIG. 3 .
- a power receiving shaft portion 85 is extended downward from the rotation shaft 63 .
- the lower end part of this power receiving shaft portion 85 is penetrated through a holder 79 and protruded downward.
- the power receiving shaft portion 85 has a hollow structure and the interior of this power receiving shaft portion 85 is communicated with the hollow part of the boat support 72 .
- the power receiver 76 is disposed so as to be positioned at the lower end part of the interior of the power receiving shaft portion 85 , the power feeder 83 is provided in a non-contact state so as to surround the lower end part of the power receiving shaft portion 85 , and the power feeder 83 and the power receiver 76 are faced with each other to realize the induction coupling.
- the power feeder 83 is connected to the high frequency power source 84 , and when the high frequency power is applied to the power feeder 83 from the high frequency power source 84 , the high frequency wave is inducted and excited to the power receiver 76 , and the high frequency power is transferred to the power receiver 76 and is further fed to the heaters 74 .
- FIG. 6 and FIG. 7 show a third embodiment.
- FIG. 6 the same signs and numerals are assigned to the equivalent part of FIG. 3 , and explanation therefore is omitted.
- a cylindrical shaped rotation shaft 63 is protrusively provided downward at the undersurface center of the boat seat 71 , a thick part of the rotation shaft 63 is further hollowed, and cylindrical shaped pair of electrostatic plates 87 a and 87 b are concentrically provided vertically in the inside of the thick part.
- One of the leads 75 connected to the heater 74 is connected to the electrostatic coupling plate 87 a , and the other lead 75 is connected to the electrostatic plate 87 b.
- Power supply plates 88 a and 88 b are provided in the center of the rotation shaft 63 concentrically with the electrostatic coupling plates 87 a and 87 b .
- the power supply plates 88 a and 88 b are disposed so as to face the electrostatic coupling plates 87 a and 87 b , and the power supply plates 88 a and 88 b are connected to the high frequency power source 84 .
- the power supply plates 88 a and 88 b are in a manner of non-contact with the rotation shaft 63 .
- a dielectric is interposed between the electrostatic coupling plates 87 a , 87 b and the power supply plates 88 a , 88 b , and the electrostatic coupling plates 87 a , 87 b and the power supply plates 88 a , 88 b constitute the electrostatic coupling, being the electromagnetic coupling.
- the thick part of the rotation shaft 63 made of quartz functions as the dielectric.
- the high frequency power is transferred to the heaters 74 from the high frequency power source 84 through the power supply plate 88 and the electrostatic coupling plate 87 , and the power is supplied to the substrate heating means 80 .
- an area of the electrostatic coupling plate 87 and the power supply plate is set at 10000 mm 2 (100 mm ⁇ 100 mm) and a material between substrates is selected to be quartz glass, capacity of about 70 PF is obtained, and although depending on the shape of a discharge electrode, a high frequency current can be sufficiently sent.
- the interior of the boat is filled with the inactive gas. It is preferable to set a pressure value of the inactive gas at 100 Torr or more and further at 760 Torr or more.
- an insulator sheet made of quartz or the insulator sheet made of SiC may be loaded in the lower part of the boat 32 , instead of wafers.
- a boat platform as the insulator, and a boat 32 as the substrate holding part are individually provided, and the substrate heating means 80 may be provided only on the boat platform.
- the furnace port can be heated by the substrate heating means 80 , thus making it possible to prevent the heat radiation from the furnace port.
- the heating means is provided in the inside of the rotating boat 32 , the heating means is provided so as to face each wafer. Therefore, the temperature uniformity between wafers is improved. Also, temperature difference between a wafer peripheral part and a wafer center part is reduced, thus making it possible to improve the temperature uniformity in the surface of the wafer.
- the heat radiation from the furnace port and a ceiling part can be prevented, and the uniform temperature length in the processing furnace 1 is increased, and the processing numbers of the wafers are also increased, thus making it possible to improve productivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
A substrate processing apparatus includes a processing chamber, a substrate holding part that holds substrates of required numbers in the processing chamber, a gas supply/exhaust part that supplies or exhausts required gas into the processing chamber, a rotation part that rotates the substrate holding part, a first heating part provided in the substrate holding part so as to face at least an upper surface of each substrate held by the substrate holding part, and a power supply part that supplies power to the first heating part in a non-contact state by electromagnetic coupling.
Description
- This is a Divisional Application of application Ser. No. 11/878,401 filed Jul. 24, 2007, which claims the benefit of Japanese Patent Application No. 2006-203434 filed Jul. 26, 2006. The entire disclosures of the prior applications are hereby incorporated by reference herein in its entirety.
- The present invention relates to a substrate processing apparatus applying processing such as generating a thin film, diffusing impurities, annealing, and etching, to a substrate such as a silicon wafer.
- A batch type substrate processing apparatus for processing substrates of required numbers at once is given as an example of the substrate processing apparatus for processing the substrate such as a silicon wafer and a glass substrate.
- The batch type substrate processing apparatus, for example, a vertical substrate processing apparatus has a vertical processing furnace, and the required processing is applied to the substrate in such a manner that the substrate is contained in a processing chamber of this processing furnace, and the processing chamber is exhausted while heating the substrate and introducing processing gas into the processing chamber, in a state that the processing chamber is sealed hermetically.
- The substrate to be processed is held in multiple stages in a horizontal posture by a substrate holding means (boat), and inserting and releasing the substrate into/from this processing chamber by the boat is performed through a furnace port at the lower end of the processing furnace.
- A
processing furnace 1 of a conventional substrate processing apparatus is explained inFIG. 8 . Note thatFIG. 8 shows a sectional face of the lower end part of thisprocessing furnace 1. - A short tube-
like metal manifold 3 is provided at the lower side of aheater base 2, aquartz reaction tube 4 is airtightly erected on an upper end of thismanifold 3, and acylindrical heating apparatus 5 is erected on theheater base 2 concentrically with theaforementioned reaction tube 4. A processing chamber is formed inside thereaction tube 4. - A
furnace port 6 is formed at a lower end opening part of themanifold 3, and thisfurnace port 6 is airtightly sealed by aseal cap 7. Thisseal cap 7 is attached to anelevating platform 8 which goes up and down by a boat elevator not shown, and a rotatingmeans 9 is airtightly provided in theseal cap 7. - A
boat seat 12 is provided at the upper end of arotation shaft 11 of the rotatingmeans 9, and aboat 13 made of quartz is placed on thisboat seat 12. - This
boat 13 has aheat insulating part 14 of a lower part and asubstrate holding part 15 placed on thisheat insulating part 14, and required numbers ofheat insulating boards 16 made of quartz or SiC are loaded on theheat insulating part 14. - A
wafer 17 to be processed is loaded on thissubstrate holding part 15 in a horizontal posture at a specified pitch. - When processing is applied to the
wafer 17, a specified processing is performed in such a manner that as shown in the figure, thewafer 17 is heated by theheating apparatus 5, with thefurnace port 6 airtightly sealed by theseal cap 7, and the processing chamber is exhausted from an exhaust pipe not shown, while introducing the processing gas by a processinggas introducing nozzle 19. - When a uniform film is deposited on the
wafer 17, the temperature in the surface of the wafer needs to be constant. - However, heat radiation occurs from the upper end part of the
heating apparatus 5 or from thefurnace port 6, and particularly, the periphery of themanifold 3 is not surrounded by theheating apparatus 5, and further themanifold 3 is made of metal, thus increasing the heat radiation from thefurnace port 6. - Therefore, as described above, the
heat insulating part 14 is provided in theboat 13, and theheat insulating board 16 is provided for preventing the heat radiation. Further, in order to prevent the heat radiation from the seal cap, aheater 18 is sometimes provided between theseal cap 7 and theelevating platform 8. - Also, in order to heat the
wafer 17 from a peripheral edge, theheating apparatus 5 has a temperature distribution in which the temperature is decreased from the peripheral edge of the wafer to the center thereof. - In a conventional substrate processing apparatus, by providing the
heat insulating part 14, the heat radiation from thefurnace port 6 is prevented. However, the heat radiation itself can not be prevented, and therefore a dummy wafer is loaded on the lower part of thesubstrate holding part 15, and the wafer is processed by a uniformly heating member in the processing chamber. In addition, by processing the wafer by the uniformly heating member, uniformity among wafers and uniformity in the wafer surfaces are guaranteed. - However, problems are involved as follows. When the heat radiation from the
furnace port 6 is large, a uniform temperature length (shaft length of the uniformly heating member) becomes short, thus reducing processing numbers of thewafer 17, resulting in deteriorating productivity. Moreover, when the temperature distribution occurs, in-surface uniformity of a film thickness is deteriorated, thereby inviting the deterioration of a processing quality and yield. - In view of the above-described circumstances, the present invention is provided, and an object of the present invention is to prevent heat radiation from a furnace port in a processing furnace, increase a uniform temperature length of a processing chamber and improve uniformity of a temperature distribution in a surface of a substrate, and improve a processing quality and yield.
- The present invention relates to a substrate processing apparatus including:
- a processing chamber;
- a substrate holding part that holds substrates of required numbers in the processing chamber;
- a gas supply/exhaust part that supplies or exhausts a required gas into the processing chamber;
- a rotation part that rotates the substrate holding part;
- a first heating part provided in the substrate holding part so as to face at least an upper surface of each substrate held by the substrate holding part; and
- a power feeder that supplies power to the first heating part by electromagnetic coupling, in a non-contact state.
- According to the present invention, one or more effects given hereunder can be exhibited.
- (1) The substrate that rotates together with the substrate holding part in the processing chamber can be heated from an upper surface side.
- (2) A temperature difference between a substrate peripheral edge and a substrate center can be suppressed.
- (3) Temperature uniformity of the substrate is improved.
- (4) Uniformity of a thickness of a film formed on the substrate is improved.
- (5) Processing yield is improved.
-
FIG. 1 is an outlined explanatory view of a substrate processing apparatus according to an embodiment of the present invention. -
FIG. 2 is a sectional view showing an example of a processing furnace used in this substrate processing apparatus. -
FIG. 3 is a sectional view showing a boat used in a first embodiment of the present invention. -
FIG. 4 is a view shown by an arrow taken along A-A ofFIG. 3 . -
FIG. 5 is a sectional view showing the boat used in a second embodiment of the present invention. -
FIG. 6 is a sectional view showing the boat used in a third embodiment of the present invention. -
FIG. 7 is an explanatory view of a power feeder and a power receiver in a third embodiment of the present invention. -
FIG. 8 is a sectional view showing a lower part of the processing furnace of a conventional example. - Preferred embodiments for executing the present invention will be explained with reference to the drawings.
- First, an outline of a substrate processing apparatus to which the present invention is applied will be explained by using
FIG. 1 . - A
cassette stage 23 as a container transferring means for transferring acassette 22 as a substrate storage container between the substrate processing apparatus and an external carrying apparatus not shown is provided at a front side in acase 21, acassette elevator 24 as an elevating means is provided at a rear side of thiscassette stage 23, and acassette carrying machine 25 as a cassette carrying means is attached to thiscassette elevator 24. In addition, acassette shelf 26 as a storing means of thecassette 22 is provided at the rear side of thecassette elevator 24, and aspare cassette shelf 27 as the cassette storing means is provided in an upper part of thecassette stage 23. A fan and aclean unit 28 constituted of a dust-proof filter are provided in an upper part of thisspare cassette shelf 27, so that clean air is circulated into thecase 21, for example, into a region where thecassette 22 is carried. - A
processing furnace 29 is provided at the rear upper part of thecase 21, and aboat elevator 33 as an elevating means for inserting and releasing aboat 32 as a substrate holding means for holding awafer 17 as a substrate in multiple stages in a horizontal posture into/from theprocessing furnace 29, is provided in the lower part of thisprocessing furnace 29. Aseal cap 35 as a lid for sealing a furnace port of theprocessing furnace 29 is attached to the tip part of anelevating member 34 attached to thisboat elevator 33. Theboat 32 is vertically supported by thisseal cap 35, and thisboat 32 holds thewafer 17 as will be described later in multiple stages in a horizontal posture. - A transferring
elevator 36 as an elevating means is provided between theboat elevator 33 and thecassette shelf 26, and awafer transferring machine 37 as a substrate transferring means is attached to the transferringelevator 36. Thiswafer transferring machine 37 hassubstrate carrying plates 40 of required numbers (such as five) on which the substrate is placed, and thesesubstrate carrying plates 40 are rotatably and forward/backward movably formed. - Further, a
furnace port shutter 38 as a shielding member having an opening/closing mechanism for shielding a furnace port of theprocessing furnace 29 is provided in the vicinity of the lower part of theprocessing furnace 29. - A
clean unit 30 constituted of the fan and the dust-proof filter is provided on the side face of thecase 21 that faces the transferringelevator 36, and the clean air sent from thisclean unit 30 circulates through the region including thewafer transferring machine 37, theboat 32, and theboat elevator 33, and thereafter is exhausted outside of thecase 21 by an exhaust device not shown. - A
controller 41 performs a driving control of thecassette carrying machine 25, thewafer transferring machine 37, and theboat elevator 33, etc, and a heating control of theprocessing furnace 29. - An action will be explained hereunder.
- The
cassette 22, on which thewafer 17 is loaded in a vertical posture, is carried into thecassette stage 23 from the external carrying apparatus not shown, and is rotated at 90° on thecassette stage 23, so that thewafer 17 takes a horizontal posture. Further, thecassette 22 is carried from thecassette stage 23 to thecassette shelf 26 or thespare cassette shelf 27, by a cooperation of an elevating action and a traversing action of thecassette elevator 24, advancing/retreating action and a rotating action of thecassette carrying machine 25. - The
cassette shelf 26 has atransferring shelf 39 in which thecassette 22, being a carrying object of thewafer transferring machine 37 is stored, and thecassette 22 provided for transferring of the wafer is transferred to thetransferring shelf 39 by thecassette elevator 24 and thecassette carrying machine 25. - When the
cassette 22 is transferred to thetransferring shelf 39, thewafer transferring machine 37 transfers thewafer 17 to theboat 32 in a descent state from the transferringshelf 39 by the cooperation of the advancement/retreating action and the rotating action of thesubstrate carrying plates 40 and the elevating action of the transferringelevator 36. - When
wafers 17 of required numbers are transferred to theboat 32, theboat 32 is lifted by theboat elevator 33, and thisboat 32 is inserted into theprocessing furnace 29. With theboat 32 completely inserted, theprocessing furnace 29 is airtightly sealed by theseal cap 35. - In this
processing furnace 29 thus airtightly sealed, in accordance with a selected processing recipe, thewafer 17 is heated and the processing gas is supplied into theprocessing furnace 29. Then, processing is applied to thewafer 17, while exhausting an atmosphere in theprocessing chamber 46 as will be described later from anexhaust pipe 55 as will be described later by the exhaust devise not shown. - An example of the
processing furnace 29 used in the above-described substrate processing apparatus will be explained by usingFIG. 2 . - The
processing furnace 29 has aheater 31 as a heating mechanism. Thisheater 31 is formed in a cylindrical shape, and is supported by aheater base 42 as a holding plate, thereby being set vertically. - A
process tube 43 as a reaction tube is disposed concentrically with theheater 31, in the inside of theheater 31. Thisprocess tube 43 is constituted of aninner tube 44 as an internal reaction tube and anouter tube 45 as an external reaction tube provided outside theinner tube 44. Theinner tube 44 is made of a heat resistance material such as quartz (SiO2) or silicon carbide (SiC), and has a cylindrical shape with upper end and lower end opened. Theprocessing chamber 46 is demarcated in the inside of theinner tube 44, and theboat 32 is inserted into theprocessing chamber 46. - The
outer tube 45 is made of the heat resistance material such as quartz or silicon carbide, and is formed in the cylindrical shape, with inner diameter larger than outer diameter of theinner tube 44, and with the upper end sealed and lower end opened, and is provided concentrically with theinner tube 44. Acylindrical space 47 is formed between theinner tube 44 and theouter tube 45. - A single tube-shaped
manifold 48 is disposed in the lower part of theouter tube 45 concentrically with theouter tube 45. This manifold 48 is made of stainless for example, and theinner tube 44 and theouter tube 45 are supported by themanifold 48. In addition, an O-ring 49 as a seal member is provided between the manifold 48 and theouter tube 48. The manifold 48 is supported by theheater base 42 and theprocess tube 43 is thereby vertically set. A reaction container is formed by thisprocess tube 43 and the manifold 48. - A
nozzle 51 as a gas introducing part is penetrated through theseal cap 35 so as to communicate with an interior of theprocessing chamber 46, and agas supply pipe 52 is connected to thenozzle 51. A processing gas supply source and an inactive gas supply source not shown are connected to the upstream side of thisgas supply pipe 52 through amass flow controller 53. Agas flow controller 54 is electrically connected to themass flow controller 53, and a gas flow rate is controlled so as to be a desired quantity at a desired timing. - An
exhaust pipe 55 for exhausting the atmosphere in theprocessing chamber 46 is communicated with the manifold 48. Thisexhaust pipe 55 is communicated with the lower end part of thecylindrical space 47. - A
pressure sensor 56 and apressure adjusting device 57 as a pressure detector are provided toward the downstream side of theexhaust pipe 55, and theexhaust pipe 55 is connected to avacuum exhaust device 58 such as a vacuum pump. - A
pressure controller 59 is electrically connected to thepressure adjusting device 57 and thepressure sensor 56, and based on a pressure detected by thepressure sensor 56, thepressure controller 59 controls the pressure, so that the pressure in theprocessing chamber 46 is set to a desired pressure (vacuum) by thepressure adjusting device 57. - The
seal cap 35 for opening and closing the furnace port is made of metal such as stainless, and is formed in a circular disc. An O-ring 61 as a seal member that abuts on the lower end of the manifold 48 is provided on the upper surface of thisseal cap 35. - A
rotation mechanism 62 for rotating theboat 32 is set at the lower side of theseal cap 35. Arotation shaft 63 of thisrotation mechanism 62 penetrates through theseal cap 35, and is connected to theboat 32, so as to make theboat 32 rotatable. Theseal cap 35 is liftably supported by theboat elevator 33, and theboat 32 can be inserted or released into/from theprocessing chamber 46 by thisboat elevator 33. Adrive controller 64 is electrically connected to therotation mechanism 62 and theboat elevator 33, and controls driving so as to perform a desired action at a desired timing. - The
boat 32 is made of the heat resistance material such as quartz or silicon carbide, and is formed so that a plurality ofwafers 17 can be held in horizontal postures, with centers aligned with one another in multiple stages. - Next, the
boat 32 will be explained with reference toFIG. 3 . - At least three boat supports 72 are erected on a
boat seat 71, and aheating plate 73 is horizontally provided vertically on the boat supports 72 at a specified interval. Theboat seat 71, theboat support 72, and theheating plate 73 are formed in a hollow structure, and interiors of theboat support 72 and theheating plate 73 are communicated with each other. -
Heaters 74 are internally provided in the inside of theheating plate 73. As shown inFIG. 4 , theheaters 74 are constituted so that a linear heat generator is disposed in a concentric multiple overlapped circles, thereby making it possible to uniformly heat the wafers by an entire surface of theheating plate 73. Theheater 74 of each stage is electrically connected by a lead 75 arranged in theboat support 72, and is connected to apower receiver 76 provided at an undersurface center of theboat seat 71. Theheating plate 73 and theheaters 74 constitute a substrate heating means 80. - A
substrate receptacle member 77 is protrusively provided below theheating plate 73 of theboat support 72, thewafer 17 is placed on thesubstrate receptacle member 77, and thewafer 17 is held so as to face eachheating plate 73. - The
rotation shaft 63 is protrusively provided downward at the undersurface center of theboat seat 71. Thisrotation shaft 63 has a hollow cylindrical shape, and a connecting coil is internally provided in the inside of therotation shaft 63 as thepower receiver 76. - The
rotation shaft 63 is connected to a cylindrical shapedrotor 78 of therotation mechanism 62, and thisrotor 78 is rotatably supported through abearing 81 and therotor 78 is rotated by anactuator 82 constituted of a decelerator and a motor. - A
power feeder 83 is provided in the center of therotation shaft 63 in a manner of non-contact with therotation shaft 63, and thispower feeder 83 is disposed so as to face thepower receiver 76. Thepower feeder 83 is composed of an induction coil, for example, and thepower feeder 83 is connected to a highfrequency power source 84 as a power feeding means. - The
power receiver 76 and thepower feeder 83 form an induction coupling, which is an electromagnetic coupling, and when a high frequency power is applied to thepower feeder 83, a high frequency wave is inducted and excited to thepower receiver 76, and the high frequency power is transferred to thepower receiver 76. Namely, theheater 74 and the highfrequency power source 84 are coupled to each other by the electromagnetic coupling. - Note that the inactive gas is enclosed in the interior of the
heating plate 73, the interior of theboat support 72, and the interior of therotation shaft 63, respectively. It is preferable to set an enclosing pressure at 100 Torr or more and further 760 Torr or more. - Note that when the
heaters 74 are internally provided in theheating plate 73, theheaters 74 may be integrally formed with theheating plate 73 so as to be enclosed in the interior thereof. Similarly, thelead 75 may be integrally formed with theboat support 72, and thepower receiver 76 may be integrally formed with therotation shaft 63, so as to be enclosed in the interiors thereof, respectively. - The high
frequency power source 84 is electrically connected to atemperature controller 66, and thistemperature controller 66 controls the highfrequency power source 84 and controls a heating state of theheating plate 73. - Note that a divisional control for independently controlling an upper part, a center, and a lower part of the
boat 32 is possible by theheaters 74, and a larger power may be supplied to the upper part and the lower part where the heat radiation is large. - A
temperature sensor 65 is set in theprocess tube 43, and thetemperature controller 66 is electrically connected to thetemperature sensor 65 and theheater 31. Thus, based on temperature information detected by thetemperature sensor 65, a power feeding condition to theheater 31 is adjusted, thereby controlling the temperature of theprocessing chamber 46 to have a desired temperature distribution at a desired timing. - The
gas flow controller 54, thepressure controller 59, thedrive controller 64, thetemperature controller 66, and an operation part and an input/output part not shown are electrically connected to amain control apparatus 67 for controlling an entire body of the substrate processing apparatus. - Next, by using the
processing furnace 29 of the above-described structure, explanation is given to a method of forming a thin film on thewafer 17 by a CVD method, as one step of the manufacturing steps of a semiconductor device. Note that in the explanation given hereunder, an operation of each part constituting the substrate processing apparatus is controlled by themain control apparatus 67. - When a plurality of numbers of
wafers 17 are loaded on theboat 32, thisboat 32 is inserted into theprocessing chamber 46 by the boat elevator 33 (boat loading). In this state, theseal cap 35 airtightly seals the furnace port through the O-ring 61. - The
processing chamber 46 is evacuated by thevacuum exhaust device 58 so that the interior thereof is set at a desired pressure (vacuum). At this time, the pressure in theprocessing chamber 46 is measured by thepressure sensor 56, and based on this measured pressure, thepressure adjusting device 57 is feedback-controlled. - In addition, the
wafer 17 and theprocessing chamber 46 are heated by theheater 31 so as to be set at a desired temperature. At this time, the power feeding condition to theheater 31 is feedback-controlled based on the temperature information detected by thetemperature sensor 65, so that the interior of theprocessing chamber 46 has a desired temperature distribution. - Moreover, the power for heating is supplied to the
heaters 74 from the highfrequency power source 84 through thepower feeder 83 and thepower receiver 76, and thewafer 17 facing theheating plate 73 is heated through theheating plate 73. - The
heating plate 73 has theheaters 74 disposed on an entire surface thereof, to uniformly heat thewafer 17. Note that thewafer 17 is heated from the peripheral edge by theheater 31. Therefore, it may be so structured that theheaters 74 are disposed so that heat generation quantity becomes large at the center, and consequently, heating temperature in the surface of thewafer 17 becomes uniform. - In addition, the heat radiation from the furnace port is suppressed by heating by the
heating plate 73 of the lower part of theboat 32, and a temperature drop at the lower part of theboat 32 is prevented. Therefore, the uniform temperature length of theprocessing furnace 1 is increased, and the temperature uniformity betweenwafers 17 and the uniformity of the temperature distribution in the surface of thewafer 17 are improved. - Subsequently, the
boat 32 is rotated by therotation mechanism 62, and thewafer 17 is simultaneously rotated. By the rotation of theboat 32, even when the power is being fed to theheaters 74, theboat 32 is rotated without any problem, because thepower feeder 83 and thepower receiver 76 are in the non-contact state. - Subsequently, the processing gas is supplied from the processing gas supply source, and the processing gas controlled to be a desired flow rate by the
mass flow controller 53 is circulated through thegas supply pipe 52 and is introduced into theprocessing chamber 46 from thenozzle 51. The introduced processing gas drifts upward in theprocessing chamber 46, turns back at the upper opening of theinner tube 44, then flows down thecylindrical space 47 and is exhausted from theexhaust pipe 55. The processing gas is brought into contact with the surface of thewafer 17 during passing thorough theprocessing chamber 46, and by a thermal CVD reaction that occurs at this time, the thin film is deposited on the surface of thewafer 17. - When a previously set processing time is elapsed, the inactive gas is supplied from an inactive gas supply source, and an atmosphere of the
processing chamber 46 is replaced with the inactive gas and the pressure in theprocessing chamber 46 is returned to a normal pressure. - Thereafter, the
seal cap 35 is descended by theboat elevator 33, the furnace port is opened, and the already processedwafer 17 is pulled out from theprocessing chamber 46 in a state of being held by theboat 32. Thereafter, the already processedwafer 17 is delivered from theboat 32 by thewafer transferring machine 37. - Note that as an example of processing conditions for processing the wafer in the processing furnace of this embodiment, when a Si3N4 film is formed, the processing temperature is set at 300 to 600° C., the processing pressure is set at 40 to 933 Pa, type of the gas is determined, and a gas supply flow rate is set at
DCS 4 to 6 slm, NH3 0.5 to 1 slm. Then, by setting a certain value in a range of each processing condition and maintaining this value constant, the wafer is processed. -
FIG. 5 shows a second embodiment. - In
FIG. 5 , the same signs and numerals are assigned to the equivalent part ofFIG. 3 . - In the second embodiment, a power receiving
shaft portion 85 is extended downward from therotation shaft 63. The lower end part of this power receivingshaft portion 85 is penetrated through aholder 79 and protruded downward. The power receivingshaft portion 85 has a hollow structure and the interior of this power receivingshaft portion 85 is communicated with the hollow part of theboat support 72. - The
power receiver 76 is disposed so as to be positioned at the lower end part of the interior of the power receivingshaft portion 85, thepower feeder 83 is provided in a non-contact state so as to surround the lower end part of the power receivingshaft portion 85, and thepower feeder 83 and thepower receiver 76 are faced with each other to realize the induction coupling. - The
power feeder 83 is connected to the highfrequency power source 84, and when the high frequency power is applied to thepower feeder 83 from the highfrequency power source 84, the high frequency wave is inducted and excited to thepower receiver 76, and the high frequency power is transferred to thepower receiver 76 and is further fed to theheaters 74. - In the aforementioned first and second embodiments, when a circular coil, with 60φ as a nominal diameter, is used in the
power receiver 76 and thepower feeder 83, and the interval between coils is set at 5 mm, discharge occurs at 300 W between thepower receiver 76 and thepower feeder 83 in a nitrogen gas atmosphere of 1 Torr. Note that in order to improve efficiency of power propagation, a resonance capacitor may be added to the connecting coil as thepower receiver 76. -
FIG. 6 andFIG. 7 show a third embodiment. - In
FIG. 6 , the same signs and numerals are assigned to the equivalent part ofFIG. 3 , and explanation therefore is omitted. - A cylindrical shaped
rotation shaft 63 is protrusively provided downward at the undersurface center of theboat seat 71, a thick part of therotation shaft 63 is further hollowed, and cylindrical shaped pair ofelectrostatic plates 87 a and 87 b are concentrically provided vertically in the inside of the thick part. One of theleads 75 connected to theheater 74 is connected to the electrostatic coupling plate 87 a, and theother lead 75 is connected to theelectrostatic plate 87 b. - Power supply plates 88 a and 88 b are provided in the center of the
rotation shaft 63 concentrically with theelectrostatic coupling plates 87 a and 87 b. The power supply plates 88 a and 88 b are disposed so as to face theelectrostatic coupling plates 87 a and 87 b, and the power supply plates 88 a and 88 b are connected to the highfrequency power source 84. The power supply plates 88 a and 88 b are in a manner of non-contact with therotation shaft 63. - A dielectric is interposed between the
electrostatic coupling plates 87 a, 87 b and the power supply plates 88 a, 88 b, and theelectrostatic coupling plates 87 a, 87 b and the power supply plates 88 a, 88 b constitute the electrostatic coupling, being the electromagnetic coupling. In a case of this embodiment, the thick part of therotation shaft 63 made of quartz functions as the dielectric. - The high frequency power is transferred to the
heaters 74 from the highfrequency power source 84 through thepower supply plate 88 and theelectrostatic coupling plate 87, and the power is supplied to the substrate heating means 80. - As a specific example, when an area of the
electrostatic coupling plate 87 and the power supply plate is set at 10000 mm2 (100 mm×100 mm) and a material between substrates is selected to be quartz glass, capacity of about 70 PF is obtained, and although depending on the shape of a discharge electrode, a high frequency current can be sufficiently sent. - In this case, in order to prevent discharge from occurring in the inside of the boat (dielectric), namely, in interiors of the
rotation shaft 63, theheating plate 73, and thelead 75, the interior of the boat is filled with the inactive gas. It is preferable to set a pressure value of the inactive gas at 100 Torr or more and further at 760 Torr or more. - Note that an insulator sheet made of quartz or the insulator sheet made of SiC may be loaded in the lower part of the
boat 32, instead of wafers. - In addition, a boat platform as the insulator, and a
boat 32 as the substrate holding part are individually provided, and the substrate heating means 80 may be provided only on the boat platform. In this case, the furnace port can be heated by the substrate heating means 80, thus making it possible to prevent the heat radiation from the furnace port. - As described above, since the heating means is provided in the inside of the
rotating boat 32, the heating means is provided so as to face each wafer. Therefore, the temperature uniformity between wafers is improved. Also, temperature difference between a wafer peripheral part and a wafer center part is reduced, thus making it possible to improve the temperature uniformity in the surface of the wafer. - Further, the heat radiation from the furnace port and a ceiling part can be prevented, and the uniform temperature length in the
processing furnace 1 is increased, and the processing numbers of the wafers are also increased, thus making it possible to improve productivity.
Claims (7)
1. A substrate processing apparatus comprising:
a processing chamber;
a substrate holding part that holds substrates of required numbers in the processing chamber;
a gas supply/exhaust part that supplies or exhausts required gas into said processing chamber;
a rotation part that rotates said substrate holding part;
a first heating part provided in said substrate holding part so as to face at least an upper surface of each substrate held by the substrate holding part; and
a power supply part that supplies power to the first heating part in a non-contact state by electromagnetic coupling.
2. The substrate processing apparatus according to claim 1 , wherein said power supply part includes an induction coil electrically connected to a high frequency power source and a connecting coil electrically connected to said first heating part, and said induction coil and said connecting coil are provided concentrically with a rotation shaft of said substrate holding part.
3. The substrate processing apparatus according to claim 1 , wherein said power supply part includes a cylindrical shaped power supply plate electrically connected to a high frequency power source and a cylindrical shaped electrostatic coupling plate electrically connected to said first heating part, and said power supply plate and said electrostatic coupling plate are provided concentrically with a rotation shaft of said substrate holding part.
4. The substrate processing apparatus according to claim 1 , wherein said substrate holding part includes a plurality of supports with an internal hollow structure, and a plurality of heating plates with the internal hollow structure supported by said supports, said each heating part is provided in the inside of said heating plate, and power from said power supply part is supplied to said each heating plate by a lead line arranged to pass through an interior of said hollow structure.
5. The substrate processing apparatus according to claim 4 , wherein inactive gas is enclosed in the interior of said hollow structure, so that its internal pressure is set at 100 Torr or more.
6. The substrate processing apparatus according to claim 1 , wherein a cylindrical shaped second heating part is further provided at the outside of said reaction chamber.
7. The substrate processing apparatus according to claim 6 further comprising a controller, wherein said controller controls said first heating part so that heat generation quantity to a center of each facing substrate can be larger than the heat generation quantity to a peripheral part of a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/382,402 US20090178762A1 (en) | 2006-07-26 | 2009-03-16 | Substrate processing apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-203434 | 2006-07-26 | ||
JP2006203434A JP2008034463A (en) | 2006-07-26 | 2006-07-26 | Substrate processing apparatus |
US11/878,401 US20080023141A1 (en) | 2006-07-26 | 2007-07-24 | Substrate processing apparatus |
US12/382,402 US20090178762A1 (en) | 2006-07-26 | 2009-03-16 | Substrate processing apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/878,401 Division US20080023141A1 (en) | 2006-07-26 | 2007-07-24 | Substrate processing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090178762A1 true US20090178762A1 (en) | 2009-07-16 |
Family
ID=38984959
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/878,401 Abandoned US20080023141A1 (en) | 2006-07-26 | 2007-07-24 | Substrate processing apparatus |
US12/382,403 Expired - Fee Related US8092603B2 (en) | 2006-07-26 | 2009-03-16 | Substrate processing apparatus |
US12/382,402 Abandoned US20090178762A1 (en) | 2006-07-26 | 2009-03-16 | Substrate processing apparatus |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/878,401 Abandoned US20080023141A1 (en) | 2006-07-26 | 2007-07-24 | Substrate processing apparatus |
US12/382,403 Expired - Fee Related US8092603B2 (en) | 2006-07-26 | 2009-03-16 | Substrate processing apparatus |
Country Status (2)
Country | Link |
---|---|
US (3) | US20080023141A1 (en) |
JP (1) | JP2008034463A (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201036090A (en) * | 2009-01-30 | 2010-10-01 | Tera Semicon Corp | Batch type substrate treatment apparatus |
JP5742185B2 (en) * | 2010-03-19 | 2015-07-01 | 東京エレクトロン株式会社 | Film forming apparatus, film forming method, rotation speed optimization method, and storage medium |
KR101223489B1 (en) * | 2010-06-30 | 2013-01-17 | 삼성디스플레이 주식회사 | Apparatus for Processing Substrate |
JP5562188B2 (en) * | 2010-09-16 | 2014-07-30 | 株式会社日立国際電気 | Substrate processing apparatus and semiconductor device manufacturing method |
FR2988974B1 (en) * | 2012-04-02 | 2017-09-01 | Commissariat Energie Atomique | DEVICE FOR GENERATING A HIGH GRADIENT OF TEMPERATURE IN A NUCLEAR FUEL TYPE SAMPLE |
FR3011711B1 (en) * | 2013-10-03 | 2015-12-11 | Commissariat Energie Atomique | DEVICE FOR GENERATING A HIGH GRADIENT OF TEMPERATURE IN A NUCLEAR FUEL TYPE SAMPLE |
KR102048293B1 (en) * | 2015-02-25 | 2019-11-25 | 가부시키가이샤 코쿠사이 엘렉트릭 | Substrate processing apparatus, heater and method of manufacturing semiconductor device |
JP6622389B2 (en) * | 2016-04-21 | 2019-12-18 | 三益半導体工業株式会社 | Non-contact power supply mechanism and method for rotary table and wafer rotation holding device |
KR102076643B1 (en) * | 2017-09-13 | 2020-02-12 | 가부시키가이샤 코쿠사이 엘렉트릭 | Manufacturing Method of Substrate Processing Apparatus and Semiconductor Device |
JP7241646B2 (en) * | 2019-08-30 | 2023-03-17 | 京セラ株式会社 | Heaters and heater systems |
JP7350613B2 (en) | 2019-10-17 | 2023-09-26 | 東京エレクトロン株式会社 | Substrate processing equipment |
US11444053B2 (en) | 2020-02-25 | 2022-09-13 | Yield Engineering Systems, Inc. | Batch processing oven and method |
US11688621B2 (en) | 2020-12-10 | 2023-06-27 | Yield Engineering Systems, Inc. | Batch processing oven and operating methods |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2288035A (en) * | 1940-05-17 | 1942-06-30 | Budd Induction Heating Inc | Heat treating apparatus |
US3403212A (en) * | 1964-09-21 | 1968-09-24 | Japan Atomic Energy Res Inst | Electric furnace having a heating element of carbon or graphite for producing temperatures under high pressures |
US3470459A (en) * | 1967-03-20 | 1969-09-30 | Eryx Corp | Asynchronous load limiting transformer |
US5850071A (en) * | 1996-02-16 | 1998-12-15 | Kokusai Electric Co., Ltd. | Substrate heating equipment for use in a semiconductor fabricating apparatus |
US6042454A (en) * | 1997-06-04 | 2000-03-28 | Ebara Corporation | System for detecting the endpoint of the polishing of a semiconductor wafer by a semiconductor wafer polisher |
US20040149716A1 (en) * | 2000-12-29 | 2004-08-05 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US6972453B2 (en) * | 2001-02-22 | 2005-12-06 | Nec Corporation | Method of manufacturing a semiconductor device capable of etching a multi-layer of organic films at a high selectivity |
US6996459B2 (en) * | 2003-06-27 | 2006-02-07 | Macronix International Co., Ltd. | Method and apparatus for preventing a furnace in a semiconductor process from temperature and gas excursion |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701821A (en) * | 1985-06-03 | 1987-10-20 | U.S. Philips Corporation | Helical scan tape recorder without head-tape contact in stand-by mode |
FR2646049B1 (en) * | 1989-04-18 | 1991-05-24 | Cableco Sa | REMOVABLE ELECTRIC HEATER PLATE |
JPH06310454A (en) * | 1993-04-21 | 1994-11-04 | Fuji Electric Co Ltd | Hot-wall type heat treatment device |
JPH07287471A (en) * | 1994-04-14 | 1995-10-31 | Ricoh Co Ltd | Fixing roller and fixing device |
JP3468651B2 (en) | 1996-12-20 | 2003-11-17 | 大日本スクリーン製造株式会社 | Substrate heat treatment equipment |
JP3383784B2 (en) | 1999-11-24 | 2003-03-04 | 一郎 高橋 | Heat treatment equipment for semiconductor wafers |
JP3598032B2 (en) | 1999-11-30 | 2004-12-08 | 東京エレクトロン株式会社 | Vertical heat treatment apparatus, heat treatment method, and heat insulation unit |
JP4763896B2 (en) * | 2001-01-25 | 2011-08-31 | 株式会社神戸製鋼所 | Plasma CVD equipment |
JP2003100643A (en) * | 2001-09-26 | 2003-04-04 | Daiichi Kiden:Kk | High temperature cvd system |
JP4276813B2 (en) | 2002-03-26 | 2009-06-10 | 株式会社日立国際電気 | Heat treatment apparatus and semiconductor manufacturing method |
US7623002B2 (en) * | 2008-01-30 | 2009-11-24 | The United States Of America As Represented By The Secretary Of The Navy | Method for coupling a direct current power source across a nearly frictionless high-speed rotation boundary |
-
2006
- 2006-07-26 JP JP2006203434A patent/JP2008034463A/en active Pending
-
2007
- 2007-07-24 US US11/878,401 patent/US20080023141A1/en not_active Abandoned
-
2009
- 2009-03-16 US US12/382,403 patent/US8092603B2/en not_active Expired - Fee Related
- 2009-03-16 US US12/382,402 patent/US20090178762A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2288035A (en) * | 1940-05-17 | 1942-06-30 | Budd Induction Heating Inc | Heat treating apparatus |
US3403212A (en) * | 1964-09-21 | 1968-09-24 | Japan Atomic Energy Res Inst | Electric furnace having a heating element of carbon or graphite for producing temperatures under high pressures |
US3470459A (en) * | 1967-03-20 | 1969-09-30 | Eryx Corp | Asynchronous load limiting transformer |
US5850071A (en) * | 1996-02-16 | 1998-12-15 | Kokusai Electric Co., Ltd. | Substrate heating equipment for use in a semiconductor fabricating apparatus |
US6042454A (en) * | 1997-06-04 | 2000-03-28 | Ebara Corporation | System for detecting the endpoint of the polishing of a semiconductor wafer by a semiconductor wafer polisher |
US20040149716A1 (en) * | 2000-12-29 | 2004-08-05 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US6972453B2 (en) * | 2001-02-22 | 2005-12-06 | Nec Corporation | Method of manufacturing a semiconductor device capable of etching a multi-layer of organic films at a high selectivity |
US6996459B2 (en) * | 2003-06-27 | 2006-02-07 | Macronix International Co., Ltd. | Method and apparatus for preventing a furnace in a semiconductor process from temperature and gas excursion |
Also Published As
Publication number | Publication date |
---|---|
US20080023141A1 (en) | 2008-01-31 |
JP2008034463A (en) | 2008-02-14 |
US8092603B2 (en) | 2012-01-10 |
US20090178619A1 (en) | 2009-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8092603B2 (en) | Substrate processing apparatus | |
US7198447B2 (en) | Semiconductor device producing apparatus and producing method of semiconductor device | |
US8148271B2 (en) | Substrate processing apparatus, coolant gas supply nozzle and semiconductor device manufacturing method | |
US6780251B2 (en) | Substrate processing apparatus and method for fabricating semiconductor device | |
KR100817644B1 (en) | Substrate processing device | |
US6737613B2 (en) | Heat treatment apparatus and method for processing substrates | |
US9076644B2 (en) | Substrate processing apparatus, substrate supporter and method of manufacturing semiconductor device | |
US7432475B2 (en) | Vertical heat treatment device and method controlling the same | |
JP2001160479A (en) | Ceramic heating resistor and board processing device using the same | |
JP5208294B2 (en) | Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus | |
JPWO2007018139A1 (en) | Semiconductor device manufacturing method and substrate processing apparatus | |
JP4180637B2 (en) | Semiconductor manufacturing apparatus and semiconductor device manufacturing method | |
US8398771B2 (en) | Substrate processing apparatus | |
JP2011216784A (en) | Method of manufacturing semiconductor device and substrate processing apparatus | |
US20130112669A1 (en) | Heat treatment apparatus | |
US20080199610A1 (en) | Substrate processing apparatus, and substrate processing method | |
JP4878830B2 (en) | Substrate processing equipment | |
US20030175426A1 (en) | Heat treatment apparatus and method for processing substrates | |
JP2008311555A (en) | Substrate treatment device | |
JP2011068974A (en) | Method for manufacturing semiconductor device | |
JP2005259902A (en) | Substrate processor | |
JP2013058561A (en) | Substrate processing apparatus and substrate processing method | |
JP4895685B2 (en) | Substrate processing apparatus and semiconductor device manufacturing method | |
JP2015185757A (en) | Substrate processing apparatus and semiconductor device manufacturing method | |
JP2009099728A (en) | Semiconductor manufacturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |