US20080264587A1 - Reducing the Water and Water Vapour Absorbence and Enhancing the Dimensional Stability of Paper and Paper Products and Use of Coated Paper Products - Google Patents
Reducing the Water and Water Vapour Absorbence and Enhancing the Dimensional Stability of Paper and Paper Products and Use of Coated Paper Products Download PDFInfo
- Publication number
- US20080264587A1 US20080264587A1 US12/067,818 US6781806A US2008264587A1 US 20080264587 A1 US20080264587 A1 US 20080264587A1 US 6781806 A US6781806 A US 6781806A US 2008264587 A1 US2008264587 A1 US 2008264587A1
- Authority
- US
- United States
- Prior art keywords
- cellulose fibers
- aqueous solution
- paper
- reactive material
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 230000002708 enhancing effect Effects 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 54
- 229920003043 Cellulose fiber Polymers 0.000 claims abstract description 53
- 239000007864 aqueous solution Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000006185 dispersion Substances 0.000 claims abstract description 34
- 238000004132 cross linking Methods 0.000 claims abstract description 19
- 238000010521 absorption reaction Methods 0.000 claims abstract description 15
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 10
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 10
- 230000009471 action Effects 0.000 claims abstract description 8
- 230000006835 compression Effects 0.000 claims abstract description 8
- 238000007906 compression Methods 0.000 claims abstract description 8
- 229920003023 plastic Polymers 0.000 claims abstract description 7
- 239000004033 plastic Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 41
- 239000000835 fiber Substances 0.000 claims description 37
- ZEYUSQVGRCPBPG-UHFFFAOYSA-N 4,5-dihydroxy-1,3-bis(hydroxymethyl)imidazolidin-2-one Chemical compound OCN1C(O)C(O)N(CO)C1=O ZEYUSQVGRCPBPG-UHFFFAOYSA-N 0.000 claims description 23
- 239000003054 catalyst Substances 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 15
- 229920005862 polyol Polymers 0.000 claims description 15
- 150000003077 polyols Chemical class 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 12
- -1 urea-glyoxal adducts Chemical class 0.000 claims description 12
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 10
- 150000005846 sugar alcohols Polymers 0.000 claims description 10
- 150000001412 amines Chemical class 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 229920000877 Melamine resin Polymers 0.000 claims description 7
- 150000007513 acids Chemical class 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 229920000058 polyacrylate Polymers 0.000 claims description 6
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical class O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 claims description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 4
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical class O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 claims description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 229920000193 polymethacrylate Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002126 Acrylic acid copolymer Polymers 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- WVJOGYWFVNTSAU-UHFFFAOYSA-N dimethylol ethylene urea Chemical compound OCN1CCN(CO)C1=O WVJOGYWFVNTSAU-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000012948 isocyanate Substances 0.000 claims description 3
- 150000002513 isocyanates Chemical class 0.000 claims description 3
- UUGLSEIATNSHRI-UHFFFAOYSA-N 1,3,4,6-tetrakis(hydroxymethyl)-3a,6a-dihydroimidazo[4,5-d]imidazole-2,5-dione Chemical compound OCN1C(=O)N(CO)C2C1N(CO)C(=O)N2CO UUGLSEIATNSHRI-UHFFFAOYSA-N 0.000 claims description 2
- XKALZGSIEJZJCZ-UHFFFAOYSA-N 1,3-bis(methoxymethyl)urea Chemical compound COCNC(=O)NCOC XKALZGSIEJZJCZ-UHFFFAOYSA-N 0.000 claims description 2
- 230000001476 alcoholic effect Effects 0.000 claims description 2
- 150000008064 anhydrides Chemical group 0.000 claims description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 claims description 2
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 claims description 2
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical class O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 claims description 2
- 229940015043 glyoxal Drugs 0.000 claims description 2
- 229910001507 metal halide Inorganic materials 0.000 claims description 2
- 150000005309 metal halides Chemical class 0.000 claims description 2
- 229910001960 metal nitrate Inorganic materials 0.000 claims description 2
- 229910001463 metal phosphate Inorganic materials 0.000 claims description 2
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 claims description 2
- 229950005308 oxymethurea Drugs 0.000 claims description 2
- 238000010526 radical polymerization reaction Methods 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 2
- 239000002174 Styrene-butadiene Substances 0.000 claims 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims 1
- 239000011115 styrene butadiene Substances 0.000 claims 1
- 229920003048 styrene butadiene rubber Polymers 0.000 claims 1
- 239000000654 additive Substances 0.000 abstract description 6
- 230000000996 additive effect Effects 0.000 abstract description 6
- 239000000123 paper Substances 0.000 description 59
- 239000000047 product Substances 0.000 description 32
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 23
- 239000002023 wood Substances 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 9
- 229920001131 Pulp (paper) Polymers 0.000 description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 8
- 239000011976 maleic acid Substances 0.000 description 8
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005823 ACRODUR® Polymers 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 235000011147 magnesium chloride Nutrition 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- 235000005074 zinc chloride Nutrition 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000010893 paper waste Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002522 swelling effect Effects 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 239000010876 untreated wood Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 1
- IQDKUTQPYBHPJK-UHFFFAOYSA-N 1,3-bis(hydroxymethyl)-1,3-diazinan-2-one Chemical compound OCN1CCCN(CO)C1=O IQDKUTQPYBHPJK-UHFFFAOYSA-N 0.000 description 1
- SYNPRNNJJLRHTI-UHFFFAOYSA-N 2-(hydroxymethyl)butane-1,4-diol Chemical compound OCCC(CO)CO SYNPRNNJJLRHTI-UHFFFAOYSA-N 0.000 description 1
- CLAHOZSYMRNIPY-UHFFFAOYSA-N 2-hydroxyethylurea Chemical compound NC(=O)NCCO CLAHOZSYMRNIPY-UHFFFAOYSA-N 0.000 description 1
- LHZGEGQZBPULEQ-UHFFFAOYSA-N 3,5-bis(methoxymethyl)-1,3,5-oxadiazinan-4-one Chemical compound COCN1COCN(COC)C1=O LHZGEGQZBPULEQ-UHFFFAOYSA-N 0.000 description 1
- LGJMYGMNWHYGCB-UHFFFAOYSA-N 4,5-dihydroxy-1,3-dimethylimidazolidin-2-one Chemical compound CN1C(O)C(O)N(C)C1=O LGJMYGMNWHYGCB-UHFFFAOYSA-N 0.000 description 1
- 229920005789 ACRONAL® acrylic binder Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical class [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- BGXRJLLPQWKPIH-UHFFFAOYSA-N dimethoxymethylurea Chemical compound COC(OC)NC(N)=O BGXRJLLPQWKPIH-UHFFFAOYSA-N 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001495 sodium tetrafluoroborate Inorganic materials 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/16—Sizing or water-repelling agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/02—Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
- D21H23/22—Addition to the formed paper
- D21H23/24—Addition to the formed paper during paper manufacture
- D21H23/26—Addition to the formed paper during paper manufacture by selecting point of addition or moisture content of the paper
- D21H23/28—Addition before the dryer section, e.g. at the wet end or press section
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/37—Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/47—Condensation polymers of aldehydes or ketones
- D21H17/48—Condensation polymers of aldehydes or ketones with phenols
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/47—Condensation polymers of aldehydes or ketones
- D21H17/49—Condensation polymers of aldehydes or ketones with compounds containing hydrogen bound to nitrogen
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/47—Condensation polymers of aldehydes or ketones
- D21H17/49—Condensation polymers of aldehydes or ketones with compounds containing hydrogen bound to nitrogen
- D21H17/51—Triazines, e.g. melamine
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/52—Epoxy resins
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/54—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
- D21H17/57—Polyureas; Polyurethanes
Definitions
- the invention relates to methods for reducing the absorption of water and water vapor and for increasing the dimensional stability of paper and paper products by treatment with an aqueous solution and/or dispersion of at least one reactive material which reacts with itself and/or with the cellulose fibers with crosslinking, and heating of the treated materials to a temperature at which drying and crosslinking takes place, and the use of coated paper products and/or of the coated cellulose fibers which can be produced therefrom by defibrating as an additive to thermoplastics and as an additive to heat-curable plastics.
- the added amount of catalyst is 20% based on the DMDHEU.
- the impregnation is effected under reduced pressure.
- a reaction of the DMDHEU with itself and with the wood takes place. This reaction takes place for one hour in a drying oven at temperatures of 80° C. or 100° C.
- the wood samples thus treated exhibit an improvement in the shrinkage and swelling properties of up to 75%, and do so at DMDHEU concentrations of 20%.
- wood bodies having dimensions of 20 mm ⁇ 20 mm ⁇ 10 mm were investigated. The method described can be used only in the case of small dimensions of the wood bodies, because these tend to crack in the case of larger dimensions.
- EP-B 0 891 244 discloses the impregnation of wood bodies comprising solid wood with a biodegradable polymer, a natural resin and/or a fatty acid ester—if appropriate with application of reduced pressure and/or pressure.
- the impregnation takes place at elevated temperatures.
- the pores in the wood are at least largely filled, and a molding which comprises both wood and biodegradable polymer forms.
- the polymer does not react with the wood. With this treatment, the characteristic properties of wood, the biodegradability and the mechanical properties are not lost.
- the thermoplasticity can be increased.
- SE-C 500 039 describes a method for hardening wood with densification, in which untreated wood is impregnated with various aminoplast monomers based on melamine and formaldehyde by means of suitable vacuum pressure impregnation, then dried, and cured in a press for densification at elevated temperature.
- Agents mentioned are, inter alia, DMDHEU, dimethylolurea, dimethoxymethylurea, dimethylolethyleneurea, dimethylolpropyleneurea and dimethoxymethyluron.
- This method has the disadvantage that the natural wood structure is lost as a result of the densification, and the formaldehyde emission of the finished wood body is relatively high, depending on the crosslinking agent used.
- WO 04/033171 discloses a method for the production of a wood body having high surface hardness and low formaldehyde emission, an untreated wood body being impregnated with an aqueous solution of
- the durability, dimensional stability and surface hardness of a wood body is improved by impregnating a wood body with a 1 to 50% strength by weight aqueous solution of an impregnating agent comprising a substance of group A and/or at least one substance of group B and at least one substance of group C as a catalyst, and causing the impregnating agent subsequently to react with itself and with the wood under humid conditions for avoiding drying.
- Suitable impregnating agents are, for example, dimethyloldihydroxyethyleneurea (DMDHEU), urea-glyoxal adducts and urea-formaldehyde adducts.
- Suitable catalysts are, for example, magnesium chloride, zinc chloride, ammonium chloride or acids, such as formic acid, maleic acid, hydrochloric acid or sulfuric acid.
- WO 2004/025019 discloses a method and an apparatus for exchanging a liquid present in fibers with another liquid.
- the procedure adopted here is to press out fiber cake to such an extent that a considerable amount of the liquid which is present in the fibers is transferred into the space between the fibers, to meter the other liquid, which is to replace the first liquid, into the compressed fiber cake during the compression step so that the first liquid is removed from the space between the fibers, and then to let down the pressure on the fiber cake under further action of the other liquid which is to replace the first liquid, further replacement liquid being absorbed.
- Liquid cleaners chemical treatment agents, liquid acids or bases, bleaches, delignification agents, catalysts, complexing agents, fluorescence indicators, metal ions, cationic or anionic polymers, colorants and inorganic substances being mentioned as replacement liquid.
- cellulose fibers and paper products produced therefrom such as paper, board and cardboard, readily absorb water and also water vapor from the air. As a result, however, the dimensional stability and the mechanical stability of the cellulose fibers and of the paper products are reduced to an undesired extent.
- a wet strength agent can be added, to the paper stock, for example during production of said products.
- Known wet strength agents are, for example, urea-formaldehyde resins, which increase not only the wet strength but also the dry strength of the paper (cf. EP-A 0 123 196 and U.S. Pat. No.
- the object of the invention is achieved, according to the invention, by a method for reducing the absorption of water and water vapor and for increasing the dimensional stability of paper and paper products by treatment with an aqueous solution and/or dispersion of at least one reactive material which reacts with itself and/or cellulose fibers with crosslinking, and heating of the treated materials to a temperature at which drying and crosslinking takes place, if cellulose fibers or a paper product obtained therefrom by drainage on a wire are or is first compressed, the compressed paper product is then brought into contact with an aqueous solution and/or dispersion of the reactive material, the compression is eliminated with further action of the aqueous solution and/or dispersion and the paper product is dried and crosslinked.
- the crosslinking of the reactive materials takes place, for example, at temperatures above 30° C., for example in the temperature range of from 35 to 200° C.
- the method can be carried out continuously and also batchwise.
- a preferred procedure is one in which cellulose fibers which comprise at least 50% by weight of virgin fibers or a paper product obtained therefrom by drainage on a wire, having a water content of in each case at least 0.7 g of water by g of dry cellulose fibers, are or is first compressed under a pressure of at least 2.1 MPa, the compressed paper product is then brought into contact with an aqueous solution and/or dispersion of the reactive material, the compression is eliminated with further action of the aqueous solution and/or dispersion, and the paper product is dried and is heated to a temperature in the range of from 70 to 200° C. for crosslinking.
- the aqueous solution and/or dispersion comprises, as reactive material, at least one heat-curable binder from the group consisting of the urea-formaldehyde adducts, urea-glyoxal adducts, melamine-formaldehyde adducts, phenol-formaldehyde adducts, one- and two-component systems based on epoxy resins, polyurethanes or isocyanates, polyacrylates, polymethacrylates, styrene-(meth)acrylate copolymer dispersions and/or styrene-butadiene-(meth)acrylic acid copolymer dispersions.
- the group consisting of the urea-formaldehyde adducts, urea-glyoxal adducts, melamine-formaldehyde adducts, phenol-formaldehyde adducts one- and
- the use of mixtures of at least two reactive materials is of interest, for example mixtures of melamine/urea-formaldehyde condensates.
- the reactive materials may be present as aqueous solution or as aqueous dispersion.
- transitions between solution and dispersion are possible.
- the mean particle diameter of the polymer particles dispersed in water is less than 1 ⁇ m, preferably less than 500 nm and generally in the range of from 10 to 100 nm.
- the aqueous solution and/or dispersion thus comprises, for example, a group of a reactive, crosslinkable material which may consist of
- Examples of (i) a reactive substance which forms a polymer are urea-glyoxal adducts and derivatives thereof, e.g. 1,3-bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-one (referred to below as “DMDHEU”).
- DMDHEU 1,3-bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-one
- it can be used either alone or together with (ii) at least one C 1-5 -alcohol, a polyol or mixtures thereof.
- 1,3-bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-one is used together with an alcohol and/or polyol as the impregnating agent, correspondingly modified 1,3-bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-ones (referred to below as “mDMDHEU”) form.
- mDMDHEU 1,3-bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-ones
- the compounds of group (ii) include C 1-5 -alcohols, for example methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol and n-pentanol, preferably methanol, and polyols, such as ethylene glycol, diethylene glycol, 1,2- and 1,3-propylene glycol, 1,2-, 1,3- and 1,4-butylene glycol, glycerol, trimethylolpropane and polyalkylene glycols, such as polyethylene glycol, polypropylene glycol, block copolymers of ethylene glycol and propylene glycol.
- Polyethylene glycols of the formula HO(CH 2 CH 2 O) n H, where n is from 3 to 20, and diethylene glycol are preferred.
- DMDHEU modified 1,3-bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-one
- DMDHEU and the monohydric alcohol and/or the polyol are mixed, the monohydric alcohol and/or the polyol being used in an amount of from 0.1 to 2.0 mol equivalents each, based on DMDHEU.
- the mixture of DMDHEU, monohydric alcohol and/or polyol is reacted, for example, at temperatures of from 20 to 70° C. and a pH of from 1 to 2.5, the pH being adjusted to 4 to 8 after the reaction.
- a reactive substance which forms a polymer is to be understood as meaning both urea-formaldehyde adducts and urea-glyoxal adducts and in each case derivatives thereof.
- the following compounds may be mentioned by way of example: dimethyllolurea, bis(methoxymethyl)urea, tetramethylolacetylenediurea, methylolmethylurea and 1,3-dimethyl-4,5-dihydroxyimidazolidin-2-one, 1,3-bis(hydroxymethyl)imidazolidin-2-one or mixtures thereof.
- These compounds of group (i) can, if appropriate, also be used in the presence of (ii) at least one C 1-5 -alcohol, at least one polyol or mixtures thereof as the impregnating agent.
- Suitable alcohols and polyols have already been mentioned above. Methanol, diethylene glycol and mixtures thereof are preferred.
- the aqueous solution of the impregnating agent comprises the reactive compounds of group (i) and the compounds of group (ii), for example, in a concentration of from 1 to 70% by weight, preferably from 10 to 60% by weight and in particular from 20 to 60% by weight.
- the impregnating agent preferably comprises 1,3-bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-one (DMDHEU) as a compound of group (i).
- the impregnating agent always comprises a catalyst (iii).
- Suitable catalysts (iii) are, for example, metal salts from the group consisting of metal halides, metal sulfates, metal nitrates, metal tetrafluoroborates, metal phosphates or mixtures thereof.
- individual examples of (iii) are magnesium chloride, magnesium sulfate, zinc chloride, lithium chloride, lithium bromide, boron trifluoride, aluminum chloride, aluminum sulfate, zinc nitrate and sodium tetrafluoroborate. Said compounds can be used, either alone or as a mixture, as a catalyst.
- catalysts (iii) are ammonium salts, such as ammonium chloride, ammonium sulfate, ammonium oxalate, diammonium phosphate or mixtures thereof.
- organic and/or inorganic acids may be used as a catalyst. Examples of these are maleic acid, formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid, p-toluenesulfonic acid, hydrochloric acid, sulfuric acid, boric acid or mixtures thereof.
- Preferably used compounds of group (iii) are magnesium chloride, zinc chloride, magnesium sulfate, aluminum sulfate or mixtures of these compounds.
- Magnesium chloride is particularly preferred.
- the catalyst (iii) is present, for example, in a concentration of from 0.1 to 10% by weight, preferably from 0.2 to 8% by weight, particularly preferably from 0.3 to 5% by weight, based on the components (i)-(iii) of the reactive material.
- low-formaldehyde is to be understood as meaning that the reactive materials comprise no substantial amounts of free formaldehyde and that no substantial amounts of formaldehyde are released even during drying or curing of the cellulose fibers or paper products treated therewith.
- such reactive materials comprise ⁇ 100 ppm of formaldehyde.
- suitable heat-curable binders are all curable binders which are described in the literature, for example, for strengthening nonwovens and/or are used for this purpose in practice, such as heat-curable resins based on phenol and formaldehyde, the abovementioned melamine-formaldehyde and urea-formaldehyde resins, urea-glyoxal resins and in particular formaldehyde-free one- and two-component systems based on epoxy resins or polyurethanes, polyacrylates, polymethacrylates, polyvinyl acetates, styrene acrylate copolymer dispersions, styrene-methacrylate copolymer dispersions, styrene-butadiene-(meth)acrylic acid copolymer dispersions and mixtures of said dispersions with a mixture of a polycarboxylic acid and
- Examples of preferred heat-curable binders are mixtures of
- binders can comprise, if appropriate, an esterification catalyst and/or a compound comprising bound phosphorus, such as hypophosphorous acid, as a reaction accelerator.
- the copolymer (a) described above may be composed, for example, of
- Heat-curable, aqueous compositions which comprise at least one copolymer (a) and at least one alkanolamine or higher-functional ⁇ -hydroxyalkylamine and/or at least one polyhydric alcohol can, if appropriate, additionally comprise at least one surfactant.
- Polycarboxylic acids, polyhydric alcohols, alkanolamines and polyfunctional amines are preferably used in amounts such that the number of acid functions is equivalent to the total number of alcoholic hydroxyl and amine functions, cf. EP-A 0 445 578.
- crosslinkable materials which consist of an aqueous solution of a polycarboxylic acid (homo- or copolymer), preferably having a molar mass M w of 10 000 or less, and a polyol, such as triethanolamine, and in which the ratio of the number of equivalents of hydroxyl groups to the number of equivalents of carboxyl groups is in the range of from 0.4:1 to 1.0:1 are suitable, cf. EP-A 0 990 727.
- binders which are sold under the trade name Acrodur® by BASF Aktiengesellschaft are particularly advantageously used as reactive materials.
- An example of this is an aqueous styrene-acrylate polymer dispersion which is modified with a polycarboxylic acid and a polyhydric alcohol as crosslinking component. It crosslinks at a temperature of as low as 130° C. However, in order to achieve high production speeds, the crosslinking is preferably carried out at temperatures of from 180 to 200° C.
- a further formaldehyde-free binder is commercially available, for example, as a colorless to slightly yellowish, clear, aqueous solution of a modified polycarboxylic acid with a polyhydric alcohol as crosslinking component. It crosslinks, for example, at drying temperatures of from about 160 to 180° C.
- Formaldehyde-free reactive materials which comprise at least one polycarboxylic acid and at least one polyhydric alcohol and/or alkanolamine or polyfunctional amine are particularly preferred.
- Compositions which comprise these reactive agents can, if appropriate, comprise even further formaldehyde-free polymers, e.g. polyacrylates, which are sold under the trade name Acronal® by BASF Aktiengesellschaft.
- the aqueous solutions and/or dispersions of a reactive material which are used for the impregnation comprise the reactive material, for example in an amount of from 1 to 70% by weight, preferably from 10 to 60% by weight and generally from 30 to 50% by weight.
- paper products are to be understood as meaning, for example, paper itself and board and cardboard.
- cellulose fibers of all types both from natural and from recovered fibers, in particular from fibers from waste paper, which, however, are used only as a mixture with virgin fibers.
- Virgin fibers are to be understood as meaning cellulose fibers which have not yet been processed to give a paper product or which have not yet been dried.
- the amount of virgin fibers is, for example, at least 50% by weight, preferably at least 70% by weight.
- a pulp which comprises 100% of virgin fibers is used as a starting material
- Suitable fibers for the production of the pulps are all qualities customary for this purpose, e.g. mechanical pulp, bleached and unbleached chemical pulp and paper stocks from all annual plants.
- Mechanical pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure groundwood, semi-chemical pulp, high-yield pulp and refiner mechanical pulp (RMP).
- TMP thermomechanical pulp
- CMP chemothermomechanical pulp
- RMP refiner mechanical pulp
- sulfate, sulfite and soda pulps are suitable as chemical pulp.
- Unbleached chemical pulp which is also referred to as unbleached kraft pulp, is preferably used.
- Suitable annual plants for the production of paper stocks are, for example, rice, wheat, sugarcane and kenaf.
- virgin fibers In contrast to dried cellulose fibers, virgin fibers have a high porosity, cf. W. Gindl, F. Zargar-Yaghubi and R. Wimmer, Bioresource Technology 87, 325-330 (2003). If a collection of moist cellulose fibers is considered, the water is found both between the individual cellulose fibers and in the interior of the cellulose fibers. An aqueous slurry of cellulose fibers is pressed during drainage on the wire of a paper machine to such an extent that the sheets formed therefrom comprise from 0.7 to 1.0 g of water per g of dry cellulose fibers, cf. G. V. Laivins and A. M. Scallan, TAPPI Proceedings, Engineering Conference, Book 2, 741-747 (1993).
- the paper product drained on a wire is subjected to a pressure such that water is forced out of the interior of the cellulose fibers.
- This pressure is at least 2.1 MPa and may be, for example up to 50 MPa. Preferably, it is in the range of from 2.5 to 10 MPa.
- the water content of the paper product is reduced to values below 0.7 g of water per g of dry fibers. It is, for example, from 0.3 to 0.5 g of water per g of dry cellulose fibers and is generally in the range of from 0.3 to 0.4 g of water per g of dry cellulose fibers.
- a pressure on the fiber structure and the treatment of the fiber structure with an aqueous solution of a reactive material can be effected continuously or batchwise.
- a continuous procedure is disclosed in WO 2004/025019, page 5, line 3, to page 8, line 8, mentioned in connection with the prior art.
- a fiber cake on a wire or a belt is passed through a nip formed by two compression rolls and is compressed therein.
- a part of the water which is present in the cellulose fibers is forced out of the interior of the cellulose fibers into the spaces between the fibers of the compressed fiber cake and partly out of the fiber cake.
- the compressed cellulose fiber structure With the aid of a compressible belt which revolves over a roll which, together with the other roll, forms the nip for the compression of the cellulose fiber cake, the compressed cellulose fiber structure is brought into contact under pressure with an aqueous solution of the reactive material. As a result, the water which originates from the interior of the cellulose fibers and is present in the intermediate spaces between the fibers is replaced by the aqueous solution of the reactive material. After leaving the roll nip, the compressed cellulose fiber structure is passed through an interstice which is filled with an aqueous solution of a reactive material. Relaxation of the compressed cellulose fibers begins. Similarly to a compressed sponge, which is released, cellulose fibers absorb aqueous solution of the reactive material.
- the solution penetrates not only into the intermediate spaces of the paper product but also into the interior of the cellulose fibers. In this way, not only coating of the individual cellulose fibers of the paper product with a reactive material but also at least partial coating of the interior of the fibers is achieved.
- the paper product is dried and is heated to a temperature of, for example, from 70 to 200° C. for crosslinking the reactive material.
- a paper machine wire having a mesh size of, for example from 80 to 150 ⁇ m and then a sheet which is produced from a predominant portion of virgin fibers and has a basis weight of, for example, from 50 to 500 g/m 2 , in general from 75 to 250 g/m 2 , and a water content of, for example, from 50 to 80% by weight are placed in a press equipped with a perforated tray.
- a papermaker's felt which is impregnated with an aqueous solution of at least one reactive material and then a sheet of plastic, e.g.
- the duration of the action of the pressure when the method according to the invention is carried out batchwise is, for example, from 0.1 to 120 seconds, preferably from 0.5 to 20 seconds. In the continuous procedure, the duration of the pressure is, for example, from 0.01 to 20 seconds, preferably from 0.02 to 1 second.
- the sheet absorbs further aqueous solution of the reactive material on relaxation. It is then removed from the press, and dried and heated to a temperature of, for example, from 70 to 200° C., preferably from 120 to 170° C., for crosslinking the reactive material.
- the polymer application in the method according to the invention is, for example, >5 g/m 2 , e.g. from 5.5 to 8 g/m 2 .
- paper and paper products which have a reduced absorption of water and water vapor and a higher dimensional stability are therefore obtained by the method according to the invention.
- Suspensions of cellulose fibers can be produced from the paper products obtained by the method according to the invention, for example by disintegration of the paper or of the paper products in water, from which suspensions in turn it is possible to obtain, by removal of water, coated cellulose fibers which comprise the coating material at least partly in the interior.
- These cellulose fibers may be present, for example, in the form of a powder.
- Both writing and printing papers and packaging papers, corrugated board, wallpapers, cardboard, laminates of, for example, a composite of board or paper and at least one film or sheet of a thermoplastic, and construction elements can be produced by the method according to the invention.
- the invention therefore furthermore relates to the use of the coated papers or paper products obtainable by the method according to the invention and/or the coated cellulose fibers which can be produced therefrom by defibrating as an additive to thermoplastics and as an additive to heat-curable plastics.
- Such mixtures comprise, for example, from 0.1 to 90% by weight, preferably from 1 to 70% by weight and in general from 2 to 50% by weight of at least one component (i).
- the composite materials are prepared, for example, by mixing at least one of the coated materials with at least one thermoplastic or one heat-curable material. The mixing can be effected, for example, in an extruder, for example at least one product coated according to the invention and a thermoplastic being heated to a temperature which is in the respective softening range of the thermoplastic or higher and the mixture being extruded.
- Suitable thermoplastics are, for example, polyolefins, such as polyethylenes, which are obtainable by the high-pressure or low-pressure polymerization process, polypropylene, polybut-2-ene or polybut-1-ene, polyisobutylene, polystyrene, polyamides, such as polycaprolactam or condensates of hexamethylenediamine and adipic acid, polyesters, such as polyethylene terephthalate, polymethyl methacrylate, polycarbonate and polyvinyl chloride.
- polyolefins such as polyethylenes, which are obtainable by the high-pressure or low-pressure polymerization process, polypropylene, polybut-2-ene or polybut-1-ene, polyisobutylene, polystyrene, polyamides, such as polycaprolactam or condensates of hexamethylenediamine and adipic acid
- polyesters such as polyethylene terephthalate, polymethyl methacrylate,
- heat-curable plastics are all reactive materials which have already been described above for the coating of paper and paper products, e.g. urea-formaldehyde resins, melamine-formaldehyde resins, one- and two-component systems based on epoxy resins, polyurethane or isocyanates, crosslinkable polyacrylates and crosslinkable polymethacrylates.
- the mixtures of the components (i) and (ii) are suitable for the production of moldings, in particular for the production of construction elements, such as composites for the insulation of walls, as a water vapor barrier, in the form of sheets for the cladding of facades or in the interior for the production of doors and claddings, as material for the production of pieces of furniture which are used outdoors and inside, as housings for electrical appliances, such as vacuum cleaners, kitchen machines, televisions, radios, stereo units and computers, as material for automotive parts, for example interior door trims, dashboards and shelves for seats, as material for flower boxes, flowerpots, watering cans, plant tubs, walls and supporting parts for summer houses and for toys and as packaging material.
- construction elements such as composites for the insulation of walls, as a water vapor barrier
- in the form of sheets for the cladding of facades or in the interior for the production of doors and claddings as material for the production of pieces of furniture which are used outdoors and inside, as housings for electrical appliances, such as vacuum cleaners,
- Paper samples having the dimensions 4 cm ⁇ 4 cm were weighed, then stored for 30 minutes in distilled water at a temperature of 20° C., then removed, dried with an absorbent cloth and weighed. The weight increase is calculated in %.
- Paper samples having the dimensions 4 cm ⁇ 4 cm were stored for one week over silica gel at a temperature of 20° C. in a desiccator. They were then weighed. In addition, the paper thickness (D 1 ) was determined. The samples were then stored over water for one week in a desiccator so that the paper was saturated with water vapor. The samples were then weighed and the thickness (D 2 ) of the samples was determined.
- the dimensional stability was determined as follows:
- D 1 is the thickness of the dry paper and D 2 is the thickness of the moist paper.
- Paper samples having the dimensions 4 cm ⁇ 4 cm were stored for one week over silica gel at a temperature of 20° C. in a desiccator. Thereafter, they were weighed (W 1 ) and stored for one week over water in a desiccator so that the paper was saturated with water vapor. The samples were then weighed (W 2 ). The moisture absorption was determined as follows:
- a paper stock which consisted of a mixture of 70% of bleached pine sulfate pulp and 30% of birch sulfate pulp and had a freeness of 35° SR (Schopper-Riegler) was drained in a Rapid Kö then sheet former.
- the sheets had a basis weight of 80 g/m 2 .
- Example 1 was repeated with the only exception that in each case an aqueous solution and/or dispersion of the heat-curable binders shown in table 1 was used instead of the aqueous solution of Kaurit® 210. The results thus obtained are shown in table 2.
- Example 1 was repeated with the only exception that the papermaker's felt was now impregnated with distilled water instead of the aqueous solution of Kaurit® 210. The results are shown in table 2.
Landscapes
- Paper (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005050658.5 | 2005-10-20 | ||
DE102005050658A DE102005050658A1 (de) | 2005-10-20 | 2005-10-20 | Verfahren zur Verminderung der Absorption von Wasser und Wasserdampf und zur Erhöhung der Dimensionsstabilität von Papier und Papierprodukten und Verwendung von beschichteten Papierprodukten |
PCT/EP2006/067304 WO2007045587A1 (de) | 2005-10-20 | 2006-10-12 | Verfahren zur verminderung der absorption von wasser und wasserdampf und zur erhöhung der dimensionsstabilität von papier und papierprodukten und verwendung von beschichteten papierprodukten |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080264587A1 true US20080264587A1 (en) | 2008-10-30 |
Family
ID=37596227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/067,818 Abandoned US20080264587A1 (en) | 2005-10-20 | 2006-10-12 | Reducing the Water and Water Vapour Absorbence and Enhancing the Dimensional Stability of Paper and Paper Products and Use of Coated Paper Products |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080264587A1 (de) |
EP (1) | EP1943385A1 (de) |
CN (1) | CN101292069A (de) |
BR (1) | BRPI0616932A2 (de) |
CA (1) | CA2625075A1 (de) |
DE (1) | DE102005050658A1 (de) |
WO (1) | WO2007045587A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090272505A1 (en) * | 2006-06-27 | 2009-11-05 | Basf Se | Method for finishing paper and paper products |
US20090321297A1 (en) * | 2006-03-27 | 2009-12-31 | Per Sundblad | Compression-moulded tray and method of producing a fibre tray |
US20110174676A1 (en) * | 2007-07-20 | 2011-07-21 | Joakim Stockhaus | Disposable trays of fibre material coated with a removable film layer |
WO2016106304A1 (en) * | 2014-12-22 | 2016-06-30 | Evan Koslow | Reactor and process for producing nanofibers and method of using nanofibers in web-forming techniques |
US10914036B2 (en) * | 2015-10-27 | 2021-02-09 | Hewlett-Packard Development Company, L.P. | Ink fixative solutions |
US12104326B2 (en) | 2019-09-06 | 2024-10-01 | Nippon Beet Sugar Manufacturing., Co., Ltd | Decay-resistant paper |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20105456A (fi) * | 2010-04-27 | 2011-10-28 | Helsingin Yliopisto | Menetelmä materiaalikoostumuksen valmistamiseksi ja materiaalikoostumus |
CN104018393B (zh) * | 2014-06-12 | 2016-01-20 | 苏州经贸职业技术学院 | 一种高分子施胶剂及其制备方法 |
CN105297421A (zh) * | 2015-12-07 | 2016-02-03 | 常熟市华谊织造有限公司 | 涤纶面料的后整理工艺 |
CN105780172A (zh) * | 2016-03-31 | 2016-07-20 | 华南理工大学 | 一种植物基发光纤维及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2049469A (en) * | 1933-08-16 | 1936-08-04 | Raybestos Manhattan Inc | Manufacture of saturated fibrous products |
US2309089A (en) * | 1938-10-06 | 1943-01-26 | Stein Hall Mfg Co | Method of making paper of improved wet strength |
US2993828A (en) * | 1960-03-15 | 1961-07-25 | Texon Inc | Process and apparatus for forming an impregnated fiber product |
US3275605A (en) * | 1964-11-24 | 1966-09-27 | Scott Paper Co | Amine-modified urea-formaldehyde resins and process of manufacture thereof |
US4396391A (en) * | 1982-06-30 | 1983-08-02 | Sun Chemical Corporation | Treating cellulose textile fabrics with dimethylol dihydroxyethyleneurea-polyol |
US4610761A (en) * | 1983-05-19 | 1986-09-09 | Lannen Tehtaat Oy | Paper that contains chemically substituted cellulose |
US5753078A (en) * | 1996-06-07 | 1998-05-19 | Cartons St-Laurent, Inc./St. Laurent Paperboard, Inc. | Method of making surface coated or impregnated paper or paperboard |
US20040118540A1 (en) * | 2002-12-20 | 2004-06-24 | Kimberly-Clark Worlwide, Inc. | Bicomponent strengtheninig system for paper |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB866103A (en) * | 1956-10-08 | 1961-04-26 | American Cyanamid Co | Improved melamine resin colloid and manufacture of wet-strength paper therewith |
DE3313726A1 (de) * | 1983-04-15 | 1984-10-18 | Basf Ag, 6700 Ludwigshafen | Verfahren zur herstellung von wasserloeslichen kationischen harnstoff-formaldehyd-harzen und deren verwendung bei der papierherstellung |
ATE113307T1 (de) * | 1990-03-03 | 1994-11-15 | Basf Ag | Formkörper. |
US5661213A (en) * | 1992-08-06 | 1997-08-26 | Rohm And Haas Company | Curable aqueous composition and use as fiberglass nonwoven binder |
AU711205B2 (en) * | 1996-04-01 | 1999-10-07 | Norbert Mundigler | Shaped body made of impregnated wood |
DE19654739A1 (de) * | 1996-12-30 | 1998-07-02 | Basf Ag | Gemischt-alkylierte bzw. -hydroxyalkoxyalkylierte methylolierte 4,5-Dihydroxy-imidazolidin-2-one |
SE0202733D0 (sv) * | 2002-09-16 | 2002-09-16 | Skogsind Tekn Foskningsinst | Process och arrangemang för att ersätta vätska i fibrer med en ersättningsvätska |
DE10246400A1 (de) * | 2002-10-04 | 2004-08-05 | Georg-August-Universität Göttingen | Verfahren zur Verbesserung der Oberflächenhärte eines Holzkörpers mit einer wässrigen Lösung eines Imprägniermittels |
-
2005
- 2005-10-20 DE DE102005050658A patent/DE102005050658A1/de not_active Withdrawn
-
2006
- 2006-10-12 CA CA002625075A patent/CA2625075A1/en not_active Abandoned
- 2006-10-12 WO PCT/EP2006/067304 patent/WO2007045587A1/de active Application Filing
- 2006-10-12 BR BRPI0616932A patent/BRPI0616932A2/pt not_active IP Right Cessation
- 2006-10-12 EP EP06807172A patent/EP1943385A1/de not_active Withdrawn
- 2006-10-12 CN CNA2006800386759A patent/CN101292069A/zh active Pending
- 2006-10-12 US US12/067,818 patent/US20080264587A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2049469A (en) * | 1933-08-16 | 1936-08-04 | Raybestos Manhattan Inc | Manufacture of saturated fibrous products |
US2309089A (en) * | 1938-10-06 | 1943-01-26 | Stein Hall Mfg Co | Method of making paper of improved wet strength |
US2993828A (en) * | 1960-03-15 | 1961-07-25 | Texon Inc | Process and apparatus for forming an impregnated fiber product |
US3275605A (en) * | 1964-11-24 | 1966-09-27 | Scott Paper Co | Amine-modified urea-formaldehyde resins and process of manufacture thereof |
US4396391A (en) * | 1982-06-30 | 1983-08-02 | Sun Chemical Corporation | Treating cellulose textile fabrics with dimethylol dihydroxyethyleneurea-polyol |
US4396391B1 (de) * | 1982-06-30 | 1984-08-28 | ||
US4396391B2 (en) * | 1982-06-30 | 1993-03-16 | Treating cellulose textile fabrics with dimenthylol dihydroyethyleneuree-polyol | |
US4610761A (en) * | 1983-05-19 | 1986-09-09 | Lannen Tehtaat Oy | Paper that contains chemically substituted cellulose |
US5753078A (en) * | 1996-06-07 | 1998-05-19 | Cartons St-Laurent, Inc./St. Laurent Paperboard, Inc. | Method of making surface coated or impregnated paper or paperboard |
US20040118540A1 (en) * | 2002-12-20 | 2004-06-24 | Kimberly-Clark Worlwide, Inc. | Bicomponent strengtheninig system for paper |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090321297A1 (en) * | 2006-03-27 | 2009-12-31 | Per Sundblad | Compression-moulded tray and method of producing a fibre tray |
US9187866B2 (en) | 2006-03-27 | 2015-11-17 | SIG Technology AB | Compression-moulded tray and method of producing a fibre tray |
US20090272505A1 (en) * | 2006-06-27 | 2009-11-05 | Basf Se | Method for finishing paper and paper products |
US20110174676A1 (en) * | 2007-07-20 | 2011-07-21 | Joakim Stockhaus | Disposable trays of fibre material coated with a removable film layer |
WO2016106304A1 (en) * | 2014-12-22 | 2016-06-30 | Evan Koslow | Reactor and process for producing nanofibers and method of using nanofibers in web-forming techniques |
US10914036B2 (en) * | 2015-10-27 | 2021-02-09 | Hewlett-Packard Development Company, L.P. | Ink fixative solutions |
US12104326B2 (en) | 2019-09-06 | 2024-10-01 | Nippon Beet Sugar Manufacturing., Co., Ltd | Decay-resistant paper |
Also Published As
Publication number | Publication date |
---|---|
CA2625075A1 (en) | 2007-04-26 |
CN101292069A (zh) | 2008-10-22 |
DE102005050658A1 (de) | 2007-04-26 |
EP1943385A1 (de) | 2008-07-16 |
BRPI0616932A2 (pt) | 2016-11-08 |
WO2007045587A1 (de) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080264587A1 (en) | Reducing the Water and Water Vapour Absorbence and Enhancing the Dimensional Stability of Paper and Paper Products and Use of Coated Paper Products | |
EP2038478B1 (de) | Verfahren zur ausrüstung von papier und papierprodukten | |
US8221895B2 (en) | Base paper for decorative coating materials | |
CN112166016B (zh) | 制造用于热成型的干法成网的垫的方法 | |
RU2431572C1 (ru) | Препрег | |
US3434918A (en) | Process of forming absorbent paper from a mixture of cellulosic fibers and partially crosslinked cellulosic fibers and paper thereof | |
USRE24011E (en) | Product thereof | |
US4455416A (en) | Cyclic urea/glyoxal/polyol condensates and their use in treating textile fabrics and paper | |
AU2006219948A1 (en) | Production of moulded bodies from lignocellulose-based fine particle materials | |
US2748046A (en) | Method of edge-surfacing woody products | |
JPH0726355B2 (ja) | 溶液および分散液の形の合成樹脂で含浸した紙帯状体の製造法 | |
CA2063716A1 (en) | Sheeting material and method of manufacturing the same | |
RU2607582C2 (ru) | Препрег | |
US8993062B2 (en) | Methods for making laminated, saturated, and abrasive products | |
TWI405887B (zh) | 環保之濕式硬質纖維板 | |
ES2271845T5 (es) | Preimpregnado | |
Michell et al. | Wood fiber–synthetic polymer composites. II. Laminates of treated fibers and polyolefins | |
US6096824A (en) | Aqueous emulsion polymer containing a polymerizable allyl amine salt, and paper saturant thereof | |
US5143791A (en) | Method for treatment of cellulose fibres and production of composite materials of the treated cellulose fibres in combination with resins | |
US2422423A (en) | Treatment of paper | |
KR20010024108A (ko) | 셀룰로오스 여과지 포화제 | |
Hundhausen et al. | PF-bonded particleboards from AKD-modified chips | |
JP2009045843A (ja) | 天然繊維ボードの製造方法 | |
JPS58174698A (ja) | 成形加工用繊維板 | |
JPH10128913A (ja) | 木質仕上材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAMP, SIMON;ETTL, ROLAND;REEL/FRAME:020689/0336 Effective date: 20070305 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |