US20090148517A1 - Melt-extrusion multiparticulates - Google Patents

Melt-extrusion multiparticulates Download PDF

Info

Publication number
US20090148517A1
US20090148517A1 US12/372,460 US37246009A US2009148517A1 US 20090148517 A1 US20090148517 A1 US 20090148517A1 US 37246009 A US37246009 A US 37246009A US 2009148517 A1 US2009148517 A1 US 2009148517A1
Authority
US
United States
Prior art keywords
particles
therapeutically active
active agent
retardant
dosage form
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/372,460
Inventor
Benjamin Oshlack
Mark Chasin
Hun-Pin Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purdue Pharma LP
Original Assignee
Purdue Pharma LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23306123&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090148517(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Purdue Pharma LP filed Critical Purdue Pharma LP
Priority to US12/372,460 priority Critical patent/US20090148517A1/en
Publication of US20090148517A1 publication Critical patent/US20090148517A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds

Definitions

  • the present invention relates to a process of making granulates or multiparticulates which are useful, for example, in pharmaceutical dosage forms.
  • the invention relates to a process for melt-extruding pharmaceutical agents with excipients to form multiparticulates suitable for inclusion in solid dosage forms such as capsules, tablets and the like.
  • compositions which provide for controlled (slow) release of pharmacologically active substances contained in the compositions after oral administration to humans and animals.
  • slow release compositions are used to delay absorption of a medicament until it has reached certain portions of the alimentary tract.
  • sustained-release of a medicament in the alimentary tract further maintains a desired concentration of said medicament in the blood stream for a longer duration than would occur if conventional rapid release dosage forms are administered.
  • Melt granulation techniques have also been suggested to provide controlled release formulations. Melt granulation usually involves mechanically working an active ingredient in particulate form with one or more suitable binders and/or pharmaceutically acceptable excipients in a mixer until one or more of the binders melts and adheres to the surface of the particulate, eventually building up granules.
  • PCT International Publication No. WO 92/06679 discloses melt granulating methods for producing pellets containing therapeutically active substances.
  • the method includes mechanically working a mixture containing the active substance in cohesive form with a binder having a melting point of 40-100° C., while supplying sufficient energy to melt the binder and form “overmoist” spherical pellets and thereafter adding an additional cohesive substance while maintaining the mechanical working to finally produce dry pellets.
  • PCT International Publication No. WO 93/18753 also discloses another melt extrusion process for preparing sustained-release pellets.
  • This method includes pelletizing a mixture containing drug in finely divided form and a binder which includes one or more water-insoluble-wax-like binder substances with a melting point above 40° C. using a high shear mixer.
  • the particles have an average length of from about 0.1 to about 12 mm and the unit dose provides a release of the therapeutically active agent over at least about 8 hours.
  • Another aspect of the invention provides a method of preparing a multiparticulate sustained-release oral dosage form.
  • This method includes mixing together a therapeutically effective agent, a water-insoluble retardant and an optional binder to form a homogeneous mixture, heating the mixture and thereafter extruding the mixture into strands. The strands are then cooled, and reduced to particles having a size of from about 0.1 to about 12 mm.
  • This aspect further includes dividing the particles into unit doses.
  • the ratio of water-insoluble retardant material to therapeutically active agent is sufficient to impart a release of the active agent from the multiparticulate system over an extended time period.
  • the retardant will comprise about 5-95% of melt-extruded multiparticulate.
  • the multiparticulate sustained-release system can be included within a hard gelatin capsule or other oral dosage forms such as a compressed tablet. Methods of preparing such dosage forms are also provided herein.
  • a method of treating a patient with sustained-release multi-particulate formulations prepared as described above includes administering a unit dose sustained release oral dosage form containing the novel melt-extruded particles to a patient in need of the active ingredient contained therein.
  • a unit dose is understood to contain an effective amount of the therapeutically active agent.
  • a still further aspect of the invention provides an alternative method of preparing a multiparticulate sustained oral dosage form.
  • This aspect includes directly metering into an extruder a homogeneous mixture of a water-insoluble retardant, a therapeutically active agent, and an optional binder, heating the homogeneous mixture, extruding said mixture to form strands, cooling the strands and cutting the strands into particles having a size of from about 0.1 to 12 mm and dividing the particles into unit doses.
  • the ratio of hydrophobic material, namely water-insoluble retardant (and optional binder) to the therapeutically active agent is sufficient to impart a controlled release of the therapeutically active agent from the melt-extruded particles and unit doses over a time period of at least 8 hours.
  • FIG. 1 is a graph displaying the dissolution results of Examples 1 and 2;
  • FIG. 2 is a graph displaying the dissolution rates of Examples 3-6;
  • FIGS. 3 a and 3 b are graphs displaying the pH dependency of the dissolution results of Examples 3 and 5 respectively;
  • FIG. 4 is a graph displaying the dissolution results of Examples 7 and 8;
  • FIG. 5 is a graph displaying the dissolution results of Examples 9 and 10;
  • FIG. 6 is a graph displaying the dissolution results of Examples 11 and 12;
  • FIG. 7 is a graph displaying the dissolution results of Examples 13 and 14;
  • FIG. 8 is a schematic representation of a system for carrying out the present invention.
  • FIG. 9 is a graph displaying the results of Example 15.
  • a therapeutically active agent is combined with one or more suitable controlled-release retardants, and optionally, a water-insoluble binder, extruded and thereafter rendered into a plurality of melt-extruded particles or multiparticulates, such as spheres, beads or the like.
  • the active pharmaceutical agent(s) included in the controlled release multiparticulates of the present invention include systemically active therapeutic agents, locally active therapeutic agents, disinfecting agents, chemical impregnants, cleansing agents, deodorants, fragrances, dyes, animal repellents, insect repellents, a fertilizing agents, pesticides, herbicides, fungicides, and plant growth stimulants, and the like.
  • the only limitation on the ingredient is that the pharmaceutical agent is capable of undergoing the inventive extrusion process without substantially losing its sought-after effect.
  • the therapeutically active agents can be used in conjunction with the present invention.
  • the therapeutically active agents e.g., pharmaceutical agents
  • the therapeutically active agents include both water soluble and water insoluble drugs.
  • examples of such therapeutically active agents include anti-histamines (e.g., dimenhydrinate, diphenhydramine, chlorpheniramine and dexchlorpheniramine maleate), analgesics (e.g., aspirin, codeine, morphine, dihydromorphone, oxycodone, etc.), non-steroidal anti-inflammatory agents (e.g., naproxyn, diclofenac, indomethacin, ibuprofen, sulindac), anti-emetics (e.g., metoclopramide), anti-epileptics (e.g., phenyloin, meprobamate and nitrezepam), vasodilators (e.g., nifedipine, papa
  • the multiparticulate systems of the present invention include one or more compounds known as opioid analgesics.
  • Opioid analgesic compounds which may be used in the present invention include alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypeth
  • the opioid analgesic is selected from morphine, codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, oxymorphone, hydrates and solvates of any of the foregoing, mixtures of any of the foregoing, and the like.
  • the therapeutically active agent in order to obtain a controlled release of the active agent, is homogeneously combined with a sufficient amount of a release-retardant material and, optionally, a water-insoluble binder prior to undergoing extrusion.
  • the retardant can be a hydrophobic material such as a water-insoluble acrylic polymer or alkylcellulose, or a water soluble material such as hydroxyalkylcelluloses and related materials. If unit doses of the multiparticulate are to have about a 12 hour or shorter release pattern, hydroxyalkylcelluloses, for example will be extruded with the therapeutic agent. If release rates of greater than about 12 hours are desired, water-insoluble materials are selected. It is, of course, within the scope of the invention to have particles containing mixtures of the water soluble and insoluble polymers.
  • the hydrophobic polymer is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid) (anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate), poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • acrylic acid and methacrylic acid copolymers including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers,
  • the melt-extruded particle will comprise from about 1 to about 99% by weight of the retardant and preferably from about 5 to 95% by weight.
  • Other retardant polymers which may be used for the extrusion process of the present invention, as those skilled in the art will appreciate, include other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of water-insoluble portion of the retardant in the multiparticulate.
  • sustained release and “extended duration” are defined for purposes of the present invention as the release of the drug (i.e., opioid analgesic) at such a rate that blood (e.g., plasma) levels are maintained within the therapeutic range but below toxic levels over a period of time greater than 6 hours, more preferably for periods of up to about 24 hours, or longer.
  • drug i.e., opioid analgesic
  • blood e.g., plasma
  • the acrylic polymer is an acrylic resin lacquer such as that which is commercially available from Rohm Pharma under the Tradename Eudragit®.
  • the acrylic polymer comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit®. RL30D and Eudragit® RS30D, respectively.
  • Eudragit®, RL30D and Eudragit®. RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D.
  • the mean molecular weight is about 150,000.
  • Eudragit® and Eudragit® L-100 are also preferred.
  • the code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents.
  • Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, multiparticulate systems formed to include the same are swellable and permeable in aqueous solutions and digestive fluids.
  • the hydrophobic polymer which may be used is a hydrophobic cellulosic material such as ethylcellulose.
  • ethylcellulose a hydrophobic cellulosic material
  • other cellulosic polymers including other alkyl cellulosic polymers, may be substituted for part or all of the ethylcellulose included in the hydrophobic polymer portion of the multiparticulates of the present invention.
  • the release-modifying agent or retardant is selected from materials such as hydroxyalkylcelluloses such as hydroxypropylmethylcellulose and mixtures of the foregoing.
  • the retardants may also include a plasticizer.
  • suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
  • plasticizers for the acrylic polymers of the present invention include citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol, polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
  • the binder portion of the melt-extruded particles is optionally included. It has been found that the binder can be reduced or even eliminated from the extrusion if the physical properties and relationships between the therapeutically active ingredient and retardant(s) allow a sufficiently cohesive extruded strand to exit the apparatus.
  • suitable binders includes hydrogenated vegetable or castor oil, paraffin, higher aliphatic alcohols, higher aliphatic acids, long chain fatty acids, fatty acid esters, and mixtures thereof.
  • the binder material may consist of one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances.
  • the individual wax-like substances in the binder material should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases.
  • Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
  • Binder materials are preferably water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends.
  • the wax-like substance may comprise fatty alcohols, fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic acid, stearyl alcohol and hydrophobic and hydrophilic polymers having hydrocarbon backbones.
  • melt-extruded particles can be prepared to include pharmaceutically acceptable carriers and excipients. It is to be understood that these materials can be mixed with the particles after extrusion as well.
  • pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients , American Pharmaceutical Association (1986), incorporated by reference herein. Techniques and compositions for making solid oral dosage forms are described in Pharmaceutical Dosage Forms: Tablets (Lieberman, Lachman and Schwartz, editors). Second Edition, published by Marcel Dekker, Inc., incorporated by reference herein. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences , (Arthur Osol, editor), 1553-1593 (1980), incorporated by reference herein.
  • An optional process for preparing the multiparticulates and unit doses of the present invention includes directly metering into an extruder a water-insoluble retardant, a therapeutically active agent, and an optional binder; heating said homogenous mixture; extruding said homogenous mixture to thereby form strands; cooling said strands containing said homogeneous mixture; and cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses.
  • a relatively continuous manufacturing procedure is realized.
  • the multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice.
  • the terms “multiparticulate(s)” and “multiparticulate system(s)” and “melt-extruded particles” shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a retardant as described herein.
  • the multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm.
  • the multiparticulates can be any geometrical shape within this size range such as beads, microspheres, seeds, pellets, etc.
  • the multiparticulate can thereafter be included in a capsule or in any other suitable solid form.
  • unit dose is defined for purposes of the present invention as the total amount of substrates needed to administer a desired dose of drug (e.g., opioid analgesic) to a patient.
  • drug e.g., opioid analgesic
  • the melt extruded particles comprising the therapeutically active agent may be coated with a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other things.
  • the hydrophobic polymer comprising the sustained-release coating is a pharmaceutically acceptable acrylic polymer, such as those described hereinabove.
  • the multiparticulate is used in a sustained-release opioid oral dosage form and includes hydromorphone as the therapeutically active ingredient in an amount from about 4 to about 64 mg hydromorphone hydrochloride.
  • the dosage form may contain molar equivalent amounts of other hydromorphone salts or of the hydromorphone base.
  • the opioid analgesic is other than hydromorphone, the dosage form contains an appropriate amount to provide a substantially equivalent therapeutic effect.
  • the opioid analgesic comprises morphine
  • the sustained-release oral dosage forms of the present invention include from about 5 mg to about 800 mg morphine, by weight.
  • the sustained-release oral dosage forms of the present invention include from about 5 mg to about 400 mg oxycodone.
  • the multiparticulate can be encapsulated or compressed into solid oral dosage forms using standard techniques.
  • the unit dosage forms of the present invention may further include combinations of multiparticulates containing one or more of the active agents disclosed above before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release active agent for prompt therapeutic effect.
  • the plasticized aqueous dispersion of hydrophobic polymer may be applied onto the multiparticulate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art.
  • a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the multiparticulate material and effects drying while the acrylic polymer coating is sprayed on.
  • a controlled-release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
  • suitable quantities of other materials e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
  • the feed materials enter through a feed hopper and are moved through the barrel by the screws and are forced through the die into strands which are thereafter conveyed such as by a continuous movable belt to allow for cooling and being directed to a pelletizer or other suitable device to render the extruded ropes into the multiparticulate system.
  • the pelletizer can consist of rollers, fixed knife, rotating cutter and the like. Suitable instruments and systems are available from distributors such as C.W. Brabender Instruments, Inc. of South Hackensack, N.J. Other suitable apparatus will be apparent to those of ordinary skill in the art.
  • roller speed and cutter speed (e.g., to 3-100 ft/min and 100-800 rpm). Cut the congealed strands to desired size (e.g., 3-5 mm in diameter, 0.3-5 mm in length).
  • chlorpheniramine maleate controlled release pellets were prepared according to the above manufacturing procedure using ethylcellulose and an acrylic polymer (Eudragit RSPO), respectively as the retardant.
  • the formulations are set forth in Tables 1 and 2 below. The dissolution of these formulations is set forth in FIG. 1 .
  • Drug release rate from ethylcellulose pellets (prepared at 105° C.) is significantly slower than that from Eudragit RS pellets (prepared at 85° C.).
  • Ex. 2 The excipients used in Ex. 2 were employed to make morphine sulfate controlled release pellets.
  • the drug release rate was slower than expected especially during later hours of the dissolution.
  • the drug dissolution rate obtained from the product of Ex. 3 showed a significant pH dependency.
  • the release rate was slower in SIF (simulated intestinal fluid) than in SGF (simulated gastric fluid).
  • Example 3 a bioavailability study was undertaken. Fourteen subjects were given the morphine sulphate formulations of Example 3. The results are provided in Table 15 below and in FIG. 9 .
  • the formulation is an ideal candidate for an extended release or once-a-day product without a food effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Neurology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Cosmetics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

A unit dose sustained-release oral dosage form containing a plurality of melt-extruded particles, each consisting essentially of a therapeutically active agent, one or more retardants, and an optional water-insoluble binder is disclosed. The particles have a length of from about 0.1 to about 12 mm and can be of varying diameters and each unit dose provides a release of therapeutically active agents over at least about 8 hours. Methods of preparing the unit doses as well as extrusion processes and methods of treatment are also disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/745,950, filed Dec. 23, 2003, which is a continuation of U.S. patent application Ser. No. 10/038,867, filed Jan. 2, 2002, now U.S. Pat. No. 6,706,281, which is a continuation of U.S. patent application Ser. No. 09/358,828, filed Jul. 22, 1999, now U.S. Pat. No. 6,335,033, which is a continuation of U.S. patent application Ser. No. 08/334,209, filed Nov. 4, 1994, now U.S. Pat. No. 5,965,161, the entire disclosure of each of which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a process of making granulates or multiparticulates which are useful, for example, in pharmaceutical dosage forms. In particular, the invention relates to a process for melt-extruding pharmaceutical agents with excipients to form multiparticulates suitable for inclusion in solid dosage forms such as capsules, tablets and the like.
  • It is known in the pharmaceutical art to prepare compositions which provide for controlled (slow) release of pharmacologically active substances contained in the compositions after oral administration to humans and animals. Such slow release compositions are used to delay absorption of a medicament until it has reached certain portions of the alimentary tract. Such sustained-release of a medicament in the alimentary tract further maintains a desired concentration of said medicament in the blood stream for a longer duration than would occur if conventional rapid release dosage forms are administered.
  • Over the years, several different methods of preparing controlled release pharmaceutical dosage forms have been suggested. For example, direct compression techniques, wet granulation techniques, encapsulation techniques and the like have been proposed to deliver pharmaceutically active ingredients to the alimentary tract over extended periods.
  • Melt granulation techniques have also been suggested to provide controlled release formulations. Melt granulation usually involves mechanically working an active ingredient in particulate form with one or more suitable binders and/or pharmaceutically acceptable excipients in a mixer until one or more of the binders melts and adheres to the surface of the particulate, eventually building up granules.
  • PCT International Publication No. WO 92/06679 discloses melt granulating methods for producing pellets containing therapeutically active substances. The method includes mechanically working a mixture containing the active substance in cohesive form with a binder having a melting point of 40-100° C., while supplying sufficient energy to melt the binder and form “overmoist” spherical pellets and thereafter adding an additional cohesive substance while maintaining the mechanical working to finally produce dry pellets.
  • PCT International Publication No. WO 93/18753 also discloses another melt extrusion process for preparing sustained-release pellets. This method includes pelletizing a mixture containing drug in finely divided form and a binder which includes one or more water-insoluble-wax-like binder substances with a melting point above 40° C. using a high shear mixer.
  • In the spite of the foregoing advances, a need for further alternatives in the field of controlled release formulations has been sought. The present invention addresses this need.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide improved methods for producing multiparticulates containing pharmaceutically active ingredients and excipients.
  • It is a further object of the present invention to provide multiparticulates containing pharmaceutically active ingredients which display improved controlled-release characteristics.
  • These objects and others have been accomplished by the present invention, which relates in part to a unit dose sustained-release oral dosage form containing a plurality of melt-extruded particles, each of said particles comprising:
  • a) a therapeutically active agent;
  • b) one or more retardants; and
  • c) an optional water-insoluble binder.
  • The particles have an average length of from about 0.1 to about 12 mm and the unit dose provides a release of the therapeutically active agent over at least about 8 hours.
  • Another aspect of the invention provides a method of preparing a multiparticulate sustained-release oral dosage form. This method includes mixing together a therapeutically effective agent, a water-insoluble retardant and an optional binder to form a homogeneous mixture, heating the mixture and thereafter extruding the mixture into strands. The strands are then cooled, and reduced to particles having a size of from about 0.1 to about 12 mm. This aspect further includes dividing the particles into unit doses. The ratio of water-insoluble retardant material to therapeutically active agent is sufficient to impart a release of the active agent from the multiparticulate system over an extended time period. In this regard, the retardant will comprise about 5-95% of melt-extruded multiparticulate. The multiparticulate sustained-release system can be included within a hard gelatin capsule or other oral dosage forms such as a compressed tablet. Methods of preparing such dosage forms are also provided herein.
  • In yet a further aspect of the invention, there is provided a method of treating a patient with sustained-release multi-particulate formulations prepared as described above. This method includes administering a unit dose sustained release oral dosage form containing the novel melt-extruded particles to a patient in need of the active ingredient contained therein. For purposes of the present invention, a unit dose is understood to contain an effective amount of the therapeutically active agent.
  • A still further aspect of the invention provides an alternative method of preparing a multiparticulate sustained oral dosage form. This aspect includes directly metering into an extruder a homogeneous mixture of a water-insoluble retardant, a therapeutically active agent, and an optional binder, heating the homogeneous mixture, extruding said mixture to form strands, cooling the strands and cutting the strands into particles having a size of from about 0.1 to 12 mm and dividing the particles into unit doses. The ratio of hydrophobic material, namely water-insoluble retardant (and optional binder) to the therapeutically active agent is sufficient to impart a controlled release of the therapeutically active agent from the melt-extruded particles and unit doses over a time period of at least 8 hours.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
  • FIG. 1 is a graph displaying the dissolution results of Examples 1 and 2;
  • FIG. 2 is a graph displaying the dissolution rates of Examples 3-6;
  • FIGS. 3 a and 3 b are graphs displaying the pH dependency of the dissolution results of Examples 3 and 5 respectively;
  • FIG. 4 is a graph displaying the dissolution results of Examples 7 and 8;
  • FIG. 5 is a graph displaying the dissolution results of Examples 9 and 10;
  • FIG. 6 is a graph displaying the dissolution results of Examples 11 and 12;
  • FIG. 7 is a graph displaying the dissolution results of Examples 13 and 14;
  • FIG. 8 is a schematic representation of a system for carrying out the present invention; and
  • FIG. 9 is a graph displaying the results of Example 15.
  • DETAILED DESCRIPTION
  • In accordance with the present invention, there are provided methods for preparing multiparticulates using melt-extrusion techniques and sustained release oral unit dosage forms containing a plurality of the melt extruded particulates. In accordance therewith, a therapeutically active agent is combined with one or more suitable controlled-release retardants, and optionally, a water-insoluble binder, extruded and thereafter rendered into a plurality of melt-extruded particles or multiparticulates, such as spheres, beads or the like.
  • Pharmaceutical Agents
  • The active pharmaceutical agent(s) included in the controlled release multiparticulates of the present invention include systemically active therapeutic agents, locally active therapeutic agents, disinfecting agents, chemical impregnants, cleansing agents, deodorants, fragrances, dyes, animal repellents, insect repellents, a fertilizing agents, pesticides, herbicides, fungicides, and plant growth stimulants, and the like. The only limitation on the ingredient is that the pharmaceutical agent is capable of undergoing the inventive extrusion process without substantially losing its sought-after effect.
  • A wide variety of therapeutically active agents can be used in conjunction with the present invention. The therapeutically active agents (e.g., pharmaceutical agents) which may be used in the compositions of the present invention include both water soluble and water insoluble drugs. Examples of such therapeutically active agents include anti-histamines (e.g., dimenhydrinate, diphenhydramine, chlorpheniramine and dexchlorpheniramine maleate), analgesics (e.g., aspirin, codeine, morphine, dihydromorphone, oxycodone, etc.), non-steroidal anti-inflammatory agents (e.g., naproxyn, diclofenac, indomethacin, ibuprofen, sulindac), anti-emetics (e.g., metoclopramide), anti-epileptics (e.g., phenyloin, meprobamate and nitrezepam), vasodilators (e.g., nifedipine, papaverine, diltiazem and nicardirine), anti-tussive agents and expectorants (e.g., codeine phosphate), anti-asthmatics (e.g., theophylline), antacids, anti-spasmodics (e.g., atropine, scopolamine), antidiabetics (e.g., insulin), diuretics (e.g., ethacrynic acid, bendrofluazide), anti-hypotensives (e.g., propranolol, clonidine), antihypertensives (e.g., clonidine, methyldopa), bronchodilators (e.g., albuterol), steroids (e.g., hydrocortisone, triamcinolone, prednisone), antibiotics (e.g., tetracycline), antihemorrhoidals, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, stimulants (including appetite suppressants such as phenylpropanolamine), as well as salts, hydrates, and solvates of the same. The above list is not meant to be exclusive.
  • In certain preferred embodiments, the multiparticulate systems of the present invention include one or more compounds known as opioid analgesics. Opioid analgesic compounds which may be used in the present invention include alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levorphanol, levophenacylmorphan, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, nalorphine, normorphine, norpipanone, opium, oxycodone, oxymorphone, papavereturn, pentazocine, phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, piritramide, propheptazine, promedol, properidine, propiram, propoxyphene, sufentanil, tramadol, tilidine, salts thereof, mixtures of any of the foregoing, mixed mu-agonists/antagonists, mu-antagonist combinations, and the like.
  • In certain particularly preferred embodiments, the opioid analgesic is selected from morphine, codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, oxymorphone, hydrates and solvates of any of the foregoing, mixtures of any of the foregoing, and the like.
  • Controlled Release Retardants and Binders
  • According to the present invention, in order to obtain a controlled release of the active agent, the therapeutically active agent is homogeneously combined with a sufficient amount of a release-retardant material and, optionally, a water-insoluble binder prior to undergoing extrusion. The retardant can be a hydrophobic material such as a water-insoluble acrylic polymer or alkylcellulose, or a water soluble material such as hydroxyalkylcelluloses and related materials. If unit doses of the multiparticulate are to have about a 12 hour or shorter release pattern, hydroxyalkylcelluloses, for example will be extruded with the therapeutic agent. If release rates of greater than about 12 hours are desired, water-insoluble materials are selected. It is, of course, within the scope of the invention to have particles containing mixtures of the water soluble and insoluble polymers.
  • In certain preferred embodiments of the present invention, the hydrophobic polymer is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid) (anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate), poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • The melt-extruded particle will comprise from about 1 to about 99% by weight of the retardant and preferably from about 5 to 95% by weight. Other retardant polymers which may be used for the extrusion process of the present invention, as those skilled in the art will appreciate, include other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of water-insoluble portion of the retardant in the multiparticulate.
  • The terms “sustained release” and “extended duration” are defined for purposes of the present invention as the release of the drug (i.e., opioid analgesic) at such a rate that blood (e.g., plasma) levels are maintained within the therapeutic range but below toxic levels over a period of time greater than 6 hours, more preferably for periods of up to about 24 hours, or longer.
  • In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
  • In one preferred embodiment, the acrylic polymer is an acrylic resin lacquer such as that which is commercially available from Rohm Pharma under the Tradename Eudragit®. In further preferred embodiments, the acrylic polymer comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit®. RL30D and Eudragit® RS30D, respectively. Eudragit®, RL30D and Eudragit®. RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. Eudragit® and Eudragit® L-100 are also preferred. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, multiparticulate systems formed to include the same are swellable and permeable in aqueous solutions and digestive fluids.
  • The polymers described above such as Eudragit® RL/RS may be mixed together in any desired ratio in order to ultimately obtain a sustained-release formulation having a desirable dissolution profile. Desirable sustained-release multiparticulate systems may be obtained, for instance, from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
  • In other preferred embodiments, the hydrophobic polymer which may be used is a hydrophobic cellulosic material such as ethylcellulose. Those skilled in the art will appreciate that other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of the ethylcellulose included in the hydrophobic polymer portion of the multiparticulates of the present invention.
  • In certain preferred embodiments, the release-modifying agent or retardant is selected from materials such as hydroxyalkylcelluloses such as hydroxypropylmethylcellulose and mixtures of the foregoing.
  • The retardants may also include a plasticizer. Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
  • Examples of suitable plasticizers for the acrylic polymers of the present invention include citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol, polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
  • The binder portion of the melt-extruded particles is optionally included. It has been found that the binder can be reduced or even eliminated from the extrusion if the physical properties and relationships between the therapeutically active ingredient and retardant(s) allow a sufficiently cohesive extruded strand to exit the apparatus. A non-limiting list of suitable binders includes hydrogenated vegetable or castor oil, paraffin, higher aliphatic alcohols, higher aliphatic acids, long chain fatty acids, fatty acid esters, and mixtures thereof.
  • The binder material may consist of one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances. In order to achieve constant release, the individual wax-like substances in the binder material should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases.
  • Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
  • Binder materials are preferably water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends. Specifically, the wax-like substance may comprise fatty alcohols, fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic acid, stearyl alcohol and hydrophobic and hydrophilic polymers having hydrocarbon backbones.
  • In addition to the foregoing, the melt-extruded particles can be prepared to include pharmaceutically acceptable carriers and excipients. It is to be understood that these materials can be mixed with the particles after extrusion as well. Specific examples of pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1986), incorporated by reference herein. Techniques and compositions for making solid oral dosage forms are described in Pharmaceutical Dosage Forms: Tablets (Lieberman, Lachman and Schwartz, editors). Second Edition, published by Marcel Dekker, Inc., incorporated by reference herein. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences, (Arthur Osol, editor), 1553-1593 (1980), incorporated by reference herein.
  • An optional process for preparing the multiparticulates and unit doses of the present invention includes directly metering into an extruder a water-insoluble retardant, a therapeutically active agent, and an optional binder; heating said homogenous mixture; extruding said homogenous mixture to thereby form strands; cooling said strands containing said homogeneous mixture; and cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses. In this aspect of the invention, a relatively continuous manufacturing procedure is realized.
  • Multiparticulates and Multiparticulate Systems
  • The multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice. For purposes of the present invention, the terms “multiparticulate(s)” and “multiparticulate system(s)” and “melt-extruded particles” shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a retardant as described herein. In this regard, the multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm. In addition, it is to be understood that the multiparticulates can be any geometrical shape within this size range such as beads, microspheres, seeds, pellets, etc.
  • The multiparticulate can thereafter be included in a capsule or in any other suitable solid form.
  • The term “unit dose” is defined for purposes of the present invention as the total amount of substrates needed to administer a desired dose of drug (e.g., opioid analgesic) to a patient.
  • In one especially preferred embodiment, oral dosage forms are prepared to include an effective amount of multiparticulates within a capsule. For example, a plurality of the melt extruded particles may be placed in a gelatin capsule in an amount sufficient to provide an effective controlled-release dose when ingested and contacted by gastric fluid. In certain preferred embodiments of the present invention, the sustained-release multiparticulate systems are coated with a sustained-release coating. The coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tack-free.
  • In order to obtain a sustained-release of opioid, for example, sufficient to provide an analgesic effect for the extended durations set forth in the present invention, the melt extruded particles comprising the therapeutically active agent may be coated with a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other things. In certain preferred embodiments of the present invention, the hydrophobic polymer comprising the sustained-release coating is a pharmaceutically acceptable acrylic polymer, such as those described hereinabove.
  • The solvent which is used for the hydrophobic material may be any pharmaceutically acceptable solvent, including water, methanol, ethanol, methylene chloride and mixtures thereof. It is preferable however, that the coatings be based upon aqueous dispersions of the hydrophobic material.
  • In one preferred embodiment the multiparticulate is used in a sustained-release opioid oral dosage form and includes hydromorphone as the therapeutically active ingredient in an amount from about 4 to about 64 mg hydromorphone hydrochloride. Alternatively, the dosage form may contain molar equivalent amounts of other hydromorphone salts or of the hydromorphone base. In other preferred embodiments where the opioid analgesic is other than hydromorphone, the dosage form contains an appropriate amount to provide a substantially equivalent therapeutic effect. For example, when the opioid analgesic comprises morphine, the sustained-release oral dosage forms of the present invention include from about 5 mg to about 800 mg morphine, by weight. When the opioid analgesic comprises oxycodone, the sustained-release oral dosage forms of the present invention include from about 5 mg to about 400 mg oxycodone. In these aspects of the invention, the multiparticulate can be encapsulated or compressed into solid oral dosage forms using standard techniques.
  • The unit dosage forms of the present invention may further include combinations of multiparticulates containing one or more of the active agents disclosed above before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release active agent for prompt therapeutic effect.
  • The controlled-release formulations of the present invention slowly release the therapeutically active agent, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids. The controlled-release profile of the formulations of the invention can be altered, for example, by varying the amount of retardant, i.e., hydrophobic polymer, by varying the amount of plasticizer relative to hydrophobic polymer, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
  • For example, hydromorphone-containing multiparticulate may also be overcoated with an aqueous dispersion of the hydrophobic polymer. The aqueous dispersion of hydrophobic polymer preferably further includes an effective amount of plasticizer, e.g., triethyl citrate. Pre-formulated aqueous dispersions of ethylcellulose, such as Aquacoat® or Surelease®, may be used. If Surelease® is used, it is not necessary to separately add a plasticizer. Alternatively, pre-formulated aqueous dispersions of acrylic polymers such as Eudragit® can be used. These coating solutions may also contain film-formers, plasticizers, a solvent system (i.e., water), a colorant to provide elegance and product distinction. Color may also be added to or during the extrusion of the therapeutically active agent and retardant.
  • The plasticized aqueous dispersion of hydrophobic polymer may be applied onto the multiparticulate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art. In a preferred method, a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the multiparticulate material and effects drying while the acrylic polymer coating is sprayed on. A sufficient amount of the aqueous dispersion of hydrophobic polymer to obtain a predetermined controlled-release of said therapeutically active agent when the coated particulate is exposed to aqueous solutions, e.g. gastric fluid, is preferably applied, taking into account the physical characteristics of the therapeutically active agent, the manner of incorporation of the plasticizer, etc.
  • In addition to the above ingredients, a controlled-release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
  • In a further aspect of the present invention, a process for the preparation of a multiparticulate controlled release, oral dosage form is provided. This aspect includes homogeneously mixing a therapeutically effective agent with a water-insoluble retardant and, optionally, a binder; extruding the mixture, cooling the exiting extruded strands, rendering the strands into particles having a size of from about 0.1 to about 12 mm in length and optionally, encapsulating or compressing and shaping the granules into tablets. The diameter of the extruder aperture or exit port can also be adjusted to vary the thickness of the extruded strands. Furthermore, the exit part of the extruder need not be round; it can be oblong, rectangular, etc. The exiting strands can be reduced to particles using a hot wire cutter, guillotine, etc.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As shown in FIG. 8, a typical melt extrusion system capable of carrying out the present invention include a suitable extruder drive motor having variable speed and constant torque control, start-stop controls, and ammeter. In addition, the system will include a temperature control console which includes temperature sensors, cooling means and temperature indicators throughout the length of the extruder. In addition, the system will include an extruder such as twin-screw extruder which consists of two counter-rotating intermeshing screws enclosed within a cylinder or barrel having an aperture or die at the exit thereof. The feed materials enter through a feed hopper and are moved through the barrel by the screws and are forced through the die into strands which are thereafter conveyed such as by a continuous movable belt to allow for cooling and being directed to a pelletizer or other suitable device to render the extruded ropes into the multiparticulate system. The pelletizer can consist of rollers, fixed knife, rotating cutter and the like. Suitable instruments and systems are available from distributors such as C.W. Brabender Instruments, Inc. of South Hackensack, N.J. Other suitable apparatus will be apparent to those of ordinary skill in the art.
  • General Pellet Manufacturing Procedure
  • Premix the required amount of drug, polymers, and optional binder (wax).
  • Charge a powder feeder with proper amount of drug/excipient blend.
  • Set temperatures of extruder to the required temperature, depending on the formulation. Wait until the corresponding heating zones reach steady temperatures. Start the feeder and the extruder. The drug/excipient powder blend is melted and intimately mixed in the extruder. The diameter of the extruder aperture can be adjusted to vary the thickness of the resulting strand.
  • Set the conveyor belt speed to an appropriate speed (e.g., 3-100 ft/min). Allow the extruded semisolid strand(s) to be congealed and transported to the pelletizer. Additional cooling devices may be needed to ensure proper congealing. (The conveyor belt may not be needed to cool the strand, if the material congeals rapidly enough.)
  • Set the roller speed and cutter speed (e.g., to 3-100 ft/min and 100-800 rpm). Cut the congealed strands to desired size (e.g., 3-5 mm in diameter, 0.3-5 mm in length).
  • Collect the pellet product.
  • Fill a desired weight of pellets into hard gelatin capsules to obtain an appropriate dose of the drug.
  • Dissolution Method (USP II Paddle at 100 rpm)
  • 1st hour in 700 ml simulated gastric fluid or SGF thereafter, 900 ml simulated intestinal fluid SIF
  • Using HPLC Procedures for Assay
  • The following examples illustrate various aspects of the present invention. They are not meant to be construed to limit the claims in any manner whatsoever.
  • Examples 1-2
  • In these examples, chlorpheniramine maleate controlled release pellets were prepared according to the above manufacturing procedure using ethylcellulose and an acrylic polymer (Eudragit RSPO), respectively as the retardant. The formulations are set forth in Tables 1 and 2 below. The dissolution of these formulations is set forth in FIG. 1. Drug release rate from ethylcellulose pellets (prepared at 105° C.) is significantly slower than that from Eudragit RS pellets (prepared at 85° C.).
  • TABLE 1
    EX. 1
    Composition Amt. (mg) per Capsule
    Chlorpheniramine Maleate
    60
    Ethyl Cellulose 84
    Stearic Acid 36
    Total 180
  • TABLE 2
    EX. 2
    Composition Amt. (mg) per Capsule
    Chlorpheniramine Maleate
    60
    Eudragit RSPO 84
    Stearic Acid 36
    Total 180
  • Examples 3-6 Ex. 3
  • The excipients used in Ex. 2 were employed to make morphine sulfate controlled release pellets. The drug release rate was slower than expected especially during later hours of the dissolution.
  • Ex. 4-6
  • To increase the drug dissolution rate during later hours, varying amounts of Eudragit L-100 were incorporated in the formulation. The drug dissolution rate increases with increasing amount of Eudragit L-100 in the formulation.
  • TABLE 3
    EX. 3
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Eudragit RSPO 42
    Stearic Acid 18
    Total 120
  • TABLE 4
    EX. 4
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Eudragit RSPO 38.4
    Eudragit L-100 3.6
    Stearic Acid 18
    Total 120
  • TABLE 5
    EX. 5
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Eudragit RSPO 36
    Eudragit L-100 6
    Stearic Acid 18
    Total 120
  • TABLE 6
    EX. 6
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Eudragit RSPO 33.6
    Eudragit L-100 8.4
    Stearic Acid (SA) 18
    Total 120
  • As seen in FIG. 3 a, the drug dissolution rate obtained from the product of Ex. 3 showed a significant pH dependency. The release rate was slower in SIF (simulated intestinal fluid) than in SGF (simulated gastric fluid).
  • In FIG. 3 b, it can be seen that due to the addition of Eudragit L-100, the drug dissolution rate obtained from Ex. 5 was less pH dependent. The drug release rate was faster in SIF during later hours of dissolution which is desirable for complete bioavailability.
  • Examples 7-8
  • As demonstrated in FIG. 4, with proper choice of plasticizers, the drug release rate from the formula containing Eudragit L-100 can be reduced. This may be necessary to achieve desirable plasma drug concentration profiles after oral administration of the pellets.
  • TABLE 7
    EX. 7
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Eudragit RSPO 33.6
    Eudragit L-100 8.4
    Stearic Acid (SA) 9
    Diethyl Phthalate (DEP) 9
    Total 120
  • TABLE 8
    EX. 8
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Eudragit RSPO 33.6
    Eudragit L-100 8.4
    Stearic Acid (SA) 9
    Tributyl Citrate (TBC) 9
    Total 120
  • Examples 9-10
  • A different polymer/wax combination was used as an alternative formulation. As seen in FIG. 5, the drug dissolution rate from ethylcellulose/polyvinyl acetate phthalate was somewhat faster.
  • TABLE 9
    EX. 9
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Ethyl Cellulose 38.4
    Polyvinyl Acetate Phthalate 3.6
    Stearic Acid 18
    Total 120
  • TABLE 10
    EX. 10
    Composition Amt. (mg) per Capsule
    Morphine Sulfate
    60
    Ethyl Cellulose 34.8
    Polyvinyl Acetate Phthalate 7.2
    Stearic Acid 18
    Total 120
  • Examples 11-12
  • The formula used in Ex. 5 was applied to oxycodone hydrochloride. Due to the higher potency of oxycodone, only 20 mg of drug was used. The missing 40 mg was replaced by 40 mg of talc (Ex. 12). No replacement was used in Ex. 11. When tested in only SGF or SIF, the use of Eudragit L causes the formulation to become less pH dependent. The results are shown in FIG. 6.
  • TABLE 11
    EX. 11
    Composition Amt. (mg) per Capsule
    Oxycodone Hydrochloride
    20
    Eudragit RSPO 36
    Eudragit L-100 6
    Stearic Acid 18
    Total 120
  • TABLE 12
    EX. 12
    Composition Amt. (mg) per Capsule
    Oxycodone Hydrochloride
    20
    Eudragit RSPO 36
    Eudragit L-100 6
    Stearic Acid 18
    Talc 40
    Total 120
  • Examples 13-14 Hydromorphone
  • The formula used in Ex. 5 was applied to hydromorphone hydrochloride. Due to the higher potency of hydromorphone, only 8 mg of drug was used. The missing 52 mg was replaced by 52 mg of talc (Ex. 14) or 52 mg of excipients (Ex. 13). The results are shown in FIG. 7.
  • TABLE 13
    EX. 13
    Composition Amt. (mg) per Capsule
    Hydromorphone Hydrochloride
    8
    Eudragit RSPO 67.2
    Eudragit L-100 11.2
    Stearic Acid 33.6
    Total 120
  • TABLE 14
    EX. 14
    Composition Amt. (mg) per Capsule
    Hydromorphone Hydrochloride
    8
    Eudragit RSPO 36
    Eudragit L-100 6
    Stearic Acid 18
    Talc 52
    Total 120
  • Example 15
  • In this Example, a bioavailability study was undertaken. Fourteen subjects were given the morphine sulphate formulations of Example 3. The results are provided in Table 15 below and in FIG. 9.
  • TABLE 15
    Group AUC Cmax Tmax
    Example 3 Fasted 230 15.7 2.1
    Example 3 Fed 213 14.0 3.1
  • From the above data, it can be seen that the formulation is an ideal candidate for an extended release or once-a-day product without a food effect.
  • The examples provided above are not meant to be exclusive. Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.

Claims (27)

1. A unit dose sustained-release oral dosage form comprising a plurality-of melt extruded particles, each of said particles comprising:
(a) a therapeutically active agent;
(b) one or more retardants; and
(c) an optional water insoluble binder;
said particles having a (length) size from about 0.1 mm to about 12 mm, said unit dose providing a release of said therapeutically active agent over at least about 6 hours.
2. (canceled)
3. The unit dose of claim 1, wherein said therapeutically active agent is an opioid analgesic selected from the group consisting of morphine, codeine, hydromorphone, hydrocodone, oxycodone, oxymorphone, dihydrocodeine, dihydromorphine, and mixtures thereof.
4. (canceled)
5. The dosage form of claim 2, wherein said opioid analgesic consists of from about 2 mg to about 64 mg hydromorphone.
6. The dosage form of claim 2, wherein said opioid analgesic consists of from about 5 mg to about 800 mg morphine.
7. The dosage form of claim 2, wherein said opioid analgesic consists of from about 5 mg to about 400 mg oxycodone.
8. The dosage form of claim 1, wherein said retardant is selected from the group consisting of acrylic polymers, hydroxyalkylcelluloses and mixtures thereof.
9. The unit dose of claim 1, wherein said acrylic polymer is comprised of monomers selected from the group consisting of an ester of acrylic acid, an ester of methacrylic acid, an alkyl ester of acrylic acid, an alkyl ester of methacrylic acid, and mixtures of any of the foregoing.
10. The unit dose of claim 1, wherein said water insoluble binder is selected from the group consisting of hydrogenated vegetable or castor oil, paraffin, higher aliphatic alcohols, higher aliphatic acids, long chain fatty acids, fatty acid esters, and mixtures thereof.
11. The unit dose of claim 1, wherein said binder is selected from the group consisting of higher aliphatic alcohols and water-insoluble waxes.
12. The unit dose of claim 1, wherein said particles have a diameter from about 0.1 to about 5 mm.
13. The unit dose of claim 1, wherein each of said particles comprise from about 1% to about 99% of said retardant.
14. The unit dose of claim 1, wherein each of said particles comprise from about 5% to about 95% of said retardant.
15. A method of preparing a multiparticulate sustained release oral dosage form, comprising:
(a) mixing together a therapeutically active agent, a water-insoluble retardant, and an optional binder to obtain a homogeneous mixture, the ratio of said water insoluble retardant to said therapeutically active agent in said mixture being sufficient to impart a release of said therapeutically active agent from said particles over a time period of at least about 4 hours when said particle is exposed to an aqueous fluid;
(b) heating said homogenous mixture;
(c) extruding said homogenous mixture to thereby form strands;
(d) cooling said strands containing said homogeneous mixture; and
(e) cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and
(f) dividing said particles into unit doses.
16. The method of claim 15, wherein said unit doses are placed into gelatin capsules.
17. The method of claim 15, wherein said homogenous mixture is heated to a temperature from about 30° C. to about 200° C. prior to extrusion.
18. (canceled)
19. The method of claim 4& 15, wherein said therapeutically active agent is an opioid analgesic selected from the group consisting of morphine, codeine, hydromorphone, hydrocodone, oxycodone, oxymorphone, dihydrocodeine, dihydromorphine, and mixtures thereof.
20-27. (canceled)
28. The method of claim 15, further comprising adjusting the aperture and aperture shape of the extruder to obtain a strand having a diameter from about 0.1 mm to about 3 cm.
29-30. (canceled)
31. A method of preparing a multiparticulate sustained release oral dosage form, comprising:
(a) directly metering into an extruder a water-insoluble retardant, a therapeutically active agent, and an optional binder;
(b) heating said homogenous mixture;
(c) extruding said homogenous mixture to thereby form strands;
(d) cooling said strands containing said homogeneous mixture; and
(e) cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and
(f) dividing said particles into unit doses.
32. (canceled)
33. The dosage form of claim 1, wherein said therapeutically active agent is an opioid and said retardant is an acrylic polymer.
34. The dosage form of claim 1, wherein said therapeutically active agent is an opioid and said retardant is a hydroxyalkylcellulose.
35-38. (canceled)
US12/372,460 1994-11-04 2009-02-17 Melt-extrusion multiparticulates Abandoned US20090148517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/372,460 US20090148517A1 (en) 1994-11-04 2009-02-17 Melt-extrusion multiparticulates

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/334,209 US5965161A (en) 1994-11-04 1994-11-04 Extruded multi-particulates
US09/358,828 US6335033B2 (en) 1994-11-04 1999-07-22 Melt-extrusion multiparticulates
US10/038,867 US6706281B2 (en) 1994-11-04 2002-01-02 Melt-extrusion multiparticulates
US10/745,950 US7510727B2 (en) 1994-11-04 2003-12-23 Melt-extrusion multiparticulates
US12/372,460 US20090148517A1 (en) 1994-11-04 2009-02-17 Melt-extrusion multiparticulates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/745,950 Continuation US7510727B2 (en) 1994-11-04 2003-12-23 Melt-extrusion multiparticulates

Publications (1)

Publication Number Publication Date
US20090148517A1 true US20090148517A1 (en) 2009-06-11

Family

ID=23306123

Family Applications (11)

Application Number Title Priority Date Filing Date
US08/334,209 Expired - Lifetime US5965161A (en) 1994-11-04 1994-11-04 Extruded multi-particulates
US08/833,948 Expired - Lifetime US5958452A (en) 1994-11-04 1997-04-10 Extruded orally administrable opioid formulations
US09/358,828 Expired - Lifetime US6335033B2 (en) 1994-11-04 1999-07-22 Melt-extrusion multiparticulates
US09/360,056 Expired - Lifetime US6261599B1 (en) 1994-11-04 1999-07-23 Melt-extruded orally administrable opioid formulations
US09/777,616 Expired - Fee Related US6743442B2 (en) 1994-11-04 2001-02-06 Melt-extruded orally administrable opioid formulations
US10/038,867 Expired - Fee Related US6706281B2 (en) 1994-11-04 2002-01-02 Melt-extrusion multiparticulates
US10/664,602 Abandoned US20050089568A1 (en) 1994-11-04 2003-09-16 Melt-extruded orally administrable opioid formulations
US10/690,389 Abandoned US20040081694A1 (en) 1994-11-04 2003-10-21 Melt-extruded orally administrable opioid formulations
US10/745,950 Expired - Fee Related US7510727B2 (en) 1994-11-04 2003-12-23 Melt-extrusion multiparticulates
US12/372,460 Abandoned US20090148517A1 (en) 1994-11-04 2009-02-17 Melt-extrusion multiparticulates
US12/722,974 Abandoned US20100172974A1 (en) 1994-11-04 2010-03-12 Melt-extruded orally administrable opioid formulations

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US08/334,209 Expired - Lifetime US5965161A (en) 1994-11-04 1994-11-04 Extruded multi-particulates
US08/833,948 Expired - Lifetime US5958452A (en) 1994-11-04 1997-04-10 Extruded orally administrable opioid formulations
US09/358,828 Expired - Lifetime US6335033B2 (en) 1994-11-04 1999-07-22 Melt-extrusion multiparticulates
US09/360,056 Expired - Lifetime US6261599B1 (en) 1994-11-04 1999-07-23 Melt-extruded orally administrable opioid formulations
US09/777,616 Expired - Fee Related US6743442B2 (en) 1994-11-04 2001-02-06 Melt-extruded orally administrable opioid formulations
US10/038,867 Expired - Fee Related US6706281B2 (en) 1994-11-04 2002-01-02 Melt-extrusion multiparticulates
US10/664,602 Abandoned US20050089568A1 (en) 1994-11-04 2003-09-16 Melt-extruded orally administrable opioid formulations
US10/690,389 Abandoned US20040081694A1 (en) 1994-11-04 2003-10-21 Melt-extruded orally administrable opioid formulations
US10/745,950 Expired - Fee Related US7510727B2 (en) 1994-11-04 2003-12-23 Melt-extrusion multiparticulates

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/722,974 Abandoned US20100172974A1 (en) 1994-11-04 2010-03-12 Melt-extruded orally administrable opioid formulations

Country Status (17)

Country Link
US (11) US5965161A (en)
EP (7) EP2283816A1 (en)
JP (1) JP3186064B2 (en)
KR (1) KR100232945B1 (en)
AT (5) ATE357909T1 (en)
AU (1) AU705894B2 (en)
CA (1) CA2204180C (en)
DE (5) DE69535426T2 (en)
DK (5) DK1741426T3 (en)
ES (5) ES2308675T3 (en)
HK (3) HK1059887A1 (en)
HU (1) HUT77626A (en)
IL (5) IL115871A (en)
PT (5) PT1741426E (en)
TW (1) TW425288B (en)
WO (1) WO1996014058A1 (en)
ZA (1) ZA959367B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081694A1 (en) * 1994-11-04 2004-04-29 Euro-Celtique, S.A. Melt-extruded orally administrable opioid formulations
US20060165790A1 (en) * 2003-06-27 2006-07-27 Malcolm Walden Multiparticulates
US20070298103A1 (en) * 2004-02-12 2007-12-27 Euro-Celtique S.A. Particulates
US20090029170A1 (en) * 2004-02-12 2009-01-29 Geoffrey Gerard Hayes Extrusion
US20100034876A1 (en) * 1993-06-18 2010-02-11 Purdue Pharma L.P. Controlled release oxycodone compositions
US20100092570A1 (en) * 1992-11-25 2010-04-15 Purdue Pharma L.P. Controlled release oxycodone compositions
US8268349B2 (en) 2003-08-28 2012-09-18 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation
CN105025882A (en) * 2012-12-31 2015-11-04 株式会社三养生物制药 Melt extruded pharmaceutical composition for controlling release, and medicine for oral administration including same
US9259872B2 (en) 2004-08-31 2016-02-16 Euro-Celtique S.A. Multiparticulates
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
US10624888B2 (en) 2016-03-31 2020-04-21 SpecGx LLC Extended release, abuse deterrent dosage forms

Families Citing this family (317)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266331A (en) * 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5958459A (en) * 1991-12-24 1999-09-28 Purdue Pharma L.P. Opioid formulations having extended controlled released
US5968551A (en) * 1991-12-24 1999-10-19 Purdue Pharma L.P. Orally administrable opioid formulations having extended duration of effect
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
IL109460A (en) 1993-05-10 1998-03-10 Euro Celtique Sa Controlled release formulation comprising tramadol
US5914131A (en) * 1994-07-07 1999-06-22 Alza Corporation Hydromorphone therapy
GB9422154D0 (en) 1994-11-03 1994-12-21 Euro Celtique Sa Pharmaceutical compositions and method of producing the same
US20020006438A1 (en) * 1998-09-25 2002-01-17 Benjamin Oshlack Sustained release hydromorphone formulations exhibiting bimodal characteristics
DE19531277A1 (en) * 1995-08-25 1997-02-27 Basf Ag Use of lipids as an aid in the production of solid dosage forms by the melt extrusion process
GB9519363D0 (en) 1995-09-22 1995-11-22 Euro Celtique Sa Pharmaceutical formulation
DE19539360A1 (en) * 1995-10-23 1997-04-24 Basf Ag Process for the production of solid dosage forms
GB9614902D0 (en) * 1996-07-16 1996-09-04 Rhodes John Sustained release composition
JPH1050306A (en) * 1996-07-31 1998-02-20 Toyota Autom Loom Works Ltd Manufacture of hydrogen storage alloy electrode
PL191399B1 (en) * 1996-10-28 2006-05-31 Gen Mills Inc Method of obtaining distinct particles of controllable release by embedding in a base and encapsulating sensitive components
EP1342548B1 (en) * 1996-10-28 2015-12-23 General Mills, Inc. Embedding and encapsulation of controlled release particles and encapsulated product
BE1010803A3 (en) * 1996-12-16 1999-02-02 Therabel Research Sa Tablets pharmaceutical sustained release tramadol a basic and their preparation.
US5968547A (en) 1997-02-24 1999-10-19 Euro-Celtique, S.A. Method of providing sustained analgesia with buprenorphine
JP3739410B2 (en) 1997-07-02 2006-01-25 ユーロ−セルティーク エス.エイ. Stabilized sustained release tramadol formulation
DE19733505A1 (en) 1997-08-01 1999-02-04 Knoll Ag Fast acting analgesic
RS49982B (en) * 1997-09-17 2008-09-29 Euro-Celtique S.A., Synergistic analgesic combination of opioid analgesic and cyclooxygenase-2 inhibitor
US6274591B1 (en) * 1997-11-03 2001-08-14 Joseph F. Foss Use of methylnaltrexone and related compounds
US6559158B1 (en) * 1997-11-03 2003-05-06 Ur Labs, Inc. Use of methylnaltrexone and related compounds to treat chronic opioid use side affects
US20030158220A1 (en) * 1997-11-03 2003-08-21 Foss Joseph F. Use of methylnaltrexone and related compounds to treat chronic opioid use side effects
EP1041988A4 (en) * 1997-12-22 2002-03-13 Euro Celtique Sa A method of preventing abuse of opioid dosage forms
RS50070B (en) 1997-12-22 2009-01-22 Euro-Celtique S.A., Oral dosage form comprising a combination of an opioid agonist and naltrexone
US6375957B1 (en) 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
US8524277B2 (en) 1998-03-06 2013-09-03 Alza Corporation Extended release dosage form
US6074689A (en) * 1998-03-10 2000-06-13 Immucell Corporation Colonic delivery of protein or peptide compositions
AU747549B2 (en) 1998-03-23 2002-05-16 General Mills Inc. Encapsulation of components into edible products
AR018321A1 (en) * 1998-03-26 2001-11-14 Alza Corp A DOSAGE FORM OF PROLONGED LIBERATION THAT INCLUDES OXIBUTININE AND THE USES OF OXIBUTININE AND THE DOSAGE FORM OF PROLONGED LIBERATION.
SA99191255B1 (en) 1998-11-30 2006-11-25 جي دي سيرل اند كو celecoxib compounds
DE19859636A1 (en) * 1998-12-23 2000-06-29 Hexal Ag Controlled release pharmaceutical composition with tilidine mesylate as active ingredient
US7429407B2 (en) * 1998-12-30 2008-09-30 Aeromatic Fielder Ag Process for coating small bodies, including tablets
WO2000041528A2 (en) * 1999-01-14 2000-07-20 Amcol International Corporation Improved controlled release compositions and method
DE19918325A1 (en) 1999-04-22 2000-10-26 Euro Celtique Sa Extruded drug dosage form, e.g. granulate for tableting, comprising an active agent in a polysaccharide-containing matrix, giving a release profile which is controllable by extrusion conditions and/or the inclusion of additives
FR2795326B1 (en) * 1999-06-28 2001-08-31 Adir SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITION WITH CONTROLLED RELEASE
US20030236236A1 (en) * 1999-06-30 2003-12-25 Feng-Jing Chen Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
DE19940944B4 (en) 1999-08-31 2006-10-12 Grünenthal GmbH Retarded, oral, pharmaceutical dosage forms
DE19943501A1 (en) * 1999-09-10 2001-03-15 Basf Ag Underwater granulation of melts containing active ingredients
US6500463B1 (en) 1999-10-01 2002-12-31 General Mills, Inc. Encapsulation of sensitive components into a matrix to obtain discrete shelf-stable particles
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
ATE526950T1 (en) * 1999-10-29 2011-10-15 Euro Celtique Sa CONTROLLED RELEASE HYDROCODONE FORMULATIONS
US6491953B1 (en) 2000-01-07 2002-12-10 Amcol International Corporation Controlled release compositions and method
US6953593B2 (en) * 2000-02-01 2005-10-11 Lipoprotein Technologies, Inc. Sustained-release microencapsulated delivery system
EP2517710B1 (en) * 2000-02-08 2015-03-25 Euro-Celtique S.A. Tamper-resistant oral opioid agonist formulations
ATE392885T1 (en) * 2000-02-28 2008-05-15 Pharmakodex Ltd ADMINISTRATION SYSTEMS FOR ORAL MEDICATIONS
US6468568B1 (en) 2000-06-16 2002-10-22 General Mills, Inc. Oligosaccharide encapsulated mineral and vitamin ingredients
US6436453B1 (en) 2000-06-16 2002-08-20 General Mills, Inc. Production of oil encapsulated minerals and vitamins in a glassy matrix
EP2263658A1 (en) 2000-10-30 2010-12-22 Euro-Celtique S.A. Controlled release hydrocodone formulations
FR2818550B1 (en) * 2000-12-26 2003-02-07 Servier Lab SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITION FOR THE CONTROLLED RELEASE OF PERINDOPRIL
FR2818552B1 (en) * 2000-12-26 2003-02-07 Servier Lab SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITIONS FOR THE CONTROLLED RELEASE OF IVABRADINE
FR2818549B1 (en) * 2000-12-26 2003-02-07 Servier Lab SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITION FOR THE CONTROLLED RELEASE OF TRIMETAZIDINE
JP2004537338A (en) * 2001-03-02 2004-12-16 ユーロ−セルティーク,エス.エイ. Method and apparatus for preparing individual dosage forms
AU2002234219A1 (en) * 2001-03-09 2002-09-24 Dow Global Technologies Inc. Granular composition comprising an active compound and a cellulose ether and the use thereof
US7858118B2 (en) * 2001-04-11 2010-12-28 Galephar Pharmaceutical Research, Inc. Extended release composition containing Tramadol
UA81224C2 (en) * 2001-05-02 2007-12-25 Euro Celtic S A Dosage form of oxycodone and use thereof
US20110104214A1 (en) 2004-04-15 2011-05-05 Purdue Pharma L.P. Once-a-day oxycodone formulations
CN1525851A (en) 2001-05-11 2004-09-01 ������ҩ�����޹�˾ Abuse-resistant controlled-release opioid dosage form
US20030070584A1 (en) 2001-05-15 2003-04-17 Cynthia Gulian Dip coating compositions containing cellulose ethers
AUPR510001A0 (en) * 2001-05-18 2001-06-14 Jupitar Pty Ltd Formulation and method
JP4310605B2 (en) 2001-05-25 2009-08-12 大塚製薬株式会社 Pharmaceutical composition
AU2002314967B2 (en) * 2001-06-05 2007-09-20 University Of Chicago Use of methylnaltrexone to treat immune suppression
GB0113841D0 (en) * 2001-06-07 2001-08-01 Boots Co Plc Therapeutic agents
WO2003002100A1 (en) * 2001-06-26 2003-01-09 Farrell John J Tamper-proof narcotic delivery system
US8329216B2 (en) 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
ATE376832T1 (en) * 2001-07-06 2007-11-15 Penwest Pharmaceuticals Co DELAYED RELEASE FORMULATIONS OF OXYMORPHONE
CA2452871C (en) * 2001-07-06 2011-10-04 Endo Pharmaceuticals, Inc. Oxymorphone controlled release formulations
ATE419039T1 (en) 2001-07-18 2009-01-15 Euro Celtique Sa PHARMACEUTICAL COMBINATIONS OF OXYCODONE AND NALOXONE
DE60232417D1 (en) 2001-08-06 2009-07-02 Euro Celtique Sa OPIOID AGONIST FORMULATIONS WITH FREEZER AND SEQUESTRATED ANTAGONIST
US20030157168A1 (en) * 2001-08-06 2003-08-21 Christopher Breder Sequestered antagonist formulations
US7157103B2 (en) * 2001-08-06 2007-01-02 Euro-Celtique S.A. Pharmaceutical formulation containing irritant
US20030044458A1 (en) * 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US20030068375A1 (en) 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
DE10141650C1 (en) 2001-08-24 2002-11-28 Lohmann Therapie Syst Lts Safe transdermal therapeutic system for administration of fentanyl or analogous analgesics, having matrix layer of carboxy group-free polyacrylate adhesive providing high permeation rate
EP1429739A1 (en) 2001-09-21 2004-06-23 Egalet A/S Polymer release system
US20040253310A1 (en) 2001-09-21 2004-12-16 Gina Fischer Morphine polymer release system
US20030091635A1 (en) * 2001-09-26 2003-05-15 Baichwal Anand R. Opioid formulations having reduced potential for abuse
US8309118B2 (en) 2001-09-28 2012-11-13 Mcneil-Ppc, Inc. Film forming compositions containing sucralose
US7491407B2 (en) * 2001-10-31 2009-02-17 North Carolina State University Fiber-based nano drug delivery systems (NDDS)
HRP20020124A2 (en) * 2002-02-11 2003-10-31 Pliva D D Sustained/controlled release solid formulation as a novel drug delivery system with reduced risk of dose dumping
US20050182056A9 (en) * 2002-02-21 2005-08-18 Seth Pawan Modified release formulations of at least one form of tramadol
US8128957B1 (en) 2002-02-21 2012-03-06 Valeant International (Barbados) Srl Modified release compositions of at least one form of tramadol
DE10208344A1 (en) * 2002-02-27 2003-09-04 Roehm Gmbh Melt extrusion of active ingredient salts
DK2425824T5 (en) 2002-04-05 2018-02-12 Mundipharma As Pharmaceutical preparation containing oxycodone and naloxone
WO2003090717A1 (en) * 2002-04-23 2003-11-06 Nanotherapeutics, Inc Process of forming and modifying particles and compositions produced thereby
MXPA04012021A (en) * 2002-05-31 2005-08-16 Johnson & Johnson Dosage forms and compositions for osmotic delivery of variable dosages of oxycodone.
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
GB0214013D0 (en) * 2002-06-18 2002-07-31 Euro Celtique Sa Pharmaceutical product
CA2491572C (en) * 2002-07-05 2010-03-23 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opiods and other drugs
US10004729B2 (en) 2002-07-05 2018-06-26 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US8840928B2 (en) * 2002-07-05 2014-09-23 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US8557291B2 (en) * 2002-07-05 2013-10-15 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opioids and other drugs
EP2422772A3 (en) 2002-09-20 2012-04-18 Alpharma, Inc. Sequestering subunit and related compositions and methods
AU2003272601B2 (en) * 2002-09-20 2009-05-07 Alpharma Pharmaceuticals, Llc Sustained-release opioid formulations and methods of use
US20090162431A1 (en) * 2002-09-21 2009-06-25 Shuyi Zhang Sustained release formulations containing acetaminophen and tramadol
EP1551402A4 (en) * 2002-09-23 2009-05-27 Verion Inc Abuse-resistant pharmaceutical compositions
US8487002B2 (en) * 2002-10-25 2013-07-16 Paladin Labs Inc. Controlled-release compositions
TWI319713B (en) * 2002-10-25 2010-01-21 Sustained-release tramadol formulations with 24-hour efficacy
JP4865330B2 (en) 2002-12-13 2012-02-01 デュレクト コーポレーション Oral drug delivery system
US20040115287A1 (en) * 2002-12-17 2004-06-17 Lipocine, Inc. Hydrophobic active agent compositions and methods
DE10300325A1 (en) 2003-01-09 2004-07-22 Hexal Ag Granules with oily substance, manufacturing process and tablet
WO2004064807A1 (en) * 2003-01-23 2004-08-05 Amorepacific Corporation Sustained-release preparations and method for producing the same
US7136656B2 (en) * 2003-03-20 2006-11-14 Interdigital Technology Corporation Method of fast dynamic channel allocation call admission control for radio link addition in radio resource management
EP1610767B1 (en) 2003-03-26 2011-01-19 Egalet A/S Morphine controlled release system
BRPI0408999A (en) * 2003-04-04 2006-03-28 Pharmacia Corp compressed prolonged oral release multiparticulate tablets
CA2521420A1 (en) * 2003-04-08 2004-10-28 Progenics Pharmaceuticals, Inc. Combination therapy for constipation comprising a laxative and a peripheral opioid antagonist
US20040202717A1 (en) * 2003-04-08 2004-10-14 Mehta Atul M. Abuse-resistant oral dosage forms and method of use thereof
WO2004091622A1 (en) * 2003-04-08 2004-10-28 Progenics Pharmaceuticals, Inc. The use of peripheral opiois antagonists, especially methylnaltrexone to treat irritable bowel syndrome
DK2368553T3 (en) 2003-04-08 2015-02-09 Progenics Pharm Inc Pharmaceutical preparation comprising methylnaltrexone
WO2004093819A2 (en) 2003-04-21 2004-11-04 Euro-Celtique, S.A. Tamper resistant dosage form comprising co-extruded, adverse agent particles and process of making same
MY135852A (en) * 2003-04-21 2008-07-31 Euro Celtique Sa Pharmaceutical products
TWI357815B (en) 2003-06-27 2012-02-11 Euro Celtique Sa Multiparticulates
DE10361596A1 (en) * 2003-12-24 2005-09-29 Grünenthal GmbH Process for producing an anti-abuse dosage form
DE102004020220A1 (en) * 2004-04-22 2005-11-10 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE102004032051A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE102005005446A1 (en) * 2005-02-04 2006-08-10 Grünenthal GmbH Break-resistant dosage forms with sustained release
DE10336400A1 (en) 2003-08-06 2005-03-24 Grünenthal GmbH Anti-abuse dosage form
PL1842533T3 (en) 2003-08-06 2013-08-30 Gruenenthal Gmbh Dosage form that is secured against misuse
US20060172006A1 (en) * 2003-10-10 2006-08-03 Vincent Lenaerts Sustained-release tramadol formulations with 24-hour clinical efficacy
US20050089558A1 (en) * 2003-10-28 2005-04-28 Alamo Pharmaceuticals, Llc Compositions and methods for the co-formulation and administration of tramadol and propoxyphene
EP1691786A1 (en) * 2003-12-04 2006-08-23 Pfizer Products Inc. Multiparticulate compositions with improved stability
WO2005053639A2 (en) * 2003-12-04 2005-06-16 Pfizer Products Inc. Controlled release multiparticulates formed with dissolution enhancers
EP1694304A2 (en) * 2003-12-04 2006-08-30 Pfizer Products Inc. Azithromycin multiparticulate dosage forms by liquid-based processes
SI1691787T1 (en) 2003-12-04 2008-10-31 Pfizer Prod Inc Method for making pharmaceutical multiparticulates
WO2005053652A1 (en) 2003-12-04 2005-06-16 Pfizer Products Inc. Multiparticulate crystalline drug compositions containing a poloxamer and a glyceride
US6984403B2 (en) * 2003-12-04 2006-01-10 Pfizer Inc. Azithromycin dosage forms with reduced side effects
JP2007513143A (en) * 2003-12-04 2007-05-24 ファイザー・プロダクツ・インク Spray coagulation process for producing multiparticulate azithromycin compositions preferably using poloxamer and glycerides using an extruder
BRPI0417348A (en) 2003-12-04 2007-03-13 Pfizer Prod Inc spray gelatinization process using an extruder for preparing multiparticulate crystalline drug compositions preferably containing a poloxamer and a glyceride
US8883204B2 (en) 2003-12-09 2014-11-11 Purdue Pharma L.P. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
ES2281851T3 (en) * 2003-12-09 2007-10-01 Euro-Celtique S.A. MANIPULATION RESISTANT CO-EXTRUDED DOSE FORM CONTAINING AN ACTIVE AGENT AND AN ADVERSE AGENT AND PROCESS TO PREPARE THE SAME.
GB0403100D0 (en) * 2004-02-12 2004-03-17 Euro Celtique Sa Particulates
GB0501638D0 (en) * 2005-01-28 2005-03-02 Euro Celtique Sa Particulates
PT1729730E (en) 2004-03-30 2009-04-06 Euro Celtique Sa Tamper resistant dosage form comprising an adsorbent and an adverse agent
EP1604666A1 (en) 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the Chronic Obstructive Pulmonary Disease (COPD)
EP1604667A1 (en) * 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the restless leg syndrome
SI1765292T1 (en) * 2004-06-12 2018-04-30 Collegium Pharmaceutical, Inc. Abuse-deterrent drug formulations
DE102004032049A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
PL1765303T5 (en) * 2004-07-01 2023-05-22 Grünenthal GmbH Oral dosage form safeguarded against abuse
WO2006009403A1 (en) * 2004-07-22 2006-01-26 Amorepacific Corporation Sustained-release preparations containing topiramate and the producing method thereof
JP4997109B2 (en) * 2004-09-01 2012-08-08 ユーロ−セルティーク エス.エイ. Opioid dosage forms with dose proportional steady state CAVE and steady state AUC and single dose CMAX less than dose proportional
TWI436991B (en) 2004-11-22 2014-05-11 Euro Celtique Sa Methods for purifying trans-(-)-△9-tetrahydrocannabinol and trans-(+)-△9-tetrahydrocannabinol
AU2005320547B2 (en) 2004-12-27 2009-02-05 Eisai R & D Management Co., Ltd. Method for stabilizing anti-dementia drug
US20070129402A1 (en) * 2004-12-27 2007-06-07 Eisai Research Institute Sustained release formulations
TWI432196B (en) * 2005-01-18 2014-04-01 Euro Celtique Sa Method of treating visceral pain
MX2007008756A (en) * 2005-01-20 2007-09-27 Progenics Pharm Inc Use of methylnaltrexone and related compounds to treat post-operative gastrointestinal dysfunction.
KR20090029856A (en) * 2005-01-28 2009-03-23 유로-셀띠끄 소시에떼 아노님 Alcohol resistant dosage forms
DE102005005449A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Process for producing an anti-abuse dosage form
EP1695700A1 (en) * 2005-02-28 2006-08-30 Euro-Celtique S.A. Dosage form containing oxycodone and naloxone
EP1702558A1 (en) 2005-02-28 2006-09-20 Euro-Celtique S.A. Method and device for the assessment of bowel function
US9662325B2 (en) 2005-03-07 2017-05-30 The University Of Chicago Use of opioid antagonists to attenuate endothelial cell proliferation and migration
US8518962B2 (en) 2005-03-07 2013-08-27 The University Of Chicago Use of opioid antagonists
US8524731B2 (en) 2005-03-07 2013-09-03 The University Of Chicago Use of opioid antagonists to attenuate endothelial cell proliferation and migration
CN101171010B (en) 2005-03-07 2014-09-17 芝加哥大学 Use of opioid antagonists to attenuate endothelial cell proliferation and migration
AU2006241771B2 (en) * 2005-04-28 2010-09-09 Eisai R & D Management Co., Ltd. Composition containing anti-dementia drug
GB0509276D0 (en) * 2005-05-06 2005-06-15 Univ Cranfield Synthetic receptor
AU2011224098B2 (en) * 2005-05-10 2013-10-31 Novartis Ag Extrusion process for making compositions with poorly compressible therapeutic compounds
RU2405539C2 (en) * 2005-05-10 2010-12-10 Новартис Аг Method of obtaining compositions by extrusion of resistant to pressing pharmaceutical substances
CN101166517B (en) * 2005-05-10 2012-01-04 诺瓦提斯公司 Extrusion process for making compositions with poorly compressible therapeutic compounds
US20060286148A1 (en) * 2005-05-18 2006-12-21 Ppd, Inc. Method of forming implants
AR057035A1 (en) 2005-05-25 2007-11-14 Progenics Pharm Inc SYNTHESIS OF (R) -N-METHYLNTREXONE, PHARMACEUTICAL COMPOSITIONS AND USES
AR057325A1 (en) 2005-05-25 2007-11-28 Progenics Pharm Inc SYNTHESIS OF (S) -N-METHYLNTREXONE, PHARMACEUTICAL COMPOSITIONS AND USES
US20080194611A1 (en) * 2005-06-03 2008-08-14 Alverdy John C Modulation of Cell Barrier Dysfunction
PT1888080E (en) * 2005-06-09 2010-07-06 Euro Celtique Sa Pharmaceutical compositions of a neuroactive steroid and uses thereof
TWI366460B (en) * 2005-06-16 2012-06-21 Euro Celtique Sa Cannabinoid active pharmaceutical ingredient for improved dosage forms
EP1896002A4 (en) 2005-06-27 2009-11-25 Biovail Lab Int Srl Modified-release formulations of a bupropion salt
US8394812B2 (en) 2005-08-24 2013-03-12 Penwest Pharmaceuticals Co. Sustained release formulations of nalbuphine
DK2402005T3 (en) 2005-08-24 2021-03-15 Endo Pharmaceuticals Inc Sustained-release formulations of nalbuphine
JP5269595B2 (en) 2005-09-09 2013-08-21 アンジェリーニ ラボファーム リミテッド ライアビリティ カンパニー Trazodone composition for once daily administration
DK1928427T3 (en) * 2005-09-23 2010-03-08 Hoffmann La Roche Hitherto unknown dosage formulation
KR100656019B1 (en) * 2005-10-20 2006-12-08 현대자동차주식회사 New polyimide-co-polybenzimidazole and polymer electrolytes membrane using them
US20070160960A1 (en) * 2005-10-21 2007-07-12 Laser Shot, Inc. System and method for calculating a projectile impact coordinates
US7803413B2 (en) 2005-10-31 2010-09-28 General Mills Ip Holdings Ii, Llc. Encapsulation of readily oxidizable components
PL116330U1 (en) * 2005-10-31 2007-04-02 Alza Corp Method for the reduction of alcohol provoked rapid increase in the released dose of the orally administered opioide with prolonged liberation
CN1957909B (en) * 2005-10-31 2013-09-11 阿尔扎公司 Methods of reducing alcohol-induced dose dumping for opioid sustained release oral dosage forms
EP1849460A3 (en) * 2005-10-31 2007-11-14 ALZA Corporation Methods of reducing alcohol-induced dose dumping for opioid sustained release oral dosage forms
WO2007056142A2 (en) * 2005-11-02 2007-05-18 Theraquest Biosciences, Llc Methods of preventing the serotonin syndrome and compositions for use therefor
US9125833B2 (en) 2005-11-02 2015-09-08 Relmada Therapeutics, Inc. Multimodal abuse resistant and extended release opioid formulations
WO2007087452A2 (en) * 2006-01-27 2007-08-02 Theraquest Biosciences, Llc Abuse resistant and extended release formulations and method of use thereof
US8329744B2 (en) 2005-11-02 2012-12-11 Relmada Therapeutics, Inc. Methods of preventing the serotonin syndrome and compositions for use thereof
US7811604B1 (en) 2005-11-14 2010-10-12 Barr Laboratories, Inc. Non-effervescent, orally disintegrating solid pharmaceutical dosage forms comprising clozapine and methods of making and using the same
EP1810678A1 (en) 2006-01-19 2007-07-25 Holger Lars Hermann Use of morphine and naloxone for drug substitution
US20090022798A1 (en) * 2007-07-20 2009-01-22 Abbott Gmbh & Co. Kg Formulations of nonopioid and confined opioid analgesics
US20090317355A1 (en) * 2006-01-21 2009-12-24 Abbott Gmbh & Co. Kg, Abuse resistant melt extruded formulation having reduced alcohol interaction
SG169334A1 (en) * 2006-01-21 2011-03-30 Abbott Gmbh & Co Kg Dosage form and method for the delivery of drugs of abuse
US20100172989A1 (en) * 2006-01-21 2010-07-08 Abbott Laboratories Abuse resistant melt extruded formulation having reduced alcohol interaction
US20070185145A1 (en) * 2006-02-03 2007-08-09 Royds Robert B Pharmaceutical composition containing a central opioid agonist, a central opioid antagonist, and a peripheral opioid antagonist, and method for making the same
US20070190141A1 (en) * 2006-02-16 2007-08-16 Aaron Dely Extended release opiate composition
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
FI20060501L (en) * 2006-05-22 2007-11-23 Biohit Oyj Composition and method for binding acetaldehyde in the stomach
EP1859788A1 (en) * 2006-05-24 2007-11-28 Abbott GmbH & Co. KG Production of enveloped pharmaceutical dosage forms
US20080069891A1 (en) * 2006-09-15 2008-03-20 Cima Labs, Inc. Abuse resistant drug formulation
KR101486228B1 (en) 2006-06-19 2015-01-26 알파마 파머슈티컬스 엘엘씨 Pharmaceutical compositions
CA2671200A1 (en) * 2006-07-21 2008-01-24 Lab International Srl Hydrophilic abuse deterrent delivery system
SA07280459B1 (en) 2006-08-25 2011-07-20 بيورديو فارما إل. بي. Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic
US8128460B2 (en) * 2006-09-14 2012-03-06 The Material Works, Ltd. Method of producing rust inhibitive sheet metal through scale removal with a slurry blasting descaling cell
US8445018B2 (en) 2006-09-15 2013-05-21 Cima Labs Inc. Abuse resistant drug formulation
US20080081067A1 (en) * 2006-10-03 2008-04-03 Gupta Manishkumar Sustained release pharmaceutical compositions of venlafaxine and process for preparation thereof
SI2124556T1 (en) * 2006-10-09 2015-01-30 Charleston Laboratories, Inc. Pharmaceutical compositions
DE102007009242A1 (en) * 2007-02-22 2008-09-18 Evonik Röhm Gmbh Pellets with enteric-coated matix
DE102007009243A1 (en) * 2007-02-22 2008-09-18 Evonik Röhm Gmbh Pellets with a drug matrix and a polymer coating, and a method for producing the pellets
DE102007011485A1 (en) 2007-03-07 2008-09-11 Grünenthal GmbH Dosage form with more difficult abuse
GB2447898B (en) * 2007-03-24 2011-08-17 Reckitt Benckiser Healthcare A tablet having improved stability with at least two actives
PT2139890E (en) 2007-03-29 2014-09-03 Wyeth Llc Peripheral opioid receptor antagonists and uses thereof
EP2134718A2 (en) 2007-03-29 2009-12-23 Progenics Pharmaceuticals, Inc. Crystal forms of (r)-n-methylnaltrexone bromide and uses thereof
PL2137191T3 (en) 2007-03-29 2016-12-30 Peripheral opioid receptor antagonists and uses thereof
DE102007025858A1 (en) 2007-06-01 2008-12-04 Grünenthal GmbH Process for the preparation of a medicament dosage form
US8821928B2 (en) 2007-06-04 2014-09-02 Egalet Ltd. Controlled release pharmaceutical compositions for prolonged effect
DE102007026550A1 (en) * 2007-06-08 2008-12-11 Bayer Healthcare Ag Extrudates with improved taste masking
US20090124650A1 (en) * 2007-06-21 2009-05-14 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol
WO2009032246A2 (en) 2007-09-03 2009-03-12 Nanotherapeutics, Inc. Particulate compositions for delivery of poorly soluble drugs
JP4879351B2 (en) 2007-10-19 2012-02-22 大塚製薬株式会社 Pharmaceutical solid formulation
AU2008347158B8 (en) 2007-12-06 2013-08-22 Durect Corporation Oral pharmaceutical dosage forms
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
WO2009088673A2 (en) * 2007-12-17 2009-07-16 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
US20100151014A1 (en) * 2008-12-16 2010-06-17 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
EP3090743A1 (en) 2008-01-09 2016-11-09 Charleston Laboratories, Inc. Pharmaceutical compositions for treating headache and eliminating nausea
TW200950776A (en) * 2008-01-24 2009-12-16 Abbott Gmbh & Co Kg Abuse resistant melt extruded formulation having reduced alcohol interaction
BRPI0906467C1 (en) 2008-01-25 2021-05-25 Gruenenthal Gmbh pharmaceutical dosage form with modified tear-resistant outer shape and controlled release
US20090246276A1 (en) * 2008-01-28 2009-10-01 Graham Jackson Pharmaceutical Compositions
US9226907B2 (en) 2008-02-01 2016-01-05 Abbvie Inc. Extended release hydrocodone acetaminophen and related methods and uses thereof
AU2008349873B2 (en) 2008-02-06 2014-02-13 Progenics Pharmaceuticals, Inc. Preparation and use of (R),(R)-2,2'-bis-methylnaltrexone
EP2262484B1 (en) 2008-03-11 2013-01-23 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
AU2009225434B2 (en) 2008-03-21 2014-05-22 The University Of Chicago Treatment with opioid antagonists and mTOR inhibitors
WO2009134848A1 (en) * 2008-04-30 2009-11-05 Novartis Ag Continuous process for making pharmaceutical compositions
KR101690094B1 (en) 2008-05-09 2016-12-27 그뤼넨탈 게엠베하 Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step
AU2009266833B2 (en) * 2008-07-03 2013-01-31 Novartis Ag Melt granulation process
CN105456267A (en) * 2008-07-07 2016-04-06 欧洲凯尔特公司 Use of opioid antagonists for treating urinary retention
MX2011001864A (en) 2008-08-20 2011-06-20 Univ Texas Hot-melt extrusion of modified release multi-particulates.
US10668012B2 (en) 2008-09-04 2020-06-02 Farnam Companies, Inc. Chewable sustained release formulations
EP2344136B1 (en) * 2008-09-18 2016-06-15 Purdue Pharma LP Pharmaceutical dosage forms comprising poly(e-caprolactone)
CA2676881C (en) 2008-09-30 2017-04-25 Wyeth Peripheral opioid receptor antagonists and uses thereof
US20100260844A1 (en) 2008-11-03 2010-10-14 Scicinski Jan J Oral pharmaceutical dosage forms
WO2010078486A2 (en) 2008-12-31 2010-07-08 Upsher-Smith Laboratories, Inc. Opioid-containing oral pharmaceutical compositions and methods
US11304960B2 (en) 2009-01-08 2022-04-19 Chandrashekar Giliyar Steroidal compositions
WO2010089132A1 (en) 2009-02-06 2010-08-12 Egalet A/S Immediate release composition resistant to abuse by intake of alcohol
WO2010103039A1 (en) 2009-03-10 2010-09-16 Euro-Celtique S.A. Immediate release pharmaceutical compositions comprising oxycodone and naloxone
GB0909680D0 (en) 2009-06-05 2009-07-22 Euro Celtique Sa Dosage form
US9743228B2 (en) 2009-06-22 2017-08-22 Qualcomm Incorporated Transport of LCS-related messages for LTE access
EP2445487A2 (en) 2009-06-24 2012-05-02 Egalet Ltd. Controlled release formulations
CA2767576C (en) 2009-07-08 2020-03-10 Charleston Laboratories Inc. Pharmaceutical compositions comprising an antiemetic and an opioid analgesic
WO2011009604A1 (en) * 2009-07-22 2011-01-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
PE20121067A1 (en) 2009-07-22 2012-09-05 Gruenenthal Chemie CONTROLLED RELEASE DOSAGE FORM EXTRUDED BY HOT MELTING
US20110052685A1 (en) * 2009-08-31 2011-03-03 Depomed, Inc. Gastric retentive pharmaceutical compositions for immediate and extended release of acetaminophen
CA2773521C (en) 2009-09-17 2017-01-24 Upsher-Smith Laboratories, Inc. A sustained-release product comprising a combination of a non-opioid amine and a non-steroidal anti-inflammatory drug
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US8597681B2 (en) 2009-12-22 2013-12-03 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
US9198861B2 (en) 2009-12-22 2015-12-01 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
ES2606227T3 (en) * 2010-02-03 2017-03-23 Grünenthal GmbH Preparation of a pharmaceutical powder composition by an extruder
KR20130030261A (en) 2010-05-10 2013-03-26 유로-셀티큐 에스.에이. Manufacturing of active-free granules and tablets comprising the same
KR101858797B1 (en) 2010-05-10 2018-05-16 유로-셀티큐 에스.에이. Pharmaceutical compositions comprising hydromorphone and naloxone
MX344846B (en) 2010-05-10 2017-01-10 Euro-Celtique S A * Combination of active loaded granules with additional actives.
JP2013526523A (en) 2010-05-11 2013-06-24 シマ ラブス インク. Alcohol-resistant sustained release oral dosage form containing metoprolol
WO2012028319A1 (en) 2010-09-02 2012-03-08 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
CA2808541C (en) 2010-09-02 2019-01-08 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
AU2011305161A1 (en) * 2010-09-24 2013-05-09 QRxPharma Ltd. Controlled release formulations of opioids
US9034858B2 (en) 2010-11-30 2015-05-19 Lipocine Inc. High-strength testosterone undecanoate compositions
US9358241B2 (en) 2010-11-30 2016-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
US20180153904A1 (en) 2010-11-30 2018-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
GB201020895D0 (en) * 2010-12-09 2011-01-26 Euro Celtique Sa Dosage form
US20120148675A1 (en) 2010-12-10 2012-06-14 Basawaraj Chickmath Testosterone undecanoate compositions
SG191288A1 (en) 2010-12-22 2013-07-31 Purdue Pharma Lp Encased tamper resistant controlled release dosage forms
JP5638151B2 (en) 2010-12-23 2014-12-10 パーデュー、ファーマ、リミテッド、パートナーシップ Tamper resistant solid oral dosage form
US8741885B1 (en) 2011-05-17 2014-06-03 Mallinckrodt Llc Gastric retentive extended release pharmaceutical compositions
US8658631B1 (en) 2011-05-17 2014-02-25 Mallinckrodt Llc Combination composition comprising oxycodone and acetaminophen for rapid onset and extended duration of analgesia
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
AT511581A1 (en) 2011-05-26 2012-12-15 G L Pharma Gmbh ORAL RETARDANT FORMULATION
US8758826B2 (en) * 2011-07-05 2014-06-24 Wet Inc. Cannabinoid receptor binding agents, compositions, and methods
KR20140053158A (en) 2011-07-29 2014-05-07 그뤼넨탈 게엠베하 Tamper-resistant tablet providing immediate drug release
AR087360A1 (en) 2011-07-29 2014-03-19 Gruenenthal Gmbh PROOF OF HANDLING TABLET PROVIDING IMMEDIATE RELEASE OF PHARMACY
MX355478B (en) * 2011-09-16 2018-04-19 Purdue Pharma Lp Tamper resistant pharmaceutical formulations.
RU2573388C2 (en) 2011-10-26 2016-01-20 Кемфарм Инк. Benzoic acid, benzoic acid derivatives and heteroaryl carboxylic acid conjugates of hydromorphone, prodrugs, methods for producing and using them
CA2864949A1 (en) 2012-02-28 2013-09-06 Grunenthal Gmbh Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
JP6199321B2 (en) * 2012-03-02 2017-09-20 ローズ ファーマシューティカルズ エル.ピー. Improper use resistant immediate release formulation
EA201491875A1 (en) 2012-04-17 2015-04-30 Пурдью Фарма Л.П. SYSTEMS AND METHODS OF TREATMENT OF OPIOID-INDUCED PHARMACEUTICAL PHARMACODYNAMIC RESPONSE
JP6282261B2 (en) 2012-04-18 2018-02-21 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Unauthorized use and overdose prevention pharmaceutical dosage forms
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
JP2015521988A (en) 2012-07-06 2015-08-03 イガレット・リミテッド Abuse-preventing pharmaceutical composition for controlled release
MX362838B (en) 2012-07-12 2019-02-19 SpecGx LLC Extended release, abuse deterrent pharmaceutical compositions.
US10702453B2 (en) 2012-11-14 2020-07-07 Xerox Corporation Method and system for printing personalized medication
WO2014102745A1 (en) * 2012-12-31 2014-07-03 Aizant Drug Research Solutions Private Limited High drug load ibuprofen sustained release composition
US9149533B2 (en) 2013-02-05 2015-10-06 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
TW201521769A (en) 2013-03-15 2015-06-16 Durect Corp Compositions with a rheological modifier to reduce dissolution variability
CA2913209A1 (en) 2013-05-29 2014-12-04 Grunenthal Gmbh Tamper resistant dosage form with bimodal release profile
EP3003279A1 (en) 2013-05-29 2016-04-13 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
AU2014289187B2 (en) 2013-07-12 2019-07-11 Grunenthal Gmbh Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
AU2014295042B2 (en) 2013-07-23 2017-03-30 Mundipharma Pty Limited A combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation
US10195153B2 (en) 2013-08-12 2019-02-05 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
US20150118300A1 (en) 2013-10-31 2015-04-30 Cima Labs Inc. Immediate Release Abuse-Deterrent Granulated Dosage Forms
EA030310B1 (en) 2013-11-13 2018-07-31 Эро-Селтик С.А. Hydromorphone and naloxone for treatment of pain and opioid bowel dysfunction syndrome
MX371372B (en) 2013-11-26 2020-01-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of cryo-milling.
US10172797B2 (en) 2013-12-17 2019-01-08 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
CA2947786A1 (en) 2014-05-12 2015-11-19 Grunenthal Gmbh Tamper resistant immediate release capsule formulation comprising tapentadol
WO2015181059A1 (en) 2014-05-26 2015-12-03 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
JP6371463B2 (en) 2014-07-17 2018-08-08 ファーマシューティカル マニュファクチュアリング リサーチ サービシズ,インコーポレーテッド Immediate release abuse deterrent liquid filler form
WO2016033549A2 (en) 2014-08-28 2016-03-03 Lipocine Inc. (17-ß)-3-OXOANDROST-4-EN-17-YL TRIDECANOATE COMPOSITIONS AND METHODS OF THEIR PREPARATION AND USE
WO2016033556A1 (en) 2014-08-28 2016-03-03 Lipocine Inc. BIOAVAILABLE SOLID STATE (17-β)-HYDROXY-4-ANDROSTEN-3-ONE ESTERS
CH710097A2 (en) 2014-09-12 2016-03-15 Chemspeed Technologies Ag Method and apparatus for the production of an extrudate.
US9849124B2 (en) 2014-10-17 2017-12-26 Purdue Pharma L.P. Systems and methods for treating an opioid-induced adverse pharmacodynamic response
EP3718404A1 (en) 2014-10-17 2020-10-07 Salix Pharmaceuticals, Inc. Use of methylnaltrexone to attenuate tumor progession
EP3209282A4 (en) 2014-10-20 2018-05-23 Pharmaceutical Manufacturing Research Services, Inc. Extended release abuse deterrent liquid fill dosage form
RU2683274C2 (en) 2014-12-02 2019-03-27 Кемфарм, Инк. Benzoic acid, benzoic acid derivatives and conjugates of heteroaryl carboxylic acid and oxymorphone, prodrugs, methods for obtaining and use thereof
JP2018517676A (en) 2015-04-24 2018-07-05 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Anti-modification formulation with immediate release and resistance to solvent extraction
WO2017042325A1 (en) 2015-09-10 2017-03-16 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
WO2017152130A1 (en) 2016-03-04 2017-09-08 Charleston Laboratories, Inc. Pharmaceutical compositions
US9737530B1 (en) 2016-06-23 2017-08-22 Collegium Pharmaceutical, Inc. Process of making stable abuse-deterrent oral formulations
JP2020503269A (en) 2016-11-28 2020-01-30 リポカイン インコーポレーテッド Oral testosterone undecanoate therapy
EP3703724A1 (en) 2017-11-02 2020-09-09 NatureCeuticals Sdn. Bhd. Extract of orthosiphon stamineus, formulations, and uses thereof
US20220062200A1 (en) 2019-05-07 2022-03-03 Clexio Biosciences Ltd. Abuse-deterrent dosage forms containing esketamine
EP3965733A4 (en) 2019-05-07 2023-01-11 Clexio Biosciences Ltd. Abuse-deterrent dosage forms containing esketamine
CN110755396B (en) * 2019-12-06 2022-04-08 北京悦康科创医药科技股份有限公司 Ibuprofen sustained-release pellet and preparation method thereof
KR20220123689A (en) * 2020-03-11 2022-09-08 사와이세이야쿠 가부시키가이샤 Granules and formulations using the same
CN113080436B (en) * 2021-04-08 2024-03-01 南京纽邦生物科技有限公司 Gamma-aminobutyric acid dry suspension and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309405A (en) * 1979-08-09 1982-01-05 American Home Products Corporation Sustained release pharmaceutical compositions
US5266331A (en) * 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US5540912A (en) * 1992-03-30 1996-07-30 Alza Corporation Viscous suspensions of controlled-release drug particles

Family Cites Families (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33093A (en) * 1861-08-20 Improvement in potato-diggers
US2738303A (en) * 1952-07-18 1956-03-13 Smith Kline French Lab Sympathomimetic preparation
US2743303A (en) * 1955-04-01 1956-04-24 Du Pont Process for the preparation of 1, 1, 4, 4-tetrafluorobutadiene 1, 3 from acetylene and tetrafluoroethylene
US3065143A (en) * 1960-04-19 1962-11-20 Richardson Merrell Inc Sustained release tablet
US4132753A (en) * 1965-02-12 1979-01-02 American Cyanamid Company Process for preparing oral sustained release granules
US3652589A (en) * 1967-07-27 1972-03-28 Gruenenthal Chemie 1-(m-substituted phenyl)-2-aminomethyl cyclohexanols
US3830934A (en) * 1967-07-27 1974-08-20 Gruenenthal Chemie Analgesic and antitussive compositions and methods
US3714350A (en) * 1969-03-10 1973-01-30 Mobil Oil Corp Phosphoryl and thiophosphoryl pyrones as insecticides
US3880991A (en) * 1969-03-24 1975-04-29 Brook David E Polymeric article for dispensing drugs
US4344431A (en) * 1969-03-24 1982-08-17 University Of Delaware Polymeric article for dispensing drugs
GB1357737A (en) * 1970-10-09 1974-06-26 Arpic Sa Sustained release pharmaceutical compositions
GB1405088A (en) 1971-06-03 1975-09-03 Mundipharma Ag Slow release formulation
FR2183546B1 (en) * 1972-05-10 1975-06-20 Servier Lab
US3965256A (en) * 1972-05-16 1976-06-22 Synergistics Slow release pharmaceutical compositions
US3845770A (en) * 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US4450150A (en) * 1973-05-17 1984-05-22 Arthur D. Little, Inc. Biodegradable, implantable drug delivery depots, and method for preparing and using the same
DE2360796B2 (en) * 1973-12-06 1977-06-02 Edelfettwerke Werner Schlüter, 2000 Hamburg; Glyco Iberica S.A., Gava, Barcelona (Spanien) Vti: Hegel, K.Th., Dr.; Dickel, K., Dipl.-Ing.; Pat.-Anwälte, 2000 Hamburg und 8000 München MEDICINAL PRODUCTS WITH DELAYED RELEASE OF THE ACTIVE SUBSTANCE IN THE INTESTINE
US3974157A (en) * 1974-03-04 1976-08-10 Pennwalt Corporation 1-(Amino-alkyl)-2-aryl-cyclohexane alcohols and esters
DE2426812A1 (en) 1974-06-04 1976-01-02 Klinge Co Chem Pharm Fab PROCESS FOR THE MANUFACTURING OF GRANULES
DE2426811A1 (en) 1974-06-04 1976-01-08 Klinge Co Chem Pharm Fab PROCESS FOR THE MANUFACTURING OF RETARD TABLETS
DE2439538C3 (en) 1974-08-17 1980-07-17 Ludwig Heumann & Co Gmbh, 8500 Nuernberg Process for the manufacture of orally administered drugs with delayed release of action
US4076798A (en) * 1975-05-29 1978-02-28 American Cyanamid Company High molecular weight polyester resin, the method of making the same and the use thereof as a pharmaceutical composition
DE2549740A1 (en) 1975-11-17 1977-05-18 Sandoz Ag NEW GALENIC FORMS AND METHODS FOR THEIR PRODUCTION
GB1593261A (en) * 1976-07-23 1981-07-15 Inveresk Res Int Controlled release suppository
US4406883A (en) * 1976-07-23 1983-09-27 Merrell Dow Pharmaceuticals Inc. Controlled release suppositories consisting essentially of a linear polymer particularly, polyvinyl pyrrolidones
US4173417A (en) * 1977-04-15 1979-11-06 Hpm Corporation Extrusion apparatus and method
US4366172A (en) * 1977-09-29 1982-12-28 The Upjohn Company 4-Amino-cyclohexanols, their pharmaceutical compositions and methods of use
US4230687A (en) * 1978-05-30 1980-10-28 Griffith Laboratories U.S.A., Inc. Encapsulation of active agents as microdispersions in homogeneous natural polymeric matrices
EP0008083A1 (en) * 1978-08-15 1980-02-20 Ciba-Geigy Ag Process for preparing granulates of plastics additives with a high melting point, especially of pigments, by thermic rotation granulation, and the granulates so obtained
CH637014A5 (en) 1978-09-29 1983-07-15 Sandoz Ag METHOD FOR PRODUCING SUPPOSITORIES.
DE2923279C2 (en) 1979-06-08 1987-07-09 Kali-Chemie Pharma Gmbh, 3000 Hannover Process for the preparation of pancreatin pellets and pharmaceutical compositions containing them
CA1146866A (en) 1979-07-05 1983-05-24 Yamanouchi Pharmaceutical Co. Ltd. Process for the production of sustained release pharmaceutical composition of solid medical material
US4259314A (en) * 1979-12-10 1981-03-31 Hans Lowey Method and composition for the preparation of controlled long-acting pharmaceuticals
IE49324B1 (en) 1979-12-19 1985-09-18 Euro Celtique Sa Controlled release compositions
US4457933A (en) * 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
JPS56140915A (en) * 1980-04-07 1981-11-04 Yamanouchi Pharmaceut Co Ltd Pharmaceutical preparation for solid drug
DE3024416C2 (en) 1980-06-28 1982-04-15 Gödecke AG, 1000 Berlin Process for the production of medicaments with sustained release of active substances
US4346709A (en) * 1980-11-10 1982-08-31 Alza Corporation Drug delivery devices comprising erodible polymer and erosion rate modifier
JPS57171428A (en) * 1981-04-13 1982-10-22 Sankyo Co Ltd Preparation of coated solid preparation
DE3124983A1 (en) 1981-06-25 1983-01-20 Meditest Inst Fuer Medizinisch ORAL ADMINISTRATIVE FORMS
US4374082A (en) * 1981-08-18 1983-02-15 Richard Hochschild Method for making a pharmaceutical and/or nutritional dosage form
US4366159A (en) * 1981-09-08 1982-12-28 Michael Richard Magruder Nalbuphine-narcotic analgesic composition and method of producing analgesia
US4369172A (en) 1981-12-18 1983-01-18 Forest Laboratories Inc. Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose
US4987136A (en) * 1982-03-16 1991-01-22 The Rockefeller University Method for controlling gastrointestinal dysmotility
US4389393A (en) * 1982-03-26 1983-06-21 Forest Laboratories, Inc. Sustained release therapeutic compositions based on high molecular weight hydroxypropylmethylcellulose
US4421736A (en) * 1982-05-20 1983-12-20 Merrel Dow Pharmaceuticals Inc. Sustained release diethylpropion compositions
US4443428A (en) 1982-06-21 1984-04-17 Euroceltique, S.A. Extended action controlled release compositions
AU1873783A (en) 1982-10-08 1984-04-12 Verex Laboratories Inc. Constant release formulation
US4469613A (en) * 1983-02-23 1984-09-04 International Flavors & Fragrances Inc. Detergent bar containing poly(epsilon caprolactone) and aromatizing agent
US4882167A (en) * 1983-05-31 1989-11-21 Jang Choong Gook Dry direct compression compositions for controlled release dosage forms
JPS6013838A (en) * 1983-07-04 1985-01-24 Mitsui Petrochem Ind Ltd Polypropylene composition
US4917899A (en) * 1983-12-22 1990-04-17 Elan Corporation Plc Controlled absorption diltiazem formulation
EP0147780A3 (en) 1984-01-03 1987-03-11 Merck & Co. Inc. Drug delivery device
EP0152379A3 (en) 1984-02-15 1986-10-29 Ciba-Geigy Ag Process for preparing pharmaceutical compositions containing unilamellar liposomes
GB8405112D0 (en) * 1984-02-28 1984-04-04 Akzo Nv Anti-arrhythmic amino-alcohols
US4649042A (en) * 1984-05-31 1987-03-10 Eli Lilly And Company Rumen delivery device
US4629621A (en) * 1984-07-23 1986-12-16 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4894234A (en) * 1984-10-05 1990-01-16 Sharma Shri C Novel drug delivery system for antiarrhythmics
EP0189861A3 (en) 1985-01-26 1988-02-17 Showa Denko Kabushiki Kaisha Percutaneous absorption accelerator for ionic water-soluble medicine
US4772475A (en) 1985-03-08 1988-09-20 Yamanouchi Pharmaceutical Co., Ltd. Controlled-release multiple units pharmaceutical formulation
US4720384A (en) * 1985-05-03 1988-01-19 E. I. Du Pont De Nemours And Company Manufacture of hollow fine tubular drug delivery systems
FR2581541B1 (en) * 1985-05-09 1988-05-20 Rhone Poulenc Sante NOVEL PHARMACEUTICAL COMPOSITIONS FOR THE EXTENDED RELEASE OF AN ACTIVE INGREDIENT AND THEIR PREPARATION METHOD
GB8514665D0 (en) * 1985-06-11 1985-07-10 Eroceltique Sa Oral pharmaceutical composition
JPS61293911A (en) * 1985-06-24 1986-12-24 Teisan Seiyaku Kk Sustained release preparation
DE3524003A1 (en) * 1985-07-04 1987-01-08 Heumann Ludwig & Co Gmbh MEDICINE GRANULES WITH DELAYED ACTIVE SUBSTANCE RELEASE AND METHOD FOR THE PRODUCTION THEREOF
FR2585246A1 (en) 1985-07-26 1987-01-30 Cortial PROCESS FOR OBTAINING SOLID PHARMACEUTICAL FORMS WITH PROLONGED RELEASE
GB8521350D0 (en) * 1985-08-28 1985-10-02 Euro Celtique Sa Analgesic composition
EP0223431B1 (en) * 1985-11-08 1992-04-29 Imperial Chemical Industries Plc Apparatus and method for forming pellets
US4882155A (en) * 1985-12-20 1989-11-21 Warner Lambert Co. Confectionery delivery system for antiarrhythmics
US4882151A (en) * 1985-12-20 1989-11-21 Warner Lambert Co. Confectionery delivery system for antihistimines
US4778676A (en) * 1985-12-20 1988-10-18 Warner-Lambert Company Confectionery delivery system for actives
US4882152A (en) * 1985-12-20 1989-11-21 Yang Robert K Confectionery delivery system for laxatives, vitamins and antacids
US4882157A (en) * 1985-12-20 1989-11-21 Yang Robert K Confectionery delivery system for anti-cholesterolemics
US4879108A (en) * 1985-12-20 1989-11-07 Warner-Lambert Company Confectionery delivery system for antipyretics
US4882156A (en) * 1985-12-20 1989-11-21 Warner Lambert Co. Confectionery delivery system for expectorants
US4882159A (en) * 1985-12-20 1989-11-21 Warner Lambert Co. Confectionery delivery system for appetite suppressants
US4882153A (en) * 1985-12-20 1989-11-21 Warner Lambert Co. Confectionery delivery system for antitussives
JP2521504B2 (en) 1985-12-27 1996-08-07 昭和電工株式会社 Enzyme granulation method
DE3602360A1 (en) 1986-01-27 1987-07-30 Krupp Polysius Ag SIDE SCRATCHER FOR SCHUETTGUTHALDE
DE3602370A1 (en) 1986-01-27 1987-08-06 Chrubasik Sigrun Use of analgesics by inhalation
US4764378A (en) * 1986-02-10 1988-08-16 Zetachron, Inc. Buccal drug dosage form
GB2186485B (en) * 1986-02-13 1988-09-07 Ethical Pharma Ltd Slow release formulation
US4994227A (en) * 1986-03-10 1991-02-19 American Cyanamid Company Method for the preparation of sustained released bolus formulation
DE3610878A1 (en) 1986-04-01 1987-10-08 Boehringer Ingelheim Kg PELLET SHAPES
DE3612211A1 (en) * 1986-04-11 1987-10-15 Basf Ag CONTINUOUS TABLET METHOD
DE3612212A1 (en) 1986-04-11 1987-10-15 Basf Ag METHOD FOR PRODUCING SOLID PHARMACEUTICAL FORMS
US4820523A (en) 1986-04-15 1989-04-11 Warner-Lambert Company Pharmaceutical composition
GB8613688D0 (en) 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
GB8613689D0 (en) * 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
ATE107857T1 (en) 1986-06-10 1994-07-15 Euro Celtique Sa COMPOSITION WITH CONTROLLED RELEASE OF DIHYDROCODEINE.
USRE33093E (en) 1986-06-16 1989-10-17 Johnson & Johnson Consumer Products, Inc. Bioadhesive extruded film for intra-oral drug delivery and process
DE3623193A1 (en) 1986-07-10 1988-01-14 Gruenenthal Gmbh NEW COMPOUNDS, THIS MEDICINAL PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
US4861598A (en) 1986-07-18 1989-08-29 Euroceltique, S.A. Controlled release bases for pharmaceuticals
JPH0816066B2 (en) 1986-07-18 1996-02-21 エーザイ株式会社 Long-acting drug
US4970075A (en) * 1986-07-18 1990-11-13 Euroceltique, S.A. Controlled release bases for pharmaceuticals
US4760094A (en) 1986-10-21 1988-07-26 American Home Products Corporation (Del.) Spray dried acetaminophen
GB8626098D0 (en) * 1986-10-31 1986-12-03 Euro Celtique Sa Controlled release hydromorphone composition
IE873172L (en) 1986-12-29 1988-06-29 Harvard College Continuous process for producing a comestible tablet
US5026560A (en) * 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
ZA882783B (en) 1987-06-10 1988-10-20 Warner-Lambert Company Process for preparing a pharmaceutical composition
DE3721721C1 (en) * 1987-07-01 1988-06-09 Hoechst Ag Process for coating granules
GB8717168D0 (en) 1987-07-21 1987-08-26 Roussel Lab Ltd Controlled-release device
FR2618329B1 (en) 1987-07-22 1997-03-28 Dow Corning Sa METHOD OF MANUFACTURING A RING CAPABLE OF ENSURING THE RELEASE OF A THERAPEUTIC AGENT, AND RING MANUFACTURED BY THIS METHOD
US5049394A (en) * 1987-09-11 1991-09-17 E. R. Squibb & Sons, Inc. Pharmaceutical composition containing high drug load and method for preparing same
US4959208A (en) * 1987-10-19 1990-09-25 Ppg Industries, Inc. Active agent delivery device
US5418154A (en) * 1987-11-17 1995-05-23 Brown University Research Foundation Method of preparing elongated seamless capsules containing biological material
SE463450B (en) 1987-12-11 1990-11-26 Nemo Ivarson DEVICE FOR MIXING, KNOWLEDGE AND EXTRUSION OF PRODUCTS MADE OF SCIENCE AND POWDER
EP0327295A3 (en) 1988-02-01 1989-09-06 F.H. FAULDING & CO. LTD. Tetracycline dosage form
US4842761A (en) * 1988-03-23 1989-06-27 International Flavors & Fragrances, Inc. Compositions and methods for controlled release of fragrance-bearing substances
DE3812567A1 (en) 1988-04-15 1989-10-26 Basf Ag METHOD FOR PRODUCING PHARMACEUTICAL MIXTURES
US5472710A (en) 1988-04-16 1995-12-05 Schwarz Pharma Ag Pharmaceutical preparation to be administered orally with controlled release of active substance and method for its manufacture
DE3812799A1 (en) 1988-04-16 1989-10-26 Sanol Arznei Schwarz Gmbh ORGANIC PREPARATION FOR THE PURPOSES OF AN ACTUATED ACTIVE INGREDIENTS AND METHOD OF PREPARING THEM
JP2681373B2 (en) 1988-07-18 1997-11-26 塩野義製薬株式会社 Method for manufacturing sustained-release preparation
DE3827061C1 (en) * 1988-08-10 1990-02-15 Deutsche Gelatine-Fabriken Stoess & Co Gmbh, 6930 Eberbach, De
US4925675A (en) * 1988-08-19 1990-05-15 Himedics, Inc. Erythromycin microencapsulated granules
GB8820327D0 (en) 1988-08-26 1988-09-28 May & Baker Ltd New compositions of matter
DE3830355A1 (en) 1988-09-07 1990-03-15 Basf Ag METHOD FOR PRODUCING PHARMACEUTICAL TABLETS
DE3830353A1 (en) 1988-09-07 1990-03-15 Basf Ag METHOD FOR THE CONTINUOUS PRODUCTION OF SOLID PHARMACEUTICAL FORMS
ATE107854T1 (en) 1988-09-30 1994-07-15 Rhone Poulenc Rorer Ltd PHARMACEUTICAL GRANULES.
US5178868A (en) * 1988-10-26 1993-01-12 Kabi Pharmacia Aktiebolaq Dosage form
AU645003B2 (en) 1988-11-08 1994-01-06 Takeda Chemical Industries Ltd. Sustained release preparations
JP2893191B2 (en) * 1988-11-08 1999-05-17 武田薬品工業株式会社 Controlled release matrix agent
IL92343A0 (en) 1988-12-20 1990-07-26 Gist Brocades Nv Granulate for multiparticulate controlled release oral compositions,their preparation and oral pharmaceutical compositions containing them
EP0376331A3 (en) * 1988-12-29 1991-03-13 Asahi Kogaku Kogyo Kabushiki Kaisha Slow release drug delivery granules and process for production thereof
US5202128A (en) * 1989-01-06 1993-04-13 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
CA2007055A1 (en) 1989-01-06 1990-07-06 Garth Boehm Theophylline dosage form
CA2007181C (en) 1989-01-06 1998-11-24 Angelo Mario Morella Sustained release pharmaceutical composition
US5330766A (en) * 1989-01-06 1994-07-19 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
US5196203A (en) * 1989-01-06 1993-03-23 F. H. Faulding & Co. Limited Theophylline dosage form
US5013306A (en) * 1989-01-18 1991-05-07 Becton, Dickinson And Company Anti-infective and antithrombogenic medical articles and method for their preparation
US5165952A (en) * 1989-01-18 1992-11-24 Becton, Dickinson And Company Anti-infective and antithrombogenic medical articles and method for their preparation
FR2642420B1 (en) 1989-01-27 1991-09-06 Valpan Sa Labo Pharma NEW FORMAL RELEASE GALENIC FORM CONTAINING A COMBINATION OF FERROUS SALTS, SUCCINIC ACID AND ASCORBIC ACID
US5007790A (en) * 1989-04-11 1991-04-16 Depomed Systems, Inc. Sustained-release oral drug dosage form
US5126145A (en) * 1989-04-13 1992-06-30 Upsher Smith Laboratories Inc Controlled release tablet containing water soluble medicament
US5229148A (en) * 1989-04-19 1993-07-20 Wm. Wrigley Jr. Company Method of combining active ingredients with polyvinyl acetates
US5133974A (en) * 1989-05-05 1992-07-28 Kv Pharmaceutical Company Extended release pharmaceutical formulations
US4967486A (en) * 1989-06-19 1990-11-06 Glatt Gmbh Microwave assisted fluidized bed processor
DK161743C (en) * 1989-07-03 1992-02-17 Niro Atomizer As PROCEDURE AND APPARATUS FOR AGGLOMERATION OF A POWDER-SHAPED MATERIAL
DE415693T1 (en) 1989-08-28 1991-10-17 Arizona Technology Development Corp., Tucson, Ariz. COMPOSITION AND METHOD FOR SELECTIVELY REINFORCING THE OPIATE EFFECT AND REDUCING OPIATE TOLERANCE AND DEPENDENCY.
EP0418596A3 (en) * 1989-09-21 1991-10-23 American Cyanamid Company Controlled release pharmaceutical compositions from spherical granules in tabletted oral dosage unit form
DK469989D0 (en) * 1989-09-22 1989-09-22 Bukh Meditec PHARMACEUTICAL PREPARATION
US5169645A (en) * 1989-10-31 1992-12-08 Duquesne University Of The Holy Ghost Directly compressible granules having improved flow properties
IL96311A (en) 1989-12-01 1995-05-26 Abbott Lab Sustained-release drug dosage units
DE4000571C1 (en) 1990-01-10 1991-06-06 Herbert 7853 Steinen De Huettlin
US5296266A (en) 1990-02-22 1994-03-22 Seiko Epson Corporation Method of preparing microcapsule
DE69123075T2 (en) 1990-04-12 1997-03-20 Shionogi Seiyaku Kk Coated composition and process for its manufacture
AU637496B2 (en) * 1990-04-24 1993-05-27 Teijin Limited Plaster
IE65045B1 (en) 1990-04-28 1995-10-04 Takeda Chemical Industries Ltd Granulated preparations and method of producing the same
US5354856A (en) 1990-06-25 1994-10-11 Towa Chemical Industry Co., Ltd. Crystalline mixture solid containing maltitol and a process for preparing it
US5183690A (en) * 1990-06-25 1993-02-02 The United States Of America, As Represented By The Secretary Of Agriculture Starch encapsulation of biologically active agents by a continuous process
HU208495B (en) 1990-06-27 1993-11-29 Alkaloida Vegyeszeti Gyar Process for producing retarde pharmaceutical compositions
FR2663818B1 (en) 1990-06-29 1993-07-09 Rhone Poulenc Nutrition Animale PROCESS FOR THE PREPARATION OF GRANULES OF ACTIVE PRINCIPLES BY EXTRUSION.
GB2246514B (en) 1990-08-01 1993-12-15 Scras Sustained release pharmaceutical compositions and the preparation of particles for use therein
US5035509A (en) * 1990-08-13 1991-07-30 Hpm Corporation Multi-channel extrusion screw with a zig-zag undercut barrier
DE59105613D1 (en) 1990-08-24 1995-07-06 Spirig Ag Process for the production of pellets.
JP2875611B2 (en) * 1990-08-29 1999-03-31 エーザイ株式会社 Topical formulation containing calcium silicate
US5102668A (en) * 1990-10-05 1992-04-07 Kingaform Technology, Inc. Sustained release pharmaceutical preparation using diffusion barriers whose permeabilities change in response to changing pH
DE4031881C2 (en) 1990-10-08 1994-02-24 Sanol Arznei Schwarz Gmbh Solvent-free, oral sustained-release pharmaceutical preparation and process for its preparation
GB2248842A (en) 1990-10-16 1992-04-22 American Cyanamid Co Film-forming polymer compositions
SE9003296L (en) * 1990-10-16 1992-04-17 Kabi Pharmacia Ab PROCEDURE SHOULD FORMULATE MEDICINAL PRODUCTS
US5271934A (en) * 1990-10-22 1993-12-21 Revlon Consumer Products Corporation Encapsulated antiperspirant salts and deodorant/antiperspirants
FR2670398B1 (en) 1990-12-14 1995-02-17 Roquette Freres DIRECTLY COMPRESSIBLE POWDER COMPOSITION AND PROCESS FOR OBTAINING SAME.
JPH0622669B2 (en) 1990-12-17 1994-03-30 不二パウダル株式会社 Pre-extrusion screw type extrusion granulator
US5240400A (en) * 1990-12-17 1993-08-31 Fuji Paudal Kabushiki Kaisha Screw-type extrusion granulating apparatus, especially for producing very fine granules
US5403593A (en) 1991-03-04 1995-04-04 Sandoz Ltd. Melt granulated compositions for preparing sustained release dosage forms
US5273758A (en) * 1991-03-18 1993-12-28 Sandoz Ltd. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms
US5132142A (en) * 1991-03-19 1992-07-21 Glatt Gmbh Apparatus and method for producing pellets by layering power onto particles
IT1245891B (en) 1991-04-12 1994-10-25 Alfa Wassermann Spa CONTROLLED RELEASE PHARMACEUTICAL FORMULATIONS FOR ORAL USE GAS RESISTANT CONTAINING BILE ACIDS AND THEIR SALTS.
AU1537292A (en) 1991-04-16 1992-11-17 Nippon Shinyaku Co. Ltd. Method of manufacturing solid dispersion
TW209174B (en) * 1991-04-19 1993-07-11 Takeda Pharm Industry Co Ltd
US5380535A (en) 1991-05-28 1995-01-10 Geyer; Robert P. Chewable drug-delivery compositions and methods for preparing the same
DK116591D0 (en) * 1991-06-17 1991-06-17 Ferring Farma Lab PROCEDURE FOR THE PREPARATION OF SUPPOSITORIES BY COMPRESSION AND SUPPOSITIONS OBTAINED BY THE PROCEDURE
DE4120760A1 (en) * 1991-06-24 1993-03-04 3 M Medica Gmbh CARRIER SYSTEMS FOR MEDICINAL PRODUCTS
US5330768A (en) * 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
IT1251153B (en) 1991-08-06 1995-05-04 Vectorpharma Int SOLID PHARMACEUTICAL COMPOSITIONS FOR ORAL ADMINISTRATION HAVING PROHIBITED GASTRIC RESIDENCE
DE4127665A1 (en) 1991-08-22 1993-02-25 Beiersdorf Ag GALENIC MATRIX
US5340581A (en) 1991-08-23 1994-08-23 Gillette Canada, Inc. Sustained-release matrices for dental application
MX9205106A (en) 1991-09-06 1993-05-01 Johnson & Johnson COMPOSITIONS INCLUDING A MATERIAL OF TRAMADOL AND ANY OF CODEINE, OXICODONE OR HYDROCODONE AND ITS USE
DE69226624T3 (en) * 1991-09-06 2009-11-05 Ortho-Mcneil Pharmaceutical, Inc. COMPOSITION CONTAINING A TRAMADOL COMPOUND AND ACETAMINOPHES, AND ITS USE
US5215758A (en) 1991-09-11 1993-06-01 Euroceltique, S.A. Controlled release matrix suppository for pharmaceuticals
GB9121204D0 (en) 1991-10-04 1991-11-20 Euro Celtique Sa Medicament
US5288502A (en) * 1991-10-16 1994-02-22 The University Of Texas System Preparation and uses of multi-phase microspheres
WO1993007859A1 (en) * 1991-10-23 1993-04-29 Warner-Lambert Company Novel pharmaceutical pellets and process for their production
AU661723B2 (en) 1991-10-30 1995-08-03 Mcneilab, Inc. Composition comprising a tramadol material and a non-steroidal anti-inflammatory drug
US5162117A (en) * 1991-11-22 1992-11-10 Schering Corporation Controlled release flutamide composition
DE4138513A1 (en) 1991-11-23 1993-05-27 Basf Ag SOLID PHARMACEUTICAL RETARD FORM
WO1993010758A1 (en) 1991-12-05 1993-06-10 Pitman-Moore, Inc. A carbohydrate glass matrix for the sustained release of a therapeutic agent
GB2281204A (en) 1993-07-27 1995-03-01 Euro Celtique Sa Sustained release morphine compositions
US5472712A (en) * 1991-12-24 1995-12-05 Euroceltique, S.A. Controlled-release formulations coated with aqueous dispersions of ethylcellulose
GB2284760B (en) 1993-11-23 1998-06-24 Euro Celtique Sa A method of preparing pharmaceutical compositions by melt pelletisation
US5580578A (en) * 1992-01-27 1996-12-03 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5167964A (en) * 1992-02-14 1992-12-01 Warner-Lambert Company Semi-enteric drug delivery systems and methods for preparing same
GB9203689D0 (en) * 1992-02-20 1992-04-08 Euro Celtique Sa Pharmaceutical composition
JP3623805B2 (en) * 1992-02-20 2005-02-23 ユーロセルテイツク・エス・アー Hydromorphone spheroid modified release formulation
US5262172A (en) * 1992-06-19 1993-11-16 Digestive Care Inc. Compositions of gastric acid-resistant microspheres containing buffered bile acids
US5234697A (en) * 1992-06-22 1993-08-10 Digestive Care Inc. Compositions of gastric acid-resistant microspheres containing salts of bile acids
US5350584A (en) 1992-06-26 1994-09-27 Merck & Co., Inc. Spheronization process using charged resins
US5429825A (en) 1992-06-26 1995-07-04 Mcneil-Ppc, Inc. Rotomelt granulation
DE4227385A1 (en) 1992-08-19 1994-02-24 Kali Chemie Pharma Gmbh Pancreatin micropellets
EP0665010B1 (en) 1992-10-16 2002-09-11 Nippon Shinyaku Company, Limited Method of manufacturing wax matrices
DE4236408A1 (en) 1992-10-28 1994-05-05 Siemens Ag Switchable damping device
DE4236752A1 (en) 1992-10-30 1994-05-05 Asta Medica Ag Combination preparation of flupirtine and morphine for the treatment of pain and for avoiding morphine addiction
IL109460A (en) 1993-05-10 1998-03-10 Euro Celtique Sa Controlled release formulation comprising tramadol
IT1265074B1 (en) 1993-05-18 1996-10-30 Istituto Biochimico Italiano SLOW-RELEASE PHARMACEUTICAL COMPOSITION CONTAINING A BILIARY ACID AS THE ACTIVE SUBSTANCE
IL109944A (en) 1993-07-01 1998-12-06 Euro Celtique Sa Sustained release dosage unit forms containing morphine and a method of preparing these sustained release dosage unit forms
IL110014A (en) * 1993-07-01 1999-11-30 Euro Celtique Sa Solid controlled-release oral dosage forms of opioid analgesics
DE4325465B4 (en) * 1993-07-29 2004-03-04 Zenz, Michael, Prof. Dr.med. Oral pharmaceutical preparation for pain therapy
DE4329794C2 (en) 1993-09-03 1997-09-18 Gruenenthal Gmbh Tramadol salt-containing drugs with delayed release
HU218673B (en) 1993-10-07 2000-10-28 Euroceltique S.A. Controlled release pharmaceutical composition for orally administration comprising opioid analgesic and process for producing its
US5476528A (en) 1993-12-20 1995-12-19 Tennessee Valley Authority System for improving material release profiles
JP3224931B2 (en) 1994-01-12 2001-11-05 株式会社日本製鋼所 Twin screw extruder
US5395626A (en) 1994-03-23 1995-03-07 Ortho Pharmaceutical Corporation Multilayered controlled release pharmaceutical dosage form
DE4413350A1 (en) 1994-04-18 1995-10-19 Basf Ag Retard matrix pellets and process for their production
DE4418837A1 (en) 1994-05-30 1995-12-07 Bayer Ag Thermal granulation process
US5567439A (en) 1994-06-14 1996-10-22 Fuisz Technologies Ltd. Delivery of controlled-release systems(s)
US5965161A (en) * 1994-11-04 1999-10-12 Euro-Celtique, S.A. Extruded multi-particulates
US6706284B2 (en) * 2001-03-15 2004-03-16 Yamanouchi Pharmaceutical Co., Ltd. Bitterness-reduced oral pharmaceutical composition
DE60232417D1 (en) * 2001-08-06 2009-07-02 Euro Celtique Sa OPIOID AGONIST FORMULATIONS WITH FREEZER AND SEQUESTRATED ANTAGONIST

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309405A (en) * 1979-08-09 1982-01-05 American Home Products Corporation Sustained release pharmaceutical compositions
US5266331A (en) * 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5540912A (en) * 1992-03-30 1996-07-30 Alza Corporation Viscous suspensions of controlled-release drug particles
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092570A1 (en) * 1992-11-25 2010-04-15 Purdue Pharma L.P. Controlled release oxycodone compositions
US20100034876A1 (en) * 1993-06-18 2010-02-11 Purdue Pharma L.P. Controlled release oxycodone compositions
US20040081694A1 (en) * 1994-11-04 2004-04-29 Euro-Celtique, S.A. Melt-extruded orally administrable opioid formulations
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation
US20060165790A1 (en) * 2003-06-27 2006-07-27 Malcolm Walden Multiparticulates
US8691878B2 (en) 2003-08-28 2014-04-08 Abbvie Inc. Solid pharmaceutical dosage form
US8309613B2 (en) 2003-08-28 2012-11-13 Abbvie Inc. Solid pharmaceutical dosage form
US8333990B2 (en) 2003-08-28 2012-12-18 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8399015B2 (en) 2003-08-28 2013-03-19 Abbvie Inc. Solid pharmaceutical dosage form
US8268349B2 (en) 2003-08-28 2012-09-18 Abbott Laboratories Solid pharmaceutical dosage form
US9603802B2 (en) 2004-02-12 2017-03-28 Euro-Celtique S.A. Extrusion
US20090029170A1 (en) * 2004-02-12 2009-01-29 Geoffrey Gerard Hayes Extrusion
US20070298103A1 (en) * 2004-02-12 2007-12-27 Euro-Celtique S.A. Particulates
US8920836B2 (en) 2004-02-12 2014-12-30 Euro-Celtique S.A. Particulates
US9259872B2 (en) 2004-08-31 2016-02-16 Euro-Celtique S.A. Multiparticulates
CN105025882A (en) * 2012-12-31 2015-11-04 株式会社三养生物制药 Melt extruded pharmaceutical composition for controlling release, and medicine for oral administration including same
US20160213621A1 (en) * 2012-12-31 2016-07-28 Samyang Biopharmaceuticals Corporation Melt-Extruded Release Controlled Pharmaceutical Composition and Oral Dosage Form Comprising the Same
US10143659B2 (en) * 2012-12-31 2018-12-04 Samyang Biopharmaceutical Corporation Melt-extruded release controlled pharmaceutical composition and oral dosage form comprising the same
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US9943513B1 (en) 2015-10-07 2018-04-17 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10478429B2 (en) 2015-10-07 2019-11-19 Patheon Softgels, Inc. Abuse deterrent dosage forms
US10624888B2 (en) 2016-03-31 2020-04-21 SpecGx LLC Extended release, abuse deterrent dosage forms
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions

Also Published As

Publication number Publication date
ES2338641T3 (en) 2010-05-11
WO1996014058A1 (en) 1996-05-17
US20010036476A1 (en) 2001-11-01
DK0785775T4 (en) 2013-01-21
IL159766A0 (en) 2004-06-20
DE69535426T2 (en) 2007-12-06
HK1069110A1 (en) 2005-05-13
JPH10508608A (en) 1998-08-25
US20040081694A1 (en) 2004-04-29
DK1449531T3 (en) 2007-07-30
ATE357909T1 (en) 2007-04-15
DE69535445D1 (en) 2007-05-10
EP1449530A3 (en) 2004-09-22
US20030026839A1 (en) 2003-02-06
US20100172974A1 (en) 2010-07-08
US7510727B2 (en) 2009-03-31
EP1449531A2 (en) 2004-08-25
EP0785775B1 (en) 2004-01-07
PT1741426E (en) 2008-09-01
HUT77626A (en) 1998-06-29
EP1741426B1 (en) 2008-06-04
KR100232945B1 (en) 1999-12-01
IL129410A (en) 2003-06-24
PT1348429E (en) 2010-03-09
HK1069109A1 (en) 2005-05-13
DE69535767D1 (en) 2008-07-17
DK1348429T3 (en) 2010-04-19
US20040185096A1 (en) 2004-09-23
EP1449531B1 (en) 2007-03-28
EP1449530B1 (en) 2007-03-14
AU705894B2 (en) 1999-06-03
EP1488786A1 (en) 2004-12-22
CA2204180C (en) 2000-10-31
JP3186064B2 (en) 2001-07-11
IL159766A (en) 2006-06-11
US6335033B2 (en) 2002-01-01
ATE397441T1 (en) 2008-06-15
EP1449531A3 (en) 2004-09-22
US5958452A (en) 1999-09-28
ATE356616T1 (en) 2007-04-15
US5965161A (en) 1999-10-12
HK1059887A1 (en) 2004-07-23
US6261599B1 (en) 2001-07-17
EP0785775A1 (en) 1997-07-30
ATE257375T1 (en) 2004-01-15
DE69532415T2 (en) 2004-12-30
ES2308675T3 (en) 2008-12-01
PT785775E (en) 2004-04-30
DE69535445T2 (en) 2008-01-24
EP2283816A1 (en) 2011-02-16
EP1348429A3 (en) 2003-11-26
EP1348429A2 (en) 2003-10-01
DE69532415T3 (en) 2013-03-28
IL129410A0 (en) 2000-02-17
EP1741426A2 (en) 2007-01-10
ZA959367B (en) 1996-06-13
EP1741426A3 (en) 2007-02-28
PT1449530E (en) 2007-06-04
US6706281B2 (en) 2004-03-16
IL142413A (en) 2004-02-19
DE69536035D1 (en) 2010-02-04
TW425288B (en) 2001-03-11
ATE452627T1 (en) 2010-01-15
EP1348429B1 (en) 2009-12-23
DE69535426D1 (en) 2007-04-26
DE69532415D1 (en) 2004-02-12
DK1741426T3 (en) 2008-10-06
IL115871A0 (en) 1996-01-31
AU4157096A (en) 1996-05-31
US20010033865A1 (en) 2001-10-25
ES2214512T3 (en) 2004-09-16
DK1449530T3 (en) 2007-07-02
DK0785775T3 (en) 2004-05-24
EP1449530A2 (en) 2004-08-25
ES2282756T3 (en) 2007-10-16
EP0785775A4 (en) 1998-08-19
CA2204180A1 (en) 1996-05-17
PT1449531E (en) 2007-06-25
EP0785775B2 (en) 2012-12-05
US20050089568A1 (en) 2005-04-28
US6743442B2 (en) 2004-06-01
ES2282757T3 (en) 2007-10-16
IL115871A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US6706281B2 (en) Melt-extrusion multiparticulates
US9034377B2 (en) Opioid dosage forms having dose proportional steady state Cave and AUC and less than dose proportional single dose Cmax
HUE035445T2 (en) Melt extrusion of spherical multiparticulates
WO2003080183A1 (en) Pharmaceutical combination of the cox-2 inhibitor etodolac and opioids
AU747389B2 (en) Melt-extruded orally administrable opioid formulations

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION