US20080088032A1 - Stacked Modules and Method - Google Patents

Stacked Modules and Method Download PDF

Info

Publication number
US20080088032A1
US20080088032A1 US11/874,795 US87479507A US2008088032A1 US 20080088032 A1 US20080088032 A1 US 20080088032A1 US 87479507 A US87479507 A US 87479507A US 2008088032 A1 US2008088032 A1 US 2008088032A1
Authority
US
United States
Prior art keywords
flex
csp
contacts
module
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/874,795
Inventor
James Wehrly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entorian Technologies Inc
Original Assignee
Entorian Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/005,581 external-priority patent/US6576992B1/en
Priority claimed from US10/136,890 external-priority patent/US6940729B2/en
Priority claimed from US10/453,398 external-priority patent/US6914324B2/en
Priority claimed from US10/457,608 external-priority patent/US20030234443A1/en
Priority claimed from US10/631,886 external-priority patent/US7026708B2/en
Priority claimed from US10/845,029 external-priority patent/US20050056921A1/en
Priority claimed from US11/258,438 external-priority patent/US7310458B2/en
Priority claimed from US11/263,627 external-priority patent/US7656678B2/en
Priority to US11/874,795 priority Critical patent/US20080088032A1/en
Application filed by Entorian Technologies Inc filed Critical Entorian Technologies Inc
Assigned to STAKTEK GROUP L.P. reassignment STAKTEK GROUP L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEHRLY, JAMES DOUGLAS
Publication of US20080088032A1 publication Critical patent/US20080088032A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06579TAB carriers; beam leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • H01L2225/06586Housing with external bump or bump-like connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/107Indirect electrical connections, e.g. via an interposer, a flexible substrate, using TAB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5387Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/5327Means to fasten by deforming

Definitions

  • the present invention relates to aggregating integrated circuits and, in particular, to stacking integrated circuits in chip-scale packages and methods for creating stacked modules of chip-scale packages.
  • a variety of techniques are used to stack packaged integrated circuits. Some methods require special packages, while other techniques stack packages configured to allow stand-alone deployment in an operating environment.
  • Chip scale packaging refers generally to packages that provide connection to an integrated circuit through a set of contacts (often embodied as “bumps” or “balls”) arrayed across a major surface of the package. Instead of leads emergent from a peripheral side of the package as in “leaded” packages, in a CSP, contacts are placed on a major surface and typically emerge from the planar bottom surface of the package. The absence of “leads” on package sides renders most stacking techniques devised for leaded packages inapplicable for CSP stacking.
  • CSP has enabled reductions in size and weight parameters for many applications.
  • CSP is a broad category including a variety of packages from near chip scale to die-sized packages such as the die sized ball grid array (DSBGA).
  • DSBGA die sized ball grid array
  • Staktek Group L.P. the assignee of the present invention, has developed a variety of stacked module designs that employ a form standard or mandrel that can provide thermal and/or construction advantages while providing a standard form that may allow use of a flexible circuit design with a variety of CSP types and body sizes.
  • the mandrel or form standard stack designs come in a variety of shapes and sizes and materials.
  • Some form standards extend beyond the perimeter edge or the extent of the CSP body and thus provide a form about which the flex circuitry transits.
  • Some other form standards are substantially planar and have a lateral extent smaller than the lateral extent of an adjacent CSP.
  • Stacked module design and assembly techniques and systems that provide a thermally efficient, reliable structure that perform well at higher frequencies but do not add excessive height to the stack that can be manufactured at reasonable cost with readily understood and managed materials and methods are provided.
  • the present invention allows chip scale-packaged integrated circuits (CSPs) that are configured to allow stand-alone deployment in an operating environment to instead be stacked into modules that conserve PWB or other board surface area.
  • CSPs chip scale-packaged integrated circuits
  • the present invention can be used to advantage with CSP packages of a variety of sizes and configurations ranging from typical BGAs with footprints somewhat larger than the contained die to smaller packages such as, for example, die-sized packages such as DSBGA.
  • the present invention is applied most frequently to chip scale packages that contain one die, it may be employed with chip scale packages that include more than one integrated circuit die.
  • two CSPs are stacked, with one CSP disposed above the other.
  • the two CSPs are connected with a pair of flex circuits.
  • Each of the pair of flex circuits is partially wrapped about a respective opposite lateral edge of the lower CSP of the module.
  • the flex circuit pair connects the upper and lower CSPs and provides a thermal and electrical path connection path between the module and an application environment such as a printed wiring board (PWB).
  • PWB printed wiring board
  • a precursor assembly for use as a component of a stacked circuit module having a CSP and a flex circuit with one or more stiffeners attached to the flex circuit.
  • the stiffeners are disposed along a major surface of the CSP and may be attached to the major surface of the CSP by adhesive.
  • Exemplary stacked circuit modules devised in accordance with a preferred embodiment of the present invention comprise a second CSP disposed above the CSP of the precursor assembly, the second CSP being connected to the upper portions of the flex circuit.
  • a tooling apparatus devised in accordance with a preferred embodiment of the present invention may be use to assemble precursor assemblies.
  • Preferred embodiments of the tooling apparatus include a physical form used to impose a preselected distance between the edges of the flex circuit, which in various embodiments comprises a flex aligner that limits the lateral placement of the edges of the flex circuit along upper surface of the CSP.
  • the present invention may be employed to advantage in numerous configurations and combinations of CSPs in modules provided for high-density memories, high capacity computing, and other applications.
  • the present invention also provides methods for constructing stacked circuit modules and precursor assemblies with flexible circuitry. Using preferred methods of the present invention, a single set of flexible circuitry, whether articulated as one or two flex circuits, may be employed with CSP devices of a variety of configurations.
  • FIG. 1 is an elevation view of module 10 devised in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is an elevation view of module 10 devised in accordance with a preferred embodiment of the present invention.
  • FIG. 3 depicts, in enlarged view, the area marked “A” in FIG. 2 .
  • FIG. 4 is an enlarged detail of an exemplar connection in a preferred embodiment of the present invention.
  • FIG. 5 is an enlarged depiction of an exemplar area around a lower flex contact in a preferred embodiment of the present invention.
  • FIG. 6 depicts a first outer surface layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 7 depicts a first outer surface layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 8 depicts a first conductive layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 9 illustrates a first conductive layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 10 depicts an intermediate layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 11 depicts an intermediate layer of a right side flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 12 depicts a second conductive layer of a flex circuit of a preferred embodiment of the present invention.
  • FIG. 13 depicts a second conductive layer of a flex circuit of a preferred embodiment of the present invention.
  • FIG. 14 depicts a second outer layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 15 reflects a second outer layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 16 depicts an alternative preferred embodiment of the present invention.
  • FIG. 17 illustrates a JEDEC pinout for DDR-II FBGA packages.
  • FIG. 18 illustrates the pinout of a module 10 in an alternative preferred embodiment of the invention.
  • FIG. 19 illustrates the pinout of a module 10 in an alternative embodiment of the invention.
  • FIG. 20 depicts the pinout of an exemplar CSP employed in a preferred embodiment of the invention.
  • FIG. 21 depicts a second conductive layer of a flex circuit employed in an alternative preferred embodiment of the present invention.
  • FIG. 22 depicts a second conductive layer of a flex circuit employed in an alternative preferred embodiment of the present invention.
  • FIG. 23 is an elevation view of a precursor assembly devised in accordance with a preferred embodiment of the present invention comprising stiffeners.
  • FIG. 23A depicts, in enlarged view, the area marked “ 23 A” in FIG. 23 .
  • FIG. 24 is a plan view of stiffener stock devised in accordance with a preferred embodiment of the present invention.
  • FIG. 25 depicts, in enlarged view, the area marked “ 25 ” in FIG. 24 .
  • FIG. 26 is a perspective view of a panel or strip comprising flex circuits devised in accordance with a preferred embodiment of the present invention with stiffener stock attached.
  • FIG. 27 is a plan view of a panel or strip comprising flex circuits devised in accordance with a preferred embodiment of the present invention with stiffener stock attached.
  • FIG. 28 depicts, in enlarged view, the area marked “ 28 ” in FIG. 24 .
  • FIG. 29 depicts a CSP placed on a flex circuit in accordance with a preferred embodiment of the present invention.
  • FIG. 30 presents another depiction of a CSP placed on a flex circuit in accordance with a preferred embodiment of the present invention.
  • FIG. 31 depicts two flex circuit edges in an arrangement according to a preferred embodiment of the present invention.
  • FIG. 32 depicts two flex edges in accordance with an alternative preferred embodiment of the present invention.
  • FIG. 33 is a plan view from below of a precursor assembly devised in accordance with a preferred embodiment of the present invention.
  • FIG. 34 is an elevation view of a stacked circuit module devised in accordance with a preferred embodiment of the present invention.
  • FIG. 35 is an elevation view of a stacked circuit module devised in accordance with another preferred embodiment of the present invention.
  • FIG. 36 is a perspective view from below of a stacked circuit module devised in accordance with a preferred embodiment of the present invention.
  • FIG. 37 is a perspective view from above of a stacked circuit module devised in accordance with a preferred embodiment of the present invention.
  • FIG. 38 is an elevation view of a stacked circuit module devised in accordance with another preferred embodiment of the present invention.
  • FIG. 39 depicts a tooling apparatus devised in accordance with a preferred embodiment of the present invention.
  • FIG. 40 depicts an enlarged depiction of the area marked “ 40 ” in FIG. 39 .
  • FIG. 41 illustrates a tooling apparatus in accordance with a preferred embodiment of the present invention.
  • FIG. 42 illustrates another step in devising an assembly in accordance with a preferred embodiment of the present invention.
  • FIG. 43 depicts another step in devising an assembly in accordance with a preferred embodiment of the present invention.
  • FIG. 44 depicts a tooling apparatus devised in accordance with another preferred embodiment of the present invention, and illustrates a step in accordance with another preferred embodiment of the present invention.
  • FIG. 45 illustrates another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • FIG. 46 depicts another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • FIG. 47 illustrates another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • FIG. 48 depicts another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • FIG. 1 is an elevation view of module 10 devised in accordance with a preferred embodiment of the present invention.
  • Module 10 is comprised of upper CSP 12 and lower CSP 14 .
  • Each of CSPs 12 and 14 have an upper surface 16 and a lower surface 18 and opposite lateral sides 20 and 22 .
  • CSPs chip scale packaged integrated circuits
  • FIGS. 1 and 2 are depicted with CSPs of a particular profile known to those in the art, but it should be understood that the figures are exemplary only.
  • CSPs such as, for example, ball-grid-array (“BGA”), micro-ball-grid array (“ ⁇ BGA”), and fine-pitch ball grid array (“FBGA”) packages have an array of connective contacts embodied, for example, as leads, bumps, solder balls, or balls that extend from lower surface 18 of a plastic casing in any of several patterns and pitches. An external portion of the connective contacts is often finished with a ball of solder. Shown in FIG. 1 are CSP contacts 24 along lower surfaces 18 of CSPs 12 and 14 . CSP contacts 24 provide connection to the integrated circuit within the respective packages. Collectively, CSP contacts 24 comprise CSP array 26 shown as to lower CSP 14 in the depicted particular package configuration as CSP arrays 26 1 and 26 2 which collectively comprise CSP array 26 .
  • BGA ball-grid-array
  • ⁇ BGA micro-ball-grid array
  • FBGA fine-pitch ball grid array
  • flex circuits (“flex”, “flex circuits” or “flexible circuit structures”) 30 and 32 are shown partially wrapped about lower CSP 14 with flex 30 partially wrapped over lateral side 20 of lower CSP 14 and flex 32 partially wrapped about lateral side 22 of lower CSP 14 .
  • Lateral sides 20 and 22 may be in the character of sides or may, if the CSP is especially thin, be in the character of an edge. Any flexible or conformable substrate with a multiple internal layer connectivity capability may be used as a flex circuit in the invention.
  • the entire flex circuit may be flexible or, as those of skill in the art will recognize, a PCB structure made flexible in certain areas to allow conformability around lower CSP 14 and rigid in other areas for planarity along CSP surfaces may be employed as an alternative flex circuit in the present invention.
  • structures known as rigid-flex may be employed.
  • Portions of flex circuits 30 and 32 are fixed to upper surface 16 of lower CSP 14 by adhesive 34 which is shown as a tape adhesive, but may be a liquid adhesive or may be placed in discrete locations across the package.
  • adhesive 34 is thermally conductive. Adhesives that include a flux are used to advantage in assembly of module 10 .
  • Layer 34 may also be a thermally conductive medium to encourage heat flow between the CSPs of module 10 .
  • Flex circuits 30 and 32 are multi-layer flexible circuit structures that have at least two conductive layers.
  • the conductive layers are metal such as alloy 110.
  • the use of plural conductive layers provides advantages as will be seen and the creation of a distributed capacitance across module 10 intended to reduce noise or bounce effects that can, particularly at higher frequencies, degrade signal integrity, as those of skill in the art will recognize.
  • Module 10 of FIG. 1 has module contacts 36 collectively identified as module array 38 .
  • FIG. 2 shows a module 10 devised in accordance with a preferred embodiment of the invention.
  • FIG. 2 illustrates use of a conformal media 40 provided in a preferred embodiment to assist in creating conformality of structural areas of module 10 .
  • Planarity of the module is improved by conformal media 40 .
  • conformal media 40 is thermally conductive.
  • thermal spreaders or a thermal medium may be placed as shown by reference 41 .
  • Identified in FIG. 2 are upper flex contacts 42 and lower flex contacts 44 that are at one of the conductive layers of flex circuits 30 and 32 .
  • Upper flex contacts 42 and lower flex contacts 44 are conductive material and, preferably, are solid metal.
  • Lower flex contacts 44 are collectively lower flex contact array 46 .
  • Upper flex contacts 42 are collectively upper flex contact array 48 . Only some of upper flex contacts 42 and lower flex contacts 44 are identified in FIG. 2 to preserve clarity of the view. It should be understood that each of flex circuits 30 and 32 have both upper flex contacts 42 and lower flex contacts 44 . Lower flex contacts 44 are employed with lower CSP 14 and upper flex contacts 42 are employed with upper CSP 12 .
  • FIG. 2 has an area marked “A” that is subsequently shown in enlarged depiction in FIG. 3 .
  • FIG. 3 depicts in enlarged view, the area marked “A” in FIG. 2 .
  • FIG. 3 illustrates the connection between example CSP contact 24 and module contact 36 through lower flex contact 44 to illustrate the solid metal path from lower CSP 14 to module contact 36 and, therefore, to an application PWB to which module is connectable. As those of skill in the art will understand, heat transference from module 10 is thereby encouraged.
  • CSP contact 24 and module contact 36 together offset module 10 from an application platform such as a PWB.
  • the combined heights of CSP contact 24 and module contact 36 provide a moment arm longer than the height of a single CSP contact 24 alone. This provides a longer moment arm through which temperature-gradient-over-time stresses (such as typified by temp cycle), can be distributed.
  • Flex 30 is shown in FIG. 3 to be comprised of multiple layers. Flex 30 has a first outer surface 50 and a second outer surface 52 . Flex circuit 30 has at least two conductive layers interior to first and second outer surfaces 50 and 52 . There may be more than two conductive layers in flex 30 and flex 32 . In the depicted preferred embodiment, first conductive layer 54 and second conductive layer 58 are interior to first and second outer surfaces 50 and 52 . Intermediate layer 56 lies between first conductive layer 54 and second conductive layer 58 . There may be more than one intermediate layer, but one intermediate layer of polyimide is preferred.
  • lower flex contact 44 is preferably comprised from metal at the level of second conductive layer 58 interior to second outer surface 52 .
  • Lower flex contact 44 is solid metal in a preferred embodiment and is comprised of metal alloy such as alloy 110. This results in a solid metal pathway from lower CSP 14 to an application board thereby providing a significant thermal pathway for dissipation of heat generated in module 10 .
  • FIG. 4 is an enlarged detail of an exemplar connection between example CSP contact 24 and example module contact 36 through lower flex contact 44 to illustrate the solid metal path from lower CSP 14 to module contact 36 and, therefore, to an application PWB to which module 10 is connectable.
  • lower flex contact 44 is at second conductive layer 58 that is interior to first and second outer surface layers 50 and 52 respectively, of flex circuit 30 .
  • FIG. 5 is an enlarged depiction of an exemplar area around a lower flex contact 44 in a preferred embodiment.
  • Windows 60 and 62 are opened in first and second outer surface layers 50 and 52 respectively, to provide access to particular lower flex contacts 44 residing at the level of second conductive layer 58 in the flex.
  • the upper flex contacts 42 are contacted by CSP contacts 24 of upper CSP 12 .
  • Lower flex contacts 44 and upper flex contacts 42 are particular areas of conductive material (preferably metal such as alloy 110) at the level of second conductive layer 58 in the flex.
  • Upper flex contacts 42 and lower flex contacts 44 are demarked in second conductive layer 58 and, as will be shown in subsequent Figs., may be connected to or isolated from the conductive plane of second conductive layer 58 .
  • Demarking a lower flex contact 44 from second conductive layer 58 is represented in FIG. 5 by demarcation gap 63 shown at second conductive layer 58 .
  • demarcation gaps do not extend completely around the flex contact as shown, for example, by lower flex contacts 44 C in later FIG. 12 .
  • CSP contacts 24 of lower CSP 14 pass through a window 60 opened through first outer surface layer 50 , first conductive layer 54 , and intermediate layer 56 , to contact an appropriate lower flex contact 44 .
  • Window 62 is opened through second outer surface layer 52 through which module contacts 36 pass to contact the appropriate lower flex contact 44 .
  • Respective ones of CSP contacts 24 of upper CSP 12 and lower CSP 14 are connected at the second conductive layer 58 level in flex circuits 30 and 32 to interconnect appropriate signal and voltage contacts of the two CSPs.
  • Respective CSP contacts 24 of upper CSP 12 and lower CSP 14 that convey ground (VSS) signals are connected at the first conductive layer 54 level in flex circuits 30 and 32 by vias that pass through intermediate layer 56 to connect the levels as will subsequently be described in further detail.
  • CSPs 12 and 14 are connected. Consequently, when flex circuits 30 and 32 are in place about lower CSP 14 , respective CSP contacts 24 of each of upper and lower CSPs 12 and 14 are in contact with upper and lower flex contacts 42 and 44 , respectively. Selected ones of upper flex contacts 42 and lower flex contacts 44 are connected. Consequently, by being in contact with lower flex contacts 44 , module contacts 36 are in contact with both upper and lower CSPs 12 and 14 .
  • module contacts 36 pass through windows 62 opened in second outer layer 52 to contact lower flex contacts 44 .
  • module 10 will exhibit a module contact array 38 that has a greater number of contacts than do the constituent CSPs of module 10 .
  • some of module contacts 36 may contact lower flex contacts 44 that do not contact one of the CSP contacts 24 of lower CSP 14 but are connected to CSP contacts 24 of upper CSP 12 . This allows module 10 to express a wider datapath than that expressed by the constituent CSPs 12 or 14 .
  • a module contact 36 may also be in contact with a lower flex contact 44 to provide a location through which different levels of CSPs in the module may be enabled when no unused CSP contacts are available or convenient for that purpose.
  • first conductive layer 54 is employed as a ground plane, while second conductive layer 58 provides the functions of being a signal conduction layer and a voltage conduction layer.
  • first and second conductive layers may be reversed with attendant changes in windowing and use of commensurate interconnections.
  • first and second conductive layers 54 and 58 there is at least one intermediate layer 56 that, in a preferred embodiment, is a polyimide. Placement of such an intermediate layer between ground-conductive first conductive layer 54 and signal/voltage conductive second conductive layer 58 provides, in the combination, a distributed capacitance that assists in mitigation of ground bounce phenomena to improve high frequency performance of module 10 .
  • FIG. 6 depicts first outer surface layer 50 of flex 30 (i.e., left side of FIG. 1 ). The view is from above the flex looking down into flex 30 from the perspective of first conductive layer 54 . Throughout the Figs., the location reference “B” is to orient views of layers of flex 30 to those of flex 32 as well as across layers. Windows 60 are opened through first outer surface layer 50 , first conductive layer 54 , and intermediate layer 56 . CSP contacts 24 of lower CSP 14 pass through windows 60 of first outer surface layer 50 , first conductive layer 54 , and intermediate layer 56 to reach the level of second conductive layer 58 of flex 30 .
  • selected CSP contacts 24 of lower CSP 14 make contact with selected lower flex contacts 44 .
  • Lower flex contacts 44 provide several types of connection in a preferred embodiment as will be explained with reference to later FIG. 12 .
  • a portion of flex 30 will be wrapped about lateral side 20 of lower CSP 14 to place edge 62 above upper surface 16 of lower CSP 14 .
  • FIG. 7 depicts first outer surface layer 50 of flex 32 (i.e., right side of FIG. 1 ).
  • the view is from above the flex looking down into flex 32 from the perspective of first conductive layer 54 .
  • the location reference “B” relatively orients the views of FIGS. 6 and 7 .
  • the views of FIGS. 6 and 7 may be understood together with the reference marks “B” of each view being placed nearer each other than to any other corner of the other view of the pair of views of the same layer.
  • windows 60 are opened through first outer surface layer 50 , first conductive layer 54 and intermediate layer 56 .
  • CSP contacts 24 of lower CSP 14 pass through windows 60 of first outer surface layer 50 , first conductive layer 54 , and intermediate layer 56 to reach the level of second conductive layer 58 of flex 30 .
  • selected CSP contacts 24 of lower CSP 14 make contact with lower flex contacts 44 .
  • Lower flex contacts 44 provide several types of connection in a preferred embodiment as will be explained with reference to later FIG. 12 .
  • FIG. 8 depicts first conductive layer 54 of flex 30 .
  • Windows 60 continue the opened orifice in flex 30 through which CSP contacts 24 of lower CSP 14 pass to reach second conductive layer 58 and, therefore, selected lower flex contacts 44 at the level of second conductive layer 58 .
  • first conductive layer 54 becomes, on the part of flex 30 disposed above upper surface 16 of lower CSP 14 , the lower-most conductive layer of flex 30 from the perspective of upper CSP 12 .
  • those CSP contacts 24 of upper CSP 12 that provide ground (VSS) connections are connected to the first conductive layer 54 .
  • First conductive layer 54 lies beneath, however, second conductive layer 58 in that part of flex 30 that is wrapped above lower CSP 14 . Consequently, some means must be provided for connection of the upper flex contact 42 to which ground-conveying CSP contacts 24 of upper CSP 12 are connected and first conductive layer 54 .
  • those upper flex contacts 42 that are in contact with ground-conveying CSP contacts 24 of upper CSP 12 have vias that route through intermediate layer 56 to reach first conductive layer 54 .
  • the sites where those vias meet first conductive layer 54 are identified in FIG. 8 as vias 66 .
  • These vias may be “on-pad” or coincident with the flex contact 42 to which they are connected.
  • vias 66 in FIG. 8 are one via.
  • vias in the figures are shown larger in diameter than in manufactured embodiments.
  • connection between conductive layers provided by vias may be provided any of several well-known techniques such as plated holes or solid lines or wires and need not literally be vias.
  • Off-pad vias 74 are disposed on first conductive layer 54 at locations near, but not coincident with selected ones of windows 60 . Unlike vias 66 that connect selected ones of upper flex contacts 42 to first conductive layer 54 , off-pad vias 74 connect selected ones of lower flex contacts 44 to first conductive layer 54 . In the vicinity of upper flex contacts 42 , second conductive layer 58 is between the CSP connected to module 10 by the upper flex contacts 42 (i.e., upper CSP 12 ) and first conductive layer 54 .
  • first conductive layer 54 is between the CSP connected to module 10 by the lower flex contacts 44 (i.e., lower CSP 14 ) and second conductive layer 58 . Consequently, vias between ground-conveying lower flex contacts 44 and first conductive layer 54 are offset from the selected lower flex contacts 44 by off-pad vias 74 shown in offset locations.
  • FIG. 9 illustrates first conductive layer 54 of flex 32 .
  • the location reference marks “B” are employed to relatively orient FIGS. 8 and 9 .
  • Windows 60 , vias 66 and off-pad vias 74 are identified in FIG. 9 .
  • Enable via 70 is connected off-pad to a selected lower flex contact 44 that corresponds, in this preferred embodiment, to an unused CSP contact 24 of lower CSP 14 (i.e., a N/C).
  • a module contact 36 at that site conveys an enable signal (C/S) for upper CSP 12 through the selected lower flex contact 44 (which is at the level of second conductive layer 58 ) to off-pad enable via 70 that conveys the enable signal to first conductive layer 54 and thereby to enable trace 72 .
  • Enable trace 72 further conveys the enable signal to enable via 68 which extends through intermediate layer 56 to selected upper flex contact 42 at the level of second conductive layer 58 where contact is made with the C/S pin of upper CSP 12 .
  • upper and lower CSPs 12 and 14 may be independently enabled.
  • FIG. 10 depicts intermediate layer 56 of flex 30 .
  • Windows 60 are shown opened in intermediate surface 56 .
  • CSP contacts 24 of lower CSP 14 pass through windows 60 in intermediate layer 58 to reach lower flex contacts 44 at the level of second conductive layer 58 .
  • windows 60 narrow in diameter from their manifestation in first outer layer 50 .
  • Vias 66 , off-pad vias 74 , and enable vias 68 and 70 pass through intermediate layer 56 connecting selected conductive areas at the level of first and second conductive layers 54 and 58 , respectively.
  • FIG. 11 depicts intermediate layer 56 of flex 32 showing windows 60 , vias 66 , off-pad vias 74 , and enable vias 68 and 70 passing through intermediate layer 56 .
  • FIG. 12 depicts second conductive layer 58 of flex 30 of a preferred embodiment of the present invention. Depicted are various types of upper flex contacts 42 , various types of lower flex contacts 44 , signal traces 76 , and VDD plane 78 as well as previously described vias 66 and off-pad vias 74 . Throughout FIGS. 12 and 13 , only exemplars of particular features are identified to preserve clarity of the view. Flex contacts 44 A are connected to corresponding selected upper flex contacts 42 A with signal traces 76 . To enhance the clarity of the view, only exemplar individual flex contacts 44 A and 42 A are literally identified in FIG. 12 .
  • signal traces 76 exhibit path routes determined to provide substantially equal signal lengths between corresponding flex contacts 42 A and 44 A. As shown, traces 76 are separated from the larger surface area of second conductive layer 58 that is identified as VDD plane 78 . VDD plane 78 may be in one or more delineated sections but, preferably is one section. Lower flex contacts 44 C provide connection to VDD plane 78 . In a preferred embodiment, upper flex contacts 42 C and lower flex contacts 44 C connect upper CSP 12 and lower CSP 14 , respectively, to VDD plane 78 . Lower flex contacts 44 that are connected to first conductive layer 54 by off-pad vias 74 are identified as lower flex contacts 44 B. To enhance the clarity of the view, only exemplar individual lower flex contacts 44 B are literally identified in FIG. 12 . Upper flex contacts 42 that are connected to first conductive layer 54 by vias 66 are identified as upper flex contacts 42 B.
  • FIG. 13 depicts second conductive layer 58 of right side flex 32 of a preferred embodiment of the present invention. Depicted are various types of upper flex contacts 42 , various types of lower flex contacts 44 , signal traces 76 , and VDD plane 78 as well as previously described vias 66 , off-pad vias 74 , and enable vias 70 and 68 .
  • FIG. 13 illustrates upper flex contacts 42 A connected by traces 76 to lower flex contacts 44 A.
  • VDD plane 78 provides a voltage plane at the level of second conductive layer 58 .
  • Lower flex contacts 44 C and upper flex contacts 42 C connect lower CSP 14 and upper CSP 12 , respectively, to VDD plane 78 .
  • Lower flex contact 44 D is shown with enable via 70 described earlier.
  • Corresponding upper flex contact 42 D is connected to lower flex contact 44 D through enable vias 70 and 68 that are connected to each other through earlier described enable trace 72 at the first conductive layer 54 level of flex 32 .
  • FIG. 14 depicts second outer layer 52 of flex 30 .
  • Windows 62 are identified. Those of skill will recognize that module contacts 36 pass through windows 62 to contact appropriate lower flex contacts 44 .
  • flex 30 is partially wrapped about lateral side 20 of lower CSP 14 , a portion of second outer layer 52 becomes the upper-most layer of flex 30 from the perspective of upper CSP 12 .
  • CSP contacts 24 of upper CSP 12 pass through windows 64 to reach second conductive layer 58 and make contact with appropriate ones of upper flex contacts 42 located at that level.
  • FIG. 15 reflects second outer layer 52 of flex 32 and exhibits windows 64 and 62 .
  • Module contacts 36 pass through windows 62 to contact appropriate lower flex contacts 44 .
  • CSP contacts 24 of upper CSP 12 pass through windows 64 to reach second conductive layer 58 and make contact with appropriate ones of upper flex contacts 42 located at that level.
  • FIG. 16 depicts an alternative preferred embodiment of the present invention showing module 10 .
  • module contacts 36 E supply a part of the datapath of module 10 and may provide a facility for differential enablement of the constituent CSPs.
  • a module contact 36 E not employed in wide datapath provision may provide a contact point to supply an enable signal to differentially enable upper CSP 12 or lower CSP 14 .
  • a wide datapath module 10 the data paths of the constituent upper CSP 12 and lower CSP 14 are combined to provide a module 10 that expresses a module datapath that is twice the width of the datapaths of the constituent CSPs in a two-high module 10 .
  • the preferred method of combination is concatenation, but other combinations may be employed to combine the datapaths of CSPs 12 and 14 on the array of module contacts 36 and 36 E.
  • FIGS. 17, 18 , and 19 are provided to illustrate using added module contacts 36 E in alternative embodiments of the present invention to provide wider datapaths for module 10 than are present in constituent CSPs 12 and 14 .
  • FIG. 17 illustrates a JEDEC pinout for DDR-II FBGA packages.
  • FIG. 18 illustrates the pinout provided by module contacts 36 and 36 E of a module 10 expressing an 8-bit wide datapath.
  • Module 10 is devised in accordance with the present invention and is, in the exemplar embodiment, comprised of an upper CSP 12 and lower CSP 14 that are DDR-II-compliant in timing, but each of which are only 4 bits wide in datapath. As will be recognized, the module 10 mapped in FIG.
  • FIG. 18 expresses an 8-bit wide datapath.
  • FIG. 18 depicts DQ pins differentiated in source between upper CSP 12 (“top”) and lower CSP 14 (“bot”) to aggregate to 8-bits.
  • FIG. 19 illustrates the pinout provided by module contacts 36 and 36 E of module 10 expressing a 16-bit wide datapath.
  • Module 10 is devised in accordance with the present invention and is, in this exemplar embodiment, comprised of an upper CSP 12 and lower CSP 14 that are DDR-II-compliant in timing, but each of which are only 8-bits wide in datapath.
  • the wide datapath embodiment may be employed with any of a variety of CSPs available in the field and such CSPs need not be DDR compliant.
  • FIG. 20 illustrates a typical pinout of a memory circuit provided as a CSP and useable in the present invention. Individual array positions are identified by the JEDEC convention of numbered columns and alphabetic rows. The central area (e.g., A 3 -A 6 ; B 3 -B 6 ; etc.) is unpopulated. CSP contacts 24 are present at the locations that are identified by alpha-numeric identifiers such as, for example, A 3 , shown as an example CSP contact 24 .
  • FIG. 21 depicts second metal layer 58 of flex 30 in an alternative embodiment of the invention in which module 10 expresses a datapath wider than that expressed by either of the constituent CSPs 12 and 14 .
  • Lower flex contacts 44 E are not contacted by CSP contacts 24 of lower CSP 14 , but are contacted by module contacts 36 E to provide, with selected module contacts 36 , a datapath for module 10 that is 2n-bits in width where the datapaths of CSPs 12 and 14 have a width of n-bits.
  • lower flex contacts 44 E are connected to upper flex contacts 42 E.
  • windows 62 pass through second outer layer 52 .
  • module contacts 36 and 36 E pass through windows 62 in second outer layer 52 of flex circuit 30 , to contact appropriate lower flex contacts 44 .
  • FIG. 22 illustrates second metal layer 58 of flex 32 in an alternative embodiment of the invention in which module 10 expresses a datapath wider than that expressed by either of the constituent CSPs 12 and 14 .
  • Lower flex contacts 44 E are not contacted by CSP contacts 24 of lower CSP 14 , but are contacted by module contacts 36 E to provide, with selected module contacts 36 , a datapath for module 10 that is 2n-bits in width where the datapaths of CSPs 12 and 14 have a width of n-bits.
  • lower flex contacts 44 E are connected to upper flex contacts 42 E.
  • windows 62 pass through second outer layer 52 .
  • module contacts 36 pass through windows 62 in second outer layer 52 of flex circuit 32 , to contact appropriate lower flex contacts 44 .
  • module contacts 36 E contact flex contacts 44 E and 44 EE.
  • lower flex contacts 44 E are, in the depicted embodiment, eight (8) in number and that there is another lower flex contacts identified by reference 44 EE shown on FIG. 21 .
  • Lower flex contact 44 EE is contacted by one of the module contacts 36 E to provide differential enablement between upper and lower CSPs.
  • lower flex contacts 44 F are connected to corresponding upper flex contacts 42 E.
  • CSP contacts 24 of upper CSP 12 that convey data are in contact with upper flex contacts 42 E.
  • module 10 expresses a 16-bit datapath and CSP 12 and CSP 14 each express an 8-bit datapath.
  • FIGS. 23-33 depict aspects of alternative preferred embodiments of a precursor assembly for use as a component of a stacked circuit module.
  • FIGS. 23-33 depict aspects of stiffeners comprised in exemplary precursor assemblies and additional aspects of other components used in manufacturing such precursor assemblies.
  • FIG. 23 is an elevation view of an end of precursor assembly 105 comprising CSP 114 having an upper surface 116 , a lower surface 118 , and opposite lateral sides 120 and 122 .
  • CSP 114 Upon assembly of a stacked circuit module 110 using precursor assembly 105 of this embodiment, CSP 114 will become a lower CSP of a stacked circuit module 110 .
  • CSPs that are useful for CSP 114 are the types that include at least one integrated circuit or semiconductor chip surrounded by a package body 127 with a lateral extent L defined by the opposite lateral edges or sides 120 and 122 .
  • the package body surrounding the integrated circuit(s) or semiconductor chip(s) need not be plastic, but a large majority of package bodies in CSP technologies are plastic.
  • the package body need not surround the integrated circuit(s) or semiconductor chip(s) completely, leaving one or more sides, edges, surfaces, or other regions of the integrated circuit(s) or semiconductor chip(s) exposed, but a large majority of package bodies in CSP technologies completely encase the integrated circuit(s) or semiconductor chip(s) or leave only the terminals on integrated circuit or semiconductor chip active face(s) exposed.
  • the invention may also be used with those CSP-like packages that exhibit bare die connectives on one major surface.
  • one of the constituent CSPs of an example stacked circuit module 110 may be a typical CSP having lateral edges 120 and 122 that have an appreciable height to present a “side” while other constituent CSPs of the same stacked circuit module 110 may be devised in packages that have lateral edges 120 and 122 that are more in the character of an edge rather than a side having appreciable height. All devices such as those discussed above and similar devices are included within the meaning of the term CSP, which term should be broadly considered in the context of this application.
  • the embodiment of a precursor assembly illustrated in FIG. 23 uses substantially planar stiffeners 139 that are initially disposed on a flex circuit 130 and affixed thereto with adhesive 134 .
  • stiffeners 139 are disposed along a surface of CSP 114 even if literally separated from that surface, such as by adhesive 135 , for example.
  • stiffeners 139 are attached to CSP 114 with adhesive 135 .
  • CSP contacts 124 regardless of configuration, generally will define a mounting height for CSP, such as mounting height H depicted in FIG. 23A for CSP contacts comprising solder balls.
  • thickness T of stiffeners 139 is less than mounting height H, for example as depicted in FIG.
  • stiffeners 139 also are configured to provide lateral clearance for the CSP arrays 126 comprising various CSP contacts 124 .
  • CSP contacts 124 are at least partially disposed within the volume 140 between stiffeners 139 .
  • Stiffeners 139 may take several useful configurations, but in preferred embodiments herein, stiffeners 139 are substantially planar. A preferred embodiment is shown using stiffeners 139 disposed within the lateral extent L of CSP 114 . Other embodiments may have stiffeners 139 disposed at least partially outside lateral extent L of CSP 114 , one example of which is the embodiments further discussed below in connection with FIG. 38 .
  • flex circuit 130 has upper portions 130 U that terminate in edges 170 A and 170 B which are separated by gap G above the upper surface 116 of CSP 114 .
  • gap G is preselected and imposed when precursor assembly 105 is made.
  • Upper portions 130 U of flex circuit 130 are disposed along the upper surface 116 of CSP 114 even if literally separated from that surface, such as by adhesive 171 , for example. In such configurations, flex circuit 130 has a folded portion 131 .
  • FIG. 23 depicts precursor assembly 105 with module contacts 136 through which the precursor assembly 105 may connect to an application environment or to another precursor assembly 105 , for example, as shown in FIG. 34 .
  • the module contacts 136 are deployed in a module contact array 138 , but other configurations of module contacts may be used.
  • module contacts 136 in the form of the depicted solder balls are not required to connect a stacked circuit module 110 to an application environment or to connect a precursor assembly 105 to another precursor assembly 105 , and that other connective strategies may be employed such as, for example, direct pad to pad connection schemes or connective structures other than solder balls.
  • a preferred method for practicing the invention produces precursor assemblies 105 in batches of six.
  • the stiffener(s) and flex circuit(s) for a particular precursor assembly are provided in aggregation with other stiffeners and flex circuits, respectively, for other precursor assemblies.
  • FIG. 24 depicts an exemplar strip or panel of stiffener stock 237 that may be employed in some preferred embodiments of the present invention
  • FIG. 25 depicts an enlarged depiction of the area marked “ 25 ” in FIG. 24 .
  • the illustrated strip of stiffener stock 237 includes twelve stiffeners 139 retained by tabs 238 in configuration for deployment in six precursor assemblies 105 .
  • the stiffener material has cutouts comprising tooling holes 239 and windows 240 .
  • Windows 240 are configured to accommodate CSP arrays 126 comprising CSP contacts 124 of CSP 114 .
  • tabs 238 A and tooling holes 239 A are disposed generally as half of a tab 238 and a tooling hole 239 as disposed between adjacent windows 240 .
  • Stiffener stock 237 as depicted in the embodiment of FIG. 24 comprises a polymer having thermal properties adequate for the various temperatures at which various solder reflow and other attachment operations may occur in the production of precursor assemblies 105 and stacked circuit modules 110 and in the deployment of stacked circuit modules 110 in an application environment.
  • stiffener stock 237 comprises a single layer or multiple laminated layers of polyimide film selected so that stiffeners 139 have mechanical properties compatible with the mechanical properties of flex circuit 130 , but other materials that are compatible with the assembly processes may be used such as resin polymer matrix composites, engineering ceramics or ceramic fibers, graphite composites, or filled and non-filled plastics known to those of skill in the art.
  • stiffener stock 237 also may take other configurations and compositions and may, for example, be devised in more than one piece and/or be devised of material that is thermally conductive.
  • stiffener stock 237 may comprise material of sufficient rigidity such as stainless steels, aluminum, copper, or other metals or metal alloys so that stiffeners 139 control the coplanarity of CSP 114 by inhibiting warping.
  • FIGS. 26 and 27 depict perspective and plan views, respectively, of stiffener stock 237 disposed on a panel or strip 230 comprising flex circuits 130 .
  • six flex circuits 130 are configured side-by-side, with a portion of each flex circuit 130 accessible through a respective window 240 of stiffener stock 237 .
  • Strip 230 further comprises lateral edges 231 and strip edge portions 232 .
  • an adhesive 134 (shown earlier) is used to attach stiffener stock 237 and its component stiffeners 139 and tabs 238 to strip or panel 230 and its component flex circuits 130 .
  • Adhesive 134 in a preferred embodiment comprises a dry film adhesive.
  • adhesive 134 may be selectively applied to selected portions of stiffener stock 237 or strip 230 , or both, and that other methods for attaching stiffeners 139 to flex circuits 130 may be employed in accordance with various embodiments of the present invention including, for example, laminate tape adhesive, liquid adhesive, and ultrasonic or thermal bonding.
  • the adhesive will be thermally conductive.
  • tooling holes 239 facilitate alignment of stiffener stock 237 and strip 230 , although alternative methods such as machine vision aided pick & place may be employed.
  • FIG. 28 depicts an enlarged depiction of the area marked “ 28 ” in FIG. 27 .
  • the depiction of FIG. 28 is centered on a site where a CSP 114 will be disposed.
  • selected CSP contacts 124 will be connected to respective ones of flex contacts disposed in flex contact arrays.
  • the depiction of FIG. 28 shows through window 240 only selected ones of flex contacts 144 of a selected flex contact array 146 .
  • Components of stiffener stock 237 relevant to the illustrated site include stiffeners 139 , tabs 238 , tooling holes 239 , and window 240 .
  • the portion of strip 230 depicted in FIG. 28 also illustrates various features of flex circuit 130 of a preferred embodiment.
  • a singulation opening 233 is disposed through strip 230 adjacent to each longitudinal end of each stiffener 139 .
  • Additional singulation openings 234 are disposed through strip 230 along strip edge portions 232 adjacent to each lateral edge 231 of strip 230 .
  • Edges 170 A and 170 B of upper portions 130 U of flex circuit 130 are disposed along singulation openings 234 , with each upper portion 130 U disposed between a respective singulation opening 234 and a respective stiffener 139 .
  • Strip 230 and the flex circuits 130 disposed thereon can be configured with conductive components in a wide variety of ways.
  • strip 230 and the flex circuits 130 disposed thereon can be multi-layer flexible circuit structures, such as the embodiment discussed above having a first conductive layer and a second conductive layer that are interior to first and second outer surfaces, with an intermediate layer disposed between the first conductive layer and the second conductive layer.
  • a single conductive layer or three or more conductive layers can also be used, and typically the choice will depend on the complexity of the circuit routing required.
  • some embodiments may employ only one cover coat, such as those instances in which a ground plane is exposed.
  • Circuit traces can be disposed in one or more conductive layers, and selected conductive layers may contain only ground or voltage planes.
  • conductive traces are disposed at one conductive layer with a ground plane disposed an another conductive layer.
  • a single outer surface is used leaving one of the conductive layers exposed. All contact pads on the exposed conductive layer are connected to the other conductive surface through vias, using no conductive traces on the exposed conductive layer. Connecting the contact pads directly through vias mitigates solder wicking and reduces costs and thickness of the flex circuitry.
  • strip 230 may employ various electroplating steps that use current supplied from sprocket rails engaging sprocket holes 235 .
  • Current for electroplating can be routed along bussing through trim tabs 250 , which are severed from flex circuits 130 during singulation as discussed further below.
  • Electroplating bus paths also can converge at various connection points of strip 230 , which bussing connections can be severed following electroplating by making de-bussing punches 251 as illustrated in FIG. 28 .
  • other methods may be used to dispose conductive material within and/or on strip 230 .
  • nonbussed portion 150 of flex circuit 130 is disposed alongside tab 238 and between singulation openings 233 to provide additional clearance for circuitry of flex circuit 130 during singulation, as discussed further below.
  • FIG. 28 also depicts the various pattern recognition marks, or “fiducials,” used by automated assembly equipment during manufacture of precursor assemblies 105 .
  • fiducials are metal defined, asymmetrically placed, and comprise a cross and a square where practical.
  • the preferred embodiment depicted has global fiducials 260 defined by circular metal regions on the surface of strip 230 and aligned with tooling holes 239 .
  • Additional global fiducials are defined by metal regions in the form of a square (fiducials 261 ) and a cross (fiducials 262 ).
  • the global fiducials are used as reference points during singulation of precursor assemblies 105 or stacked circuit modules 110 .
  • local fiducials defined by metal regions in the form of a square (fiducials 161 ) and a cross (fiducials 162 ) defined in a conductive layer of the flex circuit, which local fiducials are used by automated equipment as a reference during the placement of CSP 114 on flex circuit 130 .
  • FIG. 28 Although the description of the embodiment illustrated in FIG. 28 is directed to features related to a single precursor assembly 105 to be made using stiffener stock 237 and strip 230 , those of skill will recognize that the described features can be replicated for other precursor assemblies 105 or that variations in the described features can be employed for other precursor assemblies 105 .
  • adhesive 135 Prior to placement of CSP 114 on flex circuit 130 , in the disclosed embodiment adhesive 135 is applied to the exposed upper surface of stiffener 139 .
  • adhesive 135 comprises a liquid adhesive.
  • adhesive 135 may be selectively applied to selected portions of stiffener 139 and that other methods for attaching stiffeners 139 to CSP 114 may be employed in various embodiments of the present invention including, for example, laminate tape adhesive and dry film adhesive.
  • the adhesive will be thermally conductive.
  • Automated pick-and-place equipment know in the art is used to dispose CSP 114 on flex circuit 130 in a preferred embodiment.
  • the pick-and-place equipment dips CSP contacts 124 in flux prior to placement of CSP 114 on flex circuit 130 .
  • heat is supplied during a first solder reflow operation to produce a solder connection between CSP contacts 124 and flex contacts 144 .
  • the combination of adhesive 134 , stiffener 139 , and adhesive 135 cooperate to maintain flex circuit 130 and CSP 114 in proper position during the first solder reflow operation.
  • FIG. 29 depicts the position of upper flex cuts 174 , and also shows the position of singulation cuts 175 made later during singulation of precursor assemblies 105 or stacked circuit modules 110 as discussed below.
  • FIG. 30 depicts the configuration of flex circuit 130 , stiffeners 139 , and CSP 114 following the making of upper flex cuts 174 as shown in FIG. 29 , with such depiction bounded to the left and right by the positions where singulation cuts 175 will be made later in the assembly process.
  • adhesive 171 is applied to the upper surface 116 of CSP 114 , to upper portions 130 U of flex circuit 130 , or to both upper surface 116 and upper portions 130 U.
  • adhesive 171 comprises a dry film adhesive.
  • adhesive 171 may be selectively applied to selected portions of upper surface 116 or upper portions 130 U, or both, and that other methods for attaching the upper surfaces 118 to flex circuits 130 may be employed in various embodiments of the present invention including, for example, laminate tape adhesive and liquid adhesive.
  • the adhesive will be thermally conductive.
  • upper portions 130 U of flex circuit 130 are disposed along the upper surface 116 of CSP 114 even if literally separated from that surface, such as by adhesive 171 , for example. Disposition of upper portions 130 U of flex circuit 130 along the upper surface 116 of CSP 114 can be accomplished using a tooling apparatus 180 devised in accordance with a preferred embodiment of the present invention, as depicted in FIGS. 39-43 and discussed below.
  • FIG. 31 depicts flex circuit edges 170 A and 170 B in a proximal arrangement according to a preferred embodiment of the present invention.
  • flex circuit 130 is configured for external electrical connection of lower CSP 114 .
  • upper sides 133 of upper portions 130 U of flex circuit 130 are depicted having upper flex contacts or pads 142 disposed in a first upper flex contact array 148 A and a second upper flex contract array 148 B.
  • first upper flex contact array 148 A and second upper flex contract array 148 B have been abstracted to illustrate an exemplar set of upper flex contacts 142 when in practice, first upper flex contact array 148 A and second upper flex contract array 148 B may include a greater or lesser number of individual upper flex contacts or have flex contacts disposed in a different configuration, or both.
  • first upper flex contact array 148 A and second upper flex contract array 148 B together define an array of upper flex contacts 142 configured for connection to CSP contacts 124 of upper CSP 112 .
  • edges 170 A and 170 B may be devised to be jointly fittable with each other as shown in FIG. 32 to position first upper flex contact array 148 A and second upper flex contract array 148 B.
  • Protrusion 176 fits with receptive check 177 to both align laterally and transversely edges 170 A and 170 B.
  • Other similar devices may be employed to laterally and/or transversely align edges 170 A and 170 B.
  • first upper flex contact array 148 A and second upper flex contract array 148 B are disposed in predetermined relation to each other by the jointly fittable configuration of edges 170 A and 170 B to mesh with each other. Consequently, in this depicted alternative embodiment, edges 170 A and 170 B are disposed in predetermined relation to each other by their jointly fittable configurations.
  • Stacked circuit modules devised in accordance with the invention can comprise multiple precursor assemblies 105 as shown in FIG. 34 or a single precursor assembly 105 as shown in FIG. 35 .
  • the precursor assemblies 105 can be singulated at this stage with singulation cuts 175 , placed for example as depicted in FIG. 29 .
  • module contacts 136 are disposed along flex contacts or pads 149 on flex circuit 130 as exemplified in FIG. 33 , which depicts a plan view of an exemplar precursor assembly 105 from below.
  • module contact arrays 138 have been abstracted to illustrate an exemplar set of module contacts 136 when in practice, module contact arrays 138 may include a greater or lesser number of individual module contacts or module contacts disposed in a different configuration. Alternatively, in preferred embodiments singulation with singulation cuts 175 can be deferred until all precursor assemblies 105 and upper CSPs 112 have been assembled.
  • FIG. 34 depicts an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that employs three precursor assemblies 105 .
  • each flex circuit 130 has folded portions 131 respective disposed adjacent to first and second lateral sides of the stack.
  • stacked circuit modules 110 also can be devised with one, two, three, four, or more precursor assemblies 105 , or with precursor assemblies using CSPs of different types.
  • one or more lower CSPs 114 may have a lateral extent L having a proportion such that folded portions 131 of one or more other precursor assemblies 105 may not be disposed outside such lateral extent.
  • FIG. 35 depicts an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that employs a single precursor assembly 105 .
  • flex circuit 130 has folded portions 131 respective disposed adjacent to first and second lateral sides of the stack.
  • upper CSP 112 is attached to flex circuit 130 prior to singulation of stacked circuit modules 110 .
  • Automated pick-and-place equipment know in the art is used to dispose upper CSP 112 on flex circuit 130 as shown in FIG. 35 .
  • the pick-and-place equipment dips CSP contacts 124 in flux prior to placement of CSP 112 on flex circuit 130 .
  • the stacked circuit modules 110 are clamped while heat is supplied during a second solder reflow operation to produce a solder connection between CSP contacts 124 and upper flex contacts 142 .
  • the combination of adhesive 134 , stiffener 139 , adhesive 135 , and adhesive 171 cooperate to maintain flex circuit 130 and CSP 114 in proper position during the second solder reflow operation.
  • module contacts 136 are disposed along flex contacts or pads 149 on flex circuit 130 in module contact arrays 138 .
  • FIGS. 36 and 37 depict, respectively, lower perspective and upper perspective views of an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that employs a single precursor assembly 105 .
  • Exemplar stacked circuit modules 110 typically are connected to an application environment, such as a printed circuit board, in a third solder reflow operation.
  • the combination of adhesive 134 , stiffener 139 , adhesive 135 , and adhesive 171 cooperate to maintain flex circuit 130 , CSP 114 , and CSP 112 in proper position during the third solder reflow operation.
  • FIG. 38 depicts an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that has stiffeners 139 disposed at least partially outside lateral extent L of CSP 114 .
  • Embodiments as illustrated in FIG. 38 may be devised when using a strip 230 and stiffener stock 237 devised for use with a CSPs having larger dimensions than CSP 114 depicted in FIG. 38 . Accordingly, in preferred embodiments, a single size of strip 230 and stiffener stock 237 can be used for a variety of CSP package sizes.
  • the portions of stiffeners 139 outside lateral extent L will substantially control the size of gap G in many alternative methods of assembly.
  • tabs 238 need not be rectangular or completely trimmed away during singulation with singulation cuts 175 , but can also extend along some or all of the ends of precursor assembly 105 .
  • Singulation openings 233 and upper flex cuts 174 can take other shapes and be disposed in different positions, which for example provide a narrower portion of flex circuit 130 between stiffener 139 and upper surface 116 of CSP 114 to allow enhanced ventilation.
  • a stabilizing fill may be employed between flex circuit 130 and CSP 114 , for example as illustrated by conformal media 40 depicted in FIGS. 2 and 16 .
  • a low profile for precursor assembly 105 is provided.
  • stiffener 139 typically is about 0.13 mm thick
  • adhesive 134 is about 0.05 mm thick.
  • Adhesive 135 typically is about 0.07 mm thick, but can range across a variety of thicknesses. For example, in various preferred embodiments Adhesive 135 ranges from about 0.04 mm. to about 0.10 mm thick. Adhesive 171 typically is about 0.08 mm thick.
  • the various thicknesses used in embodiments devised in accordance with the invention are subject to wide ranges of alternatives, as those of skill will recognize.
  • FIG. 39 depicts a tooling apparatus 180 devised in accordance with a preferred embodiment of the present invention illustrating the use of a physical form to set gap G between edges 170 A and 170 B of flex circuit 130 .
  • Tooling apparatus 180 includes a flex aligner 182 as shown in FIG. 39 used as a physical form to impose a preselected distance between the first and second edges.
  • flex aligner 182 When forming tool 184 disposes flex circuit 130 adjacent to upper surface 116 of CSP 114 in forming precursor assembly 105 , edges 170 A and 170 B of flex circuit 130 are limited in lateral placement along upper surface 116 of CSP 114 by flex aligner 182 .
  • Gap “G” is, therefore, preselected and determined by the dimensions of flex aligner 182 when disposed between edges 170 A and 170 B. With gap G and edges 170 A and 170 B thus determined, first upper flex contact array 148 A and second upper flex contract array 148 B are positioned during assembly as exemplified in FIG. 31 .
  • FIG. 40 depicts an enlarged depiction of the area marked “ 40 ” in FIG. 39 .
  • flex circuit 130 is attached to stiffener 139 with adhesive 134 .
  • precursor assembly 105 comprising CSP 114 , stiffeners 139 , adhesives 134 and 135 , and flex circuit 130 is disposed in cavity 188 of jig 186 , flex circuit 130 is deflected in an upward direction as shown in FIG. 40 .
  • FIG. 41 illustrates a step in a method of devising an precursor assembly 105 in accordance with a preferred embodiment of the present invention.
  • forming tools 184 are moveable as indicated by the arrow 184 M to indicate with the “+” sign movement of forming tools 184 to dispose upper ends 130 U of flex circuit 130 over CSP 114 .
  • the ends 170 A and 170 B are set apart at distance “G” apart by flex aligner 182 .
  • FIG. 42 illustrates another step in a method for devising a precursor assembly 105 in accordance with a preferred embodiment of the present invention.
  • Press tool 189 is imposed on precursor assembly 105 after upper portions 130 U of flex circuit 130 have been disposed over the upper surface 116 of the CSP 114 and forming tools 184 are withdrawn as indicated by the arrow 184 M to indicate with the “ ⁇ ” sign movement of forming tools 184 .
  • Press tool 189 preferably may be heated.
  • FIG. 43 depicts another step in a method for devising a precursor assembly 105 in accordance with a preferred embodiment of the present invention.
  • Press tool 189 has moved up off of precursor assembly 105 as indicated by motion arrow 189 M.
  • Flex aligner 182 may now be withdrawn and precursor assembly 105 is ready for combination with either another precursor assembly 105 or a CSP 112 to form a module 110 .
  • FIG. 44 depicts a tooling apparatus 180 devised in accordance with another preferred embodiment of the present invention also using a physical form to set gap G between edges 170 A and 170 B of flex circuit 130 .
  • jigs 186 are placed in first configuration with jigs 186 set apart by a first width W 1 .
  • precursor assembly 105 comprising CSP 114 , stiffeners 139 , adhesives 134 and 135 , and flex circuit 130 is disposed in cavity 188 by flex aligner 182 , and upper portions 130 U of flex circuit 130 are deflected in an upward direction in the configuration shown in FIG. 44 by preform tools 187 comprised in press tool 189 A.
  • press tool 189 A used for the step depicted in FIG. 44 is retracted and exchanged for press tool 189 B shown, which does not comprise preform tools 187 .
  • precursor assembly 105 raised above cavity 188 jigs 186 are moved in the direction indicated by motion arrows 186 M to a second configuration, in which jigs 186 are set apart by a second width W 2 .
  • the flex preformed by the step depicted in FIG. 44 relaxes, with upper portions 130 U of flex circuit 130 springing back to some extent from the position depicted in FIG. 44 .
  • FIG. 46 depicts another step in a preferred method for using the illustrated tooling apparatus 180 .
  • precursor assembly 105 is disposed in cavity 188 by flex aligner 182 , which causes upper portions 130 U of flex circuit 130 to be deflected in an inward direction in the configuration shown in FIG. 46 by interference with jigs 186 set apart at second width W 2 .
  • FIG. 47 depicts another step in a preferred method for using the illustrated tooling apparatus 180 .
  • press tool 189 B is imposed on precursor assembly 105 .
  • Press tool 189 B preferably may be heated.
  • the ends 170 A and 170 B of flex circuit 130 are set apart at distance G by flex aligner 182 , and upper portions 130 U of flex circuit 130 are attached to top surface 116 of CSP 114 by adhesive 171 , for example as illustrated in FIG. 23 .
  • FIG. 48 depicts another step in a method for devising a precursor assembly 105 in accordance with a preferred embodiment of the present invention.
  • Press tool 189 B has moved up off of precursor assembly 105 as indicated by motion arrow 189 M.
  • Flex aligner 182 may now be withdrawn and precursor assembly 105 is ready for combination with either another precursor assembly 105 or a CSP 112 to form a module 110 .
  • FIGS. 44-48 do not have or use forming tools 184 such as those depicted in FIGS. 39-43 , but forming tools 184 and other similar structures could be used in the methods and with the tooling apparatus depicted in FIGS. 44-48 instead of, or with, press tool 189 B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

The present invention stacks integrated circuits into modules that conserve board surface area. In a precursor assembly devised as a component for a stacked circuit module in accordance with a preferred embodiment of the present invention, one or more stiffeners are disposed at least partially between a flex circuit and an integrated circuit. In a two-high stacked circuit module devised in accordance with a preferred embodiment of the present invention, an integrated circuit is stacked above a precursor assembly. The two integrated circuits are connected with the flex circuit of the precursor assembly. The present invention may be employed to advantage in numerous configurations and combinations of integrated circuits in modules.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/403,081, filed Apr. 12, 2006. This application is a continuation-in-part of U.S. patent application Ser. No. 11/317,425 filed Dec. 22, 2005, which is a continuation of U.S. patent application Ser. No. 10/400,309 filed Mar. 27, 2003, which is a continuation of U.S. patent application Ser. No. 10/005,581, filed Oct. 26, 2001, now issued as U.S. Pat. No. 6,576,992 B2.
  • This application also is a continuation-in-part of U.S. patent application Ser. No. 11/258,438 filed Oct. 25, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 11/015,521, filed Dec. 17, 2004, pending, which is a continuation-in-part of U.S. patent application Ser. No. 10/845,029, filed May 13, 2004, pending, which is a continuation-in-part of PCT Application No. PCT/US03/29000, filed Sep. 15, 2003, pending.
  • This application also is a continuation-in-part of U.S. patent application Ser. No. 11/263,627, filed Oct. 31, 2005, pending, which is a continuation-in-pail of U.S. patent application Ser. No. 10/958,584, filed Oct. 5, 2004, pending, which is a continuation of U.S. patent application Ser. No. 10/136,890, filed May 2, 2002, now U.S. Pat. No. 6,940,729 B2, issued Sep. 6, 2005. U.S. patent application Ser. No. 11/263,627 also is a continuation-in-part of U.S. patent application Ser. No. 10/873,847, filed Jun. 22, 2004, pending, which is a continuation of U.S. patent application Ser. No. 10/631,886, filed Jul. 11, 2003, pending, which is a continuation-in-part of U.S. patent application Ser. No. 10/453,398, filed Jun. 3, 2003, now U.S. Pat. No. 6,914,324 B2, issued Jul. 5, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/005,581, filed Oct. 26, 2001, now U.S. Pat. No. 6,576,992 B2, issued Jun. 10, 2003. U.S. patent application Ser. No. 10/631,886 also is a continuation-in-part of U.S. patent application Ser. No. 10/457,608, filed Jun. 9, 2003, pending, which is a continuation-in-part of U.S. patent application Ser. No. 10/005,581, filed Oct. 26, 2001, now U.S. Pat. No. 6,576,992 B2, issued Jun. 10, 2003.
  • U.S. patent application Ser. Nos. 10/005,581, 10/136,890, 10/400,309, 10/453,398, 10/457,608, 10/631,886, 10/845,029, 10/873,847, 10/958,584, 11/015,521, 11/258,438, 11/263,627, 11/317,425, 11/403,081 and PCT Application No. PCT/US03/29000 are hereby incorporated by reference for all purposes.
  • TECHNICAL FIELD
  • The present invention relates to aggregating integrated circuits and, in particular, to stacking integrated circuits in chip-scale packages and methods for creating stacked modules of chip-scale packages.
  • BACKGROUND
  • A variety of techniques are used to stack packaged integrated circuits. Some methods require special packages, while other techniques stack packages configured to allow stand-alone deployment in an operating environment.
  • “Chip scale packaging” or CSP refers generally to packages that provide connection to an integrated circuit through a set of contacts (often embodied as “bumps” or “balls”) arrayed across a major surface of the package. Instead of leads emergent from a peripheral side of the package as in “leaded” packages, in a CSP, contacts are placed on a major surface and typically emerge from the planar bottom surface of the package. The absence of “leads” on package sides renders most stacking techniques devised for leaded packages inapplicable for CSP stacking.
  • CSP has enabled reductions in size and weight parameters for many applications. CSP is a broad category including a variety of packages from near chip scale to die-sized packages such as the die sized ball grid array (DSBGA). To meet the continuing demands for cost and form factor reductions concurrent with increasing capabilities and capacities, technologies that aggregate plural integrated circuit dies in a package been developed. The techniques and technology for stacking plural integrated circuit dies within a single package, however, are not generally applicable for stacking packages that are configured to allow stand-alone deployment in an operating environment.
  • There are several known techniques for stacking integrated circuit packages articulated in chip scale technology. A variety of previous techniques for stacking CSPs typically present complex structural arrangements and thermal or high frequency performance issues. For example, thermal performance is a characteristic of importance in CSP stacks. With increasing operating frequencies of most systems, high frequency performance issues are also increasingly important. Further, many stacking techniques result in modules that exhibit profiles taller than may be preferred for particular applications.
  • Staktek Group L.P., the assignee of the present invention, has developed a variety of stacked module designs that employ a form standard or mandrel that can provide thermal and/or construction advantages while providing a standard form that may allow use of a flexible circuit design with a variety of CSP types and body sizes. The mandrel or form standard stack designs come in a variety of shapes and sizes and materials. Some form standards extend beyond the perimeter edge or the extent of the CSP body and thus provide a form about which the flex circuitry transits. Some other form standards are substantially planar and have a lateral extent smaller than the lateral extent of an adjacent CSP. Although form standards provide numerous benefits in stacked module designs, the use of form standards may add various cost and complexity issues to the design and manufacturing issues inherent with stacked modules.
  • Stacked module design and assembly techniques and systems that provide a thermally efficient, reliable structure that perform well at higher frequencies but do not add excessive height to the stack that can be manufactured at reasonable cost with readily understood and managed materials and methods are provided.
  • SUMMARY
  • The present invention allows chip scale-packaged integrated circuits (CSPs) that are configured to allow stand-alone deployment in an operating environment to instead be stacked into modules that conserve PWB or other board surface area. The present invention can be used to advantage with CSP packages of a variety of sizes and configurations ranging from typical BGAs with footprints somewhat larger than the contained die to smaller packages such as, for example, die-sized packages such as DSBGA. Although the present invention is applied most frequently to chip scale packages that contain one die, it may be employed with chip scale packages that include more than one integrated circuit die.
  • In a two-high CSP stack or module devised in accordance with a preferred embodiment of the present invention, two CSPs are stacked, with one CSP disposed above the other. The two CSPs are connected with a pair of flex circuits. Each of the pair of flex circuits is partially wrapped about a respective opposite lateral edge of the lower CSP of the module. The flex circuit pair connects the upper and lower CSPs and provides a thermal and electrical path connection path between the module and an application environment such as a printed wiring board (PWB).
  • In an alternate preferred embodiment of the present invention, a precursor assembly for use as a component of a stacked circuit module is devised having a CSP and a flex circuit with one or more stiffeners attached to the flex circuit. The stiffeners are disposed along a major surface of the CSP and may be attached to the major surface of the CSP by adhesive. Exemplary stacked circuit modules devised in accordance with a preferred embodiment of the present invention comprise a second CSP disposed above the CSP of the precursor assembly, the second CSP being connected to the upper portions of the flex circuit.
  • A tooling apparatus devised in accordance with a preferred embodiment of the present invention may be use to assemble precursor assemblies. Preferred embodiments of the tooling apparatus include a physical form used to impose a preselected distance between the edges of the flex circuit, which in various embodiments comprises a flex aligner that limits the lateral placement of the edges of the flex circuit along upper surface of the CSP.
  • The present invention may be employed to advantage in numerous configurations and combinations of CSPs in modules provided for high-density memories, high capacity computing, and other applications.
  • The present invention also provides methods for constructing stacked circuit modules and precursor assemblies with flexible circuitry. Using preferred methods of the present invention, a single set of flexible circuitry, whether articulated as one or two flex circuits, may be employed with CSP devices of a variety of configurations.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is an elevation view of module 10 devised in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is an elevation view of module 10 devised in accordance with a preferred embodiment of the present invention.
  • FIG. 3 depicts, in enlarged view, the area marked “A” in FIG. 2.
  • FIG. 4 is an enlarged detail of an exemplar connection in a preferred embodiment of the present invention.
  • FIG. 5 is an enlarged depiction of an exemplar area around a lower flex contact in a preferred embodiment of the present invention.
  • FIG. 6 depicts a first outer surface layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 7 depicts a first outer surface layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 8 depicts a first conductive layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 9 illustrates a first conductive layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 10 depicts an intermediate layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 11 depicts an intermediate layer of a right side flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 12 depicts a second conductive layer of a flex circuit of a preferred embodiment of the present invention.
  • FIG. 13 depicts a second conductive layer of a flex circuit of a preferred embodiment of the present invention.
  • FIG. 14 depicts a second outer layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 15 reflects a second outer layer of a flex circuit employed in a preferred embodiment of the present invention.
  • FIG. 16 depicts an alternative preferred embodiment of the present invention.
  • FIG. 17 illustrates a JEDEC pinout for DDR-II FBGA packages.
  • FIG. 18 illustrates the pinout of a module 10 in an alternative preferred embodiment of the invention.
  • FIG. 19 illustrates the pinout of a module 10 in an alternative embodiment of the invention.
  • FIG. 20 depicts the pinout of an exemplar CSP employed in a preferred embodiment of the invention.
  • FIG. 21 depicts a second conductive layer of a flex circuit employed in an alternative preferred embodiment of the present invention.
  • FIG. 22 depicts a second conductive layer of a flex circuit employed in an alternative preferred embodiment of the present invention.
  • FIG. 23 is an elevation view of a precursor assembly devised in accordance with a preferred embodiment of the present invention comprising stiffeners.
  • FIG. 23A depicts, in enlarged view, the area marked “23A” in FIG. 23.
  • FIG. 24 is a plan view of stiffener stock devised in accordance with a preferred embodiment of the present invention.
  • FIG. 25 depicts, in enlarged view, the area marked “25” in FIG. 24.
  • FIG. 26 is a perspective view of a panel or strip comprising flex circuits devised in accordance with a preferred embodiment of the present invention with stiffener stock attached.
  • FIG. 27 is a plan view of a panel or strip comprising flex circuits devised in accordance with a preferred embodiment of the present invention with stiffener stock attached.
  • FIG. 28 depicts, in enlarged view, the area marked “28” in FIG. 24.
  • FIG. 29 depicts a CSP placed on a flex circuit in accordance with a preferred embodiment of the present invention.
  • FIG. 30 presents another depiction of a CSP placed on a flex circuit in accordance with a preferred embodiment of the present invention.
  • FIG. 31 depicts two flex circuit edges in an arrangement according to a preferred embodiment of the present invention.
  • FIG. 32 depicts two flex edges in accordance with an alternative preferred embodiment of the present invention.
  • FIG. 33 is a plan view from below of a precursor assembly devised in accordance with a preferred embodiment of the present invention.
  • FIG. 34 is an elevation view of a stacked circuit module devised in accordance with a preferred embodiment of the present invention.
  • FIG. 35 is an elevation view of a stacked circuit module devised in accordance with another preferred embodiment of the present invention.
  • FIG. 36 is a perspective view from below of a stacked circuit module devised in accordance with a preferred embodiment of the present invention.
  • FIG. 37 is a perspective view from above of a stacked circuit module devised in accordance with a preferred embodiment of the present invention.
  • FIG. 38 is an elevation view of a stacked circuit module devised in accordance with another preferred embodiment of the present invention.
  • FIG. 39 depicts a tooling apparatus devised in accordance with a preferred embodiment of the present invention.
  • FIG. 40 depicts an enlarged depiction of the area marked “40” in FIG. 39.
  • FIG. 41 illustrates a tooling apparatus in accordance with a preferred embodiment of the present invention.
  • FIG. 42 illustrates another step in devising an assembly in accordance with a preferred embodiment of the present invention.
  • FIG. 43 depicts another step in devising an assembly in accordance with a preferred embodiment of the present invention.
  • FIG. 44 depicts a tooling apparatus devised in accordance with another preferred embodiment of the present invention, and illustrates a step in accordance with another preferred embodiment of the present invention.
  • FIG. 45 illustrates another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • FIG. 46 depicts another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • FIG. 47 illustrates another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • FIG. 48 depicts another step in devising an assembly in accordance with another preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 is an elevation view of module 10 devised in accordance with a preferred embodiment of the present invention. Module 10 is comprised of upper CSP 12 and lower CSP 14. Each of CSPs 12 and 14 have an upper surface 16 and a lower surface 18 and opposite lateral sides 20 and 22.
  • The invention is used with CSP packages of a variety of types and configurations such as, for example, those that are die-sized, as well those that are near chip-scale as well as the variety of ball grid array packages known in the art. Collectively, these will be known herein as chip scale packaged integrated circuits (CSPs) and preferred embodiments will be described in terms of CSPs, but the particular configurations used in the explanatory figures are not, however, to be construed as limiting. For example, the elevation views of FIGS. 1 and 2 are depicted with CSPs of a particular profile known to those in the art, but it should be understood that the figures are exemplary only. Later figures show embodiments of the invention that employ CSPs of other configurations as an example of one other of the many alternative CSP configurations with which the invention may be employed. The invention may be employed to advantage in the wide range of CSP configurations available in the art where an array of connective elements is available from at least one major surface. The invention is advantageously employed with CSPs that contain memory circuits but may be employed to advantage with logic, computing, and other types of circuits where added capacity without commensurate PWB or other board surface area consumption is desired.
  • Typical CSPs, such as, for example, ball-grid-array (“BGA”), micro-ball-grid array (“μBGA”), and fine-pitch ball grid array (“FBGA”) packages have an array of connective contacts embodied, for example, as leads, bumps, solder balls, or balls that extend from lower surface 18 of a plastic casing in any of several patterns and pitches. An external portion of the connective contacts is often finished with a ball of solder. Shown in FIG. 1 are CSP contacts 24 along lower surfaces 18 of CSPs 12 and 14. CSP contacts 24 provide connection to the integrated circuit within the respective packages. Collectively, CSP contacts 24 comprise CSP array 26 shown as to lower CSP 14 in the depicted particular package configuration as CSP arrays 26 1 and 26 2 which collectively comprise CSP array 26.
  • In FIG. 1, flex circuits (“flex”, “flex circuits” or “flexible circuit structures”) 30 and 32 are shown partially wrapped about lower CSP 14 with flex 30 partially wrapped over lateral side 20 of lower CSP 14 and flex 32 partially wrapped about lateral side 22 of lower CSP 14. Lateral sides 20 and 22 may be in the character of sides or may, if the CSP is especially thin, be in the character of an edge. Any flexible or conformable substrate with a multiple internal layer connectivity capability may be used as a flex circuit in the invention. The entire flex circuit may be flexible or, as those of skill in the art will recognize, a PCB structure made flexible in certain areas to allow conformability around lower CSP 14 and rigid in other areas for planarity along CSP surfaces may be employed as an alternative flex circuit in the present invention. For example, structures known as rigid-flex may be employed.
  • Portions of flex circuits 30 and 32 are fixed to upper surface 16 of lower CSP 14 by adhesive 34 which is shown as a tape adhesive, but may be a liquid adhesive or may be placed in discrete locations across the package. Preferably, adhesive 34 is thermally conductive. Adhesives that include a flux are used to advantage in assembly of module 10. Layer 34 may also be a thermally conductive medium to encourage heat flow between the CSPs of module 10.
  • Flex circuits 30 and 32 are multi-layer flexible circuit structures that have at least two conductive layers. Preferably, the conductive layers are metal such as alloy 110. The use of plural conductive layers provides advantages as will be seen and the creation of a distributed capacitance across module 10 intended to reduce noise or bounce effects that can, particularly at higher frequencies, degrade signal integrity, as those of skill in the art will recognize. Module 10 of FIG. 1 has module contacts 36 collectively identified as module array 38.
  • FIG. 2 shows a module 10 devised in accordance with a preferred embodiment of the invention. FIG. 2 illustrates use of a conformal media 40 provided in a preferred embodiment to assist in creating conformality of structural areas of module 10. Planarity of the module is improved by conformal media 40. Preferably, conformal media 40 is thermally conductive. In alternative embodiments, thermal spreaders or a thermal medium may be placed as shown by reference 41. Identified in FIG. 2 are upper flex contacts 42 and lower flex contacts 44 that are at one of the conductive layers of flex circuits 30 and 32. Upper flex contacts 42 and lower flex contacts 44 are conductive material and, preferably, are solid metal. Lower flex contacts 44 are collectively lower flex contact array 46. Upper flex contacts 42 are collectively upper flex contact array 48. Only some of upper flex contacts 42 and lower flex contacts 44 are identified in FIG. 2 to preserve clarity of the view. It should be understood that each of flex circuits 30 and 32 have both upper flex contacts 42 and lower flex contacts 44. Lower flex contacts 44 are employed with lower CSP 14 and upper flex contacts 42 are employed with upper CSP 12. FIG. 2 has an area marked “A” that is subsequently shown in enlarged depiction in FIG. 3.
  • FIG. 3 depicts in enlarged view, the area marked “A” in FIG. 2. FIG. 3 illustrates the connection between example CSP contact 24 and module contact 36 through lower flex contact 44 to illustrate the solid metal path from lower CSP 14 to module contact 36 and, therefore, to an application PWB to which module is connectable. As those of skill in the art will understand, heat transference from module 10 is thereby encouraged.
  • With continuing reference to FIG. 3, CSP contact 24 and module contact 36 together offset module 10 from an application platform such as a PWB. The combined heights of CSP contact 24 and module contact 36 provide a moment arm longer than the height of a single CSP contact 24 alone. This provides a longer moment arm through which temperature-gradient-over-time stresses (such as typified by temp cycle), can be distributed.
  • Flex 30 is shown in FIG. 3 to be comprised of multiple layers. Flex 30 has a first outer surface 50 and a second outer surface 52. Flex circuit 30 has at least two conductive layers interior to first and second outer surfaces 50 and 52. There may be more than two conductive layers in flex 30 and flex 32. In the depicted preferred embodiment, first conductive layer 54 and second conductive layer 58 are interior to first and second outer surfaces 50 and 52. Intermediate layer 56 lies between first conductive layer 54 and second conductive layer 58. There may be more than one intermediate layer, but one intermediate layer of polyimide is preferred.
  • As depicted in FIG. 3 and seen in more detail in later figures, lower flex contact 44 is preferably comprised from metal at the level of second conductive layer 58 interior to second outer surface 52. Lower flex contact 44 is solid metal in a preferred embodiment and is comprised of metal alloy such as alloy 110. This results in a solid metal pathway from lower CSP 14 to an application board thereby providing a significant thermal pathway for dissipation of heat generated in module 10.
  • FIG. 4 is an enlarged detail of an exemplar connection between example CSP contact 24 and example module contact 36 through lower flex contact 44 to illustrate the solid metal path from lower CSP 14 to module contact 36 and, therefore, to an application PWB to which module 10 is connectable. As shown in FIG. 4, lower flex contact 44 is at second conductive layer 58 that is interior to first and second outer surface layers 50 and 52 respectively, of flex circuit 30.
  • FIG. 5 is an enlarged depiction of an exemplar area around a lower flex contact 44 in a preferred embodiment. Windows 60 and 62 are opened in first and second outer surface layers 50 and 52 respectively, to provide access to particular lower flex contacts 44 residing at the level of second conductive layer 58 in the flex. The upper flex contacts 42 are contacted by CSP contacts 24 of upper CSP 12. Lower flex contacts 44 and upper flex contacts 42 are particular areas of conductive material (preferably metal such as alloy 110) at the level of second conductive layer 58 in the flex. Upper flex contacts 42 and lower flex contacts 44 are demarked in second conductive layer 58 and, as will be shown in subsequent Figs., may be connected to or isolated from the conductive plane of second conductive layer 58. Demarking a lower flex contact 44 from second conductive layer 58 is represented in FIG. 5 by demarcation gap 63 shown at second conductive layer 58. Where an upper or lower flex contact 42 or 44 is not completely isolated from second conductive layer 58, demarcation gaps do not extend completely around the flex contact as shown, for example, by lower flex contacts 44C in later FIG. 12. CSP contacts 24 of lower CSP 14 pass through a window 60 opened through first outer surface layer 50, first conductive layer 54, and intermediate layer 56, to contact an appropriate lower flex contact 44. Window 62 is opened through second outer surface layer 52 through which module contacts 36 pass to contact the appropriate lower flex contact 44.
  • Respective ones of CSP contacts 24 of upper CSP 12 and lower CSP 14 are connected at the second conductive layer 58 level in flex circuits 30 and 32 to interconnect appropriate signal and voltage contacts of the two CSPs. Respective CSP contacts 24 of upper CSP 12 and lower CSP 14 that convey ground (VSS) signals are connected at the first conductive layer 54 level in flex circuits 30 and 32 by vias that pass through intermediate layer 56 to connect the levels as will subsequently be described in further detail. Thereby, CSPs 12 and 14 are connected. Consequently, when flex circuits 30 and 32 are in place about lower CSP 14, respective CSP contacts 24 of each of upper and lower CSPs 12 and 14 are in contact with upper and lower flex contacts 42 and 44, respectively. Selected ones of upper flex contacts 42 and lower flex contacts 44 are connected. Consequently, by being in contact with lower flex contacts 44, module contacts 36 are in contact with both upper and lower CSPs 12 and 14.
  • In a preferred embodiment, module contacts 36 pass through windows 62 opened in second outer layer 52 to contact lower flex contacts 44. In some embodiments, as will be later shown, module 10 will exhibit a module contact array 38 that has a greater number of contacts than do the constituent CSPs of module 10. In such embodiments, some of module contacts 36 may contact lower flex contacts 44 that do not contact one of the CSP contacts 24 of lower CSP 14 but are connected to CSP contacts 24 of upper CSP 12. This allows module 10 to express a wider datapath than that expressed by the constituent CSPs 12 or 14. A module contact 36 may also be in contact with a lower flex contact 44 to provide a location through which different levels of CSPs in the module may be enabled when no unused CSP contacts are available or convenient for that purpose.
  • In a preferred embodiment, first conductive layer 54 is employed as a ground plane, while second conductive layer 58 provides the functions of being a signal conduction layer and a voltage conduction layer. Those of skill will note that roles of the first and second conductive layers may be reversed with attendant changes in windowing and use of commensurate interconnections.
  • As those of skill will recognize, interconnection of respective voltage CSP contacts 24 of upper and lower CSPs 12 and 14 will provide a thermal path between upper and lower CSPs to assist in moderation of thermal gradients through module 10. Such flattening of the thermal gradient curve across module 10 is further encouraged by connection of common ground CSP contacts 24 of upper and lower CSPs 12 and 14 through first conductive layer 54. Those of skill will notice that between first and second conductive layers 54 and 58 there is at least one intermediate layer 56 that, in a preferred embodiment, is a polyimide. Placement of such an intermediate layer between ground-conductive first conductive layer 54 and signal/voltage conductive second conductive layer 58 provides, in the combination, a distributed capacitance that assists in mitigation of ground bounce phenomena to improve high frequency performance of module 10.
  • In a preferred embodiment, FIG. 6 depicts first outer surface layer 50 of flex 30 (i.e., left side of FIG. 1). The view is from above the flex looking down into flex 30 from the perspective of first conductive layer 54. Throughout the Figs., the location reference “B” is to orient views of layers of flex 30 to those of flex 32 as well as across layers. Windows 60 are opened through first outer surface layer 50, first conductive layer 54, and intermediate layer 56. CSP contacts 24 of lower CSP 14 pass through windows 60 of first outer surface layer 50, first conductive layer 54, and intermediate layer 56 to reach the level of second conductive layer 58 of flex 30. At second conductive layer 58, selected CSP contacts 24 of lower CSP 14 make contact with selected lower flex contacts 44. Lower flex contacts 44 provide several types of connection in a preferred embodiment as will be explained with reference to later FIG. 12. When module 10 is assembled, a portion of flex 30 will be wrapped about lateral side 20 of lower CSP 14 to place edge 62 above upper surface 16 of lower CSP 14.
  • In a preferred embodiment, FIG. 7 depicts first outer surface layer 50 of flex 32 (i.e., right side of FIG. 1). The view is from above the flex looking down into flex 32 from the perspective of first conductive layer 54. The location reference “B” relatively orients the views of FIGS. 6 and 7. The views of FIGS. 6 and 7 may be understood together with the reference marks “B” of each view being placed nearer each other than to any other corner of the other view of the pair of views of the same layer. As shown in FIG. 7, windows 60 are opened through first outer surface layer 50, first conductive layer 54 and intermediate layer 56. CSP contacts 24 of lower CSP 14 pass through windows 60 of first outer surface layer 50, first conductive layer 54, and intermediate layer 56 to reach the level of second conductive layer 58 of flex 30. At second conductive layer 58, selected CSP contacts 24 of lower CSP 14 make contact with lower flex contacts 44. Lower flex contacts 44 provide several types of connection in a preferred embodiment as will be explained with reference to later FIG. 12. When module 10 is assembled, a portion of flex 32 will be wrapped about lateral side 22 of lower CSP 14 to place edge 64 above upper surface 16 of lower CSP 14.
  • FIG. 8 depicts first conductive layer 54 of flex 30. Windows 60 continue the opened orifice in flex 30 through which CSP contacts 24 of lower CSP 14 pass to reach second conductive layer 58 and, therefore, selected lower flex contacts 44 at the level of second conductive layer 58.
  • Those of skill will recognize that as flex 30 is partially wrapped about lateral side 20 of lower CSP 14, first conductive layer 54 becomes, on the part of flex 30 disposed above upper surface 16 of lower CSP 14, the lower-most conductive layer of flex 30 from the perspective of upper CSP 12. In the depicted embodiment, those CSP contacts 24 of upper CSP 12 that provide ground (VSS) connections are connected to the first conductive layer 54. First conductive layer 54 lies beneath, however, second conductive layer 58 in that part of flex 30 that is wrapped above lower CSP 14. Consequently, some means must be provided for connection of the upper flex contact 42 to which ground-conveying CSP contacts 24 of upper CSP 12 are connected and first conductive layer 54. Consequently, in the depicted preferred embodiment, those upper flex contacts 42 that are in contact with ground-conveying CSP contacts 24 of upper CSP 12 have vias that route through intermediate layer 56 to reach first conductive layer 54. The sites where those vias meet first conductive layer 54 are identified in FIG. 8 as vias 66. These vias may be “on-pad” or coincident with the flex contact 42 to which they are connected. Those of skill will note a match between the vias 66 identified in FIG. 8 and vias 66 identified in the later view of second conductive layer 58 of the depicted preferred embodiment. In a preferred embodiment, vias 66 in coincident locations from Fig. to Fig. are one via. For clarity of the view, depicted vias in the figures are shown larger in diameter than in manufactured embodiments. As those of skill will recognize, the connection between conductive layers provided by vias (on or off pad) may be provided any of several well-known techniques such as plated holes or solid lines or wires and need not literally be vias.
  • Also shown in FIG. 8 are off-pad vias 74. Off-pad vias 74 are disposed on first conductive layer 54 at locations near, but not coincident with selected ones of windows 60. Unlike vias 66 that connect selected ones of upper flex contacts 42 to first conductive layer 54, off-pad vias 74 connect selected ones of lower flex contacts 44 to first conductive layer 54. In the vicinity of upper flex contacts 42, second conductive layer 58 is between the CSP connected to module 10 by the upper flex contacts 42 (i.e., upper CSP 12) and first conductive layer 54. Consequently, vias between ground-conveying upper flex contacts 42 and first conductive layer 54 may be directly attached to the selected upper flex contacts 42 through which ground signals are conveyed. In contrast, in the vicinity of lower flex contacts 44, first conductive layer 54 is between the CSP connected to module 10 by the lower flex contacts 44 (i.e., lower CSP 14) and second conductive layer 58. Consequently, vias between ground-conveying lower flex contacts 44 and first conductive layer 54 are offset from the selected lower flex contacts 44 by off-pad vias 74 shown in offset locations.
  • FIG. 9 illustrates first conductive layer 54 of flex 32. The location reference marks “B” are employed to relatively orient FIGS. 8 and 9. Windows 60, vias 66 and off-pad vias 74 are identified in FIG. 9. Also shown in FIG. 9, are enable vias 68 and 70 and enable trace 72. Enable via 70 is connected off-pad to a selected lower flex contact 44 that corresponds, in this preferred embodiment, to an unused CSP contact 24 of lower CSP 14 (i.e., a N/C). A module contact 36 at that site conveys an enable signal (C/S) for upper CSP 12 through the selected lower flex contact 44 (which is at the level of second conductive layer 58) to off-pad enable via 70 that conveys the enable signal to first conductive layer 54 and thereby to enable trace 72. Enable trace 72 further conveys the enable signal to enable via 68 which extends through intermediate layer 56 to selected upper flex contact 42 at the level of second conductive layer 58 where contact is made with the C/S pin of upper CSP 12. Thus, upper and lower CSPs 12 and 14 may be independently enabled.
  • FIG. 10 depicts intermediate layer 56 of flex 30. Windows 60 are shown opened in intermediate surface 56. CSP contacts 24 of lower CSP 14 pass through windows 60 in intermediate layer 58 to reach lower flex contacts 44 at the level of second conductive layer 58. Those of skill will notice that, in the depicted preferred embodiment, windows 60 narrow in diameter from their manifestation in first outer layer 50. Vias 66, off-pad vias 74, and enable vias 68 and 70 pass through intermediate layer 56 connecting selected conductive areas at the level of first and second conductive layers 54 and 58, respectively. FIG. 11 depicts intermediate layer 56 of flex 32 showing windows 60, vias 66, off-pad vias 74, and enable vias 68 and 70 passing through intermediate layer 56.
  • FIG. 12 depicts second conductive layer 58 of flex 30 of a preferred embodiment of the present invention. Depicted are various types of upper flex contacts 42, various types of lower flex contacts 44, signal traces 76, and VDD plane 78 as well as previously described vias 66 and off-pad vias 74. Throughout FIGS. 12 and 13, only exemplars of particular features are identified to preserve clarity of the view. Flex contacts 44A are connected to corresponding selected upper flex contacts 42A with signal traces 76. To enhance the clarity of the view, only exemplar individual flex contacts 44A and 42A are literally identified in FIG. 12. As shown, in this preferred embodiment, signal traces 76 exhibit path routes determined to provide substantially equal signal lengths between corresponding flex contacts 42A and 44A. As shown, traces 76 are separated from the larger surface area of second conductive layer 58 that is identified as VDD plane 78. VDD plane 78 may be in one or more delineated sections but, preferably is one section. Lower flex contacts 44C provide connection to VDD plane 78. In a preferred embodiment, upper flex contacts 42C and lower flex contacts 44C connect upper CSP 12 and lower CSP 14, respectively, to VDD plane 78. Lower flex contacts 44 that are connected to first conductive layer 54 by off-pad vias 74 are identified as lower flex contacts 44B. To enhance the clarity of the view, only exemplar individual lower flex contacts 44B are literally identified in FIG. 12. Upper flex contacts 42 that are connected to first conductive layer 54 by vias 66 are identified as upper flex contacts 42B.
  • FIG. 13 depicts second conductive layer 58 of right side flex 32 of a preferred embodiment of the present invention. Depicted are various types of upper flex contacts 42, various types of lower flex contacts 44, signal traces 76, and VDD plane 78 as well as previously described vias 66, off-pad vias 74, and enable vias 70 and 68. FIG. 13 illustrates upper flex contacts 42A connected by traces 76 to lower flex contacts 44A. VDD plane 78 provides a voltage plane at the level of second conductive layer 58. Lower flex contacts 44C and upper flex contacts 42C connect lower CSP 14 and upper CSP 12, respectively, to VDD plane 78. Lower flex contact 44D is shown with enable via 70 described earlier. Corresponding upper flex contact 42D is connected to lower flex contact 44D through enable vias 70 and 68 that are connected to each other through earlier described enable trace 72 at the first conductive layer 54 level of flex 32.
  • FIG. 14 depicts second outer layer 52 of flex 30. Windows 62 are identified. Those of skill will recognize that module contacts 36 pass through windows 62 to contact appropriate lower flex contacts 44. When flex 30 is partially wrapped about lateral side 20 of lower CSP 14, a portion of second outer layer 52 becomes the upper-most layer of flex 30 from the perspective of upper CSP 12. CSP contacts 24 of upper CSP 12 pass through windows 64 to reach second conductive layer 58 and make contact with appropriate ones of upper flex contacts 42 located at that level. FIG. 15 reflects second outer layer 52 of flex 32 and exhibits windows 64 and 62. Module contacts 36 pass through windows 62 to contact appropriate lower flex contacts 44. CSP contacts 24 of upper CSP 12 pass through windows 64 to reach second conductive layer 58 and make contact with appropriate ones of upper flex contacts 42 located at that level.
  • FIG. 16 depicts an alternative preferred embodiment of the present invention showing module 10. Those of skill will recognize that the embodiment depicted in FIG. 16 differs from that in FIG. 2 by the presence of module contacts 36E. Module contacts 36E supply a part of the datapath of module 10 and may provide a facility for differential enablement of the constituent CSPs. A module contact 36E not employed in wide datapath provision may provide a contact point to supply an enable signal to differentially enable upper CSP 12 or lower CSP 14.
  • In a wide datapath module 10, the data paths of the constituent upper CSP 12 and lower CSP 14 are combined to provide a module 10 that expresses a module datapath that is twice the width of the datapaths of the constituent CSPs in a two-high module 10. The preferred method of combination is concatenation, but other combinations may be employed to combine the datapaths of CSPs 12 and 14 on the array of module contacts 36 and 36E.
  • As an example, FIGS. 17, 18, and 19 are provided to illustrate using added module contacts 36E in alternative embodiments of the present invention to provide wider datapaths for module 10 than are present in constituent CSPs 12 and 14. FIG. 17 illustrates a JEDEC pinout for DDR-II FBGA packages. FIG. 18 illustrates the pinout provided by module contacts 36 and 36E of a module 10 expressing an 8-bit wide datapath. Module 10 is devised in accordance with the present invention and is, in the exemplar embodiment, comprised of an upper CSP 12 and lower CSP 14 that are DDR-II-compliant in timing, but each of which are only 4 bits wide in datapath. As will be recognized, the module 10 mapped in FIG. 18 expresses an 8-bit wide datapath. For example, FIG. 18 depicts DQ pins differentiated in source between upper CSP 12 (“top”) and lower CSP 14 (“bot”) to aggregate to 8-bits. FIG. 19 illustrates the pinout provided by module contacts 36 and 36E of module 10 expressing a 16-bit wide datapath. Module 10 is devised in accordance with the present invention and is, in this exemplar embodiment, comprised of an upper CSP 12 and lower CSP 14 that are DDR-II-compliant in timing, but each of which are only 8-bits wide in datapath. Those of skill in the art will recognize that the wide datapath embodiment may be employed with any of a variety of CSPs available in the field and such CSPs need not be DDR compliant.
  • FIG. 20 illustrates a typical pinout of a memory circuit provided as a CSP and useable in the present invention. Individual array positions are identified by the JEDEC convention of numbered columns and alphabetic rows. The central area (e.g., A3-A6; B3-B6; etc.) is unpopulated. CSP contacts 24 are present at the locations that are identified by alpha-numeric identifiers such as, for example, A3, shown as an example CSP contact 24. FIG. 21 depicts second metal layer 58 of flex 30 in an alternative embodiment of the invention in which module 10 expresses a datapath wider than that expressed by either of the constituent CSPs 12 and 14. Lower flex contacts 44E are not contacted by CSP contacts 24 of lower CSP 14, but are contacted by module contacts 36E to provide, with selected module contacts 36, a datapath for module 10 that is 2n-bits in width where the datapaths of CSPs 12 and 14 have a width of n-bits. As shown in FIG. 21, lower flex contacts 44E are connected to upper flex contacts 42E. As shown in earlier FIG. 14, windows 62 pass through second outer layer 52. In the alternative preferred embodiment for which second conductive layer 58 is shown in FIG. 21, module contacts 36 and 36E pass through windows 62 in second outer layer 52 of flex circuit 30, to contact appropriate lower flex contacts 44.
  • FIG. 22 illustrates second metal layer 58 of flex 32 in an alternative embodiment of the invention in which module 10 expresses a datapath wider than that expressed by either of the constituent CSPs 12 and 14. Lower flex contacts 44E are not contacted by CSP contacts 24 of lower CSP 14, but are contacted by module contacts 36E to provide, with selected module contacts 36, a datapath for module 10 that is 2n-bits in width where the datapaths of CSPs 12 and 14 have a width of n-bits. As shown in FIG. 22, lower flex contacts 44E are connected to upper flex contacts 42E. As shown in earlier FIG. 14, windows 62 pass through second outer layer 52. In the alternative preferred embodiment for which second conductive layer 58 is shown in FIG. 22, module contacts 36 pass through windows 62 in second outer layer 52 of flex circuit 32, to contact appropriate lower flex contacts 44.
  • In particular, in the embodiment depicted in FIGS. 21 and 22, module contacts 36E contact flex contacts 44E and 44EE. Those of skill will recognize that lower flex contacts 44E are, in the depicted embodiment, eight (8) in number and that there is another lower flex contacts identified by reference 44EE shown on FIG. 21. Lower flex contact 44EE is contacted by one of the module contacts 36E to provide differential enablement between upper and lower CSPs. Those of skill will recognize that lower flex contacts 44F are connected to corresponding upper flex contacts 42E. CSP contacts 24 of upper CSP 12 that convey data are in contact with upper flex contacts 42E. Consequently, the datapaths of both upper CSP 12 and lower CSP 14 are combined to provide a wide datapath on module 10. With the depicted connections of FIGS. 21 and 22, lower flex contacts 44E of flex circuits 30 and 32 convey to module contacts 36E, the datapath of upper CSP 12, while other lower flex contacts 44 convey the datapath of lower CSP 14 to module contacts 36 to provide module 10 with a module datapath that is the combination of the datapath of upper CSP 12 and lower CSP 14. In the depicted particular embodiment of FIGS. 21 and 22, module 10 expresses a 16-bit datapath and CSP 12 and CSP 14 each express an 8-bit datapath.
  • FIGS. 23-33 depict aspects of alternative preferred embodiments of a precursor assembly for use as a component of a stacked circuit module. FIGS. 23-33 depict aspects of stiffeners comprised in exemplary precursor assemblies and additional aspects of other components used in manufacturing such precursor assemblies. FIG. 23 is an elevation view of an end of precursor assembly 105 comprising CSP 114 having an upper surface 116, a lower surface 118, and opposite lateral sides 120 and 122. Upon assembly of a stacked circuit module 110 using precursor assembly 105 of this embodiment, CSP 114 will become a lower CSP of a stacked circuit module 110.
  • Among the various CSPs that are useful for CSP 114 are the types that include at least one integrated circuit or semiconductor chip surrounded by a package body 127 with a lateral extent L defined by the opposite lateral edges or sides 120 and 122. The package body surrounding the integrated circuit(s) or semiconductor chip(s) need not be plastic, but a large majority of package bodies in CSP technologies are plastic. The package body need not surround the integrated circuit(s) or semiconductor chip(s) completely, leaving one or more sides, edges, surfaces, or other regions of the integrated circuit(s) or semiconductor chip(s) exposed, but a large majority of package bodies in CSP technologies completely encase the integrated circuit(s) or semiconductor chip(s) or leave only the terminals on integrated circuit or semiconductor chip active face(s) exposed. The invention may also be used with those CSP-like packages that exhibit bare die connectives on one major surface.
  • Those of skill will realize that various embodiments of the present invention may be devised to create modules and precursor assemblies with different size CSPs and that the constituent CSPs may be of different types within the same stacked circuit module 110. The disclosed structures and methods allow a single set of flex circuitry, whether comprised of one or two flex circuits, to be employed with a variety of package body sizes of CSPs. For example, one of the constituent CSPs of an example stacked circuit module 110 may be a typical CSP having lateral edges 120 and 122 that have an appreciable height to present a “side” while other constituent CSPs of the same stacked circuit module 110 may be devised in packages that have lateral edges 120 and 122 that are more in the character of an edge rather than a side having appreciable height. All devices such as those discussed above and similar devices are included within the meaning of the term CSP, which term should be broadly considered in the context of this application.
  • The embodiment of a precursor assembly illustrated in FIG. 23 uses substantially planar stiffeners 139 that are initially disposed on a flex circuit 130 and affixed thereto with adhesive 134. When precursor assembly 105 is assembled, stiffeners 139 are disposed along a surface of CSP 114 even if literally separated from that surface, such as by adhesive 135, for example. In this embodiment, stiffeners 139 are attached to CSP 114 with adhesive 135. CSP contacts 124, regardless of configuration, generally will define a mounting height for CSP, such as mounting height H depicted in FIG. 23A for CSP contacts comprising solder balls. Preferably, thickness T of stiffeners 139 is less than mounting height H, for example as depicted in FIG. 23A, with the combined thickness of stiffener 139 and adhesives 134 and 135 approximately equal mounting height H so as to dispose the lower portion of the flex circuit 130 approximately parallel to the lower surface 118 of CSP 114. In preferred embodiments, stiffeners 139 also are configured to provide lateral clearance for the CSP arrays 126 comprising various CSP contacts 124. In the exemplar depicted in FIG. 23, for example, CSP contacts 124 are at least partially disposed within the volume 140 between stiffeners 139.
  • Stiffeners 139 may take several useful configurations, but in preferred embodiments herein, stiffeners 139 are substantially planar. A preferred embodiment is shown using stiffeners 139 disposed within the lateral extent L of CSP 114. Other embodiments may have stiffeners 139 disposed at least partially outside lateral extent L of CSP 114, one example of which is the embodiments further discussed below in connection with FIG. 38.
  • In preferred embodiments, flex circuit 130 has upper portions 130U that terminate in edges 170A and 170B which are separated by gap G above the upper surface 116 of CSP 114. In some embodiments, gap G is preselected and imposed when precursor assembly 105 is made. Upper portions 130U of flex circuit 130 are disposed along the upper surface 116 of CSP 114 even if literally separated from that surface, such as by adhesive 171, for example. In such configurations, flex circuit 130 has a folded portion 131.
  • FIG. 23 depicts precursor assembly 105 with module contacts 136 through which the precursor assembly 105 may connect to an application environment or to another precursor assembly 105, for example, as shown in FIG. 34. In the illustrated embodiment, the module contacts 136 are deployed in a module contact array 138, but other configurations of module contacts may be used. Those of skill will recognize that module contacts 136 in the form of the depicted solder balls are not required to connect a stacked circuit module 110 to an application environment or to connect a precursor assembly 105 to another precursor assembly 105, and that other connective strategies may be employed such as, for example, direct pad to pad connection schemes or connective structures other than solder balls.
  • A preferred method for practicing the invention produces precursor assemblies 105 in batches of six. The stiffener(s) and flex circuit(s) for a particular precursor assembly are provided in aggregation with other stiffeners and flex circuits, respectively, for other precursor assemblies. Those of skill will recognize, however, that the inventive methods described herein can be used with other batch sizes or with continuous production techniques, for example those using known reel and tape formats. FIG. 24 depicts an exemplar strip or panel of stiffener stock 237 that may be employed in some preferred embodiments of the present invention, and FIG. 25 depicts an enlarged depiction of the area marked “25” in FIG. 24. The illustrated strip of stiffener stock 237 includes twelve stiffeners 139 retained by tabs 238 in configuration for deployment in six precursor assemblies 105. The stiffener material has cutouts comprising tooling holes 239 and windows 240. Windows 240 are configured to accommodate CSP arrays 126 comprising CSP contacts 124 of CSP 114. At each longitudinal end of the stiffener stock 237 depicted, tabs 238A and tooling holes 239A are disposed generally as half of a tab 238 and a tooling hole 239 as disposed between adjacent windows 240.
  • Stiffener stock 237 as depicted in the embodiment of FIG. 24 comprises a polymer having thermal properties adequate for the various temperatures at which various solder reflow and other attachment operations may occur in the production of precursor assemblies 105 and stacked circuit modules 110 and in the deployment of stacked circuit modules 110 in an application environment. In a preferred embodiment, stiffener stock 237 comprises a single layer or multiple laminated layers of polyimide film selected so that stiffeners 139 have mechanical properties compatible with the mechanical properties of flex circuit 130, but other materials that are compatible with the assembly processes may be used such as resin polymer matrix composites, engineering ceramics or ceramic fibers, graphite composites, or filled and non-filled plastics known to those of skill in the art. Preferably, compatibility of the mechanical properties of stiffeners 139 and flex circuit 130 are selected to reduce to an acceptable extent any warping and other deformations of precursor assembly 105 caused by differential thermal expansion of stiffeners 139 and flex circuit 130. As those of skill will recognize, stiffener stock 237 also may take other configurations and compositions and may, for example, be devised in more than one piece and/or be devised of material that is thermally conductive. In alternative embodiments, stiffener stock 237 may comprise material of sufficient rigidity such as stainless steels, aluminum, copper, or other metals or metal alloys so that stiffeners 139 control the coplanarity of CSP 114 by inhibiting warping.
  • FIGS. 26 and 27 depict perspective and plan views, respectively, of stiffener stock 237 disposed on a panel or strip 230 comprising flex circuits 130. In the depicted embodiment, six flex circuits 130 are configured side-by-side, with a portion of each flex circuit 130 accessible through a respective window 240 of stiffener stock 237, Strip 230 further comprises lateral edges 231 and strip edge portions 232. In a preferred embodiment, an adhesive 134 (shown earlier) is used to attach stiffener stock 237 and its component stiffeners 139 and tabs 238 to strip or panel 230 and its component flex circuits 130. Adhesive 134 in a preferred embodiment comprises a dry film adhesive. Those of skill will recognize, however, that adhesive 134 may be selectively applied to selected portions of stiffener stock 237 or strip 230, or both, and that other methods for attaching stiffeners 139 to flex circuits 130 may be employed in accordance with various embodiments of the present invention including, for example, laminate tape adhesive, liquid adhesive, and ultrasonic or thermal bonding. Preferably, the adhesive will be thermally conductive. In a preferred embodiment, tooling holes 239 facilitate alignment of stiffener stock 237 and strip 230, although alternative methods such as machine vision aided pick & place may be employed.
  • FIG. 28 depicts an enlarged depiction of the area marked “28” in FIG. 27. The depiction of FIG. 28 is centered on a site where a CSP 114 will be disposed. When a CSP 114 is disposed, selected CSP contacts 124 will be connected to respective ones of flex contacts disposed in flex contact arrays. For simplicity, the depiction of FIG. 28 shows through window 240 only selected ones of flex contacts 144 of a selected flex contact array 146. Components of stiffener stock 237 relevant to the illustrated site include stiffeners 139, tabs 238, tooling holes 239, and window 240.
  • The portion of strip 230 depicted in FIG. 28 also illustrates various features of flex circuit 130 of a preferred embodiment. In the illustrated embodiment, a singulation opening 233 is disposed through strip 230 adjacent to each longitudinal end of each stiffener 139. Additional singulation openings 234 are disposed through strip 230 along strip edge portions 232 adjacent to each lateral edge 231 of strip 230. Edges 170A and 170B of upper portions 130U of flex circuit 130 are disposed along singulation openings 234, with each upper portion 130U disposed between a respective singulation opening 234 and a respective stiffener 139.
  • Strip 230 and the flex circuits 130 disposed thereon can be configured with conductive components in a wide variety of ways. For example, strip 230 and the flex circuits 130 disposed thereon can be multi-layer flexible circuit structures, such as the embodiment discussed above having a first conductive layer and a second conductive layer that are interior to first and second outer surfaces, with an intermediate layer disposed between the first conductive layer and the second conductive layer. As those of skill in the art will recognize, a single conductive layer or three or more conductive layers can also be used, and typically the choice will depend on the complexity of the circuit routing required. Further, some embodiments may employ only one cover coat, such as those instances in which a ground plane is exposed. Circuit traces can be disposed in one or more conductive layers, and selected conductive layers may contain only ground or voltage planes.
  • In one exemplar preferred embodiment useful for stacking memory CSPs, conductive traces are disposed at one conductive layer with a ground plane disposed an another conductive layer. In that embodiment, a single outer surface is used leaving one of the conductive layers exposed. All contact pads on the exposed conductive layer are connected to the other conductive surface through vias, using no conductive traces on the exposed conductive layer. Connecting the contact pads directly through vias mitigates solder wicking and reduces costs and thickness of the flex circuitry.
  • The manufacture of strip 230 may employ various electroplating steps that use current supplied from sprocket rails engaging sprocket holes 235. Current for electroplating can be routed along bussing through trim tabs 250, which are severed from flex circuits 130 during singulation as discussed further below. Electroplating bus paths also can converge at various connection points of strip 230, which bussing connections can be severed following electroplating by making de-bussing punches 251 as illustrated in FIG. 28. As those of skill in the art will recognize, however, other methods may be used to dispose conductive material within and/or on strip 230. At each longitudinal end of flex circuit 130 in a preferred embodiment, nonbussed portion 150 of flex circuit 130 is disposed alongside tab 238 and between singulation openings 233 to provide additional clearance for circuitry of flex circuit 130 during singulation, as discussed further below.
  • FIG. 28 also depicts the various pattern recognition marks, or “fiducials,” used by automated assembly equipment during manufacture of precursor assemblies 105. Preferably, fiducials are metal defined, asymmetrically placed, and comprise a cross and a square where practical. The preferred embodiment depicted has global fiducials 260 defined by circular metal regions on the surface of strip 230 and aligned with tooling holes 239. Additional global fiducials are defined by metal regions in the form of a square (fiducials 261) and a cross (fiducials 262). The global fiducials are used as reference points during singulation of precursor assemblies 105 or stacked circuit modules 110. Also depicted are local fiducials defined by metal regions in the form of a square (fiducials 161) and a cross (fiducials 162) defined in a conductive layer of the flex circuit, which local fiducials are used by automated equipment as a reference during the placement of CSP 114 on flex circuit 130.
  • Although the description of the embodiment illustrated in FIG. 28 is directed to features related to a single precursor assembly 105 to be made using stiffener stock 237 and strip 230, those of skill will recognize that the described features can be replicated for other precursor assemblies 105 or that variations in the described features can be employed for other precursor assemblies 105.
  • Prior to placement of CSP 114 on flex circuit 130, in the disclosed embodiment adhesive 135 is applied to the exposed upper surface of stiffener 139. In a preferred embodiment, adhesive 135 comprises a liquid adhesive. Those of skill will recognize, however, that adhesive 135 may be selectively applied to selected portions of stiffener 139 and that other methods for attaching stiffeners 139 to CSP 114 may be employed in various embodiments of the present invention including, for example, laminate tape adhesive and dry film adhesive. Preferably, the adhesive will be thermally conductive.
  • Automated pick-and-place equipment know in the art is used to dispose CSP 114 on flex circuit 130 in a preferred embodiment. The pick-and-place equipment dips CSP contacts 124 in flux prior to placement of CSP 114 on flex circuit 130. After placement of CSP 114 on flex circuit 130, heat is supplied during a first solder reflow operation to produce a solder connection between CSP contacts 124 and flex contacts 144. The combination of adhesive 134, stiffener 139, and adhesive 135 cooperate to maintain flex circuit 130 and CSP 114 in proper position during the first solder reflow operation.
  • After CSP 114 is soldered to flex circuit 130, upper portions 130U of flex circuits 130 are separated from strip 230 by upper flex cuts 174. FIG. 29 depicts the position of upper flex cuts 174, and also shows the position of singulation cuts 175 made later during singulation of precursor assemblies 105 or stacked circuit modules 110 as discussed below. FIG. 30 depicts the configuration of flex circuit 130, stiffeners 139, and CSP 114 following the making of upper flex cuts 174 as shown in FIG. 29, with such depiction bounded to the left and right by the positions where singulation cuts 175 will be made later in the assembly process.
  • In the depicted embodiments, adhesive 171 is applied to the upper surface 116 of CSP 114, to upper portions 130U of flex circuit 130, or to both upper surface 116 and upper portions 130U. In a preferred embodiment, adhesive 171 comprises a dry film adhesive. Those of skill will recognize, however, that adhesive 171 may be selectively applied to selected portions of upper surface 116 or upper portions 130U, or both, and that other methods for attaching the upper surfaces 118 to flex circuits 130 may be employed in various embodiments of the present invention including, for example, laminate tape adhesive and liquid adhesive. Preferably, the adhesive will be thermally conductive.
  • As shown in FIGS. 23 and 31, in the disclosed embodiments, upper portions 130U of flex circuit 130 are disposed along the upper surface 116 of CSP 114 even if literally separated from that surface, such as by adhesive 171, for example. Disposition of upper portions 130U of flex circuit 130 along the upper surface 116 of CSP 114 can be accomplished using a tooling apparatus 180 devised in accordance with a preferred embodiment of the present invention, as depicted in FIGS. 39-43 and discussed below. FIG. 31 depicts flex circuit edges 170A and 170B in a proximal arrangement according to a preferred embodiment of the present invention.
  • As exemplified by the embodiment illustrated in FIG. 31, flex circuit 130 is configured for external electrical connection of lower CSP 114. Referring to FIG. 31, upper sides 133 of upper portions 130U of flex circuit 130 are depicted having upper flex contacts or pads 142 disposed in a first upper flex contact array 148A and a second upper flex contract array 148B. As those of skill will recognize, first upper flex contact array 148A and second upper flex contract array 148B have been abstracted to illustrate an exemplar set of upper flex contacts 142 when in practice, first upper flex contact array 148A and second upper flex contract array 148B may include a greater or lesser number of individual upper flex contacts or have flex contacts disposed in a different configuration, or both.
  • The depiction of FIG. 31 shows flex edges 170A and 170B separated by gap G. Flex edges 170A and 170B terminate respective upper portions 130U of flex circuit 130. Whether one or two distinct flex circuits are employed, gap G between edges 170A and 170B is controlled by a physical form during assembly of precursor assembly 105 and first upper flex contact array 148A and second upper flex contract array 148B will, therefore, be localized or fixed in relative position. In the exemplary embodiments, first upper flex contact array 148A and second upper flex contract array 148B together define an array of upper flex contacts 142 configured for connection to CSP contacts 124 of upper CSP 112.
  • Other means may be employed to position or set edges 170A and 170B and, by extension, first upper flex contact array 148A and second upper flex contract array 148B. For example, flex edges 170A and 170B may be devised to be jointly fittable with each other as shown in FIG. 32 to position first upper flex contact array 148A and second upper flex contract array 148B. Protrusion 176 fits with receptive check 177 to both align laterally and transversely edges 170A and 170B. Other similar devices may be employed to laterally and/or transversely align edges 170A and 170B. Thus, first upper flex contact array 148A and second upper flex contract array 148B are disposed in predetermined relation to each other by the jointly fittable configuration of edges 170A and 170B to mesh with each other. Consequently, in this depicted alternative embodiment, edges 170A and 170B are disposed in predetermined relation to each other by their jointly fittable configurations.
  • Stacked circuit modules devised in accordance with the invention can comprise multiple precursor assemblies 105 as shown in FIG. 34 or a single precursor assembly 105 as shown in FIG. 35. When assembling precursor assemblies 105 for use in stacked circuit modules comprising multiple precursor assemblies 105, the precursor assemblies 105 can be singulated at this stage with singulation cuts 175, placed for example as depicted in FIG. 29. In such embodiments, module contacts 136 are disposed along flex contacts or pads 149 on flex circuit 130 as exemplified in FIG. 33, which depicts a plan view of an exemplar precursor assembly 105 from below. As those of skill will recognize, module contact arrays 138 have been abstracted to illustrate an exemplar set of module contacts 136 when in practice, module contact arrays 138 may include a greater or lesser number of individual module contacts or module contacts disposed in a different configuration. Alternatively, in preferred embodiments singulation with singulation cuts 175 can be deferred until all precursor assemblies 105 and upper CSPs 112 have been assembled.
  • FIG. 34 depicts an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that employs three precursor assemblies 105. In this embodiment, each flex circuit 130 has folded portions 131 respective disposed adjacent to first and second lateral sides of the stack. As those of skill in the art will recognize, however, stacked circuit modules 110 also can be devised with one, two, three, four, or more precursor assemblies 105, or with precursor assemblies using CSPs of different types. In some configurations, one or more lower CSPs 114 may have a lateral extent L having a proportion such that folded portions 131 of one or more other precursor assemblies 105 may not be disposed outside such lateral extent.
  • FIG. 35 depicts an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that employs a single precursor assembly 105. In this embodiment, flex circuit 130 has folded portions 131 respective disposed adjacent to first and second lateral sides of the stack. For stacked circuit modules 110 comprising one lower CSP 114, in a preferred embodiment upper CSP 112 is attached to flex circuit 130 prior to singulation of stacked circuit modules 110. Automated pick-and-place equipment know in the art is used to dispose upper CSP 112 on flex circuit 130 as shown in FIG. 35. The pick-and-place equipment dips CSP contacts 124 in flux prior to placement of CSP 112 on flex circuit 130. After placement of CSP 112 on flex circuit 130, the stacked circuit modules 110 are clamped while heat is supplied during a second solder reflow operation to produce a solder connection between CSP contacts 124 and upper flex contacts 142. The combination of adhesive 134, stiffener 139, adhesive 135, and adhesive 171 cooperate to maintain flex circuit 130 and CSP 114 in proper position during the second solder reflow operation.
  • In a preferred embodiment, module contacts 136 are disposed along flex contacts or pads 149 on flex circuit 130 in module contact arrays 138. FIGS. 36 and 37 depict, respectively, lower perspective and upper perspective views of an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that employs a single precursor assembly 105. Exemplar stacked circuit modules 110 typically are connected to an application environment, such as a printed circuit board, in a third solder reflow operation. The combination of adhesive 134, stiffener 139, adhesive 135, and adhesive 171 cooperate to maintain flex circuit 130, CSP 114, and CSP 112 in proper position during the third solder reflow operation.
  • FIG. 38 depicts an exemplar stacked circuit module 110 in accordance with a preferred embodiment of the present invention that has stiffeners 139 disposed at least partially outside lateral extent L of CSP 114. Embodiments as illustrated in FIG. 38 may be devised when using a strip 230 and stiffener stock 237 devised for use with a CSPs having larger dimensions than CSP 114 depicted in FIG. 38. Accordingly, in preferred embodiments, a single size of strip 230 and stiffener stock 237 can be used for a variety of CSP package sizes. In various embodiments of precursor assembly 105 in which stiffeners 139 are disposed at least partially outside lateral extent L of CSP 114, the portions of stiffeners 139 outside lateral extent L will substantially control the size of gap G in many alternative methods of assembly.
  • A wide variety of other variations in the configuration and materials of precursor assemblies 105 and stacked circuit modules 110 will be apparent to those skilled in the art. For example, tabs 238 need not be rectangular or completely trimmed away during singulation with singulation cuts 175, but can also extend along some or all of the ends of precursor assembly 105. Singulation openings 233 and upper flex cuts 174 can take other shapes and be disposed in different positions, which for example provide a narrower portion of flex circuit 130 between stiffener 139 and upper surface 116 of CSP 114 to allow enhanced ventilation. In alternative embodiments, a stabilizing fill may be employed between flex circuit 130 and CSP 114, for example as illustrated by conformal media 40 depicted in FIGS. 2 and 16.
  • In preferred embodiments, a low profile for precursor assembly 105 is provided. In such embodiments, stiffener 139 typically is about 0.13 mm thick, and adhesive 134 is about 0.05 mm thick. Adhesive 135 typically is about 0.07 mm thick, but can range across a variety of thicknesses. For example, in various preferred embodiments Adhesive 135 ranges from about 0.04 mm. to about 0.10 mm thick. Adhesive 171 typically is about 0.08 mm thick. The various thicknesses used in embodiments devised in accordance with the invention are subject to wide ranges of alternatives, as those of skill will recognize.
  • FIG. 39 depicts a tooling apparatus 180 devised in accordance with a preferred embodiment of the present invention illustrating the use of a physical form to set gap G between edges 170A and 170B of flex circuit 130. Tooling apparatus 180 includes a flex aligner 182 as shown in FIG. 39 used as a physical form to impose a preselected distance between the first and second edges. When forming tool 184 disposes flex circuit 130 adjacent to upper surface 116 of CSP 114 in forming precursor assembly 105, edges 170A and 170B of flex circuit 130 are limited in lateral placement along upper surface 116 of CSP 114 by flex aligner 182. Gap “G” is, therefore, preselected and determined by the dimensions of flex aligner 182 when disposed between edges 170A and 170B. With gap G and edges 170A and 170B thus determined, first upper flex contact array 148A and second upper flex contract array 148B are positioned during assembly as exemplified in FIG. 31.
  • FIG. 40 depicts an enlarged depiction of the area marked “40” in FIG. 39. As shown in the construction of the example precursor assembly 105, flex circuit 130 is attached to stiffener 139 with adhesive 134. When precursor assembly 105 comprising CSP 114, stiffeners 139, adhesives 134 and 135, and flex circuit 130 is disposed in cavity 188 of jig 186, flex circuit 130 is deflected in an upward direction as shown in FIG. 40.
  • FIG. 41 illustrates a step in a method of devising an precursor assembly 105 in accordance with a preferred embodiment of the present invention. As indicated, forming tools 184 are moveable as indicated by the arrow 184M to indicate with the “+” sign movement of forming tools 184 to dispose upper ends 130U of flex circuit 130 over CSP 114. The ends 170A and 170B are set apart at distance “G” apart by flex aligner 182.
  • FIG. 42 illustrates another step in a method for devising a precursor assembly 105 in accordance with a preferred embodiment of the present invention. Press tool 189 is imposed on precursor assembly 105 after upper portions 130U of flex circuit 130 have been disposed over the upper surface 116 of the CSP 114 and forming tools 184 are withdrawn as indicated by the arrow 184M to indicate with the “−” sign movement of forming tools 184. Press tool 189 preferably may be heated.
  • FIG. 43 depicts another step in a method for devising a precursor assembly 105 in accordance with a preferred embodiment of the present invention. Press tool 189 has moved up off of precursor assembly 105 as indicated by motion arrow 189M. Flex aligner 182 may now be withdrawn and precursor assembly 105 is ready for combination with either another precursor assembly 105 or a CSP 112 to form a module 110.
  • FIG. 44 depicts a tooling apparatus 180 devised in accordance with another preferred embodiment of the present invention also using a physical form to set gap G between edges 170A and 170B of flex circuit 130. In a step of a preferred method for using the tooling apparatus 180 depicted in FIG. 44, jigs 186 are placed in first configuration with jigs 186 set apart by a first width W1. In this embodiment, precursor assembly 105 comprising CSP 114, stiffeners 139, adhesives 134 and 135, and flex circuit 130 is disposed in cavity 188 by flex aligner 182, and upper portions 130U of flex circuit 130 are deflected in an upward direction in the configuration shown in FIG. 44 by preform tools 187 comprised in press tool 189A.
  • In the embodiment depicted in FIG. 45, press tool 189A used for the step depicted in FIG. 44 is retracted and exchanged for press tool 189B shown, which does not comprise preform tools 187. With precursor assembly 105 raised above cavity 188, jigs 186 are moved in the direction indicated by motion arrows 186M to a second configuration, in which jigs 186 are set apart by a second width W2. In the configuration depicted in FIG. 45, the flex preformed by the step depicted in FIG. 44 relaxes, with upper portions 130U of flex circuit 130 springing back to some extent from the position depicted in FIG. 44.
  • FIG. 46 depicts another step in a preferred method for using the illustrated tooling apparatus 180. With jigs 186 set apart by second width W2, precursor assembly 105 is disposed in cavity 188 by flex aligner 182, which causes upper portions 130U of flex circuit 130 to be deflected in an inward direction in the configuration shown in FIG. 46 by interference with jigs 186 set apart at second width W2.
  • FIG. 47 depicts another step in a preferred method for using the illustrated tooling apparatus 180. With upper portions 130U of flex circuit 130 disposed above CSP 114, such as depicted in FIG. 46, press tool 189B is imposed on precursor assembly 105. Press tool 189B preferably may be heated. In this configuration, the ends 170A and 170B of flex circuit 130 are set apart at distance G by flex aligner 182, and upper portions 130U of flex circuit 130 are attached to top surface 116 of CSP 114 by adhesive 171, for example as illustrated in FIG. 23.
  • FIG. 48 depicts another step in a method for devising a precursor assembly 105 in accordance with a preferred embodiment of the present invention. Press tool 189B has moved up off of precursor assembly 105 as indicated by motion arrow 189M. Flex aligner 182 may now be withdrawn and precursor assembly 105 is ready for combination with either another precursor assembly 105 or a CSP 112 to form a module 110.
  • The tooling apparatus and methods depicted in FIGS. 44-48 do not have or use forming tools 184 such as those depicted in FIGS. 39-43, but forming tools 184 and other similar structures could be used in the methods and with the tooling apparatus depicted in FIGS. 44-48 instead of, or with, press tool 189B.
  • Although the present invention has been described in detail, it will be apparent to those skilled in the art that the invention may be embodied in a variety of specific forms and that various changes, substitutions and alterations can be made without departing from the spirit and scope of the invention. The described embodiments are only illustrative and not restrictive, and therefore the scope of the invention is indicated by the following claims.

Claims (4)

1. An assembly devised as a component for a stacked circuit module comprising:
a first CSP having upper and lower major surfaces, first and second lateral sides, and first CSP contacts disposed along the lower major surface;
a flex circuit configured for external electrical connection of the first CSP, the flex circuit comprising
lower flex contacts connected to selected ones of the first CSP contacts, and
first and second upper portions terminated by first and second edges, respectively, the first upper portion of the flex circuit being disposed above the upper major surface of the first CSP along the first lateral side, the second upper portion of the flex circuit being disposed above the upper major surface of the first CSP along the second lateral side, and the first and second edges being disposed a preselected distance apart above the first CSP;
a stiffener attached to the lower major surface of the first CSP.
2. The assembly of claim 1 in which the first CSP contacts at least partially project below the lower major surface of the first CSP.
3. The assembly of claim 1 in which the stiffener disposes the lower flex contacts apart from the lower major surface of the first CSP.
4. The assembly of claim 3 in which the flex circuit has plural conductive layers.
US11/874,795 2001-10-26 2007-10-18 Stacked Modules and Method Abandoned US20080088032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/874,795 US20080088032A1 (en) 2001-10-26 2007-10-18 Stacked Modules and Method

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US10/005,581 US6576992B1 (en) 2001-10-26 2001-10-26 Chip scale stacking system and method
US10/136,890 US6940729B2 (en) 2001-10-26 2002-05-02 Integrated circuit stacking system and method
US10/400,309 US20030137048A1 (en) 2001-10-26 2003-03-27 Stacking system and method
US10/453,398 US6914324B2 (en) 2001-10-26 2003-06-03 Memory expansion and chip scale stacking system and method
US10/457,608 US20030234443A1 (en) 2001-10-26 2003-06-09 Low profile stacking system and method
US10/631,886 US7026708B2 (en) 2001-10-26 2003-07-14 Low profile chip scale stacking system and method
PCT/US2003/029000 WO2004109802A1 (en) 2003-06-03 2003-09-15 Memory expansion and integrated circuit stacking system and method
US10/845,029 US20050056921A1 (en) 2003-09-15 2004-05-13 Stacked module systems and methods
US10/873,847 US7094632B2 (en) 2001-10-26 2004-06-22 Low profile chip scale stacking system and method
US10/958,584 US7606048B2 (en) 2001-10-26 2004-10-05 Integrated circuit stacking system
US11/015,521 US20050098873A1 (en) 2003-09-15 2004-12-17 Stacked module systems and methods
US11/258,438 US7310458B2 (en) 2001-10-26 2005-10-25 Stacked module systems and methods
US11/263,627 US7656678B2 (en) 2001-10-26 2005-10-31 Stacked module systems
US11/317,425 US20060131716A1 (en) 2001-10-26 2005-12-22 Stacking system and method
US11/403,081 US20060255446A1 (en) 2001-10-26 2006-04-12 Stacked modules and method
US11/874,795 US20080088032A1 (en) 2001-10-26 2007-10-18 Stacked Modules and Method

Related Parent Applications (4)

Application Number Title Priority Date Filing Date
US11/258,438 Continuation-In-Part US7310458B2 (en) 2001-10-26 2005-10-25 Stacked module systems and methods
US11/263,627 Continuation-In-Part US7656678B2 (en) 2001-10-26 2005-10-31 Stacked module systems
US11/317,425 Continuation-In-Part US20060131716A1 (en) 2001-10-26 2005-12-22 Stacking system and method
US11/403,081 Continuation US20060255446A1 (en) 2001-10-26 2006-04-12 Stacked modules and method

Publications (1)

Publication Number Publication Date
US20080088032A1 true US20080088032A1 (en) 2008-04-17

Family

ID=37968096

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/403,081 Abandoned US20060255446A1 (en) 2001-10-26 2006-04-12 Stacked modules and method
US11/873,351 Expired - Lifetime US7719098B2 (en) 2001-10-26 2007-10-16 Stacked modules and method
US11/873,355 Abandoned US20080120831A1 (en) 2001-10-26 2007-10-16 Stacked Modules and Method
US11/874,795 Abandoned US20080088032A1 (en) 2001-10-26 2007-10-18 Stacked Modules and Method
US11/874,775 Abandoned US20080090329A1 (en) 2001-10-26 2007-10-18 Stacked Modules and Method

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/403,081 Abandoned US20060255446A1 (en) 2001-10-26 2006-04-12 Stacked modules and method
US11/873,351 Expired - Lifetime US7719098B2 (en) 2001-10-26 2007-10-16 Stacked modules and method
US11/873,355 Abandoned US20080120831A1 (en) 2001-10-26 2007-10-16 Stacked Modules and Method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/874,775 Abandoned US20080090329A1 (en) 2001-10-26 2007-10-18 Stacked Modules and Method

Country Status (2)

Country Link
US (5) US20060255446A1 (en)
WO (1) WO2007050120A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514773B2 (en) * 2006-08-31 2009-04-07 Intel Corporation Systems and arrangements for interconnecting integrated circuit dies
US7772708B2 (en) * 2006-08-31 2010-08-10 Intel Corporation Stacking integrated circuit dies
US7692946B2 (en) * 2007-06-29 2010-04-06 Intel Corporation Memory array on more than one die
SG155096A1 (en) 2008-03-03 2009-09-30 Micron Technology Inc Board-on-chip type substrates with conductive traces in multiple planes, semiconductor device packages including such substrates, and associated methods
JP5012612B2 (en) * 2008-03-26 2012-08-29 日本電気株式会社 Semiconductor device mounting structure and electronic device using the mounting structure
JP5115269B2 (en) * 2008-03-26 2013-01-09 日本電気株式会社 Semiconductor device mounting structure and electronic device using the mounting structure
KR100956688B1 (en) * 2008-05-13 2010-05-10 삼성전기주식회사 Printed Circuit Board and Manufacturing Method Thereof
KR101485582B1 (en) * 2008-08-13 2015-01-23 삼성전자주식회사 semiconductor package and method for manufacturing the same
US7859094B2 (en) * 2008-09-25 2010-12-28 Stats Chippac Ltd. Integrated circuit package system for stackable devices
US20110084375A1 (en) * 2009-10-13 2011-04-14 Freescale Semiconductor, Inc Semiconductor device package with integrated stand-off
US8278756B2 (en) * 2010-02-24 2012-10-02 Inpaq Technology Co., Ltd. Single chip semiconductor coating structure and manufacturing method thereof
US9070851B2 (en) 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
KR101796116B1 (en) 2010-10-20 2017-11-10 삼성전자 주식회사 Semiconductor device, memory module and memory system having the same and operating method thereof
US9131634B2 (en) 2011-11-15 2015-09-08 Qualcomm Incorporated Radio frequency package on package circuit
WO2014036558A2 (en) 2012-09-03 2014-03-06 Sagalio, Inc. Method and system for smart contact arrays and stacked devices
EP2757583A1 (en) * 2013-01-17 2014-07-23 Funai Electric Co., Ltd. Chip on film, and method of manufacture thereof
US9703321B2 (en) 2013-07-09 2017-07-11 I-Blades, Inc. Snap on wearable module
US9769920B2 (en) 2014-03-26 2017-09-19 Apple Inc. Flexible printed circuits with bend retention structures
CN205944139U (en) 2016-03-30 2017-02-08 首尔伟傲世有限公司 Ultraviolet ray light -emitting diode spare and contain this emitting diode module

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436604A (en) * 1966-04-25 1969-04-01 Texas Instruments Inc Complex integrated circuit array and method for fabricating same
US3654394A (en) * 1969-07-08 1972-04-04 Gordon Eng Co Field effect transistor switch, particularly for multiplexing
US3806767A (en) * 1973-03-15 1974-04-23 Tek Wave Inc Interboard connector
US4079511A (en) * 1976-07-30 1978-03-21 Amp Incorporated Method for packaging hermetically sealed integrated circuit chips on lead frames
US4381421A (en) * 1980-07-01 1983-04-26 Tektronix, Inc. Electromagnetic shield for electronic equipment
US4437235A (en) * 1980-12-29 1984-03-20 Honeywell Information Systems Inc. Integrated circuit package
US4513368A (en) * 1981-05-22 1985-04-23 Data General Corporation Digital data processing system having object-based logical memory addressing and self-structuring modular memory
US4645944A (en) * 1983-09-05 1987-02-24 Matsushita Electric Industrial Co., Ltd. MOS register for selecting among various data inputs
US4722691A (en) * 1986-02-03 1988-02-02 General Motors Corporation Header assembly for a printed circuit board
US4733461A (en) * 1984-12-28 1988-03-29 Micro Co., Ltd. Method of stacking printed circuit boards
US4821007A (en) * 1987-02-06 1989-04-11 Tektronix, Inc. Strip line circuit component and method of manufacture
US4823234A (en) * 1985-08-16 1989-04-18 Dai-Ichi Seiko Co., Ltd. Semiconductor device and its manufacture
US4891789A (en) * 1988-03-03 1990-01-02 Bull Hn Information Systems, Inc. Surface mounted multilayer memory printed circuit board
US4903169A (en) * 1986-04-03 1990-02-20 Matsushita Electric Industrial Co., Ltd. Shielded high frequency apparatus having partitioned shield case, and method of manufacture thereof
US4911643A (en) * 1988-10-11 1990-03-27 Beta Phase, Inc. High density and high signal integrity connector
US4983533A (en) * 1987-10-28 1991-01-08 Irvine Sensors Corporation High-density electronic modules - process and product
US4985703A (en) * 1988-02-03 1991-01-15 Nec Corporation Analog multiplexer
US5012323A (en) * 1989-11-20 1991-04-30 Micron Technology, Inc. Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe
US5081067A (en) * 1989-02-10 1992-01-14 Fujitsu Limited Ceramic package type semiconductor device and method of assembling the same
US5099393A (en) * 1991-03-25 1992-03-24 International Business Machines Corporation Electronic package for high density applications
US5104820A (en) * 1989-07-07 1992-04-14 Irvine Sensors Corporation Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting
US5198965A (en) * 1991-12-18 1993-03-30 International Business Machines Corporation Free form packaging of specific functions within a computer system
US5198888A (en) * 1987-12-28 1993-03-30 Hitachi, Ltd. Semiconductor stacked device
US5276418A (en) * 1988-11-16 1994-01-04 Motorola, Inc. Flexible substrate electronic assembly
US5281852A (en) * 1991-12-10 1994-01-25 Normington Peter J C Semiconductor device including stacked die
US5289062A (en) * 1991-03-18 1994-02-22 Quality Semiconductor, Inc. Fast transmission gate switch
US5289346A (en) * 1991-02-26 1994-02-22 Microelectronics And Computer Technology Corporation Peripheral to area adapter with protective bumper for an integrated circuit chip
US5384690A (en) * 1993-07-27 1995-01-24 International Business Machines Corporation Flex laminate package for a parallel processor
US5386341A (en) * 1993-11-01 1995-01-31 Motorola, Inc. Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape
US5394303A (en) * 1992-09-11 1995-02-28 Kabushiki Kaisha Toshiba Semiconductor device
US5396573A (en) * 1993-08-03 1995-03-07 International Business Machines Corporation Pluggable connectors for connecting large numbers of electrical and/or optical cables to a module through a seal
US5397916A (en) * 1991-12-10 1995-03-14 Normington; Peter J. C. Semiconductor device including stacked die
US5484959A (en) * 1992-12-11 1996-01-16 Staktek Corporation High density lead-on-package fabrication method and apparatus
US5502333A (en) * 1994-03-30 1996-03-26 International Business Machines Corporation Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit
US5509197A (en) * 1994-06-10 1996-04-23 Xetel Corporation Method of making substrate edge connector
US5594275A (en) * 1993-11-18 1997-01-14 Samsung Electronics Co., Ltd. J-leaded semiconductor package having a plurality of stacked ball grid array packages
US5610833A (en) * 1992-06-02 1997-03-11 Hewlett-Packard Company Computer-aided design methods and apparatus for multilevel interconnect technologies
US5612782A (en) * 1993-11-22 1997-03-18 Spectra-Physics Visiontech Oy Calibration method and calibration unit for calibrating a spectrometric device based upon two calibration samples
US5717556A (en) * 1995-04-26 1998-02-10 Nec Corporation Printed-wiring board having plural parallel-connected interconnections
US5729894A (en) * 1992-07-21 1998-03-24 Lsi Logic Corporation Method of assembling ball bump grid array semiconductor packages
US5744827A (en) * 1995-11-28 1998-04-28 Samsung Electronics Co., Ltd. Three dimensional stack package device having exposed coupling lead portions and vertical interconnection elements
US5869353A (en) * 1997-11-17 1999-02-09 Dense-Pac Microsystems, Inc. Modular panel stacking process
US5895969A (en) * 1992-05-25 1999-04-20 Hitachi, Ltd. And Hitachi Vlsi Engineering Corp. Thin type semiconductor device, module structure using the device and method of mounting the device on board
US5895970A (en) * 1997-05-02 1999-04-20 Nec Corporation Semiconductor package having semiconductor element, mounting structure of semiconductor package mounted on circuit board, and method of assembling semiconductor package
US6014316A (en) * 1997-06-13 2000-01-11 Irvine Sensors Corporation IC stack utilizing BGA contacts
US6013948A (en) * 1995-11-27 2000-01-11 Micron Technology, Inc. Stackable chip scale semiconductor package with mating contacts on opposed surfaces
US6028365A (en) * 1998-03-30 2000-02-22 Micron Technology, Inc. Integrated circuit package and method of fabrication
US6028352A (en) * 1997-06-13 2000-02-22 Irvine Sensors Corporation IC stack utilizing secondary leadframes
US6034878A (en) * 1996-12-16 2000-03-07 Hitachi, Ltd. Source-clock-synchronized memory system and memory unit
US6040624A (en) * 1997-10-02 2000-03-21 Motorola, Inc. Semiconductor device package and method
US6172874B1 (en) * 1998-04-06 2001-01-09 Silicon Graphics, Inc. System for stacking of integrated circuit packages
US6178093B1 (en) * 1996-06-28 2001-01-23 International Business Machines Corporation Information handling system with circuit assembly having holes filled with filler material
US6187652B1 (en) * 1998-09-14 2001-02-13 Fujitsu Limited Method of fabrication of multiple-layer high density substrate
US6186106B1 (en) * 1997-12-29 2001-02-13 Visteon Global Technologies, Inc. Apparatus for routing electrical signals in an engine
US6208521B1 (en) * 1997-05-19 2001-03-27 Nitto Denko Corporation Film carrier and laminate type mounting structure using same
US6205654B1 (en) * 1992-12-11 2001-03-27 Staktek Group L.P. Method of manufacturing a surface mount package
US6218731B1 (en) * 1999-05-21 2001-04-17 Siliconware Precision Industries Co., Ltd. Tiny ball grid array package
US6222737B1 (en) * 1999-04-23 2001-04-24 Dense-Pac Microsystems, Inc. Universal package and method of forming the same
US6336262B1 (en) * 1996-10-31 2002-01-08 International Business Machines Corporation Process of forming a capacitor with multi-level interconnection technology
US20020006032A1 (en) * 2000-05-23 2002-01-17 Chris Karabatsos Low-profile registered DIMM
US6351029B1 (en) * 1999-05-05 2002-02-26 Harlan R. Isaak Stackable flex circuit chip package and method of making same
US6360935B1 (en) * 1999-01-26 2002-03-26 Board Of Regents Of The University Of Texas System Apparatus and method for assessing solderability
US6368896B2 (en) * 1997-10-31 2002-04-09 Micron Technology, Inc. Method of wafer level chip scale packaging
US20020044423A1 (en) * 1999-05-14 2002-04-18 Primavera Anthony A. Method and apparatus for mounting and packaging electronic components
US6376769B1 (en) * 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
US6504104B2 (en) * 1997-12-10 2003-01-07 Siemens Aktiengesellschaft Flexible wiring for the transformation of a substrate with edge contacts into a ball grid array
US6509639B1 (en) * 2001-07-27 2003-01-21 Charles W. C. Lin Three-dimensional stacked semiconductor package
US6514793B2 (en) * 1999-05-05 2003-02-04 Dpac Technologies Corp. Stackable flex circuit IC package and method of making same
US6521530B2 (en) * 1998-11-13 2003-02-18 Fujitsu Limited Composite interposer and method for producing a composite interposer
US6522018B1 (en) * 2000-05-16 2003-02-18 Micron Technology, Inc. Ball grid array chip packages having improved testing and stacking characteristics
US6528870B2 (en) * 2000-01-28 2003-03-04 Kabushiki Kaisha Toshiba Semiconductor device having a plurality of stacked wiring boards
US6532162B2 (en) * 2001-05-26 2003-03-11 Intel Corporation Reference plane of integrated circuit packages
US6538895B2 (en) * 1999-07-15 2003-03-25 Infineon Technologies Ag TSOP memory chip housing configuration
US6549413B2 (en) * 2001-02-27 2003-04-15 Chippac, Inc. Tape ball grid array semiconductor package structure and assembly process
US6673651B2 (en) * 1999-07-01 2004-01-06 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor device including semiconductor elements mounted on base plate
US20040004281A1 (en) * 2002-07-03 2004-01-08 Jin-Chuan Bai Semiconductor package with heat sink
US6677670B2 (en) * 2000-04-25 2004-01-13 Seiko Epson Corporation Semiconductor device
US6683377B1 (en) * 2000-05-30 2004-01-27 Amkor Technology, Inc. Multi-stacked memory package
US6690584B2 (en) * 2000-08-14 2004-02-10 Fujitsu Limited Information-processing device having a crossbar-board connected to back panels on different sides
US6689634B1 (en) * 1999-09-22 2004-02-10 Texas Instruments Incorporated Modeling technique for selectively depopulating electrical contacts from a foot print of a grid array (BGA or LGA) package to increase device reliability
US6699730B2 (en) * 1996-12-13 2004-03-02 Tessers, Inc. Stacked microelectronic assembly and method therefor
US6707684B1 (en) * 2001-04-02 2004-03-16 Advanced Micro Devices, Inc. Method and apparatus for direct connection between two integrated circuits via a connector
US6707148B1 (en) * 2002-05-21 2004-03-16 National Semiconductor Corporation Bumped integrated circuits for optical applications
US6710437B2 (en) * 1996-12-03 2004-03-23 Oki Electric Industry Co., Ltd. Semiconductor device having a chip-size package
US6709893B2 (en) * 1998-05-11 2004-03-23 Micron Technology, Inc. Interconnections for a semiconductor device and method for forming same
US6838761B2 (en) * 2002-09-17 2005-01-04 Chippac, Inc. Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield
US6841855B2 (en) * 2003-04-28 2005-01-11 Intel Corporation Electronic package having a flexible substrate with ends connected to one another
US20050018495A1 (en) * 2004-01-29 2005-01-27 Netlist, Inc. Arrangement of integrated circuits in a memory module
US6849949B1 (en) * 1999-09-27 2005-02-01 Samsung Electronics Co., Ltd. Thin stacked package
US20050035440A1 (en) * 2001-08-22 2005-02-17 Tessera, Inc. Stacked chip assembly with stiffening layer
US6858910B2 (en) * 2000-01-26 2005-02-22 Texas Instruments Incorporated Method of fabricating a molded package for micromechanical devices
US20050040508A1 (en) * 2003-08-22 2005-02-24 Jong-Joo Lee Area array type package stack and manufacturing method thereof
US20050047250A1 (en) * 2003-08-29 2005-03-03 Hermann Ruckerbauer Semiconductor memory module
US6867496B1 (en) * 1999-10-01 2005-03-15 Seiko Epson Corporation Interconnect substrate, semiconductor device, methods of fabricating, inspecting, and mounting the semiconductor device, circuit board, and electronic instrument
US6869825B2 (en) * 2002-12-31 2005-03-22 Intel Corporation Folded BGA package design with shortened communication paths and more electrical routing flexibility
US6873039B2 (en) * 2002-06-27 2005-03-29 Tessera, Inc. Methods of making microelectronic packages including electrically and/or thermally conductive element
US6998704B2 (en) * 2002-08-30 2006-02-14 Nec Corporation Semiconductor device and method for manufacturing the same, circuit board, electronic apparatus, and semiconductor device manufacturing apparatus

Family Cites Families (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US536265A (en) * 1895-03-26 Window-scaffold
US3372310A (en) * 1965-04-30 1968-03-05 Radiation Inc Universal modular packages for integrated circuits
US3411122A (en) 1966-01-13 1968-11-12 Ibm Electrical resistance element and method of fabricating
US3772776A (en) 1969-12-03 1973-11-20 Thomas & Betts Corp Method of interconnecting memory plane boards
US3727064A (en) * 1971-03-17 1973-04-10 Monsanto Co Opto-isolator devices and method for the fabrication thereof
US3746934A (en) 1971-05-06 1973-07-17 Siemens Ag Stack arrangement of semiconductor chips
US3766439A (en) 1972-01-12 1973-10-16 Gen Electric Electronic module using flexible printed circuit board with heat sink means
US3718842A (en) * 1972-04-21 1973-02-27 Texas Instruments Inc Liquid crystal display mounting structure
US3983547A (en) 1974-06-27 1976-09-28 International Business Machines - Ibm Three-dimensional bubble device
US4079611A (en) * 1976-10-26 1978-03-21 Fedders Corporation Strip tension control system for the protection of fin tubing
US4288841A (en) 1979-09-20 1981-09-08 Bell Telephone Laboratories, Incorporated Double cavity semiconductor chip carrier
US4429349A (en) * 1980-09-30 1984-01-31 Burroughs Corporation Coil connector
JPS57181146A (en) 1981-04-30 1982-11-08 Hitachi Ltd Resin-sealed semiconductor device
US4406508A (en) 1981-07-02 1983-09-27 Thomas & Betts Corporation Dual-in-line package assembly
US4420794A (en) 1981-09-10 1983-12-13 Research, Incorporated Integrated circuit switch
US4567543A (en) * 1983-02-15 1986-01-28 Motorola, Inc. Double-sided flexible electronic circuit module
US4727513A (en) * 1983-09-02 1988-02-23 Wang Laboratories, Inc. Signal in-line memory module
US4712129A (en) 1983-12-12 1987-12-08 Texas Instruments Incorporated Integrated circuit device with textured bar cover
KR890004820B1 (en) 1984-03-28 1989-11-27 인터내셔널 비지네스 머신즈 코포레이션 Stacked double density memory module using industry standard memory chips
US4587596A (en) 1984-04-09 1986-05-06 Amp Incorporated High density mother/daughter circuit board connector
US4724611A (en) * 1985-08-23 1988-02-16 Nec Corporation Method for producing semiconductor module
US4696525A (en) 1985-12-13 1987-09-29 Amp Incorporated Socket for stacking integrated circuit packages
US4763188A (en) 1986-08-08 1988-08-09 Thomas Johnson Packaging system for multiple semiconductor devices
US4839717A (en) 1986-12-19 1989-06-13 Fairchild Semiconductor Corporation Ceramic package for high frequency semiconductor devices
US5159535A (en) 1987-03-11 1992-10-27 International Business Machines Corporation Method and apparatus for mounting a flexible film semiconductor chip carrier on a circuitized substrate
US4862249A (en) 1987-04-17 1989-08-29 Xoc Devices, Inc. Packaging system for stacking integrated circuits
KR970003915B1 (en) * 1987-06-24 1997-03-22 미다 가쓰시게 Semiconductor device and the use memory module
IT1214254B (en) 1987-09-23 1990-01-10 Sgs Microelettonica S P A SEMICONDUCTOR DEVICE IN PLASTIC OR CERAMIC CONTAINER WITH "CHIPS" FIXED ON BOTH SIDES OF THE CENTRAL ISLAND OF THE "FRAME".
US5016138A (en) 1987-10-27 1991-05-14 Woodman John K Three dimensional integrated circuit package
US4833568A (en) 1988-01-29 1989-05-23 Berhold G Mark Three-dimensional circuit component assembly and method corresponding thereto
US4992850A (en) * 1989-02-15 1991-02-12 Micron Technology, Inc. Directly bonded simm module
US5138434A (en) 1991-01-22 1992-08-11 Micron Technology, Inc. Packaging for semiconductor logic devices
US4956694A (en) 1988-11-04 1990-09-11 Dense-Pac Microsystems, Inc. Integrated circuit chip stacking
US4992849A (en) * 1989-02-15 1991-02-12 Micron Technology, Inc. Directly bonded board multiple integrated circuit module
DE69006609T2 (en) 1989-03-15 1994-06-30 Ngk Insulators Ltd Ceramic lid for closing a semiconductor element and method for closing a semiconductor element in a ceramic package.
JP2647194B2 (en) 1989-04-17 1997-08-27 住友電気工業株式会社 Semiconductor package sealing method
US4953060A (en) 1989-05-05 1990-08-28 Ncr Corporation Stackable integrated circuit chip package with improved heat removal
US5057903A (en) 1989-07-17 1991-10-15 Microelectronics And Computer Technology Corporation Thermal heat sink encapsulated integrated circuit
US5200362A (en) 1989-09-06 1993-04-06 Motorola, Inc. Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film
US5068708A (en) 1989-10-02 1991-11-26 Advanced Micro Devices, Inc. Ground plane for plastic encapsulated integrated circuit die packages
US5229641A (en) 1989-11-25 1993-07-20 Hitachi Maxell, Ltd. Semiconductor card and manufacturing method therefor
US5041902A (en) 1989-12-14 1991-08-20 Motorola, Inc. Molded electronic package with compression structures
US5191404A (en) * 1989-12-20 1993-03-02 Digital Equipment Corporation High density memory array packaging
JPH03227541A (en) 1990-02-01 1991-10-08 Hitachi Ltd Semiconductor device
US5083697A (en) 1990-02-14 1992-01-28 Difrancesco Louis Particle-enhanced joining of metal surfaces
US5041015A (en) 1990-03-30 1991-08-20 Cal Flex, Inc. Electrical jumper assembly
US5345205A (en) 1990-04-05 1994-09-06 General Electric Company Compact high density interconnected microwave system
US5261068A (en) 1990-05-25 1993-11-09 Dell Usa L.P. Dual path memory retrieval system for an interleaved dynamic RAM memory unit
US5050039A (en) 1990-06-26 1991-09-17 Digital Equipment Corporation Multiple circuit chip mounting and cooling arrangement
AU8519891A (en) * 1990-08-01 1992-03-02 Staktek Corporation Ultra high density integrated circuit packages, method and apparatus
US5852326A (en) 1990-09-24 1998-12-22 Tessera, Inc. Face-up semiconductor chip assembly
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
JP3242101B2 (en) 1990-10-05 2001-12-25 三菱電機株式会社 Semiconductor integrated circuit
JPH04162556A (en) 1990-10-25 1992-06-08 Mitsubishi Electric Corp Lead frame and its manufacturing
US5117282A (en) 1990-10-29 1992-05-26 Harris Corporation Stacked configuration for integrated circuit devices
JPH04284661A (en) * 1991-03-13 1992-10-09 Toshiba Corp Semiconductor device
US5219794A (en) 1991-03-14 1993-06-15 Hitachi, Ltd. Semiconductor integrated circuit device and method of fabricating same
US5158912A (en) 1991-04-09 1992-10-27 Digital Equipment Corporation Integral heatsink semiconductor package
US5138430A (en) 1991-06-06 1992-08-11 International Business Machines Corporation High performance versatile thermally enhanced IC chip mounting
US5214307A (en) 1991-07-08 1993-05-25 Micron Technology, Inc. Lead frame for semiconductor devices having improved adhesive bond line control
US5252857A (en) 1991-08-05 1993-10-12 International Business Machines Corporation Stacked DCA memory chips
US5448450A (en) 1991-08-15 1995-09-05 Staktek Corporation Lead-on-chip integrated circuit apparatus
JP2967621B2 (en) 1991-08-27 1999-10-25 日本電気株式会社 Method of manufacturing package for semiconductor device
US5168926A (en) 1991-09-25 1992-12-08 Intel Corporation Heat sink design integrating interface material
IT1252136B (en) 1991-11-29 1995-06-05 St Microelectronics Srl SEMICONDUCTOR DEVICE STRUCTURE WITH METALLIC DISSIPATOR AND PLASTIC BODY, WITH MEANS FOR AN ELECTRICAL CONNECTION TO THE HIGH RELIABILITY DISSIPATOR
US5919231A (en) 1992-01-10 1999-07-06 Hansa Medical Products, Inc. Delivery system for voice prosthesis
US5241454A (en) 1992-01-22 1993-08-31 International Business Machines Corporation Mutlilayered flexible circuit package
US5262927A (en) 1992-02-07 1993-11-16 Lsi Logic Corporation Partially-molded, PCB chip carrier package
US5224023A (en) 1992-02-10 1993-06-29 Smith Gary W Foldable electronic assembly module
US5243133A (en) 1992-02-18 1993-09-07 International Business Machines, Inc. Ceramic chip carrier with lead frame or edge clip
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5229916A (en) 1992-03-04 1993-07-20 International Business Machines Corporation Chip edge interconnect overlay element
US5259770A (en) 1992-03-19 1993-11-09 Amp Incorporated Impedance controlled elastomeric connector
US5438224A (en) 1992-04-23 1995-08-01 Motorola, Inc. Integrated circuit package having a face-to-face IC chip arrangement
US5361228A (en) 1992-04-30 1994-11-01 Fuji Photo Film Co., Ltd. IC memory card system having a common data and address bus
US5247423A (en) 1992-05-26 1993-09-21 Motorola, Inc. Stacking three dimensional leadless multi-chip module and method for making the same
US5343366A (en) 1992-06-24 1994-08-30 International Business Machines Corporation Packages for stacked integrated circuit chip cubes
US5702985A (en) 1992-06-26 1997-12-30 Staktek Corporation Hermetically sealed ceramic integrated circuit heat dissipating package fabrication method
US5804870A (en) 1992-06-26 1998-09-08 Staktek Corporation Hermetically sealed integrated circuit lead-on package configuration
US5854534A (en) 1992-08-05 1998-12-29 Fujitsu Limited Controlled impedence interposer substrate
US5266912A (en) * 1992-08-19 1993-11-30 Micron Technology, Inc. Inherently impedance matched multiple integrated circuit module
JPH0679990A (en) * 1992-09-04 1994-03-22 Mitsubishi Electric Corp Ic memory card
US5432630A (en) 1992-09-11 1995-07-11 Motorola, Inc. Optical bus with optical transceiver modules and method of manufacture
US5731633A (en) 1992-09-16 1998-03-24 Gary W. Hamilton Thin multichip module
US5402006A (en) * 1992-11-10 1995-03-28 Texas Instruments Incorporated Semiconductor device with enhanced adhesion between heat spreader and leads and plastic mold compound
US5313097A (en) 1992-11-16 1994-05-17 International Business Machines, Corp. High density memory module
US5375041A (en) 1992-12-02 1994-12-20 Intel Corporation Ra-tab array bump tab tape based I.C. package
US5347428A (en) 1992-12-03 1994-09-13 Irvine Sensors Corporation Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip
US5428190A (en) 1993-07-02 1995-06-27 Sheldahl, Inc. Rigid-flex board with anisotropic interconnect and method of manufacture
US5337388A (en) 1993-08-03 1994-08-09 International Business Machines Corporation Matrix of pluggable connectors for connecting large numbers of clustered electrical and/or opticcal cables to a module
US5523619A (en) 1993-11-03 1996-06-04 International Business Machines Corporation High density memory structure
US5477082A (en) 1994-01-11 1995-12-19 Exponential Technology, Inc. Bi-planar multi-chip module
JPH088389A (en) 1994-04-20 1996-01-12 Fujitsu Ltd Semiconductor device and semiconductor device unit
JPH07312469A (en) 1994-05-16 1995-11-28 Nippon Mektron Ltd Structure of bent part of multilayer flexible circuit board
US5448511A (en) 1994-06-01 1995-09-05 Storage Technology Corporation Memory stack with an integrated interconnect and mounting structure
US5644839A (en) 1994-06-10 1997-07-08 Xetel Corporation Surface mountable substrate edge terminal
US5523695A (en) 1994-08-26 1996-06-04 Vlsi Technology, Inc. Universal test socket for exposing the active surface of an integrated circuit in a die-down package
KR970005644B1 (en) 1994-09-03 1997-04-18 삼성전자 주식회사 Multi-block erase and verify device and method of non-volatile semiconductor memory device
JP2570628B2 (en) 1994-09-21 1997-01-08 日本電気株式会社 Semiconductor package and manufacturing method thereof
KR0147259B1 (en) 1994-10-27 1998-08-01 김광호 Stack type semiconductor package and method for manufacturing the same
US5588205A (en) 1995-01-24 1996-12-31 Staktek Corporation Method of manufacturing a high density integrated circuit module having complex electrical interconnect rails
US5491612A (en) * 1995-02-21 1996-02-13 Fairchild Space And Defense Corporation Three-dimensional modular assembly of integrated circuits
US5514907A (en) 1995-03-21 1996-05-07 Simple Technology Incorporated Apparatus for stacking semiconductor chips
US5612570A (en) * 1995-04-13 1997-03-18 Dense-Pac Microsystems, Inc. Chip stack and method of making same
US5657537A (en) 1995-05-30 1997-08-19 General Electric Company Method for fabricating a stack of two dimensional circuit modules
US5922061A (en) 1995-10-20 1999-07-13 Iq Systems Methods and apparatus for implementing high speed data communications
US6002167A (en) 1995-09-22 1999-12-14 Hitachi Cable, Ltd. Semiconductor device having lead on chip structure
SG45122A1 (en) 1995-10-28 1998-01-16 Inst Of Microelectronics Low cost and highly reliable chip-sized package
JPH09139559A (en) 1995-11-13 1997-05-27 Minolta Co Ltd Connection structure of circuit board
US5719440A (en) 1995-12-19 1998-02-17 Micron Technology, Inc. Flip chip adaptor package for bare die
US5646446A (en) 1995-12-22 1997-07-08 Fairchild Space And Defense Corporation Three-dimensional flexible assembly of integrated circuits
JPH09260568A (en) 1996-03-27 1997-10-03 Mitsubishi Electric Corp Semiconductor device and its manufacture
US5789815A (en) 1996-04-23 1998-08-04 Motorola, Inc. Three dimensional semiconductor package having flexible appendages
JP2810647B2 (en) 1996-04-30 1998-10-15 山一電機株式会社 IC package
US5778522A (en) 1996-05-20 1998-07-14 Staktek Corporation Method of manufacturing a high density integrated circuit module with complex electrical interconnect rails having electrical interconnect strain relief
DE19626126C2 (en) * 1996-06-28 1998-04-16 Fraunhofer Ges Forschung Method for forming a spatial chip arrangement and spatial chip arrangement
US6247228B1 (en) 1996-08-12 2001-06-19 Tessera, Inc. Electrical connection with inwardly deformable contacts
US5729896A (en) 1996-10-31 1998-03-24 International Business Machines Corporation Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder
US7149095B2 (en) 1996-12-13 2006-12-12 Tessera, Inc. Stacked microelectronic assemblies
US6121676A (en) 1996-12-13 2000-09-19 Tessera, Inc. Stacked microelectronic assembly and method therefor
US5959839A (en) 1997-01-02 1999-09-28 At&T Corp Apparatus for heat removal using a flexible backplane
US5933712A (en) 1997-03-19 1999-08-03 The Regents Of The University Of California Attachment method for stacked integrated circuit (IC) chips
US6084778A (en) 1997-04-29 2000-07-04 Texas Instruments Incorporated Three dimensional assembly using flexible wiring board
JP3924329B2 (en) * 1997-05-06 2007-06-06 グリフィクス インコーポレーティッド Multi-stage bending mode connector and replaceable chip module using the connector
US5913687A (en) * 1997-05-06 1999-06-22 Gryphics, Inc. Replacement chip module
JPH1135893A (en) * 1997-05-22 1999-02-09 Toray Dow Corning Silicone Co Ltd Sheet-like hot-melt adhesive and semiconductor
US6114763A (en) 1997-05-30 2000-09-05 Tessera, Inc. Semiconductor package with translator for connection to an external substrate
US5917709A (en) 1997-06-16 1999-06-29 Eastman Kodak Company Multiple circuit board assembly having an interconnect mechanism that includes a flex connector
US5986209A (en) 1997-07-09 1999-11-16 Micron Technology, Inc. Package stack via bottom leaded plastic (BLP) packaging
US6002589A (en) 1997-07-21 1999-12-14 Rambus Inc. Integrated circuit package for coupling to a printed circuit board
US6234820B1 (en) 1997-07-21 2001-05-22 Rambus Inc. Method and apparatus for joining printed circuit boards
JPH1197619A (en) 1997-07-25 1999-04-09 Oki Electric Ind Co Ltd Semiconductor device, manufacture thereof and mounting thereof
JP3294785B2 (en) 1997-09-01 2002-06-24 シャープ株式会社 Heat dissipation structure of circuit element
US6313402B1 (en) 1997-10-29 2001-11-06 Packard Hughes Interconnect Company Stress relief bend useful in an integrated circuit redistribution patch
US5899705A (en) 1997-11-20 1999-05-04 Akram; Salman Stacked leads-over chip multi-chip module
US5949657A (en) 1997-12-01 1999-09-07 Karabatsos; Chris Bottom or top jumpered foldable electronic assembly
US5953215A (en) 1997-12-01 1999-09-14 Karabatsos; Chris Apparatus and method for improving computer memory speed and capacity
US6266252B1 (en) 1997-12-01 2001-07-24 Chris Karabatsos Apparatus and method for terminating a computer memory bus
US5963427A (en) 1997-12-11 1999-10-05 Sun Microsystems, Inc. Multi-chip module with flexible circuit board
DE19758197C2 (en) 1997-12-30 2002-11-07 Infineon Technologies Ag Stack arrangement for two semiconductor memory chips and printed circuit board, which is equipped with a plurality of such stack arrangements
JP3097644B2 (en) 1998-01-06 2000-10-10 日本電気株式会社 Semiconductor device connection structure and connection method
US5926369A (en) 1998-01-22 1999-07-20 International Business Machines Corporation Vertically integrated multi-chip circuit package with heat-sink support
US6233650B1 (en) 1998-04-01 2001-05-15 Intel Corporation Using FET switches for large memory arrays
US6226862B1 (en) 1998-04-30 2001-05-08 Sheldahl, Inc. Method for manufacturing printed circuit board assembly
JP3055619B2 (en) 1998-04-30 2000-06-26 日本電気株式会社 Semiconductor device and manufacturing method thereof
US6072233A (en) 1998-05-04 2000-06-06 Micron Technology, Inc. Stackable ball grid array package
KR100285664B1 (en) 1998-05-15 2001-06-01 박종섭 Stack package and method for fabricating the same
US6329705B1 (en) 1998-05-20 2001-12-11 Micron Technology, Inc. Leadframes including offsets extending from a major plane thereof, packaged semiconductor devices including same, and method of designing and fabricating such leadframes
US6300679B1 (en) 1998-06-01 2001-10-09 Semiconductor Components Industries, Llc Flexible substrate for packaging a semiconductor component
US6300687B1 (en) 1998-06-26 2001-10-09 International Business Machines Corporation Micro-flex technology in semiconductor packages
US6272741B1 (en) 1998-07-24 2001-08-14 Autosplice, Inc. Hybrid solder ball and pin grid array circuit board interconnect system and method
JP3842444B2 (en) 1998-07-24 2006-11-08 富士通株式会社 Manufacturing method of semiconductor device
JP2000068444A (en) 1998-08-26 2000-03-03 Mitsubishi Electric Corp Semiconductor device
US6486544B1 (en) 1998-09-09 2002-11-26 Seiko Epson Corporation Semiconductor device and method manufacturing the same, circuit board, and electronic instrument
US6310392B1 (en) 1998-12-28 2001-10-30 Staktek Group, L.P. Stacked micro ball grid array packages
GB9900396D0 (en) 1999-01-08 1999-02-24 Danionics As Arrangements of electrochemical cells
US6369595B1 (en) * 1999-01-21 2002-04-09 Micron Technology, Inc. CSP BGA test socket with insert and method
US6965166B2 (en) 1999-02-24 2005-11-15 Rohm Co., Ltd. Semiconductor device of chip-on-chip structure
US6130477A (en) 1999-03-17 2000-10-10 Chen; Tsung-Chieh Thin enhanced TAB BGA package having improved heat dissipation
JP4149110B2 (en) * 1999-03-19 2008-09-10 富士フイルム株式会社 Scattering removal grid
US6313998B1 (en) 1999-04-02 2001-11-06 Legacy Electronics, Inc. Circuit board assembly having a three dimensional array of integrated circuit packages
JP3602000B2 (en) 1999-04-26 2004-12-15 沖電気工業株式会社 Semiconductor device and semiconductor module
US6446158B1 (en) 1999-05-17 2002-09-03 Chris Karabatsos Memory system using FET switches to select memory banks
DE19923523B4 (en) 1999-05-21 2004-09-30 Infineon Technologies Ag Semiconductor module with semiconductor chips arranged one above the other and connected to one another
US6830460B1 (en) * 1999-08-02 2004-12-14 Gryphics, Inc. Controlled compliance fine pitch interconnect
JP2001053243A (en) 1999-08-06 2001-02-23 Hitachi Ltd Semiconductor memory device and memory module
US6675469B1 (en) 1999-08-11 2004-01-13 Tessera, Inc. Vapor phase connection techniques
WO2001015231A1 (en) 1999-08-19 2001-03-01 Seiko Epson Corporation Wiring board, semiconductor device, method of manufacturing semiconductor device, circuit board and electronic device
US6111761A (en) 1999-08-23 2000-08-29 Motorola, Inc. Electronic assembly
US6303981B1 (en) 1999-09-01 2001-10-16 Micron Technology, Inc. Semiconductor package having stacked dice and leadframes and method of fabrication
US6285560B1 (en) 1999-09-20 2001-09-04 Texas Instruments Incorporated Method for increasing device reliability by selectively depopulating solder balls from a foot print of a ball grid array (BGA) package, and device so modified
US6572387B2 (en) 1999-09-24 2003-06-03 Staktek Group, L.P. Flexible circuit connector for stacked chip module
WO2001026155A1 (en) 1999-10-01 2001-04-12 Seiko Epson Corporation Semiconductor device, method and device for producing the same, circuit board, and electronic equipment
US6441476B1 (en) 2000-10-18 2002-08-27 Seiko Epson Corporation Flexible tape carrier with external terminals formed on interposers
DE19954888C2 (en) 1999-11-15 2002-01-10 Infineon Technologies Ag Packaging for a semiconductor chip
JP2001177051A (en) 1999-12-20 2001-06-29 Toshiba Corp Semiconductor device and system apparatus
TW434664B (en) 1999-12-29 2001-05-16 Advanced Semiconductor Eng Lead-bond type chip package and method for making the same
US6262895B1 (en) 2000-01-13 2001-07-17 John A. Forthun Stackable chip package with flex carrier
JP2001203319A (en) 2000-01-18 2001-07-27 Sony Corp Laminated semiconductor device
JP2003520454A (en) * 2000-01-20 2003-07-02 グリフィクス インコーポレーティッド Flexible compliance interconnect assembly
JP2001217388A (en) 2000-02-01 2001-08-10 Sony Corp Electronic device and method for manufacturing the same
US6444921B1 (en) 2000-02-03 2002-09-03 Fujitsu Limited Reduced stress and zero stress interposers for integrated-circuit chips, multichip substrates, and the like
US6487078B2 (en) 2000-03-13 2002-11-26 Legacy Electronics, Inc. Electronic module having a three dimensional array of carrier-mounted integrated circuit packages
US6437990B1 (en) 2000-03-20 2002-08-20 Agere Systems Guardian Corp. Multi-chip ball grid array IC packages
US6320137B1 (en) 2000-04-11 2001-11-20 3M Innovative Properties Company Flexible circuit with coverplate layer and overlapping protective layer
US6449159B1 (en) 2000-05-03 2002-09-10 Rambus Inc. Semiconductor module with imbedded heat spreader
US6833984B1 (en) 2000-05-03 2004-12-21 Rambus, Inc. Semiconductor module with serial bus connection to multiple dies
US6624507B1 (en) 2000-05-09 2003-09-23 National Semiconductor Corporation Miniature semiconductor package for opto-electronic devices
US6778404B1 (en) 2000-06-02 2004-08-17 Micron Technology Inc Stackable ball grid array
US6660561B2 (en) 2000-06-15 2003-12-09 Dpac Technologies Corp. Method of assembling a stackable integrated circuit chip
US6236565B1 (en) 2000-06-15 2001-05-22 Mark G. Gordon Chip stack with active cooling system
US6358836B1 (en) * 2000-06-16 2002-03-19 Industrial Technology Research Institute Wafer level package incorporating elastomeric pads in dummy plugs
US6552910B1 (en) 2000-06-28 2003-04-22 Micron Technology, Inc. Stacked-die assemblies with a plurality of microelectronic devices and methods of manufacture
US6560117B2 (en) * 2000-06-28 2003-05-06 Micron Technology, Inc. Packaged microelectronic die assemblies and methods of manufacture
US7104804B2 (en) 2000-07-03 2006-09-12 Advanced Interconnect Solutions Method and apparatus for memory module circuit interconnection
JP3390412B2 (en) * 2000-08-07 2003-03-24 株式会社キャットアイ head lamp
US6717241B1 (en) 2000-08-31 2004-04-06 Micron Technology, Inc. Magnetic shielding for integrated circuits
US6462423B1 (en) 2000-08-31 2002-10-08 Micron Technology, Inc. Flip-chip with matched lines and ground plane
US6608763B1 (en) 2000-09-15 2003-08-19 Staktek Group L.P. Stacking system and method
KR100340285B1 (en) 2000-10-24 2002-06-15 윤종용 Memory module having series-connected printed circuit boards
US6782746B1 (en) * 2000-10-24 2004-08-31 Sandia National Laboratories Mobile monolithic polymer elements for flow control in microfluidic devices
KR100402391B1 (en) 2000-10-26 2003-10-22 삼성전자주식회사 Memory card system
US6392162B1 (en) 2000-11-10 2002-05-21 Chris Karabatsos Double-sided flexible jumper assembly and method of manufacture
US6414384B1 (en) 2000-12-22 2002-07-02 Silicon Precision Industries Co., Ltd. Package structure stacking chips on front surface and back surface of substrate
JP2002237568A (en) 2000-12-28 2002-08-23 Texas Instr Inc <Ti> Chip-scale package stacked on interconnect body folded for vertical assembly on substrate
KR100355032B1 (en) 2001-01-08 2002-10-05 삼성전자 주식회사 High density package memory device, memory module using this device, and control method of this module
US6737891B2 (en) 2001-02-01 2004-05-18 Chris Karabatsos Tri-directional, high-speed bus switch
US6410857B1 (en) 2001-03-01 2002-06-25 Lockheed Martin Corporation Signal cross-over interconnect for a double-sided circuit card assembly
US20020126951A1 (en) 2001-03-12 2002-09-12 Sutherland Robert A. Optical converter flex assemblies
US6884653B2 (en) 2001-03-21 2005-04-26 Micron Technology, Inc. Folded interposer
US6462408B1 (en) 2001-03-27 2002-10-08 Staktek Group, L.P. Contact member stacking system and method
US6910268B2 (en) 2001-03-27 2005-06-28 Formfactor, Inc. Method for fabricating an IC interconnect system including an in-street integrated circuit wafer via
SG108245A1 (en) 2001-03-30 2005-01-28 Micron Technology Inc Ball grid array interposer, packages and methods
US6588095B2 (en) 2001-04-27 2003-07-08 Hewlett-Packard Development Company, Lp. Method of processing a device by electrophoresis coating
US7115986B2 (en) 2001-05-02 2006-10-03 Micron Technology, Inc. Flexible ball grid array chip scale packages
KR100415279B1 (en) 2001-06-26 2004-01-16 삼성전자주식회사 Chip stack package and manufacturing method thereof
JP2003031885A (en) * 2001-07-19 2003-01-31 Toshiba Corp Semiconductor laser device
US6627984B2 (en) * 2001-07-24 2003-09-30 Dense-Pac Microsystems, Inc. Chip stack with differing chip package types
US6927471B2 (en) * 2001-09-07 2005-08-09 Peter C. Salmon Electronic system modules and method of fabrication
KR100429878B1 (en) 2001-09-10 2004-05-03 삼성전자주식회사 Memory module and printed circuit board for the same
DE10297316T5 (en) 2001-10-09 2004-12-09 Tessera, Inc., San Jose Stacked assemblies
US6977440B2 (en) * 2001-10-09 2005-12-20 Tessera, Inc. Stacked packages
KR20030029743A (en) 2001-10-10 2003-04-16 삼성전자주식회사 Stack package using flexible double wiring substrate
US6620651B2 (en) 2001-10-23 2003-09-16 National Starch And Chemical Investment Holding Corporation Adhesive wafers for die attach application
US6914324B2 (en) * 2001-10-26 2005-07-05 Staktek Group L.P. Memory expansion and chip scale stacking system and method
US6940729B2 (en) 2001-10-26 2005-09-06 Staktek Group L.P. Integrated circuit stacking system and method
US6576992B1 (en) 2001-10-26 2003-06-10 Staktek Group L.P. Chip scale stacking system and method
US6657134B2 (en) 2001-11-30 2003-12-02 Honeywell International Inc. Stacked ball grid array
US7081373B2 (en) 2001-12-14 2006-07-25 Staktek Group, L.P. CSP chip stack with flex circuit
US20030113998A1 (en) 2001-12-17 2003-06-19 Ross Andrew C. Flex tab for use in stacking packaged integrated circuit chips
US6891276B1 (en) 2002-01-09 2005-05-10 Bridge Semiconductor Corporation Semiconductor package device
US6762769B2 (en) 2002-01-23 2004-07-13 Microsoft Corporation System and method for real-time texture synthesis using patch-based sampling
SG121707A1 (en) 2002-03-04 2006-05-26 Micron Technology Inc Method and apparatus for flip-chip packaging providing testing capability
US6590282B1 (en) 2002-04-12 2003-07-08 Industrial Technology Research Institute Stacked semiconductor package formed on a substrate and method for fabrication
US6600222B1 (en) 2002-07-17 2003-07-29 Intel Corporation Stacked microelectronic packages
US6765288B2 (en) 2002-08-05 2004-07-20 Tessera, Inc. Microelectronic adaptors, assemblies and methods
WO2004017399A1 (en) 2002-08-16 2004-02-26 Tessera, Inc. Microelectronic packages with self-aligning features
US7246431B2 (en) 2002-09-06 2007-07-24 Tessera, Inc. Methods of making microelectronic packages including folded substrates
US6821029B1 (en) 2002-09-10 2004-11-23 Xilinx, Inc. High speed serial I/O technology using an optical link
US7071547B2 (en) 2002-09-11 2006-07-04 Tessera, Inc. Assemblies having stacked semiconductor chips and methods of making same
US6737742B2 (en) 2002-09-11 2004-05-18 International Business Machines Corporation Stacked package for integrated circuits
KR100616435B1 (en) 2002-11-28 2006-08-29 삼성전자주식회사 Semiconductor package and stack package stacking the same
US7291906B2 (en) 2002-12-31 2007-11-06 Ki Bon Cha Stack package and fabricating method thereof
US6762495B1 (en) 2003-01-30 2004-07-13 Qualcomm Incorporated Area array package with non-electrically connected solder balls
US6879047B1 (en) 2003-02-19 2005-04-12 Amkor Technology, Inc. Stacking structure for semiconductor devices using a folded over flexible substrate and method therefor
US20040217471A1 (en) 2003-02-27 2004-11-04 Tessera, Inc. Component and assemblies with ends offset downwardly
DE10319984B4 (en) 2003-05-05 2009-09-03 Qimonda Ag Device for cooling memory modules
US20040245617A1 (en) 2003-05-06 2004-12-09 Tessera, Inc. Dense multichip module
US6940158B2 (en) 2003-05-30 2005-09-06 Tessera, Inc. Assemblies having stacked semiconductor chips and methods of making same
US7269481B2 (en) 2003-06-25 2007-09-11 Intel Corporation Method and apparatus for memory bandwidth thermal budgetting
KR100535181B1 (en) 2003-11-18 2005-12-09 삼성전자주식회사 Semiconductor chip package having decoupling capacitor and manufacturing method thereof
KR100575590B1 (en) 2003-12-17 2006-05-03 삼성전자주식회사 Thermal emission type stack package and modules mounting the same

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436604A (en) * 1966-04-25 1969-04-01 Texas Instruments Inc Complex integrated circuit array and method for fabricating same
US3654394A (en) * 1969-07-08 1972-04-04 Gordon Eng Co Field effect transistor switch, particularly for multiplexing
US3806767A (en) * 1973-03-15 1974-04-23 Tek Wave Inc Interboard connector
US4079511A (en) * 1976-07-30 1978-03-21 Amp Incorporated Method for packaging hermetically sealed integrated circuit chips on lead frames
US4381421A (en) * 1980-07-01 1983-04-26 Tektronix, Inc. Electromagnetic shield for electronic equipment
US4437235A (en) * 1980-12-29 1984-03-20 Honeywell Information Systems Inc. Integrated circuit package
US4513368A (en) * 1981-05-22 1985-04-23 Data General Corporation Digital data processing system having object-based logical memory addressing and self-structuring modular memory
US4645944A (en) * 1983-09-05 1987-02-24 Matsushita Electric Industrial Co., Ltd. MOS register for selecting among various data inputs
US4733461A (en) * 1984-12-28 1988-03-29 Micro Co., Ltd. Method of stacking printed circuit boards
US4823234A (en) * 1985-08-16 1989-04-18 Dai-Ichi Seiko Co., Ltd. Semiconductor device and its manufacture
US4722691A (en) * 1986-02-03 1988-02-02 General Motors Corporation Header assembly for a printed circuit board
US4903169A (en) * 1986-04-03 1990-02-20 Matsushita Electric Industrial Co., Ltd. Shielded high frequency apparatus having partitioned shield case, and method of manufacture thereof
US4821007A (en) * 1987-02-06 1989-04-11 Tektronix, Inc. Strip line circuit component and method of manufacture
US4983533A (en) * 1987-10-28 1991-01-08 Irvine Sensors Corporation High-density electronic modules - process and product
US5198888A (en) * 1987-12-28 1993-03-30 Hitachi, Ltd. Semiconductor stacked device
US4985703A (en) * 1988-02-03 1991-01-15 Nec Corporation Analog multiplexer
US4891789A (en) * 1988-03-03 1990-01-02 Bull Hn Information Systems, Inc. Surface mounted multilayer memory printed circuit board
US4911643A (en) * 1988-10-11 1990-03-27 Beta Phase, Inc. High density and high signal integrity connector
US5276418A (en) * 1988-11-16 1994-01-04 Motorola, Inc. Flexible substrate electronic assembly
US5081067A (en) * 1989-02-10 1992-01-14 Fujitsu Limited Ceramic package type semiconductor device and method of assembling the same
US5104820A (en) * 1989-07-07 1992-04-14 Irvine Sensors Corporation Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting
US5012323A (en) * 1989-11-20 1991-04-30 Micron Technology, Inc. Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe
US5289346A (en) * 1991-02-26 1994-02-22 Microelectronics And Computer Technology Corporation Peripheral to area adapter with protective bumper for an integrated circuit chip
US5289062A (en) * 1991-03-18 1994-02-22 Quality Semiconductor, Inc. Fast transmission gate switch
US5099393A (en) * 1991-03-25 1992-03-24 International Business Machines Corporation Electronic package for high density applications
US5397916A (en) * 1991-12-10 1995-03-14 Normington; Peter J. C. Semiconductor device including stacked die
US5281852A (en) * 1991-12-10 1994-01-25 Normington Peter J C Semiconductor device including stacked die
US5198965A (en) * 1991-12-18 1993-03-30 International Business Machines Corporation Free form packaging of specific functions within a computer system
US5895969A (en) * 1992-05-25 1999-04-20 Hitachi, Ltd. And Hitachi Vlsi Engineering Corp. Thin type semiconductor device, module structure using the device and method of mounting the device on board
US5610833A (en) * 1992-06-02 1997-03-11 Hewlett-Packard Company Computer-aided design methods and apparatus for multilevel interconnect technologies
US5729894A (en) * 1992-07-21 1998-03-24 Lsi Logic Corporation Method of assembling ball bump grid array semiconductor packages
US5394303A (en) * 1992-09-11 1995-02-28 Kabushiki Kaisha Toshiba Semiconductor device
US6205654B1 (en) * 1992-12-11 2001-03-27 Staktek Group L.P. Method of manufacturing a surface mount package
US5484959A (en) * 1992-12-11 1996-01-16 Staktek Corporation High density lead-on-package fabrication method and apparatus
US5620782A (en) * 1993-07-27 1997-04-15 International Business Machines Corporation Method of fabricating a flex laminate package
US5384690A (en) * 1993-07-27 1995-01-24 International Business Machines Corporation Flex laminate package for a parallel processor
US5396573A (en) * 1993-08-03 1995-03-07 International Business Machines Corporation Pluggable connectors for connecting large numbers of electrical and/or optical cables to a module through a seal
US5386341A (en) * 1993-11-01 1995-01-31 Motorola, Inc. Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape
US5594275A (en) * 1993-11-18 1997-01-14 Samsung Electronics Co., Ltd. J-leaded semiconductor package having a plurality of stacked ball grid array packages
US5612782A (en) * 1993-11-22 1997-03-18 Spectra-Physics Visiontech Oy Calibration method and calibration unit for calibrating a spectrometric device based upon two calibration samples
US5502333A (en) * 1994-03-30 1996-03-26 International Business Machines Corporation Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit
US5509197A (en) * 1994-06-10 1996-04-23 Xetel Corporation Method of making substrate edge connector
US5717556A (en) * 1995-04-26 1998-02-10 Nec Corporation Printed-wiring board having plural parallel-connected interconnections
US6013948A (en) * 1995-11-27 2000-01-11 Micron Technology, Inc. Stackable chip scale semiconductor package with mating contacts on opposed surfaces
US5744827A (en) * 1995-11-28 1998-04-28 Samsung Electronics Co., Ltd. Three dimensional stack package device having exposed coupling lead portions and vertical interconnection elements
US6178093B1 (en) * 1996-06-28 2001-01-23 International Business Machines Corporation Information handling system with circuit assembly having holes filled with filler material
US6336262B1 (en) * 1996-10-31 2002-01-08 International Business Machines Corporation Process of forming a capacitor with multi-level interconnection technology
US6710437B2 (en) * 1996-12-03 2004-03-23 Oki Electric Industry Co., Ltd. Semiconductor device having a chip-size package
US6699730B2 (en) * 1996-12-13 2004-03-02 Tessers, Inc. Stacked microelectronic assembly and method therefor
US6034878A (en) * 1996-12-16 2000-03-07 Hitachi, Ltd. Source-clock-synchronized memory system and memory unit
US5895970A (en) * 1997-05-02 1999-04-20 Nec Corporation Semiconductor package having semiconductor element, mounting structure of semiconductor package mounted on circuit board, and method of assembling semiconductor package
US6208521B1 (en) * 1997-05-19 2001-03-27 Nitto Denko Corporation Film carrier and laminate type mounting structure using same
US6028352A (en) * 1997-06-13 2000-02-22 Irvine Sensors Corporation IC stack utilizing secondary leadframes
US6014316A (en) * 1997-06-13 2000-01-11 Irvine Sensors Corporation IC stack utilizing BGA contacts
US6040624A (en) * 1997-10-02 2000-03-21 Motorola, Inc. Semiconductor device package and method
US6368896B2 (en) * 1997-10-31 2002-04-09 Micron Technology, Inc. Method of wafer level chip scale packaging
US5869353A (en) * 1997-11-17 1999-02-09 Dense-Pac Microsystems, Inc. Modular panel stacking process
US6504104B2 (en) * 1997-12-10 2003-01-07 Siemens Aktiengesellschaft Flexible wiring for the transformation of a substrate with edge contacts into a ball grid array
US6186106B1 (en) * 1997-12-29 2001-02-13 Visteon Global Technologies, Inc. Apparatus for routing electrical signals in an engine
US6028365A (en) * 1998-03-30 2000-02-22 Micron Technology, Inc. Integrated circuit package and method of fabrication
US6172874B1 (en) * 1998-04-06 2001-01-09 Silicon Graphics, Inc. System for stacking of integrated circuit packages
US6709893B2 (en) * 1998-05-11 2004-03-23 Micron Technology, Inc. Interconnections for a semiconductor device and method for forming same
US6187652B1 (en) * 1998-09-14 2001-02-13 Fujitsu Limited Method of fabrication of multiple-layer high density substrate
US6521530B2 (en) * 1998-11-13 2003-02-18 Fujitsu Limited Composite interposer and method for producing a composite interposer
US6360935B1 (en) * 1999-01-26 2002-03-26 Board Of Regents Of The University Of Texas System Apparatus and method for assessing solderability
US6360433B1 (en) * 1999-04-23 2002-03-26 Andrew C. Ross Universal package and method of forming the same
US6222737B1 (en) * 1999-04-23 2001-04-24 Dense-Pac Microsystems, Inc. Universal package and method of forming the same
US6351029B1 (en) * 1999-05-05 2002-02-26 Harlan R. Isaak Stackable flex circuit chip package and method of making same
US6514793B2 (en) * 1999-05-05 2003-02-04 Dpac Technologies Corp. Stackable flex circuit IC package and method of making same
US20020044423A1 (en) * 1999-05-14 2002-04-18 Primavera Anthony A. Method and apparatus for mounting and packaging electronic components
US6376769B1 (en) * 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
US6218731B1 (en) * 1999-05-21 2001-04-17 Siliconware Precision Industries Co., Ltd. Tiny ball grid array package
US6673651B2 (en) * 1999-07-01 2004-01-06 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor device including semiconductor elements mounted on base plate
US6538895B2 (en) * 1999-07-15 2003-03-25 Infineon Technologies Ag TSOP memory chip housing configuration
US6689634B1 (en) * 1999-09-22 2004-02-10 Texas Instruments Incorporated Modeling technique for selectively depopulating electrical contacts from a foot print of a grid array (BGA or LGA) package to increase device reliability
US6849949B1 (en) * 1999-09-27 2005-02-01 Samsung Electronics Co., Ltd. Thin stacked package
US6867496B1 (en) * 1999-10-01 2005-03-15 Seiko Epson Corporation Interconnect substrate, semiconductor device, methods of fabricating, inspecting, and mounting the semiconductor device, circuit board, and electronic instrument
US6858910B2 (en) * 2000-01-26 2005-02-22 Texas Instruments Incorporated Method of fabricating a molded package for micromechanical devices
US6528870B2 (en) * 2000-01-28 2003-03-04 Kabushiki Kaisha Toshiba Semiconductor device having a plurality of stacked wiring boards
US6677670B2 (en) * 2000-04-25 2004-01-13 Seiko Epson Corporation Semiconductor device
US6522018B1 (en) * 2000-05-16 2003-02-18 Micron Technology, Inc. Ball grid array chip packages having improved testing and stacking characteristics
US20020006032A1 (en) * 2000-05-23 2002-01-17 Chris Karabatsos Low-profile registered DIMM
US6683377B1 (en) * 2000-05-30 2004-01-27 Amkor Technology, Inc. Multi-stacked memory package
US6690584B2 (en) * 2000-08-14 2004-02-10 Fujitsu Limited Information-processing device having a crossbar-board connected to back panels on different sides
US6549413B2 (en) * 2001-02-27 2003-04-15 Chippac, Inc. Tape ball grid array semiconductor package structure and assembly process
US6707684B1 (en) * 2001-04-02 2004-03-16 Advanced Micro Devices, Inc. Method and apparatus for direct connection between two integrated circuits via a connector
US6532162B2 (en) * 2001-05-26 2003-03-11 Intel Corporation Reference plane of integrated circuit packages
US6509639B1 (en) * 2001-07-27 2003-01-21 Charles W. C. Lin Three-dimensional stacked semiconductor package
US20050035440A1 (en) * 2001-08-22 2005-02-17 Tessera, Inc. Stacked chip assembly with stiffening layer
US6707148B1 (en) * 2002-05-21 2004-03-16 National Semiconductor Corporation Bumped integrated circuits for optical applications
US6873039B2 (en) * 2002-06-27 2005-03-29 Tessera, Inc. Methods of making microelectronic packages including electrically and/or thermally conductive element
US20040004281A1 (en) * 2002-07-03 2004-01-08 Jin-Chuan Bai Semiconductor package with heat sink
US6998704B2 (en) * 2002-08-30 2006-02-14 Nec Corporation Semiconductor device and method for manufacturing the same, circuit board, electronic apparatus, and semiconductor device manufacturing apparatus
US6838761B2 (en) * 2002-09-17 2005-01-04 Chippac, Inc. Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield
US6869825B2 (en) * 2002-12-31 2005-03-22 Intel Corporation Folded BGA package design with shortened communication paths and more electrical routing flexibility
US6841855B2 (en) * 2003-04-28 2005-01-11 Intel Corporation Electronic package having a flexible substrate with ends connected to one another
US20050040508A1 (en) * 2003-08-22 2005-02-24 Jong-Joo Lee Area array type package stack and manufacturing method thereof
US20050047250A1 (en) * 2003-08-29 2005-03-03 Hermann Ruckerbauer Semiconductor memory module
US20050018495A1 (en) * 2004-01-29 2005-01-27 Netlist, Inc. Arrangement of integrated circuits in a memory module

Also Published As

Publication number Publication date
US20080120831A1 (en) 2008-05-29
US20060255446A1 (en) 2006-11-16
WO2007050120A1 (en) 2007-05-03
US20080088003A1 (en) 2008-04-17
US20080090329A1 (en) 2008-04-17
US7719098B2 (en) 2010-05-18

Similar Documents

Publication Publication Date Title
US7719098B2 (en) Stacked modules and method
US6576992B1 (en) Chip scale stacking system and method
US7495334B2 (en) Stacking system and method
US6940729B2 (en) Integrated circuit stacking system and method
US6890798B2 (en) Stacked chip packaging
US7524703B2 (en) Integrated circuit stacking system and method
US7071547B2 (en) Assemblies having stacked semiconductor chips and methods of making same
US7476963B2 (en) Three-dimensional stack manufacture for integrated circuit devices and method of manufacture
US20010026441A1 (en) Printed wiring board having heat radiating means and method of manufacturing the same
US8830689B2 (en) Interposer-embedded printed circuit board
US6013953A (en) Semiconductor device with improved connection reliability
US20080067662A1 (en) Modularized Die Stacking System and Method
CN2512114Y (en) Duplicated piled reversing welding-ball matrix package body
JPH0613541A (en) Three-dimensional multichip semiconductor device which can be laminated and manufacture thereof
US20170118839A1 (en) Printed circuit board with edge soldering for high-density packages and assemblies
US6038135A (en) Wiring board and semiconductor device
US7202555B2 (en) Pitch change and chip scale stacking system and method
JP3685347B2 (en) Semiconductor device
US20060244114A1 (en) Systems, methods, and apparatus for connecting a set of contacts on an integrated circuit to a flex circuit via a contact beam
JPH07297501A (en) Printed wiring board

Legal Events

Date Code Title Description
AS Assignment

Owner name: STAKTEK GROUP L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEHRLY, JAMES DOUGLAS;REEL/FRAME:020499/0160

Effective date: 20060412

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION