US20090048180A1 - Sustained-release preparation - Google Patents

Sustained-release preparation Download PDF

Info

Publication number
US20090048180A1
US20090048180A1 US12/285,494 US28549408A US2009048180A1 US 20090048180 A1 US20090048180 A1 US 20090048180A1 US 28549408 A US28549408 A US 28549408A US 2009048180 A1 US2009048180 A1 US 2009048180A1
Authority
US
United States
Prior art keywords
group
acid
polymer
lactic acid
sustained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/285,494
Inventor
Shigeru Kamei
Yasutaka Igari
Yasuaki Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Pharmaceutical Co Ltd filed Critical Takeda Pharmaceutical Co Ltd
Priority to US12/285,494 priority Critical patent/US20090048180A1/en
Publication of US20090048180A1 publication Critical patent/US20090048180A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/23Luteinising hormone-releasing hormone [LHRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • A61K38/09Luteinising hormone-releasing hormone [LHRH], i.e. Gonadotropin-releasing hormone [GnRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a sustained-release preparation containing a physiologically active peptide and to a method of producing the same.
  • the prior art includes, as disclosed in EP-A-481,732, a sustained-release preparation comprising a drug, a polylactic acid and a glycolic acid-hydroxycarboxylic acid [HOCH(C 2-8 alkyl)COOH] copolymer.
  • the disclosed process comprises preparing a W/O emulsion consisting of an internal water phase comprising an aqueous solution of a physiologically active peptide and an external oil phase comprising a solution of a biodegradable polymer in an organic solvent, adding said W/O emulsion to water or an aqueous medium and processing the resulting W/O/W emulsion into sustained-release microcapsules (drying-in-water method).
  • EP-A-52510 describes a microcapsule comprising a hormonally active polypeptide, a biodegradable polymer and a polymer hydrolysis control agent.
  • the disclosed process for its production is a coacervation process which comprises adding a coacervation agent to a W/O emulsion consisting of an aqueous solution of the polypeptide as the internal water phase and a halogenated organic solvent as the oil phase to provide microcapsules.
  • GB-A-2209937 describes a pharmaceutical composition comprising a polylactide, a polyglycolide, a lactic acid-glycolic acid copolymer or a mixture of these polymers and a water-insoluble peptide. Also disclosed is a production process which comprises dispersing a salt of the water-insoluble peptide in a solution of said polylactide, polyglycolide, a lactic acid-glycolic acid copolymer or a mixture of these polymers, removing the solvent by evaporation and molding the resulting mixture into solid particles.
  • EP-A-58481 describes a process for producing a pharmaceutical composition comprising a polylactide and an acid-stable polypeptide which, for instance, comprises dissolving tetragastrin hydrochloride and a polylactide in aqueous dioxane, casting the solution into a film and evaporating the solvent.
  • EP-A-0467389 teaches a technology for providing a drug delivery system for proteins and polypeptides by the polymer precipitation technique or the microsphere technique.
  • this literature contains no specific disclosure about a system containing an LH-RH derivative.
  • LH-RH The luteinizing hormone-releasing hormone, known as LH-RH (or GnRH), is secreted from the hypothalamus and binds to receptors on the pituitary gland.
  • LH luteinizing hormone
  • FSH folicle stimulating hormone
  • LH-RH derivatives are expected to be of value as therapeutic agents for hormone-dependent diseases such as prostate cancer, benign prostatomegaly, endometriosis, hysteromyoma, metrofibroma, precocious puberty, mammary cancer, etc. or as contraceptives.
  • hormone-dependent diseases such as prostate cancer, benign prostatomegaly, endometriosis, hysteromyoma, metrofibroma, precocious puberty, mammary cancer, etc. or as contraceptives.
  • LH-RH antagonists of the so-called first and second generations The Pharmaceuticals Monthly 32, 1599-1605, 1990
  • LH-RH-antagonizing peptides having no appreciable histamine-releasing activity have been developed (cf. U.S. Pat. No. 5,110,904, for instance).
  • a sustained-release preparation which comprises a physiologically active peptide of the general formula
  • X represents an acyl group
  • R 1 , R 2 and R 4 each represents an aromatic cyclic group
  • R 3 represents a D-amino acid residue or a group of the formula
  • R 3 ′ is a heterocyclic group
  • R 5 represents a group of the formula —(CH 2 ) n —R 5 ′ wherein n is 2 or 3, and R 5 ′ is an amino group which may optionally be substituted, an aromatic cyclic group or an O-glycosyl group
  • R 6 represents a group of the formula —(CH 2 ) n —R 6 ′ wherein n is 2 or 3, and R 6 ′ is an amino group which may optionally be substituted
  • R 7 represents a D-amino acid residue or an azaglycyl residue
  • Q represents hydrogen or a lower alkyl group or a salt thereof and a biodegradable polymer having a terminal carboxyl group
  • R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid
  • X is acetyl
  • the biodegradable polymer is a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula [II] and (B) a polylactic acid, 7)
  • R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid and a substantially water-insoluble physiologically active peptide or a salt thereof in a solvent which is substantially immiscible with water and then removing said solvent, and 25) A method according to the above paragraph 24, which further comprises after dissolving the biodegradable polymer and the substantially water-insoluble peptide or salt thereof in the solvent adding the resulting solution to an aqueous medium to provide an O/W emulsion.
  • NAcD2Nal N-Acetyl-D-3-(2-naphtyl)alanyl
  • the peptide [I] shows LH-RH antagonistic activity and is effective for the treatment of hormone-dependent diseases such as prostatic cancer, prostatomegaly, endometriosis, hysteromyoma, metrofibroma, precocious puberty, mammary cancer, etc. or for contraception.
  • hormone-dependent diseases such as prostatic cancer, prostatomegaly, endometriosis, hysteromyoma, metrofibroma, precocious puberty, mammary cancer, etc. or for contraception.
  • the acyl group X is preferably an acyl group derived from carboxylic acid.
  • the acyl group include a C 2-7 alkanoyl, C 7-15 cycloalkenoyl (e.g., cyclohexenoyl), C 1-6 alkylcarbamoyl (e.g., ethyl carbamoyl), 5- or 6-membered heterocyclic carbonyl (e.g. piperidinocarbonyl) and carbamoyl group which may optionally be substituted.
  • the acyl group is preferably a C 2-7 alkanoyl group (e.g., acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl or heptanoyl) which may optionally be substituted, more preferably C 2-4 alkanoyl group (e.g., acetyl, propionyl, butyryl, isobutyryl) which may optionally be substituted.
  • C 2-7 alkanoyl group e.g., acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl or heptanoyl
  • C 2-4 alkanoyl group e.g., acetyl, propionyl, butyryl, isobutyryl
  • the substituents are for example C 1-6 alkylamino group (e.g., methylamino, ethylamino, diethylamino, propylamino), C 1-3 alkanoyl amino group (e.g., formylamino, acetylamino, propionylamino), C 7-15 cycloalkenoyl amino group (e.g., cyclohexenoylamino), C 7-15 arylcarbonyl-amino group (e.g., benzoylamino), 5- or 6-membered heterocyclic carboxamido group (e.g., tetrahydrofurylcarboxamido, pyridylcarboxamido, furylcarboxamido), hydroxyl group, carbamoyl group, formyl group, carboxyl group, 5- or 6-membered heterocyclic group (e.g., pyridyl, morpholino).
  • X is preferably a C 2-7 alkanoyl group which may optionally be substituted by a 5- or 6-membered heterocyclic carboxamido group.
  • X is more preferably a C 2-4 alkanoyl group which may optionally be substituted by a tetrahydrofuryl carboxamido group.
  • the aromatic cyclic group R 1 , R 2 or R 4 may for example be an aromatic cyclic group of 6 to 12 carbon atoms.
  • the aromatic cyclic group are phenyl, naphthyl, anthryl and so on.
  • Preferred are aromatic cyclic groups of 6 to 10 carbon atoms, such as phenyl and naphthyl.
  • These aromatic cyclic groups may each have 1 to 5, preferably 1 to 3, suitable substituents in appropriate positions on the ring.
  • substituents include hydroxyl, halogen, aminotriazolyl-substituted amino, alkoxy and so on.
  • halogens mentioned above include fluorine, chlorine, bromine and iodine.
  • the aminotriazolyl moiety of said aminotriazolyl-substituted amino includes, among others, 3-amino-1H-1,2,4-triazol-5-yl, 5-amino-1H-1,3,4-triazol-2-yl, 5-amino-1H-1,2,4-triazol-3-yl, 3-amino-2H-1,2,4-triazol-5-yl, 4-amino-1H-1,2,3-triazol-5-yl, 4-amino-2H-1,2,3-triazol-5-yl and so on.
  • the alkoxy group is preferably an alkoxy group of 1 to 6 carbon atoms (e.g. methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc.).
  • R 1 is naphthyl or halophenyl. More preferably, R 2 is halophenyl. More preferably, R 4 is hydroxyphenyl or aminotriazolylamino-substituted phenyl.
  • the D-amino acid residue R 3 is preferably an ⁇ -D-amino acid residue of 3 to 12 carbon atoms.
  • the amino acid are leucine, isoleucine, norleucine, valine, norvaline, 2-aminobutyric acid, phenylalanine, serine, threonine, methionine, alanine, tryptophan and aminoisobutyric acid.
  • These amino acids may have suitable protective groups (the protective groups used conventionally in the art, such as t-butyl, t-butoxy, t-butoxycarbonyl, etc.).
  • the heterocyclic group R 3 ′ includes 5- or 6-membered heterocyclic groups each containing 1 to 2 nitrogen or sulfur atoms as hetero-atoms, which may optionally be fused to a benzene ring.
  • the particularly preferred species of R 3 ′ is pyridyl or 3-benzo[b]thienyl.
  • the aromatic cyclic group R 5 may be the same as the aromatic cyclic group R 1 , R 2 or R 4 .
  • the aromatic cyclic group may have 1 to 5, preferably 1 to 3, suitable substituents in appropriate positions on the ring.
  • the substituents may also be the same as the substituents mentioned for R 1 , R 2 or R 4 .
  • the particularly preferred substituent is aminotriazolyl-substituted amino.
  • the glycosyl group for O-glycosyl R 5 is preferably a hexose or a derivative thereof.
  • the hexose includes D-glucose, D-fructose, D-mannose, D-galactose, L-galactose and so on.
  • deoxy sugars L- and D-fucose, D-quinovose, L-rhamnose, etc.
  • amino sugars D-glucosamine, D-galactosamine, etc.
  • More preferred are deoxy sugars (L- and D-fucose, D-quinovose, L-rhamnose, etc.). Still more preferred is L-rhamnose.
  • R 5 ′ includes, among others, acyl, carbamoyl, carbazoyl which may be substituted by acyl or amidino which may be mono- or di-substituted by alkyl.
  • acyl and the acyl for the above-mentioned carbazoyl which may be substituted by acyl include nicotinoyl, furoyl, thenoyl and so on.
  • the alkyl moiety of the mono- or di-alkylamidino mentioned above includes straight-chain or branched alkyl groups of 1 to 4 carbon atoms, thus including methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl and so on.
  • the preferred alkyl moiety is methyl or ethyl.
  • R 6 ′ includes alkyl and amidino which may be mono- or di-substituted by alkyl.
  • alkyl and the alkyl of the mono- or dialkylamidino mentioned above include those alkyl groups mentioned for R 5 ′.
  • the D-amino acid residue R 7 is preferably a D-amino acid residue of 3 to 9 carbon atoms, such as D-alanyl, D-leucyl, D-valyl, D-isoleucyl, D-phenylalanyl and so on. More preferred are D-amino acid residues of 3 to 6 carbon atoms, such as D-alanyl, D-valyl and so on. The more preferred species of R 7 is D-alanyl.
  • the lower alkyl group Q may be the alkyl group defined for R 5 ′.
  • the most preferred species of Q is methyl.
  • R 1 Specific examples of R 1 are:
  • the peptide [I] has one or more asymmetric carbon atom(s), there are two or more stereoisomers. Any of such steroisomers as well as a mixture thereof is within the scope of the present invention.
  • the peptide of general formula [I] is produced by the per se known processes. Typical specific processes are described in U.S. Pat. No. 5,110,904.
  • the peptide [I] can be used in the form of a salt, preferably a pharmacologically acceptable salt.
  • the salt includes salts with inorganic acids (e.g. hydrochloric acid, sulfuric acid, nitric acid, etc.) or organic acids (e.g. carbonic acid, hydrogen carbonic acid, succinic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.).
  • inorganic acids e.g. hydrochloric acid, sulfuric acid, nitric acid, etc.
  • organic acids e.g. carbonic acid, hydrogen carbonic acid, succinic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.
  • the peptide has acidic groups such as carboxyl
  • salts with inorganic bases e.g. alkali metals such as sodium, potassium, etc. and alkaline earth metals such as calcium, magnesium, etc.
  • organic bases e.g.
  • the peptide [I] may be in the form of a metal complex compound (e.g. copper complex, zinc complex, etc.).
  • the preferred salts of peptide [I] are salts with organic acids (e.g. carbonic acid, hydrogen carbonic acid, succinic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.). The most preferred is the acetate.
  • Particularly preferred species of peptide [I] or salt are as follows.
  • the proportion of the peptide [I] may vary with the type of peptide, the expected pharmacological effect and duration of effect, among other factors, and may range from about 0.01 to about 50% (w/w) based on the biodegradable polymer.
  • the preferred range is about 0.1 to about 40% (w/w) and a more preferred range is about 1 to about 30% (w/w).
  • biodegradable polymer having a terminal carboxyl group is now described.
  • a biodegradable polymer about 1 to 3 g, was dissolved in a mixture of acetone (25 ml) and methanol (5 ml) and using phenolphthalein as the indicator, the carboxyl groups in the solution were quickly titrated with 0.05N alcoholic potassium hydroxide solution under stirring at room temperature (20° C.). The number average molecular weight by end-group determination was then calculated by means of the following equation.
  • A is the mass of biodegradable polymer (g)
  • B is the amount of 0.05N alcoholic potassium hydroxide solution (ml) added to react the titration end-point.
  • the result of the above calculation is referred to as the number average molecular weight by end-group determination.
  • the number average molecular weight by end-group determination is approximately equal to the number average molecular weight found by GPC.
  • the number average molecular weight by end-group determination is by far greater than the number average molecular weight by GPC determination.
  • biodegradable polymer having a terminal carboxyl group is used herein to mean a biodegradable polymer showing a substantial agreement between the number average molecular weight by GPC determination and the number average molecular weight by end-group determination.
  • the number average molecular weight by end-group determination is an absolute value
  • the number average molecular weight by GPC determination is a relative value which varies according to analytical and procedural conditions (such as types of mobile phase and column, reference substance, selected slice width, selected baseline, etc.). Therefore, the two values cannot be numerically correlated by generalization.
  • the term ‘substantial agreement’ between the number average molecular weight by GPC determination and the number average molecular weight by end-group determination means that the number average molecular weight found by end-group determination is about 0.4 to 2 times, more preferably about 0.5 to 2 times, most preferably about 0.8 to 1.5 times, the number average molecular weight by GPC determination.
  • the term ‘by far greater’ as used above means that the number average molecular weight by end-group determination is about twice or greater than the number average molecular weight by GPC determination.
  • the preferred polymer for the purpose of the present invention is a polymer showing a substantial agreement between the number average molecular weight by GPC determination and the number average molecular weight by end-group determination.
  • biodegradable polymer having a terminal carboxyl group can be mentioned polymers and copolymers, as well as mixtures thereof, which are synthesized from one or more species of ⁇ hydroxy acids (e.g. glycolic acid, lactic acid, hydroxybutyric acid, etc.), hydroxydicarboxylic acids (e.g. malic acid etc.), hydroxytricarboxylic acids (e.g. citric acid etc.), etc. by the non-catalytic dehydrative polycondensation reaction, poly- ⁇ -cyanoacrylic esters, polyamino acids (e.g. poly- ⁇ -benzyl-L-glutamic acid etc.), maleic anhydride copolymers (e.g. styrene-maleic acid copolymer etc.) and so on.
  • ⁇ hydroxy acids e.g. glycolic acid, lactic acid, hydroxybutyric acid, etc.
  • hydroxydicarboxylic acids e.g. malic acid etc.
  • the mode of polymerization may be random, block or graft.
  • any of the above-mentioned ⁇ -hydroxy acids, hydroxydicarboxylic acids and hydroxytricarboxylic acids has an optical activity center within the molecule, any of the D-, L- and DL-forms can be employed.
  • the biodegradable polymer having a terminal carboxyl group is preferably a biodegradable polymer comprising a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula
  • R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid, or a lactic acid-glycolic acid copolymer.
  • the straight-chain or branched alkyl group of 2 to 8 carbon atoms includes, inter alia, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, 1-ethylpropyl, hexyl, isohexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl and 2-ethylbutyl.
  • Preferred, among them, are straight-chain or branched alkyls of 2 to 5 carbon atoms. Specifically, ethyl, propyl, isopropyl, butyl and isobutyl are preferred. R is most preferably ethyl.
  • the hydroxycarboxylic acid of the general formula [II] includes, inter alia, 2-hydroxybutyric acid, 2-hydroxyvaleric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxycaproic acid, 2-hydroxyisocaproic acid and 2-hydroxycapric acid. Preferred are 2-hydroxybutyric acid, 2-hydroxyvaleric acid, 2-hydroxy-3-methylbutyric acid and 2-hydroxycaproic acid.
  • the hydroxycarboxylic acid of the general formula [II] is most preferably 2-hydroxybutyric acid. While these hydroxycarboxylic acids may be any of the D-, L- and D,L-compounds, the D-/L-ratio (mol %) is preferably in the range of about 75/25 through about 25/75.
  • the more preferred embodiment is a hydroxycarboxylic acid with a D-/L-ratio (mol %) within the range of about 60/40 through about 40/60.
  • the most preferred is a hydroxycarboxylic acid with a D-/L-ratio (mol %) within the range of about 55/45 through about 45/55.
  • glycolic acid copolymer the mode of copolymerization may be random, block or graft. Preferred are random copolymers.
  • hydroxycarboxylic acids of the general formula [II] can be used alone or in combination.
  • the preferred proportions of glycolic acid and hydroxycarboxylic acid [II] in said glycolic acid copolymer (A) are about 10 to about 75 mole % of glycolic acid and the balance of hydroxycarboxylic acid. More desirably, the copolymer consists of about 20 to about 75 mole % of glycolic acid and the balance of hydroxycarboxylic acid. Most desirably, the copolymer consists of about 40 to about 70 mole % of glycolic acid and the balance of hydroxycarboxylic acid.
  • the weight average molecular weight of said glycolic acid copolymer may range from about 2,000 to about 50,000. The preferred range is about 3,000 to about 40,000. The more preferred range is about 8,000 to about 30000.
  • the dispersion value (weight average molecular weight/number average molecular weight) is preferably in the range of about 1.2 to about 4.0. Particularly preferred are copolymers with dispersion values in the range of about 1.5 to about 3.5.
  • the glycolic acid copolymer (A) can be synthesized by the known technology, for example by the process described in Japanese laid-open patent application 28521/1986 specification.
  • Polylactic acid for use in the present invention may be whichever of L- and D-compounds and any mixture thereof.
  • Preferred is a species with a D-/L-ratio (mole %) in the range of about 75/25 through about 20/80.
  • the more preferred D-/L-ratio (mole %) of polylactic acid is about 60/40 through about 25/75.
  • the most advantageous D/L-ratio (mole %) of polylactic acid is about 55/45 through about 25/75.
  • the weight average molecular weight of polylactic acid is preferably in the range of about 1,500 to about 30,000, more preferably about 2,000 to about 20,000 and still more preferably about 3,000 to about 15,000.
  • the dispersion value of polylactic acid is preferably about 1.2 to about 4.0 and more desirably about 1.5 to about 3.5.
  • Polylactic acid can be synthesized by two known alternative processes, namely a process involving a ring-opening polymerization of lactide which is a dimer of lactic acid and a process involving a dehydrative polycondensation of lactic acid.
  • a process involving a ring-opening polymerization of lactide which is a dimer of lactic acid and a process involving a dehydrative polycondensation of lactic acid.
  • the process involving a direct dehydrative polycondensation of lactic acid is preferred. This process is described in, for example, Japanese laid-open patent application 28521/1986.
  • the glycolic acid copolymer (A) and polylactic acid (B) are used in an (A)/(B) ratio (by weight) of about 10/90 through about 90/10.
  • the preferred blend ratio is about 20/80 through about 80/20.
  • the most desirable ratio is about 30/70 through about 70/30. If the proportion of either (A) or (B) is too large, the final preparation will show a drug release pattern not much different from the pattern obtained when (A) or (B) alone is used, that is to say the linear release pattern in a late stage of release which is obtainable with the mixed base cannot be obtained.
  • glycolic acid copolymer and polylactic acid vary considerably with their molecular weights and composition but generally speaking, since the decomposition and elimination rates of glycolic acid copolymer are relatively higher, the period of release can be prolonged by increasing the molecular weight of polylactic acid or reducing the blend ratio (A)/(B). Conversely, the duration of release may be shortened by reducing the molecular weight of polylactic acid or increasing the (A)/(B) blend ratio. Furthermore, the duration of release can be adjusted by changing the species or relative amount of hydroxycarboxylic acid of general formula [II].
  • lactic acid/glycolic acid lactic acid/glycolic acid
  • its polymerization ratio (lactic acid/glycolic acid) (mole %) is preferably about 100/0 to about 40/60. The more preferred ratio is about 90/10 to about 50/50.
  • the weight average molecular weight of said copolymer is preferably about 5,000 to about 25,000.
  • the more preferred range is about 7,000 to about 20,000.
  • the degree of dispersion (weight average molecular weight/number average molecular weight) of said; copolymer is preferably about 1.2 to about 4.0. The more preferred range is about 1.5 to about 3.5.
  • the above-mentioned copolymer of lactic acid and glycolic acid can be synthesized by the known technology, for example by the process described in Japanese laid-open patent application 28521/1986.
  • the decomposition and disappearance rate of a copolymer of lactic acid and glycolic acid varies greatly with the composition and molecular weight but generally speaking, the smaller the glycolic acid fraction, the lower is the decomposition and disappearance rate. Therefore, the duration of drug release can be prolonged by reducing the glycolic acid fraction or increasing the molecular weight. Conversely, the duration of release can be diminished by increasing the glycolic acid fraction or reducing the molecular weight.
  • a copolymer of lactic acid and glycolic acid with a polymerization ratio within the above-mentioned range and a weight average molecular weight within the above-mentioned range.
  • the weight average molecular weight and the degree of dispersion mean the molecular weight in terms of polystyrene as determined by gel permeation chromatography (GPC) using 9; polystyrenes with the weight average molecular weights of 120,000, 52,000, 22,000, 9,200, 5,050, 2950, 1,050, 580 and 162 as references and the dispersion value calculated using the same molecular weight, respectively.
  • GPC gel permeation chromatography
  • the sustained-release preparation of the present invention is produced by dissolving the peptide [I] and a biodegradable polymer having a terminal carboxyl group in a solvent which is substantially immiscible with water and then removing said solvent.
  • the solvent which is substantially immiscible with water is a solvent which is not only substantially immiscible with water and capable of dissolving the biodegradable polymer but one which renders the resultant polymer solution capable of dissolving the peptide [I].
  • it is a solvent with a solubility in water of not more than 3% (w/w) at atmospheric temperature (20° C.).
  • the boiling point of such solvent is preferably not higher than 120° C.
  • the solvent thus, includes halogenated hydrocarbons (e.g. dichloromethane, chloroform, chloroethane, trichloroethane, carbon tetrachloride, etc.), alkyl ethers of 3 or more carbon atoms (e.g.
  • isopropyl ether etc. fatty acid alkyl (of 4 or more carbon atoms) esters (e.g. butyl acetate etc.), aromatic hydrocarbons (e.g. benzene, toluene, xylene, etc.) and so on.
  • aromatic hydrocarbons e.g. benzene, toluene, xylene, etc.
  • solvents can be used in a suitable combination of 2 or more species.
  • the more preferred solvents are halogenated hydrocarbons (e.g. dichloromethane, chloroform, chloroethane, trichloroethane, carbon tetrachloride, etc.). The most preferred is dichloromethane.
  • Removal of the solvent can be effected by the per se known procedures.
  • the method comprising evaporating the solvent at atmospheric pressure or under gradual decompression with constant stirring by means of a propeller mixer or a magnetic stirrer or the method comprising evaporating the solvent under controlled vacuum in a rotary evaporator can be employed.
  • dissolving the peptide [I] and a biodegradable polymer with a terminal carboxyl group means achieving a condition such that the resultant solution shows no visually observable residue of undissolved peptide at ordinary temperature (20° C.).
  • the amount of peptide which can be dissolved depends on the number of a terminal carboxyl groups per unit weight of the biodegradable polymer.
  • the peptide and the terminal carboxyl group interact in the ratio of 1 to 1, the same molar amount of the peptide as that of the terminal carboxyl group can be dissolved in theory.
  • the peptide may be dissolved in the range of about 0.1 to about 100% (w/w), preferably about 1 to about 70% (w/w), most preferably about 2 to about 50% (w/w), with respect to the biodegradable polymer which is dissolved in the solvent.
  • the present invention is further related to a method of producing a sustained-release preparation which comprises dissolving a biodegradable polymer comprising a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula
  • R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid and a substantially water-insoluble physiologically active peptide or a salt thereof in a solvent which is substantially immiscible with water and then removing said solvent.
  • the substantially water-insoluble physiologically active peptide is not limited and includes naturally-occurring, synthetic and semi-synthetic peptides.
  • aromatic groups e.g. groups derived from benzene, naphthalene, phenanthrene, anthracene, pyridine, pyrole, indole, etc.
  • More preferred physiologically active peptides are those having 2 or more aromatic groups in side chains thereof.
  • Particularly preferred physiologically active peptides are those
  • the substantially water-insoluble physiologically active peptide for use in the present invention is preferably a peptide showing a solubility of not more than 1% in water, consisting of two or more amino acids and having a molecular weight of about 200 to 30000.
  • the molecular weight range is more preferably about 300 to 20000 and still more preferably about 500 to 10000.
  • LH-RH luteinizing hormone releasing hormone
  • luteinizing hormone releasing hormone (LH-RH) antagonists cf. U.S. Pat. No. 4,086,219, No. 4,124,577, No. 4,253,997 and No. 4,317,815, etc.
  • insulin cf. U.S. Pat. No. 4,086,219, No. 4,124,577, No. 4,253,997 and No. 4,317,815, etc.
  • somatostatin somatostatin derivatives
  • growth hormone prolactin
  • MSH melanocyte stimulating hormone
  • salts and derivatives of thyroid hormone releasing hormone cf.
  • TSH thyroid stimulating hormone
  • LH luteinizing hormone
  • FSH follicle stimulating hormone
  • vasopressin vasopressin derivatives
  • oxytocin calcitonin
  • gastrin secretin
  • pancreozymin cholecystokinin
  • angiotensin human placental lactogen
  • human chorionic gonadotropin HCG
  • enkepharin enkephalin derivatives
  • endorphin kyotrphin, tuftsin, thymopoietin, thymosin, thymostimulin, thymic humoral factor (THF), facteur thymique sérique (FTS) and its derivatives (cf. U.S. Pat. No. 4,229,438), other thymic factors, tumor necrosis factor (TNF), colony stimulating factor (CSF), motilin, dynorphin, bombesin, neurotensin, cerulein, bradykinin, atrial natruretic factor, nerve growth factor, cell growth factor, neurotrophic factor, peptides having endothelin antagonistic activity (cf. EP-A No. 436189, No. 457195 and No. 496452, JP Kokai H-3-94692 and 03-130299) and fragments or derivatives of these physiologically active peptides.
  • TNF tumor necrosis factor
  • CSF colony stimulating
  • physiologically active peptide examples include physiologically active peptides and salts which are antagonists of luteinizing hormone releasing hormone (LH-RH) and useful for the treatment of hormone-dependent diseases such as prostatic cancer, prostatic hypertrophy, endometriosis, uterine myoma, precocious puberty, breast cancer, etc. and for contraception.
  • hormone-dependent diseases such as prostatic cancer, prostatic hypertrophy, endometriosis, uterine myoma, precocious puberty, breast cancer, etc. and for contraception.
  • the physiologically active peptide for use in the present invention can be in the form of a salt, preferably a pharmacologically acceptable salt.
  • the salt mentioned above may for example be the salt formed with an inorganic acid (e.g. hydrochloric acid, sulfuric acid, nitric acid, etc.) or an organic acid (e.g. carbonic acid, hydrogencarbonic acid, succinic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.).
  • the peptide has an acidic group such as carboxyl
  • the salt may for example be the salt formed with an inorganic base (e.g. alkali metals such as sodium, potassium, etc.
  • the peptide may further be in the form of a metal complex compound (e.g. copper complex, zinc complex, etc.).
  • a metal complex compound e.g. copper complex, zinc complex, etc.
  • physiologically active peptide or salt thereof are found in U.S. Pat. No. 5,110,904, Journal of Medicinal Chemistry 34, 2395-2402, 1991, Recent Results in Cancer Research 124, 113-136, 1992, and other literature.
  • physiologically active peptides of general formula [I] and salts thereof can also be mentioned, among others.
  • physiologically active peptide even when it is water-soluble, it can be converted to a derivative compound which is insoluble or converted to an insoluble salt with a water-insoluble acid (e.g. pamoic acid, tannic acid, stearic acid, palmitic acid, etc.) and used in the process of the invention.
  • a water-insoluble acid e.g. pamoic acid, tannic acid, stearic acid, palmitic acid, etc.
  • the amount of said physiologically active peptide in the preparations of the present invention depends on the species of peptide, expected pharmacologic effect and desired duration of effect and so on. Generally, however, it is used in a proportion of about 0.001 to 50% (w/w), preferably about 0.01 to 40% (w/w), more preferably about 0.1 to 30% (w/w), relative to the biodegradable polymer base.
  • the solvent employed in the method is the same as described above.
  • Removal of the solvent can be carried out in the same manner as described above.
  • the preferred process for the production of the sustained-release preparation of the present invention is a microencapsulating process utilizing the drying-in-water technique or the phase separation technique, which is described below, or any process analogous thereto.
  • the peptide [I] is added to a solution of the biodegradable polymer in an organic solvent in the final weight ratio mentioned hereinbefore for such peptide to prepare an organic solvent solution containing the peptide [I] and biodegradable polymer.
  • concentration of the biodegradable polymer in the organic solvent varies according to the molecular weight of the biodegradable polymer and the type of organic solvent but is generally selected from the range of about 0.01 to about 80% (w/w). The preferred range is about 0.1 to about 70% (w/w). The still more preferred range is about 1 to about 60% (w/w).
  • this organic solvent solution containing the peptide [I] and biodegradable polymer (oil phase) is added to a water phase to prepare an O(oil phase)/W (water phase) emulsion.
  • the solvent of the oil phase is then evaporated off to provide microcapsules.
  • the volume of the water phase for this procedure is generally selected from the range of about 1 to about 10000 times the volume of the oil phase. The preferred range is about 2 to about 5000 times and the still more preferred range is about 5 to about 2000 times.
  • An emulsifier may be added to the above water phase.
  • the emulsifier may generally be any substance that contributes to the formation of a stable O/W emulsion.
  • anionic surfactants sodium oleate, sodium stearate, sodium lauryl sulfate, etc.
  • nonionic surfactants polyoxyethylene-sorbitan fatty acid esters [Tween 80 and Tween 60, Atlas Powder], polyoxyethylene-castor oil derivatives [HCO-60 and HCO-50, Nikko Chemicals], etc.
  • polyvinylpyrrolidone polyvinyl alcohol, carboxymethylcellulose, lecithin, gelatin, hyaluronic acid and so on.
  • the concentration may be selected from the range of about 0.001 to about 20% (w/w).
  • the preferred range is about 0.01 to about 10% (w/w) and the still more preferred range is about 0.05 to about 5% (w/w).
  • microcapsules are recovered by centrifugation or filtration and washed with several portions of distilled water to remove the free peptide, vehicle and emulsifier from the surface, then redispersed in distilled water or the like and lyophilized. Then, if necessary, the microcapsules are heated under reduced pressure to further remove the residual water and organic solvent from within the microcapsules. Preferably, this procedure is carried out by heating the microcapsule at a temperature somewhat (5° C.
  • a coacervation agent is gradually added to a solution of said peptide [I] and biodegradable polymer in an organic solvent with constant stirring so that the biodegradable polymer may separate out and solidify.
  • This coacervation agent is added in a volume of about 0.01 to about 1000 times the volume of the organic solvent solution of peptide [I] and biodegradable polymer.
  • the preferred range is about 0.05 to about 500 times and the still more preferred range is about 0.1 to about 200 times.
  • the coacervation agent should be a compound of polymer, mineral oil or vegetable oil type which is miscible with the solvent for the biodegradable polymer yet which does not dissolve the polymer.
  • silicone oil, sesame oil, soybean oil, corn oil, cottonseed oil, coconut oil, linseed oil, mineral oil, n-hexane, n-heptane, etc. can be mentioned. These substances can be used in combination.
  • microcapsules are recovered by filtration and washed repeatedly with heptane or the like to remove the coacervation agent. Then, the free peptide and solvent are removed by the same procedure as described for the drying-in-water technique.
  • an aggregation inhibitor may be added so as to prevent aggregation of particles.
  • the aggregation inhibitor includes water-soluble polysaccharides such as mannitol, lactose, glucose, starch (e.g. corn starch), etc., glycine, proteins such as fibrin, collagen, etc., and inorganic salts such as sodium chloride, sodium hydrogen phosphate and so on.
  • said organic solvent solution of peptide [I] and biodegradable polymer is ejected in a mist form through a nozzle into the drying chamber of a spray drier to evaporate the organic solvent from the finely-divided liquid droplets in a brief time to provide fine microcapsules.
  • the nozzle may be a two-fluid nozzle, pressure nozzle, rotary disk nozzle and so on. It is advantageous to the process to spray an aqueous solution of said aggregation inhibitor from another nozzle for the prevention of intercapsule aggregation in timed coordination with said spray of the organic solvent solution of peptide [I] and biodegradable polymer.
  • the residual water and organic solvent are removed by heating the resultant microcapsules under reduced pressure in the same manner as described hereinbefore.
  • microcapsules can be administered as they are or as processed into various pharmaceutical preparations for administration by routes other than peroral (e.g. intramuscular, subcutaneous and intraorgan injections or implants, nasal, rectal or uterine transmucosal delivery systems, and so on) or for oral administration (e.g. solid preparations such as capsules (e.g. hard capsules, soft capsules, etc.), granules, powders, etc. and liquid preparations such as syrups, emulsions, suspensions and so on).
  • routes other than peroral e.g. intramuscular, subcutaneous and intraorgan injections or implants, nasal, rectal or uterine transmucosal delivery systems, and so on
  • oral administration e.g. solid preparations such as capsules (e.g. hard capsules, soft capsules, etc.), granules, powders, etc. and liquid preparations such as syrups, emulsions, suspensions and so on).
  • the microcapsules can be formulated with a dispersant (e.g. a surfactant such as Tween 80, HCO-60, etc., carboxymethylcellulose, a polysaccharide such as sodium alginate, etc.), a preservative (e.g. methylparaben, propylparaben, etc.), or an isotonizing agent (e.g. sodium chloride, mannitol, sorbitol, glucose, etc.) to prepare an aqueous suspension or they may be dispersed in a vegetable oil such as sesame oil, corn oil or the like to provide an oil suspension for use as a controlled release injection.
  • a dispersant e.g. a surfactant such as Tween 80, HCO-60, etc., carboxymethylcellulose, a polysaccharide such as sodium alginate, etc.
  • a preservative e.g. methylparaben, propylparaben, etc.
  • the particle size of the microcapsules for such injectable suspensions need only be in the range satisfying the dispersibility and needle passage requirements and may for example range from about 0.1 to about 500 ⁇ m.
  • the preferred particle size range is about 1 to about 300 ⁇ m and the still more preferred range is about 2 to about 200 ⁇ m.
  • the whole production process is subjected to sterility control, the microcapsules are sterilized by gamma-ray irradiation or a preservative is added, although these are not exclusive procedures.
  • a biodegradable polymer composition containing the active ingredient peptide well dispersed by a suitable technique can be melted and molded into a spherical, bar-shaped, needle-shaped, pelletized or film shape to provide a sustained-release preparation of the present invention.
  • the above biodegradable polymer composition can be produced by the method described in JP Publication S-50-17525. To be specific, the peptide drug and the polymer are dissolved in a solvent and the solvent is then removed by a suitable method (e.g. spray drying, flash evaporation, etc.) to provide the desired biodegradable polymer composition.
  • the sustained-release preparation of the present invention can be administered as an intramuscular, subcutaneous or intraorgan injection or implant, a transmucosal delivery system for application to the nasal cavity, rectum or uterus, or an oral preparation (e.g. a solid preparation such as a capsule (e.g. hard or soft), granule, powder, etc. or a liquid preparation such as syrup, emulsion, suspension, etc.).
  • an oral preparation e.g. a solid preparation such as a capsule (e.g. hard or soft), granule, powder, etc. or a liquid preparation such as syrup, emulsion, suspension, etc.
  • the sustained-release preparation of the present invention has low toxicity and can be used safely in mammalian animals (e.g. man, bovine, swine, canine, feline, murine, rat and rabbit).
  • mammalian animals e.g. man, bovine, swine, canine, feline, murine, rat and rabbit.
  • the dosage of the sustained-release preparation is dependent on the type and content of the active drug peptide, final dosage form, the duration of release of the peptide, the object of treatment (such as hormone-dependent diseases, e.g. prostatic cancer, prostatomegaly, endometriosis, metrofibroma, precocious puberty, mammary cancer, etc., or for contraception) and the subject animal species, but in any case it is necessary that an effective amount of peptide is successfully delivered.
  • the unit dosage of the active drug peptide taking a one-month delivery system as an example, can be selected advantageously from the range of about 0.01 to about 100 mg/kg body weight for an adult human. The preferred range is about 0.05 to about 50 mg/kg body weight. The most preferred range is about 0.1 to about 10 mg/kg body weight.
  • the unit dosage of the sustained-release preparation per adult human can therefore be selected from the range of about 0.1 to about 500 mg/kg body weight.
  • the preferred range is about 0.2 to about 300 mg/kg body weight.
  • the frequency of administration may range from once in a few weeks, monthly or once in a few months, for instance, and can be selected according to the type and content of the active drug peptide, final dosage form, designed duration of release of the peptide, the disease to be managed and the subject animal.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg over a period of 4 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 3-5 mmHg/150-180° C. for 7 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • the weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid were 3,000; 1,790; and 1,297, respectively.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 500 g of 90% aqueous solution of D,L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 4 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 3-5 mmHg/150-180° C. for 12 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • the weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 5,000; 2,561; and 1,830, respectively.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 5 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 5-7 mmHg/150-180° C. for 18 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • the weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 7,500; 3,563; and 2,301, respectively.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 5 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 5-7 mmHg/150-180° C. for 26 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • the weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 9,000; 3,803; and 2,800, respectively.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 182.5 g of glycolic acid and 166.6 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 3.5 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 5-7 mmHg/150-180° C. for 26 hours, after which it was cooled to provide an amber-colored glycolic acid-2-hydroxybutyric acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 25° C.
  • the weight average molecular weight, as determined by GPC, of the resulting glycolic acid-2-hydroxybutyric acid copolymer was 13,000.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 197.7 g of glycolic acid and 145.8 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 155° C./30 mmHg for a period of 4 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 3-6 mmHg/150-185° C. for 27 hours, after which it was cooled to provide an amber-colored glycolic acid-2-hydroxybutyric acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 25° C.
  • the weight average molecular weight, as determined by GPC, of the resulting glycolic acid-2-hydroxybutyric acid copolymer was 13,000.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 212.9 g of glycolic acid and 124.9 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 160° C./30 mmHg for a period of 3.5 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 3-6 mmHg/160-180° C. for 27 hours, after which it was cooled to provide an amber-colored glycolic acid-2-hydroxybutyric acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 25° C.
  • the weight average molecular weight, as determined by GPC, of the resulting glycolic acid-2-hydroxybutyric acid copolymer was 11,000.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 4 hour with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 3-5 mmHg and 150-180° C. for 10 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1,000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • the weight-average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 4,200; 2,192; and 1,572, respectively.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 182.5 g of glycolic acid and 166.6 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 3.5-hour, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 5-7 mmHg and 150-180° C. for 32 hours, after which it was cooled to provide an amber-colored glycolic acid.2-hydroxybutyric acid copolymer.
  • the polymer was dissolved in 1,000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in a vacuo at 25° C.
  • the weight-average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the resulting glycolic acid.2-hydroxybutyric acid copolymer was 16,300; 5,620; and 2,904, respectively.
  • TFA trifluoroacetic acid
  • anisole 2.0% dimethyl phosphite
  • dichloromethane 50.5% dichloromethane
  • a coupling reaction was carried out, using as activators a 3-fold molar amount of 0.3 M diisopropylcarbodiimide/dichloromethane solution and a 3-fold molar amount of 0.3 M BOC amino acid derivative/DMF (N,N′-dimethylformamide) solution.
  • the activated amino acid was coupled to the free alpha amino group of the peptide on the resin. Reaction times are shown below.
  • Amino-group-protected amino acids were coupled to the resin in the order, frequency and time shown below.
  • the resin was treated with a 30% piperidine solution in DMF for 4 to 24 hours to remove the protecting FMOC group.
  • the resin was washed with dichloromethane several times and then reacted with carbonyldiimidazole (0.9 g) dissolved in DMF (18 ml) for 15 minutes and washed with dichloromethane three times, after which it was reacted overnight with 2-furoic hydrazide (0.53 g) dissolved in DMF (18 ml).
  • the resulting peptide-resin was washed with dichloromethane three times and then dried in the presence of phosphorus pentoxide overnight, after which it was treated with dry hydrogen fluoride at 0° C.
  • the peptide detected as a single peak at 25.7 minutes retention time was collected and lyophilized to yield a purified product of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys (Nisp)-Pro-DAlaNH 2 as a trifluoroacetate.
  • Physical property data on the purified product are as follows:
  • the fraction of the first eluted peak was collected and lyophilized to yield a purified product of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyFur)Leu-Lys(Nisp)-Pro-DAlaNH 2 as an acetate.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 322 g of 90% aqueous solution of D,L-lactic acid and 133 g of glycolic acid and using a mantle heater (So-go Rikagaku Glass Co.), the charge was heated under reduced pressure in a nitrogen stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 4 hours the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 3-30 mmHg/150-185° C. for 23 hours, after which it was cooled to provide a lactic acid-glycolic acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • the weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the resultant lactic acid-glycolic acid copolymer were 10,000; 4,000; and 4,000, respectively. These data showed that the copolymer was a polymer having terminal carboxyl groups.
  • a 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 347 g of 90% aqueous solution of D,L-lactic acid and 266 g of glycolic acid and using a mantle heater (So-go Rikagaku Glass Co.), the charge was heated under reduced pressure in a nitrogen stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 5 hours, with the distillate water being constantly removed.
  • the reaction mixture was further heated under reduced pressure at 3-30 mmHg/150-185° C. for 23 hours, after which it was cooled to provide a lactic acid-glycolic acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • the weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the resultant lactic acid-glycolic acid copolymer were 10,000; 3,700; and 3,900, respectively. These data showed that the copolymer was a polymer having terminal carboxyl groups.
  • the collected microcapsules were redispersed in a small quantity of distilled water, followed by addition of 0.3 g of D-mannitol and freeze-drying to provide a powder.
  • the particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 60 ⁇ m and 4.7% (w/w), respectively.
  • NAcD2Nal-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (AzaglyNic)-Leu-Lys(Nisp)-Pro-DAlaNH 2
  • NAcD2Nal-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys(Nisp)-Pro-DAlaNH 2
  • physiologically active peptide B 240 mg of the acetate of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyNic)-Leu-Lys(Nisp)-Pro-DAlaNH 2 (hereinafter referred to briefly as physiologically active peptide B) obtained in Reference Example 11 was dissolved in a solution of a 50:50 mixture (1.76 g) of the glycolic acid.2-hydroxybutyric acid copolymer obtained in Reference Example 9 and the polylactic acid obtained in Reference Example 8 in 3.2 g (2.4 ml) of dichloromethane. The resulting solution was cooled to 18° C.
  • microcapsules were poured into 400 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 16° C. and the mixture was treated as in Example 1, to provide microcapsules.
  • the particle size distribution and physiologically active peptide B content of the microcapsules were 5 to 70 ⁇ m and 10.3% (w/w), respectively.
  • physiologically active peptide C 240 mg of the acetate of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyFur)-Leu-Lys(Nisp)-Pro-DAlaNH 2 (hereinafter referred to briefly as physiologically active peptide C) obtained in Reference Example 10 was dissolved in a solution of a 50:50 mixture (1.76 g) of the glycolic acid.2-hydroxybutyric acid copolymer obtained in Reference Example 9 and the polylactic acid obtained in Reference Example 8 in 3.2 g (2.4 ml) of dichloromethane. The resulting solution was cooled to 18° C.
  • microcapsules were poured into 400 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 16° C. and the mixture was treated as in Example 1, to provide microcapsules.
  • the particle size distribution and physiologically active peptide C content of the microcapsules were 5 to 65 ⁇ m and 10.9% (w/w), respectively.
  • microcapsules The particle size distribution and physiologically active peptide D content of the microcapsules were 5 to 70 ⁇ m and 10.5% (w/w), respectively.
  • the collected microcapsules were redispersed in a small quantity of distilled water, followed by addition of 0.3 g of D-mannitol and freeze-drying to provide a powder.
  • the particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 60 ⁇ m and 4.7% (w/w), respectively.
  • Sustained-release preparation of the following peptides (1) and (2) are produced in the same manner as above.
  • Example 11 400 mg of physiologically active peptide A acetate was dissolved in a solution of the lactic acid-glycolic acid copolymer obtained in Reference Example 12, 3.6 g, in 8.0 g (6.0 ml) of dichloromethane. The resulting solution was cooled to 15° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 14° C. Thereafter, the procedure of Example 11 was repeated to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 65 ⁇ m and 8.2% (w/w), respectively.
  • Example 11 400 mg of physiologically active peptide A acetate was dissolved in a solution of the lactic acid-glycolic acid copolymer obtained in Reference Example 13, 3.6 g, in 8.0 g (6.0 ml) of dichloromethane. The resulting solution was cooled to 15° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 15° C. Thereafter, the procedure of Example 11 was repeated to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 65 ⁇ m and 8.4% (w/w), respectively.
  • Leuprolerin acetate (manufacturer: Takeda Chemical Industries), 400 mg, was added to a solution of the same lactic acid-glycolic acid copolymer as used in Example 12, 3.6 g, in 8.0 g (60 ml) of dichloromethane to prepare a clear homogeneous solution.
  • the resulting solution was cooled to 15° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 15° C. Thereafter, the procedure of Example 11 was repeated to provide microcapsules.
  • Example 1 About 30 mg of the microcapsules obtained in Example 1 were dispersed in a dispersion medium (a solution of 2.5 mg of carboxymethylcellulose, 0.5 mg of polysorbate 80 and 25 mg of mannitol in distilled water) and the dispersion was injected subcutaneously in the back of 10-week-old male SD rats using a 22G needle (the dosage of microcapsules was 60 mg/kg). Serially after administration, the rats were sacrificed, the remnants of microcapsules were taken out from the administration site and the amount of the physiologically active peptide A in the microcapsules was determined. The results are shown in Table 1.
  • a dispersion medium a solution of 2.5 mg of carboxymethylcellulose, 0.5 mg of polysorbate 80 and 25 mg of mannitol in distilled water
  • microcapsules according to the present invention are characterized by substantially constant release of physiologically active peptide and are further characterized by being substantially free from an initial burst.
  • Table 2 shows the linear regression models, correlation coefficients, and release periods calculated as X-intercept which were determined by the procedures described in Methods of Bioassay (authored by Akira Sakuma, Tokyo University Press, Jun. 5, 1978, p. 111).
  • Table 3 shows the linear regression models, correlation coefficients and release periods as X-intercept which were determined from the data in Table 1 by the same procedures as used in Table 2.
  • microcapsules according to the present invention are characterized by substantially constant release of physiologically active peptide and are further characterized by being substantially free from an initial burst.
  • Example 10 Using the microcapsules obtained in Example 10, the residual amounts of the physiologically active peptide in the microcapsules were determined as in Experimental Example 7. The results are shown in Table 6. Table 7 shows the linear regression models, correlation coefficients and release periods calculated as X-intercepts, which were determined from the data in
  • microcapsules according to the present invention are characterized by substantially constant release of physiologically active peptide and are further characterized by being substantially free from an initial burst.
  • Example 11 About 30 mg of the microcapsules obtained in Example 11 were dispersed in 0.5 ml of a dispersion medium (prepared by dissolving carboxymethylcellulose (2.5 mg), polysorbate 80 (0.5 mg) and mannitol (25 mg) in distilled water) and, the dispersion was injected subcutaneously at the back of 10-week-old male SD rats using a 22G needle (the dosage as microcapsules 60 mg/kg). Serially after administration, the rats were sacrificed, the remains of microcapsules were taken out from the administration site and the amount of the physiologically active peptide A in the microcapsules was determined. The results are shown in Table 8.
  • Example 12 Using the microcapsules obtained in Example 12, the procedure of Experimental Example 11 was otherwise repeated and the residue of physiologically active peptide A was assayed. The results are shown in Table 8.
  • Example 13 Using the microcapsules obtained in Example 13, the procedure of Experimental Example 11 was otherwise repeated and the residue of physiologically active peptide A was assayed. The results are shown in Table 8.
  • Example 14 Using the microcapsules obtained in Example 14, the procedure of Experimental Example 11 was otherwise repeated and the residue of physiologically active peptide A was assayed. The results are shown in Table 8.
  • Table 9 shows the linear regression models, correlation coefficients, and release periods as X-intercept which were determined from the data in Table 8 by the same procedures as used in Table 2.
  • microcapsules in the same manner as in Example 11.
  • the particle size distribution and physiologically active peptide A content of the microcapsules were 10 to 90 ⁇ m and 2.5% (w/w), respectively.
  • microcapsules in the same manner as in Example 11.
  • the particle size distribution and physiologically active peptide A content of the microcapsules were 10 to 90 ⁇ m and 3.6% (w/w), respectively.
  • Leuprolerin acetate (manufacturer: Takeda Chemical Industries), 400 mg, was added to a solution of the same lactic acid-glycolic acid copolymer as used in Comparative Example 2, 3.6 g, in 8.0 g (6.0 ml) of dichloromethane but the leuprolerin acetate could not be successfully dissolved.
  • the sustained-release preparation of the present invention shows a constant release of the drug, especially the peptide [I] over a long time, thus being conducive to a lasting and stable effect. Furthermore, the duration of release of the drug can be easily controlled and excessive release immediately following administration can be inhibited. Specifically the histamine-releasing activity in the peptide [I] following administration of the sustained-release preparation is inhibited.
  • the sustained-release preparation has excellent dispersibility. Moreover, the preparation is stable (e.g. to light, heat, humidity, colouring) and of low toxicity and, therefore, can be safely administered.
  • sustained-release preparation containing a physiologically active peptide can be easily obtained in good yield.
  • the thus obtained sustained-release preparation has a smooth surface and is excellent in mobility.

Abstract

A sustained-release preparation which comprises a physiologically active peptide of general formula
Figure US20090048180A1-20090219-C00001
  • wherein X represents an acyl group;
  • R1, R2 and R4 each represents an aromatic cyclic group;
  • R3 represents a D-amino acid residue or a group of the formula
Figure US20090048180A1-20090219-C00002
  • wherein R3′ is a heterocyclic group;
  • R5 represents a group of the formula —(CH2)n—R5′ wherein
  • n is 2 or 3, and R5′ is an amino group which may optionally be substituted, an aromatic cyclic group or an O-glycosyl group;
  • R6 represents a group of the formula —(CH2)n—R6′ wherein
  • n is 2 or 3, and R6′ is an amino group which may optionally be substituted;
  • R7 represents a D-amino acid residue or an azaglycyl residue; and
  • Q represents hydrogen or a lower alkyl group, or a salt thereof and a biodegradable polymer having a terminal carboxyl group.
The sustained-release preparation shows a constant release of the peptide over a long time and is substantially free from an initial burst.

Description

  • The present invention relates to a sustained-release preparation containing a physiologically active peptide and to a method of producing the same.
  • BACKGROUND OF THE INVENTION
  • The prior art includes, as disclosed in EP-A-481,732, a sustained-release preparation comprising a drug, a polylactic acid and a glycolic acid-hydroxycarboxylic acid [HOCH(C2-8 alkyl)COOH] copolymer. The disclosed process comprises preparing a W/O emulsion consisting of an internal water phase comprising an aqueous solution of a physiologically active peptide and an external oil phase comprising a solution of a biodegradable polymer in an organic solvent, adding said W/O emulsion to water or an aqueous medium and processing the resulting W/O/W emulsion into sustained-release microcapsules (drying-in-water method).
  • EP-A-52510 describes a microcapsule comprising a hormonally active polypeptide, a biodegradable polymer and a polymer hydrolysis control agent. The disclosed process for its production is a coacervation process which comprises adding a coacervation agent to a W/O emulsion consisting of an aqueous solution of the polypeptide as the internal water phase and a halogenated organic solvent as the oil phase to provide microcapsules.
  • GB-A-2209937 describes a pharmaceutical composition comprising a polylactide, a polyglycolide, a lactic acid-glycolic acid copolymer or a mixture of these polymers and a water-insoluble peptide. Also disclosed is a production process which comprises dispersing a salt of the water-insoluble peptide in a solution of said polylactide, polyglycolide, a lactic acid-glycolic acid copolymer or a mixture of these polymers, removing the solvent by evaporation and molding the resulting mixture into solid particles.
  • EP-A-58481 describes a process for producing a pharmaceutical composition comprising a polylactide and an acid-stable polypeptide which, for instance, comprises dissolving tetragastrin hydrochloride and a polylactide in aqueous dioxane, casting the solution into a film and evaporating the solvent.
  • EP-A-0467389 teaches a technology for providing a drug delivery system for proteins and polypeptides by the polymer precipitation technique or the microsphere technique. However, this literature contains no specific disclosure about a system containing an LH-RH derivative.
  • The luteinizing hormone-releasing hormone, known as LH-RH (or GnRH), is secreted from the hypothalamus and binds to receptors on the pituitary gland. The LH (luteinizing hormone) and FSH (folicle stimulating hormone), which are released thereon, act on the gonad to synthesize steroid hormones. As derivatives of LH-RH, the existence of both agonistic and antagonistic peptides is known. When a highly agonistic peptide is repeatedly administered, the available receptors are reduced in number so that the formation of gonad-derived steroidal hormones is suppressed. Therefore, LH-RH derivatives are expected to be of value as therapeutic agents for hormone-dependent diseases such as prostate cancer, benign prostatomegaly, endometriosis, hysteromyoma, metrofibroma, precocious puberty, mammary cancer, etc. or as contraceptives. Particularly, the problem of histamine-releasing activity was pointed out for LH-RH antagonists of the so-called first and second generations (The Pharmaceuticals Monthly 32, 1599-1605, 1990) but a number of compounds have since been synthesized and recently LH-RH-antagonizing peptides having no appreciable histamine-releasing activity have been developed (cf. U.S. Pat. No. 5,110,904, for instance). In order for any such LH-RH antagonizing peptide to manifest its pharmacological effect, there is a need for a controlled release system so that the competitive inhibition of endogenous LH-RH may be persistent. Moreover, because of histamine-releasing activity which may be low but is not non-existent in such peptides, a demand exists for a sustained-release preparation with an inhibited initial burst immediately following administration.
  • Particularly, in the case of a sustained-release (e.g. 1-3 months) preparation, it is important to insure a more positive and constant release of the peptide in order that the desired efficacy may be attained with greater certainty and safety.
  • At the same time, there is a long-felt need for a method of producing a sustained-release preparation having a high peptide trap rate for a physiologically active peptide, particularly LH-RH-antagonizing peptides.
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided:
  • 1) A sustained-release preparation which comprises a physiologically active peptide of the general formula
  • Figure US20090048180A1-20090219-C00003
  • wherein X represents an acyl group;
    R1, R2 and R4 each represents an aromatic cyclic group;
    R3 represents a D-amino acid residue or a group of the formula
  • Figure US20090048180A1-20090219-C00004
  • wherein R3′ is a heterocyclic group;
    R5 represents a group of the formula —(CH2)n—R5′ wherein
    n is 2 or 3, and R5′ is an amino group which may optionally be substituted, an aromatic cyclic group or an O-glycosyl group;
    R6 represents a group of the formula —(CH2)n—R6′ wherein
    n is 2 or 3, and R6′ is an amino group which may optionally be substituted;
    R7 represents a D-amino acid residue or an azaglycyl residue; and
    Q represents hydrogen or a lower alkyl group or a salt thereof and a biodegradable polymer having a terminal carboxyl group,
    2) The sustained-release preparation according to the above paragraph 1, wherein X is a C2-7 alkanoyl group which may optionally be substituted by a 5- or 6-membered heterocyclic carboxamido group,
    3) The sustained-release preparation according to the above paragraph 2, wherein X is a C2-4 alkanoyl group which may optionally be substituted by a tetrahydrofurylcarboxamide group,
    4) The sustained-release preparation according to the above paragraph 1, wherein X is acetyl,
    5) The sustained-release preparation according to the above paragraph 1, wherein the biodegradable polymer is a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula
  • Figure US20090048180A1-20090219-C00005
  • wherein R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid,
    6) The sustained-release preparation according to the above paragraph 1, wherein X is acetyl, and the biodegradable polymer is a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula [II] and (B) a polylactic acid,
    7) The sustained-release preparation according to the above paragraph 5, wherein the copolymer has a weight average molecular weight of about 2,000 to 50,000, as determined by GPC,
    8) The sustained-release preparation according to the above paragraph 5, wherein the copolymer has a dispersion value of about 1.2 to 4.0,
    9) The sustained-release preparation according to the above paragraph 5, wherein the polylactic acid has a weight average molecular weight of about 1,500 to 30,000 as determined by GPC,
    10) The sustained-release preparation according to the above paragraph 5, wherein the polylactic acid has a dispersion value of about 1.2 to 4.0,
    11) The sustained-release preparation according to the above paragraph 1, wherein the biodegradable polymer is a copolymer of lactic acid and glycolic acid,
    12) The sustained-release preparation according to the above paragraph 11, wherein the copolymer has a weight average molecular weight of about 5,000 to 25,000, as determined by GPC,
    13) The sustained-release preparation according to the above paragraph 11, wherein the copolymer has a dispersion value of about 1.2 to 4.0,
    14) The sustained-release preparation according to the above paragraph 1, wherein the proportion of the physiologically active peptide ranges from about 0.01 to 50% (w/w) based on the biodegradable polymer,
    15) The sustained-release preparation according to the above paragraph 1, wherein the physiologically active peptide is a LH-RH antagonist,
    16) The sustained-release preparation according to the above paragraph 1, wherein the physiologically active peptide is
  • Figure US20090048180A1-20090219-C00006
  • 17) The sustained-release preparation according to the above paragraph 1, wherein the physiologically active peptide is NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(Nic)Leu-Lys(Nisp)-Pro-DAlaNH2 or its acetate,
    18) The sustained-release preparation according to the above paragraph 1, wherein the physiologically active peptide is NAcD2Nal-D4ClPhe-D3Pal-Ser-Tyr-DhArg(Et2)Leu-hArg(Et2)-Pro-DAlaNH2 or its acetate,
    19) A method of producing a sustained-release preparation which comprises dissolving a physiologically active peptide of the general formula [I] or a salt thereof and a biodegradable polymer having a terminal carboxyl group in a solvent which is substantially immiscible with water and then removing said solvent,
    20) The method according to the above paragraph 19, wherein the biodegradable polymer is a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula [II] and (B) a polylactic acid,
    21) The method according to the above paragraph 19, wherein X is acetyl, and the biodegradable polymer is a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula [II] and (B) a polylactic acid,
    22) The method according to the above paragraph 19, wherein the biodegradable polymer is a copolymer of lactic acid and glycolic acid,
    23) A method according to the above paragraph 19, which comprises dissolving the biodegradable polymer and the physiologically active peptide in a solvent which is substantially immiscible with water and adding the resulting solution to an aqueous medium to provide an O/W emulsion,
    24) A method of producing a sustained-release preparation which comprises dissolving a biodegradable polymer comprising a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula
  • Figure US20090048180A1-20090219-C00007
  • wherein R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid and a substantially water-insoluble physiologically active peptide or a salt thereof in a solvent which is substantially immiscible with water and then removing said solvent, and
    25) A method according to the above paragraph 24, which further comprises after dissolving the biodegradable polymer and the substantially water-insoluble peptide or salt thereof in the solvent adding the resulting solution to an aqueous medium to provide an O/W emulsion.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The abbreviations used in this specification have the following meanings.
  • NAcD2Nal: N-Acetyl-D-3-(2-naphtyl)alanyl
  • D4ClPhe: D-3-(4-Chlorophenyl)alanyl
  • D3 Pal: D-3-(3-Pyridyl)alanyl
  • NMeTyr: N-Methylthyrosyl
  • DLys(Nic): D-(Ipsilon-N-nicotinoyl)lysyl
  • Lys(Nisp): (Ipsilon-N-isopropyl)lysyl
  • DLys(AzaglyNic): D-[1-Aza-(N-nicotinoyl)glycyl]lysyl
  • DLys(AzaglyFur): D-[1-Aza-(N-2-furoyl)glycyl]lysyl
  • Where any other amino acids are expressed by abbreviations, the abbreviations recommended by IUPAC-IUB Commission on Biochemical Nomenclature (European Journal of Biochemistry 138, 9-37, 1984) or the abbreviations in common usage in the art are used. Where optical isomers exist for any compound, the L-isomer is meant unless otherwise indicated.
  • In the present invention, the peptide [I] shows LH-RH antagonistic activity and is effective for the treatment of hormone-dependent diseases such as prostatic cancer, prostatomegaly, endometriosis, hysteromyoma, metrofibroma, precocious puberty, mammary cancer, etc. or for contraception.
  • Referring to general formula [I], the acyl group X is preferably an acyl group derived from carboxylic acid. Examples of the acyl group include a C2-7 alkanoyl, C7-15 cycloalkenoyl (e.g., cyclohexenoyl), C1-6 alkylcarbamoyl (e.g., ethyl carbamoyl), 5- or 6-membered heterocyclic carbonyl (e.g. piperidinocarbonyl) and carbamoyl group which may optionally be substituted. The acyl group is preferably a C2-7 alkanoyl group (e.g., acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl or heptanoyl) which may optionally be substituted, more preferably C2-4 alkanoyl group (e.g., acetyl, propionyl, butyryl, isobutyryl) which may optionally be substituted. The substituents are for example C1-6 alkylamino group (e.g., methylamino, ethylamino, diethylamino, propylamino), C1-3 alkanoyl amino group (e.g., formylamino, acetylamino, propionylamino), C7-15 cycloalkenoyl amino group (e.g., cyclohexenoylamino), C7-15 arylcarbonyl-amino group (e.g., benzoylamino), 5- or 6-membered heterocyclic carboxamido group (e.g., tetrahydrofurylcarboxamido, pyridylcarboxamido, furylcarboxamido), hydroxyl group, carbamoyl group, formyl group, carboxyl group, 5- or 6-membered heterocyclic group (e.g., pyridyl, morpholino). The substituents are preferably 5- or 6-membered heterocyclic carboxamido group (e.g., tetrahydrofurylcarboxamido, pyridylcarboxamido, furylcarboxamido).
  • X is preferably a C2-7 alkanoyl group which may optionally be substituted by a 5- or 6-membered heterocyclic carboxamido group.
  • X is more preferably a C2-4 alkanoyl group which may optionally be substituted by a tetrahydrofuryl carboxamido group.
  • Specific examples of X are acetyl,
  • Figure US20090048180A1-20090219-C00008
  • The aromatic cyclic group R1, R2 or R4 may for example be an aromatic cyclic group of 6 to 12 carbon atoms. Examples of the aromatic cyclic group are phenyl, naphthyl, anthryl and so on. Preferred are aromatic cyclic groups of 6 to 10 carbon atoms, such as phenyl and naphthyl. These aromatic cyclic groups may each have 1 to 5, preferably 1 to 3, suitable substituents in appropriate positions on the ring. Such substituents include hydroxyl, halogen, aminotriazolyl-substituted amino, alkoxy and so on. Preferred are hydroxy, halogen and aminotriazolyl-substituted amino.
  • The halogens mentioned above include fluorine, chlorine, bromine and iodine.
  • The aminotriazolyl moiety of said aminotriazolyl-substituted amino includes, among others, 3-amino-1H-1,2,4-triazol-5-yl, 5-amino-1H-1,3,4-triazol-2-yl, 5-amino-1H-1,2,4-triazol-3-yl, 3-amino-2H-1,2,4-triazol-5-yl, 4-amino-1H-1,2,3-triazol-5-yl, 4-amino-2H-1,2,3-triazol-5-yl and so on.
  • The alkoxy group is preferably an alkoxy group of 1 to 6 carbon atoms (e.g. methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc.).
  • More preferably, R1 is naphthyl or halophenyl. More preferably, R2 is halophenyl. More preferably, R4 is hydroxyphenyl or aminotriazolylamino-substituted phenyl.
  • The D-amino acid residue R3 is preferably an α-D-amino acid residue of 3 to 12 carbon atoms. Examples of the amino acid are leucine, isoleucine, norleucine, valine, norvaline, 2-aminobutyric acid, phenylalanine, serine, threonine, methionine, alanine, tryptophan and aminoisobutyric acid. These amino acids may have suitable protective groups (the protective groups used conventionally in the art, such as t-butyl, t-butoxy, t-butoxycarbonyl, etc.).
  • The heterocyclic group R3′ includes 5- or 6-membered heterocyclic groups each containing 1 to 2 nitrogen or sulfur atoms as hetero-atoms, which may optionally be fused to a benzene ring. Specifically, thienyl, pyrrolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, pyridyl, 3-pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 3-benzo[b]thienyl, 3-benzo[b]-3-thienyl, indolyl, 2-indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzothiazolyl, quinolyl, isoquinolyl, etc. may be mentioned. The particularly preferred species of R3′ is pyridyl or 3-benzo[b]thienyl.
  • The aromatic cyclic group R5 may be the same as the aromatic cyclic group R1, R2 or R4. The aromatic cyclic group may have 1 to 5, preferably 1 to 3, suitable substituents in appropriate positions on the ring. The substituents may also be the same as the substituents mentioned for R1, R2 or R4. The particularly preferred substituent is aminotriazolyl-substituted amino.
  • The glycosyl group for O-glycosyl R5 is preferably a hexose or a derivative thereof. The hexose includes D-glucose, D-fructose, D-mannose, D-galactose, L-galactose and so on. As said derivative, deoxy sugars (L- and D-fucose, D-quinovose, L-rhamnose, etc.) and amino sugars (D-glucosamine, D-galactosamine, etc.) can be mentioned. More preferred are deoxy sugars (L- and D-fucose, D-quinovose, L-rhamnose, etc.). Still more preferred is L-rhamnose.
  • The substituent on the amino group which may optionally be substituted, R5′, includes, among others, acyl, carbamoyl, carbazoyl which may be substituted by acyl or amidino which may be mono- or di-substituted by alkyl.
  • The above-mentioned acyl and the acyl for the above-mentioned carbazoyl which may be substituted by acyl include nicotinoyl, furoyl, thenoyl and so on.
  • The alkyl moiety of the mono- or di-alkylamidino mentioned above includes straight-chain or branched alkyl groups of 1 to 4 carbon atoms, thus including methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl and so on. The preferred alkyl moiety is methyl or ethyl.
  • The substituent for the amino group which may optionally be substituted, R6′, includes alkyl and amidino which may be mono- or di-substituted by alkyl.
  • The above-mentioned alkyl and the alkyl of the mono- or dialkylamidino mentioned above include those alkyl groups mentioned for R5′.
  • The D-amino acid residue R7 is preferably a D-amino acid residue of 3 to 9 carbon atoms, such as D-alanyl, D-leucyl, D-valyl, D-isoleucyl, D-phenylalanyl and so on. More preferred are D-amino acid residues of 3 to 6 carbon atoms, such as D-alanyl, D-valyl and so on. The more preferred species of R7 is D-alanyl.
  • The lower alkyl group Q may be the alkyl group defined for R5′. The most preferred species of Q is methyl.
  • Specific examples of R1 are
  • Figure US20090048180A1-20090219-C00009
  • Specific examples of R2 are
  • Figure US20090048180A1-20090219-C00010
  • Specific examples of R3 are
  • Figure US20090048180A1-20090219-C00011
  • Specific examples of R4 are
  • Figure US20090048180A1-20090219-C00012
  • Specific examples of R5 are
  • Figure US20090048180A1-20090219-C00013
  • Specific examples of R6 are
  • Figure US20090048180A1-20090219-C00014
  • Specific examples of R7 are
  • Figure US20090048180A1-20090219-C00015
  • When the peptide [I] has one or more asymmetric carbon atom(s), there are two or more stereoisomers. Any of such steroisomers as well as a mixture thereof is within the scope of the present invention.
  • The peptide of general formula [I] is produced by the per se known processes. Typical specific processes are described in U.S. Pat. No. 5,110,904.
  • The peptide [I] can be used in the form of a salt, preferably a pharmacologically acceptable salt. Where the peptide has basic groups such as amino, the salt includes salts with inorganic acids (e.g. hydrochloric acid, sulfuric acid, nitric acid, etc.) or organic acids (e.g. carbonic acid, hydrogen carbonic acid, succinic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.). Where the peptide has acidic groups such as carboxyl, salts with inorganic bases (e.g. alkali metals such as sodium, potassium, etc. and alkaline earth metals such as calcium, magnesium, etc.) or organic bases (e.g. organic amines such as triethylamine and basic amino acids such as arginine). The peptide [I] may be in the form of a metal complex compound (e.g. copper complex, zinc complex, etc.). The preferred salts of peptide [I] are salts with organic acids (e.g. carbonic acid, hydrogen carbonic acid, succinic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.). The most preferred is the acetate.
  • Particularly preferred species of peptide [I] or salt are as follows.
  • (1) NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(Nic)-Leu-Lys(Nisp)-Pro-DAlaNH2 or its acetate
    (2) NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyNic)Leu-Lys(Nisp)-Pro-DAlaNH2 or its acetate
    (3) NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyFur)Leu-Lys(Nisp)-Pro-DAlaNH2 or its acetate
  • Figure US20090048180A1-20090219-C00016
  • In the sustained-release preparation, the proportion of the peptide [I] may vary with the type of peptide, the expected pharmacological effect and duration of effect, among other factors, and may range from about 0.01 to about 50% (w/w) based on the biodegradable polymer. The preferred range is about 0.1 to about 40% (w/w) and a more preferred range is about 1 to about 30% (w/w).
  • The biodegradable polymer having a terminal carboxyl group is now described.
  • A biodegradable polymer, about 1 to 3 g, was dissolved in a mixture of acetone (25 ml) and methanol (5 ml) and using phenolphthalein as the indicator, the carboxyl groups in the solution were quickly titrated with 0.05N alcoholic potassium hydroxide solution under stirring at room temperature (20° C.). The number average molecular weight by end-group determination was then calculated by means of the following equation.

  • Number average molecular weight by end-group determination=20000×A/B
  • where A is the mass of biodegradable polymer (g)
  • B is the amount of 0.05N alcoholic potassium hydroxide solution (ml) added to react the titration end-point.
  • The result of the above calculation is referred to as the number average molecular weight by end-group determination.
  • By way of illustration, taking a polymer having a terminal carboxyl group as synthesized from one or more α-hydroxy acids by the non-catalytic dehydrative polycondensation process as an example, the number average molecular weight by end-group determination is approximately equal to the number average molecular weight found by GPC. In contrast, in the case of a polymer substantially not containing free terminal carboxyl groups as synthesized from a cyclic dimer by the ring-opening polymerization process and using catalysts, the number average molecular weight by end-group determination is by far greater than the number average molecular weight by GPC determination. By this difference, a polymer having a terminal carboxyl group can be clearly discriminated from a polymer having no terminal carboxyl group. Thus, the term ‘biodegradable polymer having a terminal carboxyl group’ is used herein to mean a biodegradable polymer showing a substantial agreement between the number average molecular weight by GPC determination and the number average molecular weight by end-group determination.
  • Whereas the number average molecular weight by end-group determination is an absolute value, the number average molecular weight by GPC determination is a relative value which varies according to analytical and procedural conditions (such as types of mobile phase and column, reference substance, selected slice width, selected baseline, etc.). Therefore, the two values cannot be numerically correlated by generalization. However, the term ‘substantial agreement’ between the number average molecular weight by GPC determination and the number average molecular weight by end-group determination means that the number average molecular weight found by end-group determination is about 0.4 to 2 times, more preferably about 0.5 to 2 times, most preferably about 0.8 to 1.5 times, the number average molecular weight by GPC determination. The term ‘by far greater’ as used above means that the number average molecular weight by end-group determination is about twice or greater than the number average molecular weight by GPC determination.
  • The preferred polymer for the purpose of the present invention is a polymer showing a substantial agreement between the number average molecular weight by GPC determination and the number average molecular weight by end-group determination.
  • As specific examples of the biodegradable polymer having a terminal carboxyl group can be mentioned polymers and copolymers, as well as mixtures thereof, which are synthesized from one or more species of αhydroxy acids (e.g. glycolic acid, lactic acid, hydroxybutyric acid, etc.), hydroxydicarboxylic acids (e.g. malic acid etc.), hydroxytricarboxylic acids (e.g. citric acid etc.), etc. by the non-catalytic dehydrative polycondensation reaction, poly-α-cyanoacrylic esters, polyamino acids (e.g. poly-γ-benzyl-L-glutamic acid etc.), maleic anhydride copolymers (e.g. styrene-maleic acid copolymer etc.) and so on.
  • The mode of polymerization may be random, block or graft. Where any of the above-mentioned α-hydroxy acids, hydroxydicarboxylic acids and hydroxytricarboxylic acids has an optical activity center within the molecule, any of the D-, L- and DL-forms can be employed.
  • The biodegradable polymer having a terminal carboxyl group is preferably a biodegradable polymer comprising a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula
  • Figure US20090048180A1-20090219-C00017
  • wherein R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid, or a lactic acid-glycolic acid copolymer.
  • Referring to the general formula [II], the straight-chain or branched alkyl group of 2 to 8 carbon atoms, as represented by R, includes, inter alia, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, 1-ethylpropyl, hexyl, isohexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl and 2-ethylbutyl. Preferred, among them, are straight-chain or branched alkyls of 2 to 5 carbon atoms. Specifically, ethyl, propyl, isopropyl, butyl and isobutyl are preferred. R is most preferably ethyl.
  • The hydroxycarboxylic acid of the general formula [II] includes, inter alia, 2-hydroxybutyric acid, 2-hydroxyvaleric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxycaproic acid, 2-hydroxyisocaproic acid and 2-hydroxycapric acid. Preferred are 2-hydroxybutyric acid, 2-hydroxyvaleric acid, 2-hydroxy-3-methylbutyric acid and 2-hydroxycaproic acid. The hydroxycarboxylic acid of the general formula [II] is most preferably 2-hydroxybutyric acid. While these hydroxycarboxylic acids may be any of the D-, L- and D,L-compounds, the D-/L-ratio (mol %) is preferably in the range of about 75/25 through about 25/75. The more preferred embodiment is a hydroxycarboxylic acid with a D-/L-ratio (mol %) within the range of about 60/40 through about 40/60. The most preferred is a hydroxycarboxylic acid with a D-/L-ratio (mol %) within the range of about 55/45 through about 45/55.
  • Referring to the copolymer of glycolic acid and said hydroxycarboxylic acid of the general formula [II] (hereinafter referred to as glycolic acid copolymer), the mode of copolymerization may be random, block or graft. Preferred are random copolymers.
  • The hydroxycarboxylic acids of the general formula [II] can be used alone or in combination.
  • The preferred proportions of glycolic acid and hydroxycarboxylic acid [II] in said glycolic acid copolymer (A) are about 10 to about 75 mole % of glycolic acid and the balance of hydroxycarboxylic acid. More desirably, the copolymer consists of about 20 to about 75 mole % of glycolic acid and the balance of hydroxycarboxylic acid. Most desirably, the copolymer consists of about 40 to about 70 mole % of glycolic acid and the balance of hydroxycarboxylic acid. The weight average molecular weight of said glycolic acid copolymer may range from about 2,000 to about 50,000. The preferred range is about 3,000 to about 40,000. The more preferred range is about 8,000 to about 30000. The dispersion value (weight average molecular weight/number average molecular weight) is preferably in the range of about 1.2 to about 4.0. Particularly preferred are copolymers with dispersion values in the range of about 1.5 to about 3.5.
  • The glycolic acid copolymer (A) can be synthesized by the known technology, for example by the process described in Japanese laid-open patent application 28521/1986 specification.
  • Polylactic acid for use in the present invention may be whichever of L- and D-compounds and any mixture thereof. Preferred is a species with a D-/L-ratio (mole %) in the range of about 75/25 through about 20/80. The more preferred D-/L-ratio (mole %) of polylactic acid is about 60/40 through about 25/75. The most advantageous D/L-ratio (mole %) of polylactic acid is about 55/45 through about 25/75. The weight average molecular weight of polylactic acid is preferably in the range of about 1,500 to about 30,000, more preferably about 2,000 to about 20,000 and still more preferably about 3,000 to about 15,000. The dispersion value of polylactic acid is preferably about 1.2 to about 4.0 and more desirably about 1.5 to about 3.5.
  • Polylactic acid can be synthesized by two known alternative processes, namely a process involving a ring-opening polymerization of lactide which is a dimer of lactic acid and a process involving a dehydrative polycondensation of lactic acid. For the production of a polylactic acid of comparatively low molecular weight for use in the present invention, the process involving a direct dehydrative polycondensation of lactic acid is preferred. This process is described in, for example, Japanese laid-open patent application 28521/1986.
  • In the pharmaceutical base for use in the present invention, the glycolic acid copolymer (A) and polylactic acid (B) are used in an (A)/(B) ratio (by weight) of about 10/90 through about 90/10. The preferred blend ratio is about 20/80 through about 80/20. The most desirable ratio is about 30/70 through about 70/30. If the proportion of either (A) or (B) is too large, the final preparation will show a drug release pattern not much different from the pattern obtained when (A) or (B) alone is used, that is to say the linear release pattern in a late stage of release which is obtainable with the mixed base cannot be obtained. The degradation and elimination rates of glycolic acid copolymer and polylactic acid vary considerably with their molecular weights and composition but generally speaking, since the decomposition and elimination rates of glycolic acid copolymer are relatively higher, the period of release can be prolonged by increasing the molecular weight of polylactic acid or reducing the blend ratio (A)/(B). Conversely, the duration of release may be shortened by reducing the molecular weight of polylactic acid or increasing the (A)/(B) blend ratio. Furthermore, the duration of release can be adjusted by changing the species or relative amount of hydroxycarboxylic acid of general formula [II].
  • When a copolymer of lactic acid and glycolic acid is used as the biodegradable polymer, its polymerization ratio (lactic acid/glycolic acid) (mole %) is preferably about 100/0 to about 40/60. The more preferred ratio is about 90/10 to about 50/50.
  • The weight average molecular weight of said copolymer is preferably about 5,000 to about 25,000. The more preferred range is about 7,000 to about 20,000.
  • The degree of dispersion (weight average molecular weight/number average molecular weight) of said; copolymer is preferably about 1.2 to about 4.0. The more preferred range is about 1.5 to about 3.5.
  • The above-mentioned copolymer of lactic acid and glycolic acid can be synthesized by the known technology, for example by the process described in Japanese laid-open patent application 28521/1986.
  • The decomposition and disappearance rate of a copolymer of lactic acid and glycolic acid varies greatly with the composition and molecular weight but generally speaking, the smaller the glycolic acid fraction, the lower is the decomposition and disappearance rate. Therefore, the duration of drug release can be prolonged by reducing the glycolic acid fraction or increasing the molecular weight. Conversely, the duration of release can be diminished by increasing the glycolic acid fraction or reducing the molecular weight. To provide a long-term (e.g. 1˜4 months) sustained-release preparation, it is preferable to use a copolymer of lactic acid and glycolic acid with a polymerization ratio within the above-mentioned range and a weight average molecular weight within the above-mentioned range. With a copolymer of lactic acid and glycolic acid having a higher decomposition rate than that within the above ranges for polymerization ratio and weight average molecular weight, it is difficult to control the initial burst. On the contrary, with a copolymer of lactic acid and glycolic acid showing a lower decomposition rate than that within said ranges for polymerization ratio and weight average molecular weight, periods in which the drug will not be released in an effective amount tend to occur.
  • In this specification, the weight average molecular weight and the degree of dispersion mean the molecular weight in terms of polystyrene as determined by gel permeation chromatography (GPC) using 9; polystyrenes with the weight average molecular weights of 120,000, 52,000, 22,000, 9,200, 5,050, 2950, 1,050, 580 and 162 as references and the dispersion value calculated using the same molecular weight, respectively. The above determination was carried out using GPC Column KF804 L×2 (Showa Denko), RI Monitor L-3300 (Hitachi) and, as the mobile phase, chloroform.
  • The sustained-release preparation of the present invention is produced by dissolving the peptide [I] and a biodegradable polymer having a terminal carboxyl group in a solvent which is substantially immiscible with water and then removing said solvent.
  • The solvent which is substantially immiscible with water is a solvent which is not only substantially immiscible with water and capable of dissolving the biodegradable polymer but one which renders the resultant polymer solution capable of dissolving the peptide [I]. Preferably, it is a solvent with a solubility in water of not more than 3% (w/w) at atmospheric temperature (20° C.). The boiling point of such solvent is preferably not higher than 120° C. The solvent, thus, includes halogenated hydrocarbons (e.g. dichloromethane, chloroform, chloroethane, trichloroethane, carbon tetrachloride, etc.), alkyl ethers of 3 or more carbon atoms (e.g. isopropyl ether etc.), fatty acid alkyl (of 4 or more carbon atoms) esters (e.g. butyl acetate etc.), aromatic hydrocarbons (e.g. benzene, toluene, xylene, etc.) and so on. These solvents can be used in a suitable combination of 2 or more species. The more preferred solvents are halogenated hydrocarbons (e.g. dichloromethane, chloroform, chloroethane, trichloroethane, carbon tetrachloride, etc.). The most preferred is dichloromethane.
  • Removal of the solvent can be effected by the per se known procedures. For example, the method comprising evaporating the solvent at atmospheric pressure or under gradual decompression with constant stirring by means of a propeller mixer or a magnetic stirrer or the method comprising evaporating the solvent under controlled vacuum in a rotary evaporator can be employed.
  • Referring to the method of the invention for the production of the sustained-release preparation, dissolving the peptide [I] and a biodegradable polymer with a terminal carboxyl group means achieving a condition such that the resultant solution shows no visually observable residue of undissolved peptide at ordinary temperature (20° C.). In this ternary system consisting of the peptide [I], biodegradable polymer and solvent, the amount of peptide which can be dissolved depends on the number of a terminal carboxyl groups per unit weight of the biodegradable polymer. In case the peptide and the terminal carboxyl group interact in the ratio of 1 to 1, the same molar amount of the peptide as that of the terminal carboxyl group can be dissolved in theory. Therefore, generalization is difficult according to the combination of the solvent and the molecular weight of the peptide and the biodegradable polymer. However, in producing sustained-release preparations, the peptide may be dissolved in the range of about 0.1 to about 100% (w/w), preferably about 1 to about 70% (w/w), most preferably about 2 to about 50% (w/w), with respect to the biodegradable polymer which is dissolved in the solvent.
  • The present invention is further related to a method of producing a sustained-release preparation which comprises dissolving a biodegradable polymer comprising a mixture of (A) a copolymer of glycolic acid and a hydroxycarboxylic acid of the general formula
  • Figure US20090048180A1-20090219-C00018
  • wherein R represents an alkyl group of 2 to 8 carbon atoms and (B) a polylactic acid and a substantially water-insoluble physiologically active peptide or a salt thereof in a solvent which is substantially immiscible with water and then removing said solvent.
  • The substantially water-insoluble physiologically active peptide is not limited and includes naturally-occurring, synthetic and semi-synthetic peptides. Preferred are physiologically active peptides containing one or more aromatic groups (e.g. groups derived from benzene, naphthalene, phenanthrene, anthracene, pyridine, pyrole, indole, etc.) in side chains thereof. More preferred physiologically active peptides are those having 2 or more aromatic groups in side chains thereof. Particularly preferred physiologically active peptides are those having 3 or more aromatic groups in side chains thereof. These aromatic groups may be further substituted.
  • The substantially water-insoluble physiologically active peptide for use in the present invention is preferably a peptide showing a solubility of not more than 1% in water, consisting of two or more amino acids and having a molecular weight of about 200 to 30000. The molecular weight range is more preferably about 300 to 20000 and still more preferably about 500 to 10000.
  • As examples of said physiologically active peptide may be mentioned luteinizing hormone releasing hormone (LH-RH) antagonists (cf. U.S. Pat. No. 4,086,219, No. 4,124,577, No. 4,253,997 and No. 4,317,815, etc.), insulin, somatostatin, somatostatin derivatives (cf. U.S. Pat. No. 4,087,390, No. 4,093,574, No. 4,100,117, No. 4,253,998, etc.), growth hormone, prolactin, adrenocorticotropic hormone (ACTH), melanocyte stimulating hormone (MSH), salts and derivatives of thyroid hormone releasing hormone (cf. JP Kokai S-50-121273 and S-52-116465), thyroid stimulating hormone (TSH), luteinizing hormone (LH), follicle stimulating hormone (FSH), vasopressin, vasopressin derivatives, oxytocin, calcitonin, gastrin, secretin, pancreozymin, cholecystokinin, angiotensin, human placental lactogen, human chorionic gonadotropin (HCG), enkepharin, enkephalin derivatives (cf. U.S. Pat. No. 4,277,394, EP-A No. 31,567), endorphin, kyotrphin, tuftsin, thymopoietin, thymosin, thymostimulin, thymic humoral factor (THF), facteur thymique sérique (FTS) and its derivatives (cf. U.S. Pat. No. 4,229,438), other thymic factors, tumor necrosis factor (TNF), colony stimulating factor (CSF), motilin, dynorphin, bombesin, neurotensin, cerulein, bradykinin, atrial natruretic factor, nerve growth factor, cell growth factor, neurotrophic factor, peptides having endothelin antagonistic activity (cf. EP-A No. 436189, No. 457195 and No. 496452, JP Kokai H-3-94692 and 03-130299) and fragments or derivatives of these physiologically active peptides.
  • Specific examples of the physiologically active peptide are physiologically active peptides and salts which are antagonists of luteinizing hormone releasing hormone (LH-RH) and useful for the treatment of hormone-dependent diseases such as prostatic cancer, prostatic hypertrophy, endometriosis, uterine myoma, precocious puberty, breast cancer, etc. and for contraception.
  • The physiologically active peptide for use in the present invention can be in the form of a salt, preferably a pharmacologically acceptable salt. Where said peptide has a basic group such as amino, the salt mentioned above may for example be the salt formed with an inorganic acid (e.g. hydrochloric acid, sulfuric acid, nitric acid, etc.) or an organic acid (e.g. carbonic acid, hydrogencarbonic acid, succinic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.). Where the peptide has an acidic group such as carboxyl, the salt may for example be the salt formed with an inorganic base (e.g. alkali metals such as sodium, potassium, etc. and alkaline earth metals such as calcium, magnesium, etc.) or an organic base (e.g. organic amines such as triethylamine etc. and basic amino acids such as arginine etc.). The peptide may further be in the form of a metal complex compound (e.g. copper complex, zinc complex, etc.).
  • Specific examples of the physiologically active peptide or salt thereof are found in U.S. Pat. No. 5,110,904, Journal of Medicinal Chemistry 34, 2395-2402, 1991, Recent Results in Cancer Research 124, 113-136, 1992, and other literature.
  • Furthermore, the physiologically active peptides of general formula [I] and salts thereof can also be mentioned, among others.
  • Moreover, even when the physiologically active peptide is water-soluble, it can be converted to a derivative compound which is insoluble or converted to an insoluble salt with a water-insoluble acid (e.g. pamoic acid, tannic acid, stearic acid, palmitic acid, etc.) and used in the process of the invention.
  • The amount of said physiologically active peptide in the preparations of the present invention depends on the species of peptide, expected pharmacologic effect and desired duration of effect and so on. Generally, however, it is used in a proportion of about 0.001 to 50% (w/w), preferably about 0.01 to 40% (w/w), more preferably about 0.1 to 30% (w/w), relative to the biodegradable polymer base.
  • The solvent employed in the method is the same as described above.
  • Removal of the solvent can be carried out in the same manner as described above.
  • The preferred process for the production of the sustained-release preparation of the present invention is a microencapsulating process utilizing the drying-in-water technique or the phase separation technique, which is described below, or any process analogous thereto.
  • The process described below may be carried out with peptide [I] or with a substantially water-insoluble physiologically active peptide which includes peptide [I].
  • Thus, the peptide [I] is added to a solution of the biodegradable polymer in an organic solvent in the final weight ratio mentioned hereinbefore for such peptide to prepare an organic solvent solution containing the peptide [I] and biodegradable polymer. In this connection, the concentration of the biodegradable polymer in the organic solvent varies according to the molecular weight of the biodegradable polymer and the type of organic solvent but is generally selected from the range of about 0.01 to about 80% (w/w). The preferred range is about 0.1 to about 70% (w/w). The still more preferred range is about 1 to about 60% (w/w).
  • Then, this organic solvent solution containing the peptide [I] and biodegradable polymer (oil phase) is added to a water phase to prepare an O(oil phase)/W (water phase) emulsion. The solvent of the oil phase is then evaporated off to provide microcapsules. The volume of the water phase for this procedure is generally selected from the range of about 1 to about 10000 times the volume of the oil phase. The preferred range is about 2 to about 5000 times and the still more preferred range is about 5 to about 2000 times.
  • An emulsifier may be added to the above water phase. The emulsifier may generally be any substance that contributes to the formation of a stable O/W emulsion. Thus, there can be mentioned anionic surfactants (sodium oleate, sodium stearate, sodium lauryl sulfate, etc.), nonionic surfactants (polyoxyethylene-sorbitan fatty acid esters [Tween 80 and Tween 60, Atlas Powder], polyoxyethylene-castor oil derivatives [HCO-60 and HCO-50, Nikko Chemicals], etc.), polyvinylpyrrolidone, polyvinyl alcohol, carboxymethylcellulose, lecithin, gelatin, hyaluronic acid and so on. These emulsifiers can be used independently or in combination. The concentration may be selected from the range of about 0.001 to about 20% (w/w). The preferred range is about 0.01 to about 10% (w/w) and the still more preferred range is about 0.05 to about 5% (w/w).
  • The resultant microcapsules are recovered by centrifugation or filtration and washed with several portions of distilled water to remove the free peptide, vehicle and emulsifier from the surface, then redispersed in distilled water or the like and lyophilized. Then, if necessary, the microcapsules are heated under reduced pressure to further remove the residual water and organic solvent from within the microcapsules. Preferably, this procedure is carried out by heating the microcapsule at a temperature somewhat (5° C. or more) above the median glass transition temperature of the biodegradable polymer as determined with a differential scanning calorimeter at temperature increments of 10 to 20° C./min., generally for not more than 1 week or 2 to 3 days, preferably for not more than 24 hours, after the microcapsules have reached the target temperature.
  • In the production of microcapsules by the phase separation technique, a coacervation agent is gradually added to a solution of said peptide [I] and biodegradable polymer in an organic solvent with constant stirring so that the biodegradable polymer may separate out and solidify. This coacervation agent is added in a volume of about 0.01 to about 1000 times the volume of the organic solvent solution of peptide [I] and biodegradable polymer. The preferred range is about 0.05 to about 500 times and the still more preferred range is about 0.1 to about 200 times.
  • The coacervation agent should be a compound of polymer, mineral oil or vegetable oil type which is miscible with the solvent for the biodegradable polymer yet which does not dissolve the polymer. Specifically, silicone oil, sesame oil, soybean oil, corn oil, cottonseed oil, coconut oil, linseed oil, mineral oil, n-hexane, n-heptane, etc. can be mentioned. These substances can be used in combination.
  • The resultant microcapsules are recovered by filtration and washed repeatedly with heptane or the like to remove the coacervation agent. Then, the free peptide and solvent are removed by the same procedure as described for the drying-in-water technique.
  • In the drying-in-water technique or in the coacervation technique, an aggregation inhibitor may be added so as to prevent aggregation of particles. The aggregation inhibitor includes water-soluble polysaccharides such as mannitol, lactose, glucose, starch (e.g. corn starch), etc., glycine, proteins such as fibrin, collagen, etc., and inorganic salts such as sodium chloride, sodium hydrogen phosphate and so on.
  • In the production of microcapsules by the spray drying technique, said organic solvent solution of peptide [I] and biodegradable polymer is ejected in a mist form through a nozzle into the drying chamber of a spray drier to evaporate the organic solvent from the finely-divided liquid droplets in a brief time to provide fine microcapsules. The nozzle may be a two-fluid nozzle, pressure nozzle, rotary disk nozzle and so on. It is advantageous to the process to spray an aqueous solution of said aggregation inhibitor from another nozzle for the prevention of intercapsule aggregation in timed coordination with said spray of the organic solvent solution of peptide [I] and biodegradable polymer.
  • If necessary, the residual water and organic solvent are removed by heating the resultant microcapsules under reduced pressure in the same manner as described hereinbefore.
  • The microcapsules can be administered as they are or as processed into various pharmaceutical preparations for administration by routes other than peroral (e.g. intramuscular, subcutaneous and intraorgan injections or implants, nasal, rectal or uterine transmucosal delivery systems, and so on) or for oral administration (e.g. solid preparations such as capsules (e.g. hard capsules, soft capsules, etc.), granules, powders, etc. and liquid preparations such as syrups, emulsions, suspensions and so on).
  • To process the microcapsules for injection, for instance, the microcapsules can be formulated with a dispersant (e.g. a surfactant such as Tween 80, HCO-60, etc., carboxymethylcellulose, a polysaccharide such as sodium alginate, etc.), a preservative (e.g. methylparaben, propylparaben, etc.), or an isotonizing agent (e.g. sodium chloride, mannitol, sorbitol, glucose, etc.) to prepare an aqueous suspension or they may be dispersed in a vegetable oil such as sesame oil, corn oil or the like to provide an oil suspension for use as a controlled release injection.
  • The particle size of the microcapsules for such injectable suspensions need only be in the range satisfying the dispersibility and needle passage requirements and may for example range from about 0.1 to about 500 μm. The preferred particle size range is about 1 to about 300 μm and the still more preferred range is about 2 to about 200 μm.
  • For providing the microcapsules as a sterile product, the whole production process is subjected to sterility control, the microcapsules are sterilized by gamma-ray irradiation or a preservative is added, although these are not exclusive procedures.
  • Aside from the above-mentioned microcapsules, a biodegradable polymer composition containing the active ingredient peptide well dispersed by a suitable technique can be melted and molded into a spherical, bar-shaped, needle-shaped, pelletized or film shape to provide a sustained-release preparation of the present invention. The above biodegradable polymer composition can be produced by the method described in JP Publication S-50-17525. To be specific, the peptide drug and the polymer are dissolved in a solvent and the solvent is then removed by a suitable method (e.g. spray drying, flash evaporation, etc.) to provide the desired biodegradable polymer composition.
  • The sustained-release preparation of the present invention can be administered as an intramuscular, subcutaneous or intraorgan injection or implant, a transmucosal delivery system for application to the nasal cavity, rectum or uterus, or an oral preparation (e.g. a solid preparation such as a capsule (e.g. hard or soft), granule, powder, etc. or a liquid preparation such as syrup, emulsion, suspension, etc.).
  • The sustained-release preparation of the present invention has low toxicity and can be used safely in mammalian animals (e.g. man, bovine, swine, canine, feline, murine, rat and rabbit).
  • The dosage of the sustained-release preparation is dependent on the type and content of the active drug peptide, final dosage form, the duration of release of the peptide, the object of treatment (such as hormone-dependent diseases, e.g. prostatic cancer, prostatomegaly, endometriosis, metrofibroma, precocious puberty, mammary cancer, etc., or for contraception) and the subject animal species, but in any case it is necessary that an effective amount of peptide is successfully delivered. The unit dosage of the active drug peptide, taking a one-month delivery system as an example, can be selected advantageously from the range of about 0.01 to about 100 mg/kg body weight for an adult human. The preferred range is about 0.05 to about 50 mg/kg body weight. The most preferred range is about 0.1 to about 10 mg/kg body weight.
  • The unit dosage of the sustained-release preparation per adult human can therefore be selected from the range of about 0.1 to about 500 mg/kg body weight. The preferred range is about 0.2 to about 300 mg/kg body weight. The frequency of administration may range from once in a few weeks, monthly or once in a few months, for instance, and can be selected according to the type and content of the active drug peptide, final dosage form, designed duration of release of the peptide, the disease to be managed and the subject animal.
  • The following reference and working examples are intended to describe the invention in further detail and should by no means be construed as defining the scope of the invention. (Unless otherwise specified, % means % by weight).
  • Abbreviations used hereinafter have the following definitions:
  • BOC: tert-butoxycarbonyl
  • FMOC: 9-fluorenylmethoxycarbonyl
  • Cbz: Benzyloxycarbonyl
  • REFERENCE EXAMPLE 1
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg over a period of 4 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 3-5 mmHg/150-180° C. for 7 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • The weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid were 3,000; 1,790; and 1,297, respectively.
  • These data showed that the polymer had terminal carboxyl groups.
  • REFERENCE EXAMPLE 2
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 500 g of 90% aqueous solution of D,L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 4 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 3-5 mmHg/150-180° C. for 12 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • The weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 5,000; 2,561; and 1,830, respectively.
  • These data showed that the polymer had terminal carboxyl groups.
  • REFERENCE EXAMPLE 3
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 5 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 5-7 mmHg/150-180° C. for 18 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • The weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 7,500; 3,563; and 2,301, respectively.
  • These data showed that the polymer had terminal carboxyl groups.
  • REFERENCE EXAMPLE 4
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 5 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 5-7 mmHg/150-180° C. for 26 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • The weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 9,000; 3,803; and 2,800, respectively.
  • These data showed that the polymer had terminal carboxyl groups.
  • REFERENCE EXAMPLE 5
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 182.5 g of glycolic acid and 166.6 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 3.5 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 5-7 mmHg/150-180° C. for 26 hours, after which it was cooled to provide an amber-colored glycolic acid-2-hydroxybutyric acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 25° C.
  • The weight average molecular weight, as determined by GPC, of the resulting glycolic acid-2-hydroxybutyric acid copolymer was 13,000.
  • REFERENCE EXAMPLE 6
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 197.7 g of glycolic acid and 145.8 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 155° C./30 mmHg for a period of 4 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 3-6 mmHg/150-185° C. for 27 hours, after which it was cooled to provide an amber-colored glycolic acid-2-hydroxybutyric acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 25° C.
  • The weight average molecular weight, as determined by GPC, of the resulting glycolic acid-2-hydroxybutyric acid copolymer was 13,000.
  • REFERENCE EXAMPLE 7
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 212.9 g of glycolic acid and 124.9 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 160° C./30 mmHg for a period of 3.5 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 3-6 mmHg/160-180° C. for 27 hours, after which it was cooled to provide an amber-colored glycolic acid-2-hydroxybutyric acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 25° C.
  • The weight average molecular weight, as determined by GPC, of the resulting glycolic acid-2-hydroxybutyric acid copolymer was 11,000.
  • REFERENCE EXAMPLE 8
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 300 g of 90% aqueous solution of D,L-lactic acid and 100 g of 90% aqueous solution of L-lactic acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 4 hour with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 3-5 mmHg and 150-180° C. for 10 hours, after which it was cooled to provide an amber-colored polylactic acid.
  • This polymer was dissolved in 1,000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • The weight-average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the above polylactic acid was 4,200; 2,192; and 1,572, respectively.
  • These data showed that the polymer had terminal carboxyl groups.
  • REFERENCE EXAMPLE 9
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condenser was charged with 182.5 g of glycolic acid and 166.6 g of D,L-2-hydroxybutyric acid and the charge was heated under reduced pressure in a nitrogen gas stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 3.5-hour, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 5-7 mmHg and 150-180° C. for 32 hours, after which it was cooled to provide an amber-colored glycolic acid.2-hydroxybutyric acid copolymer.
  • The polymer was dissolved in 1,000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in a vacuo at 25° C.
  • The weight-average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the resulting glycolic acid.2-hydroxybutyric acid copolymer was 16,300; 5,620; and 2,904, respectively.
  • These data showed that the polymer had terminal carboxyl groups.
  • REFERENCE EXAMPLE 10 Synthesis of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyFur)-Leu-Lys(Nisp)-Pro-DAlaNH2
  • Reference Examples 10 and 11 were carried out in accordance with the description of U.S. Pat. No. 5,110,904 and U.S. patent application Ser. No. 07/987,921.
  • To the reactor of a peptide synthesizer was added 1 g of D-Ala-NH-resin (4-methyl-benzohydrylamine resin), followed by sequential additions of amino acids per the following synthesis procedure, to synthesize the title peptide.
  • 1. Deprotecting Reaction
  • To remove the protecting BOC group from the peptide's alpha amino acid, a solution consisting of 45% trifluoroacetic acid (hereinafter also referred to as TFA), 2.5% anisole, 2.0% dimethyl phosphite and 50.5% dichloromethane was used. After the resin was pre-washed with the solution for 1 minute, a deprotecting reaction was conducted for 20 minutes.
  • 2. Washing with Basic Solution
  • To remove and neutralize the trifluoroacetic acid used for deprotection, a dichloromethane solution containing 10% N,N′-diisopropylethylamine was used. The resin was washed for 1 minute three times for each deprotecting reaction.
  • 3. Coupling Reaction
  • A coupling reaction was carried out, using as activators a 3-fold molar amount of 0.3 M diisopropylcarbodiimide/dichloromethane solution and a 3-fold molar amount of 0.3 M BOC amino acid derivative/DMF (N,N′-dimethylformamide) solution. The activated amino acid was coupled to the free alpha amino group of the peptide on the resin. Reaction times are shown below.
  • 4. Washing
  • After completion of every reaction process, the resin was washed with dichloromethane, dichloromethane/DMF and DMF, each for 1 minute.
  • Synthesis Protocol
  • Amino-group-protected amino acids were coupled to the resin in the order, frequency and time shown below.
  • Order Amino acid Frequency - time
    1 BOC-Pro 2 times - 1 hour
    2 BOC-Lys(N-epsilon- 2 times - 1 hour
    Cbz,isopropyl)
    3 BOC-Leu 2 times - 1 hour
    4 BOC-D-Lys 2 times - 1 hour
    (N-epsilon-FMOC)
    5 BOC-NMeTyr 2 times - 1 hour
    (O-2,6-diCl-Bzl)
    6 BOC-Ser(OBzl) 2 times - 1 hour
    7 BOC-D-3Pal 2 times - 6 hours
    8 BOC-D-4ClPhe 2 times - 2 hours
    9 BOC-D2Nal 2 times - 2 hours
    10 Acetic acid 2 times - 2 hours
  • After completion of the synthesis reaction, the resin was treated with a 30% piperidine solution in DMF for 4 to 24 hours to remove the protecting FMOC group. The resin was washed with dichloromethane several times and then reacted with carbonyldiimidazole (0.9 g) dissolved in DMF (18 ml) for 15 minutes and washed with dichloromethane three times, after which it was reacted overnight with 2-furoic hydrazide (0.53 g) dissolved in DMF (18 ml). The resulting peptide-resin was washed with dichloromethane three times and then dried in the presence of phosphorus pentoxide overnight, after which it was treated with dry hydrogen fluoride at 0° C. for 1 hour in the presence of anisole to cut the peptide from the resin. The excess reaction reagent was removed under vacuum conditions. The thus-obtained resin was first washed with ether, then stirred at room temperature for 15 minutes in 50 ml of a water/acetonitrile/acetic acid mixture (1:1:0.1) and filtered. The filtrate was lyophilized to yield an unpurified peptide as a fluffy powder. This peptide was purified by high performance liquid chromatography (HPLC) under the following conditions.
  • (1) Column: Dynamax C-18 (25×2.5 cm, 8 microns)
  • (2) Solvent: Acetonitrile ascending gradient over a 20-minute period from 89% water/11% acetonitrile/0.1% TFA
  • (3) Detection wavelength: 260 nm (UV method)
  • The peptide detected as a single peak at 25.7 minutes retention time was collected and lyophilized to yield a purified product of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys (Nisp)-Pro-DAlaNH2 as a trifluoroacetate. Physical property data on the purified product are as follows:
  • FAB (fast atom bombardment, the same applies below) mass spectrometry: m/e 1591 (M+H)+
  • Amino acid analysis: 0.98 Ala, 1.02 Pro, 1.58 Lys, 1.00 Leu, 1.12 NMeTyr, 0.52 Ser
  • The above trifluoroacetate of peptide was converted to an acetate, using a gel filtration column previously equilibrated with 1 N acetic acid. Gel filtration conditions are as follows:
  • (1) Packing: Sephadex G-25 (column inside diameter 16 mm, packing bed height 40 mm)
  • (2) Solvent: 1 N acetic acid
  • (3) Detection wavelength: 254 nm (UV method)
  • The fraction of the first eluted peak was collected and lyophilized to yield a purified product of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyFur)Leu-Lys(Nisp)-Pro-DAlaNH2 as an acetate.
  • REFERENCE EXAMPLE 11 Synthesis of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyNic)-Leu-Lys(Nisp)-Pro-DAlaNH2
  • The title peptide was synthesized in the same manner as in Reference Example 10, except that 2-furoic hydrazide was replaced with 2-nicotinic hydrazide (0.575 g). The HPLC retention time of the purified product thus obtained was 16.0 minutes. Physical property data on the purified product are as follows:
  • FAB mass spectrometry: m/e 1592 (M+H)+
  • Amino acid analysis: 1.02 Ala, 1.01 Pro, 1.61 Lys, 0.99 Leu, 1.12 NMeTyr, 0.48 Ser
  • The above trifluoroacetate of peptide was converted to an acetate in the same manner as in Reference Example 10.
  • REFERENCE EXAMPLE 12
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 322 g of 90% aqueous solution of D,L-lactic acid and 133 g of glycolic acid and using a mantle heater (So-go Rikagaku Glass Co.), the charge was heated under reduced pressure in a nitrogen stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 4 hours the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 3-30 mmHg/150-185° C. for 23 hours, after which it was cooled to provide a lactic acid-glycolic acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • The weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the resultant lactic acid-glycolic acid copolymer were 10,000; 4,000; and 4,000, respectively. These data showed that the copolymer was a polymer having terminal carboxyl groups.
  • REFERENCE EXAMPLE 13
  • A 1000 ml four-necked flask equipped with a nitrogen inlet pipe and condensor was charged with 347 g of 90% aqueous solution of D,L-lactic acid and 266 g of glycolic acid and using a mantle heater (So-go Rikagaku Glass Co.), the charge was heated under reduced pressure in a nitrogen stream from 100° C./500 mmHg to 150° C./30 mmHg for a period of 5 hours, with the distillate water being constantly removed. The reaction mixture was further heated under reduced pressure at 3-30 mmHg/150-185° C. for 23 hours, after which it was cooled to provide a lactic acid-glycolic acid copolymer.
  • This polymer was dissolved in 1000 ml of dichloromethane and the solution was poured in warm water at 60° C. with constant stirring. The resulting pasty polymeric precipitates were collected and dried in vacuo at 30° C.
  • The weight average molecular weight and number average molecular weight, as determined by GPC, and the number average molecular weight, as found by end-group determination, of the resultant lactic acid-glycolic acid copolymer were 10,000; 3,700; and 3,900, respectively. These data showed that the copolymer was a polymer having terminal carboxyl groups.
  • EXAMPLE 1
  • NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(Nic)-Leu-Lys(Nisp)-Pro-DAlaNH2 (manufactured by TAP; hereinafter referred to briefly as physiologically active peptide A) acetate, 200 mg, was dissolved in a solution of a 50:50 mixture (3.8 g) of the glycolic acid-2-hydroxybutyric acid copolymer obtained in Reference Example 5 and the polylactic acid obtained in Reference Example 1 in 5.3 g (4.0 ml) of dichloromethane. The resulting solution was cooled to 17° C. and poured into 1000 ml of a 0.1% (w/w) aqueous solution of polyvinyl alcohol (EG-40, Nippon Synthetic Chemical Industry Co., Ltd.) previously adjusted to 10° C. and the mixture was emulsified using a turbine homomixer at 7000 rpm to prepare an O/W emulsion. This O/W emulsion was stirred at room temperature for 3 hours to evaporate the dichloromethane. The oil phase was solidified and collected with a centrifuge (05PR-22, Hitachi, Ltd.) at 2000 rpm. This solid was redispersed in distilled water and further centrifuged to wash off the free drug etc. The collected microcapsules were redispersed in a small quantity of distilled water, followed by addition of 0.3 g of D-mannitol and freeze-drying to provide a powder. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 60 μm and 4.7% (w/w), respectively.
  • Preparations of the following physiologically active peptides (1) and (2) were manufactured in the same manner as above.
  • (1) NAcD2Nal-D4ClPhe-D3Pal-Ser-NMeTyr-DLys
    (AzaglyNic)-Leu-Lys(Nisp)-Pro-DAlaNH2
    (2) NAcD2Nal-D4ClPhe-D3Pal-Ser-NMeTyr-DLys
    (AzaglyFur)-Leu-Lys(Nisp)-Pro-DAlaNH2
  • EXAMPLE 2
  • In a solution of a 50:50 mixture (3.8 g) of the glycolic acid-2-hydroxybutyric acid copolymer obtained in Reference Example 5 and the polylactic acid obtained in Reference Example 2 in 6.7 g (5.0 ml) of dichloromethane was dissolved 200 mg of physiologically active peptide A acetate. This solution was cooled to 17° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 17° C. and the mixture was treated as in Example 1 to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 65 μm and 5.0% (w/w), respectively.
  • EXAMPLE 3
  • In a solution of a 50:50 mixture (3.8 g) of the glycolic acid-2-hydroxybutyric acid copolymer obtained in Reference Example 5 and the polylactic acid obtained in Reference Example 3 in 6.7 g (5.0 ml) of dichloromethane was dissolved 200 mg of physiologically active peptide A acetate. This solution was cooled to 17° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 17° C. and the mixture was treated as in Example 1 to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 10 to 60 μm and 4.8% (w/w), respectively.
  • EXAMPLE 4
  • In a solution of a 50:50 mixture (3.8 g) of the glycolic acid-2-hydroxybutyric acid copolymer obtained in Reference Example 5 and the polylactic acid obtained in Reference Example 4 in 6.7 g (5.0 ml) of dichloromethane was dissolved 200 mg of physiologically active peptide A acetate. This solution was cooled to 17° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 17° C. and the mixture was treated as in Example 1 to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 10 to 75 μm and 4.6% (w/w), respectively.
  • EXAMPLE 5
  • In a solution of a 50:50 mixture (3.8 g) of the glycolic acid-2-hydroxybutyric acid copolymer obtained in Reference Example 6 and the polylactic acid obtained in Reference Example 2 in 6.0 g (4.5 ml) of dichloromethane was dissolved 200 mg of physiologically active peptide A acetate. This solution was cooled to 17° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 10° C. and the mixture was treated as in Example 1 to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 60 μm and 4.9% (w/w), respectively.
  • EXAMPLE 6
  • In a solution of a 50:50 mixture (3.8 g) of the glycolic acid-2-hydroxybutyric acid copolymer obtained in Reference Example 7 and the polylactic acid obtained in Reference Example 2 in 6.0 g (4.5 ml) of dichloromethane was dissolved 200 mg of physiologically active peptide A acetate. This solution was cooled to 17° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 17° C. and the mixture was treated as in Example 1 to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 10 to 65 μm and 4.9% (w/w), respectively.
  • EXAMPLE 7
  • In a solution of a 50:50 mixture (3.6 g) of the glycolic acid.2-hydroxybutyric acid copolymer obtained in Reference Example 9 and the polylactic acid obtained in Reference Example 8 in 7.0 g (5.3 ml) of dichloromethane was dissolved 400 mg of physiologically active peptide A acetate. This solution was cooled to 17° C. and poured into 1,000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 17° C. and the mixture was treated as in Example 1, to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 65 μm and 7.2% (w/w), respectively.
  • EXAMPLE 8
  • 240 mg of the acetate of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyNic)-Leu-Lys(Nisp)-Pro-DAlaNH2 (hereinafter referred to briefly as physiologically active peptide B) obtained in Reference Example 11 was dissolved in a solution of a 50:50 mixture (1.76 g) of the glycolic acid.2-hydroxybutyric acid copolymer obtained in Reference Example 9 and the polylactic acid obtained in Reference Example 8 in 3.2 g (2.4 ml) of dichloromethane. The resulting solution was cooled to 18° C. and poured into 400 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 16° C. and the mixture was treated as in Example 1, to provide microcapsules. The particle size distribution and physiologically active peptide B content of the microcapsules were 5 to 70 μm and 10.3% (w/w), respectively.
  • EXAMPLE 9
  • 240 mg of the acetate of NAcD2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-DLys(AzaglyFur)-Leu-Lys(Nisp)-Pro-DAlaNH2 (hereinafter referred to briefly as physiologically active peptide C) obtained in Reference Example 10 was dissolved in a solution of a 50:50 mixture (1.76 g) of the glycolic acid.2-hydroxybutyric acid copolymer obtained in Reference Example 9 and the polylactic acid obtained in Reference Example 8 in 3.2 g (2.4 ml) of dichloromethane. The resulting solution was cooled to 18° C. and poured into 400 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 16° C. and the mixture was treated as in Example 1, to provide microcapsules. The particle size distribution and physiologically active peptide C content of the microcapsules were 5 to 65 μm and 10.9% (w/w), respectively.
  • EXAMPLE 10
  • N-Tetrahydrofur-2-oyl-Gly-D2Nal-D4ClPhe-D3 Pal-Ser-NMeTyr-Dlys(Nic)-Leu-Lys(Nisp)-Pro-DAlaNH2 (Manufactured by TAP; hereinafter referred to briefly as physiologically active peptide D) acetate [FAB mass spectrometry: m/e 1647 (M+H)+], 240 mg, was dissolved in a solution of a 50:50 mixture (1.76 g) of the glycolic acid-2-hydroxybutyric acid copolymer obtained in Reference Example 9 and the polylactic acid obtained in Reference Example 8 in 3.2 g (2.4 ml) of dichloromethane. The resulting solution was cooled to 18° C. and poured into 400 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 16° C. and the mixture was treated as in Example 1 to provide microcapsules. The particle size distribution and physiologically active peptide D content of the microcapsules were 5 to 70 μm and 10.5% (w/w), respectively.
  • EXAMPLE 11
  • 200 mg of physiologically active peptide A acetate was added and dissolved in a solution of a lactic acid-glycolic acid copolymer (lactic acid/glycolic acid=75/25 (mole %), GPC weight average mol. wt.=5,000, GPC number average mol. wt.=2,000, number average mol. wt. by end-group determination=2,200; manufacturer; Wako Pure Chemical (Lot. 920729)) in 5.3 g (4.0 ml) of dichloromethane. The resulting solution was cooled to 17° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol (EG-40, Nippon Synthetic Chemical Industry Co., Ltd.) previously adjusted to 16° C. and the mixture was emulsified using a turbine mixer at 7000 rpm to prepare an O/W emulsion. This O/W emulsion was stirred at room temperature for 3 hours to evaporate the dichloromethane. The oil phase was solidified and collected with a centrifuge (05PR-22, Hitachi) at 2000 rpm. This solid was redispersed in distilled water and further centrifuged to wash off the free drug etc. The collected microcapsules were redispersed in a small quantity of distilled water, followed by addition of 0.3 g of D-mannitol and freeze-drying to provide a powder. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 60 μm and 4.7% (w/w), respectively.
  • Sustained-release preparation of the following peptides (1) and (2) are produced in the same manner as above.
  • (1) Physiologically active peptide B acetate
    (2) Physiologically active peptide C acetate
  • EXAMPLE 12
  • 200 mg of physiologically active peptide A acetate was added and dissolved in a solution of 3.8 g of a lactic acid-glycolic copolymer (lactic acid/glycolic acid=75/25 (mole %), GPC weight average mol. wt.=10,000, GPC number average mol. wt.=4,400, number average mol. wt. by end-group determination=4,300; manufacturer; Wako Pure Chemical (Lot. 880530)) in 6.7 g (5.0 ml) of dichloromethane. The resulting solution was cooled to 17° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 11° C. Thereafter, the procedure of Example 11 was repeated to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 65 μm and 4.5% (w/w), respectively.
  • EXAMPLE 13
  • 400 mg of physiologically active peptide A acetate was dissolved in a solution of the lactic acid-glycolic acid copolymer obtained in Reference Example 12, 3.6 g, in 8.0 g (6.0 ml) of dichloromethane. The resulting solution was cooled to 15° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 14° C. Thereafter, the procedure of Example 11 was repeated to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 65 μm and 8.2% (w/w), respectively.
  • EXAMPLE 14
  • 400 mg of physiologically active peptide A acetate was dissolved in a solution of the lactic acid-glycolic acid copolymer obtained in Reference Example 13, 3.6 g, in 8.0 g (6.0 ml) of dichloromethane. The resulting solution was cooled to 15° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 15° C. Thereafter, the procedure of Example 11 was repeated to provide microcapsules. The particle size distribution and physiologically active peptide A content of the microcapsules were 5 to 65 μm and 8.4% (w/w), respectively.
  • EXAMPLE 15
  • Leuprolerin acetate (manufacturer: Takeda Chemical Industries), 400 mg, was added to a solution of the same lactic acid-glycolic acid copolymer as used in Example 12, 3.6 g, in 8.0 g (60 ml) of dichloromethane to prepare a clear homogeneous solution. The resulting solution was cooled to 15° C. and poured into 1000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 15° C. Thereafter, the procedure of Example 11 was repeated to provide microcapsules.
  • EXPERIMENTAL EXAMPLE 1
  • About 30 mg of the microcapsules obtained in Example 1 were dispersed in a dispersion medium (a solution of 2.5 mg of carboxymethylcellulose, 0.5 mg of polysorbate 80 and 25 mg of mannitol in distilled water) and the dispersion was injected subcutaneously in the back of 10-week-old male SD rats using a 22G needle (the dosage of microcapsules was 60 mg/kg). Serially after administration, the rats were sacrificed, the remnants of microcapsules were taken out from the administration site and the amount of the physiologically active peptide A in the microcapsules was determined. The results are shown in Table 1.
  • EXPERIMENTAL EXAMPLES 2-6
  • Using the microcapsules obtained in Examples 2 to 6, the residual amounts of the physiologically active peptide A in the microcapsules were determined as in Experimental Example 1. The results are also shown in Table 1.
  • TABLE 1
    Residue of physiologically active peptide A(%)
    Day 1 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 8
    Experimental 88.0 66.5 42.3 15.2
    Example 1
    Experimental 92.8 76.6 62.6 48.7 38.6 26.5
    Example 2
    Experimental 96.5 90.5 77.5 64.9 59.2 46.9 38.7 20.3
    Example 3
    Experimental 99.4 94.5 87.2 76.3 66.0 46.6 30.7
    Example 4
    Experimental 92.9 75.0 45.7 17.5
    Example 5
    Experimental 92.3 61.3 33.5 6.4
    Example 6
  • It is apparent from Table 1 that all the microcapsules according to the present invention are characterized by substantially constant release of physiologically active peptide and are further characterized by being substantially free from an initial burst.
  • Table 2 shows the linear regression models, correlation coefficients, and release periods calculated as X-intercept which were determined by the procedures described in Methods of Bioassay (authored by Akira Sakuma, Tokyo University Press, Jun. 5, 1978, p. 111).
  • TABLE 2
    Weight
    average
    molecular
    weight of Release
    polylactic Linear regression Correlation period
    acid model coefficient (weeks)
    Experimental 3000 Residue (%) = (R2 = 3.5
    Example 1 95.4 − (26.9 × 0.992)
    no. of weeks)
    Experimental 5000 Residue (%) = (R2 = 6.6
    Example 2 94.4 − (14.2 × 0.975)
    no. of weeks)
    Experimental 7500 Residue (%) = (R2 = 9.8
    Example 3 98.4 − (10.0 × 0.996)
    no. of weeks)
    Experimental 9000 Residue (%) = (R2 = 11.5
    Example 4 102.1 − (8.9 × 0.995)
    no. of weeks)
  • It is apparent from Table 2 that by varying the weight average molecular weight of polylactic acid to be blended with glycolic acid-2-hydroxybutyric copolymer, the duration of release can be freely controlled within the range of about 3.5 weeks to about 11.5 weeks.
  • Table 3 shows the linear regression models, correlation coefficients and release periods as X-intercept which were determined from the data in Table 1 by the same procedures as used in Table 2.
  • TABLE 3
    Mole
    fraction of
    glycolic acid in Release
    glycolic acid Linear regression Correlation period
    copolymer model coefficient (weeks)
    Experimental 60% Residue (%) = (R2 = 6.6
    Example 2 94.4 − (14.2 × 0.975)
    no. of weeks)
    Experimental 65% Residue (%) = (R2 = 4.6
    Example 5 95.7 − (20.6 × 0.976)
    no. of weeks)
    Experimental 70% Residue (%) = (R2 = 3.1
    Example 6 96.6 − (30.9 × 0.994)
    no. of weeks)
  • It is apparent from Table 3 that by varying the mole fraction of glycolic acid in the glycolic acid-2-hydroxybutyric acid copolymer to be blended with polylactic acid, the duration of release can be freely controlled within the range of about 3.1 weeks to about 6.6 weeks.
  • EXPERIMENTAL EXAMPLES 7-9
  • Using the microcapsules obtained in Examples 7 to 9, the residual amounts of the physiologically active peptide in the microcapsules were determined as in Experimental Example 1, except that the microcapsule dose was about 30 mg/kg. The results are shown in Table 4. Table 5 shows the linear regression models, correlation coefficients and release periods calculated as X-intercepts, which were determined from the data in Table 4 by the same procedure as used in Table 2.
  • TABLE 4
    Residue of Physiologically active peptide (%)
    Physiologically 1 1 2 3 4
    active Day Week Weeks Weeks Weeks
    Experimental A 99.3 74.5 51.4 33.2 24.1
    Example 7
    Experimental B 87.4 75.0 52.3 32.8 25.1
    Example 8
    Experimental C 89.4 73.6 54.9 37.7 23.4
    Example 9
  • TABLE 5
    Physiologically Linear Release
    active regression Correlation period
    Peptide model Coefficient (weeks)
    Experimental A Residue (%) = (R2 = 4.9
    Example 7 97.8 − (20.1 × 0.975)
    no. of weeks)
    Experimental B Residue (%) = (R2 = 5.0
    Example 8 93.5 − (18.6 × 0.971)
    no. of weeks)
    Experimental C Residue (%) = (R2 = 4.9
    Example 9 94.4 − (18.5 × 0.987)
    no. of weeks)
  • It is apparent from Tables 4 and 5 that the microcapsules according to the present invention are characterized by substantially constant release of physiologically active peptide and are further characterized by being substantially free from an initial burst.
  • EXPERIMENTAL EXAMPLE 10
  • Using the microcapsules obtained in Example 10, the residual amounts of the physiologically active peptide in the microcapsules were determined as in Experimental Example 7. The results are shown in Table 6. Table 7 shows the linear regression models, correlation coefficients and release periods calculated as X-intercepts, which were determined from the data in
  • Table 6 by the same procedure as used in Table 2.
  • TABLE 6
    Residue of physiologically active
    peptide D (%)
    Day 1 Week 1 Week 2 Week 3 Week 4
    Experimental 93.5 ± 0.5 69.9 ± 3.6 37.3 ± 1.6 17.0 ± 1.4 7.9 ± 0.5
    Example 10
  • TABLE 7
    Release
    Correlation periods
    Linear regression model coefficient (weeks)
    Experimental Residue (%) = (R2 = 3.9
    Example 10 95.0 − (24.1 × no. of 0.969)
    weeks)
  • It is apparent from Tables 6 and 7 that the microcapsules according to the present invention are characterized by substantially constant release of physiologically active peptide and are further characterized by being substantially free from an initial burst.
  • EXPERIMENTAL EXAMPLE 11
  • About 30 mg of the microcapsules obtained in Example 11 were dispersed in 0.5 ml of a dispersion medium (prepared by dissolving carboxymethylcellulose (2.5 mg), polysorbate 80 (0.5 mg) and mannitol (25 mg) in distilled water) and, the dispersion was injected subcutaneously at the back of 10-week-old male SD rats using a 22G needle (the dosage as microcapsules 60 mg/kg). Serially after administration, the rats were sacrificed, the remains of microcapsules were taken out from the administration site and the amount of the physiologically active peptide A in the microcapsules was determined. The results are shown in Table 8.
  • EXPERIMENTAL EXAMPLE 12
  • Using the microcapsules obtained in Example 12, the procedure of Experimental Example 11 was otherwise repeated and the residue of physiologically active peptide A was assayed. The results are shown in Table 8.
  • EXPERIMENTAL EXAMPLE 13
  • Using the microcapsules obtained in Example 13, the procedure of Experimental Example 11 was otherwise repeated and the residue of physiologically active peptide A was assayed. The results are shown in Table 8.
  • EXPERIMENTAL EXAMPLE 14
  • Using the microcapsules obtained in Example 14, the procedure of Experimental Example 11 was otherwise repeated and the residue of physiologically active peptide A was assayed. The results are shown in Table 8.
  • TABLE 8
    Residue of physiologically active peptide
    A (%)
    Week Week Week
    Day 1 Week 1 Week 2 Week 3 4 6 8
    Experimental 82.8 21.8
    Example 11
    Experimental 96.7 91.7 79.5 69.2 59.2 22.8
    Example 12
    Experimental 100.0 84.3 43.9 31.9
    Example 13
    Experimental 96.3 67.5 38.0 23.5
    Example 14
    (—: not determined)
  • Table 9 shows the linear regression models, correlation coefficients, and release periods as X-intercept which were determined from the data in Table 8 by the same procedures as used in Table 2.
  • TABLE 9
    Release
    Correlation periods
    Linear regression model coefficient (weeks)
    Experimental Residue (%) = (R2 = 1.3
    Example 11 97.1 − (75.7 × no. of 0.994)
    weeks)
    Experimental Residue (%) = (R2 = 10.3
    Example 12 92.2 − (9.7 × no. of weeks) 0.998)
    Experimental Residue (%) = (R2 = 4.1
    Example 13 102.4 − (24.8 × no. of 0.982)
    weeks)
    Experimental Residue (%) = (R2 = 3.7
    Example 14 97.7 − (26.5 × no. of 0.989)
    weeks)
  • It is apparent from Tables 8 and 9 that the sustained-release preparation according to the present invention invariably insure a substantially constant release of the peptide over various segments of the time.
  • COMPARATIVE EXAMPLE 1
  • 400 mg of physiologically active peptide A acetate was added to a solution of a lactic acid-glycolic acid copolymer ((lactic acid/glycolic acid=50/50 (mole %), GPC weight average mol. wt.=58,000, GPC number average mol. wt.=14,000, number average mol. wt. by end-group determination=45,000; manufacturer; Boehringer-Ingelheim (Lot. RG505-05077), 3.6 g, in 33.2 g (25.0 ml) of dichloromethane but the physiologically active peptide A acetate could not be successfully dissolved.
  • COMPARATIVE EXAMPLE 2
  • 400 mg of physiologically active peptide A acetate was added to a solution of lactic acid-glycolic acid copolymer (lactic acid/glycolic acid=75/25 (mole %), GPC weight average mol. wt.=18,000, GPC number average mol. wt.=8,400, number average mol. wt. by end-group determination=30,000; manufacturer; Boehringer-Ingelheim (Lot. RG752-15057), 3.6 g, in 8.0 g (6.0 ml) of dichloromethane but the physiologically active peptide A could not be successfully dissolved. This dispersion was cooled to 17° C. and poured into 1,000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 15° C. to prepare microcapsules in the same manner as in Example 11. The particle size distribution and physiologically active peptide A content of the microcapsules were 10 to 90 μm and 2.5% (w/w), respectively.
  • COMPARATIVE EXAMPLE 3
  • 400 mg of physiologically active peptide A acetate, was added to a solution of lactic acid-glycolic acid copolymer (lactic acid/glycolic acid=75/25 (mole %), GPC weight average mol. wt.=58,000, GPC number average mol. wt.=15,000, number average mol. wt. by end-group determination=53,000; manufacturer; Boehringer-Ingelheim (Lot. RG755-05019), 3.6 g, in 21.2 g (16.0 ml) of dichloromethane but the physiologically active peptide A could not be successfully dissolved. This dispersion was cooled to 17° C. and poured into 1,000 ml of a 0.1% aqueous solution of polyvinyl alcohol previously adjusted to 16° C. to prepare microcapsules in the same manner as in Example 11. The particle size distribution and physiologically active peptide A content of the microcapsules were 10 to 90 μm and 3.6% (w/w), respectively.
  • As shown in Comparative Examples 1 to 3, with a lactic acid-glycolic acid copolymer having substantially no terminal carboxyl group, the peptide [I] of the present invention could not be successfully dissolved.
  • COMPARATIVE EXAMPLE 4
  • Leuprolerin acetate (manufacturer: Takeda Chemical Industries), 400 mg, was added to a solution of the same lactic acid-glycolic acid copolymer as used in Comparative Example 2, 3.6 g, in 8.0 g (6.0 ml) of dichloromethane but the leuprolerin acetate could not be successfully dissolved.
  • The sustained-release preparation of the present invention shows a constant release of the drug, especially the peptide [I] over a long time, thus being conducive to a lasting and stable effect. Furthermore, the duration of release of the drug can be easily controlled and excessive release immediately following administration can be inhibited. Specifically the histamine-releasing activity in the peptide [I] following administration of the sustained-release preparation is inhibited. The sustained-release preparation has excellent dispersibility. Moreover, the preparation is stable (e.g. to light, heat, humidity, colouring) and of low toxicity and, therefore, can be safely administered.
  • In accordance with the production method of the present invention, a sustained-release preparation containing a physiologically active peptide can be easily obtained in good yield. The thus obtained sustained-release preparation has a smooth surface and is excellent in mobility.

Claims (20)

1-25. (canceled)
26. A method of producing a plurality of microcapsules together constituting a sustained-release preparation of leuprorelin which comprises:
(a) dissolving or suspending leuprorelin in an organic solvent solution comprising an organic solvent selected from the group consisting of halogenated hydrocarbons, alkyl ethers having three or more carbon atoms, alkyl esters of carboxylic acids wherein the alkyl group has four or more carbon atoms, aromatic hydrocarbons and mixtures thereof and a biodegradable polymer comprising a copolymer of lactic acid and glycolic acid or a polymer of lactic acid to form a mixture;
(b) adding the mixture to an aqueous medium to provide an O/W emulsion; and
(c) transforming the mixture into microcapsules by removal of the organic solvent, wherein the polymer has a terminal carboxyl group.
27. The method of claim 26 wherein said leuprorelin is in the form of leuprorelin acetate.
28. The method of claim 27 wherein the organic solvent of step (a) comprises dichloromethane.
29. The method of claim 28 wherein said aqueous medium of step (b) comprises polyvinyl alcohol in water.
30. A method of producing a plurality of microcapsules together constituting a sustained-release preparation of leuprorelin which comprises
(a) dissolving or suspending leuprorelin acetate in a dichloromethane solution of a biodegradable polymer comprising a copolymer of lactic acid and glycolic acid or a polymer of lactic acid to form a mixture;
(b) adding the mixture to an aqueous medium comprising polyvinyl alcohol in water to provide an O/W emulsion; and
(c) transforming the mixture into microcapsules by removal of the dichloromethane solvent, wherein the polymer has a terminal carboxyl group.
31. A method of producing a sustained-release preparation which comprises:
preparing an oil phase comprising (a) leuprorelin, (b) a biodegradable lactic acid-glycolic acid copolymer or a biodegradable lactic acid polymer and (c) at least one organic solvent selected from the group consisting of halogenated hydrocarbons, alkyl ethers having three or more carbon atoms, alkyl esters of carboxylic acids wherein the alkyl group has four or more carbon atoms, aromatic hydrocarbons and mixtures thereof;
providing an aqueous phase;
forming an O/W emulsion by emulsifying said oil phase in said aqueous phase; and
recovering the sustained-release preparation from said emulsion, wherein the polymer has a terminal carboxyl group.
32. The method of claim 31, wherein said organic solvent is dichloromethane.
33. The method of claim 31, wherein said leuprorelin is in the form of leuprorelin acetate.
34. The method of claim 31 or claim 32, wherein said oil phase is a homogeneous oil phase.
35. The method of claim 31 or claim 32, wherein the step of recovering includes a step of removing at least one organic solvent from the oil phase.
36. The method of claim 31 or claim 32, wherein said aqueous phase comprises polyvinyl alcohol and water.
37. The method of claim 31 or claim 32, wherein the lactic acid-glycolic acid copolymer or the lactic acid polymer has a number-average molecular weight determined by end group determination which is between about 0.4 and about 2.0 times a number-average molecular weight determined by gel permeation chromatography.
38. A method of forming a sustained-release preparation comprising the steps of:
forming an oil phase by adding leuprorelin to a solution comprising lactic acid-glycolic acid copolymer or lactic acid polymer and at least one organic solvent selected from the group consisting of halogenated hydrocarbons, alkyl ethers having three or more carbon atoms, alkyl esters of carboxylic acids wherein the alkyl group has four or more carbon atoms, aromatic hydrocarbons and mixtures thereof;
providing an aqueous phase;
forming an O/W emulsion by emulsifying said oil phase in said aqueous phase; and
recovering the sustained-release preparation from the emulsion, wherein the polymer has a terminal carboxyl group.
39. The method of claim 38, wherein said organic solvent is dichloromethane.
40. The method of claim 38, wherein said leuprorelin is in the form of leuprorelin acetate.
41. The method of claim 38 or claim 39, wherein the aqueous phase comprises polyvinyl alcohol and water.
42. The method of claim 38 or claim 39, wherein the lactic acid-glycolic acid copolymer or the lactic acid polymer has a number-average molecular weight determined by end group determination which is between about 0.4 and about 2.0 times a number-average molecular weight determined by gel permeation chromatography.
43. The method of claim 38 or claim 39, wherein the step of recovering includes a step of removing organic solvent from the oil phase.
44. The method of claim 38 or 39, wherein said oil phase is a homogeneous oil phase.
US12/285,494 1992-12-07 2008-10-07 Sustained-release preparation Abandoned US20090048180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/285,494 US20090048180A1 (en) 1992-12-07 2008-10-07 Sustained-release preparation

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP32707092 1992-12-07
JP1992-327070 1992-12-07
JP1897893 1993-02-05
JP1993-018978 1993-02-05
JP14513493 1993-06-16
JP1993-145134 1993-06-16
US08/162,698 US5480868A (en) 1992-12-07 1993-12-07 Sustained-release preparation
US08/471,382 US5668111A (en) 1992-12-07 1995-06-06 Sustained-release preparation
US08/892,315 US5972891A (en) 1992-12-07 1997-07-14 Sustained-release preparation
US38694999A 1999-08-31 1999-08-31
US64098300A 2000-08-18 2000-08-18
US10/025,967 US20020147150A1 (en) 1992-12-07 2001-12-26 Sustained-release preparation
US12/285,494 US20090048180A1 (en) 1992-12-07 2008-10-07 Sustained-release preparation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/025,967 Continuation US20020147150A1 (en) 1992-12-07 2001-12-26 Sustained-release preparation

Publications (1)

Publication Number Publication Date
US20090048180A1 true US20090048180A1 (en) 2009-02-19

Family

ID=27282444

Family Applications (7)

Application Number Title Priority Date Filing Date
US08/162,698 Expired - Lifetime US5480868A (en) 1992-12-07 1993-12-07 Sustained-release preparation
US08/471,382 Expired - Lifetime US5668111A (en) 1992-12-07 1995-06-06 Sustained-release preparation
US08/892,315 Expired - Lifetime US5972891A (en) 1992-12-07 1997-07-14 Sustained-release preparation
US09/386,232 Expired - Fee Related US6528093B1 (en) 1992-12-07 1999-08-31 Sustained-release preparation
US10/025,967 Abandoned US20020147150A1 (en) 1992-12-07 2001-12-26 Sustained-release preparation
US10/127,558 Expired - Fee Related US7048947B2 (en) 1992-12-07 2002-04-23 Sustained-release preparation
US12/285,494 Abandoned US20090048180A1 (en) 1992-12-07 2008-10-07 Sustained-release preparation

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US08/162,698 Expired - Lifetime US5480868A (en) 1992-12-07 1993-12-07 Sustained-release preparation
US08/471,382 Expired - Lifetime US5668111A (en) 1992-12-07 1995-06-06 Sustained-release preparation
US08/892,315 Expired - Lifetime US5972891A (en) 1992-12-07 1997-07-14 Sustained-release preparation
US09/386,232 Expired - Fee Related US6528093B1 (en) 1992-12-07 1999-08-31 Sustained-release preparation
US10/025,967 Abandoned US20020147150A1 (en) 1992-12-07 2001-12-26 Sustained-release preparation
US10/127,558 Expired - Fee Related US7048947B2 (en) 1992-12-07 2002-04-23 Sustained-release preparation

Country Status (24)

Country Link
US (7) US5480868A (en)
EP (2) EP1088555B1 (en)
JP (1) JP3725906B2 (en)
KR (2) KR100305951B1 (en)
CN (2) CN1099893C (en)
AT (2) ATE203910T1 (en)
AU (1) AU669939B2 (en)
CA (1) CA2110730C (en)
DE (2) DE69333817T2 (en)
DK (2) DK1088555T3 (en)
EE (1) EE03117B1 (en)
ES (2) ES2238247T3 (en)
FI (2) FI935471A (en)
GE (1) GEP19991600B (en)
GR (1) GR3037085T3 (en)
HK (1) HK1037519A1 (en)
LV (1) LV10927B (en)
MX (1) MX9307686A (en)
NO (1) NO310704B1 (en)
NZ (1) NZ250349A (en)
PT (2) PT1088555E (en)
SG (1) SG46283A1 (en)
TW (1) TW333456B (en)
WO (1) WO1994013317A1 (en)

Families Citing this family (314)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW333456B (en) * 1992-12-07 1998-06-11 Takeda Pharm Ind Co Ltd A pharmaceutical composition of sustained-release preparation the invention relates to a pharmaceutical composition of sustained-release preparation which comprises a physiologically active peptide.
CA2126619A1 (en) * 1993-06-24 1994-12-25 Yasutaka Igari Sustained-release preparation of anti-endothelin substance
US6087324A (en) * 1993-06-24 2000-07-11 Takeda Chemical Industries, Ltd. Sustained-release preparation
DE4342091A1 (en) * 1993-12-09 1995-06-14 Asta Medica Ag Products for the application of initially high doses of Cetrorelix and manufacture of a combination pack for use in the treatment of diseases
WO1996022786A1 (en) * 1995-01-23 1996-08-01 Takeda Chemical Industries, Ltd. Sustained-release preparation and use
US5869079A (en) * 1995-06-02 1999-02-09 Oculex Pharmaceuticals, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
TW448055B (en) * 1995-09-04 2001-08-01 Takeda Chemical Industries Ltd Method of production of sustained-release preparation
US6143037A (en) * 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US5916582A (en) * 1996-07-03 1999-06-29 Alza Corporation Aqueous formulations of peptides
US5932547A (en) * 1996-07-03 1999-08-03 Alza Corporation Non-aqueous polar aprotic peptide formulations
US5981489A (en) * 1996-07-18 1999-11-09 Alza Corporation Non-aqueous protic peptide formulations
ES2221019T3 (en) 1996-10-31 2004-12-16 Takeda Chemical Industries, Ltd. PREPARATION OF MAINTENANCE RELEASE.
US5968895A (en) 1996-12-11 1999-10-19 Praecis Pharmaceuticals, Inc. Pharmaceutical formulations for sustained drug delivery
US6126919A (en) 1997-02-07 2000-10-03 3M Innovative Properties Company Biocompatible compounds for pharmaceutical drug delivery systems
US5945126A (en) * 1997-02-13 1999-08-31 Oakwood Laboratories L.L.C. Continuous microsphere process
US6030975A (en) * 1997-03-14 2000-02-29 Basf Aktiengesellschaft Carboxylic acid derivatives, their preparation and use in treating cancer
US6270802B1 (en) 1998-10-28 2001-08-07 Oakwood Laboratories L.L.C. Method and apparatus for formulating microspheres and microcapsules
US6143314A (en) * 1998-10-28 2000-11-07 Atrix Laboratories, Inc. Controlled release liquid delivery compositions with low initial drug burst
ATE289205T1 (en) * 1998-12-15 2005-03-15 Takeda Pharmaceutical METHOD FOR PRODUCING BIODEGRADABLE POLYESTER
CN1339964A (en) * 1999-02-19 2002-03-13 生化研究股份公司 Biodegradable composite material for the production of microcapsules
US7358330B2 (en) * 2001-03-29 2008-04-15 Biotempt B.V. Immunoregulatory compositions
CA2407472A1 (en) * 2000-06-14 2002-10-23 Takeda Chemical Industries, Ltd. Sustained release compositions
EP1297850B1 (en) 2000-07-05 2015-08-19 Takeda Pharmaceutical Company Limited Medicinal preparations for treating sex hormone-dependent diseases
JP5046447B2 (en) * 2000-08-07 2012-10-10 和光純薬工業株式会社 Lactic acid polymer and method for producing the same
ATE416784T1 (en) 2000-12-01 2008-12-15 Takeda Pharmaceutical METHOD FOR PRODUCING A PREPARATION WITH A BIOACTIVE SUBSTANCE
CA2435415A1 (en) * 2001-01-26 2002-08-01 Debio Recherche Pharmaceutique S.A. Microparticles of biodegradable polymer encapsulating a biologically active substance
WO2002058671A1 (en) * 2001-01-26 2002-08-01 Debio Recherche Pharmaceutique S.A. Burst free pharmaceutical microparticules
JP2004535431A (en) 2001-06-22 2004-11-25 サザン バイオシステムズ, インコーポレイテッド Zero-order long-term release coaxial implant
TWI225416B (en) 2001-06-29 2004-12-21 Takeda Chemical Industries Ltd Sustained-release composition and process for producing the same
EP1443907A1 (en) 2001-11-12 2004-08-11 Alkermes Controlled Therapeutics, Inc. Biocompatible polymer blends and uses thereof
CA2466659A1 (en) 2001-11-13 2003-05-22 Takeda Chemical Industries, Ltd. Anticancer agents
WO2003068805A2 (en) * 2002-02-14 2003-08-21 Bayer Pharmaceuticals Corporation Formulation strategies in stabilizing peptides in organic solvents and in dried states
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
JP5242375B2 (en) 2005-04-01 2013-07-24 ザ レゲントス オブ ザ ユニバーシティ オブ カリフォルニア Phosphono-pent-2-en-1-yl nucleosides and analogs
US20090156545A1 (en) * 2005-04-01 2009-06-18 Hostetler Karl Y Substituted Phosphate Esters of Nucleoside Phosphonates
DE602006000381T2 (en) * 2005-04-28 2008-12-18 Nipro Corp., Osaka Bioabsorbable pharmaceutical composition containing a PLGA copolymer
US8329207B2 (en) 2005-05-23 2012-12-11 Natural Alternatives International, Inc. Compositions and methods for the sustained release of beta-alanine
EP1904525A4 (en) * 2005-06-30 2009-10-21 Ipsen Pharma Glp-1 pharmaceutical compositions
US8882747B2 (en) * 2005-11-09 2014-11-11 The Invention Science Fund I, Llc Substance delivery system
CA2634974A1 (en) 2005-12-30 2007-07-12 Zensun (Shanghai) Science & Technology, Ltd. Extended release of neuregulin for improved cardiac function
PT2383271E (en) 2006-03-13 2013-10-10 Kyorin Seiyaku Kk Aminoquinolones as gsk-3 inhibitors
AU2007225207A1 (en) * 2006-03-13 2007-09-20 Encysive Pharmaceuticals, Inc. Formulations of sitaxsentan sodium
JP2009530284A (en) * 2006-03-13 2009-08-27 エンサイシブ・ファーマシューティカルズ・インコーポレイテッド Methods and compositions for treating diastolic heart failure
US8323676B2 (en) * 2008-06-30 2012-12-04 Abbott Cardiovascular Systems Inc. Poly(ester-amide) and poly(amide) coatings for implantable medical devices for controlled release of a protein or peptide and a hydrophobic drug
US20090258028A1 (en) * 2006-06-05 2009-10-15 Abbott Cardiovascular Systems Inc. Methods Of Forming Coatings For Implantable Medical Devices For Controlled Release Of A Peptide And A Hydrophobic Drug
US20080026061A1 (en) * 2006-06-22 2008-01-31 Reichwein John F Crystalline N-(4-chloro-3-methyl-5-isoxazolyl)-2-[2-methyl-4.5-(methylenedioxy)phenylacetyl]-thiophene-3-sulfonamide
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US7682356B2 (en) 2006-08-09 2010-03-23 Intarcia Therapeutics, Inc. Osmotic delivery systems and piston assemblies for use therein
AU2007297597B2 (en) 2006-09-21 2013-02-21 Kyorin Pharmaceuticals Co., Ltd. Serine hydrolase inhibitors
ATE502921T1 (en) 2006-10-19 2011-04-15 Auspex Pharmaceuticals Inc SUBSTITUTED INDOLES
WO2008057604A2 (en) * 2006-11-08 2008-05-15 The Regents Of The University Of California Small molecule therapeutics, syntheses of analogues and derivatives and methods of use
CA2670976C (en) 2006-11-30 2015-01-27 Atsushi Hasuoka Cyclic amine compound
BRPI0720582B1 (en) 2006-12-18 2021-08-24 Takeda Pharmaceutical Company Limited PROLONGED RELEASE COMPOSITION, PROCESS FOR THE PREPARATION OF THE SAME, PHARMACEUTICAL COMPOSITION, PROPHYLATIC OR THERAPEUTIC AGENT, AND, USE OF A PHYSIOLOGICALLY ACTIVE SUBSTANCE
ATE525068T1 (en) 2007-02-28 2011-10-15 Conatus Pharmaceuticals Inc METHOD FOR TREATING CHRONIC VIRAL HEPATITIS C USING RO 113-0830
WO2008106167A1 (en) * 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Combination therapy comprising matrix metalloproteinase inhibitors and caspase inhibitors for the treatment of liver diseases
US20080220104A1 (en) * 2007-03-08 2008-09-11 Cappello John V Compositions for producing satiety
WO2008140859A1 (en) 2007-03-15 2008-11-20 Auspex Pharmaceuticals, Inc. Deuterated venlafaxines and 0-desmetylvenlafaxines with serotoninergic and / or norepinephrinergic activity
WO2008116116A2 (en) 2007-03-20 2008-09-25 Harold Brem Gm-csf cosmeceutical compositions and methods of use thereof
CN104000779A (en) 2007-04-23 2014-08-27 精达制药公司 Suspension formulations of insulinotropic peptides and uses thereof
US7892776B2 (en) 2007-05-04 2011-02-22 The Regents Of The University Of California Screening assay to identify modulators of protein kinase A
US8247423B2 (en) * 2007-07-12 2012-08-21 Tragara Pharmaceuticals, Inc. Methods and compositions for the treatment of cancer, tumors, and tumor-related disorders
ITSA20070024A1 (en) * 2007-07-27 2009-01-28 Univ Degli Studi Salerno CONTINUOUS PROCESS FOR THE PRODUCTION OF MICROSPHERES WITH EXPANDED LIQUIDS.
US8389514B2 (en) * 2007-09-11 2013-03-05 Kyorin Pharmaceutical Co., Ltd. Cyanoaminoquinolones and tetrazoloaminoquinolones as GSK-3 inhibitors
CN101855229A (en) 2007-09-12 2010-10-06 埃迪威克斯生物科学公司 Spirocyclic aminoquinolones as GSK-3 inhibitors
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
DK2240155T3 (en) 2008-02-13 2012-09-17 Intarcia Therapeutics Inc Devices, formulations and methods for the delivery of several beneficial agents
PL2268623T3 (en) 2008-03-17 2015-10-30 Ambit Biosciences Corp Quinazoline derivatives as raf kinase modulators and methods of use thereof
WO2009139880A1 (en) * 2008-05-13 2009-11-19 Celgene Corporation Thioxoisoindoline compounds and compositions and methods of using the same
JP2011521915A (en) * 2008-05-20 2011-07-28 セレニス セラピューティクス エス.エー. Niacin and NSAID combination therapy
US8765162B2 (en) 2008-06-30 2014-07-01 Abbott Cardiovascular Systems Inc. Poly(amide) and poly(ester-amide) polymers and drug delivery particles and coatings containing same
ES2458358T3 (en) 2008-07-02 2014-05-05 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US8895033B2 (en) * 2008-09-04 2014-11-25 Amylin Pharmaceuticals, Llc Sustained release formulations using non-aqueous carriers
WO2010076329A1 (en) 2008-12-31 2010-07-08 Scynexis, Inc. Derivatives of cyclosporin a
WO2010088450A2 (en) 2009-01-30 2010-08-05 Celladon Corporation Methods for treating diseases associated with the modulation of serca
US8568793B2 (en) 2009-02-11 2013-10-29 Hope Medical Enterprises, Inc. Sodium nitrite-containing pharmaceutical compositions
CA2752885A1 (en) 2009-02-27 2010-09-02 Ambit Biosciences Corporation Jak kinase modulating quinazoline derivatives and methods of use thereof
US8193372B2 (en) 2009-03-04 2012-06-05 Idenix Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole HCV polymerase inhibitors
US8071591B2 (en) * 2009-03-11 2011-12-06 Kyorin Pharmaceutical Co., Ltd. 7-cycloalkylaminoquinolones as GSK-3 inhibitors
WO2010105016A1 (en) 2009-03-11 2010-09-16 Ambit Biosciences Corp. Combination of an indazolylaminopyrrolotriazine and taxane for cancer treatment
WO2010110686A1 (en) 2009-03-27 2010-09-30 Pathway Therapeutics Limited Pyrimidinyl and 1,3,5 triazinyl benzimidazoles and their use in cancer therapy
TW201038567A (en) 2009-03-27 2010-11-01 Pathway Therapeutics Ltd Pyrimidinyl and 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
AR078120A1 (en) 2009-04-22 2011-10-19 Axikin Pharmaceuticals Inc CCR3 ANTAGONISTS OF 2.5-DISPOSED ARILSULFONAMIDE AND PHARMACEUTICAL COMPOSITIONS
US8420639B2 (en) 2009-04-22 2013-04-16 Axikin Pharmaceuticals, Inc. Arylsulfonamide CCR3 antagonists
MX357611B (en) 2009-04-22 2018-07-17 Axikin Pharmaceuticals Inc 2,5-disubstituted arylsulfonamide ccr3 antagonists.
US8911766B2 (en) * 2009-06-26 2014-12-16 Abbott Cardiovascular Systems Inc. Drug delivery compositions including nanoshells for triggered drug release
WO2011003870A2 (en) 2009-07-06 2011-01-13 Creabilis S.A. Mini-pegylated corticosteroids, compositions including same, and methods of making and using same
EP3072890B1 (en) 2009-07-07 2018-10-17 MEI Pharma, Inc. Pyrimidinyl and 1,3,5-triazinyl benzimidazoles and their use in cancer therapy
AU2010270605B2 (en) 2009-07-08 2014-07-31 Hope Medical Enterprises, Inc. Dba Hope Pharmaceuticals Sodium thiosulfate-containing pharmaceutical compositions
WO2011009961A1 (en) 2009-07-24 2011-01-27 Virologik Gmbh Combination of proteasome inhibitors and anti-hepatitis medication for treating hepatitis
CA2769652A1 (en) 2009-08-05 2011-02-10 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors useful against viral infections, particularly hcv
MX2012001974A (en) 2009-08-19 2012-04-11 Ambit Biosciences Corp Biaryl compounds and methods of use thereof.
KR20150006083A (en) 2009-09-28 2015-01-15 인타르시아 세라퓨틱스 인코포레이티드 Rapid establishment and/or termination of substantial steady-state drug delivery
WO2011056566A2 (en) 2009-10-26 2011-05-12 Sunesis Pharmaceuticals, Inc. Compounds and methods for treatment of cancer
WO2011056764A1 (en) 2009-11-05 2011-05-12 Ambit Biosciences Corp. Isotopically enriched or fluorinated imidazo[2,1-b][1,3]benzothiazoles
WO2011064769A1 (en) 2009-11-24 2011-06-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Methods and pharmaceutical compositions for the treatment of hot flashes
WO2011069002A1 (en) 2009-12-02 2011-06-09 Alquest Therapeutics, Inc. Organoselenium compounds and uses thereof
MX2012006877A (en) 2009-12-18 2012-08-31 Idenix Pharmaceuticals Inc 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors.
EP2515654A4 (en) * 2009-12-23 2013-04-24 Map Pharmaceuticals Inc Novel ergoline analogs
CN102834409A (en) 2009-12-30 2012-12-19 西尼克斯公司 Cyclosporine analogues
WO2011089167A1 (en) 2010-01-19 2011-07-28 Virologik Gmbh Kombination of proteasome inhibitors and anti -hepatitis medication for treating retroviral diseases
WO2011094890A1 (en) 2010-02-02 2011-08-11 Argusina Inc. Phenylalanine derivatives and their use as non-peptide glp-1 receptor modulators
ES2632548T3 (en) 2010-02-05 2017-09-14 Tragara Pharmaceuticals, Inc. Solid state forms of macrocyclic kinase inhibitors
EP4289838A3 (en) 2010-02-11 2024-03-13 Celgene Corporation Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
WO2011109345A1 (en) 2010-03-02 2011-09-09 Axikin Pharmaceuticals, Inc. Isotopically enriched arylsulfonamide ccr3 antagonists
WO2011112689A2 (en) 2010-03-11 2011-09-15 Ambit Biosciences Corp. Saltz of an indazolylpyrrolotriazine
AR080770A1 (en) 2010-03-17 2012-05-09 Axikin Pharmaceuticals Inc PIPERIDINSULFONAMIDS MODULATORS OF THE ACTIVITY OF XCC3 RECEPTORS, PHARMACEUTICAL COMPOSITIONS CONTAINING THEMSELVES AND USE OF THE SAME IN THE TREATMENT OF RESPIRATORY PATHOLOGIES, SUCH AS ASTHMA, AMONG OTHER.
WO2011150198A1 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl urea compounds and methods of use thereof
WO2011150201A2 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl amide compounds and methods of use thereof
US20130178503A1 (en) 2010-06-01 2013-07-11 Biotheryx Inc. Methods of treating hematologic malignancies using 6-cyclohexyl-1-hydroxy-4-methyl-2(1h)-pyridone
CN104945318A (en) 2010-06-01 2015-09-30 拜欧赛里克斯公司 Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating proliferative diseases
CA2801778C (en) 2010-06-07 2018-06-05 Novomedix, Llc Furanyl compounds and the use thereof
US9295663B2 (en) 2010-07-14 2016-03-29 Abbott Cardiovascular Systems Inc. Drug coated balloon with in-situ formed drug containing microspheres
US20130178522A1 (en) 2010-07-19 2013-07-11 James M. Jamison Vitamin c and chromium-free vitamin k, and compositions thereof for treating an nfkb-mediated condition or disease
EP2611448A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation 7-cyclylquinazoline derivatives and methods of use thereof
EP2611502A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Adenosine a3 receptor modulating compounds and methods of use thereof
EP2611809A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Azolopyridine and azolopyrimidine compounds and methods of use thereof
US20130225615A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 2-cycloquinazoline derivatives and methods of use thereof
US8912324B2 (en) 2010-09-01 2014-12-16 Ambit Biosciences Corporation Optically active pyrazolylaminoquinazoline, and pharmaceutical compositions and methods of use thereof
US20130225614A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 4-azolylaminoquinazoline derivatives and methods of use thereof
CN103270030B (en) 2010-09-01 2016-01-20 埃姆比特生物科学公司 The hydrobromate of pyrazolylaminoquinazderivatives
EP2611812A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Thienopyridine and thienopyrimidine compounds and methods of use thereof
US20130296363A1 (en) 2010-09-01 2013-11-07 Ambit Biosciences Corporation Quinoline and isoquinoline derivatives for use as jak modulators
AU2011296024B2 (en) 2010-09-01 2015-05-28 Ambit Biosciences Corporation Quinazoline compounds and methods of use thereof
WO2012044641A1 (en) 2010-09-29 2012-04-05 Pathway Therapeutics Inc. 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
CN103298786B (en) 2010-10-11 2016-01-20 埃克希金医药品有限公司 Arylsulfonyl amine salt CCR3 antagonist
CN103298474B (en) 2010-11-10 2016-06-29 无限药品股份有限公司 Heterocyclic compound and application thereof
CA2819859A1 (en) 2010-12-06 2012-06-14 Follica, Inc. Methods for treating baldness and promoting hair growth
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
KR101411349B1 (en) * 2010-12-24 2014-06-25 주식회사 삼양바이오팜 Microparticles containing physiologically active peptide and method for preparing the same, and pharmaceutical composition comprising the same
AR084824A1 (en) 2011-01-10 2013-06-26 Intellikine Inc PROCESSES TO PREPARE ISOQUINOLINONES AND SOLID FORMS OF ISOQUINOLINONAS
CN103338753A (en) 2011-01-31 2013-10-02 细胞基因公司 Pharmaceutical compositions of cytidine analogs and methods of use thereof
US9353100B2 (en) 2011-02-10 2016-05-31 Idenix Pharmaceuticals Llc Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating HCV infections
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
MX2013010217A (en) 2011-03-11 2013-10-25 Celgene Corp Use of 3-(5-amino-2-methyl-4-oxoquinazolin-3(4h)-yl)piperidine-2- 6-dione in treatment of immune-related and inflammatory diseases.
WO2012135166A1 (en) 2011-03-28 2012-10-04 Pathway Therapeutics Inc. (fused ring arylamino and heterocyclylamino) pyrimidynyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions thereof, and their use in treating proliferative diseases
BR112013024909A2 (en) 2011-03-28 2019-09-24 Mei Pharma Inc compound, pharmaceutical composition, method for treating, preventing or ameliorating one or more symptoms of pi3k-mediated disorder, disease, or condition, and method for modulating pi3k enzymatic activity
ES2608967T3 (en) 2011-03-28 2017-04-17 Mei Pharma, Inc. (Aralkylamino substituted in alpha and heteroarylalkylamino) pyrimidinyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in the treatment of proliferative diseases
US20120252721A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
JP2014514295A (en) 2011-03-31 2014-06-19 アイディニックス ファーマシューティカルズ インコーポレイテッド Compounds and pharmaceutical compositions for the treatment of viral infections
KR20140042868A (en) 2011-06-23 2014-04-07 맵 파마슈티컬스, 인코포레이티드 Novel fluoroergoline analogs
US8969363B2 (en) 2011-07-19 2015-03-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
CA2842190A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
RU2014111823A (en) 2011-08-29 2015-10-10 Инфинити Фармасьютикалз, Инк. HETEROCYCLIC COMPOUNDS AND THEIR APPLICATIONS
EP2755983B1 (en) 2011-09-12 2017-03-15 Idenix Pharmaceuticals LLC. Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
JP2014526474A (en) 2011-09-12 2014-10-06 アイディニックス ファーマシューティカルズ インコーポレイテッド Compounds and pharmaceutical compositions for the treatment of viral infections
WO2013049332A1 (en) 2011-09-29 2013-04-04 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
EP2766359B9 (en) 2011-10-14 2017-04-05 Ambit Biosciences Corporation Heterocyclic compounds and use thereof as modulators of type iii receptor tyrosine kinases
WO2013056046A1 (en) 2011-10-14 2013-04-18 Idenix Pharmaceuticals, Inc. Substituted 3',5'-cyclic phosphates of purine nucleotide compounds and pharmaceutical compositions for the treatment of viral infections
CA2859173A1 (en) 2011-12-19 2013-06-27 Map Pharmaceuticals, Inc. Novel iso-ergoline derivatives
SG10201506202RA (en) 2011-12-21 2015-09-29 Map Pharmaceuticals Inc Novel neuromodulatory compounds
US9611253B2 (en) 2012-02-29 2017-04-04 Ambit Biosciences Corporation Solid forms comprising optically active pyrazolylaminoquinazoline, compositions thereof, and uses therewith
AR092809A1 (en) 2012-03-16 2015-05-06 Axikin Pharmaceuticals Inc 3,5-DIAMINOPIRAZOL AS A QUINASE INHIBITOR
US8940742B2 (en) 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP2852603B1 (en) 2012-05-22 2021-05-12 Idenix Pharmaceuticals LLC D-amino acid compounds for liver disease
US9296778B2 (en) 2012-05-22 2016-03-29 Idenix Pharmaceuticals, Inc. 3′,5′-cyclic phosphate prodrugs for HCV infection
US9109001B2 (en) 2012-05-22 2015-08-18 Idenix Pharmaceuticals, Inc. 3′,5′-cyclic phosphoramidate prodrugs for HCV infection
US9012640B2 (en) 2012-06-22 2015-04-21 Map Pharmaceuticals, Inc. Cabergoline derivatives
EP2873455B1 (en) 2012-07-12 2021-07-07 Takeda Pharmaceutical Company Limited Method for manufacturing microcapsule powder
SG11201500999WA (en) 2012-08-09 2015-04-29 Celgene Corp Salts and solid forms of (s)-3-(4-((4-morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione and compositions comprising and methods of using the same
US10919883B2 (en) 2012-08-09 2021-02-16 Celgene Corporation Treatment of immune-related and inflammatory diseases
EP2890370B1 (en) 2012-08-31 2019-10-09 The Regents of the University of California Agents useful for treating obesity, diabetes and related disorders
KR20150053906A (en) 2012-09-07 2015-05-19 액시킨 파마수티컬스 인코포레이티드 Isotopically enriched arylsulfonamide ccr3 antagonists
WO2014055647A1 (en) 2012-10-03 2014-04-10 Mei Pharma, Inc. (sulfinyl and sulfonyl benzimidazolyl) pyrimidines and triazines, pharmaceutical compositions thereof, and their use for treating proliferative diseases
SG11201502750UA (en) 2012-10-08 2015-06-29 Idenix Pharmaceuticals Inc 2'-chloro nucleoside analogs for hcv infection
US20140112886A1 (en) 2012-10-19 2014-04-24 Idenix Pharmaceuticals, Inc. Dinucleotide compounds for hcv infection
WO2014066239A1 (en) 2012-10-22 2014-05-01 Idenix Pharmaceuticals, Inc. 2',4'-bridged nucleosides for hcv infection
LT2914296T (en) 2012-11-01 2018-09-25 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
EP2916830A2 (en) 2012-11-08 2015-09-16 Summa Health System Vitamin c, vitamin k, a polyphenol, and combinations thereof for wound healing
WO2014078436A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-alanine ester of sp-nucleoside analog
US20140140951A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-Alanine Ester of Rp-Nucleoside Analog
WO2014085633A1 (en) 2012-11-30 2014-06-05 Novomedix, Llc Substituted biaryl sulfonamides and the use thereof
WO2014099941A1 (en) 2012-12-19 2014-06-26 Idenix Pharmaceuticals, Inc. 4'-fluoro nucleosides for the treatment of hcv
SG11201504931SA (en) 2012-12-21 2015-07-30 Map Pharmaceuticals Inc Novel methysergide derivatives
NZ630746A (en) 2013-01-11 2017-02-24 Summa Health System Vitamins c and k for treating polycystic diseases
WO2014137930A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. Thiophosphate nucleosides for the treatment of hcv
WO2014137926A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. 3'-deoxy nucleosides for the treatment of hcv
WO2014151386A1 (en) 2013-03-15 2014-09-25 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
US9187515B2 (en) 2013-04-01 2015-11-17 Idenix Pharmaceuticals Llc 2′,4′-fluoro nucleosides for the treatment of HCV
AU2014273946B2 (en) 2013-05-30 2020-03-12 Infinity Pharmaceuticals, Inc. Treatment of cancers using PI3 kinase isoform modulators
WO2014197578A1 (en) 2013-06-05 2014-12-11 Idenix Pharmaceuticals, Inc. 1',4'-thio nucleosides for the treatment of hcv
EP3027636B1 (en) 2013-08-01 2022-01-05 Idenix Pharmaceuticals LLC D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease
KR20160055170A (en) 2013-08-30 2016-05-17 암비트 바이오사이언시즈 코포레이션 Biaryl acetamide compounds and methods of use thereof
NZ631142A (en) 2013-09-18 2016-03-31 Axikin Pharmaceuticals Inc Pharmaceutically acceptable salts of 3,5-diaminopyrazole kinase inhibitors
EP3046924A1 (en) 2013-09-20 2016-07-27 IDENIX Pharmaceuticals, Inc. Hepatitis c virus inhibitors
US9700549B2 (en) 2013-10-03 2017-07-11 David Wise Compositions and methods for treating pelvic pain and other conditions
WO2015051241A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
MY175778A (en) 2013-10-04 2020-07-08 Infinity Pharmaceuticals Inc Heterocyclic compounds and uses thereof
WO2015061204A1 (en) 2013-10-21 2015-04-30 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015061683A1 (en) 2013-10-25 2015-04-30 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate and d-alanine thiophosphoramidate pronucleotides of nucleoside compounds useful for the treatment of hcv
CN104587534A (en) * 2013-10-31 2015-05-06 先健科技(深圳)有限公司 An absorbable iron-base alloy support
WO2015066370A1 (en) 2013-11-01 2015-05-07 Idenix Pharmaceuticals, Inc. D-alanine phosphoramidate pronucleotides of 2'-methyl 2'-fluoro guanosine nucleoside compounds for the treatment of hcv
EP3074399A1 (en) 2013-11-27 2016-10-05 Idenix Pharmaceuticals LLC 2'-dichloro and 2'-fluoro-2'-chloro nucleoside analogues for hcv infection
CA2931458A1 (en) 2013-11-27 2015-06-04 Idenix Pharmaceuticals Llc Nucleotides for the treatment of liver cancer
US10683321B2 (en) 2013-12-18 2020-06-16 Idenix Pharmaceuticals Llc 4′-or nucleosides for the treatment of HCV
WO2015134560A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Solid forms of a flaviviridae virus inhibitor compound and salts thereof
SG11201607705XA (en) 2014-03-19 2016-10-28 Infinity Pharmaceuticals Inc Heterocyclic compounds for use in the treatment of pi3k-gamma mediated disorders
TWI683813B (en) 2014-03-20 2020-02-01 美商卡佩拉醫療公司 Benzimidazole derivatives, and pharmaceutical compositions and methods of use thereof
KR102409739B1 (en) 2014-03-20 2022-06-17 카펠라 테라퓨틱스, 인크. Benzimidazole derivatives as erbb tyrosine kinase inhibitors for the treatment of cancer
WO2015157559A2 (en) 2014-04-09 2015-10-15 Siteone Therapeutics, Inc. 10',11'-modified saxitoxins for the treatment of pain
EP3131914B1 (en) 2014-04-16 2023-05-10 Idenix Pharmaceuticals LLC 3'-substituted methyl or alkynyl nucleosides for the treatment of hcv
US9956164B2 (en) 2014-04-16 2018-05-01 Veyx-Pharma Gmbh Veterinary pharmaceutical composition and use thereof
WO2015168079A1 (en) 2014-04-29 2015-11-05 Infinity Pharmaceuticals, Inc. Pyrimidine or pyridine derivatives useful as pi3k inhibitors
ES2751652T3 (en) 2014-05-12 2020-04-01 Conatus Pharmaceuticals Inc Caspase Inhibitor Treatment Emricasan for Complications from Chronic Liver Disease
JP2017516779A (en) 2014-05-28 2017-06-22 アイデニクス・ファーマシューティカルズ・エルエルシー Nucleoside derivatives for cancer treatment
WO2015195474A1 (en) 2014-06-18 2015-12-23 Biotheryx, Inc. Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating inflammatory, neurodegenerative, or immune-mediated diseases
AP2017009690A0 (en) 2014-06-19 2017-01-31 Ariad Pharma Inc Heteroaryl compounds for kinase inhibition
US9499514B2 (en) 2014-07-11 2016-11-22 Celgene Corporation Antiproliferative compounds and methods of use thereof
WO2016020901A1 (en) 2014-08-07 2016-02-11 Acerta Pharma B.V. Methods of treating cancers, immune and autoimmune diseases, and inflammatory diseases based on btk occupancy and btk resynthesis rate
WO2016040860A1 (en) 2014-09-12 2016-03-17 Tobira Therapeutics, Inc. Cenicriviroc combination therapy for the treatment of fibrosis
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
WO2016054491A1 (en) 2014-10-03 2016-04-07 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10385078B2 (en) 2014-10-21 2019-08-20 Ariad Pharmaceuticals, Inc. Crystalline forms of 5-chloro-N4-[-2-(dimethylphosphoryl)phenyl]-N2-{2-methoxy-4-[4-(4-methylpiperazin-1-YL) piperidin-1-YL]phenyl}pyrimidine-2,4-diamine
WO2016065264A1 (en) 2014-10-24 2016-04-28 Biogen Ma Inc. Diterpenoid derivatives and methods of use thereof
TWI703133B (en) 2014-12-23 2020-09-01 美商艾克斯基製藥公司 3,5-diaminopyrazole kinase inhibitors
AU2016209492B2 (en) 2015-01-20 2020-10-22 Xoc Pharmaceuticals, Inc Ergoline compounds and uses thereof
AU2016209490B2 (en) 2015-01-20 2020-09-03 Xoc Pharmaceuticals, Inc. Isoergoline compounds and uses thereof
WO2016189055A1 (en) 2015-05-27 2016-12-01 Idenix Pharmaceuticals Llc Nucleotides for the treatment of cancer
US10925639B2 (en) 2015-06-03 2021-02-23 Intarcia Therapeutics, Inc. Implant placement and removal systems
AU2016282790B9 (en) 2015-06-23 2020-01-30 Neurocrine Biosciences, Inc. VMAT2 inhibitors for treating neurological diseases or disorders
TWI710642B (en) 2015-08-17 2020-11-21 美商庫拉腫瘤技術股份有限公司 Methods of treating cancer patients with farnesyltransferase inhibitors
AU2016329201A1 (en) 2015-09-30 2018-04-26 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
HUE053872T2 (en) 2015-10-30 2021-07-28 Neurocrine Biosciences Inc Valbenazine ditosylate and polymorphs thereof
WO2017079566A1 (en) 2015-11-05 2017-05-11 Conatus Pharmaceuticals, Inc. Caspase inhibitors for use in the treatment of liver cancer
US10112924B2 (en) 2015-12-02 2018-10-30 Astraea Therapeutics, Inc. Piperdinyl nociceptin receptor compounds
RS63170B1 (en) 2015-12-23 2022-05-31 Neurocrine Biosciences Inc Synthetic method for preparation of (s)-(2r,3r,11br)-3-isobutyl-9,10-dimethoxy-2,3,4,6,7,11b-hexahydro-1h-pyrido[2,1,-a]lsoquinolin-2-yl 2-amino-3-methylbutanoate di(4-methylbenzenesulfonate)
MX2018007964A (en) 2015-12-31 2018-11-09 Conatus Pharmaceuticals Inc Methods of using caspase inhibitors in treatment of liver disease.
JP6880037B2 (en) 2016-01-08 2021-06-02 セルジーン コーポレイション Cancer treatments and the use of biomarkers as predictors of clinical sensitivity to treatments
US10189808B2 (en) 2016-01-08 2019-01-29 Celgene Corporation Solid forms of 2-(4-chlorophenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide, and their pharmaceutical compositions and uses
US9938254B2 (en) 2016-01-08 2018-04-10 Celgene Corporation Antiproliferative compounds, and their pharmaceutical compositions and uses
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
WO2017180589A1 (en) 2016-04-11 2017-10-19 Auspex Pharmaceuticals, Inc. Deuterated ketamine derivatives
WO2017180794A1 (en) 2016-04-13 2017-10-19 Skyline Antiinfectives, Inc. Deuterated o-sulfated beta-lactam hydroxamic acids and deuterated n-sulfated beta-lactams
WO2017184968A1 (en) 2016-04-22 2017-10-26 Kura Oncology, Inc. Methods of selecting cancer patients for treatment with farnesyltransferase inhibitors
US11497738B2 (en) 2016-04-29 2022-11-15 Fgh Biotech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
EP3733694A1 (en) 2016-05-16 2020-11-04 Intarcia Therapeutics, Inc Glucagon-receptor selective polypeptides and methods of use thereof
TWI753910B (en) 2016-05-16 2022-02-01 美商拜歐斯瑞克斯公司 Pyridinethiones, pharmaceutical compositions thereof, and their therapeutic use for treating a proliferative, inflammatory, neurodegenerative, or immune-mediated disease
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
WO2017214269A1 (en) 2016-06-08 2017-12-14 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
ES2932187T3 (en) 2016-09-07 2023-01-16 Fgh Biotech Inc Disubstituted pyrazole compounds for the treatment of diseases
IL292938A (en) 2016-09-19 2022-07-01 Mei Pharma Inc Combination therapy
EP3534885B1 (en) 2016-11-03 2021-01-20 Kura Oncology, Inc. Farnesyltransferase inhibitors for use in treating cancer
CA3042055A1 (en) 2016-11-09 2018-05-17 Novomedix, Llc Nitrite salts of 1, 1-dimethylbiguanide, pharmaceutical compositions, and methods of use
WO2018089692A1 (en) 2016-11-09 2018-05-17 Phloronol, Inc. Eckol derivatives, methods of synthesis and uses thereof
US10799503B2 (en) 2016-12-01 2020-10-13 Ignyta, Inc. Methods for the treatment of cancer
WO2018102673A1 (en) 2016-12-02 2018-06-07 Neurocrine Biosciences, Inc. Use of valbenazine for treating schizophrenia or schizoaffective disorder
IL307966A (en) 2017-01-03 2023-12-01 Intarcia Therapeutics Inc Methods comprising continuous administration of a glp-1 receptor agonist and co-adminstration of a drug
WO2018140096A1 (en) 2017-01-27 2018-08-02 Obrien Christopher F Methods for the administration of certain vmat2 inhibitors
CN114796218A (en) 2017-02-21 2022-07-29 库拉肿瘤学公司 Methods of treating cancer using farnesyl transferase inhibitors
US9956215B1 (en) 2017-02-21 2018-05-01 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
WO2018164996A1 (en) 2017-03-06 2018-09-13 Neurocrine Biosciences, Inc. Dosing regimen for valbenazine
EP3601326A4 (en) 2017-03-20 2020-12-16 The Broad Institute, Inc. Compounds and methods for regulating insulin secretion
WO2018183781A1 (en) 2017-03-29 2018-10-04 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
JP2020515611A (en) 2017-03-29 2020-05-28 サイトワン セラピューティクス, インコーポレイテッド 11,13-Modified saxitoxin for the treatment of pain
US20200179352A1 (en) 2017-04-26 2020-06-11 Neurocrine Biosciences, Inc. Use of valbenazine for treating levodopa-induced dyskinesia
JOP20190219A1 (en) 2017-05-09 2019-09-22 Cardix Therapeutics LLC Pharmaceutical compositions and methods of treating cardiovascular diseases
US10085999B1 (en) 2017-05-10 2018-10-02 Arixa Pharmaceuticals, Inc. Beta-lactamase inhibitors and uses thereof
DK3624795T3 (en) 2017-05-19 2022-05-23 Nflection Therapeutics Inc Condensed, heteroaromatic aniline compounds for the treatment of skin disorders
CA3063536A1 (en) 2017-05-19 2018-11-22 Nflection Therapeutics, Inc. Pyrrolopyridine-aniline mek inhibitors for use in the treatment of dermal disorders
EP3630758A1 (en) 2017-06-01 2020-04-08 Xoc Pharmaceuticals, Inc Ergoline derivatives for use in medicine
US10806730B2 (en) 2017-08-07 2020-10-20 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
KR20200051601A (en) 2017-08-07 2020-05-13 쿠라 온콜로지, 인크. How to treat cancer using farnesyl transferase inhibitors
TW201919622A (en) 2017-09-21 2019-06-01 美商紐羅克里生物科學有限公司 High dosage VALBENAZINE formulation and compositions, methods, and kits related thereto
EA202090932A1 (en) 2017-10-10 2021-05-20 Нейрокрин Байосайенсиз, Инк METHODS OF ADMINISTRATION OF SOME VMAT2 INHIBITORS
US10993941B2 (en) 2017-10-10 2021-05-04 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
WO2019113269A1 (en) 2017-12-08 2019-06-13 Kura Oncology, Inc. Methods of treating cancer patients with farnesyltransferase inhibitors
WO2019139869A1 (en) 2018-01-10 2019-07-18 Cura Therapeutics Llc Pharmaceutical compositions comprising phenylsulfonamides, and their therapeutic applications
WO2019139871A1 (en) 2018-01-10 2019-07-18 Cura Therapeutics Llc Pharmaceutical compositions comprising dicarboxylic acids and their therapeutic applications
MX2020013004A (en) 2018-06-14 2021-02-17 Neurocrine Biosciences Inc Vmat2 inhibitor compounds, compositions, and methods relating thereto.
EP3814327A1 (en) 2018-06-29 2021-05-05 Histogen, Inc. (s)-3-(2-(4-(benzyl)-3-oxopiperazin-1-yl)acetamido)-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid derivatives and related compounds as caspase inhibitors for treating cardiovascular diseases
BR112021000019A2 (en) 2018-08-15 2021-04-06 Neurocrine Biosciences Inc. METHODS FOR ADMINISTERING CERTAIN VMAT2 INHIBITORS
US20220009938A1 (en) 2018-10-03 2022-01-13 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
SG11202104296TA (en) 2018-11-01 2021-05-28 Kura Oncology Inc Methods of treating cancer with farnesyltransferase inhibitors
EP4233865A3 (en) 2018-11-20 2023-09-27 NFlection Therapeutics, Inc. Aryl-aniline and heteroaryl-aniline compounds for treatment of skin cancers
CA3120337A1 (en) 2018-11-20 2020-05-28 Nflection Therapeutics, Inc. Naphthyridinone-aniline compounds for treatment of dermal disorders
EP3883552A4 (en) 2018-11-20 2022-08-17 NFlection Therapeutics, Inc. Cyanoaryl-aniline compounds for treatment of dermal disorders
MA55148A (en) 2018-11-20 2021-09-29 Nflection Therapeutics Inc ARYL-ANILINE AND HETEROARYL-ANILINE COMPOUNDS FOR THE TREATMENT OF BIRTHMARKS
JP7407461B2 (en) 2018-12-19 2024-01-04 シャイ・セラピューティクス・エルエルシー Compounds that interact with the RAS superfamily for the treatment of cancer, inflammatory diseases, RAS diseases, and fibrotic diseases
WO2020132437A1 (en) 2018-12-21 2020-06-25 Kura Oncology, Inc. Therapies for squamous cell carcinomas
WO2020132700A1 (en) 2018-12-21 2020-06-25 Fgh Biotech Inc. Methods of using inhibitors of srebp in combination with niclosamide and analogs thereof
EP3921038A1 (en) 2019-02-06 2021-12-15 Dice Alpha, Inc. Il-17a modulators and uses thereof
US20220142983A1 (en) 2019-03-01 2022-05-12 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
JP2022524049A (en) 2019-03-07 2022-04-27 クオナトウス ファーマシューティカルズ,インコーポレイテッド Caspase inhibitors and how to use them
US20220143006A1 (en) 2019-03-15 2022-05-12 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
SG11202110472WA (en) 2019-03-29 2021-10-28 Kura Oncology Inc Methods of treating squamous cell carcinomas with farnesyltransferase inhibitors
TW202102218A (en) 2019-04-01 2021-01-16 美商庫拉腫瘤技術股份有限公司 Methods of treating cancer with farnesyltransferase inhibitors
US20220305001A1 (en) 2019-05-02 2022-09-29 Kura Oncology, Inc. Methods of treating acute myeloid leukemia with farnesyltransferase inhibitors
EP3997068A1 (en) 2019-07-11 2022-05-18 Cura Therapeutics, LLC Sulfone compounds and pharmaceutical compositions thereof, and their therapeutic applications for the treatment of neurodegenerative diseases
WO2021007474A1 (en) 2019-07-11 2021-01-14 Cura Therapeutics, Llc Phenyl compounds and pharmaceutical compositions thereof, and their therapeutic applications
US11098002B2 (en) 2019-07-26 2021-08-24 Espervita Therapeutics, Inc. Functionalized long-chain hydrocarbon mono- and di-carboxylic acids and their use for the prevention or treatment of disease
US10940141B1 (en) 2019-08-23 2021-03-09 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
CA3154608A1 (en) 2019-09-16 2021-03-25 Dice Alpha, Inc. Il-17a modulators and uses thereof
US20230008367A1 (en) 2019-09-26 2023-01-12 Abionyx Pharma Sa Compounds useful for treating liver diseases
BR112022005881A2 (en) 2019-10-01 2022-06-21 Molecular Skin Therapeutics Inc Benzoxazinone compounds as dual inhibitors of klk5/7
WO2021242970A1 (en) 2020-05-29 2021-12-02 Boulder Bioscience Llc Methods for improved endovascular thrombectomy using 3,3'-diindolylmethane
US20230227466A1 (en) 2020-06-18 2023-07-20 Shy Therapeutics, Llc Substituted thienopyrimidines that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US20230339958A1 (en) 2020-08-14 2023-10-26 Siteone Therapeutics, Inc. Non-hydrated ketone inhibitors of nav1.7 for the treatment of pain
WO2022165000A1 (en) 2021-01-27 2022-08-04 Shy Therapeutics, Llc Methods for the treatment of fibrotic disease
EP4284377A1 (en) 2021-01-27 2023-12-06 Shy Therapeutics LLC Methods for the treatment of fibrotic disease
WO2022189856A1 (en) 2021-03-08 2022-09-15 Abionyx Pharma Sa Compounds useful for treating liver diseases
JP2024510196A (en) 2021-03-10 2024-03-06 ダイス・モレキュールズ・エスブイ・インコーポレイテッド AlphaVbeta6 and alphaVbeta1 integrin inhibitors and uses thereof
EP4326721A1 (en) 2021-04-22 2024-02-28 Protego Biopharma, Inc. Spirocyclic imidazolidinones and imidazolidinediones for treatment of light chain amyloidosis
WO2022251533A1 (en) 2021-05-27 2022-12-01 Protego Biopharma, Inc. Heteroaryl diamide ire1/xbp1s activators
WO2023102378A1 (en) 2021-11-30 2023-06-08 Kura Oncology, Inc. Macrocyclic compounds having farnesyltransferase inhibitory activity
WO2023129577A1 (en) 2022-01-03 2023-07-06 Lilac Therapeutics, Inc. Cyclic thiol prodrugs
TW202400593A (en) 2022-03-28 2024-01-01 美商艾索司特瑞克斯公司 Inhibitors of the myst family of lysine acetyl transferases
WO2023192904A1 (en) 2022-03-30 2023-10-05 Biomarin Pharmaceutical Inc. Dystrophin exon skipping oligonucleotides
GB2619907A (en) 2022-04-01 2023-12-27 Kanna Health Ltd Novel crystalline salt forms of mesembrine
WO2023201282A1 (en) 2022-04-14 2023-10-19 Bristol-Myers Squibb Company Novel gspt1 compounds and methods of use of the novel compounds
WO2023201348A1 (en) 2022-04-15 2023-10-19 Celgene Corporation Methods for predicting responsiveness of lymphoma to drug and methods for treating lymphoma
WO2023211990A1 (en) 2022-04-25 2023-11-02 Siteone Therapeutics, Inc. Bicyclic heterocyclic amide inhibitors of na v1.8 for the treatment of pain
WO2023215781A1 (en) 2022-05-05 2023-11-09 Biomarin Pharmaceutical Inc. Method of treating duchenne muscular dystrophy
WO2024054832A1 (en) 2022-09-09 2024-03-14 Innovo Therapeutics, Inc. CK1α AND DUAL CK1α / GSPT1 DEGRADING COMPOUNDS
WO2024073473A1 (en) 2022-09-30 2024-04-04 Boulder Bioscience Llc Compositions comprising 3,3'-diindolylmethane for treating non-hemorrhagic closed head injury

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703576A (en) * 1969-08-08 1972-11-21 Fuji Photo Film Co Ltd Method of producing micro-capsules enclosing acetylsalicylic acid therein
US3705576A (en) * 1970-09-25 1972-12-12 Research Corp Incubators for infants
US3737337A (en) * 1970-03-04 1973-06-05 Bayer Ag Process for the production of microgranulates
US3960757A (en) * 1973-06-27 1976-06-01 Toyo Jozo Co., Ltd. Process for encapsulation of medicaments
US4066568A (en) * 1975-08-07 1978-01-03 Nippon Pulp Industry Company Limited Method of producing microcapsules
US4530840A (en) * 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4585651A (en) * 1978-10-17 1986-04-29 Stolle Research & Development Corporation Active/passive immunization of the internal female reproductive organs
US4677191A (en) * 1984-07-06 1987-06-30 Wada Pure Chemical Ind., Ltd. Copolymer and method for producing the same

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US110904A (en) * 1871-01-10 Improvement in looms
US1995970A (en) 1931-04-04 1935-03-26 Du Pont Polymeric lactide resin
US2362511A (en) 1939-11-21 1944-11-14 Du Pont Modified glycolide resins
US2438208A (en) 1943-07-10 1948-03-23 Us Agriculture Continuous process of converting lactic acid to polylactic acid
US2703316A (en) 1951-06-05 1955-03-01 Du Pont Polymers of high melting lactide
US2758987A (en) 1952-06-05 1956-08-14 Du Pont Optically active homopolymers containing but one antipodal species of an alpha-monohydroxy monocarboxylic acid
US3043782A (en) 1958-12-22 1962-07-10 Upjohn Co Process for preparing a more impermeable coating by liquid-liquid phase separation
GB929402A (en) 1958-12-22 1963-06-19 Upjohn Co Encapsulated emulsions and processes for their preparation
US3092553A (en) 1959-01-30 1963-06-04 Jr Carl E Fisher Pharmaceutical preparations and method and apparatus for making same
GB1298194A (en) 1968-11-20 1972-11-29 Agfa Gevaert Improved method for encapsulating aqueous or hydrophilic material, the capsules obtained therewith and their application
NL280825A (en) 1962-07-11
US3297033A (en) 1963-10-31 1967-01-10 American Cyanamid Co Surgical sutures
US3565956A (en) * 1964-10-16 1971-02-23 Sterling Drug Inc Amino-lower-alkoxy-5-alkylidene-dibenzo(a,d)cycloheptenes
JPS433017Y1 (en) 1964-12-28 1968-02-07
US3755553A (en) 1968-04-18 1973-08-28 S Kutolin Method of producing salts of alkaline earth metals
US3539465A (en) 1968-10-08 1970-11-10 Ncr Co Encapsulation of hydrophilic liquid-in-oil emulsions
US3565869A (en) 1968-12-23 1971-02-23 American Cyanamid Co Extrudable and stretchable polyglycolic acid and process for preparing same
BE744162A (en) 1969-01-16 1970-06-15 Fuji Photo Film Co Ltd ENCAPSULATION PROCESS
US3773919A (en) * 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
BE759520A (en) 1969-11-28 1971-04-30 Aspro Nicholas Ltd ASPIRIN COMPOSITIONS
BE758156R (en) 1970-05-13 1971-04-28 Ethicon Inc ABSORBABLE SUTURE ELEMENT AND ITS
US3755558A (en) 1971-02-23 1973-08-28 Du Pont Polylactide drug mixtures for topical application atelet aggregation
US3839297A (en) 1971-11-22 1974-10-01 Ethicon Inc Use of stannous octoate catalyst in the manufacture of l(-)lactide-glycolide copolymer sutures
BE792550A (en) 1971-12-23 1973-06-12 Agfa Gevaert Nv PROCEDURE FOR MANUFACTURE OF MICROCAPSULES
JPS5210427B2 (en) 1972-07-19 1977-03-24
US3818250A (en) 1973-02-07 1974-06-18 Motorola Inc Bistable multivibrator circuit
US3912692A (en) 1973-05-03 1975-10-14 American Cyanamid Co Process for polymerizing a substantially pure glycolide composition
US3890283A (en) 1973-06-04 1975-06-17 American Cyanamid Co Process for post-polymerizing polyglycolic acid
FR2236483B1 (en) 1973-07-12 1976-11-12 Choay Sa
US4137921A (en) 1977-06-24 1979-02-06 Ethicon, Inc. Addition copolymers of lactide and glycolide and method of preparation
US4272398A (en) 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
JPS55114193A (en) 1979-02-26 1980-09-03 Hitachi Ltd Current-supplying device for brushless motor
US4234571A (en) 1979-06-11 1980-11-18 Syntex (U.S.A.) Inc. Nonapeptide and decapeptide derivatives of luteinizing hormone releasing hormone
US4249531A (en) 1979-07-05 1981-02-10 Alza Corporation Bioerodible system for delivering drug manufactured from poly(carboxylic acid)
DE2930248A1 (en) 1979-07-26 1981-02-12 Bayer Ag Polymer microcapsules prodn. - by adding an emulsion of polymer solution to a miscible non-solvent for the polymer
US4622244A (en) 1979-09-04 1986-11-11 The Washington University Process for preparation of microcapsules
US4273920A (en) 1979-09-12 1981-06-16 Eli Lilly And Company Polymerization process and product
US4933105A (en) 1980-06-13 1990-06-12 Sandoz Pharm. Corp. Process for preparation of microspheres
US4384975A (en) 1980-06-13 1983-05-24 Sandoz, Inc. Process for preparation of microspheres
US4341767A (en) * 1980-10-06 1982-07-27 Syntex Inc. Nonapeptide and decapeptide analogs of LHRH, useful as LHRH antagonists
US4389330A (en) * 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
US4675189A (en) * 1980-11-18 1987-06-23 Syntex (U.S.A.) Inc. Microencapsulation of water soluble active polypeptides
PH19942A (en) * 1980-11-18 1986-08-14 Sintex Inc Microencapsulation of water soluble polypeptides
IE52535B1 (en) * 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4479911A (en) 1982-01-28 1984-10-30 Sandoz, Inc. Process for preparation of microspheres and modification of release rate of core material
US4637905A (en) 1982-03-04 1987-01-20 Batelle Development Corporation Process of preparing microcapsules of lactides or lactide copolymers with glycolides and/or ε-caprolactones
US4542025A (en) 1982-07-29 1985-09-17 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4605730A (en) 1982-10-01 1986-08-12 Ethicon, Inc. Surgical articles of copolymers of glycolide and ε-caprolactone and methods of producing the same
US4523591A (en) 1982-10-22 1985-06-18 Kaplan Donald S Polymers for injection molding of absorbable surgical devices
CH656884A5 (en) 1983-08-26 1986-07-31 Sandoz Ag POLYOLESTERS, THEIR PRODUCTION AND USE.
JPS60100516A (en) 1983-11-04 1985-06-04 Takeda Chem Ind Ltd Preparation of sustained release microcapsule
US4555399A (en) 1983-11-18 1985-11-26 Key Pharmaceuticals, Inc. Aspirin tablet
JPH0678425B2 (en) * 1984-07-06 1994-10-05 和光純薬工業株式会社 New polymer manufacturing method
US4612364A (en) 1984-10-05 1986-09-16 Takeda Chemical Industries Method for producing formed product of high molecular compounds
US4690916A (en) * 1984-11-13 1987-09-01 Syntex (U.S.A.) Inc. Nona and decapeptide analogs of LHRH useful as LHRH antagonists
US4667191A (en) * 1984-12-21 1987-05-19 Motorola, Inc. Serial link communications protocol
ATE61935T1 (en) 1985-02-07 1991-04-15 Takeda Chemical Industries Ltd PROCESS FOR PRODUCTION OF MICROCAPSULES.
JP2551756B2 (en) 1985-05-07 1996-11-06 武田薬品工業株式会社 Polyoxycarboxylic acid ester and method for producing the same
GB8609537D0 (en) * 1986-04-18 1986-05-21 Ici Plc Polyesters
US4710384A (en) 1986-07-28 1987-12-01 Avner Rotman Sustained release tablets made from microcapsules
JPH0725689B2 (en) 1986-10-07 1995-03-22 中外製薬株式会社 Sustained-release preparation containing granulocyte colony-stimulating factor
DE3710175A1 (en) * 1987-02-12 1988-08-25 Hoechst Ag MULTI-PIECE IMPLANTABLE MEDICINE PREPARATION WITH LONG-TERM EFFECT
JPS63218632A (en) * 1987-03-06 1988-09-12 Japan Atom Energy Res Inst Production of biodegradable copoly(glycolic/l-lactic acid) complex which can gradually release hormons
US4897268A (en) * 1987-08-03 1990-01-30 Southern Research Institute Drug delivery system and method of making the same
GB2209937B (en) * 1987-09-21 1991-07-03 Depiopharm S A Water insoluble polypeptides
US5187150A (en) * 1987-10-14 1993-02-16 Debiopharm S.A. Polyester-based composition for the controlled release of polypeptide medicinal substances
CA1334379C (en) 1987-11-24 1995-02-14 James William Mcginity Method for preparing a solid sustained release form of a functionally active composition
US5140009A (en) * 1988-02-10 1992-08-18 Tap Pharmaceuticals, Inc. Octapeptide LHRH antagonists
US5110904A (en) * 1989-08-07 1992-05-05 Abbott Laboratories Lhrh analogs
US5036047A (en) * 1988-09-29 1991-07-30 Pitman-Moore, Inc. Method and composition for preventing conception
US5171835A (en) * 1988-10-21 1992-12-15 The Administrators Of The Tulane Educational Fund LHRH antagonists
JP2653255B2 (en) * 1990-02-13 1997-09-17 武田薬品工業株式会社 Long-term sustained release microcapsules
MY107937A (en) 1990-02-13 1996-06-29 Takeda Chemical Industries Ltd Prolonged release microcapsules.
JP3116311B2 (en) 1990-06-13 2000-12-11 エーザイ株式会社 Manufacturing method of microsphere
CA2046830C (en) * 1990-07-19 1999-12-14 Patrick P. Deluca Drug delivery system involving inter-action between protein or polypeptide and hydrophobic biodegradable polymer
GB2246514B (en) 1990-08-01 1993-12-15 Scras Sustained release pharmaceutical compositions and the preparation of particles for use therein
NZ240214A (en) * 1990-10-16 1993-02-25 Takeda Chemical Industries Ltd Polymer compositions comprising a polylactic acid and a copolymer of glycolic acid and a hydroxycarboxylic acid; use as carrier for prolonged release pharmaceutical compositions of water soluble drugs
JP3277342B2 (en) 1992-09-02 2002-04-22 武田薬品工業株式会社 Manufacturing method of sustained release microcapsules
TW333456B (en) * 1992-12-07 1998-06-11 Takeda Pharm Ind Co Ltd A pharmaceutical composition of sustained-release preparation the invention relates to a pharmaceutical composition of sustained-release preparation which comprises a physiologically active peptide.
ATE178789T1 (en) * 1994-02-21 1999-04-15 Takeda Chemical Industries Ltd POLYESTER MATRIX FOR A DELAYED RELEASE PHARMACEUTICAL COMPOSITION
US5945126A (en) 1997-02-13 1999-08-31 Oakwood Laboratories L.L.C. Continuous microsphere process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703576A (en) * 1969-08-08 1972-11-21 Fuji Photo Film Co Ltd Method of producing micro-capsules enclosing acetylsalicylic acid therein
US3737337A (en) * 1970-03-04 1973-06-05 Bayer Ag Process for the production of microgranulates
US3705576A (en) * 1970-09-25 1972-12-12 Research Corp Incubators for infants
US3960757A (en) * 1973-06-27 1976-06-01 Toyo Jozo Co., Ltd. Process for encapsulation of medicaments
US4066568A (en) * 1975-08-07 1978-01-03 Nippon Pulp Industry Company Limited Method of producing microcapsules
US4585651A (en) * 1978-10-17 1986-04-29 Stolle Research & Development Corporation Active/passive immunization of the internal female reproductive organs
US4530840A (en) * 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4677191A (en) * 1984-07-06 1987-06-30 Wada Pure Chemical Ind., Ltd. Copolymer and method for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ogawa, Yasuaki (Journal of Pharmacy and Pharmacology (1989), 41(7), 439-44) *
Okada (Pharmaceutical Research 8(5) 584-587, 1991). *
Okada, Hiroaki (Proc. Int. Symp. Controlled Release Bioact. Mater., 19th (1992), 52-3. *

Also Published As

Publication number Publication date
FI116196B (en) 2005-10-14
CN1428144A (en) 2003-07-09
MX9307686A (en) 1994-06-30
CN1099893C (en) 2003-01-29
US20020173467A1 (en) 2002-11-21
KR100305951B1 (en) 2001-11-30
US20020147150A1 (en) 2002-10-10
US5668111A (en) 1997-09-16
DE69333817D1 (en) 2005-06-23
DE69330547D1 (en) 2001-09-13
US6528093B1 (en) 2003-03-04
DE69330547T2 (en) 2001-11-22
DK1088555T3 (en) 2005-07-04
EP1088555B1 (en) 2005-05-18
US20030039698A1 (en) 2003-02-27
NO310704B1 (en) 2001-08-20
CN1096221A (en) 1994-12-14
ATE295733T1 (en) 2005-06-15
KR940013530A (en) 1994-07-15
EP0601799B1 (en) 2001-08-08
ATE203910T1 (en) 2001-08-15
KR20010016379A (en) 2001-03-05
JPH0797334A (en) 1995-04-11
PT1088555E (en) 2005-07-29
KR100319425B1 (en) 2002-01-09
LV10927B (en) 1996-04-20
WO1994013317A1 (en) 1994-06-23
ES2158856T3 (en) 2001-09-16
NO934423L (en) 1994-06-08
FI935471A (en) 1994-06-08
US5972891A (en) 1999-10-26
CA2110730C (en) 2008-09-16
SG46283A1 (en) 1998-02-20
NO934423D0 (en) 1993-12-06
US7048947B2 (en) 2006-05-23
TW333456B (en) 1998-06-11
GR3037085T3 (en) 2002-01-31
NZ250349A (en) 1994-12-22
CA2110730A1 (en) 1994-06-08
DK0601799T3 (en) 2001-10-01
JP3725906B2 (en) 2005-12-14
EP0601799A1 (en) 1994-06-15
ES2238247T3 (en) 2005-09-01
US5480868A (en) 1996-01-02
EP1088555A1 (en) 2001-04-04
CN100488560C (en) 2009-05-20
HK1037519A1 (en) 2002-02-15
EE03117B1 (en) 1998-10-15
FI20030166A (en) 2003-02-04
PT601799E (en) 2001-12-28
AU5211393A (en) 1994-06-16
GEP19991600B (en) 1999-04-29
AU669939B2 (en) 1996-06-27
LV10927A (en) 1995-12-20
FI935471A0 (en) 1993-12-07
DE69333817T2 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US7048947B2 (en) Sustained-release preparation
US8092830B2 (en) Lactic acid polymer and process for producing the same
US8258252B2 (en) Sustained-release composition and process for producing the same
RU2301661C2 (en) Sustained-release composition and method for its preparing
RU2207151C2 (en) Immobilized and stabilized complex of luteinizing hormone-releasing hormone antagonist, method for its preparing, proposed agent
KR20020012312A (en) Sustained release compositions, process for producing the same and use thereof
JPH10273447A (en) Delayed-release microsphere and its production and use
RU2128055C1 (en) Pharmaceutical composition of the delayed agent releasing and a method of its preparing
JP5188670B2 (en) Sustained release composition and method for producing the same
LT3265B (en) Supstained-release preparation and method for its preparing
NO323428B1 (en) Process for the preparation of microcapsule

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION