US20080190597A1 - Coolant Cooler With A Gearbox-Oil Cooler Integrated Into One Of The Cooling Water Reservoirs - Google Patents

Coolant Cooler With A Gearbox-Oil Cooler Integrated Into One Of The Cooling Water Reservoirs Download PDF

Info

Publication number
US20080190597A1
US20080190597A1 US11/572,621 US57262105A US2008190597A1 US 20080190597 A1 US20080190597 A1 US 20080190597A1 US 57262105 A US57262105 A US 57262105A US 2008190597 A1 US2008190597 A1 US 2008190597A1
Authority
US
United States
Prior art keywords
coolant
cooler
thermostat
transmission oil
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/572,621
Other languages
English (en)
Inventor
Eberhard Pantow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Assigned to BEHR GMBH & CO. KG reassignment BEHR GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANTOW, EBERHARD
Publication of US20080190597A1 publication Critical patent/US20080190597A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0234Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the invention relates to a coolant cooler with a transmission oil cooler, which is integrated into one of the water reservoirs, for cooling transmission oil, according to the precharacterizing clause of claim 1 .
  • FIG. 6 illustrates, according to the prior art, a coolant circuit 201 for cooling a refrigerant flowing through the engine 203 , and a transmission oil circuit 202 for cooling a transmission oil flowing through a transmission 204 .
  • the transmission oil owing to the increased heat input, is cooled by the colder coolant in the transmission oil cooler 205 , which is arranged in a water reservoir 206 of the coolant cooler 207 , the cooling power of the transmission oil cooler 205 being coupled to the flow through the coolant cooler 207 .
  • the flow directions of coolant and transmission oil are indicated by arrows.
  • an engine thermostat 211 is arranged on the coolant outlet side of the engine 203 and makes it possible, when the engine 203 is cold, for the coolant, by passing the coolant cooler 207 , to pass directly via a bypass 213 to the pump 212 and back into the engine 203 , i.e. coolant does not flow in the coolant cooler 207 .
  • the coolant cooler is to be as cost-effective as possible.
  • the invention relates in particular to a coolant cooler with a transmission oil cooler integrated into one of the water reservoirs of the coolant cooler, wherein a second coolant inlet and/or a second coolant outlet is/are provided on the water reservoir, enabling the circulation of coolant even when the engine thermostat is closed, in particular when the engine is cold but the transmission oil is too hot.
  • the transmission oil circuit preferably entirely corresponds to a conventional transmission oil circuit, and so no changes are required in this region, and the old components can continue to be used.
  • Only on the water reservoir does a second coolant inlet and/or a second coolant outlet have to be provided, with the control preferably taking place via a thermostat, which can be integrated into the water reservoir or can be integrated in the coolant inlet or outlet.
  • a bypass line to the second coolant inlet or outlet and a further branch line in the conventional coolant circuit no changes are required, and it is possible for the branch line also to be integrated directly into the engine thermostat.
  • the second coolant inlet and/or the second coolant outlet is/are preferably arranged in the outlet water reservoir, in which the coolant temperature is below that of the coolant which comes from the engine and flows into the inlet water reservoir, thus making more effective cooling of the transmission oil possible because of the lower temperature.
  • the inlet and/or outlet is/are preferably situated above the transmission oil cooler, since, in this upper region, when the flow is not passing through the coolant cooler, which is the case in particular when the engine is cold, the coolant temperature is higher than in the lower region of the water reservoir, since the hot coolant rises upward.
  • the thermostat preferably has an expansion element which projects into the water reservoir. With the aid of the expansion element, which expands at high temperatures and, in accordance with the arrangement of the same, opens a valve, the inlet or outlet can be controlled cost-effectively and in a simple manner.
  • a flow divider is arranged in the water reservoir, the flow divider separating a sensor region of the thermostat, that is, for example, the region in which an expansion element is arranged, in a region essentially free from coolant flow from the inflow region of the second coolant inlet.
  • Control of the flow through the water reservoir, in which the transmission oil cooler is arranged, as a function of the coolant temperature ensures that the transmission oil is adequately cooled and prevents overheating of the transmission oil, which, without appropriate control, could take place, in particular if the engine is not yet at its operating temperature and the transmission oil is too hot.
  • the entire arrangement here is only insignificantly more expensive than a conventional arrangement with coolant circuit and transmission oil circuit.
  • a valve closing the second coolant inlet and/or the second coolant outlet, in particular the thermostat is activated from the outside, for example via electronics, and particularly preferably by heating. This makes it possible to actively heat the transmission oil in order, at low loads, to bring it more rapidly to the operating temperature and therefore to reduce friction losses.
  • An opening of the valve at a coolant temperature somewhat below the temperature at which the engine thermostat opens is particularly advantageous.
  • FIG. 1 shows a schematic illustration of a coolant circuit and of a transmission oil circuit according to the first exemplary embodiment
  • FIG. 2 shows a schematic side view of the outlet water reservoir with transmission oil cooler according to the first exemplary embodiment
  • FIG. 3 shows a schematic detail illustration of the upper region of the outlet water reservoir of FIG. 2 .
  • FIG. 4 shows a schematic illustration of a coolant circuit and of a transmission oil circuit according to the second exemplary embodiment
  • FIG. 5 shows a schematic detail illustration of the upper region of the outlet water reservoir according to the second exemplary embodiment
  • FIG. 6 shows a schematic illustration of a coolant circuit and of a transmission oil circuit according to the prior art.
  • FIG. 1 shows a coolant circuit 1 and a transmission oil circuit 2 of a transmission 4 , which is connected to an engine 3 and has an infinitely variable transmission ratio, according to the first exemplary embodiment.
  • a transmission oil cooler 5 is arranged in a water reservoir 6 , in the present case the outlet water reservoir 6 ′, of a coolant cooler 7 .
  • the transmission oil circuit 2 corresponds here to the transmission oil circuit 102 according to the previously described prior art, and so it is not discussed in more detail.
  • the coolant coming from the engine 3 flows via a line 8 to the coolant cooler 7 , which it leaves at the coolant outlet connection piece 9 , and via a line 10 to an engine thermostat 11 and via a coolant pump 12 back to the engine 3 .
  • the engine thermostat 11 blocks the line 10 , and the coolant passes via a bypass 13 directly from the engine 3 to the engine thermostat 11 and the pump 12 arranged downstream thereof.
  • the coolant circuit 1 corresponds to a conventional coolant circuit.
  • a second coolant outlet 20 is provided on the outlet water reservoir 6 ′ of the coolant cooler 7 , in which reservoir the transmission oil cooler 5 is arranged, said second coolant outlet being controlled by a second thermostat 21 , and from which the coolant can be supplied via a bypass line 22 directly to the bypass 13 .
  • the thermostat 21 determines the temperature of the coolant, which is convectively heated in the water reservoir 6 by the hot transmission oil flowing through the transmission oil cooler 5 .
  • the thermostat 21 is mounted directly on the water reservoir 6 , but it may also be integrated into a second coolant outlet connection piece. Since the hot coolant rises upward in the water reservoir 6 , the second thermostat 21 is provided at the top, above the transmission oil cooler 5 .
  • bypass line 22 leads to an additional connection piece directly into the housing of the engine thermostat, the connection piece being arranged in such a manner that it opens into the engine return behind the actual valve.
  • a thermostat with an expansion element 23 is used as the second thermostat 21 , the expansion element 23 projecting into the water reservoir 6 .
  • Heating the expansion element 23 causes the thermostat valve 24 , of which the valve seat 25 and valve disk 26 are indicated in FIG. 3 , to open up the flow path through the second outlet connection piece 27 via the bypass line 22 .
  • the convection is indicated in FIG. 3 by an arrow (not filled in) above the transmission oil cooler 5 .
  • a coolant circuit 101 and a transmission oil circuit 102 are again provided, with the transmission oil circuit 102 corresponding here to the transmission oil circuit 2 and to the transmission oil circuit 202 according to the previously described exemplary embodiment and the prior art, and so it is not discussed in more detail.
  • a transmission 104 connected to an engine 103 in the present case an automatic transmission with a converter clutch, is cooled by the transmission oil, which flows through the transmission oil circuit 102 and, in a transmission oil cooler 105 , which is arranged in a water reservoir 106 , in the present case again the outlet water reservoir 106 ′, of a coolant cooler 107 , outputs the absorbed heat to the coolant which circulates in the coolant circuit 101 .
  • the engine thermostat 111 is arranged in the coolant circuit 101 on the engine outlet side.
  • the coolant coming from the engine 103 flows through the engine thermostat 111 via a line 108 to the coolant cooler 107 , which it leaves at a coolant outlet connection piece 109 , and via a line 110 to a coolant pump 112 and back to the engine 103 .
  • the engine thermostat 111 blocks the line 108 , and the coolant passes via a bypass 113 from the engine 103 directly to the line 110 and to the pump 112 .
  • the coolant circuit 1 again corresponds to a conventional coolant circuit, in the present case to the coolant circuit 201 (illustrated in FIG. 6 ) according to the prior art.
  • a second coolant inlet 130 is provided on the outlet water reservoir 106 ′ of the coolant cooler 107 , in which reservoir the transmission oil cooler 105 is arranged, which second coolant inlet is controlled by a second thermostat 131 .
  • coolant can pass via a bypass line 132 from the engine thermostat 111 to the second thermostat 131 and into the water reservoir 106 .
  • the coolant From the water reservoir 106 , the coolant, after it has absorbed heat from the transmission oil cooler 105 , passes in a customary manner via the coolant outlet connection piece 109 and via the line 110 to the pump 112 and back into the engine 103 .
  • the bypass line 132 is integrated into the housing of the engine thermostat 111 in such a manner that it is closed when the engine thermostat 111 is open, and so no coolant passes via the bypass line 132 into the water reservoir 106 , but rather all of the coolant takes the normal flow path via the line 108 to the coolant cooler 107 and enters the latter via the inlet water reservoir 106 ′.
  • the thermostat 131 determines the temperature of the coolant, which is convectively heated in the water reservoir 106 by the hot transmission oil flowing through the transmission oil cooler 105 .
  • the thermostat 131 is fitted directly in the water reservoir 106 (cf. FIG. 5 ), but it may also be integrated into a second coolant inlet connection piece. Since the hot coolant rises upward in the water reservoir 106 , the second thermostat 131 is fitted, in accordance with the thermostat 21 of the first exemplary embodiment, at the top, above the transmission oil cooler 105 , but, in the present case, the configuration of the thermostat 131 differs from that of the thermostat 21 .
  • the expansion element of the thermostat 131 is arranged here on a wall of the water reservoir 106 , which wall lies opposite the valve with valve seat and valve disk, with a flow divider in the form of a partition being arranged in between, so that if the engine 103 is not at its operating temperature, cool coolant does not come into contact with the expansion element and thus closes the thermostat again, although a flow is desired.
  • the second thermostat 131 again has an expansion element 133 and a thermostat valve 134 with a valve seat 135 and valve disk 136 , which are arranged on a second inlet connection piece 137 .
  • the expansion element 133 which is arranged above the transmission oil cooler 105 on one side of the water reservoir 106 and forms a sensor region of the thermostat 131
  • the thermostat valve 134 which is arranged above the transmission oil cooler 105 on the opposite side of the water reservoir 106
  • a flow divider 138 which is formed by a wall projecting in the direction of the transmission oil cooler 105 , said flow divider preventing, when the thermostat valve 134 is open, a flow which cools the expansion element 133 being formed in the region thereof instead of the flow as a result of the heat convection, and so unintentional closing of the second thermostat 131 is prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Details Of Gearings (AREA)
US11/572,621 2004-07-26 2005-07-01 Coolant Cooler With A Gearbox-Oil Cooler Integrated Into One Of The Cooling Water Reservoirs Abandoned US20080190597A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004036185 2004-07-26
DE102004036185.1 2004-07-26
PCT/EP2005/007096 WO2006010430A1 (de) 2004-07-26 2005-07-01 Kühlmittelkühler mit in einen der wasserkästen integriertem getriebeölkühler

Publications (1)

Publication Number Publication Date
US20080190597A1 true US20080190597A1 (en) 2008-08-14

Family

ID=34993031

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/572,621 Abandoned US20080190597A1 (en) 2004-07-26 2005-07-01 Coolant Cooler With A Gearbox-Oil Cooler Integrated Into One Of The Cooling Water Reservoirs

Country Status (3)

Country Link
US (1) US20080190597A1 (de)
EP (1) EP1774148B1 (de)
WO (1) WO2006010430A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259548A1 (en) * 2008-10-27 2011-10-27 Edc Automotive, Llc Heat exchanger and related method of manufacture
JP2013056615A (ja) * 2011-09-08 2013-03-28 Toyota Motor Corp 熱交換器
JP2015010606A (ja) * 2013-06-27 2015-01-19 現代自動車株式会社 車両用ラジエータ
US9796244B2 (en) 2014-01-17 2017-10-24 Honda Motor Co., Ltd. Thermal management system for a vehicle and method
US9909487B2 (en) 2014-04-24 2018-03-06 Ford Global Technologies, Llc Systems and methods for an engine cooling system expansion reservoir
FR3080443A1 (fr) * 2018-04-18 2019-10-25 Renault S.A.S. Radiateur de refroidissement avec by-pass integre et circuit de refroidissement
US10539063B2 (en) * 2016-08-01 2020-01-21 Denso Corporation Cooling system for cooling an internal combustion engine
US11391210B2 (en) * 2019-04-17 2022-07-19 Raytheon Technologies Corporation Dynamic thermal load monitoring and mitigation for aircraft systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385464B (zh) * 2008-07-11 2013-02-11 Coretronic Corp 散熱裝置及具該散熱裝置之投影顯示器
EP2161479A1 (de) 2008-09-04 2010-03-10 Ford Global Technologies, LLC Getriebe mit Getriebegehäuse und Verfahren zur Beeinflussung der Getriebeöltemperatur
DE102015203648B3 (de) * 2015-03-02 2016-03-31 Ford Global Technologies, Llc Verfahren zum Betrieb einer Wärmetauscheranordnung in einem Kraftfahrzeug und Wärmetauscheranordnung für ein Kraftfahrzeug

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435041A (en) * 1945-02-10 1948-01-27 Frederic W Hild Regulating device for cooling systems
US4519449A (en) * 1983-12-06 1985-05-28 Hoskins John Fluid coupling and method of assembly
US4903760A (en) * 1989-05-24 1990-02-27 General Motors Corporation Integral oil cooler and radiator tank
US5024377A (en) * 1990-01-19 1991-06-18 Frank Harrison Vehicle heating system
US5067561A (en) * 1990-11-30 1991-11-26 General Motors Corporation Radiator tank oil cooler
US5186245A (en) * 1992-04-06 1993-02-16 General Motors Corporation Flow control baffle for radiator in-tank cooler
US5305826A (en) * 1991-02-26 1994-04-26 Valeo Thermique Moteur Motor vehicle radiator having a fluid flow control device
US5794689A (en) * 1995-03-10 1998-08-18 Behr Gmbh & Co. Radiator for a motor vehicle
US6082449A (en) * 1998-01-27 2000-07-04 Calsonic Corporation Oil cooler structure
US6196168B1 (en) * 1996-09-17 2001-03-06 Modine Manufacturing Company Device and method for cooling and preheating
US6612271B2 (en) * 2001-03-13 2003-09-02 Nippon Thermostat Co., Ltd. Cooling controller for internal-combustion engine
US7406929B2 (en) * 2003-01-16 2008-08-05 Behr Gmbh & Co. Kg Cooling circuit of an internal combustion engine comprising a low-temperature radiator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE761433C (de) * 1940-04-27 1953-09-14 Ernst Dipl-Ing Wilh Fauner Kuehlanlage fuer eine wassergekuehlte Brennkraftmaschine und eine wassergekuehlte Hilfsbrennkraftmaschine
DE10301448B4 (de) * 2003-01-10 2013-04-04 Behr Thermot-Tronik Gmbh Vorrichtung zur Temperierung von Schmieröl eines Kraftfahrzeugs
DE10302170A1 (de) * 2003-01-22 2004-08-12 Daimlerchrysler Ag Kühlmittelkreislauf für eine Brennkraftmaschine
DE10318744B4 (de) * 2003-04-25 2006-04-27 Audi Ag Kühlsystem

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435041A (en) * 1945-02-10 1948-01-27 Frederic W Hild Regulating device for cooling systems
US4519449A (en) * 1983-12-06 1985-05-28 Hoskins John Fluid coupling and method of assembly
US4903760A (en) * 1989-05-24 1990-02-27 General Motors Corporation Integral oil cooler and radiator tank
US5024377A (en) * 1990-01-19 1991-06-18 Frank Harrison Vehicle heating system
US5067561A (en) * 1990-11-30 1991-11-26 General Motors Corporation Radiator tank oil cooler
US5305826A (en) * 1991-02-26 1994-04-26 Valeo Thermique Moteur Motor vehicle radiator having a fluid flow control device
US5186245A (en) * 1992-04-06 1993-02-16 General Motors Corporation Flow control baffle for radiator in-tank cooler
US5794689A (en) * 1995-03-10 1998-08-18 Behr Gmbh & Co. Radiator for a motor vehicle
US6196168B1 (en) * 1996-09-17 2001-03-06 Modine Manufacturing Company Device and method for cooling and preheating
US6082449A (en) * 1998-01-27 2000-07-04 Calsonic Corporation Oil cooler structure
US6612271B2 (en) * 2001-03-13 2003-09-02 Nippon Thermostat Co., Ltd. Cooling controller for internal-combustion engine
US7406929B2 (en) * 2003-01-16 2008-08-05 Behr Gmbh & Co. Kg Cooling circuit of an internal combustion engine comprising a low-temperature radiator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259548A1 (en) * 2008-10-27 2011-10-27 Edc Automotive, Llc Heat exchanger and related method of manufacture
JP2013056615A (ja) * 2011-09-08 2013-03-28 Toyota Motor Corp 熱交換器
JP2015010606A (ja) * 2013-06-27 2015-01-19 現代自動車株式会社 車両用ラジエータ
US9796244B2 (en) 2014-01-17 2017-10-24 Honda Motor Co., Ltd. Thermal management system for a vehicle and method
US9909487B2 (en) 2014-04-24 2018-03-06 Ford Global Technologies, Llc Systems and methods for an engine cooling system expansion reservoir
US10539063B2 (en) * 2016-08-01 2020-01-21 Denso Corporation Cooling system for cooling an internal combustion engine
FR3080443A1 (fr) * 2018-04-18 2019-10-25 Renault S.A.S. Radiateur de refroidissement avec by-pass integre et circuit de refroidissement
US11391210B2 (en) * 2019-04-17 2022-07-19 Raytheon Technologies Corporation Dynamic thermal load monitoring and mitigation for aircraft systems

Also Published As

Publication number Publication date
EP1774148A1 (de) 2007-04-18
EP1774148B1 (de) 2013-02-27
WO2006010430A1 (de) 2006-02-02

Similar Documents

Publication Publication Date Title
US20080190597A1 (en) Coolant Cooler With A Gearbox-Oil Cooler Integrated Into One Of The Cooling Water Reservoirs
JP3179971U (ja) 燃焼機関の冷却システム
JP4196802B2 (ja) 冷却水回路
KR101394051B1 (ko) 차량용 엔진 냉각 시스템 및 그 제어방법
JP4644182B2 (ja) 低温クーラーを有する内燃機関の冷却循環
US9452660B2 (en) Valve system configurations for warming and cooling transmission fluid
EP2795078B1 (de) Anordnung und verfahren zur kühlung eines kühlmittels in einem kühlsystem in einem fahrzeug
US5638774A (en) Integrated transmission oil conditioner and coolant pump
EP3194810B1 (de) Übertragungswärmetauschsystem
JPH11264318A (ja) トランスミッションのオイル温度調整装置
JP2007085457A (ja) トランスミッションのオイル温度調整装置
WO2015057129A1 (en) Cooling system in a vehicle
EP3444461B1 (de) Thermostat für das kühlsystem eines verbrennungsmotors
JP2017155672A (ja) 車両の液体循環システム
JP2014145326A (ja) 内燃機関
GB2234343A (en) Engine cooling system
US20180209323A1 (en) Flowpath structure
JP2001280132A (ja) 冷却水制御装置
JP6971721B2 (ja) 冷却水路系の制御方法
JP2002349790A (ja) 油温制御方法および装置
JP2007224819A (ja) 内燃機関の冷却装置
JP2007510088A (ja) 自動車エンジン用の冷却回路
JP2007224821A (ja) 内燃機関の冷却装置
JP2737611B2 (ja) エンジンの冷却装置
JP2001280133A (ja) 冷却水制御装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEHR GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANTOW, EBERHARD;REEL/FRAME:019217/0024

Effective date: 20070411

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION