US20090148517A1 - Melt-extrusion multiparticulates - Google Patents
Melt-extrusion multiparticulates Download PDFInfo
- Publication number
- US20090148517A1 US20090148517A1 US12/372,460 US37246009A US2009148517A1 US 20090148517 A1 US20090148517 A1 US 20090148517A1 US 37246009 A US37246009 A US 37246009A US 2009148517 A1 US2009148517 A1 US 2009148517A1
- Authority
- US
- United States
- Prior art keywords
- particles
- therapeutically active
- active agent
- retardant
- dosage form
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
- A61K9/2018—Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2027—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
- A61K9/2081—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2095—Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/145—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
Definitions
- the present invention relates to a process of making granulates or multiparticulates which are useful, for example, in pharmaceutical dosage forms.
- the invention relates to a process for melt-extruding pharmaceutical agents with excipients to form multiparticulates suitable for inclusion in solid dosage forms such as capsules, tablets and the like.
- compositions which provide for controlled (slow) release of pharmacologically active substances contained in the compositions after oral administration to humans and animals.
- slow release compositions are used to delay absorption of a medicament until it has reached certain portions of the alimentary tract.
- sustained-release of a medicament in the alimentary tract further maintains a desired concentration of said medicament in the blood stream for a longer duration than would occur if conventional rapid release dosage forms are administered.
- Melt granulation techniques have also been suggested to provide controlled release formulations. Melt granulation usually involves mechanically working an active ingredient in particulate form with one or more suitable binders and/or pharmaceutically acceptable excipients in a mixer until one or more of the binders melts and adheres to the surface of the particulate, eventually building up granules.
- PCT International Publication No. WO 92/06679 discloses melt granulating methods for producing pellets containing therapeutically active substances.
- the method includes mechanically working a mixture containing the active substance in cohesive form with a binder having a melting point of 40-100° C., while supplying sufficient energy to melt the binder and form “overmoist” spherical pellets and thereafter adding an additional cohesive substance while maintaining the mechanical working to finally produce dry pellets.
- PCT International Publication No. WO 93/18753 also discloses another melt extrusion process for preparing sustained-release pellets.
- This method includes pelletizing a mixture containing drug in finely divided form and a binder which includes one or more water-insoluble-wax-like binder substances with a melting point above 40° C. using a high shear mixer.
- the particles have an average length of from about 0.1 to about 12 mm and the unit dose provides a release of the therapeutically active agent over at least about 8 hours.
- Another aspect of the invention provides a method of preparing a multiparticulate sustained-release oral dosage form.
- This method includes mixing together a therapeutically effective agent, a water-insoluble retardant and an optional binder to form a homogeneous mixture, heating the mixture and thereafter extruding the mixture into strands. The strands are then cooled, and reduced to particles having a size of from about 0.1 to about 12 mm.
- This aspect further includes dividing the particles into unit doses.
- the ratio of water-insoluble retardant material to therapeutically active agent is sufficient to impart a release of the active agent from the multiparticulate system over an extended time period.
- the retardant will comprise about 5-95% of melt-extruded multiparticulate.
- the multiparticulate sustained-release system can be included within a hard gelatin capsule or other oral dosage forms such as a compressed tablet. Methods of preparing such dosage forms are also provided herein.
- a method of treating a patient with sustained-release multi-particulate formulations prepared as described above includes administering a unit dose sustained release oral dosage form containing the novel melt-extruded particles to a patient in need of the active ingredient contained therein.
- a unit dose is understood to contain an effective amount of the therapeutically active agent.
- a still further aspect of the invention provides an alternative method of preparing a multiparticulate sustained oral dosage form.
- This aspect includes directly metering into an extruder a homogeneous mixture of a water-insoluble retardant, a therapeutically active agent, and an optional binder, heating the homogeneous mixture, extruding said mixture to form strands, cooling the strands and cutting the strands into particles having a size of from about 0.1 to 12 mm and dividing the particles into unit doses.
- the ratio of hydrophobic material, namely water-insoluble retardant (and optional binder) to the therapeutically active agent is sufficient to impart a controlled release of the therapeutically active agent from the melt-extruded particles and unit doses over a time period of at least 8 hours.
- FIG. 1 is a graph displaying the dissolution results of Examples 1 and 2;
- FIG. 2 is a graph displaying the dissolution rates of Examples 3-6;
- FIGS. 3 a and 3 b are graphs displaying the pH dependency of the dissolution results of Examples 3 and 5 respectively;
- FIG. 4 is a graph displaying the dissolution results of Examples 7 and 8;
- FIG. 5 is a graph displaying the dissolution results of Examples 9 and 10;
- FIG. 6 is a graph displaying the dissolution results of Examples 11 and 12;
- FIG. 7 is a graph displaying the dissolution results of Examples 13 and 14;
- FIG. 8 is a schematic representation of a system for carrying out the present invention.
- FIG. 9 is a graph displaying the results of Example 15.
- a therapeutically active agent is combined with one or more suitable controlled-release retardants, and optionally, a water-insoluble binder, extruded and thereafter rendered into a plurality of melt-extruded particles or multiparticulates, such as spheres, beads or the like.
- the active pharmaceutical agent(s) included in the controlled release multiparticulates of the present invention include systemically active therapeutic agents, locally active therapeutic agents, disinfecting agents, chemical impregnants, cleansing agents, deodorants, fragrances, dyes, animal repellents, insect repellents, a fertilizing agents, pesticides, herbicides, fungicides, and plant growth stimulants, and the like.
- the only limitation on the ingredient is that the pharmaceutical agent is capable of undergoing the inventive extrusion process without substantially losing its sought-after effect.
- the therapeutically active agents can be used in conjunction with the present invention.
- the therapeutically active agents e.g., pharmaceutical agents
- the therapeutically active agents include both water soluble and water insoluble drugs.
- examples of such therapeutically active agents include anti-histamines (e.g., dimenhydrinate, diphenhydramine, chlorpheniramine and dexchlorpheniramine maleate), analgesics (e.g., aspirin, codeine, morphine, dihydromorphone, oxycodone, etc.), non-steroidal anti-inflammatory agents (e.g., naproxyn, diclofenac, indomethacin, ibuprofen, sulindac), anti-emetics (e.g., metoclopramide), anti-epileptics (e.g., phenyloin, meprobamate and nitrezepam), vasodilators (e.g., nifedipine, papa
- the multiparticulate systems of the present invention include one or more compounds known as opioid analgesics.
- Opioid analgesic compounds which may be used in the present invention include alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypeth
- the opioid analgesic is selected from morphine, codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, oxymorphone, hydrates and solvates of any of the foregoing, mixtures of any of the foregoing, and the like.
- the therapeutically active agent in order to obtain a controlled release of the active agent, is homogeneously combined with a sufficient amount of a release-retardant material and, optionally, a water-insoluble binder prior to undergoing extrusion.
- the retardant can be a hydrophobic material such as a water-insoluble acrylic polymer or alkylcellulose, or a water soluble material such as hydroxyalkylcelluloses and related materials. If unit doses of the multiparticulate are to have about a 12 hour or shorter release pattern, hydroxyalkylcelluloses, for example will be extruded with the therapeutic agent. If release rates of greater than about 12 hours are desired, water-insoluble materials are selected. It is, of course, within the scope of the invention to have particles containing mixtures of the water soluble and insoluble polymers.
- the hydrophobic polymer is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid) (anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate), poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
- acrylic acid and methacrylic acid copolymers including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers,
- the melt-extruded particle will comprise from about 1 to about 99% by weight of the retardant and preferably from about 5 to 95% by weight.
- Other retardant polymers which may be used for the extrusion process of the present invention, as those skilled in the art will appreciate, include other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of water-insoluble portion of the retardant in the multiparticulate.
- sustained release and “extended duration” are defined for purposes of the present invention as the release of the drug (i.e., opioid analgesic) at such a rate that blood (e.g., plasma) levels are maintained within the therapeutic range but below toxic levels over a period of time greater than 6 hours, more preferably for periods of up to about 24 hours, or longer.
- drug i.e., opioid analgesic
- blood e.g., plasma
- the acrylic polymer is an acrylic resin lacquer such as that which is commercially available from Rohm Pharma under the Tradename Eudragit®.
- the acrylic polymer comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit®. RL30D and Eudragit® RS30D, respectively.
- Eudragit®, RL30D and Eudragit®. RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D.
- the mean molecular weight is about 150,000.
- Eudragit® and Eudragit® L-100 are also preferred.
- the code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents.
- Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, multiparticulate systems formed to include the same are swellable and permeable in aqueous solutions and digestive fluids.
- the hydrophobic polymer which may be used is a hydrophobic cellulosic material such as ethylcellulose.
- ethylcellulose a hydrophobic cellulosic material
- other cellulosic polymers including other alkyl cellulosic polymers, may be substituted for part or all of the ethylcellulose included in the hydrophobic polymer portion of the multiparticulates of the present invention.
- the release-modifying agent or retardant is selected from materials such as hydroxyalkylcelluloses such as hydroxypropylmethylcellulose and mixtures of the foregoing.
- the retardants may also include a plasticizer.
- suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
- plasticizers for the acrylic polymers of the present invention include citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol, polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
- the binder portion of the melt-extruded particles is optionally included. It has been found that the binder can be reduced or even eliminated from the extrusion if the physical properties and relationships between the therapeutically active ingredient and retardant(s) allow a sufficiently cohesive extruded strand to exit the apparatus.
- suitable binders includes hydrogenated vegetable or castor oil, paraffin, higher aliphatic alcohols, higher aliphatic acids, long chain fatty acids, fatty acid esters, and mixtures thereof.
- the binder material may consist of one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances.
- the individual wax-like substances in the binder material should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases.
- Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
- Binder materials are preferably water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends.
- the wax-like substance may comprise fatty alcohols, fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic acid, stearyl alcohol and hydrophobic and hydrophilic polymers having hydrocarbon backbones.
- melt-extruded particles can be prepared to include pharmaceutically acceptable carriers and excipients. It is to be understood that these materials can be mixed with the particles after extrusion as well.
- pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients , American Pharmaceutical Association (1986), incorporated by reference herein. Techniques and compositions for making solid oral dosage forms are described in Pharmaceutical Dosage Forms: Tablets (Lieberman, Lachman and Schwartz, editors). Second Edition, published by Marcel Dekker, Inc., incorporated by reference herein. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences , (Arthur Osol, editor), 1553-1593 (1980), incorporated by reference herein.
- An optional process for preparing the multiparticulates and unit doses of the present invention includes directly metering into an extruder a water-insoluble retardant, a therapeutically active agent, and an optional binder; heating said homogenous mixture; extruding said homogenous mixture to thereby form strands; cooling said strands containing said homogeneous mixture; and cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses.
- a relatively continuous manufacturing procedure is realized.
- the multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice.
- the terms “multiparticulate(s)” and “multiparticulate system(s)” and “melt-extruded particles” shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a retardant as described herein.
- the multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm.
- the multiparticulates can be any geometrical shape within this size range such as beads, microspheres, seeds, pellets, etc.
- the multiparticulate can thereafter be included in a capsule or in any other suitable solid form.
- unit dose is defined for purposes of the present invention as the total amount of substrates needed to administer a desired dose of drug (e.g., opioid analgesic) to a patient.
- drug e.g., opioid analgesic
- the melt extruded particles comprising the therapeutically active agent may be coated with a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other things.
- the hydrophobic polymer comprising the sustained-release coating is a pharmaceutically acceptable acrylic polymer, such as those described hereinabove.
- the multiparticulate is used in a sustained-release opioid oral dosage form and includes hydromorphone as the therapeutically active ingredient in an amount from about 4 to about 64 mg hydromorphone hydrochloride.
- the dosage form may contain molar equivalent amounts of other hydromorphone salts or of the hydromorphone base.
- the opioid analgesic is other than hydromorphone, the dosage form contains an appropriate amount to provide a substantially equivalent therapeutic effect.
- the opioid analgesic comprises morphine
- the sustained-release oral dosage forms of the present invention include from about 5 mg to about 800 mg morphine, by weight.
- the sustained-release oral dosage forms of the present invention include from about 5 mg to about 400 mg oxycodone.
- the multiparticulate can be encapsulated or compressed into solid oral dosage forms using standard techniques.
- the unit dosage forms of the present invention may further include combinations of multiparticulates containing one or more of the active agents disclosed above before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release active agent for prompt therapeutic effect.
- the plasticized aqueous dispersion of hydrophobic polymer may be applied onto the multiparticulate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art.
- a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the multiparticulate material and effects drying while the acrylic polymer coating is sprayed on.
- a controlled-release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
- suitable quantities of other materials e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
- the feed materials enter through a feed hopper and are moved through the barrel by the screws and are forced through the die into strands which are thereafter conveyed such as by a continuous movable belt to allow for cooling and being directed to a pelletizer or other suitable device to render the extruded ropes into the multiparticulate system.
- the pelletizer can consist of rollers, fixed knife, rotating cutter and the like. Suitable instruments and systems are available from distributors such as C.W. Brabender Instruments, Inc. of South Hackensack, N.J. Other suitable apparatus will be apparent to those of ordinary skill in the art.
- roller speed and cutter speed (e.g., to 3-100 ft/min and 100-800 rpm). Cut the congealed strands to desired size (e.g., 3-5 mm in diameter, 0.3-5 mm in length).
- chlorpheniramine maleate controlled release pellets were prepared according to the above manufacturing procedure using ethylcellulose and an acrylic polymer (Eudragit RSPO), respectively as the retardant.
- the formulations are set forth in Tables 1 and 2 below. The dissolution of these formulations is set forth in FIG. 1 .
- Drug release rate from ethylcellulose pellets (prepared at 105° C.) is significantly slower than that from Eudragit RS pellets (prepared at 85° C.).
- Ex. 2 The excipients used in Ex. 2 were employed to make morphine sulfate controlled release pellets.
- the drug release rate was slower than expected especially during later hours of the dissolution.
- the drug dissolution rate obtained from the product of Ex. 3 showed a significant pH dependency.
- the release rate was slower in SIF (simulated intestinal fluid) than in SGF (simulated gastric fluid).
- Example 3 a bioavailability study was undertaken. Fourteen subjects were given the morphine sulphate formulations of Example 3. The results are provided in Table 15 below and in FIG. 9 .
- the formulation is an ideal candidate for an extended release or once-a-day product without a food effect.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Pain & Pain Management (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Rheumatology (AREA)
- Neurology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Cosmetics (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
A unit dose sustained-release oral dosage form containing a plurality of melt-extruded particles, each consisting essentially of a therapeutically active agent, one or more retardants, and an optional water-insoluble binder is disclosed. The particles have a length of from about 0.1 to about 12 mm and can be of varying diameters and each unit dose provides a release of therapeutically active agents over at least about 8 hours. Methods of preparing the unit doses as well as extrusion processes and methods of treatment are also disclosed.
Description
- This application is a continuation of U.S. patent application Ser. No. 10/745,950, filed Dec. 23, 2003, which is a continuation of U.S. patent application Ser. No. 10/038,867, filed Jan. 2, 2002, now U.S. Pat. No. 6,706,281, which is a continuation of U.S. patent application Ser. No. 09/358,828, filed Jul. 22, 1999, now U.S. Pat. No. 6,335,033, which is a continuation of U.S. patent application Ser. No. 08/334,209, filed Nov. 4, 1994, now U.S. Pat. No. 5,965,161, the entire disclosure of each of which is incorporated herein by reference in its entirety.
- The present invention relates to a process of making granulates or multiparticulates which are useful, for example, in pharmaceutical dosage forms. In particular, the invention relates to a process for melt-extruding pharmaceutical agents with excipients to form multiparticulates suitable for inclusion in solid dosage forms such as capsules, tablets and the like.
- It is known in the pharmaceutical art to prepare compositions which provide for controlled (slow) release of pharmacologically active substances contained in the compositions after oral administration to humans and animals. Such slow release compositions are used to delay absorption of a medicament until it has reached certain portions of the alimentary tract. Such sustained-release of a medicament in the alimentary tract further maintains a desired concentration of said medicament in the blood stream for a longer duration than would occur if conventional rapid release dosage forms are administered.
- Over the years, several different methods of preparing controlled release pharmaceutical dosage forms have been suggested. For example, direct compression techniques, wet granulation techniques, encapsulation techniques and the like have been proposed to deliver pharmaceutically active ingredients to the alimentary tract over extended periods.
- Melt granulation techniques have also been suggested to provide controlled release formulations. Melt granulation usually involves mechanically working an active ingredient in particulate form with one or more suitable binders and/or pharmaceutically acceptable excipients in a mixer until one or more of the binders melts and adheres to the surface of the particulate, eventually building up granules.
- PCT International Publication No. WO 92/06679 discloses melt granulating methods for producing pellets containing therapeutically active substances. The method includes mechanically working a mixture containing the active substance in cohesive form with a binder having a melting point of 40-100° C., while supplying sufficient energy to melt the binder and form “overmoist” spherical pellets and thereafter adding an additional cohesive substance while maintaining the mechanical working to finally produce dry pellets.
- PCT International Publication No. WO 93/18753 also discloses another melt extrusion process for preparing sustained-release pellets. This method includes pelletizing a mixture containing drug in finely divided form and a binder which includes one or more water-insoluble-wax-like binder substances with a melting point above 40° C. using a high shear mixer.
- In the spite of the foregoing advances, a need for further alternatives in the field of controlled release formulations has been sought. The present invention addresses this need.
- It is therefore an object of the present invention to provide improved methods for producing multiparticulates containing pharmaceutically active ingredients and excipients.
- It is a further object of the present invention to provide multiparticulates containing pharmaceutically active ingredients which display improved controlled-release characteristics.
- These objects and others have been accomplished by the present invention, which relates in part to a unit dose sustained-release oral dosage form containing a plurality of melt-extruded particles, each of said particles comprising:
- a) a therapeutically active agent;
- b) one or more retardants; and
- c) an optional water-insoluble binder.
- The particles have an average length of from about 0.1 to about 12 mm and the unit dose provides a release of the therapeutically active agent over at least about 8 hours.
- Another aspect of the invention provides a method of preparing a multiparticulate sustained-release oral dosage form. This method includes mixing together a therapeutically effective agent, a water-insoluble retardant and an optional binder to form a homogeneous mixture, heating the mixture and thereafter extruding the mixture into strands. The strands are then cooled, and reduced to particles having a size of from about 0.1 to about 12 mm. This aspect further includes dividing the particles into unit doses. The ratio of water-insoluble retardant material to therapeutically active agent is sufficient to impart a release of the active agent from the multiparticulate system over an extended time period. In this regard, the retardant will comprise about 5-95% of melt-extruded multiparticulate. The multiparticulate sustained-release system can be included within a hard gelatin capsule or other oral dosage forms such as a compressed tablet. Methods of preparing such dosage forms are also provided herein.
- In yet a further aspect of the invention, there is provided a method of treating a patient with sustained-release multi-particulate formulations prepared as described above. This method includes administering a unit dose sustained release oral dosage form containing the novel melt-extruded particles to a patient in need of the active ingredient contained therein. For purposes of the present invention, a unit dose is understood to contain an effective amount of the therapeutically active agent.
- A still further aspect of the invention provides an alternative method of preparing a multiparticulate sustained oral dosage form. This aspect includes directly metering into an extruder a homogeneous mixture of a water-insoluble retardant, a therapeutically active agent, and an optional binder, heating the homogeneous mixture, extruding said mixture to form strands, cooling the strands and cutting the strands into particles having a size of from about 0.1 to 12 mm and dividing the particles into unit doses. The ratio of hydrophobic material, namely water-insoluble retardant (and optional binder) to the therapeutically active agent is sufficient to impart a controlled release of the therapeutically active agent from the melt-extruded particles and unit doses over a time period of at least 8 hours.
- The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
-
FIG. 1 is a graph displaying the dissolution results of Examples 1 and 2; -
FIG. 2 is a graph displaying the dissolution rates of Examples 3-6; -
FIGS. 3 a and 3 b are graphs displaying the pH dependency of the dissolution results of Examples 3 and 5 respectively; -
FIG. 4 is a graph displaying the dissolution results of Examples 7 and 8; -
FIG. 5 is a graph displaying the dissolution results of Examples 9 and 10; -
FIG. 6 is a graph displaying the dissolution results of Examples 11 and 12; -
FIG. 7 is a graph displaying the dissolution results of Examples 13 and 14; -
FIG. 8 is a schematic representation of a system for carrying out the present invention; and -
FIG. 9 is a graph displaying the results of Example 15. - In accordance with the present invention, there are provided methods for preparing multiparticulates using melt-extrusion techniques and sustained release oral unit dosage forms containing a plurality of the melt extruded particulates. In accordance therewith, a therapeutically active agent is combined with one or more suitable controlled-release retardants, and optionally, a water-insoluble binder, extruded and thereafter rendered into a plurality of melt-extruded particles or multiparticulates, such as spheres, beads or the like.
- The active pharmaceutical agent(s) included in the controlled release multiparticulates of the present invention include systemically active therapeutic agents, locally active therapeutic agents, disinfecting agents, chemical impregnants, cleansing agents, deodorants, fragrances, dyes, animal repellents, insect repellents, a fertilizing agents, pesticides, herbicides, fungicides, and plant growth stimulants, and the like. The only limitation on the ingredient is that the pharmaceutical agent is capable of undergoing the inventive extrusion process without substantially losing its sought-after effect.
- A wide variety of therapeutically active agents can be used in conjunction with the present invention. The therapeutically active agents (e.g., pharmaceutical agents) which may be used in the compositions of the present invention include both water soluble and water insoluble drugs. Examples of such therapeutically active agents include anti-histamines (e.g., dimenhydrinate, diphenhydramine, chlorpheniramine and dexchlorpheniramine maleate), analgesics (e.g., aspirin, codeine, morphine, dihydromorphone, oxycodone, etc.), non-steroidal anti-inflammatory agents (e.g., naproxyn, diclofenac, indomethacin, ibuprofen, sulindac), anti-emetics (e.g., metoclopramide), anti-epileptics (e.g., phenyloin, meprobamate and nitrezepam), vasodilators (e.g., nifedipine, papaverine, diltiazem and nicardirine), anti-tussive agents and expectorants (e.g., codeine phosphate), anti-asthmatics (e.g., theophylline), antacids, anti-spasmodics (e.g., atropine, scopolamine), antidiabetics (e.g., insulin), diuretics (e.g., ethacrynic acid, bendrofluazide), anti-hypotensives (e.g., propranolol, clonidine), antihypertensives (e.g., clonidine, methyldopa), bronchodilators (e.g., albuterol), steroids (e.g., hydrocortisone, triamcinolone, prednisone), antibiotics (e.g., tetracycline), antihemorrhoidals, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, stimulants (including appetite suppressants such as phenylpropanolamine), as well as salts, hydrates, and solvates of the same. The above list is not meant to be exclusive.
- In certain preferred embodiments, the multiparticulate systems of the present invention include one or more compounds known as opioid analgesics. Opioid analgesic compounds which may be used in the present invention include alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levorphanol, levophenacylmorphan, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, nalorphine, normorphine, norpipanone, opium, oxycodone, oxymorphone, papavereturn, pentazocine, phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, piritramide, propheptazine, promedol, properidine, propiram, propoxyphene, sufentanil, tramadol, tilidine, salts thereof, mixtures of any of the foregoing, mixed mu-agonists/antagonists, mu-antagonist combinations, and the like.
- In certain particularly preferred embodiments, the opioid analgesic is selected from morphine, codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, oxymorphone, hydrates and solvates of any of the foregoing, mixtures of any of the foregoing, and the like.
- According to the present invention, in order to obtain a controlled release of the active agent, the therapeutically active agent is homogeneously combined with a sufficient amount of a release-retardant material and, optionally, a water-insoluble binder prior to undergoing extrusion. The retardant can be a hydrophobic material such as a water-insoluble acrylic polymer or alkylcellulose, or a water soluble material such as hydroxyalkylcelluloses and related materials. If unit doses of the multiparticulate are to have about a 12 hour or shorter release pattern, hydroxyalkylcelluloses, for example will be extruded with the therapeutic agent. If release rates of greater than about 12 hours are desired, water-insoluble materials are selected. It is, of course, within the scope of the invention to have particles containing mixtures of the water soluble and insoluble polymers.
- In certain preferred embodiments of the present invention, the hydrophobic polymer is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid) (anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate), poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
- The melt-extruded particle will comprise from about 1 to about 99% by weight of the retardant and preferably from about 5 to 95% by weight. Other retardant polymers which may be used for the extrusion process of the present invention, as those skilled in the art will appreciate, include other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of water-insoluble portion of the retardant in the multiparticulate.
- The terms “sustained release” and “extended duration” are defined for purposes of the present invention as the release of the drug (i.e., opioid analgesic) at such a rate that blood (e.g., plasma) levels are maintained within the therapeutic range but below toxic levels over a period of time greater than 6 hours, more preferably for periods of up to about 24 hours, or longer.
- In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
- In one preferred embodiment, the acrylic polymer is an acrylic resin lacquer such as that which is commercially available from Rohm Pharma under the Tradename Eudragit®. In further preferred embodiments, the acrylic polymer comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit®. RL30D and Eudragit® RS30D, respectively. Eudragit®, RL30D and Eudragit®. RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. Eudragit® and Eudragit® L-100 are also preferred. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, multiparticulate systems formed to include the same are swellable and permeable in aqueous solutions and digestive fluids.
- The polymers described above such as Eudragit® RL/RS may be mixed together in any desired ratio in order to ultimately obtain a sustained-release formulation having a desirable dissolution profile. Desirable sustained-release multiparticulate systems may be obtained, for instance, from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:
Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L. - In other preferred embodiments, the hydrophobic polymer which may be used is a hydrophobic cellulosic material such as ethylcellulose. Those skilled in the art will appreciate that other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of the ethylcellulose included in the hydrophobic polymer portion of the multiparticulates of the present invention.
- In certain preferred embodiments, the release-modifying agent or retardant is selected from materials such as hydroxyalkylcelluloses such as hydroxypropylmethylcellulose and mixtures of the foregoing.
- The retardants may also include a plasticizer. Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
- Examples of suitable plasticizers for the acrylic polymers of the present invention include citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol, polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
- The binder portion of the melt-extruded particles is optionally included. It has been found that the binder can be reduced or even eliminated from the extrusion if the physical properties and relationships between the therapeutically active ingredient and retardant(s) allow a sufficiently cohesive extruded strand to exit the apparatus. A non-limiting list of suitable binders includes hydrogenated vegetable or castor oil, paraffin, higher aliphatic alcohols, higher aliphatic acids, long chain fatty acids, fatty acid esters, and mixtures thereof.
- The binder material may consist of one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances. In order to achieve constant release, the individual wax-like substances in the binder material should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases.
- Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
- Binder materials are preferably water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends. Specifically, the wax-like substance may comprise fatty alcohols, fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic acid, stearyl alcohol and hydrophobic and hydrophilic polymers having hydrocarbon backbones.
- In addition to the foregoing, the melt-extruded particles can be prepared to include pharmaceutically acceptable carriers and excipients. It is to be understood that these materials can be mixed with the particles after extrusion as well. Specific examples of pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1986), incorporated by reference herein. Techniques and compositions for making solid oral dosage forms are described in Pharmaceutical Dosage Forms: Tablets (Lieberman, Lachman and Schwartz, editors). Second Edition, published by Marcel Dekker, Inc., incorporated by reference herein. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences, (Arthur Osol, editor), 1553-1593 (1980), incorporated by reference herein.
- An optional process for preparing the multiparticulates and unit doses of the present invention includes directly metering into an extruder a water-insoluble retardant, a therapeutically active agent, and an optional binder; heating said homogenous mixture; extruding said homogenous mixture to thereby form strands; cooling said strands containing said homogeneous mixture; and cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses. In this aspect of the invention, a relatively continuous manufacturing procedure is realized.
- The multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice. For purposes of the present invention, the terms “multiparticulate(s)” and “multiparticulate system(s)” and “melt-extruded particles” shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a retardant as described herein. In this regard, the multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm. In addition, it is to be understood that the multiparticulates can be any geometrical shape within this size range such as beads, microspheres, seeds, pellets, etc.
- The multiparticulate can thereafter be included in a capsule or in any other suitable solid form.
- The term “unit dose” is defined for purposes of the present invention as the total amount of substrates needed to administer a desired dose of drug (e.g., opioid analgesic) to a patient.
- In one especially preferred embodiment, oral dosage forms are prepared to include an effective amount of multiparticulates within a capsule. For example, a plurality of the melt extruded particles may be placed in a gelatin capsule in an amount sufficient to provide an effective controlled-release dose when ingested and contacted by gastric fluid. In certain preferred embodiments of the present invention, the sustained-release multiparticulate systems are coated with a sustained-release coating. The coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tack-free.
- In order to obtain a sustained-release of opioid, for example, sufficient to provide an analgesic effect for the extended durations set forth in the present invention, the melt extruded particles comprising the therapeutically active agent may be coated with a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other things. In certain preferred embodiments of the present invention, the hydrophobic polymer comprising the sustained-release coating is a pharmaceutically acceptable acrylic polymer, such as those described hereinabove.
- The solvent which is used for the hydrophobic material may be any pharmaceutically acceptable solvent, including water, methanol, ethanol, methylene chloride and mixtures thereof. It is preferable however, that the coatings be based upon aqueous dispersions of the hydrophobic material.
- In one preferred embodiment the multiparticulate is used in a sustained-release opioid oral dosage form and includes hydromorphone as the therapeutically active ingredient in an amount from about 4 to about 64 mg hydromorphone hydrochloride. Alternatively, the dosage form may contain molar equivalent amounts of other hydromorphone salts or of the hydromorphone base. In other preferred embodiments where the opioid analgesic is other than hydromorphone, the dosage form contains an appropriate amount to provide a substantially equivalent therapeutic effect. For example, when the opioid analgesic comprises morphine, the sustained-release oral dosage forms of the present invention include from about 5 mg to about 800 mg morphine, by weight. When the opioid analgesic comprises oxycodone, the sustained-release oral dosage forms of the present invention include from about 5 mg to about 400 mg oxycodone. In these aspects of the invention, the multiparticulate can be encapsulated or compressed into solid oral dosage forms using standard techniques.
- The unit dosage forms of the present invention may further include combinations of multiparticulates containing one or more of the active agents disclosed above before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release active agent for prompt therapeutic effect.
- The controlled-release formulations of the present invention slowly release the therapeutically active agent, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids. The controlled-release profile of the formulations of the invention can be altered, for example, by varying the amount of retardant, i.e., hydrophobic polymer, by varying the amount of plasticizer relative to hydrophobic polymer, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
- For example, hydromorphone-containing multiparticulate may also be overcoated with an aqueous dispersion of the hydrophobic polymer. The aqueous dispersion of hydrophobic polymer preferably further includes an effective amount of plasticizer, e.g., triethyl citrate. Pre-formulated aqueous dispersions of ethylcellulose, such as Aquacoat® or Surelease®, may be used. If Surelease® is used, it is not necessary to separately add a plasticizer. Alternatively, pre-formulated aqueous dispersions of acrylic polymers such as Eudragit® can be used. These coating solutions may also contain film-formers, plasticizers, a solvent system (i.e., water), a colorant to provide elegance and product distinction. Color may also be added to or during the extrusion of the therapeutically active agent and retardant.
- The plasticized aqueous dispersion of hydrophobic polymer may be applied onto the multiparticulate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art. In a preferred method, a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the multiparticulate material and effects drying while the acrylic polymer coating is sprayed on. A sufficient amount of the aqueous dispersion of hydrophobic polymer to obtain a predetermined controlled-release of said therapeutically active agent when the coated particulate is exposed to aqueous solutions, e.g. gastric fluid, is preferably applied, taking into account the physical characteristics of the therapeutically active agent, the manner of incorporation of the plasticizer, etc.
- In addition to the above ingredients, a controlled-release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
- In a further aspect of the present invention, a process for the preparation of a multiparticulate controlled release, oral dosage form is provided. This aspect includes homogeneously mixing a therapeutically effective agent with a water-insoluble retardant and, optionally, a binder; extruding the mixture, cooling the exiting extruded strands, rendering the strands into particles having a size of from about 0.1 to about 12 mm in length and optionally, encapsulating or compressing and shaping the granules into tablets. The diameter of the extruder aperture or exit port can also be adjusted to vary the thickness of the extruded strands. Furthermore, the exit part of the extruder need not be round; it can be oblong, rectangular, etc. The exiting strands can be reduced to particles using a hot wire cutter, guillotine, etc.
- As shown in
FIG. 8 , a typical melt extrusion system capable of carrying out the present invention include a suitable extruder drive motor having variable speed and constant torque control, start-stop controls, and ammeter. In addition, the system will include a temperature control console which includes temperature sensors, cooling means and temperature indicators throughout the length of the extruder. In addition, the system will include an extruder such as twin-screw extruder which consists of two counter-rotating intermeshing screws enclosed within a cylinder or barrel having an aperture or die at the exit thereof. The feed materials enter through a feed hopper and are moved through the barrel by the screws and are forced through the die into strands which are thereafter conveyed such as by a continuous movable belt to allow for cooling and being directed to a pelletizer or other suitable device to render the extruded ropes into the multiparticulate system. The pelletizer can consist of rollers, fixed knife, rotating cutter and the like. Suitable instruments and systems are available from distributors such as C.W. Brabender Instruments, Inc. of South Hackensack, N.J. Other suitable apparatus will be apparent to those of ordinary skill in the art. - Premix the required amount of drug, polymers, and optional binder (wax).
- Charge a powder feeder with proper amount of drug/excipient blend.
- Set temperatures of extruder to the required temperature, depending on the formulation. Wait until the corresponding heating zones reach steady temperatures. Start the feeder and the extruder. The drug/excipient powder blend is melted and intimately mixed in the extruder. The diameter of the extruder aperture can be adjusted to vary the thickness of the resulting strand.
- Set the conveyor belt speed to an appropriate speed (e.g., 3-100 ft/min). Allow the extruded semisolid strand(s) to be congealed and transported to the pelletizer. Additional cooling devices may be needed to ensure proper congealing. (The conveyor belt may not be needed to cool the strand, if the material congeals rapidly enough.)
- Set the roller speed and cutter speed (e.g., to 3-100 ft/min and 100-800 rpm). Cut the congealed strands to desired size (e.g., 3-5 mm in diameter, 0.3-5 mm in length).
- Collect the pellet product.
- Fill a desired weight of pellets into hard gelatin capsules to obtain an appropriate dose of the drug.
- 1st hour in 700 ml simulated gastric fluid or SGF thereafter, 900 ml simulated intestinal fluid SIF
- Using HPLC Procedures for Assay
- The following examples illustrate various aspects of the present invention. They are not meant to be construed to limit the claims in any manner whatsoever.
- In these examples, chlorpheniramine maleate controlled release pellets were prepared according to the above manufacturing procedure using ethylcellulose and an acrylic polymer (Eudragit RSPO), respectively as the retardant. The formulations are set forth in Tables 1 and 2 below. The dissolution of these formulations is set forth in
FIG. 1 . Drug release rate from ethylcellulose pellets (prepared at 105° C.) is significantly slower than that from Eudragit RS pellets (prepared at 85° C.). -
TABLE 1 EX. 1 Composition Amt. (mg) per Capsule Chlorpheniramine Maleate 60 Ethyl Cellulose 84 Stearic Acid 36 Total 180 -
TABLE 2 EX. 2 Composition Amt. (mg) per Capsule Chlorpheniramine Maleate 60 Eudragit RSPO 84 Stearic Acid 36 Total 180 - The excipients used in Ex. 2 were employed to make morphine sulfate controlled release pellets. The drug release rate was slower than expected especially during later hours of the dissolution.
- To increase the drug dissolution rate during later hours, varying amounts of Eudragit L-100 were incorporated in the formulation. The drug dissolution rate increases with increasing amount of Eudragit L-100 in the formulation.
-
TABLE 3 EX. 3 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Eudragit RSPO 42 Stearic Acid 18 Total 120 -
TABLE 4 EX. 4 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Eudragit RSPO 38.4 Eudragit L-100 3.6 Stearic Acid 18 Total 120 -
TABLE 5 EX. 5 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Eudragit RSPO 36 Eudragit L-100 6 Stearic Acid 18 Total 120 -
TABLE 6 EX. 6 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Eudragit RSPO 33.6 Eudragit L-100 8.4 Stearic Acid (SA) 18 Total 120 - As seen in
FIG. 3 a, the drug dissolution rate obtained from the product of Ex. 3 showed a significant pH dependency. The release rate was slower in SIF (simulated intestinal fluid) than in SGF (simulated gastric fluid). - In
FIG. 3 b, it can be seen that due to the addition of Eudragit L-100, the drug dissolution rate obtained from Ex. 5 was less pH dependent. The drug release rate was faster in SIF during later hours of dissolution which is desirable for complete bioavailability. - As demonstrated in
FIG. 4 , with proper choice of plasticizers, the drug release rate from the formula containing Eudragit L-100 can be reduced. This may be necessary to achieve desirable plasma drug concentration profiles after oral administration of the pellets. -
TABLE 7 EX. 7 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Eudragit RSPO 33.6 Eudragit L-100 8.4 Stearic Acid (SA) 9 Diethyl Phthalate (DEP) 9 Total 120 -
TABLE 8 EX. 8 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Eudragit RSPO 33.6 Eudragit L-100 8.4 Stearic Acid (SA) 9 Tributyl Citrate (TBC) 9 Total 120 - A different polymer/wax combination was used as an alternative formulation. As seen in
FIG. 5 , the drug dissolution rate from ethylcellulose/polyvinyl acetate phthalate was somewhat faster. -
TABLE 9 EX. 9 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Ethyl Cellulose 38.4 Polyvinyl Acetate Phthalate 3.6 Stearic Acid 18 Total 120 -
TABLE 10 EX. 10 Composition Amt. (mg) per Capsule Morphine Sulfate 60 Ethyl Cellulose 34.8 Polyvinyl Acetate Phthalate 7.2 Stearic Acid 18 Total 120 - The formula used in Ex. 5 was applied to oxycodone hydrochloride. Due to the higher potency of oxycodone, only 20 mg of drug was used. The missing 40 mg was replaced by 40 mg of talc (Ex. 12). No replacement was used in Ex. 11. When tested in only SGF or SIF, the use of Eudragit L causes the formulation to become less pH dependent. The results are shown in
FIG. 6 . -
TABLE 11 EX. 11 Composition Amt. (mg) per Capsule Oxycodone Hydrochloride 20 Eudragit RSPO 36 Eudragit L-100 6 Stearic Acid 18 Total 120 -
TABLE 12 EX. 12 Composition Amt. (mg) per Capsule Oxycodone Hydrochloride 20 Eudragit RSPO 36 Eudragit L-100 6 Stearic Acid 18 Talc 40 Total 120 - The formula used in Ex. 5 was applied to hydromorphone hydrochloride. Due to the higher potency of hydromorphone, only 8 mg of drug was used. The missing 52 mg was replaced by 52 mg of talc (Ex. 14) or 52 mg of excipients (Ex. 13). The results are shown in
FIG. 7 . -
TABLE 13 EX. 13 Composition Amt. (mg) per Capsule Hydromorphone Hydrochloride 8 Eudragit RSPO 67.2 Eudragit L-100 11.2 Stearic Acid 33.6 Total 120 -
TABLE 14 EX. 14 Composition Amt. (mg) per Capsule Hydromorphone Hydrochloride 8 Eudragit RSPO 36 Eudragit L-100 6 Stearic Acid 18 Talc 52 Total 120 - In this Example, a bioavailability study was undertaken. Fourteen subjects were given the morphine sulphate formulations of Example 3. The results are provided in Table 15 below and in
FIG. 9 . -
TABLE 15 Group AUC Cmax Tmax Example 3 Fasted 230 15.7 2.1 Example 3 Fed 213 14.0 3.1 - From the above data, it can be seen that the formulation is an ideal candidate for an extended release or once-a-day product without a food effect.
- The examples provided above are not meant to be exclusive. Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.
Claims (27)
1. A unit dose sustained-release oral dosage form comprising a plurality-of melt extruded particles, each of said particles comprising:
(a) a therapeutically active agent;
(b) one or more retardants; and
(c) an optional water insoluble binder;
said particles having a (length) size from about 0.1 mm to about 12 mm, said unit dose providing a release of said therapeutically active agent over at least about 6 hours.
2. (canceled)
3. The unit dose of claim 1 , wherein said therapeutically active agent is an opioid analgesic selected from the group consisting of morphine, codeine, hydromorphone, hydrocodone, oxycodone, oxymorphone, dihydrocodeine, dihydromorphine, and mixtures thereof.
4. (canceled)
5. The dosage form of claim 2 , wherein said opioid analgesic consists of from about 2 mg to about 64 mg hydromorphone.
6. The dosage form of claim 2 , wherein said opioid analgesic consists of from about 5 mg to about 800 mg morphine.
7. The dosage form of claim 2 , wherein said opioid analgesic consists of from about 5 mg to about 400 mg oxycodone.
8. The dosage form of claim 1 , wherein said retardant is selected from the group consisting of acrylic polymers, hydroxyalkylcelluloses and mixtures thereof.
9. The unit dose of claim 1 , wherein said acrylic polymer is comprised of monomers selected from the group consisting of an ester of acrylic acid, an ester of methacrylic acid, an alkyl ester of acrylic acid, an alkyl ester of methacrylic acid, and mixtures of any of the foregoing.
10. The unit dose of claim 1 , wherein said water insoluble binder is selected from the group consisting of hydrogenated vegetable or castor oil, paraffin, higher aliphatic alcohols, higher aliphatic acids, long chain fatty acids, fatty acid esters, and mixtures thereof.
11. The unit dose of claim 1 , wherein said binder is selected from the group consisting of higher aliphatic alcohols and water-insoluble waxes.
12. The unit dose of claim 1 , wherein said particles have a diameter from about 0.1 to about 5 mm.
13. The unit dose of claim 1 , wherein each of said particles comprise from about 1% to about 99% of said retardant.
14. The unit dose of claim 1 , wherein each of said particles comprise from about 5% to about 95% of said retardant.
15. A method of preparing a multiparticulate sustained release oral dosage form, comprising:
(a) mixing together a therapeutically active agent, a water-insoluble retardant, and an optional binder to obtain a homogeneous mixture, the ratio of said water insoluble retardant to said therapeutically active agent in said mixture being sufficient to impart a release of said therapeutically active agent from said particles over a time period of at least about 4 hours when said particle is exposed to an aqueous fluid;
(b) heating said homogenous mixture;
(c) extruding said homogenous mixture to thereby form strands;
(d) cooling said strands containing said homogeneous mixture; and
(e) cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and
(f) dividing said particles into unit doses.
16. The method of claim 15 , wherein said unit doses are placed into gelatin capsules.
17. The method of claim 15 , wherein said homogenous mixture is heated to a temperature from about 30° C. to about 200° C. prior to extrusion.
18. (canceled)
19. The method of claim 4 & 15, wherein said therapeutically active agent is an opioid analgesic selected from the group consisting of morphine, codeine, hydromorphone, hydrocodone, oxycodone, oxymorphone, dihydrocodeine, dihydromorphine, and mixtures thereof.
20-27. (canceled)
28. The method of claim 15 , further comprising adjusting the aperture and aperture shape of the extruder to obtain a strand having a diameter from about 0.1 mm to about 3 cm.
29-30. (canceled)
31. A method of preparing a multiparticulate sustained release oral dosage form, comprising:
(a) directly metering into an extruder a water-insoluble retardant, a therapeutically active agent, and an optional binder;
(b) heating said homogenous mixture;
(c) extruding said homogenous mixture to thereby form strands;
(d) cooling said strands containing said homogeneous mixture; and
(e) cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and
(f) dividing said particles into unit doses.
32. (canceled)
33. The dosage form of claim 1 , wherein said therapeutically active agent is an opioid and said retardant is an acrylic polymer.
34. The dosage form of claim 1 , wherein said therapeutically active agent is an opioid and said retardant is a hydroxyalkylcellulose.
35-38. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/372,460 US20090148517A1 (en) | 1994-11-04 | 2009-02-17 | Melt-extrusion multiparticulates |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/334,209 US5965161A (en) | 1994-11-04 | 1994-11-04 | Extruded multi-particulates |
US09/358,828 US6335033B2 (en) | 1994-11-04 | 1999-07-22 | Melt-extrusion multiparticulates |
US10/038,867 US6706281B2 (en) | 1994-11-04 | 2002-01-02 | Melt-extrusion multiparticulates |
US10/745,950 US7510727B2 (en) | 1994-11-04 | 2003-12-23 | Melt-extrusion multiparticulates |
US12/372,460 US20090148517A1 (en) | 1994-11-04 | 2009-02-17 | Melt-extrusion multiparticulates |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/745,950 Continuation US7510727B2 (en) | 1994-11-04 | 2003-12-23 | Melt-extrusion multiparticulates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090148517A1 true US20090148517A1 (en) | 2009-06-11 |
Family
ID=23306123
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/334,209 Expired - Lifetime US5965161A (en) | 1994-11-04 | 1994-11-04 | Extruded multi-particulates |
US08/833,948 Expired - Lifetime US5958452A (en) | 1994-11-04 | 1997-04-10 | Extruded orally administrable opioid formulations |
US09/358,828 Expired - Lifetime US6335033B2 (en) | 1994-11-04 | 1999-07-22 | Melt-extrusion multiparticulates |
US09/360,056 Expired - Lifetime US6261599B1 (en) | 1994-11-04 | 1999-07-23 | Melt-extruded orally administrable opioid formulations |
US09/777,616 Expired - Fee Related US6743442B2 (en) | 1994-11-04 | 2001-02-06 | Melt-extruded orally administrable opioid formulations |
US10/038,867 Expired - Fee Related US6706281B2 (en) | 1994-11-04 | 2002-01-02 | Melt-extrusion multiparticulates |
US10/664,602 Abandoned US20050089568A1 (en) | 1994-11-04 | 2003-09-16 | Melt-extruded orally administrable opioid formulations |
US10/690,389 Abandoned US20040081694A1 (en) | 1994-11-04 | 2003-10-21 | Melt-extruded orally administrable opioid formulations |
US10/745,950 Expired - Fee Related US7510727B2 (en) | 1994-11-04 | 2003-12-23 | Melt-extrusion multiparticulates |
US12/372,460 Abandoned US20090148517A1 (en) | 1994-11-04 | 2009-02-17 | Melt-extrusion multiparticulates |
US12/722,974 Abandoned US20100172974A1 (en) | 1994-11-04 | 2010-03-12 | Melt-extruded orally administrable opioid formulations |
Family Applications Before (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/334,209 Expired - Lifetime US5965161A (en) | 1994-11-04 | 1994-11-04 | Extruded multi-particulates |
US08/833,948 Expired - Lifetime US5958452A (en) | 1994-11-04 | 1997-04-10 | Extruded orally administrable opioid formulations |
US09/358,828 Expired - Lifetime US6335033B2 (en) | 1994-11-04 | 1999-07-22 | Melt-extrusion multiparticulates |
US09/360,056 Expired - Lifetime US6261599B1 (en) | 1994-11-04 | 1999-07-23 | Melt-extruded orally administrable opioid formulations |
US09/777,616 Expired - Fee Related US6743442B2 (en) | 1994-11-04 | 2001-02-06 | Melt-extruded orally administrable opioid formulations |
US10/038,867 Expired - Fee Related US6706281B2 (en) | 1994-11-04 | 2002-01-02 | Melt-extrusion multiparticulates |
US10/664,602 Abandoned US20050089568A1 (en) | 1994-11-04 | 2003-09-16 | Melt-extruded orally administrable opioid formulations |
US10/690,389 Abandoned US20040081694A1 (en) | 1994-11-04 | 2003-10-21 | Melt-extruded orally administrable opioid formulations |
US10/745,950 Expired - Fee Related US7510727B2 (en) | 1994-11-04 | 2003-12-23 | Melt-extrusion multiparticulates |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/722,974 Abandoned US20100172974A1 (en) | 1994-11-04 | 2010-03-12 | Melt-extruded orally administrable opioid formulations |
Country Status (17)
Country | Link |
---|---|
US (11) | US5965161A (en) |
EP (7) | EP2283816A1 (en) |
JP (1) | JP3186064B2 (en) |
KR (1) | KR100232945B1 (en) |
AT (5) | ATE357909T1 (en) |
AU (1) | AU705894B2 (en) |
CA (1) | CA2204180C (en) |
DE (5) | DE69535426T2 (en) |
DK (5) | DK1741426T3 (en) |
ES (5) | ES2308675T3 (en) |
HK (3) | HK1059887A1 (en) |
HU (1) | HUT77626A (en) |
IL (5) | IL115871A (en) |
PT (5) | PT1741426E (en) |
TW (1) | TW425288B (en) |
WO (1) | WO1996014058A1 (en) |
ZA (1) | ZA959367B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040081694A1 (en) * | 1994-11-04 | 2004-04-29 | Euro-Celtique, S.A. | Melt-extruded orally administrable opioid formulations |
US20060165790A1 (en) * | 2003-06-27 | 2006-07-27 | Malcolm Walden | Multiparticulates |
US20070298103A1 (en) * | 2004-02-12 | 2007-12-27 | Euro-Celtique S.A. | Particulates |
US20090029170A1 (en) * | 2004-02-12 | 2009-01-29 | Geoffrey Gerard Hayes | Extrusion |
US20100034876A1 (en) * | 1993-06-18 | 2010-02-11 | Purdue Pharma L.P. | Controlled release oxycodone compositions |
US20100092570A1 (en) * | 1992-11-25 | 2010-04-15 | Purdue Pharma L.P. | Controlled release oxycodone compositions |
US8268349B2 (en) | 2003-08-28 | 2012-09-18 | Abbott Laboratories | Solid pharmaceutical dosage form |
US8377952B2 (en) | 2003-08-28 | 2013-02-19 | Abbott Laboratories | Solid pharmaceutical dosage formulation |
US8470347B2 (en) | 2000-05-30 | 2013-06-25 | AbbVie Deutschland GmbH and Co KG | Self-emulsifying active substance formulation and use of this formulation |
CN105025882A (en) * | 2012-12-31 | 2015-11-04 | 株式会社三养生物制药 | Melt extruded pharmaceutical composition for controlling release, and medicine for oral administration including same |
US9259872B2 (en) | 2004-08-31 | 2016-02-16 | Euro-Celtique S.A. | Multiparticulates |
US9861629B1 (en) | 2015-10-07 | 2018-01-09 | Banner Life Sciences Llc | Opioid abuse deterrent dosage forms |
US10335405B1 (en) | 2016-05-04 | 2019-07-02 | Patheon Softgels, Inc. | Non-burst releasing pharmaceutical composition |
US10335375B2 (en) | 2017-05-30 | 2019-07-02 | Patheon Softgels, Inc. | Anti-overingestion abuse deterrent compositions |
US10624888B2 (en) | 2016-03-31 | 2020-04-21 | SpecGx LLC | Extended release, abuse deterrent dosage forms |
Families Citing this family (317)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5266331A (en) * | 1991-11-27 | 1993-11-30 | Euroceltique, S.A. | Controlled release oxycodone compositions |
US5958459A (en) * | 1991-12-24 | 1999-09-28 | Purdue Pharma L.P. | Opioid formulations having extended controlled released |
US5968551A (en) * | 1991-12-24 | 1999-10-19 | Purdue Pharma L.P. | Orally administrable opioid formulations having extended duration of effect |
US5478577A (en) * | 1993-11-23 | 1995-12-26 | Euroceltique, S.A. | Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level |
IL109460A (en) | 1993-05-10 | 1998-03-10 | Euro Celtique Sa | Controlled release formulation comprising tramadol |
US5914131A (en) * | 1994-07-07 | 1999-06-22 | Alza Corporation | Hydromorphone therapy |
GB9422154D0 (en) | 1994-11-03 | 1994-12-21 | Euro Celtique Sa | Pharmaceutical compositions and method of producing the same |
US20020006438A1 (en) * | 1998-09-25 | 2002-01-17 | Benjamin Oshlack | Sustained release hydromorphone formulations exhibiting bimodal characteristics |
DE19531277A1 (en) * | 1995-08-25 | 1997-02-27 | Basf Ag | Use of lipids as an aid in the production of solid dosage forms by the melt extrusion process |
GB9519363D0 (en) | 1995-09-22 | 1995-11-22 | Euro Celtique Sa | Pharmaceutical formulation |
DE19539360A1 (en) * | 1995-10-23 | 1997-04-24 | Basf Ag | Process for the production of solid dosage forms |
GB9614902D0 (en) * | 1996-07-16 | 1996-09-04 | Rhodes John | Sustained release composition |
JPH1050306A (en) * | 1996-07-31 | 1998-02-20 | Toyota Autom Loom Works Ltd | Manufacture of hydrogen storage alloy electrode |
PL191399B1 (en) * | 1996-10-28 | 2006-05-31 | Gen Mills Inc | Method of obtaining distinct particles of controllable release by embedding in a base and encapsulating sensitive components |
EP1342548B1 (en) * | 1996-10-28 | 2015-12-23 | General Mills, Inc. | Embedding and encapsulation of controlled release particles and encapsulated product |
BE1010803A3 (en) * | 1996-12-16 | 1999-02-02 | Therabel Research Sa | Tablets pharmaceutical sustained release tramadol a basic and their preparation. |
US5968547A (en) | 1997-02-24 | 1999-10-19 | Euro-Celtique, S.A. | Method of providing sustained analgesia with buprenorphine |
JP3739410B2 (en) | 1997-07-02 | 2006-01-25 | ユーロ−セルティーク エス.エイ. | Stabilized sustained release tramadol formulation |
DE19733505A1 (en) | 1997-08-01 | 1999-02-04 | Knoll Ag | Fast acting analgesic |
RS49982B (en) * | 1997-09-17 | 2008-09-29 | Euro-Celtique S.A., | Synergistic analgesic combination of opioid analgesic and cyclooxygenase-2 inhibitor |
US6274591B1 (en) * | 1997-11-03 | 2001-08-14 | Joseph F. Foss | Use of methylnaltrexone and related compounds |
US6559158B1 (en) * | 1997-11-03 | 2003-05-06 | Ur Labs, Inc. | Use of methylnaltrexone and related compounds to treat chronic opioid use side affects |
US20030158220A1 (en) * | 1997-11-03 | 2003-08-21 | Foss Joseph F. | Use of methylnaltrexone and related compounds to treat chronic opioid use side effects |
EP1041988A4 (en) * | 1997-12-22 | 2002-03-13 | Euro Celtique Sa | A method of preventing abuse of opioid dosage forms |
RS50070B (en) | 1997-12-22 | 2009-01-22 | Euro-Celtique S.A., | Oral dosage form comprising a combination of an opioid agonist and naltrexone |
US6375957B1 (en) | 1997-12-22 | 2002-04-23 | Euro-Celtique, S.A. | Opioid agonist/opioid antagonist/acetaminophen combinations |
US8524277B2 (en) | 1998-03-06 | 2013-09-03 | Alza Corporation | Extended release dosage form |
US6074689A (en) * | 1998-03-10 | 2000-06-13 | Immucell Corporation | Colonic delivery of protein or peptide compositions |
AU747549B2 (en) | 1998-03-23 | 2002-05-16 | General Mills Inc. | Encapsulation of components into edible products |
AR018321A1 (en) * | 1998-03-26 | 2001-11-14 | Alza Corp | A DOSAGE FORM OF PROLONGED LIBERATION THAT INCLUDES OXIBUTININE AND THE USES OF OXIBUTININE AND THE DOSAGE FORM OF PROLONGED LIBERATION. |
SA99191255B1 (en) | 1998-11-30 | 2006-11-25 | جي دي سيرل اند كو | celecoxib compounds |
DE19859636A1 (en) * | 1998-12-23 | 2000-06-29 | Hexal Ag | Controlled release pharmaceutical composition with tilidine mesylate as active ingredient |
US7429407B2 (en) * | 1998-12-30 | 2008-09-30 | Aeromatic Fielder Ag | Process for coating small bodies, including tablets |
WO2000041528A2 (en) * | 1999-01-14 | 2000-07-20 | Amcol International Corporation | Improved controlled release compositions and method |
DE19918325A1 (en) | 1999-04-22 | 2000-10-26 | Euro Celtique Sa | Extruded drug dosage form, e.g. granulate for tableting, comprising an active agent in a polysaccharide-containing matrix, giving a release profile which is controllable by extrusion conditions and/or the inclusion of additives |
FR2795326B1 (en) * | 1999-06-28 | 2001-08-31 | Adir | SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITION WITH CONTROLLED RELEASE |
US20030236236A1 (en) * | 1999-06-30 | 2003-12-25 | Feng-Jing Chen | Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs |
DE19940944B4 (en) | 1999-08-31 | 2006-10-12 | Grünenthal GmbH | Retarded, oral, pharmaceutical dosage forms |
DE19943501A1 (en) * | 1999-09-10 | 2001-03-15 | Basf Ag | Underwater granulation of melts containing active ingredients |
US6500463B1 (en) | 1999-10-01 | 2002-12-31 | General Mills, Inc. | Encapsulation of sensitive components into a matrix to obtain discrete shelf-stable particles |
US10179130B2 (en) | 1999-10-29 | 2019-01-15 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
ATE526950T1 (en) * | 1999-10-29 | 2011-10-15 | Euro Celtique Sa | CONTROLLED RELEASE HYDROCODONE FORMULATIONS |
US6491953B1 (en) | 2000-01-07 | 2002-12-10 | Amcol International Corporation | Controlled release compositions and method |
US6953593B2 (en) * | 2000-02-01 | 2005-10-11 | Lipoprotein Technologies, Inc. | Sustained-release microencapsulated delivery system |
EP2517710B1 (en) * | 2000-02-08 | 2015-03-25 | Euro-Celtique S.A. | Tamper-resistant oral opioid agonist formulations |
ATE392885T1 (en) * | 2000-02-28 | 2008-05-15 | Pharmakodex Ltd | ADMINISTRATION SYSTEMS FOR ORAL MEDICATIONS |
US6468568B1 (en) | 2000-06-16 | 2002-10-22 | General Mills, Inc. | Oligosaccharide encapsulated mineral and vitamin ingredients |
US6436453B1 (en) | 2000-06-16 | 2002-08-20 | General Mills, Inc. | Production of oil encapsulated minerals and vitamins in a glassy matrix |
EP2263658A1 (en) | 2000-10-30 | 2010-12-22 | Euro-Celtique S.A. | Controlled release hydrocodone formulations |
FR2818550B1 (en) * | 2000-12-26 | 2003-02-07 | Servier Lab | SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITION FOR THE CONTROLLED RELEASE OF PERINDOPRIL |
FR2818552B1 (en) * | 2000-12-26 | 2003-02-07 | Servier Lab | SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITIONS FOR THE CONTROLLED RELEASE OF IVABRADINE |
FR2818549B1 (en) * | 2000-12-26 | 2003-02-07 | Servier Lab | SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITION FOR THE CONTROLLED RELEASE OF TRIMETAZIDINE |
JP2004537338A (en) * | 2001-03-02 | 2004-12-16 | ユーロ−セルティーク,エス.エイ. | Method and apparatus for preparing individual dosage forms |
AU2002234219A1 (en) * | 2001-03-09 | 2002-09-24 | Dow Global Technologies Inc. | Granular composition comprising an active compound and a cellulose ether and the use thereof |
US7858118B2 (en) * | 2001-04-11 | 2010-12-28 | Galephar Pharmaceutical Research, Inc. | Extended release composition containing Tramadol |
UA81224C2 (en) * | 2001-05-02 | 2007-12-25 | Euro Celtic S A | Dosage form of oxycodone and use thereof |
US20110104214A1 (en) | 2004-04-15 | 2011-05-05 | Purdue Pharma L.P. | Once-a-day oxycodone formulations |
CN1525851A (en) | 2001-05-11 | 2004-09-01 | ������ҩ������˾ | Abuse-resistant controlled-release opioid dosage form |
US20030070584A1 (en) | 2001-05-15 | 2003-04-17 | Cynthia Gulian | Dip coating compositions containing cellulose ethers |
AUPR510001A0 (en) * | 2001-05-18 | 2001-06-14 | Jupitar Pty Ltd | Formulation and method |
JP4310605B2 (en) | 2001-05-25 | 2009-08-12 | 大塚製薬株式会社 | Pharmaceutical composition |
AU2002314967B2 (en) * | 2001-06-05 | 2007-09-20 | University Of Chicago | Use of methylnaltrexone to treat immune suppression |
GB0113841D0 (en) * | 2001-06-07 | 2001-08-01 | Boots Co Plc | Therapeutic agents |
WO2003002100A1 (en) * | 2001-06-26 | 2003-01-09 | Farrell John J | Tamper-proof narcotic delivery system |
US8329216B2 (en) | 2001-07-06 | 2012-12-11 | Endo Pharmaceuticals Inc. | Oxymorphone controlled release formulations |
ATE376832T1 (en) * | 2001-07-06 | 2007-11-15 | Penwest Pharmaceuticals Co | DELAYED RELEASE FORMULATIONS OF OXYMORPHONE |
CA2452871C (en) * | 2001-07-06 | 2011-10-04 | Endo Pharmaceuticals, Inc. | Oxymorphone controlled release formulations |
ATE419039T1 (en) | 2001-07-18 | 2009-01-15 | Euro Celtique Sa | PHARMACEUTICAL COMBINATIONS OF OXYCODONE AND NALOXONE |
DE60232417D1 (en) | 2001-08-06 | 2009-07-02 | Euro Celtique Sa | OPIOID AGONIST FORMULATIONS WITH FREEZER AND SEQUESTRATED ANTAGONIST |
US20030157168A1 (en) * | 2001-08-06 | 2003-08-21 | Christopher Breder | Sequestered antagonist formulations |
US7157103B2 (en) * | 2001-08-06 | 2007-01-02 | Euro-Celtique S.A. | Pharmaceutical formulation containing irritant |
US20030044458A1 (en) * | 2001-08-06 | 2003-03-06 | Curtis Wright | Oral dosage form comprising a therapeutic agent and an adverse-effect agent |
US20030068375A1 (en) | 2001-08-06 | 2003-04-10 | Curtis Wright | Pharmaceutical formulation containing gelling agent |
DE10141650C1 (en) | 2001-08-24 | 2002-11-28 | Lohmann Therapie Syst Lts | Safe transdermal therapeutic system for administration of fentanyl or analogous analgesics, having matrix layer of carboxy group-free polyacrylate adhesive providing high permeation rate |
EP1429739A1 (en) | 2001-09-21 | 2004-06-23 | Egalet A/S | Polymer release system |
US20040253310A1 (en) | 2001-09-21 | 2004-12-16 | Gina Fischer | Morphine polymer release system |
US20030091635A1 (en) * | 2001-09-26 | 2003-05-15 | Baichwal Anand R. | Opioid formulations having reduced potential for abuse |
US8309118B2 (en) | 2001-09-28 | 2012-11-13 | Mcneil-Ppc, Inc. | Film forming compositions containing sucralose |
US7491407B2 (en) * | 2001-10-31 | 2009-02-17 | North Carolina State University | Fiber-based nano drug delivery systems (NDDS) |
HRP20020124A2 (en) * | 2002-02-11 | 2003-10-31 | Pliva D D | Sustained/controlled release solid formulation as a novel drug delivery system with reduced risk of dose dumping |
US20050182056A9 (en) * | 2002-02-21 | 2005-08-18 | Seth Pawan | Modified release formulations of at least one form of tramadol |
US8128957B1 (en) | 2002-02-21 | 2012-03-06 | Valeant International (Barbados) Srl | Modified release compositions of at least one form of tramadol |
DE10208344A1 (en) * | 2002-02-27 | 2003-09-04 | Roehm Gmbh | Melt extrusion of active ingredient salts |
DK2425824T5 (en) | 2002-04-05 | 2018-02-12 | Mundipharma As | Pharmaceutical preparation containing oxycodone and naloxone |
WO2003090717A1 (en) * | 2002-04-23 | 2003-11-06 | Nanotherapeutics, Inc | Process of forming and modifying particles and compositions produced thereby |
MXPA04012021A (en) * | 2002-05-31 | 2005-08-16 | Johnson & Johnson | Dosage forms and compositions for osmotic delivery of variable dosages of oxycodone. |
US7776314B2 (en) | 2002-06-17 | 2010-08-17 | Grunenthal Gmbh | Abuse-proofed dosage system |
GB0214013D0 (en) * | 2002-06-18 | 2002-07-31 | Euro Celtique Sa | Pharmaceutical product |
CA2491572C (en) * | 2002-07-05 | 2010-03-23 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opiods and other drugs |
US10004729B2 (en) | 2002-07-05 | 2018-06-26 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US8840928B2 (en) * | 2002-07-05 | 2014-09-23 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US8557291B2 (en) * | 2002-07-05 | 2013-10-15 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
EP2422772A3 (en) | 2002-09-20 | 2012-04-18 | Alpharma, Inc. | Sequestering subunit and related compositions and methods |
AU2003272601B2 (en) * | 2002-09-20 | 2009-05-07 | Alpharma Pharmaceuticals, Llc | Sustained-release opioid formulations and methods of use |
US20090162431A1 (en) * | 2002-09-21 | 2009-06-25 | Shuyi Zhang | Sustained release formulations containing acetaminophen and tramadol |
EP1551402A4 (en) * | 2002-09-23 | 2009-05-27 | Verion Inc | Abuse-resistant pharmaceutical compositions |
US8487002B2 (en) * | 2002-10-25 | 2013-07-16 | Paladin Labs Inc. | Controlled-release compositions |
TWI319713B (en) * | 2002-10-25 | 2010-01-21 | Sustained-release tramadol formulations with 24-hour efficacy | |
JP4865330B2 (en) | 2002-12-13 | 2012-02-01 | デュレクト コーポレーション | Oral drug delivery system |
US20040115287A1 (en) * | 2002-12-17 | 2004-06-17 | Lipocine, Inc. | Hydrophobic active agent compositions and methods |
DE10300325A1 (en) | 2003-01-09 | 2004-07-22 | Hexal Ag | Granules with oily substance, manufacturing process and tablet |
WO2004064807A1 (en) * | 2003-01-23 | 2004-08-05 | Amorepacific Corporation | Sustained-release preparations and method for producing the same |
US7136656B2 (en) * | 2003-03-20 | 2006-11-14 | Interdigital Technology Corporation | Method of fast dynamic channel allocation call admission control for radio link addition in radio resource management |
EP1610767B1 (en) | 2003-03-26 | 2011-01-19 | Egalet A/S | Morphine controlled release system |
BRPI0408999A (en) * | 2003-04-04 | 2006-03-28 | Pharmacia Corp | compressed prolonged oral release multiparticulate tablets |
CA2521420A1 (en) * | 2003-04-08 | 2004-10-28 | Progenics Pharmaceuticals, Inc. | Combination therapy for constipation comprising a laxative and a peripheral opioid antagonist |
US20040202717A1 (en) * | 2003-04-08 | 2004-10-14 | Mehta Atul M. | Abuse-resistant oral dosage forms and method of use thereof |
WO2004091622A1 (en) * | 2003-04-08 | 2004-10-28 | Progenics Pharmaceuticals, Inc. | The use of peripheral opiois antagonists, especially methylnaltrexone to treat irritable bowel syndrome |
DK2368553T3 (en) | 2003-04-08 | 2015-02-09 | Progenics Pharm Inc | Pharmaceutical preparation comprising methylnaltrexone |
WO2004093819A2 (en) | 2003-04-21 | 2004-11-04 | Euro-Celtique, S.A. | Tamper resistant dosage form comprising co-extruded, adverse agent particles and process of making same |
MY135852A (en) * | 2003-04-21 | 2008-07-31 | Euro Celtique Sa | Pharmaceutical products |
TWI357815B (en) | 2003-06-27 | 2012-02-11 | Euro Celtique Sa | Multiparticulates |
DE10361596A1 (en) * | 2003-12-24 | 2005-09-29 | Grünenthal GmbH | Process for producing an anti-abuse dosage form |
DE102004020220A1 (en) * | 2004-04-22 | 2005-11-10 | Grünenthal GmbH | Process for the preparation of a secured against misuse, solid dosage form |
US20070048228A1 (en) | 2003-08-06 | 2007-03-01 | Elisabeth Arkenau-Maric | Abuse-proofed dosage form |
DE102004032051A1 (en) | 2004-07-01 | 2006-01-19 | Grünenthal GmbH | Process for the preparation of a secured against misuse, solid dosage form |
US8075872B2 (en) | 2003-08-06 | 2011-12-13 | Gruenenthal Gmbh | Abuse-proofed dosage form |
DE102005005446A1 (en) * | 2005-02-04 | 2006-08-10 | Grünenthal GmbH | Break-resistant dosage forms with sustained release |
DE10336400A1 (en) | 2003-08-06 | 2005-03-24 | Grünenthal GmbH | Anti-abuse dosage form |
PL1842533T3 (en) | 2003-08-06 | 2013-08-30 | Gruenenthal Gmbh | Dosage form that is secured against misuse |
US20060172006A1 (en) * | 2003-10-10 | 2006-08-03 | Vincent Lenaerts | Sustained-release tramadol formulations with 24-hour clinical efficacy |
US20050089558A1 (en) * | 2003-10-28 | 2005-04-28 | Alamo Pharmaceuticals, Llc | Compositions and methods for the co-formulation and administration of tramadol and propoxyphene |
EP1691786A1 (en) * | 2003-12-04 | 2006-08-23 | Pfizer Products Inc. | Multiparticulate compositions with improved stability |
WO2005053639A2 (en) * | 2003-12-04 | 2005-06-16 | Pfizer Products Inc. | Controlled release multiparticulates formed with dissolution enhancers |
EP1694304A2 (en) * | 2003-12-04 | 2006-08-30 | Pfizer Products Inc. | Azithromycin multiparticulate dosage forms by liquid-based processes |
SI1691787T1 (en) | 2003-12-04 | 2008-10-31 | Pfizer Prod Inc | Method for making pharmaceutical multiparticulates |
WO2005053652A1 (en) | 2003-12-04 | 2005-06-16 | Pfizer Products Inc. | Multiparticulate crystalline drug compositions containing a poloxamer and a glyceride |
US6984403B2 (en) * | 2003-12-04 | 2006-01-10 | Pfizer Inc. | Azithromycin dosage forms with reduced side effects |
JP2007513143A (en) * | 2003-12-04 | 2007-05-24 | ファイザー・プロダクツ・インク | Spray coagulation process for producing multiparticulate azithromycin compositions preferably using poloxamer and glycerides using an extruder |
BRPI0417348A (en) | 2003-12-04 | 2007-03-13 | Pfizer Prod Inc | spray gelatinization process using an extruder for preparing multiparticulate crystalline drug compositions preferably containing a poloxamer and a glyceride |
US8883204B2 (en) | 2003-12-09 | 2014-11-11 | Purdue Pharma L.P. | Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same |
ES2281851T3 (en) * | 2003-12-09 | 2007-10-01 | Euro-Celtique S.A. | MANIPULATION RESISTANT CO-EXTRUDED DOSE FORM CONTAINING AN ACTIVE AGENT AND AN ADVERSE AGENT AND PROCESS TO PREPARE THE SAME. |
GB0403100D0 (en) * | 2004-02-12 | 2004-03-17 | Euro Celtique Sa | Particulates |
GB0501638D0 (en) * | 2005-01-28 | 2005-03-02 | Euro Celtique Sa | Particulates |
PT1729730E (en) | 2004-03-30 | 2009-04-06 | Euro Celtique Sa | Tamper resistant dosage form comprising an adsorbent and an adverse agent |
EP1604666A1 (en) | 2004-06-08 | 2005-12-14 | Euro-Celtique S.A. | Opioids for the treatment of the Chronic Obstructive Pulmonary Disease (COPD) |
EP1604667A1 (en) * | 2004-06-08 | 2005-12-14 | Euro-Celtique S.A. | Opioids for the treatment of the restless leg syndrome |
SI1765292T1 (en) * | 2004-06-12 | 2018-04-30 | Collegium Pharmaceutical, Inc. | Abuse-deterrent drug formulations |
DE102004032049A1 (en) | 2004-07-01 | 2006-01-19 | Grünenthal GmbH | Anti-abuse, oral dosage form |
PL1765303T5 (en) * | 2004-07-01 | 2023-05-22 | Grünenthal GmbH | Oral dosage form safeguarded against abuse |
WO2006009403A1 (en) * | 2004-07-22 | 2006-01-26 | Amorepacific Corporation | Sustained-release preparations containing topiramate and the producing method thereof |
JP4997109B2 (en) * | 2004-09-01 | 2012-08-08 | ユーロ−セルティーク エス.エイ. | Opioid dosage forms with dose proportional steady state CAVE and steady state AUC and single dose CMAX less than dose proportional |
TWI436991B (en) | 2004-11-22 | 2014-05-11 | Euro Celtique Sa | Methods for purifying trans-(-)-△9-tetrahydrocannabinol and trans-(+)-△9-tetrahydrocannabinol |
AU2005320547B2 (en) | 2004-12-27 | 2009-02-05 | Eisai R & D Management Co., Ltd. | Method for stabilizing anti-dementia drug |
US20070129402A1 (en) * | 2004-12-27 | 2007-06-07 | Eisai Research Institute | Sustained release formulations |
TWI432196B (en) * | 2005-01-18 | 2014-04-01 | Euro Celtique Sa | Method of treating visceral pain |
MX2007008756A (en) * | 2005-01-20 | 2007-09-27 | Progenics Pharm Inc | Use of methylnaltrexone and related compounds to treat post-operative gastrointestinal dysfunction. |
KR20090029856A (en) * | 2005-01-28 | 2009-03-23 | 유로-셀띠끄 소시에떼 아노님 | Alcohol resistant dosage forms |
DE102005005449A1 (en) | 2005-02-04 | 2006-08-10 | Grünenthal GmbH | Process for producing an anti-abuse dosage form |
EP1695700A1 (en) * | 2005-02-28 | 2006-08-30 | Euro-Celtique S.A. | Dosage form containing oxycodone and naloxone |
EP1702558A1 (en) | 2005-02-28 | 2006-09-20 | Euro-Celtique S.A. | Method and device for the assessment of bowel function |
US9662325B2 (en) | 2005-03-07 | 2017-05-30 | The University Of Chicago | Use of opioid antagonists to attenuate endothelial cell proliferation and migration |
US8518962B2 (en) | 2005-03-07 | 2013-08-27 | The University Of Chicago | Use of opioid antagonists |
US8524731B2 (en) | 2005-03-07 | 2013-09-03 | The University Of Chicago | Use of opioid antagonists to attenuate endothelial cell proliferation and migration |
CN101171010B (en) | 2005-03-07 | 2014-09-17 | 芝加哥大学 | Use of opioid antagonists to attenuate endothelial cell proliferation and migration |
AU2006241771B2 (en) * | 2005-04-28 | 2010-09-09 | Eisai R & D Management Co., Ltd. | Composition containing anti-dementia drug |
GB0509276D0 (en) * | 2005-05-06 | 2005-06-15 | Univ Cranfield | Synthetic receptor |
AU2011224098B2 (en) * | 2005-05-10 | 2013-10-31 | Novartis Ag | Extrusion process for making compositions with poorly compressible therapeutic compounds |
RU2405539C2 (en) * | 2005-05-10 | 2010-12-10 | Новартис Аг | Method of obtaining compositions by extrusion of resistant to pressing pharmaceutical substances |
CN101166517B (en) * | 2005-05-10 | 2012-01-04 | 诺瓦提斯公司 | Extrusion process for making compositions with poorly compressible therapeutic compounds |
US20060286148A1 (en) * | 2005-05-18 | 2006-12-21 | Ppd, Inc. | Method of forming implants |
AR057035A1 (en) | 2005-05-25 | 2007-11-14 | Progenics Pharm Inc | SYNTHESIS OF (R) -N-METHYLNTREXONE, PHARMACEUTICAL COMPOSITIONS AND USES |
AR057325A1 (en) | 2005-05-25 | 2007-11-28 | Progenics Pharm Inc | SYNTHESIS OF (S) -N-METHYLNTREXONE, PHARMACEUTICAL COMPOSITIONS AND USES |
US20080194611A1 (en) * | 2005-06-03 | 2008-08-14 | Alverdy John C | Modulation of Cell Barrier Dysfunction |
PT1888080E (en) * | 2005-06-09 | 2010-07-06 | Euro Celtique Sa | Pharmaceutical compositions of a neuroactive steroid and uses thereof |
TWI366460B (en) * | 2005-06-16 | 2012-06-21 | Euro Celtique Sa | Cannabinoid active pharmaceutical ingredient for improved dosage forms |
EP1896002A4 (en) | 2005-06-27 | 2009-11-25 | Biovail Lab Int Srl | Modified-release formulations of a bupropion salt |
US8394812B2 (en) | 2005-08-24 | 2013-03-12 | Penwest Pharmaceuticals Co. | Sustained release formulations of nalbuphine |
DK2402005T3 (en) | 2005-08-24 | 2021-03-15 | Endo Pharmaceuticals Inc | Sustained-release formulations of nalbuphine |
JP5269595B2 (en) | 2005-09-09 | 2013-08-21 | アンジェリーニ ラボファーム リミテッド ライアビリティ カンパニー | Trazodone composition for once daily administration |
DK1928427T3 (en) * | 2005-09-23 | 2010-03-08 | Hoffmann La Roche | Hitherto unknown dosage formulation |
KR100656019B1 (en) * | 2005-10-20 | 2006-12-08 | 현대자동차주식회사 | New polyimide-co-polybenzimidazole and polymer electrolytes membrane using them |
US20070160960A1 (en) * | 2005-10-21 | 2007-07-12 | Laser Shot, Inc. | System and method for calculating a projectile impact coordinates |
US7803413B2 (en) | 2005-10-31 | 2010-09-28 | General Mills Ip Holdings Ii, Llc. | Encapsulation of readily oxidizable components |
PL116330U1 (en) * | 2005-10-31 | 2007-04-02 | Alza Corp | Method for the reduction of alcohol provoked rapid increase in the released dose of the orally administered opioide with prolonged liberation |
CN1957909B (en) * | 2005-10-31 | 2013-09-11 | 阿尔扎公司 | Methods of reducing alcohol-induced dose dumping for opioid sustained release oral dosage forms |
EP1849460A3 (en) * | 2005-10-31 | 2007-11-14 | ALZA Corporation | Methods of reducing alcohol-induced dose dumping for opioid sustained release oral dosage forms |
WO2007056142A2 (en) * | 2005-11-02 | 2007-05-18 | Theraquest Biosciences, Llc | Methods of preventing the serotonin syndrome and compositions for use therefor |
US9125833B2 (en) | 2005-11-02 | 2015-09-08 | Relmada Therapeutics, Inc. | Multimodal abuse resistant and extended release opioid formulations |
WO2007087452A2 (en) * | 2006-01-27 | 2007-08-02 | Theraquest Biosciences, Llc | Abuse resistant and extended release formulations and method of use thereof |
US8329744B2 (en) | 2005-11-02 | 2012-12-11 | Relmada Therapeutics, Inc. | Methods of preventing the serotonin syndrome and compositions for use thereof |
US7811604B1 (en) | 2005-11-14 | 2010-10-12 | Barr Laboratories, Inc. | Non-effervescent, orally disintegrating solid pharmaceutical dosage forms comprising clozapine and methods of making and using the same |
EP1810678A1 (en) | 2006-01-19 | 2007-07-25 | Holger Lars Hermann | Use of morphine and naloxone for drug substitution |
US20090022798A1 (en) * | 2007-07-20 | 2009-01-22 | Abbott Gmbh & Co. Kg | Formulations of nonopioid and confined opioid analgesics |
US20090317355A1 (en) * | 2006-01-21 | 2009-12-24 | Abbott Gmbh & Co. Kg, | Abuse resistant melt extruded formulation having reduced alcohol interaction |
SG169334A1 (en) * | 2006-01-21 | 2011-03-30 | Abbott Gmbh & Co Kg | Dosage form and method for the delivery of drugs of abuse |
US20100172989A1 (en) * | 2006-01-21 | 2010-07-08 | Abbott Laboratories | Abuse resistant melt extruded formulation having reduced alcohol interaction |
US20070185145A1 (en) * | 2006-02-03 | 2007-08-09 | Royds Robert B | Pharmaceutical composition containing a central opioid agonist, a central opioid antagonist, and a peripheral opioid antagonist, and method for making the same |
US20070190141A1 (en) * | 2006-02-16 | 2007-08-16 | Aaron Dely | Extended release opiate composition |
US20070212414A1 (en) * | 2006-03-08 | 2007-09-13 | Penwest Pharmaceuticals Co. | Ethanol-resistant sustained release formulations |
FI20060501L (en) * | 2006-05-22 | 2007-11-23 | Biohit Oyj | Composition and method for binding acetaldehyde in the stomach |
EP1859788A1 (en) * | 2006-05-24 | 2007-11-28 | Abbott GmbH & Co. KG | Production of enveloped pharmaceutical dosage forms |
US20080069891A1 (en) * | 2006-09-15 | 2008-03-20 | Cima Labs, Inc. | Abuse resistant drug formulation |
KR101486228B1 (en) | 2006-06-19 | 2015-01-26 | 알파마 파머슈티컬스 엘엘씨 | Pharmaceutical compositions |
CA2671200A1 (en) * | 2006-07-21 | 2008-01-24 | Lab International Srl | Hydrophilic abuse deterrent delivery system |
SA07280459B1 (en) | 2006-08-25 | 2011-07-20 | بيورديو فارما إل. بي. | Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic |
US8128460B2 (en) * | 2006-09-14 | 2012-03-06 | The Material Works, Ltd. | Method of producing rust inhibitive sheet metal through scale removal with a slurry blasting descaling cell |
US8445018B2 (en) | 2006-09-15 | 2013-05-21 | Cima Labs Inc. | Abuse resistant drug formulation |
US20080081067A1 (en) * | 2006-10-03 | 2008-04-03 | Gupta Manishkumar | Sustained release pharmaceutical compositions of venlafaxine and process for preparation thereof |
SI2124556T1 (en) * | 2006-10-09 | 2015-01-30 | Charleston Laboratories, Inc. | Pharmaceutical compositions |
DE102007009242A1 (en) * | 2007-02-22 | 2008-09-18 | Evonik Röhm Gmbh | Pellets with enteric-coated matix |
DE102007009243A1 (en) * | 2007-02-22 | 2008-09-18 | Evonik Röhm Gmbh | Pellets with a drug matrix and a polymer coating, and a method for producing the pellets |
DE102007011485A1 (en) | 2007-03-07 | 2008-09-11 | Grünenthal GmbH | Dosage form with more difficult abuse |
GB2447898B (en) * | 2007-03-24 | 2011-08-17 | Reckitt Benckiser Healthcare | A tablet having improved stability with at least two actives |
PT2139890E (en) | 2007-03-29 | 2014-09-03 | Wyeth Llc | Peripheral opioid receptor antagonists and uses thereof |
EP2134718A2 (en) | 2007-03-29 | 2009-12-23 | Progenics Pharmaceuticals, Inc. | Crystal forms of (r)-n-methylnaltrexone bromide and uses thereof |
PL2137191T3 (en) | 2007-03-29 | 2016-12-30 | Peripheral opioid receptor antagonists and uses thereof | |
DE102007025858A1 (en) | 2007-06-01 | 2008-12-04 | Grünenthal GmbH | Process for the preparation of a medicament dosage form |
US8821928B2 (en) | 2007-06-04 | 2014-09-02 | Egalet Ltd. | Controlled release pharmaceutical compositions for prolonged effect |
DE102007026550A1 (en) * | 2007-06-08 | 2008-12-11 | Bayer Healthcare Ag | Extrudates with improved taste masking |
US20090124650A1 (en) * | 2007-06-21 | 2009-05-14 | Endo Pharmaceuticals, Inc. | Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol |
WO2009032246A2 (en) | 2007-09-03 | 2009-03-12 | Nanotherapeutics, Inc. | Particulate compositions for delivery of poorly soluble drugs |
JP4879351B2 (en) | 2007-10-19 | 2012-02-22 | 大塚製薬株式会社 | Pharmaceutical solid formulation |
AU2008347158B8 (en) | 2007-12-06 | 2013-08-22 | Durect Corporation | Oral pharmaceutical dosage forms |
US8623418B2 (en) | 2007-12-17 | 2014-01-07 | Alpharma Pharmaceuticals Llc | Pharmaceutical composition |
WO2009088673A2 (en) * | 2007-12-17 | 2009-07-16 | Alpharma Pharmaceuticals, Llc | Pharmaceutical composition |
US20100151014A1 (en) * | 2008-12-16 | 2010-06-17 | Alpharma Pharmaceuticals, Llc | Pharmaceutical composition |
EP3090743A1 (en) | 2008-01-09 | 2016-11-09 | Charleston Laboratories, Inc. | Pharmaceutical compositions for treating headache and eliminating nausea |
TW200950776A (en) * | 2008-01-24 | 2009-12-16 | Abbott Gmbh & Co Kg | Abuse resistant melt extruded formulation having reduced alcohol interaction |
BRPI0906467C1 (en) | 2008-01-25 | 2021-05-25 | Gruenenthal Gmbh | pharmaceutical dosage form with modified tear-resistant outer shape and controlled release |
US20090246276A1 (en) * | 2008-01-28 | 2009-10-01 | Graham Jackson | Pharmaceutical Compositions |
US9226907B2 (en) | 2008-02-01 | 2016-01-05 | Abbvie Inc. | Extended release hydrocodone acetaminophen and related methods and uses thereof |
AU2008349873B2 (en) | 2008-02-06 | 2014-02-13 | Progenics Pharmaceuticals, Inc. | Preparation and use of (R),(R)-2,2'-bis-methylnaltrexone |
EP2262484B1 (en) | 2008-03-11 | 2013-01-23 | Depomed, Inc. | Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic |
US8372432B2 (en) | 2008-03-11 | 2013-02-12 | Depomed, Inc. | Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic |
AU2009225434B2 (en) | 2008-03-21 | 2014-05-22 | The University Of Chicago | Treatment with opioid antagonists and mTOR inhibitors |
WO2009134848A1 (en) * | 2008-04-30 | 2009-11-05 | Novartis Ag | Continuous process for making pharmaceutical compositions |
KR101690094B1 (en) | 2008-05-09 | 2016-12-27 | 그뤼넨탈 게엠베하 | Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step |
AU2009266833B2 (en) * | 2008-07-03 | 2013-01-31 | Novartis Ag | Melt granulation process |
CN105456267A (en) * | 2008-07-07 | 2016-04-06 | 欧洲凯尔特公司 | Use of opioid antagonists for treating urinary retention |
MX2011001864A (en) | 2008-08-20 | 2011-06-20 | Univ Texas | Hot-melt extrusion of modified release multi-particulates. |
US10668012B2 (en) | 2008-09-04 | 2020-06-02 | Farnam Companies, Inc. | Chewable sustained release formulations |
EP2344136B1 (en) * | 2008-09-18 | 2016-06-15 | Purdue Pharma LP | Pharmaceutical dosage forms comprising poly(e-caprolactone) |
CA2676881C (en) | 2008-09-30 | 2017-04-25 | Wyeth | Peripheral opioid receptor antagonists and uses thereof |
US20100260844A1 (en) | 2008-11-03 | 2010-10-14 | Scicinski Jan J | Oral pharmaceutical dosage forms |
WO2010078486A2 (en) | 2008-12-31 | 2010-07-08 | Upsher-Smith Laboratories, Inc. | Opioid-containing oral pharmaceutical compositions and methods |
US11304960B2 (en) | 2009-01-08 | 2022-04-19 | Chandrashekar Giliyar | Steroidal compositions |
WO2010089132A1 (en) | 2009-02-06 | 2010-08-12 | Egalet A/S | Immediate release composition resistant to abuse by intake of alcohol |
WO2010103039A1 (en) | 2009-03-10 | 2010-09-16 | Euro-Celtique S.A. | Immediate release pharmaceutical compositions comprising oxycodone and naloxone |
GB0909680D0 (en) | 2009-06-05 | 2009-07-22 | Euro Celtique Sa | Dosage form |
US9743228B2 (en) | 2009-06-22 | 2017-08-22 | Qualcomm Incorporated | Transport of LCS-related messages for LTE access |
EP2445487A2 (en) | 2009-06-24 | 2012-05-02 | Egalet Ltd. | Controlled release formulations |
CA2767576C (en) | 2009-07-08 | 2020-03-10 | Charleston Laboratories Inc. | Pharmaceutical compositions comprising an antiemetic and an opioid analgesic |
WO2011009604A1 (en) * | 2009-07-22 | 2011-01-27 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
PE20121067A1 (en) | 2009-07-22 | 2012-09-05 | Gruenenthal Chemie | CONTROLLED RELEASE DOSAGE FORM EXTRUDED BY HOT MELTING |
US20110052685A1 (en) * | 2009-08-31 | 2011-03-03 | Depomed, Inc. | Gastric retentive pharmaceutical compositions for immediate and extended release of acetaminophen |
CA2773521C (en) | 2009-09-17 | 2017-01-24 | Upsher-Smith Laboratories, Inc. | A sustained-release product comprising a combination of a non-opioid amine and a non-steroidal anti-inflammatory drug |
US10668060B2 (en) | 2009-12-10 | 2020-06-02 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US8597681B2 (en) | 2009-12-22 | 2013-12-03 | Mallinckrodt Llc | Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans |
US9198861B2 (en) | 2009-12-22 | 2015-12-01 | Mallinckrodt Llc | Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans |
ES2606227T3 (en) * | 2010-02-03 | 2017-03-23 | Grünenthal GmbH | Preparation of a pharmaceutical powder composition by an extruder |
KR20130030261A (en) | 2010-05-10 | 2013-03-26 | 유로-셀티큐 에스.에이. | Manufacturing of active-free granules and tablets comprising the same |
KR101858797B1 (en) | 2010-05-10 | 2018-05-16 | 유로-셀티큐 에스.에이. | Pharmaceutical compositions comprising hydromorphone and naloxone |
MX344846B (en) | 2010-05-10 | 2017-01-10 | Euro-Celtique S A * | Combination of active loaded granules with additional actives. |
JP2013526523A (en) | 2010-05-11 | 2013-06-24 | シマ ラブス インク. | Alcohol-resistant sustained release oral dosage form containing metoprolol |
WO2012028319A1 (en) | 2010-09-02 | 2012-03-08 | Grünenthal GmbH | Tamper resistant dosage form comprising inorganic salt |
CA2808541C (en) | 2010-09-02 | 2019-01-08 | Gruenenthal Gmbh | Tamper resistant dosage form comprising an anionic polymer |
AU2011305161A1 (en) * | 2010-09-24 | 2013-05-09 | QRxPharma Ltd. | Controlled release formulations of opioids |
US9034858B2 (en) | 2010-11-30 | 2015-05-19 | Lipocine Inc. | High-strength testosterone undecanoate compositions |
US9358241B2 (en) | 2010-11-30 | 2016-06-07 | Lipocine Inc. | High-strength testosterone undecanoate compositions |
US20180153904A1 (en) | 2010-11-30 | 2018-06-07 | Lipocine Inc. | High-strength testosterone undecanoate compositions |
GB201020895D0 (en) * | 2010-12-09 | 2011-01-26 | Euro Celtique Sa | Dosage form |
US20120148675A1 (en) | 2010-12-10 | 2012-06-14 | Basawaraj Chickmath | Testosterone undecanoate compositions |
SG191288A1 (en) | 2010-12-22 | 2013-07-31 | Purdue Pharma Lp | Encased tamper resistant controlled release dosage forms |
JP5638151B2 (en) | 2010-12-23 | 2014-12-10 | パーデュー、ファーマ、リミテッド、パートナーシップ | Tamper resistant solid oral dosage form |
US8741885B1 (en) | 2011-05-17 | 2014-06-03 | Mallinckrodt Llc | Gastric retentive extended release pharmaceutical compositions |
US8658631B1 (en) | 2011-05-17 | 2014-02-25 | Mallinckrodt Llc | Combination composition comprising oxycodone and acetaminophen for rapid onset and extended duration of analgesia |
US8858963B1 (en) | 2011-05-17 | 2014-10-14 | Mallinckrodt Llc | Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia |
AT511581A1 (en) | 2011-05-26 | 2012-12-15 | G L Pharma Gmbh | ORAL RETARDANT FORMULATION |
US8758826B2 (en) * | 2011-07-05 | 2014-06-24 | Wet Inc. | Cannabinoid receptor binding agents, compositions, and methods |
KR20140053158A (en) | 2011-07-29 | 2014-05-07 | 그뤼넨탈 게엠베하 | Tamper-resistant tablet providing immediate drug release |
AR087360A1 (en) | 2011-07-29 | 2014-03-19 | Gruenenthal Gmbh | PROOF OF HANDLING TABLET PROVIDING IMMEDIATE RELEASE OF PHARMACY |
MX355478B (en) * | 2011-09-16 | 2018-04-19 | Purdue Pharma Lp | Tamper resistant pharmaceutical formulations. |
RU2573388C2 (en) | 2011-10-26 | 2016-01-20 | Кемфарм Инк. | Benzoic acid, benzoic acid derivatives and heteroaryl carboxylic acid conjugates of hydromorphone, prodrugs, methods for producing and using them |
CA2864949A1 (en) | 2012-02-28 | 2013-09-06 | Grunenthal Gmbh | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
JP6199321B2 (en) * | 2012-03-02 | 2017-09-20 | ローズ ファーマシューティカルズ エル.ピー. | Improper use resistant immediate release formulation |
EA201491875A1 (en) | 2012-04-17 | 2015-04-30 | Пурдью Фарма Л.П. | SYSTEMS AND METHODS OF TREATMENT OF OPIOID-INDUCED PHARMACEUTICAL PHARMACODYNAMIC RESPONSE |
JP6282261B2 (en) | 2012-04-18 | 2018-02-21 | グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Unauthorized use and overdose prevention pharmaceutical dosage forms |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
JP2015521988A (en) | 2012-07-06 | 2015-08-03 | イガレット・リミテッド | Abuse-preventing pharmaceutical composition for controlled release |
MX362838B (en) | 2012-07-12 | 2019-02-19 | SpecGx LLC | Extended release, abuse deterrent pharmaceutical compositions. |
US10702453B2 (en) | 2012-11-14 | 2020-07-07 | Xerox Corporation | Method and system for printing personalized medication |
WO2014102745A1 (en) * | 2012-12-31 | 2014-07-03 | Aizant Drug Research Solutions Private Limited | High drug load ibuprofen sustained release composition |
US9149533B2 (en) | 2013-02-05 | 2015-10-06 | Purdue Pharma L.P. | Tamper resistant pharmaceutical formulations |
US10751287B2 (en) | 2013-03-15 | 2020-08-25 | Purdue Pharma L.P. | Tamper resistant pharmaceutical formulations |
TW201521769A (en) | 2013-03-15 | 2015-06-16 | Durect Corp | Compositions with a rheological modifier to reduce dissolution variability |
CA2913209A1 (en) | 2013-05-29 | 2014-12-04 | Grunenthal Gmbh | Tamper resistant dosage form with bimodal release profile |
EP3003279A1 (en) | 2013-05-29 | 2016-04-13 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
AU2014289187B2 (en) | 2013-07-12 | 2019-07-11 | Grunenthal Gmbh | Tamper-resistant dosage form containing ethylene-vinyl acetate polymer |
AU2014295042B2 (en) | 2013-07-23 | 2017-03-30 | Mundipharma Pty Limited | A combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation |
US10195153B2 (en) | 2013-08-12 | 2019-02-05 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded immediate release abuse deterrent pill |
US20150118300A1 (en) | 2013-10-31 | 2015-04-30 | Cima Labs Inc. | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
EA030310B1 (en) | 2013-11-13 | 2018-07-31 | Эро-Селтик С.А. | Hydromorphone and naloxone for treatment of pain and opioid bowel dysfunction syndrome |
MX371372B (en) | 2013-11-26 | 2020-01-28 | Gruenenthal Gmbh | Preparation of a powdery pharmaceutical composition by means of cryo-milling. |
US10172797B2 (en) | 2013-12-17 | 2019-01-08 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
US9492444B2 (en) | 2013-12-17 | 2016-11-15 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
CA2947786A1 (en) | 2014-05-12 | 2015-11-19 | Grunenthal Gmbh | Tamper resistant immediate release capsule formulation comprising tapentadol |
WO2015181059A1 (en) | 2014-05-26 | 2015-12-03 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
JP6371463B2 (en) | 2014-07-17 | 2018-08-08 | ファーマシューティカル マニュファクチュアリング リサーチ サービシズ,インコーポレーテッド | Immediate release abuse deterrent liquid filler form |
WO2016033549A2 (en) | 2014-08-28 | 2016-03-03 | Lipocine Inc. | (17-ß)-3-OXOANDROST-4-EN-17-YL TRIDECANOATE COMPOSITIONS AND METHODS OF THEIR PREPARATION AND USE |
WO2016033556A1 (en) | 2014-08-28 | 2016-03-03 | Lipocine Inc. | BIOAVAILABLE SOLID STATE (17-β)-HYDROXY-4-ANDROSTEN-3-ONE ESTERS |
CH710097A2 (en) | 2014-09-12 | 2016-03-15 | Chemspeed Technologies Ag | Method and apparatus for the production of an extrudate. |
US9849124B2 (en) | 2014-10-17 | 2017-12-26 | Purdue Pharma L.P. | Systems and methods for treating an opioid-induced adverse pharmacodynamic response |
EP3718404A1 (en) | 2014-10-17 | 2020-10-07 | Salix Pharmaceuticals, Inc. | Use of methylnaltrexone to attenuate tumor progession |
EP3209282A4 (en) | 2014-10-20 | 2018-05-23 | Pharmaceutical Manufacturing Research Services, Inc. | Extended release abuse deterrent liquid fill dosage form |
RU2683274C2 (en) | 2014-12-02 | 2019-03-27 | Кемфарм, Инк. | Benzoic acid, benzoic acid derivatives and conjugates of heteroaryl carboxylic acid and oxymorphone, prodrugs, methods for obtaining and use thereof |
JP2018517676A (en) | 2015-04-24 | 2018-07-05 | グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Anti-modification formulation with immediate release and resistance to solvent extraction |
WO2017042325A1 (en) | 2015-09-10 | 2017-03-16 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
WO2017152130A1 (en) | 2016-03-04 | 2017-09-08 | Charleston Laboratories, Inc. | Pharmaceutical compositions |
US9737530B1 (en) | 2016-06-23 | 2017-08-22 | Collegium Pharmaceutical, Inc. | Process of making stable abuse-deterrent oral formulations |
JP2020503269A (en) | 2016-11-28 | 2020-01-30 | リポカイン インコーポレーテッド | Oral testosterone undecanoate therapy |
EP3703724A1 (en) | 2017-11-02 | 2020-09-09 | NatureCeuticals Sdn. Bhd. | Extract of orthosiphon stamineus, formulations, and uses thereof |
US20220062200A1 (en) | 2019-05-07 | 2022-03-03 | Clexio Biosciences Ltd. | Abuse-deterrent dosage forms containing esketamine |
EP3965733A4 (en) | 2019-05-07 | 2023-01-11 | Clexio Biosciences Ltd. | Abuse-deterrent dosage forms containing esketamine |
CN110755396B (en) * | 2019-12-06 | 2022-04-08 | 北京悦康科创医药科技股份有限公司 | Ibuprofen sustained-release pellet and preparation method thereof |
KR20220123689A (en) * | 2020-03-11 | 2022-09-08 | 사와이세이야쿠 가부시키가이샤 | Granules and formulations using the same |
CN113080436B (en) * | 2021-04-08 | 2024-03-01 | 南京纽邦生物科技有限公司 | Gamma-aminobutyric acid dry suspension and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4309405A (en) * | 1979-08-09 | 1982-01-05 | American Home Products Corporation | Sustained release pharmaceutical compositions |
US5266331A (en) * | 1991-11-27 | 1993-11-30 | Euroceltique, S.A. | Controlled release oxycodone compositions |
US5478577A (en) * | 1993-11-23 | 1995-12-26 | Euroceltique, S.A. | Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level |
US5540912A (en) * | 1992-03-30 | 1996-07-30 | Alza Corporation | Viscous suspensions of controlled-release drug particles |
Family Cites Families (218)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US33093A (en) * | 1861-08-20 | Improvement in potato-diggers | ||
US2738303A (en) * | 1952-07-18 | 1956-03-13 | Smith Kline French Lab | Sympathomimetic preparation |
US2743303A (en) * | 1955-04-01 | 1956-04-24 | Du Pont | Process for the preparation of 1, 1, 4, 4-tetrafluorobutadiene 1, 3 from acetylene and tetrafluoroethylene |
US3065143A (en) * | 1960-04-19 | 1962-11-20 | Richardson Merrell Inc | Sustained release tablet |
US4132753A (en) * | 1965-02-12 | 1979-01-02 | American Cyanamid Company | Process for preparing oral sustained release granules |
US3652589A (en) * | 1967-07-27 | 1972-03-28 | Gruenenthal Chemie | 1-(m-substituted phenyl)-2-aminomethyl cyclohexanols |
US3830934A (en) * | 1967-07-27 | 1974-08-20 | Gruenenthal Chemie | Analgesic and antitussive compositions and methods |
US3714350A (en) * | 1969-03-10 | 1973-01-30 | Mobil Oil Corp | Phosphoryl and thiophosphoryl pyrones as insecticides |
US3880991A (en) * | 1969-03-24 | 1975-04-29 | Brook David E | Polymeric article for dispensing drugs |
US4344431A (en) * | 1969-03-24 | 1982-08-17 | University Of Delaware | Polymeric article for dispensing drugs |
GB1357737A (en) * | 1970-10-09 | 1974-06-26 | Arpic Sa | Sustained release pharmaceutical compositions |
GB1405088A (en) | 1971-06-03 | 1975-09-03 | Mundipharma Ag | Slow release formulation |
FR2183546B1 (en) * | 1972-05-10 | 1975-06-20 | Servier Lab | |
US3965256A (en) * | 1972-05-16 | 1976-06-22 | Synergistics | Slow release pharmaceutical compositions |
US3845770A (en) * | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US4450150A (en) * | 1973-05-17 | 1984-05-22 | Arthur D. Little, Inc. | Biodegradable, implantable drug delivery depots, and method for preparing and using the same |
DE2360796B2 (en) * | 1973-12-06 | 1977-06-02 | Edelfettwerke Werner Schlüter, 2000 Hamburg; Glyco Iberica S.A., Gava, Barcelona (Spanien) Vti: Hegel, K.Th., Dr.; Dickel, K., Dipl.-Ing.; Pat.-Anwälte, 2000 Hamburg und 8000 München | MEDICINAL PRODUCTS WITH DELAYED RELEASE OF THE ACTIVE SUBSTANCE IN THE INTESTINE |
US3974157A (en) * | 1974-03-04 | 1976-08-10 | Pennwalt Corporation | 1-(Amino-alkyl)-2-aryl-cyclohexane alcohols and esters |
DE2426812A1 (en) | 1974-06-04 | 1976-01-02 | Klinge Co Chem Pharm Fab | PROCESS FOR THE MANUFACTURING OF GRANULES |
DE2426811A1 (en) | 1974-06-04 | 1976-01-08 | Klinge Co Chem Pharm Fab | PROCESS FOR THE MANUFACTURING OF RETARD TABLETS |
DE2439538C3 (en) | 1974-08-17 | 1980-07-17 | Ludwig Heumann & Co Gmbh, 8500 Nuernberg | Process for the manufacture of orally administered drugs with delayed release of action |
US4076798A (en) * | 1975-05-29 | 1978-02-28 | American Cyanamid Company | High molecular weight polyester resin, the method of making the same and the use thereof as a pharmaceutical composition |
DE2549740A1 (en) | 1975-11-17 | 1977-05-18 | Sandoz Ag | NEW GALENIC FORMS AND METHODS FOR THEIR PRODUCTION |
GB1593261A (en) * | 1976-07-23 | 1981-07-15 | Inveresk Res Int | Controlled release suppository |
US4406883A (en) * | 1976-07-23 | 1983-09-27 | Merrell Dow Pharmaceuticals Inc. | Controlled release suppositories consisting essentially of a linear polymer particularly, polyvinyl pyrrolidones |
US4173417A (en) * | 1977-04-15 | 1979-11-06 | Hpm Corporation | Extrusion apparatus and method |
US4366172A (en) * | 1977-09-29 | 1982-12-28 | The Upjohn Company | 4-Amino-cyclohexanols, their pharmaceutical compositions and methods of use |
US4230687A (en) * | 1978-05-30 | 1980-10-28 | Griffith Laboratories U.S.A., Inc. | Encapsulation of active agents as microdispersions in homogeneous natural polymeric matrices |
EP0008083A1 (en) * | 1978-08-15 | 1980-02-20 | Ciba-Geigy Ag | Process for preparing granulates of plastics additives with a high melting point, especially of pigments, by thermic rotation granulation, and the granulates so obtained |
CH637014A5 (en) | 1978-09-29 | 1983-07-15 | Sandoz Ag | METHOD FOR PRODUCING SUPPOSITORIES. |
DE2923279C2 (en) | 1979-06-08 | 1987-07-09 | Kali-Chemie Pharma Gmbh, 3000 Hannover | Process for the preparation of pancreatin pellets and pharmaceutical compositions containing them |
CA1146866A (en) | 1979-07-05 | 1983-05-24 | Yamanouchi Pharmaceutical Co. Ltd. | Process for the production of sustained release pharmaceutical composition of solid medical material |
US4259314A (en) * | 1979-12-10 | 1981-03-31 | Hans Lowey | Method and composition for the preparation of controlled long-acting pharmaceuticals |
IE49324B1 (en) | 1979-12-19 | 1985-09-18 | Euro Celtique Sa | Controlled release compositions |
US4457933A (en) * | 1980-01-24 | 1984-07-03 | Bristol-Myers Company | Prevention of analgesic abuse |
JPS56140915A (en) * | 1980-04-07 | 1981-11-04 | Yamanouchi Pharmaceut Co Ltd | Pharmaceutical preparation for solid drug |
DE3024416C2 (en) | 1980-06-28 | 1982-04-15 | Gödecke AG, 1000 Berlin | Process for the production of medicaments with sustained release of active substances |
US4346709A (en) * | 1980-11-10 | 1982-08-31 | Alza Corporation | Drug delivery devices comprising erodible polymer and erosion rate modifier |
JPS57171428A (en) * | 1981-04-13 | 1982-10-22 | Sankyo Co Ltd | Preparation of coated solid preparation |
DE3124983A1 (en) | 1981-06-25 | 1983-01-20 | Meditest Inst Fuer Medizinisch | ORAL ADMINISTRATIVE FORMS |
US4374082A (en) * | 1981-08-18 | 1983-02-15 | Richard Hochschild | Method for making a pharmaceutical and/or nutritional dosage form |
US4366159A (en) * | 1981-09-08 | 1982-12-28 | Michael Richard Magruder | Nalbuphine-narcotic analgesic composition and method of producing analgesia |
US4369172A (en) | 1981-12-18 | 1983-01-18 | Forest Laboratories Inc. | Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose |
US4987136A (en) * | 1982-03-16 | 1991-01-22 | The Rockefeller University | Method for controlling gastrointestinal dysmotility |
US4389393A (en) * | 1982-03-26 | 1983-06-21 | Forest Laboratories, Inc. | Sustained release therapeutic compositions based on high molecular weight hydroxypropylmethylcellulose |
US4421736A (en) * | 1982-05-20 | 1983-12-20 | Merrel Dow Pharmaceuticals Inc. | Sustained release diethylpropion compositions |
US4443428A (en) | 1982-06-21 | 1984-04-17 | Euroceltique, S.A. | Extended action controlled release compositions |
AU1873783A (en) | 1982-10-08 | 1984-04-12 | Verex Laboratories Inc. | Constant release formulation |
US4469613A (en) * | 1983-02-23 | 1984-09-04 | International Flavors & Fragrances Inc. | Detergent bar containing poly(epsilon caprolactone) and aromatizing agent |
US4882167A (en) * | 1983-05-31 | 1989-11-21 | Jang Choong Gook | Dry direct compression compositions for controlled release dosage forms |
JPS6013838A (en) * | 1983-07-04 | 1985-01-24 | Mitsui Petrochem Ind Ltd | Polypropylene composition |
US4917899A (en) * | 1983-12-22 | 1990-04-17 | Elan Corporation Plc | Controlled absorption diltiazem formulation |
EP0147780A3 (en) | 1984-01-03 | 1987-03-11 | Merck & Co. Inc. | Drug delivery device |
EP0152379A3 (en) | 1984-02-15 | 1986-10-29 | Ciba-Geigy Ag | Process for preparing pharmaceutical compositions containing unilamellar liposomes |
GB8405112D0 (en) * | 1984-02-28 | 1984-04-04 | Akzo Nv | Anti-arrhythmic amino-alcohols |
US4649042A (en) * | 1984-05-31 | 1987-03-10 | Eli Lilly And Company | Rumen delivery device |
US4629621A (en) * | 1984-07-23 | 1986-12-16 | Zetachron, Inc. | Erodible matrix for sustained release bioactive composition |
US4894234A (en) * | 1984-10-05 | 1990-01-16 | Sharma Shri C | Novel drug delivery system for antiarrhythmics |
EP0189861A3 (en) | 1985-01-26 | 1988-02-17 | Showa Denko Kabushiki Kaisha | Percutaneous absorption accelerator for ionic water-soluble medicine |
US4772475A (en) | 1985-03-08 | 1988-09-20 | Yamanouchi Pharmaceutical Co., Ltd. | Controlled-release multiple units pharmaceutical formulation |
US4720384A (en) * | 1985-05-03 | 1988-01-19 | E. I. Du Pont De Nemours And Company | Manufacture of hollow fine tubular drug delivery systems |
FR2581541B1 (en) * | 1985-05-09 | 1988-05-20 | Rhone Poulenc Sante | NOVEL PHARMACEUTICAL COMPOSITIONS FOR THE EXTENDED RELEASE OF AN ACTIVE INGREDIENT AND THEIR PREPARATION METHOD |
GB8514665D0 (en) * | 1985-06-11 | 1985-07-10 | Eroceltique Sa | Oral pharmaceutical composition |
JPS61293911A (en) * | 1985-06-24 | 1986-12-24 | Teisan Seiyaku Kk | Sustained release preparation |
DE3524003A1 (en) * | 1985-07-04 | 1987-01-08 | Heumann Ludwig & Co Gmbh | MEDICINE GRANULES WITH DELAYED ACTIVE SUBSTANCE RELEASE AND METHOD FOR THE PRODUCTION THEREOF |
FR2585246A1 (en) | 1985-07-26 | 1987-01-30 | Cortial | PROCESS FOR OBTAINING SOLID PHARMACEUTICAL FORMS WITH PROLONGED RELEASE |
GB8521350D0 (en) * | 1985-08-28 | 1985-10-02 | Euro Celtique Sa | Analgesic composition |
EP0223431B1 (en) * | 1985-11-08 | 1992-04-29 | Imperial Chemical Industries Plc | Apparatus and method for forming pellets |
US4882155A (en) * | 1985-12-20 | 1989-11-21 | Warner Lambert Co. | Confectionery delivery system for antiarrhythmics |
US4882151A (en) * | 1985-12-20 | 1989-11-21 | Warner Lambert Co. | Confectionery delivery system for antihistimines |
US4778676A (en) * | 1985-12-20 | 1988-10-18 | Warner-Lambert Company | Confectionery delivery system for actives |
US4882152A (en) * | 1985-12-20 | 1989-11-21 | Yang Robert K | Confectionery delivery system for laxatives, vitamins and antacids |
US4882157A (en) * | 1985-12-20 | 1989-11-21 | Yang Robert K | Confectionery delivery system for anti-cholesterolemics |
US4879108A (en) * | 1985-12-20 | 1989-11-07 | Warner-Lambert Company | Confectionery delivery system for antipyretics |
US4882156A (en) * | 1985-12-20 | 1989-11-21 | Warner Lambert Co. | Confectionery delivery system for expectorants |
US4882159A (en) * | 1985-12-20 | 1989-11-21 | Warner Lambert Co. | Confectionery delivery system for appetite suppressants |
US4882153A (en) * | 1985-12-20 | 1989-11-21 | Warner Lambert Co. | Confectionery delivery system for antitussives |
JP2521504B2 (en) | 1985-12-27 | 1996-08-07 | 昭和電工株式会社 | Enzyme granulation method |
DE3602360A1 (en) | 1986-01-27 | 1987-07-30 | Krupp Polysius Ag | SIDE SCRATCHER FOR SCHUETTGUTHALDE |
DE3602370A1 (en) | 1986-01-27 | 1987-08-06 | Chrubasik Sigrun | Use of analgesics by inhalation |
US4764378A (en) * | 1986-02-10 | 1988-08-16 | Zetachron, Inc. | Buccal drug dosage form |
GB2186485B (en) * | 1986-02-13 | 1988-09-07 | Ethical Pharma Ltd | Slow release formulation |
US4994227A (en) * | 1986-03-10 | 1991-02-19 | American Cyanamid Company | Method for the preparation of sustained released bolus formulation |
DE3610878A1 (en) | 1986-04-01 | 1987-10-08 | Boehringer Ingelheim Kg | PELLET SHAPES |
DE3612211A1 (en) * | 1986-04-11 | 1987-10-15 | Basf Ag | CONTINUOUS TABLET METHOD |
DE3612212A1 (en) | 1986-04-11 | 1987-10-15 | Basf Ag | METHOD FOR PRODUCING SOLID PHARMACEUTICAL FORMS |
US4820523A (en) | 1986-04-15 | 1989-04-11 | Warner-Lambert Company | Pharmaceutical composition |
GB8613688D0 (en) | 1986-06-05 | 1986-07-09 | Euro Celtique Sa | Pharmaceutical composition |
GB8613689D0 (en) * | 1986-06-05 | 1986-07-09 | Euro Celtique Sa | Pharmaceutical composition |
ATE107857T1 (en) | 1986-06-10 | 1994-07-15 | Euro Celtique Sa | COMPOSITION WITH CONTROLLED RELEASE OF DIHYDROCODEINE. |
USRE33093E (en) | 1986-06-16 | 1989-10-17 | Johnson & Johnson Consumer Products, Inc. | Bioadhesive extruded film for intra-oral drug delivery and process |
DE3623193A1 (en) | 1986-07-10 | 1988-01-14 | Gruenenthal Gmbh | NEW COMPOUNDS, THIS MEDICINAL PRODUCT AND METHOD FOR THE PRODUCTION THEREOF |
US4861598A (en) | 1986-07-18 | 1989-08-29 | Euroceltique, S.A. | Controlled release bases for pharmaceuticals |
JPH0816066B2 (en) | 1986-07-18 | 1996-02-21 | エーザイ株式会社 | Long-acting drug |
US4970075A (en) * | 1986-07-18 | 1990-11-13 | Euroceltique, S.A. | Controlled release bases for pharmaceuticals |
US4760094A (en) | 1986-10-21 | 1988-07-26 | American Home Products Corporation (Del.) | Spray dried acetaminophen |
GB8626098D0 (en) * | 1986-10-31 | 1986-12-03 | Euro Celtique Sa | Controlled release hydromorphone composition |
IE873172L (en) | 1986-12-29 | 1988-06-29 | Harvard College | Continuous process for producing a comestible tablet |
US5026560A (en) * | 1987-01-29 | 1991-06-25 | Takeda Chemical Industries, Ltd. | Spherical granules having core and their production |
ZA882783B (en) | 1987-06-10 | 1988-10-20 | Warner-Lambert Company | Process for preparing a pharmaceutical composition |
DE3721721C1 (en) * | 1987-07-01 | 1988-06-09 | Hoechst Ag | Process for coating granules |
GB8717168D0 (en) | 1987-07-21 | 1987-08-26 | Roussel Lab Ltd | Controlled-release device |
FR2618329B1 (en) | 1987-07-22 | 1997-03-28 | Dow Corning Sa | METHOD OF MANUFACTURING A RING CAPABLE OF ENSURING THE RELEASE OF A THERAPEUTIC AGENT, AND RING MANUFACTURED BY THIS METHOD |
US5049394A (en) * | 1987-09-11 | 1991-09-17 | E. R. Squibb & Sons, Inc. | Pharmaceutical composition containing high drug load and method for preparing same |
US4959208A (en) * | 1987-10-19 | 1990-09-25 | Ppg Industries, Inc. | Active agent delivery device |
US5418154A (en) * | 1987-11-17 | 1995-05-23 | Brown University Research Foundation | Method of preparing elongated seamless capsules containing biological material |
SE463450B (en) | 1987-12-11 | 1990-11-26 | Nemo Ivarson | DEVICE FOR MIXING, KNOWLEDGE AND EXTRUSION OF PRODUCTS MADE OF SCIENCE AND POWDER |
EP0327295A3 (en) | 1988-02-01 | 1989-09-06 | F.H. FAULDING & CO. LTD. | Tetracycline dosage form |
US4842761A (en) * | 1988-03-23 | 1989-06-27 | International Flavors & Fragrances, Inc. | Compositions and methods for controlled release of fragrance-bearing substances |
DE3812567A1 (en) | 1988-04-15 | 1989-10-26 | Basf Ag | METHOD FOR PRODUCING PHARMACEUTICAL MIXTURES |
US5472710A (en) | 1988-04-16 | 1995-12-05 | Schwarz Pharma Ag | Pharmaceutical preparation to be administered orally with controlled release of active substance and method for its manufacture |
DE3812799A1 (en) | 1988-04-16 | 1989-10-26 | Sanol Arznei Schwarz Gmbh | ORGANIC PREPARATION FOR THE PURPOSES OF AN ACTUATED ACTIVE INGREDIENTS AND METHOD OF PREPARING THEM |
JP2681373B2 (en) | 1988-07-18 | 1997-11-26 | 塩野義製薬株式会社 | Method for manufacturing sustained-release preparation |
DE3827061C1 (en) * | 1988-08-10 | 1990-02-15 | Deutsche Gelatine-Fabriken Stoess & Co Gmbh, 6930 Eberbach, De | |
US4925675A (en) * | 1988-08-19 | 1990-05-15 | Himedics, Inc. | Erythromycin microencapsulated granules |
GB8820327D0 (en) | 1988-08-26 | 1988-09-28 | May & Baker Ltd | New compositions of matter |
DE3830355A1 (en) | 1988-09-07 | 1990-03-15 | Basf Ag | METHOD FOR PRODUCING PHARMACEUTICAL TABLETS |
DE3830353A1 (en) | 1988-09-07 | 1990-03-15 | Basf Ag | METHOD FOR THE CONTINUOUS PRODUCTION OF SOLID PHARMACEUTICAL FORMS |
ATE107854T1 (en) | 1988-09-30 | 1994-07-15 | Rhone Poulenc Rorer Ltd | PHARMACEUTICAL GRANULES. |
US5178868A (en) * | 1988-10-26 | 1993-01-12 | Kabi Pharmacia Aktiebolaq | Dosage form |
AU645003B2 (en) | 1988-11-08 | 1994-01-06 | Takeda Chemical Industries Ltd. | Sustained release preparations |
JP2893191B2 (en) * | 1988-11-08 | 1999-05-17 | 武田薬品工業株式会社 | Controlled release matrix agent |
IL92343A0 (en) | 1988-12-20 | 1990-07-26 | Gist Brocades Nv | Granulate for multiparticulate controlled release oral compositions,their preparation and oral pharmaceutical compositions containing them |
EP0376331A3 (en) * | 1988-12-29 | 1991-03-13 | Asahi Kogaku Kogyo Kabushiki Kaisha | Slow release drug delivery granules and process for production thereof |
US5202128A (en) * | 1989-01-06 | 1993-04-13 | F. H. Faulding & Co. Limited | Sustained release pharmaceutical composition |
CA2007055A1 (en) | 1989-01-06 | 1990-07-06 | Garth Boehm | Theophylline dosage form |
CA2007181C (en) | 1989-01-06 | 1998-11-24 | Angelo Mario Morella | Sustained release pharmaceutical composition |
US5330766A (en) * | 1989-01-06 | 1994-07-19 | F. H. Faulding & Co. Limited | Sustained release pharmaceutical composition |
US5196203A (en) * | 1989-01-06 | 1993-03-23 | F. H. Faulding & Co. Limited | Theophylline dosage form |
US5013306A (en) * | 1989-01-18 | 1991-05-07 | Becton, Dickinson And Company | Anti-infective and antithrombogenic medical articles and method for their preparation |
US5165952A (en) * | 1989-01-18 | 1992-11-24 | Becton, Dickinson And Company | Anti-infective and antithrombogenic medical articles and method for their preparation |
FR2642420B1 (en) | 1989-01-27 | 1991-09-06 | Valpan Sa Labo Pharma | NEW FORMAL RELEASE GALENIC FORM CONTAINING A COMBINATION OF FERROUS SALTS, SUCCINIC ACID AND ASCORBIC ACID |
US5007790A (en) * | 1989-04-11 | 1991-04-16 | Depomed Systems, Inc. | Sustained-release oral drug dosage form |
US5126145A (en) * | 1989-04-13 | 1992-06-30 | Upsher Smith Laboratories Inc | Controlled release tablet containing water soluble medicament |
US5229148A (en) * | 1989-04-19 | 1993-07-20 | Wm. Wrigley Jr. Company | Method of combining active ingredients with polyvinyl acetates |
US5133974A (en) * | 1989-05-05 | 1992-07-28 | Kv Pharmaceutical Company | Extended release pharmaceutical formulations |
US4967486A (en) * | 1989-06-19 | 1990-11-06 | Glatt Gmbh | Microwave assisted fluidized bed processor |
DK161743C (en) * | 1989-07-03 | 1992-02-17 | Niro Atomizer As | PROCEDURE AND APPARATUS FOR AGGLOMERATION OF A POWDER-SHAPED MATERIAL |
DE415693T1 (en) | 1989-08-28 | 1991-10-17 | Arizona Technology Development Corp., Tucson, Ariz. | COMPOSITION AND METHOD FOR SELECTIVELY REINFORCING THE OPIATE EFFECT AND REDUCING OPIATE TOLERANCE AND DEPENDENCY. |
EP0418596A3 (en) * | 1989-09-21 | 1991-10-23 | American Cyanamid Company | Controlled release pharmaceutical compositions from spherical granules in tabletted oral dosage unit form |
DK469989D0 (en) * | 1989-09-22 | 1989-09-22 | Bukh Meditec | PHARMACEUTICAL PREPARATION |
US5169645A (en) * | 1989-10-31 | 1992-12-08 | Duquesne University Of The Holy Ghost | Directly compressible granules having improved flow properties |
IL96311A (en) | 1989-12-01 | 1995-05-26 | Abbott Lab | Sustained-release drug dosage units |
DE4000571C1 (en) | 1990-01-10 | 1991-06-06 | Herbert 7853 Steinen De Huettlin | |
US5296266A (en) | 1990-02-22 | 1994-03-22 | Seiko Epson Corporation | Method of preparing microcapsule |
DE69123075T2 (en) | 1990-04-12 | 1997-03-20 | Shionogi Seiyaku Kk | Coated composition and process for its manufacture |
AU637496B2 (en) * | 1990-04-24 | 1993-05-27 | Teijin Limited | Plaster |
IE65045B1 (en) | 1990-04-28 | 1995-10-04 | Takeda Chemical Industries Ltd | Granulated preparations and method of producing the same |
US5354856A (en) | 1990-06-25 | 1994-10-11 | Towa Chemical Industry Co., Ltd. | Crystalline mixture solid containing maltitol and a process for preparing it |
US5183690A (en) * | 1990-06-25 | 1993-02-02 | The United States Of America, As Represented By The Secretary Of Agriculture | Starch encapsulation of biologically active agents by a continuous process |
HU208495B (en) | 1990-06-27 | 1993-11-29 | Alkaloida Vegyeszeti Gyar | Process for producing retarde pharmaceutical compositions |
FR2663818B1 (en) | 1990-06-29 | 1993-07-09 | Rhone Poulenc Nutrition Animale | PROCESS FOR THE PREPARATION OF GRANULES OF ACTIVE PRINCIPLES BY EXTRUSION. |
GB2246514B (en) | 1990-08-01 | 1993-12-15 | Scras | Sustained release pharmaceutical compositions and the preparation of particles for use therein |
US5035509A (en) * | 1990-08-13 | 1991-07-30 | Hpm Corporation | Multi-channel extrusion screw with a zig-zag undercut barrier |
DE59105613D1 (en) | 1990-08-24 | 1995-07-06 | Spirig Ag | Process for the production of pellets. |
JP2875611B2 (en) * | 1990-08-29 | 1999-03-31 | エーザイ株式会社 | Topical formulation containing calcium silicate |
US5102668A (en) * | 1990-10-05 | 1992-04-07 | Kingaform Technology, Inc. | Sustained release pharmaceutical preparation using diffusion barriers whose permeabilities change in response to changing pH |
DE4031881C2 (en) | 1990-10-08 | 1994-02-24 | Sanol Arznei Schwarz Gmbh | Solvent-free, oral sustained-release pharmaceutical preparation and process for its preparation |
GB2248842A (en) | 1990-10-16 | 1992-04-22 | American Cyanamid Co | Film-forming polymer compositions |
SE9003296L (en) * | 1990-10-16 | 1992-04-17 | Kabi Pharmacia Ab | PROCEDURE SHOULD FORMULATE MEDICINAL PRODUCTS |
US5271934A (en) * | 1990-10-22 | 1993-12-21 | Revlon Consumer Products Corporation | Encapsulated antiperspirant salts and deodorant/antiperspirants |
FR2670398B1 (en) | 1990-12-14 | 1995-02-17 | Roquette Freres | DIRECTLY COMPRESSIBLE POWDER COMPOSITION AND PROCESS FOR OBTAINING SAME. |
JPH0622669B2 (en) | 1990-12-17 | 1994-03-30 | 不二パウダル株式会社 | Pre-extrusion screw type extrusion granulator |
US5240400A (en) * | 1990-12-17 | 1993-08-31 | Fuji Paudal Kabushiki Kaisha | Screw-type extrusion granulating apparatus, especially for producing very fine granules |
US5403593A (en) | 1991-03-04 | 1995-04-04 | Sandoz Ltd. | Melt granulated compositions for preparing sustained release dosage forms |
US5273758A (en) * | 1991-03-18 | 1993-12-28 | Sandoz Ltd. | Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms |
US5132142A (en) * | 1991-03-19 | 1992-07-21 | Glatt Gmbh | Apparatus and method for producing pellets by layering power onto particles |
IT1245891B (en) | 1991-04-12 | 1994-10-25 | Alfa Wassermann Spa | CONTROLLED RELEASE PHARMACEUTICAL FORMULATIONS FOR ORAL USE GAS RESISTANT CONTAINING BILE ACIDS AND THEIR SALTS. |
AU1537292A (en) | 1991-04-16 | 1992-11-17 | Nippon Shinyaku Co. Ltd. | Method of manufacturing solid dispersion |
TW209174B (en) * | 1991-04-19 | 1993-07-11 | Takeda Pharm Industry Co Ltd | |
US5380535A (en) | 1991-05-28 | 1995-01-10 | Geyer; Robert P. | Chewable drug-delivery compositions and methods for preparing the same |
DK116591D0 (en) * | 1991-06-17 | 1991-06-17 | Ferring Farma Lab | PROCEDURE FOR THE PREPARATION OF SUPPOSITORIES BY COMPRESSION AND SUPPOSITIONS OBTAINED BY THE PROCEDURE |
DE4120760A1 (en) * | 1991-06-24 | 1993-03-04 | 3 M Medica Gmbh | CARRIER SYSTEMS FOR MEDICINAL PRODUCTS |
US5330768A (en) * | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
IT1251153B (en) | 1991-08-06 | 1995-05-04 | Vectorpharma Int | SOLID PHARMACEUTICAL COMPOSITIONS FOR ORAL ADMINISTRATION HAVING PROHIBITED GASTRIC RESIDENCE |
DE4127665A1 (en) | 1991-08-22 | 1993-02-25 | Beiersdorf Ag | GALENIC MATRIX |
US5340581A (en) | 1991-08-23 | 1994-08-23 | Gillette Canada, Inc. | Sustained-release matrices for dental application |
MX9205106A (en) | 1991-09-06 | 1993-05-01 | Johnson & Johnson | COMPOSITIONS INCLUDING A MATERIAL OF TRAMADOL AND ANY OF CODEINE, OXICODONE OR HYDROCODONE AND ITS USE |
DE69226624T3 (en) * | 1991-09-06 | 2009-11-05 | Ortho-Mcneil Pharmaceutical, Inc. | COMPOSITION CONTAINING A TRAMADOL COMPOUND AND ACETAMINOPHES, AND ITS USE |
US5215758A (en) | 1991-09-11 | 1993-06-01 | Euroceltique, S.A. | Controlled release matrix suppository for pharmaceuticals |
GB9121204D0 (en) | 1991-10-04 | 1991-11-20 | Euro Celtique Sa | Medicament |
US5288502A (en) * | 1991-10-16 | 1994-02-22 | The University Of Texas System | Preparation and uses of multi-phase microspheres |
WO1993007859A1 (en) * | 1991-10-23 | 1993-04-29 | Warner-Lambert Company | Novel pharmaceutical pellets and process for their production |
AU661723B2 (en) | 1991-10-30 | 1995-08-03 | Mcneilab, Inc. | Composition comprising a tramadol material and a non-steroidal anti-inflammatory drug |
US5162117A (en) * | 1991-11-22 | 1992-11-10 | Schering Corporation | Controlled release flutamide composition |
DE4138513A1 (en) | 1991-11-23 | 1993-05-27 | Basf Ag | SOLID PHARMACEUTICAL RETARD FORM |
WO1993010758A1 (en) | 1991-12-05 | 1993-06-10 | Pitman-Moore, Inc. | A carbohydrate glass matrix for the sustained release of a therapeutic agent |
GB2281204A (en) | 1993-07-27 | 1995-03-01 | Euro Celtique Sa | Sustained release morphine compositions |
US5472712A (en) * | 1991-12-24 | 1995-12-05 | Euroceltique, S.A. | Controlled-release formulations coated with aqueous dispersions of ethylcellulose |
GB2284760B (en) | 1993-11-23 | 1998-06-24 | Euro Celtique Sa | A method of preparing pharmaceutical compositions by melt pelletisation |
US5580578A (en) * | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5167964A (en) * | 1992-02-14 | 1992-12-01 | Warner-Lambert Company | Semi-enteric drug delivery systems and methods for preparing same |
GB9203689D0 (en) * | 1992-02-20 | 1992-04-08 | Euro Celtique Sa | Pharmaceutical composition |
JP3623805B2 (en) * | 1992-02-20 | 2005-02-23 | ユーロセルテイツク・エス・アー | Hydromorphone spheroid modified release formulation |
US5262172A (en) * | 1992-06-19 | 1993-11-16 | Digestive Care Inc. | Compositions of gastric acid-resistant microspheres containing buffered bile acids |
US5234697A (en) * | 1992-06-22 | 1993-08-10 | Digestive Care Inc. | Compositions of gastric acid-resistant microspheres containing salts of bile acids |
US5350584A (en) | 1992-06-26 | 1994-09-27 | Merck & Co., Inc. | Spheronization process using charged resins |
US5429825A (en) | 1992-06-26 | 1995-07-04 | Mcneil-Ppc, Inc. | Rotomelt granulation |
DE4227385A1 (en) | 1992-08-19 | 1994-02-24 | Kali Chemie Pharma Gmbh | Pancreatin micropellets |
EP0665010B1 (en) | 1992-10-16 | 2002-09-11 | Nippon Shinyaku Company, Limited | Method of manufacturing wax matrices |
DE4236408A1 (en) | 1992-10-28 | 1994-05-05 | Siemens Ag | Switchable damping device |
DE4236752A1 (en) | 1992-10-30 | 1994-05-05 | Asta Medica Ag | Combination preparation of flupirtine and morphine for the treatment of pain and for avoiding morphine addiction |
IL109460A (en) | 1993-05-10 | 1998-03-10 | Euro Celtique Sa | Controlled release formulation comprising tramadol |
IT1265074B1 (en) | 1993-05-18 | 1996-10-30 | Istituto Biochimico Italiano | SLOW-RELEASE PHARMACEUTICAL COMPOSITION CONTAINING A BILIARY ACID AS THE ACTIVE SUBSTANCE |
IL109944A (en) | 1993-07-01 | 1998-12-06 | Euro Celtique Sa | Sustained release dosage unit forms containing morphine and a method of preparing these sustained release dosage unit forms |
IL110014A (en) * | 1993-07-01 | 1999-11-30 | Euro Celtique Sa | Solid controlled-release oral dosage forms of opioid analgesics |
DE4325465B4 (en) * | 1993-07-29 | 2004-03-04 | Zenz, Michael, Prof. Dr.med. | Oral pharmaceutical preparation for pain therapy |
DE4329794C2 (en) | 1993-09-03 | 1997-09-18 | Gruenenthal Gmbh | Tramadol salt-containing drugs with delayed release |
HU218673B (en) † | 1993-10-07 | 2000-10-28 | Euroceltique S.A. | Controlled release pharmaceutical composition for orally administration comprising opioid analgesic and process for producing its |
US5476528A (en) | 1993-12-20 | 1995-12-19 | Tennessee Valley Authority | System for improving material release profiles |
JP3224931B2 (en) | 1994-01-12 | 2001-11-05 | 株式会社日本製鋼所 | Twin screw extruder |
US5395626A (en) | 1994-03-23 | 1995-03-07 | Ortho Pharmaceutical Corporation | Multilayered controlled release pharmaceutical dosage form |
DE4413350A1 (en) † | 1994-04-18 | 1995-10-19 | Basf Ag | Retard matrix pellets and process for their production |
DE4418837A1 (en) | 1994-05-30 | 1995-12-07 | Bayer Ag | Thermal granulation process |
US5567439A (en) | 1994-06-14 | 1996-10-22 | Fuisz Technologies Ltd. | Delivery of controlled-release systems(s) |
US5965161A (en) * | 1994-11-04 | 1999-10-12 | Euro-Celtique, S.A. | Extruded multi-particulates |
US6706284B2 (en) * | 2001-03-15 | 2004-03-16 | Yamanouchi Pharmaceutical Co., Ltd. | Bitterness-reduced oral pharmaceutical composition |
DE60232417D1 (en) * | 2001-08-06 | 2009-07-02 | Euro Celtique Sa | OPIOID AGONIST FORMULATIONS WITH FREEZER AND SEQUESTRATED ANTAGONIST |
-
1994
- 1994-11-04 US US08/334,209 patent/US5965161A/en not_active Expired - Lifetime
-
1995
- 1995-11-03 AT AT04012331T patent/ATE357909T1/en not_active IP Right Cessation
- 1995-11-03 AT AT03015267T patent/ATE452627T1/en not_active IP Right Cessation
- 1995-11-03 DK DK06123277T patent/DK1741426T3/en active
- 1995-11-03 DK DK95939928.8T patent/DK0785775T4/en active
- 1995-11-03 EP EP10177509A patent/EP2283816A1/en not_active Ceased
- 1995-11-03 EP EP04012330A patent/EP1449530B1/en not_active Expired - Lifetime
- 1995-11-03 DE DE69535426T patent/DE69535426T2/en not_active Expired - Lifetime
- 1995-11-03 EP EP03015267A patent/EP1348429B1/en not_active Expired - Lifetime
- 1995-11-03 EP EP04022651A patent/EP1488786A1/en not_active Ceased
- 1995-11-03 IL IL11587195A patent/IL115871A/en not_active IP Right Cessation
- 1995-11-03 PT PT06123277T patent/PT1741426E/en unknown
- 1995-11-03 ES ES06123277T patent/ES2308675T3/en not_active Expired - Lifetime
- 1995-11-03 PT PT03015267T patent/PT1348429E/en unknown
- 1995-11-03 PT PT04012330T patent/PT1449530E/en unknown
- 1995-11-03 PT PT04012331T patent/PT1449531E/en unknown
- 1995-11-03 CA CA002204180A patent/CA2204180C/en not_active Expired - Lifetime
- 1995-11-03 AU AU41570/96A patent/AU705894B2/en not_active Expired
- 1995-11-03 KR KR1019970702984A patent/KR100232945B1/en not_active IP Right Cessation
- 1995-11-03 DK DK04012330T patent/DK1449530T3/en active
- 1995-11-03 IL IL159766A patent/IL159766A/en not_active IP Right Cessation
- 1995-11-03 AT AT06123277T patent/ATE397441T1/en not_active IP Right Cessation
- 1995-11-03 DE DE69532415T patent/DE69532415T3/en not_active Expired - Lifetime
- 1995-11-03 EP EP06123277A patent/EP1741426B1/en not_active Expired - Lifetime
- 1995-11-03 AT AT95939928T patent/ATE257375T1/en active
- 1995-11-03 IL IL14241395A patent/IL142413A/en not_active IP Right Cessation
- 1995-11-03 JP JP51553796A patent/JP3186064B2/en not_active Expired - Lifetime
- 1995-11-03 AT AT04012330T patent/ATE356616T1/en not_active IP Right Cessation
- 1995-11-03 DE DE69535767T patent/DE69535767D1/en not_active Expired - Lifetime
- 1995-11-03 DE DE69536035T patent/DE69536035D1/en not_active Expired - Lifetime
- 1995-11-03 IL IL12941095A patent/IL129410A/en not_active IP Right Cessation
- 1995-11-03 ES ES03015267T patent/ES2338641T3/en not_active Expired - Lifetime
- 1995-11-03 ES ES04012331T patent/ES2282757T3/en not_active Expired - Lifetime
- 1995-11-03 HU HU9800457A patent/HUT77626A/en active IP Right Revival
- 1995-11-03 EP EP95939928A patent/EP0785775B2/en not_active Expired - Lifetime
- 1995-11-03 PT PT95939928T patent/PT785775E/en unknown
- 1995-11-03 DK DK03015267.2T patent/DK1348429T3/en active
- 1995-11-03 EP EP04012331A patent/EP1449531B1/en not_active Expired - Lifetime
- 1995-11-03 ES ES95939928T patent/ES2214512T3/en not_active Expired - Lifetime
- 1995-11-03 DE DE69535445T patent/DE69535445T2/en not_active Expired - Lifetime
- 1995-11-03 DK DK04012331T patent/DK1449531T3/en active
- 1995-11-03 WO PCT/US1995/014745 patent/WO1996014058A1/en active IP Right Grant
- 1995-11-03 ES ES04012330T patent/ES2282756T3/en not_active Expired - Lifetime
- 1995-11-06 ZA ZA959367A patent/ZA959367B/en unknown
-
1996
- 1996-02-09 TW TW085101623A patent/TW425288B/en not_active IP Right Cessation
-
1997
- 1997-04-10 US US08/833,948 patent/US5958452A/en not_active Expired - Lifetime
-
1999
- 1999-07-22 US US09/358,828 patent/US6335033B2/en not_active Expired - Lifetime
- 1999-07-23 US US09/360,056 patent/US6261599B1/en not_active Expired - Lifetime
-
2001
- 2001-02-06 US US09/777,616 patent/US6743442B2/en not_active Expired - Fee Related
-
2002
- 2002-01-02 US US10/038,867 patent/US6706281B2/en not_active Expired - Fee Related
-
2003
- 2003-09-16 US US10/664,602 patent/US20050089568A1/en not_active Abandoned
- 2003-10-21 US US10/690,389 patent/US20040081694A1/en not_active Abandoned
- 2003-12-23 US US10/745,950 patent/US7510727B2/en not_active Expired - Fee Related
-
2004
- 2004-01-08 IL IL15976604A patent/IL159766A0/en active IP Right Grant
- 2004-02-27 HK HK04101468.7A patent/HK1059887A1/en not_active IP Right Cessation
- 2004-02-27 HK HK05101624A patent/HK1069109A1/en not_active IP Right Cessation
- 2004-02-27 HK HK05101625A patent/HK1069110A1/en not_active IP Right Cessation
-
2009
- 2009-02-17 US US12/372,460 patent/US20090148517A1/en not_active Abandoned
-
2010
- 2010-03-12 US US12/722,974 patent/US20100172974A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4309405A (en) * | 1979-08-09 | 1982-01-05 | American Home Products Corporation | Sustained release pharmaceutical compositions |
US5266331A (en) * | 1991-11-27 | 1993-11-30 | Euroceltique, S.A. | Controlled release oxycodone compositions |
US5540912A (en) * | 1992-03-30 | 1996-07-30 | Alza Corporation | Viscous suspensions of controlled-release drug particles |
US5478577A (en) * | 1993-11-23 | 1995-12-26 | Euroceltique, S.A. | Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100092570A1 (en) * | 1992-11-25 | 2010-04-15 | Purdue Pharma L.P. | Controlled release oxycodone compositions |
US20100034876A1 (en) * | 1993-06-18 | 2010-02-11 | Purdue Pharma L.P. | Controlled release oxycodone compositions |
US20040081694A1 (en) * | 1994-11-04 | 2004-04-29 | Euro-Celtique, S.A. | Melt-extruded orally administrable opioid formulations |
US8470347B2 (en) | 2000-05-30 | 2013-06-25 | AbbVie Deutschland GmbH and Co KG | Self-emulsifying active substance formulation and use of this formulation |
US20060165790A1 (en) * | 2003-06-27 | 2006-07-27 | Malcolm Walden | Multiparticulates |
US8691878B2 (en) | 2003-08-28 | 2014-04-08 | Abbvie Inc. | Solid pharmaceutical dosage form |
US8309613B2 (en) | 2003-08-28 | 2012-11-13 | Abbvie Inc. | Solid pharmaceutical dosage form |
US8333990B2 (en) | 2003-08-28 | 2012-12-18 | Abbott Laboratories | Solid pharmaceutical dosage form |
US8377952B2 (en) | 2003-08-28 | 2013-02-19 | Abbott Laboratories | Solid pharmaceutical dosage formulation |
US8399015B2 (en) | 2003-08-28 | 2013-03-19 | Abbvie Inc. | Solid pharmaceutical dosage form |
US8268349B2 (en) | 2003-08-28 | 2012-09-18 | Abbott Laboratories | Solid pharmaceutical dosage form |
US9603802B2 (en) | 2004-02-12 | 2017-03-28 | Euro-Celtique S.A. | Extrusion |
US20090029170A1 (en) * | 2004-02-12 | 2009-01-29 | Geoffrey Gerard Hayes | Extrusion |
US20070298103A1 (en) * | 2004-02-12 | 2007-12-27 | Euro-Celtique S.A. | Particulates |
US8920836B2 (en) | 2004-02-12 | 2014-12-30 | Euro-Celtique S.A. | Particulates |
US9259872B2 (en) | 2004-08-31 | 2016-02-16 | Euro-Celtique S.A. | Multiparticulates |
CN105025882A (en) * | 2012-12-31 | 2015-11-04 | 株式会社三养生物制药 | Melt extruded pharmaceutical composition for controlling release, and medicine for oral administration including same |
US20160213621A1 (en) * | 2012-12-31 | 2016-07-28 | Samyang Biopharmaceuticals Corporation | Melt-Extruded Release Controlled Pharmaceutical Composition and Oral Dosage Form Comprising the Same |
US10143659B2 (en) * | 2012-12-31 | 2018-12-04 | Samyang Biopharmaceutical Corporation | Melt-extruded release controlled pharmaceutical composition and oral dosage form comprising the same |
US9861629B1 (en) | 2015-10-07 | 2018-01-09 | Banner Life Sciences Llc | Opioid abuse deterrent dosage forms |
US9943513B1 (en) | 2015-10-07 | 2018-04-17 | Banner Life Sciences Llc | Opioid abuse deterrent dosage forms |
US10478429B2 (en) | 2015-10-07 | 2019-11-19 | Patheon Softgels, Inc. | Abuse deterrent dosage forms |
US10624888B2 (en) | 2016-03-31 | 2020-04-21 | SpecGx LLC | Extended release, abuse deterrent dosage forms |
US10335405B1 (en) | 2016-05-04 | 2019-07-02 | Patheon Softgels, Inc. | Non-burst releasing pharmaceutical composition |
US10335375B2 (en) | 2017-05-30 | 2019-07-02 | Patheon Softgels, Inc. | Anti-overingestion abuse deterrent compositions |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706281B2 (en) | Melt-extrusion multiparticulates | |
US9034377B2 (en) | Opioid dosage forms having dose proportional steady state Cave and AUC and less than dose proportional single dose Cmax | |
HUE035445T2 (en) | Melt extrusion of spherical multiparticulates | |
WO2003080183A1 (en) | Pharmaceutical combination of the cox-2 inhibitor etodolac and opioids | |
AU747389B2 (en) | Melt-extruded orally administrable opioid formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |