US20090053036A1 - Systems and Methods for Extending Gas Turbine Emissions Compliance - Google Patents

Systems and Methods for Extending Gas Turbine Emissions Compliance Download PDF

Info

Publication number
US20090053036A1
US20090053036A1 US11/844,479 US84447907A US2009053036A1 US 20090053036 A1 US20090053036 A1 US 20090053036A1 US 84447907 A US84447907 A US 84447907A US 2009053036 A1 US2009053036 A1 US 2009053036A1
Authority
US
United States
Prior art keywords
compressor
gas turbine
air
turbine system
line extending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/844,479
Other languages
English (en)
Inventor
Bradley D. Crawley
Michael J. O'Connor
Matthew J. Mosley
Christian Lee Vandervort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/844,479 priority Critical patent/US20090053036A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VANDERVORT, CHRISTIAN LEE, CRAWLEY, BRADLEY D., MOSELY, MATTHEW J., O'CONNOR`, MICHAEL J.
Priority to DE102008044442A priority patent/DE102008044442A1/de
Priority to JP2008211278A priority patent/JP2009052548A/ja
Priority to CH01329/08A priority patent/CH697810B8/de
Priority to CN200810210034.8A priority patent/CN101372914A/zh
Publication of US20090053036A1 publication Critical patent/US20090053036A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/042Air intakes for gas-turbine plants or jet-propulsion plants having variable geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/52Control of fuel supply conjointly with another control of the plant with control of working fluid flow by bleeding or by-passing the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible

Definitions

  • the present application relates generally to gas turbines and more particularly relates to methods and systems for extending gas turbine emissions compliance at lower loads.
  • gas turbines typically can remain in emissions compliance down to about forty-five percent (45%) of full rated load output.
  • CO carbon monoxide
  • emissions compliance requires that the turbine as a whole to produce less than the guaranteed or predetermined minimum emissions levels. Such levels may vary with the ambient temperature, system size, and other variables.
  • This equipment may include a heat recovery steam generator, a steam turbine, and other devices. Bringing these other systems online again after a gas turbine shutdown may be expensive and time consuming.
  • Such startup requirements may prevent a power plant from being available to produce power when the demand is high.
  • There may be a strategic operational advantage in being able to keep a gas turbine online and in emissions compliance during periods of low power demand so as to avoid the start up time and expense.
  • the present application thus provides a gas turbine system for operation at low loads.
  • the gas turbine system may include a number of inlet guide vanes, a compressor, a turbine, and an air movement system for maintaining an emission from the gas turbine system below a predetermined level.
  • the present application further describes a gas turbine for operation at low loads.
  • the gas turbine may include a number of inlet guide vanes, a compressor, and an air recirculation system to raise a temperature of an outlet air stream leaving the compressor.
  • the present application further describes a gas turbine system for operation at low loads.
  • the gas turbine system may include a number of inlet guide vanes, a compressor, a turbine, and an air extraction system to extract air from the compressor.
  • FIG. 1 is a schematic view of an inlet bleed heat configuration.
  • FIG. 2 is a schematic view of a compressor recirculation configuration.
  • FIG. 3 is a schematic view of a compressor extraction configuration.
  • FIG. 4 is a schematic view of a compressor discharge casing configuration.
  • FIG. 1 is a schematic view of a gas turbine system 100 .
  • the gas turbine system 100 may include a compressor 110 with a compressor discharge casing 120 , a combustor 130 , and a turbine 140 .
  • the gas turbine system 100 receives ambient air through a set of inlet guide vanes 150 .
  • the ambient air is compressed by the compressor 110 and delivered to the combustor 130 where it is used to combust a flow of fuel to produce a hot combustion gas.
  • the hot combustion gas is delivered to the turbine 140 where it is expanded to mechanical energy via a number of blades and a shaft.
  • the turbine 140 and the compressor 110 are generally connected to a common shaft that also may be connected to an electric generator or other type of load. Extending emissions compliance may be possible by raising the combustion reaction zone temperatures to inhibit CO (carbon monoxide) formation and also to provide flame stability. Emissions compliance means that the emissions from the gas turbine system 100 as a whole are maintained below predetermined levels.
  • a first technique involves the use of inlet bleed heat and reducing the angles for the inlet guide vanes 150 . Reducing the minimum angles for the inlet guide vane 150 reduces the core airflow through the gas turbine system 100 so as to raise the reaction zone temperature in the combustor 130 . During a turndown, the angles of the inlet guide vanes 150 may be reduced until the minimum angle or an exhaust temperature isotherm is reached. Operation above this temperature level may cause damage to downstream components. After reaching either of these limits, a decrease in the load requires a reduction in the fuel flow. This reduction, however, may decrease the reaction zone temperature in the combustor 130 and may promote CO formation.
  • a further reduction in the minimum angle for the inlet guide vanes 150 therefore may allow operation along the exhaust temperature isotherm at a lower load before a reduction in fuel flow may be needed. These minimum angles may result in an improved turndown over a portion of the ambient temperature range.
  • angles of about 30 to about 50 degrees may be used herein, with a typical full operating range extending from about 40 to about 90 degrees. Other angles may be used herein.
  • the angles of the inlet guide vanes 150 generally are opened to maintain exhaust temperatures at or below the isotherm. Increasing the exhaust temperature isotherm also may permit operation at lower angles of the inlet guide vanes 150 . Increasing the isotherm may be accomplished by adjusting the operating parameters of the gas turbine 100 as a whole. Further, variations in the isotherm may be caused by adding duct insulation, different material selection, and varying other components.
  • an inlet bleed heat configuration 155 is shown.
  • This configuration includes an inlet bleed heat line 160 that may be positioned between the compressor discharge casing 120 and the inlet guide vanes 150 .
  • the inlet bleed heat line 160 extracts air from the compressor discharge casing 120 and introduces it upstage of the inlet guide vanes 150 .
  • An inlet bleed heat line valve 170 may be positioned thereon.
  • the valve 170 may be of conventional design. Recirculating the air from the compressor discharge casing 120 may raise the inlet temperature of the compressor 110 , reduce core airflow, and improve surge margin so as to enable operation at lower angles for the inlet guide vanes 150 .
  • FIG. 2 shows a compressor recirculation configuration 175 .
  • the inlet bleed heat line 160 is connected directly to the compressor 110 .
  • Compressor air also can be extracted at any stage and then reintroduced to an earlier stage where needed. Recirculating the air from the compressor 110 thus may improve surge margins without an impact on the overall efficiency found in the use of the inlet bleed heat because such inlet bleed heat impacts the entire flow path of the compressor 110 ( FIG. 1 ).
  • the recycled air enables operation at lower angles for the inlet guide vanes 150 so as to reduce core airflow and raise combustion temperatures in the combustor 130 .
  • FIG. 3 shows a schematic view of a compressor extraction configuration 180 .
  • This configuration 180 may include a number of compressor cooling lines 190 .
  • Each of the compressor cooling lines 190 may have a valve 200 positioned thereon.
  • the valve 200 may be of conventional design.
  • the compressor cooling lines 190 provide extractions from the compressor 110 , bypassing the combustor 130 , and cooling the turbine 140 .
  • This configuration 180 increases the extraction flow during turndown. The extraction flow may be reintroduced into the turbine 140 or into the exhaust path.
  • a first compressor cooling line 190 may extend from a thirteenth stage of the compressor 110 to a stage two nozzle in the turbine 140 with a second compressor cooling line 190 extending from a ninth stage of the compressor 110 to a stage three nozzle in the turbine 140 .
  • Introduction into the exhaust path may be upstream or downstream of any type of exhaust temperature measurement location.
  • the extractions may be taken from any stage of the compressor 110 .
  • FIG. 4 shows a schematic view of a compressor discharge casing extraction configuration 210 .
  • This configuration 210 may include a compressor discharge casing cooling line 220 with a valve 230 thereon.
  • the valve 230 may be of conventional design.
  • the extraction may be taken from the same location as used in the inlet bleed heat line 160 or additional extractions may be used.
  • the compressor discharge casing configuration 210 may improve compressor surge margin and may be able to increase extractions, inlet bleed heat, and a reduction in the minimum angles for the inlet guide vanes 150 .
  • each method may be applicable for improving turndown performance.
  • the selection of the methods and their operation and interaction will depend on the overall design of the gas turbine system 100 and related combustion technology. Specifically, the level of turndown improvement may depend upon the frame size of the gas turbine 100 and the particular combustion technology used.
  • the preferred configuration may include reducing the minimum angle of the inlet guide vanes 150 , doubling the extraction flows, and adding an extraction from the compressor discharge casing 120 to bypass additional air to the exhaust.
  • the 7FA+e gas turbine is available from the General Electric Company of Schenectady, N.Y.
  • the 9FB gas turbine also is available from the General Electric Company of Schenectady, N.Y.
  • Other types of gas turbines may be used herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
US11/844,479 2007-08-24 2007-08-24 Systems and Methods for Extending Gas Turbine Emissions Compliance Abandoned US20090053036A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/844,479 US20090053036A1 (en) 2007-08-24 2007-08-24 Systems and Methods for Extending Gas Turbine Emissions Compliance
DE102008044442A DE102008044442A1 (de) 2007-08-24 2008-08-18 Systeme und Verfahren zur Erweiterung des Emissionseinhaltungsbereichs bei Gasturbinen
JP2008211278A JP2009052548A (ja) 2007-08-24 2008-08-20 ガスタービンエミッション規制順守を拡大適用するためのシステム及び方法
CH01329/08A CH697810B8 (de) 2007-08-24 2008-08-21 Gasturbinensystem
CN200810210034.8A CN101372914A (zh) 2007-08-24 2008-08-22 扩大燃气轮机排放符合性的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/844,479 US20090053036A1 (en) 2007-08-24 2007-08-24 Systems and Methods for Extending Gas Turbine Emissions Compliance

Publications (1)

Publication Number Publication Date
US20090053036A1 true US20090053036A1 (en) 2009-02-26

Family

ID=40280470

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/844,479 Abandoned US20090053036A1 (en) 2007-08-24 2007-08-24 Systems and Methods for Extending Gas Turbine Emissions Compliance

Country Status (5)

Country Link
US (1) US20090053036A1 (de)
JP (1) JP2009052548A (de)
CN (1) CN101372914A (de)
CH (1) CH697810B8 (de)
DE (1) DE102008044442A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241552A1 (en) * 2008-03-26 2009-10-01 Alstom Technologies, Ltd., Llc Utilizing inlet bleed heat to improve mixing and engine turndown
US20100154434A1 (en) * 2008-08-06 2010-06-24 Mitsubishi Heavy Industries, Ltd. Gas Turbine
ITMI20101075A1 (it) * 2010-06-15 2011-12-16 Ansaldo Energia Spa Metodo per il controllo delle emissioni in una macchina termica, in particolare una turbina a gas, e macchina termica
US20120117816A1 (en) * 2009-05-28 2012-05-17 Katsuhiko Yokohama Water-containing solid fuel drying apparatus and drying method
US20140013765A1 (en) * 2012-07-13 2014-01-16 Alstom Technology Ltd Method and arrangement for gas turbine engine surge control
WO2014009524A1 (en) * 2012-07-13 2014-01-16 Alstom Technology Ltd Gas turbine power plant with flue gas recirculation
EP2789828A1 (de) * 2013-04-12 2014-10-15 Siemens Aktiengesellschaft Verfahren zur Regelung der CO-Emissionen einer Gasturbine
US20150204247A1 (en) * 2014-01-21 2015-07-23 Alstom Technology Ltd. Method of operating a gas turbine assembly and the gas turbine assembly
US9435219B2 (en) 2012-04-24 2016-09-06 General Electric Company Gas turbine inlet system and method
US20160377000A1 (en) * 2014-02-18 2016-12-29 Siemens Aktiengesellschaft Method for operating a gas turbine installation and the same
US20170058784A1 (en) * 2015-08-27 2017-03-02 General Electric Company System and method for maintaining emissions compliance while operating a gas turbine at turndown condition
US20180306112A1 (en) * 2017-04-20 2018-10-25 General Electric Company System and Method for Regulating Flow in Turbomachines
US10167782B2 (en) 2013-09-10 2019-01-01 Siemens Aktiengesellschaft Cooling air line for removing cooling air from a manhole of a gas turbine
US10272475B2 (en) * 2012-11-07 2019-04-30 General, Electric Company Offline compressor wash systems and methods
US10408135B2 (en) 2013-02-22 2019-09-10 Siemens Aktiengesellschaft Method for operating a gas turbine below the nominal power thereof
CN112983652A (zh) * 2021-03-12 2021-06-18 山东赛马力发电设备有限公司 一种燃气轮机进气控制系统
RU2755957C1 (ru) * 2017-10-30 2021-09-23 Сименс Акциенгезелльшафт Способ управления газотурбинным двигателем
US20220106914A1 (en) * 2018-08-09 2022-04-07 Siemens Energy Global GmbH & Co. KG Method for starting a gas turbine in a combined cycle power plant
WO2022103585A1 (en) * 2020-11-10 2022-05-19 Solar Turbines Incorporated Compact airfoil bleed-air re-circulation heat exchanger
US20220195948A1 (en) * 2020-12-21 2022-06-23 General Electric Company System and methods for improving combustion turbine turndown capability
US11459948B2 (en) 2020-02-26 2022-10-04 Mitsubishi Heavy Industries, Ltd. Gas turbine plant
US11852020B2 (en) 2022-04-01 2023-12-26 General Electric Company Adjustable inlet guide vane angle monitoring device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566683B2 (ja) * 2009-12-25 2014-08-06 三菱重工業株式会社 ガスタービン
IT1399723B1 (it) * 2010-04-30 2013-05-03 Nuovo Pignone Spa Metodo e sistema per la rivelazione di ugello bloccato ed il rimedio
EP2407652A1 (de) 2010-07-15 2012-01-18 Siemens Aktiengesellschaft Gasturbine mit einem Sekundärluftsystem und Verfahren zum Betreiben einer solchen Gasturbine
EP2568141A1 (de) * 2011-09-09 2013-03-13 Siemens Aktiengesellschaft Verfahren zum Beschleunigen des Rotors einer stationären Gasturbine auf Nenndrehzahl
US9297316B2 (en) * 2011-11-23 2016-03-29 General Electric Company Method and apparatus for optimizing the operation of a turbine system under flexible loads
EP2831394B8 (de) 2012-03-30 2017-07-19 Ansaldo Energia IP UK Limited Gasturbine mit regelbarem kühlluftsystem
WO2014095094A1 (en) 2012-12-21 2014-06-26 Siemens Aktiengesellschaft Method to operate a combustor of a gas turbine
DE102013202984A1 (de) 2013-02-22 2014-08-28 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gasturbine unterhalb ihrer Nennleistung
US20140348629A1 (en) * 2013-05-21 2014-11-27 Turbogen, Llc Turbomachine assembly and method of using same
JP5989218B1 (ja) * 2015-11-18 2016-09-07 東芝プラントシステム株式会社 発電プラントにおける空気循環制御装置および空気循環制御方法
JP7434031B2 (ja) * 2020-03-31 2024-02-20 三菱重工業株式会社 ガス化複合発電設備及びその運転方法
WO2022172853A1 (ja) * 2021-02-15 2022-08-18 三菱パワー株式会社 ガスタービン設備、及びガスタービンの制御方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2257982A (en) * 1937-08-23 1941-10-07 Bbc Brown Boveri & Cie Gas turbocompressor plant
US3123283A (en) * 1962-12-07 1964-03-03 Anti-icing valve means
US3394265A (en) * 1965-12-15 1968-07-23 Gen Electric Spinning reserve with inlet throttling and compressor recirculation
US4163365A (en) * 1976-12-02 1979-08-07 Bbc Brown, Boveri & Company Limited Method for regulating a power plant containing a gas turbine assembly and apparatus for the performance of the aforesaid method
US4428194A (en) * 1981-02-19 1984-01-31 The Garrett Corporation Compressor bleed air control apparatus and methods
US6027304A (en) * 1998-05-27 2000-02-22 General Electric Co. High pressure inlet bleed heat system for the compressor of a turbine
US6449956B1 (en) * 2001-04-09 2002-09-17 General Electric Company Bypass air injection method and apparatus for gas turbines
US20050235649A1 (en) * 2004-01-09 2005-10-27 Siemens Westinghouse Power Corporation Method for operating a gas turbine
US20050268617A1 (en) * 2004-06-04 2005-12-08 Amond Thomas Charles Iii Methods and apparatus for low emission gas turbine energy generation
US20060042258A1 (en) * 2004-08-27 2006-03-02 Siemens Westinghouse Power Corporation Method of controlling a power generation system
US7096667B2 (en) * 2004-01-09 2006-08-29 Siemens Power Generation, Inc. Control of gas turbine for catalyst activation
US7124591B2 (en) * 2004-01-09 2006-10-24 Siemens Power Generation, Inc. Method for operating a gas turbine
US7181916B2 (en) * 2004-04-12 2007-02-27 General Electric Company Method for operating a reduced center burner in multi-burner combustor
US7185495B2 (en) * 2004-09-07 2007-03-06 General Electric Company System and method for improving thermal efficiency of dry low emissions combustor assemblies

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954754B2 (ja) * 1991-07-22 1999-09-27 株式会社日立製作所 ガスタービンシステムの運転制御装置及び加圧流動床ボイラ発電プラント
JPH07224687A (ja) * 1994-02-08 1995-08-22 Hitachi Ltd ガスタービンの制御方法
JPH09291833A (ja) * 1996-04-30 1997-11-11 Toshiba Corp ガスタービン空気圧縮機再循環流量制御装置
JPH11200890A (ja) * 1998-01-14 1999-07-27 Toshiba Corp ガスタービン装置の空気供給装置
US6226974B1 (en) * 1999-06-25 2001-05-08 General Electric Co. Method of operation of industrial gas turbine for optimal performance
JP4765646B2 (ja) * 2006-02-01 2011-09-07 株式会社日立製作所 ガスタービンの制御方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2257982A (en) * 1937-08-23 1941-10-07 Bbc Brown Boveri & Cie Gas turbocompressor plant
US3123283A (en) * 1962-12-07 1964-03-03 Anti-icing valve means
US3394265A (en) * 1965-12-15 1968-07-23 Gen Electric Spinning reserve with inlet throttling and compressor recirculation
US4163365A (en) * 1976-12-02 1979-08-07 Bbc Brown, Boveri & Company Limited Method for regulating a power plant containing a gas turbine assembly and apparatus for the performance of the aforesaid method
US4428194A (en) * 1981-02-19 1984-01-31 The Garrett Corporation Compressor bleed air control apparatus and methods
US6027304A (en) * 1998-05-27 2000-02-22 General Electric Co. High pressure inlet bleed heat system for the compressor of a turbine
US6449956B1 (en) * 2001-04-09 2002-09-17 General Electric Company Bypass air injection method and apparatus for gas turbines
US20050235649A1 (en) * 2004-01-09 2005-10-27 Siemens Westinghouse Power Corporation Method for operating a gas turbine
US7096667B2 (en) * 2004-01-09 2006-08-29 Siemens Power Generation, Inc. Control of gas turbine for catalyst activation
US7124591B2 (en) * 2004-01-09 2006-10-24 Siemens Power Generation, Inc. Method for operating a gas turbine
US7181916B2 (en) * 2004-04-12 2007-02-27 General Electric Company Method for operating a reduced center burner in multi-burner combustor
US7185494B2 (en) * 2004-04-12 2007-03-06 General Electric Company Reduced center burner in multi-burner combustor and method for operating the combustor
US20050268617A1 (en) * 2004-06-04 2005-12-08 Amond Thomas Charles Iii Methods and apparatus for low emission gas turbine energy generation
US20060042258A1 (en) * 2004-08-27 2006-03-02 Siemens Westinghouse Power Corporation Method of controlling a power generation system
US7185495B2 (en) * 2004-09-07 2007-03-06 General Electric Company System and method for improving thermal efficiency of dry low emissions combustor assemblies

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8001789B2 (en) * 2008-03-26 2011-08-23 Alstom Technologies Ltd., Llc Utilizing inlet bleed heat to improve mixing and engine turndown
US20090241552A1 (en) * 2008-03-26 2009-10-01 Alstom Technologies, Ltd., Llc Utilizing inlet bleed heat to improve mixing and engine turndown
US20100154434A1 (en) * 2008-08-06 2010-06-24 Mitsubishi Heavy Industries, Ltd. Gas Turbine
US20120117816A1 (en) * 2009-05-28 2012-05-17 Katsuhiko Yokohama Water-containing solid fuel drying apparatus and drying method
US9518736B2 (en) * 2009-05-28 2016-12-13 Mitsubishi Heavy Industries, Ltd. Water-containing solid fuel drying apparatus and drying method
EP2397670A1 (de) 2010-06-15 2011-12-21 Ansaldo Energia S.p.A. Verfahren zur Emissionsbegrenzung einer Wärmekraftmaschine, insbesondere eine Gasturbine, und eine Wärmekraftmaschine
ITMI20101075A1 (it) * 2010-06-15 2011-12-16 Ansaldo Energia Spa Metodo per il controllo delle emissioni in una macchina termica, in particolare una turbina a gas, e macchina termica
US9435219B2 (en) 2012-04-24 2016-09-06 General Electric Company Gas turbine inlet system and method
US20140013765A1 (en) * 2012-07-13 2014-01-16 Alstom Technology Ltd Method and arrangement for gas turbine engine surge control
WO2014009524A1 (en) * 2012-07-13 2014-01-16 Alstom Technology Ltd Gas turbine power plant with flue gas recirculation
US20150128608A1 (en) * 2012-07-13 2015-05-14 Alstom Technology Ltd Gas turbine power plant with flue gas recirculation
RU2642951C2 (ru) * 2012-07-13 2018-01-29 АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД Газотурбинная электростанция с рециркуляцией отработавшего газа
US10272475B2 (en) * 2012-11-07 2019-04-30 General, Electric Company Offline compressor wash systems and methods
US10408135B2 (en) 2013-02-22 2019-09-10 Siemens Aktiengesellschaft Method for operating a gas turbine below the nominal power thereof
EP2789828A1 (de) * 2013-04-12 2014-10-15 Siemens Aktiengesellschaft Verfahren zur Regelung der CO-Emissionen einer Gasturbine
US10167782B2 (en) 2013-09-10 2019-01-01 Siemens Aktiengesellschaft Cooling air line for removing cooling air from a manhole of a gas turbine
US20150204247A1 (en) * 2014-01-21 2015-07-23 Alstom Technology Ltd. Method of operating a gas turbine assembly and the gas turbine assembly
US10151250B2 (en) * 2014-01-21 2018-12-11 Ansaldo Energia Switzerland AG Method of operating a gas turbine assembly and the gas turbine assembly
US10794297B2 (en) * 2014-02-18 2020-10-06 Siemens Aktiengsellschaft Method for operating a gas turbine installation and a gas turbine installation for carrying out the method
US20160377000A1 (en) * 2014-02-18 2016-12-29 Siemens Aktiengesellschaft Method for operating a gas turbine installation and the same
US20170058784A1 (en) * 2015-08-27 2017-03-02 General Electric Company System and method for maintaining emissions compliance while operating a gas turbine at turndown condition
US20180306112A1 (en) * 2017-04-20 2018-10-25 General Electric Company System and Method for Regulating Flow in Turbomachines
RU2755957C1 (ru) * 2017-10-30 2021-09-23 Сименс Акциенгезелльшафт Способ управления газотурбинным двигателем
US11365689B2 (en) 2017-10-30 2022-06-21 Siemens Energy Global GmbH & Co. KG Method of controlling a gas turbine engine
US20220106914A1 (en) * 2018-08-09 2022-04-07 Siemens Energy Global GmbH & Co. KG Method for starting a gas turbine in a combined cycle power plant
US11459948B2 (en) 2020-02-26 2022-10-04 Mitsubishi Heavy Industries, Ltd. Gas turbine plant
WO2022103585A1 (en) * 2020-11-10 2022-05-19 Solar Turbines Incorporated Compact airfoil bleed-air re-circulation heat exchanger
US20220195948A1 (en) * 2020-12-21 2022-06-23 General Electric Company System and methods for improving combustion turbine turndown capability
US11898502B2 (en) * 2020-12-21 2024-02-13 General Electric Company System and methods for improving combustion turbine turndown capability
CN112983652A (zh) * 2021-03-12 2021-06-18 山东赛马力发电设备有限公司 一种燃气轮机进气控制系统
US11852020B2 (en) 2022-04-01 2023-12-26 General Electric Company Adjustable inlet guide vane angle monitoring device

Also Published As

Publication number Publication date
CN101372914A (zh) 2009-02-25
JP2009052548A (ja) 2009-03-12
DE102008044442A1 (de) 2009-02-26
CH697810B8 (de) 2013-02-28
CH697810A2 (de) 2009-02-27
CH697810B1 (de) 2012-06-15

Similar Documents

Publication Publication Date Title
US20090053036A1 (en) Systems and Methods for Extending Gas Turbine Emissions Compliance
US10544739B2 (en) Method and apparatus for optimizing the operation of a turbine system under flexible loads
JP6294593B2 (ja) 二次流れシステムを制御するための方法およびシステム
US7784288B2 (en) Methods and systems of variable extraction for compressor protection
US8240975B1 (en) Multiple staged compressor with last stage airfoil cooling
EP2650508A2 (de) Verfahren und System zur Steuerung eines stöchiometrischen AGR-Systems eines regenerativen Abwärmesystems
US8152457B2 (en) Compressor clearance control system using bearing oil waste heat
EP2650509A2 (de) Verfahren und System zur Steuerung eines Extraktionsdruckes und der Extraktionstemperatur eines stöchiometrischen AGR-Systems
US9297311B2 (en) Gas turbine power plant with flue gas recirculation and oxygen-depleted cooling gas
US8281601B2 (en) Systems and methods for reintroducing gas turbine combustion bypass flow
US8172521B2 (en) Compressor clearance control system using turbine exhaust
US9938874B2 (en) Power generation system exhaust cooling
KR102042907B1 (ko) 가스 터빈의 제조 방법
US10066632B2 (en) Inlet bleed heat control system
US20150322861A1 (en) Enhanced Turbine Cooling System Using a Blend of Compressor Bleed Air and Ambient Air
US20150322866A1 (en) Enhanced Turbine Cooling System Using a Blend of Compressor Bleed Air and Turbine Compartment Air
US9534536B2 (en) Turbine flow modulation for part load performance
US20150377126A1 (en) Combined Gas Turbine Auxiliary Systems
US9863284B2 (en) Power generation system having compressor creating excess air flow and cooling fluid injection therefor
US20160061060A1 (en) Combined cycle power plant thermal energy conservation
Higuchi et al. Test Results from the Advanced Humid Air Turbine System Pilot Plant: Part 1—Overall Performance
EP2896793A1 (de) Verfahren zum Betrieb einer Gasturbinenanordnung und die Gasturbinenanordnung
Ingistov et al. Operation of Large Industrial Gas Turbines During Periods of Low Electricity Demands

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRAWLEY, BRADLEY D.;O'CONNOR`, MICHAEL J.;MOSELY, MATTHEW J.;AND OTHERS;REEL/FRAME:019741/0823;SIGNING DATES FROM 20070821 TO 20070823

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION