US20090101667A1 - Connector Structure - Google Patents

Connector Structure Download PDF

Info

Publication number
US20090101667A1
US20090101667A1 US12/226,950 US22695007A US2009101667A1 US 20090101667 A1 US20090101667 A1 US 20090101667A1 US 22695007 A US22695007 A US 22695007A US 2009101667 A1 US2009101667 A1 US 2009101667A1
Authority
US
United States
Prior art keywords
container
liquid
socket
plug
siphon tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/226,950
Other languages
English (en)
Inventor
Masahiro Hasunuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surpass Industry Co Ltd
Original Assignee
Surpass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surpass Industry Co Ltd filed Critical Surpass Industry Co Ltd
Assigned to SURPASS INDUSTRY CO., LTD. reassignment SURPASS INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASUNUMA, MASAHIRO
Publication of US20090101667A1 publication Critical patent/US20090101667A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/04Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers
    • B67D1/0406Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers with means for carbonating the beverage, or for maintaining its carbonation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/02Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants
    • B67D7/0238Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants utilising compressed air or other gas acting directly or indirectly on liquids in storage containers
    • B67D7/0266Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants utilising compressed air or other gas acting directly or indirectly on liquids in storage containers by gas acting directly on the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/06Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/04Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers
    • B67D1/0412Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/02Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/02Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants
    • B67D7/0288Container connection means

Definitions

  • the present invention relates to a connector structure used when extracting a liquid, e.g. a chemical solution, contained in a container.
  • a liquid e.g. a chemical solution
  • liquids like semiconducting high-purity agents and common chemical agents are poured into containers such as glass bottles and tanks at the production site, and the openings formed in these containers are covered with lids before the containers are shipped out.
  • a known method for extracting the liquid contained in such a container is a siphon-tube method in which gas, such as air, is introduced into the container so that the liquid can be forced outward from the container by the pressure of the gas.
  • the lid attached to the opening of the container is first removed, and then a siphon tube serving as a liquid channel and a plug having a gas channel are attached to the opening of the container. Subsequently, a socket joinable to a tube for liquid extraction and to a tube for gas introduction is fitted to the plug, thereby forming a main channel for liquid extraction and a sub channel for gas introduction in the plug and socket attached to the opening of the container.
  • a joining device that allows for connection of the socket to the plug by a single manual operation is known.
  • a joining device that allows for improvement in working efficiency is disclosed (e.g. see Patent Document 1).
  • this joining device an annular channel is formed between the socket and the plug when the two are fitted to each other, such that the channel at the socket side and the channel at the plug side are communicable with each other at an arbitrary twist angle through this annular channel; hence, different kinds of fluid channels, such as for liquid and gas, can be readily joined to each other at the opening of the container, thereby achieving an improved working efficiency.
  • Patent Document 1 Japanese Unexamined Patent Application, Publication No. 2001-192099
  • the siphon tube inserted through the opening is substantially aligned with the axis of the container, and the lower end of the siphon tube and the bottom surface of the container have a gap formed therebetween for liquid extraction.
  • the extraction becomes difficult.
  • This causes a non-extractable amount of liquid to remain over the entirety of the substantially flat bottom surface inside the container, which is problematic in that the liquid in the container cannot be used without being wasted. Since the effect this has on the cost can be significant especially in the case where the liquid being handled is an expensive agent such as a resist material, it is desirable to use the liquid efficiently by minimizing the amount of liquid remaining in the container.
  • the object of the present invention is to provide a connector structure that can minimize the amount of liquid remaining in the container.
  • the present invention employs the following solutions.
  • a connector structure according to the present invention is attached to an opening of a container and includes a siphon tube for extracting a liquid inside the container with pressure of gas introduced into the container.
  • a channel for introducing the gas and a channel for extracting the liquid are formed by joining together a plug and a socket, and an axis of the siphon tube and an axis of the container have a predetermined inclination angle therebetween.
  • the channel for introducing the gas and the channel for extracting the liquid are formed by joining together the plug and the socket, and the axis of the siphon tube and the axis of the container have a predetermined inclination angle therebetween; hence, the siphon tube is inserted substantially vertically into the container set in an inclined position, whereby the liquid can be extracted while collecting at a low section.
  • the inclination angle is preferably an angle between the axis of the siphon tube set vertically and the axis of the container that is set in an inclined position such that a lower end of the siphon tube is located near a lowest position on a bottom surface of the container. Accordingly, the liquid in the container can collect at the lowest bottom-surface position inside the inclined container, thereby allowing for extraction of substantially the entire amount of liquid.
  • height-adjustment means be provided which adjusts a secured position of the siphon tube in a vertical direction. Accordingly, the amount of insertion (insertion height) of the siphon tube can be adjusted according to individual differences among containers, whereby the lower end of the siphon tube can be secured at a position most proximate to the bottommost surface inside the container.
  • the socket is preferably secured to the opening of the container while an upward-opening recess of the socket has the plug inserted therein. Accordingly, the liquid dripping down from the plug at the time of attachment/detachment process can be collected by the socket.
  • the socket and the plug may have an intermediate connector disposed therebetween.
  • the intermediate connector may be joined to the socket while an upward-opening recess of the intermediate connector has the plug inserted therein.
  • the siphon tube is inserted substantially vertically into the container set in an inclined position to extract the liquid therefrom, so that the amount of non-extractable liquid remaining in the container can be minimized, whereby the liquid in the container can be used efficiently without waste.
  • the cost of production can be lowered especially in the case where the liquid being handled is an expensive agent, etc.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a connector structure according to the present invention.
  • FIG. 2 is an enlarged view showing a relevant part of height-adjustment means provided in the connector structure shown in FIG. 1 .
  • FIG. 3 is an enlarged cross-sectional view showing a relevant part of a gas channel near a sealing nut in the connector structure shown in FIG. 1 .
  • FIG. 4 is a cross-sectional view showing a configuration example of a quick connector used in the first embodiment.
  • FIG. 5 is a cross-sectional view showing a second embodiment of a connector structure according to the present invention.
  • FIG. 6A shows a configuration example of a quick connector used in the second embodiment and is a plan view partly having a cross-sectional view.
  • FIG. 6B shows the configuration example of the quick connector used in the second embodiment and is a cross-sectional view showing the internal structure of a plug.
  • FIG. 7 is a cross-sectional view showing a third embodiment of a connector structure according to the present invention.
  • a container e.g. glass bottle or plastic tank
  • a liquid such as an agent
  • a siphon-tube method is employed, as shown in FIG. 1 , as an example in which a siphon tube 11 of a connector 10 attached to the opening 2 is inserted to near the bottom surface of the container 1 .
  • This siphon-tube method is designed to extract the liquid in the container 1 through an opening provided at the lower end of the siphon tube 11 by pressing against the liquid surface with the pressure of air or gas introduced into the container 1 .
  • the connector 10 includes a socket 20 and a plug 40 .
  • the socket 20 attached to the opening 2 of the container 1 and the plug 40 supporting the siphon tube 11 are integrally joined to each other, thereby forming a gas channel 12 for introducing gas into the container 1 and a liquid channel 13 for extracting liquid from the container 1 .
  • the socket 20 is a substantially columnar member that is detachably attached to the opening 2 of the container 1 and has a shape such that the upper end surface and the lower end surface deviate from a mutually parallel state by an inclination angle ⁇ to be described later.
  • a recess 21 for joining the socket 20 to the plug 40 is formed around the axial center on the upper end surface of the socket 20 .
  • the recess 21 is a substantially columnar shaped space formed along an axis Cs that is orthogonal to the upper end surface, and in the state where the socket 20 is attached to the opening 2 of the container 1 , the axis deviates from an axis Cv of the container 1 by the inclination angle ⁇ .
  • the socket 20 is provided with a through-hole 22 having a circular shape in cross section and extending along the axis Cs from the center of the bottom surface of the recess 21 to the lower end surface. Since the through-hole 22 serves as a passage through which the siphon tube 11 extends into the container 1 , the aforementioned axis Cs is a common axis for the recess 21 and the siphon tube 11 .
  • the socket 20 is provided with an insertion projection 23 projecting from the lower end surface in conformity to the cross-sectional shape of the opening 2 , and is also provided with an external threaded portion 24 formed on the upper outer surface for joining and fixing the plug 40 thereto by means of an adjustment nut 50 to be described later.
  • the insertion projection 23 is a projected portion having a circular shape in cross section and is inserted into the opening 2 of the container 1 .
  • the insertion projection 23 has an axis that is inclined relative to the axis Cs by the angle ⁇ , and has a smaller diameter than the outside diameter of the main body of the socket 20 . Consequently, a step surface 25 extending outward in the horizontal direction is formed at the upper end of the insertion projection 23 .
  • Reference numeral 26 in the drawing denotes a flange portion projecting outward from the outer peripheral surface of the socket 20
  • 27 denotes a gasket attached near the upper end of the insertion projection 23 .
  • the plug 40 is a substantially L-shaped member in which the gas channel 12 and the liquid channel 13 are formed independently of each other.
  • One end of the plug 40 with the siphon tube 11 attached thereto is joined to the socket 20 , whereas the other end is joined to a detachable quick connector 60 .
  • the siphon tube 11 is securely supported at one end (closer to the socket 20 ) of the liquid channel 13 , and the joint section therebetween is sealed by means of a ring 14 and a sealing nut 15 .
  • this embodiment employs a common joint structure for tubing, such as copper tubing, which involves the use of a plastic tube as the siphon tube 11 and the use of the ring 14 and the sealing nut 15 .
  • the other end of the plug 40 serves as a projection 41 that fits into, for example, a recess 61 of the quick connector 60 , as shown in FIG. 4 .
  • the projection 41 is provided with a lock groove 42 that keeps the projection 41 fitted to the quick connector 60 .
  • the plug 40 is fixed to the socket 20 by means of the adjustment nut 50 .
  • the adjustment nut 50 includes an internal threaded portion 51 extending through the central section thereof and screwed onto the external threaded portion 24 of the socket 20 , and also includes a flanged lock portion 52 locked to a height-adjustment groove 43 defined by a small-diameter section formed in the plug 40 .
  • the lock portion 52 works in cooperation with the height-adjustment groove 43 to function as height-adjustment means to be described later.
  • Reference numeral 53 in the drawings denotes a ferrule serving as a sealing member.
  • the flange portion 26 has attached therearound a bottle cap 30 for screwing the connector 10 onto the container 1 .
  • the bottle cap 30 is a substantially cylindrical member, and a hollow inner surface 31 thereof has an internal threaded portion 31 a formed at the lower end thereof for screwing onto an external thread 2 b of the container 1 .
  • the upper end of the hollow inner surface 31 serves as a space that can accommodate the socket 20 and the flange portion 26 , and the inside diameter of the hollow inner surface 31 at the upper end is set to a value greater than that of the internal threaded portion 31 a.
  • the socket 20 combined with the siphon tube 11 and the plug 40 is retained by placing a cap ring 32 thereon from above and securing it with a plurality of cap screws 33 in the state where the siphon tube 11 extends through the hollow inner surface 31 of the bottle cap 30 . Consequently, the socket 20 is accommodated in the space within the hollow inner surface 31 of the bottle cap 30 and becomes combined therewith in a state where the flange portion 26 is slidable with respect to the cap ring 32 above the internal threaded portion 31 a.
  • the quick connector 60 has a lock lug 62 that fits into the lock groove 42 when the projection 41 of the plug 40 and the recess 61 are in a predetermined fitted state, thereby inhibiting movement in the axial direction.
  • This lock lug 62 is equipped with a coil spring 63 that applies an upward bias force to maintain the locked state. Therefore, by pressing the coil spring 63 downward to compress it against the bias force, the lock lug 62 can be moved downward to release the locked state with respect to the lock groove 42 .
  • the quick connector 60 in the fitted state can be removed from the plug 40 , whereby the two can be detached from each other.
  • the tip of the lock lug 62 is formed in an inclined shape so that the lock lug 62 can be pushed upward during insertion and thus set to a locked state automatically.
  • the quick connector 60 described above has a gas-supply connection port 64 that takes in pressurizing gas from an external supply source and guides the gas towards the gas channel 12 . Furthermore, the quick connector 60 has a tube 3 connected thereto by means of a nut 4 . This tube 3 is coupled to the liquid channel 13 and guides the liquid extracted from the container 1 to the location of usage.
  • Reference numerals 66 and 67 in the drawing denote sealing O-rings provided for isolating the gas channel 12 from the liquid channel 13 .
  • a lid (not shown) attached to the opening 2 of the container 1 is removed and the connector 10 is attached.
  • the connector 10 is secured by inserting the siphon tube 11 into the container 1 and screwing the internal threaded portion 31 a of the bottle cap 30 onto the external thread 2 b of the opening 2 .
  • the insertion projection 23 of the socket 20 is inserted and positioned in the opening 2 , and the gasket 27 is pressed by an upper end surface 2 a of the opening 2 , thereby sealing the interior of the container 1 .
  • the axis Cs of the siphon tube 11 deviates from the axis Cv of the container 1 by an inclination angle ⁇ , which implies that the container 1 is set in an inclined position when the siphon tube 11 is set in a substantially vertical position. Therefore, by holding the container 1 in an inclined position at the inclination angle ⁇ relative to the vertical position using appropriate fixation means (not shown) and subsequently loosening the adjustment nut 50 to adjust the height of the siphon tube 11 within an adjustable range L (see FIG. 2 ), the lower end of the siphon tube 11 can be positioned to have its opening near the lowest position on the bottom surface of the inclined container 1 .
  • the amount of insertion of the siphon tube 11 can be adjusted by sliding the plug 40 combined with the siphon tube 11 upward and downward, thereby achieving height-adjustment means that can optimize the amount of insertion.
  • the plug 40 is secured by tightening the adjustment nut 50 around the socket 20 , which compresses the ferrule 53 and allows it to exhibit a sealing effect.
  • the quick connector 60 is joined from a lateral direction to the connector 10 attached to the opening 2 of the container 1 .
  • Such a laterally joinable structure is advantageous in a case where the space above the container 1 is limited. Since this joining process of the quick connector 60 completes the preparation process for extracting the liquid from the container 1 , a valve of a gas-supply source (not shown) is opened so as to start a gas-supplying process.
  • gas to be used for pressurizing the liquid surface is introduced into the gas channel 12 in the quick connector 60 from the gas-supply connection port 64 .
  • This gas travels through the gas channel 12 in the plug 40 joined to the quick connector 60 and is guided to, for example, a recessed channel 16 formed on the upper end surface of the sealing nut 15 , as shown in FIG. 3 .
  • This recessed channel 16 is formed around the entire circumference of the siphon tube 11 that is plastically deformed due to a joint involving the use of the sealing nut 15 .
  • the sealing nut 15 is provided with at least one through-hole 17 extending in the up-down direction through an appropriate position thereof. Therefore, as indicated by an arrow g in the drawing, the gas introduced to the recessed channel 16 flows toward the lower surface of the sealing nut 15 through the through-hole 17 .
  • the gas can then be guided to the space formed above the liquid surface in the container 1 .
  • the liquid with its liquid surface in a pressurized state is pushed upward into the siphon tube through the lower end of the siphon tube 11 .
  • This causes the liquid to flow upward, as indicated by a white arrow in the drawing, whereby the liquid flows into the liquid channel 13 in the plug 40 .
  • the liquid travels further through the liquid channel 13 in the quick connector 60 and through the tube 3 , so as to be supplied to the desired location of usage.
  • the liquid collects at the lowest position on the bottom surface of the container since the container 1 is held in an inclined position at the angle ⁇ . Furthermore, since the lower end of the siphon tube 11 has its opening located near the lowest bottom-surface position inside the container 1 , the liquid can be extracted more easily and reliably with the siphon-tube method until the liquid surface reaches a position lower than the opening of the siphon tube 11 .
  • the container 1 is held in an inclined position while the siphon tube 11 is inserted in a substantially vertical direction; hence, the liquid can be extracted while it collects around the lowest bottom-surface position of the inclined container, whereby the amount of liquid remaining in the container 1 can be minimized.
  • FIGS. 5 , 6 A, and 6 B A second embodiment of the present invention will be described next with reference to FIGS. 5 , 6 A, and 6 B. Similar components to those in the first embodiment described above are given the same reference numerals, and detailed descriptions of those components will be omitted.
  • a substantially L-shaped plug 40 A is inserted from above into an upward-opening recess 21 A of a socket 20 A so as to be joined thereto.
  • the siphon tube 11 in this case is directly attached to the socket 20 A by employing a similar configuration to the first embodiment which uses the ring 14 and the sealing nut 15 to attach the siphon tube 11 to the plug 40 .
  • the axis Cs in this case is similar to the first embodiment in that it deviates from the axis Cv of the container 1 by an inclination angle ⁇ .
  • the upward-opening recess 21 A of the socket 20 A has a shape that allows a projection 41 A of the plug 40 A to be inserted and fitted therein.
  • the inner peripheral surface of the recess 21 A has attached thereto O-rings 44 and 45 serving as sealing members for isolating a gas channel from a liquid channel.
  • the socket 20 A has a gas channel 12 that allows communication between the recess 21 A and the recessed channel 16 formed on the upper end surface of the sealing nut 15 .
  • the gas guided from the recessed channel 16 into the container 1 flows along the same path as in the first embodiment described above (see FIG. 3 ).
  • the plug 40 A has a gas channel 12 and a liquid channel 13 formed therein, and the other end of the projection 41 A extending in the horizontal direction has the tube 3 , for sending out the liquid, joined thereto by means of the nut 4 .
  • the plug 40 A has left and right side surfaces respectively provided with a pair of gas-supply connection ports 46 that take in pressurizing gas from an external supply source and guide the gas towards the gas channel 12 . Since the gas-supply connection ports 46 communicate with each other inside, one of the gas-supply connection ports 46 that can be readily pipe-connected to the supply source may be selected for use, whereas the other may be closed by a blind plug, etc.
  • the plug 40 A having this configuration functions as a quick connector substantially similar to that in the first embodiment described above, and therefore, the plug 40 A including the tube 3 will be collectively referred to as a quick connector 60 A hereinafter.
  • the siphon tube 11 is first inserted into the container 1 through the opening 2 , and the bottle cap 30 is then secured by being screwed onto the external thread 2 b of the opening 2 . Subsequently, the projection 41 A of the plug 40 A is inserted and fitted into the recess 21 A so as to join the quick connector 60 A to the socket 20 A.
  • the quick connector 60 A is removed for the purpose of, for example, replacing the container 1 , there is concern that the liquid remaining in the liquid channel 13 may drip down from the lower end of the projection 41 A.
  • the plug 40 A is detached by being pulled upward from the socket 20 A, the liquid dripping down from the plug 40 A can be collected by the recess 21 A, thereby preventing the liquid from flowing to the outside.
  • FIG. 7 A third embodiment of the present invention will be described next with reference to FIG. 7 . Similar components to those in the first and second embodiments described above are given the same reference numerals, and detailed descriptions of those components will be omitted.
  • the socket 20 and a plug 40 B of a quick connector 60 B have disposed therebetween an intermediate connector 70 that supports the siphon tube 11 .
  • This intermediate connector 70 includes a gas channel 12 for introducing gas into the container 1 and a liquid channel 13 for extracting liquid from the container 1 .
  • the upper end of the intermediate connector 70 has an upward-opening recess 71 to which the plug 40 B is inserted and joined, and the lower end is joinable to the socket 20 by being inserted therein.
  • the lower end of the intermediate connector 70 to be joined to the socket 20 has a similar configuration to that of the plug 40 shown in FIG. 1 .
  • the upper end of the intermediate connector 70 into which the plug 40 B of the quick connector 60 B is inserted is similar to the socket 20 A shown in FIG. 5 in having an upward-opening recess 71 .
  • the intermediate connector 70 is provided with a lock lug 72 near the recess 71 .
  • the lock lug 72 fits into a lock groove 42 B of the plug 40 B in a predetermined fitted state so as to maintain the state where the plug 40 B is fitted in the recess 71 .
  • the lock lug 72 has substantially the same configuration as the lock lug 62 shown in FIG. 4 , and thus has a coil spring 73 that applies a bias force towards the axial center to maintain the locked state.
  • Reference numerals 74 and 75 in the drawing denote O-rings for isolating the gas channel from the liquid channel.
  • a lid (not shown) attached to the opening 2 of the container 1 is removed and the connector 10 B is attached.
  • the connector 10 B is secured by inserting the siphon tube 11 into the container 1 and screwing the internal threaded portion 31 a of the bottle cap 30 onto the external thread 2 b of the opening 2 .
  • the insertion projection 23 of the socket 20 is inserted and positioned in the opening 2 , and the gasket 27 is pressed by the upper end surface 2 a of the opening 2 , thereby sealing the interior of the container 1 .
  • the axis Cs of the siphon tube 11 deviates from the axis Cv of the container 1 by an inclination angle ⁇ , which implies that the container 1 is set in an inclined position when the siphon tube 11 is set in a substantially vertical position. Subsequently, the container 1 is held in an inclined position at the inclination angle ⁇ relative to the vertical position, and the height of the siphon tube 11 is adjusted by loosening the adjustment nut 50 , whereby the lower end of the siphon tube 11 can be positioned to have its opening near the lowest bottom-surface position of the inclined container 1 . After the amount of insertion of the siphon tube 11 is adjusted, the intermediate connector 70 is secured by tightening the adjustment nut 50 around the socket 20 , which compresses the ferrule 53 and allows it to exhibit a sealing effect.
  • the quick connector 60 B is joined from above to the connector 10 B attached to the opening 2 of the container 1 .
  • the lock lug 72 fits into the lock groove 42 B in the plug 40 B so as to securely hold the joint of the quick connector 60 B, thereby completing the preparation process for extracting the liquid from the container 1 .
  • gas can be supplied into the container 1 by being guided along a path similar to that in the first embodiment described above, whereby the liquid inside the container can be pushed out into the liquid channel 13 through the siphon tube 11 .
  • the quick connector 60 B After the completion of the liquid extracting operation, if the quick connector 60 B is removed for the purpose of, for example, replacing the container 1 , there is concern that the liquid remaining in the liquid channel 13 of the quick connector 60 B may drip down from the lower end of the plug 40 B. However, because the plug 40 B is detached by being pulled upward from the recess 71 in the intermediate connector 70 , the liquid dripping down from the plug 40 B can be collected by the recess 71 , thereby preventing the liquid from flowing to the outside.
  • the siphon tube 11 is inserted substantially vertically into the container 1 set in an inclined position to extract the liquid therefrom, so that the amount of non-extractable liquid remaining in the container 1 can be minimized, whereby the liquid in the container can be used efficiently without waste.
  • the cost of production can be lowered especially in the case where the liquid being handled is an expensive agent, etc.
US12/226,950 2006-05-08 2007-04-19 Connector Structure Abandoned US20090101667A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006128921A JP5048968B2 (ja) 2006-05-08 2006-05-08 コネクタ構造
JP2006-128921 2006-05-08
PCT/JP2007/058491 WO2007129534A1 (ja) 2006-05-08 2007-04-19 コネクタ構造

Publications (1)

Publication Number Publication Date
US20090101667A1 true US20090101667A1 (en) 2009-04-23

Family

ID=38667643

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/226,950 Abandoned US20090101667A1 (en) 2006-05-08 2007-04-19 Connector Structure

Country Status (5)

Country Link
US (1) US20090101667A1 (ja)
EP (1) EP2017195B1 (ja)
JP (1) JP5048968B2 (ja)
KR (1) KR101322257B1 (ja)
WO (1) WO2007129534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046502B2 (en) * 2018-11-21 2021-06-29 Coravin, Inc. Replaceable beverage outlet and conduit for dispenser

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503556B (en) 2013-04-30 2014-07-02 Meditech Endoscopy Ltd Container
US9458002B2 (en) * 2014-04-11 2016-10-04 Suss Microtec Lithography Gmbh Bottle supply system and bottle cap adapter
US9527639B2 (en) 2015-01-26 2016-12-27 Cardomon International Limited Dip tube insertion member for facilitating insertion of a dip tube into a container without removing the container cap
US9714164B2 (en) 2015-05-18 2017-07-25 Cardomon International Limited Apparatus for storing and dispensing liquid from a liquid retaining bag
EP3587342B1 (en) * 2015-11-17 2021-01-06 Coravin, Inc. System for dispensing a sparkling beverage from a closed bottle into a pressurised reservoir
KR20190066813A (ko) 2017-12-06 2019-06-14 세메스 주식회사 잔류 약액 이용을 위한 약액 공급 장치
NL2026157B1 (en) * 2020-07-29 2022-03-29 Suss Microtec Lithography Gmbh Adapter, Connection Device and Supply System

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US879604A (en) * 1907-04-12 1908-02-18 John Wawrzinski Beer-tap.
US2223012A (en) * 1940-03-15 1940-11-26 Wanderski Stephen Beer drawing device
US3065885A (en) * 1960-02-18 1962-11-27 Anheuser Busch Beer barrel tapping device
US3228413A (en) * 1964-04-09 1966-01-11 Jr Frederick F Stevens Keg tapping device
US3325053A (en) * 1967-06-13 Beverage dispenser including means to puncture a pressurized gas cartridge
US3469745A (en) * 1967-12-04 1969-09-30 Reynolds Metals Co Siphon tube and method of making the same
US3578219A (en) * 1969-05-01 1971-05-11 Harry E Berry Quick-connect coupling conversion means for beer kegs
US3591057A (en) * 1970-03-27 1971-07-06 Republic Corp Tapping device for beer kegs and the like
US3596809A (en) * 1969-06-18 1971-08-03 Perlick Co Inc The Keg-tapping device
US3599843A (en) * 1969-04-14 1971-08-17 Republic Corp Keg tapping device
US3610478A (en) * 1969-04-28 1971-10-05 Mack S Johnston Tapping device for beer kegs and the like
US3632023A (en) * 1970-03-16 1972-01-04 Republic Corp Tapping device for beer kegs and the like
US3698417A (en) * 1970-03-11 1972-10-17 Republic Corp Keg tapping device with automatic gas shutoff valve
US3720355A (en) * 1969-04-28 1973-03-13 Draft Systems Portable beer siphon device
US4119244A (en) * 1976-10-09 1978-10-10 Gebruder Funke Unitary mounted air-pressure pump and liquid outlet
US4595121A (en) * 1984-09-10 1986-06-17 Sheldon Schultz Apparatus and method for dispensing and preserving bottled degradable liquids such as wine and the like
US5139179A (en) * 1990-10-09 1992-08-18 Cecil Kenneth B Apparatus for dispensing and preserving liquids
US5586590A (en) * 1993-12-09 1996-12-24 Ciba Corning Diagnostics Corp. Coupler for fluid delivery system
US6027041A (en) * 1992-11-10 2000-02-22 Evnx Technologies, Inc. Sprayer with swiveling spray head
US6073811A (en) * 1998-11-05 2000-06-13 Costea; Thomas Carbonated beverage dispenser
US6216720B1 (en) * 1999-07-13 2001-04-17 New Pig Corporation Siphon adapter
US6302148B1 (en) * 1999-10-26 2001-10-16 Surpass Industry Co. Ltd. Coupling device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB634715A (en) * 1946-12-04 1950-03-29 Negretti & Zambra Ltd Drop dispensing device
US3512676A (en) * 1967-08-07 1970-05-19 Wsr Inc Container end structure
DE3508543A1 (de) * 1985-03-09 1986-09-18 Merck Patent Gmbh, 6100 Darmstadt Entnahmekopf fuer fluessigkeitsbehaelter
US5234140A (en) * 1992-07-28 1993-08-10 S. C. Johnson & Son, Inc. Re-useable aerosol container
US5381961A (en) * 1992-11-10 1995-01-17 Evans; Robert M. Liquid dispensing devices
JPH0654547U (ja) * 1993-01-11 1994-07-26 株式会社吉野工業所 泡噴出容器
JP4500416B2 (ja) * 1999-10-26 2010-07-14 サーパス工業株式会社 連結装置
JP4367699B2 (ja) * 2004-03-26 2009-11-18 株式会社吉野工業所 飲料容器

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325053A (en) * 1967-06-13 Beverage dispenser including means to puncture a pressurized gas cartridge
US879604A (en) * 1907-04-12 1908-02-18 John Wawrzinski Beer-tap.
US2223012A (en) * 1940-03-15 1940-11-26 Wanderski Stephen Beer drawing device
US3065885A (en) * 1960-02-18 1962-11-27 Anheuser Busch Beer barrel tapping device
US3228413A (en) * 1964-04-09 1966-01-11 Jr Frederick F Stevens Keg tapping device
US3469745A (en) * 1967-12-04 1969-09-30 Reynolds Metals Co Siphon tube and method of making the same
US3599843A (en) * 1969-04-14 1971-08-17 Republic Corp Keg tapping device
US3610478A (en) * 1969-04-28 1971-10-05 Mack S Johnston Tapping device for beer kegs and the like
US3720355A (en) * 1969-04-28 1973-03-13 Draft Systems Portable beer siphon device
US3578219A (en) * 1969-05-01 1971-05-11 Harry E Berry Quick-connect coupling conversion means for beer kegs
US3596809A (en) * 1969-06-18 1971-08-03 Perlick Co Inc The Keg-tapping device
US3698417A (en) * 1970-03-11 1972-10-17 Republic Corp Keg tapping device with automatic gas shutoff valve
US3632023A (en) * 1970-03-16 1972-01-04 Republic Corp Tapping device for beer kegs and the like
US3591057A (en) * 1970-03-27 1971-07-06 Republic Corp Tapping device for beer kegs and the like
US4119244A (en) * 1976-10-09 1978-10-10 Gebruder Funke Unitary mounted air-pressure pump and liquid outlet
US4595121A (en) * 1984-09-10 1986-06-17 Sheldon Schultz Apparatus and method for dispensing and preserving bottled degradable liquids such as wine and the like
US5139179A (en) * 1990-10-09 1992-08-18 Cecil Kenneth B Apparatus for dispensing and preserving liquids
US6027041A (en) * 1992-11-10 2000-02-22 Evnx Technologies, Inc. Sprayer with swiveling spray head
US5586590A (en) * 1993-12-09 1996-12-24 Ciba Corning Diagnostics Corp. Coupler for fluid delivery system
US6073811A (en) * 1998-11-05 2000-06-13 Costea; Thomas Carbonated beverage dispenser
US6216720B1 (en) * 1999-07-13 2001-04-17 New Pig Corporation Siphon adapter
US6302148B1 (en) * 1999-10-26 2001-10-16 Surpass Industry Co. Ltd. Coupling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046502B2 (en) * 2018-11-21 2021-06-29 Coravin, Inc. Replaceable beverage outlet and conduit for dispenser

Also Published As

Publication number Publication date
EP2017195A1 (en) 2009-01-21
JP2007297126A (ja) 2007-11-15
EP2017195A4 (en) 2010-11-03
EP2017195B1 (en) 2016-09-07
KR101322257B1 (ko) 2013-10-25
JP5048968B2 (ja) 2012-10-17
KR20090009213A (ko) 2009-01-22
WO2007129534A1 (ja) 2007-11-15

Similar Documents

Publication Publication Date Title
US20090101667A1 (en) Connector Structure
CN101312785B (zh) 用于真空过滤的系统、设备和方法
US6015068A (en) Liquid chemical dispensing system with a key code ring for connecting the proper chemical to the proper attachment
US5957328A (en) Liquid chemical dispensing and recirculating system
US8628119B2 (en) Tube connector
JP5033002B2 (ja) 液体タンク用コネクタ
JP2009530204A (ja) 飲料コンテナ
US9908130B2 (en) Device to contain and dispense fluid substances
KR101191921B1 (ko) 연결기
CN104918671A (zh) 溶剂提取装置
EP1753691B1 (en) Valve assembly with positioning means for a keg with an inner bag
KR101699978B1 (ko) 소켓 구조
CN115924830A (zh) 包括球形接头的同轴饮料桶连接器
CN100506684C (zh) 具有颈部的放泄桶和连接设备的组件及其部件
JP3223050U (ja) 容器接続具
CN115724383B (zh) 灌装阀及灌装设备
CN115724383A (zh) 灌装阀及灌装设备
US20140263477A1 (en) Fluid supply system
US11776827B2 (en) Adapter, connection device and supply system
KR20160095942A (ko) 초저온 탱크 충전용 밸브 및 초저온 탱크 충전용 밸브의 씰 교체 방법
CN219620877U (zh) 一种打酒头
CN109990152A (zh) 一种用于充油电气设备上的可调式取油装置
FI92029B (fi) Liitäntälaite maalinsävytyskoneessa
CN217503351U (zh) 一种玻璃毛细管
CN213200728U (zh) 瓶子

Legal Events

Date Code Title Description
AS Assignment

Owner name: SURPASS INDUSTRY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HASUNUMA, MASAHIRO;REEL/FRAME:021798/0872

Effective date: 20080930

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION