New! View global litigation for patent families

US20070244539A1 - Self-sealing PTFE vascular graft and manufacturing methods - Google Patents

Self-sealing PTFE vascular graft and manufacturing methods Download PDF

Info

Publication number
US20070244539A1
US20070244539A1 US11810755 US81075507A US2007244539A1 US 20070244539 A1 US20070244539 A1 US 20070244539A1 US 11810755 US11810755 US 11810755 US 81075507 A US81075507 A US 81075507A US 2007244539 A1 US2007244539 A1 US 2007244539A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
graft
eptfe
tube
tubular
structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11810755
Inventor
David Lentz
Jamie Henderson
Edward Dormier
Richard Zdrahala
Gary Loomis
Ronald Rakos
Krzysztof Sowinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lifeport Sciences LLC
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • A61F2002/0086Special surfaces of prostheses, e.g. for improving ingrowth for preferentially controlling or promoting the growth of specific types of cells or tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device

Abstract

An implantable microporous ePTFE tubular vascular graft exhibits long term patency, superior radial tensile strength and suture hole elongation resistance. The graft includes a first ePTFE tube and a second ePTFE tube circumferentially disposed over the first tube. The first ePTFE tube exhibits a porosity sufficient to promote cell endothelization, tissue ingrowth and healing. The second ePTFE tube exhibits enhanced radial strength in excess of the radial tensile strength of the first tube.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a continuation of U.S. application Ser. No. 10/822,200, filed Apr. 9, 2004, now allowed, which is a continuation of U.S. application Ser. No. 10/212,609, filed on Aug. 5, 2002, now U.S. Pat. No. 6,719,783, which is a continuation of U.S. application Ser. No. 09/525,710, filed on Mar. 14, 2000, now U.S. Pat. No. 6,428,571, which is a continuation-in-part of U.S. application Ser. No. 09/008,265, filed on Jan. 16, 1998, now U.S. Pat. No. 6,036,724, which is a divisional of U.S. application Ser. No. 08/588,052, filed on Jan. 22, 1996, now U.S. Pat. No. 5,800,512, the full contents of all of which are incorporated herein by reference.
  • FIELD OF INVENTION
  • [0002]
    The present invention relates generally to a tubular implantable prosthesis such as vascular grafts and endoprostheses formed of porous polytetrafluoroethylene. More particularly, the present invention relates to a multi-layered tubular self-sealing graft or endoprosthesis formed from primarily expanded polytetrafluoroethylene.
  • BACKGROUND OF THE INVENTION
  • [0003]
    It is well known to use extruded tubes of polytetrafluoroethylene (PTFE) as implantable intraluminal prostheses, particularly vascular grafts. PTFE is particularly suitable as an implantable prosthesis as it exhibits superior biocompatability. PTFE tubes may be used as vascular grafts in the replacement or repair of a blood vessel as PTFE exhibits low thrombogenicity. In vascular applications, the grafts are manufactured from expanded polytetrafluoroethylene (ePTFE) tubes. These tubes have a microporous structure which allows natural tissue ingrowth and cell endothelization once implanted in the vascular system. This contributes to long term healing and patency of the graft.
  • [0004]
    Grafts formed of ePTFE have a fibrous state which is defined by interspaced nodes interconnected by elongated fibrils. The spaces between the node surfaces that is spanned by the fibrils is defined as the intemodal distance (IND). A graft having a large IND enhances tissue ingrowth and cell endothelization as the graft is inherently more porous.
  • [0005]
    The art is replete with examples of microporous ePTFE tubes useful as vascular grafts. The porosity of an ePTFE vascular graft can be controlled by controlling the IND of the microporous structure of the tube. An increase in the IND within a given structure results in enhanced tissue ingrowth as well as cell endothelization along the inner surface thereof. However, such increase in the porosity of the tubular structure also results in reducing the overall radial tensile strength of the tube as well as reducing the ability for the graft to retain a suture placed therein during implantation. Also, such microporous tubular structures tend to exhibit low axial tear strength, so that a small tear or nick will tend to propagate along the length of the tube.
  • [0006]
    The art has seen attempts to increase the radial tensile and axial tear strength of microporous ePTFE tubes. These attempts seek to modify the structure of the extruded PTFE tubing during formation so that the resulting expanded tube has non-longitudinally aligned fibrils, thereby increasing both radial tensile strength as well as axial tear strength. U.S. Pat. No. 4,743,480 shows one attempt to reorient the fibrils of a resultant PTFE tube by modifying the extrusion process of the PTFE tube.
  • [0007]
    Other attempts to increase the radial tensile, as well as axial tear strength of a microporous ePTFE tube include forming the tubular graft of multiple layers placed over one another. Examples of multi-layered ePTFE tubular structures useful as implantable prostheses are shown in U.S. Pat. Nos. 4,816,338; 4,478,898 and 5,001,276. Other examples of multi-layered structures are shown in Japanese Patent Publication Nos. 6-343,688 and 0-022,792.
  • [0008]
    Artificial bypass grafts are often used to divert blood flow around damaged regions to restore blood flow. Vascular prostheses may also be used for creating a bypass shunt between an artery and vein. These bypass shunts are often used for multiple needle access, such as is required for hemodialysis treatments. These artificial shunts are preferable to using the body's veins, mainly because veins may either collapse along a puncture track or become aneurysmal, leaky or clotted, causing significant risk of pulmonary embolization.
  • [0009]
    While it is known to use ePTFE as a vascular prosthesis, and these vascular prostheses have been used for many years for vascular access during hemodialysis, there remain several problems with these implantable ePTFE vascular access grafts. One major drawback in using ePTFE vascular grafts as access shunts for hemodialysis is that because of ePTFE's node-fibril structure, it is difficult to elicit natural occlusion of suture holes in the vascular prosthesis made from ePTFE tubing. As a result, blood cannot typically be withdrawn from an ePTFE vascular graft until the graft has become assimilated with fibrotic tissue. This generally takes 2 to 3 weeks after surgery. Furthermore, ePTFE's propensity for axial tears make it undesirable as a vascular access graft, as punctures, tears, and other attempts to access the blood stream may cause tears which propagate axially with the grain of the node fibril structure.
  • [0010]
    Providing a suitable vascular access graft has also been attempted in the prior art. Schanzer in U.S. Pat. No. 4,619,641 describes a two-piece coaxial double lumen arteriovenous graft. The Schanzer graft consists of an outer tube positioned over an inner tube, the space between being filled with a self-sealing adhesive. The configuration of this coaxial tube greatly increases the girth of the graft, and limits the flexibility of the lumen which conducts blood flow. Herweck et al., in U.S. Pat. No. 5,192,310 describes a self-sealing vascular graft of unitary construction comprising a primary lumen for blood flow, and a secondary lumen sharing a common sidewall with the primary lumen. A non-biodegradable self-sealing elastomeric material is disposed between the primary and secondary lumen.
  • [0011]
    While each of the above-referenced patents disclose self-sealing vascular grafts, none disclose a tubular access graft structure exhibiting enhanced radial tensile strength, as well as enhanced resistance to axial tear strength. Furthermore, the multi-layered ePTFE tubular structures and vascular access grafts of the prior art exhibit smaller microporous structure overall, and accordingly a reduction in ability of the graft to promote endothelization along the inner surface. Furthermore, Schanzer does not provide a self-sustaining resealable layer, but rather an elastomeric layer which “fills” the area between the two tubes.
  • [0012]
    It is therefore desirable to provide a self-sealing ePTFE graft for use in a human body which exhibits increased porosity especially at the inner surface thereof while retaining a high degree of radial strength at the external surface thereof. The graft may preferably be used as a vascular access graft.
  • [0013]
    It is further desirous to produce an ePTFE vascular access graft which exhibits increased porosity at the outer surface thereof while retaining a high degree of radial tensile and suture retention strengths.
  • [0014]
    It is still further desirous to provide a self-sealing graft with increased resistance to axially propagating tears.
  • SUMMARY OF THE INVENTION
  • [0015]
    It is an advantage of the present invention to provide a self-sealing ePTFE graft with increased resistance to axially propagating tears.
  • [0016]
    It is a further advantage of the present invention to provide a self-sealing ePTFE graft providing superior assimilation capabilities and resealable properties.
  • [0017]
    It is a further advantage of the present invention to provide a self-sealing ePTFE vascular graft exhibiting an enhanced microporous structure while retaining superior radial strength.
  • [0018]
    It is a still further advantage of the present invention to provide an ePTFE tubular structure having an inner portion exhibiting enhanced porosity and an outer portion exhibiting enhanced radial tensile strength, suture retention, and suture-hole elongation characteristics.
  • [0019]
    It is yet another advantage of the present invention to provide a multi-layered ePTFE tubular vascular graft having an inner layer which has a porosity sufficient to promote cell endothelization and an outer layer having a high degree of radial tensile strength.
  • [0020]
    It is an additional advantage of the present invention to provide a multi-layered ePTFE tubular vascular access graft having an outer layer whose porosity is sufficient to promote enhanced cell growth and tissue incorporation, hence more rapid healing, and an inner layer having a high degree of strength.
  • [0021]
    In the efficient attainment of these and other advantages, the present invention provides a self-sealing ePTFE graft comprising a first expanded polytetrafluoroethylene (ePTFE) tubular structure having a first porosity, a second ePTFE tubular structure having a second porosity less than said first porosity, said second ePTFE tubular structure being disposed externally about said first ePTFE tubular structure to define a distinct porosity change between said first and second tubular structures, and a resealable polymer layer interposed between said first and second ePTFE tubular structures.
  • [0022]
    In another embodiment, the present invention provides an ePTFE self-sealing graft, the graft formed of a first EPTFE tubular structure, a second ePTFE tubular structure disposed externally about said first EPTFE tubular structure, and further including a self-sustained resealable polymer layer interposed between the first and second ePTFE tubular structures.
  • [0023]
    The ePTFE self-sealing graft preferably may be used as a vascular access graft. As more particularly described by way of the preferred embodiment herein, the first and second ePTFE tubular structures are formed of expanded polytetrafluoroethylene (ePTFE). Further, the second ePTFE tubular structure is adheringly supported over the first ePTFE tubular structure to form a composite tubular graft. The strength of this adhesion can be varied as desired to control the characteristics exhibited by the resultant composite structure.
  • [0024]
    In its method aspect, the present invention provides a method of forming a self-sealing ePTFE graft. The method includes the steps of providing a first ePTFE tubular structure having a desired porosity and strength combination. A second ePTFE tubular structure is provided, also having the desired porosity and strength combination. The second ePTFE structure is disposed over the first ePTFE so as to define a composite vascular graft.
  • [0025]
    The method of the present invention also provides for the positioning of an intermediate structure between the first and second ePTFE tubular structures. Examples of such structures include an additional ePTFE layer and fibers or thin films of PTFE or other suitable polymers. This intermediate structure also contributes to the resultant porosity and strength of the vascular graft. This intermediate structure can also preferably be a resealable polymer layer interposed between the first and second ePTFE tubular structures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0026]
    FIG. 1 is a schematic longitudinal cross-section of a multi-layer ePTFE vascular graft of the present invention.
  • [0027]
    FIG. 2 is a longitudinal cross-section of an alternate embodiment of the present invention producing a multi-layer ePTFE vascular graft.
  • [0028]
    FIG. 3 is a scanning electron micrograph showing a cross-sectional view of a vascular graft produced using the present invention.
  • [0029]
    FIG. 4 is a perspective showing of one of the tubular structures of the graft of FIG. 1 over-wrapped with a layer of ePTFE tape.
  • [0030]
    FIG. 5 is a cross-sectional showing of an alternate embodiment of the ePTFE vascular graft of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0031]
    The prosthesis of the preferred embodiments of the present invention is a multi-layered tubular structure which is particularly suited for use as a vascular access graft. The prosthesis is formed of extruded polytetrafluoroethylene (PTFE) as PTFE exhibits superior biocompatability. In the present invention, a first ePTFE tubular structure having a first porosity is placed circumferentially interior to a second ePTFE tubular structure. Further, a resealable polymer layer is interposed as an intermediate structure between said first and second ePTFE tubular structures.
  • [0032]
    PTFE is particularly suitable for vascular applications as it exhibits low thrombogenicity. Tubes formed of extruded PTFE may be expanded to form ePTFE tubes where the ePTFE tubes have a fibrous state which is defined by elongate fibrils interconnected by spaced apart nodes. Such tubes are said to have a microporous structure, the porosity of which is determined by the distance between the surfaces of the nodes, referred to as the intemodal distance (IND). Tubes having a large IND (greater than 40 microns) generally exhibit long term patency as the larger pores promote cell endothelization along the inner blood contacting surface. Tubes having lower IND (less than 40 microns) exhibit inferior healing characteristics, however they offer superior radial tensile and suture retention strengths desirable in a vascular graft. The present invention provides a composite tubular structure which promotes long term patency of the graft by providing for enhanced cell endothelization along the inner surface while exhibiting enhanced strength due to the presence of the outer layer.
  • [0033]
    Referring to FIGS. 1 and 2 of the drawings, composite graft 10 of the present invention is shown. Graft 10 is an elongate tubular structure formed of PTFE. Graft 10 includes a pair of coaxially disposed ePTFE tubes 12 and 14, tube 12 being the outer tube and tube 14 being the inner tube. A central lumen 15 extends through composite graft 10, defined further by the inner wall 14 a of inner tube 14, which permits the passage of blood through graft 10 once the graft is properly implanted in the vascular system.
  • [0034]
    Each tube 12 and 14 may be formed in a separate extrusion process. The process for the paste extrusion of PTFE tubes is well known in the extrusion art. Once extruded, the tubes are expanded to form ePTFE tube. As will be described hereinbelow, the tubes are expanded using differing process parameters (rates, deformation levels, temperatures, etc.) to develop the desired microporous structures. The specifically designed structure of the resulting composite tube has defined properties of strength and porosity which yield a graft 10 having long term patency and good healing characteristics as well as superior strength characteristics. It is also contemplated within the present invention to use PTFE which was extruded as sheets, expanded, and subsequently wrapped to form tubes. An ePTFE tape or ribbon helically wrapped into a tubular structure is also contemplated within the present invention.
  • [0035]
    The present invention is designed to produce grafts with substantially different node/fibril structures with respect to the internal and external portions of the graft which are adjacent to the internal and external graft surfaces. As an example, the inner tube 14 is designed to have relatively high IND while the outer tube 12 is designed to have a lower IND. Further, a distinct porosity change is clearly defined at the interface 13 between tubes 12 and 14. The inner tube 14 having a higher IND to allow enhanced cell endothelization, while the outer tube 12 having a lower IND provides superior strength to the overall composite.
  • [0036]
    An electron micrograph of such a structure produced according to the present invention is shown in FIG. 3. The disparate IND's between the inner tube 14 and outer tube 12 are clearly evident, along with the step change in IND at the interface 13 between the inner tube 14 and outer tube 12. In this example, the strength of the interface 13 has been established by the processing conditions described below to fully adhere the inner tube 14 and outer tube together, hence preventing relative motion and providing enhanced strength.
  • [0037]
    Graft 10 of the present invention may be formed by expanding a thin wall inner tube 14 at a relatively high degree of elongation, on the order of approximately between 400 and 2000% elongation preferably from about between 700% and 900%. Tube 14 is expanded over a cylindrical mandrel (not shown), such as a stainless steel mandrel at a temperature of between room temperature and 645° F., preferably about 500° F. Tube 14 is preferably but not necessarily fully sintered after expansion. Sintering is typically accomplished at a temperature of between 645° F. and 800° F. preferably at about 660° F. and for a time of between about 5 minutes to 30 minutes, preferably about 15 minutes. The combination of the ePTFE tube 14 over the mandrel is then employed as a second mandrel, over which outer tube 12 is expanded. The ID of the outer tube 12 is selected so that it may be easily but tightly disposed over the OD of inner tube 14. The composite structure 10 is then sintered at preferably similar parameters. The level of elongation of outer tube 12 is lower than that of inner tube 14, approximately between 200% and 500% elongation preferably about 400%. The expansion and sintering of outer tube 12 over the inner tube 14 serves to adheringly bond the interface 13 between the two tubes, resulting in a single composite structure 10.
  • [0038]
    In an alternate embodiment the outer tube ID may be less than the inner tube OD. In this embodiment, the outer tube is thermally or mechanically radially dilated to fit over the inner tube. The composite structure may then be sintered at about 660° F. Construction in this manner provides a snug fit of the tubes, and enhances the bonding interface between tubes, and also may augment recoil properties of an elastomeric intermediate layer.
  • [0039]
    As shown in FIG. 3, the resulting composite structure has an inner surface defined by inner tube 14 which exhibits an IND of between 40 and 100 microns, spanned by a moderate number of fibrils. Such microporous structure is sufficiently large so as to promote enhanced cell-endothelization once blood flow is established through graft 10. Such cell-endothelization enhances the long term patency of the graft.
  • [0040]
    The outer structure, defined by outer tube 12, has a smaller microporous structure, with IND of about 15-35 microns and a substantial fibril density. Such outer structure results in an increase in the strength of the outer tube, and hence of the composite structure. Importantly, the outer surface defined by the outer tube 12 exhibits enhanced suture retention due to the smaller IND.
  • [0041]
    Furthermore, the resulting composite structure exhibits a sharp porosity change between the outer tube 12 and inner tube 14. This sharp porosity transition is achieved by providing an inner tube 14 having generally a given uniform porosity therealong and then providing a separate outer tube 14 having a resultant different porosity uniformly therealong. Thus a distinct porosity change is exhibited on either side of the interface 13 defined between inner tube 14 and outer tube 12.
  • [0042]
    In addition, the forming process described above results in a bonded interface between the inner tube 14 and outer tube 12. The interface exhibits sufficient interfacial strength resulting from the direct sintering of the outer tube 12 over inner tube 14 so as to assure complete bonding of the two tubes. The strength of the interface between the two tubes may be independently varied through selection of processing conditions and relative dimensions of precursor extruded tubes 12 and 14 as desired to yield a range of performance.
  • [0043]
    Referring now to FIGS. 4 and 5, a further embodiment of the present invention is shown. Tubular graft 20 is a composite structure similar to graft 10 described above. Graft 20 includes an outer tube 22 and an inner tube 24 formed generally in the manner described above. In order to further control the porosity and strength of the graft 20, especially at the interface between outer tube 22 and inner tube 24, an additional layer may be employed in combination with outer tube 22 and inner tube 24.
  • [0044]
    As specifically shown in FIGS. 4 and 5, an additional layer 26 may be employed between inner tube 24 and outer tube 22. Layer 26 may include a helical wrap of ePTFE tape 27 placed over inner tube 24. The additional layer 26, however, may also exist as a sheet, film, yarn, monofilament or multi filament wrap, or additional tube. The additional layer 26 may consist of PTFE, FEP, or other suitable polymer composition to obtain the desired performance characteristics. Layer 26 may be used to impart enhanced properties of porosity and/or strength to the composite graft 20. For example, an additional layer 26 of ePTFE tape 27 having a low IND and wrapped orthogonally to the length direction of graft 20 would increase the radial strength of the resultant composite graft. Similarly, a layer of ePTFE having a high IND would increase the porosity of the composite structure thereby further promoting cell endothelization and/or tissue ingrowth.
  • [0045]
    In a preferred embodiment of the present invention, the intermediate layer may be a resealable polymer layer, employed in order to create a self-sealing graft. The self-sealing graft may be preferably used as a vascular access device. The graft is also preferably implantable. When used as an access device, the graft allows repeated access to the blood stream through punctures, which close after removal of the penetrating member (such as, e.g., a hypodermic needle or cannula) which provided the access.
  • [0046]
    The intermediate, or resealable polymer layer may be additionally augmented with a pre-sintered PTFE (or FEP) bead wrap, or wire support coil. The pre-sintered PTFE bead wrap is a cylindrically extruded solid tube of PTFE that is sintered, then helically wrapped around the desired layer (inner, intermediate, or outer). A graft of this embodiment shows enhanced strength and handling characteristics, i.e., crush resistance, kink resistance, etc.
  • [0047]
    In another preferred embodiment, a self-sustained resealable polymer layer may be interposed between first and second ePTFE tubular structures. For the purpose of this specification, the term self-sustained refers to a tubular structure which possesses enough structural stability to be formed and subsequently stand alone without the use of additional tubular layers, or any other “molding” type formation, i.e., not a resinous polymer which is injected, or fills a space between an outer and inner tube. Some examples include the elastomeric layers employed in the present invention, as well as the resealable intermediate layers shown in Examples 3 and 4 of the present invention.
  • [0048]
    The ePTFE self-sealing graft can be used for any medical technique in which repeated hemoaccess is required, for example, but without intending to limit the possible applications, intravenous drug administration, chronic insulin injections, chemotherapy, frequent blood samples, connection to artificial lungs, and hyperalimentation. The self-sealing ePTFE graft is ideally suited for use in chronic hemodialysis access, e.g., in a looped forearm graft fistula, straight forearm graft fistula, an axillary graft fistula, or any other AV fistula application. The self-sealing capabilities of the graft are preferred to provide a graft with greater suture retention, and also to prevent excessive bleeding from a graft after puncture (whether in venous access or otherwise).
  • [0049]
    The graft is made self-sealing with the use of a resealable polymer layer interposed between said first and second polymer layer. The resealable layer functions by primarily two different mechanisms. In one embodiment, the resealable polymer layer comprises an elastomeric component. The term elastomeric as used herein refers to a substance which is capable of essentially rebounding to near its initial form or state after deformation. In another embodiment, the resealable polymer layer comprises a flowable material layer. The term flowable as used herein refers to an amorphous material which fills a void created by a deformation or puncture.
  • [0050]
    It is further contemplated within the present invention to provide a composite vascular graft with an intermediate resealable layer, and multiple interior or exterior layers of ePTFE. Furthermore, the use of multiple intermediate layers possessing resealable properties is also contemplated within the present invention.
  • [0051]
    A number of different materials may be employed to provide an elastomeric polymer component as contemplated in the present invention. Furthermore, the elastomeric properties of the intermediate layer may be imparted thereto as a result of an inherent property of the material used, or as a result of the particular method of constructing such a layer. The elastomeric component may also be adhered to the first and second ePTFE tubular structures. The adhesion may take place by mechanical means, chemical means (use of an adhesive), either, or both. Some polymers, particularly thermoplastic elastomers, become sufficiently tacky through heating to adhere to the ePTFE tubular structures. The elastomeric component may also exert a force in the direction of the puncture, which if adhered to the first and/or second ePTFE tubular structures may provide for either layer to seal the puncture site. Some materials which may be used as an elastomeric component in various forms include, but are not limited to, polymers and copolymers, including thermoplastic elastomers and certain silicones, silicone rubbers, synthetic rubbers, polyurethanes, polyethers, polyesters, polyamides and various fluoropolymers, including, but not limited to PTFE, ePTFE, FEP (fluorinated ethylene propylene copolymer), and PFA (polyfluorinated alkanoate). The materials may be utilized as the elastomeric polymer layer in a number of different forms which would impart the desired elastomeric characteristics to the layer. In one embodiment, an extruded polymeric ribbon or tape wrap may be wrapped helically into a tubular shape under tension. Alternatively, a sheet, fiber, thread, or yarn may also be wrapped under tension to impart an elastomeric layer.
  • [0052]
    In another preferred embodiment, a polymeric layer may be applied from solution. The polymer may be dissolved or partially dissolved in a solvent, and upon evaporation of the solvent, the polymer is deposited as an elastomeric layer. The solvents used in this system must be capable of wetting the ePTFE tubular surfaces. Upon evaporation of the solvent, an elastomeric layer is deposited which may penetrate into the pores of the adjacent ePTFE layer to provide an anchoring effect for the polymeric layer. Upon evaporation of the solvent, the elastomeric layer may also shrink to provide the desired elastomeric characteristics.
  • [0053]
    In another embodiment of the elastomeric layer of the present invention, a solvent spun polyurethane as disclosed in U.S. Pat. Nos. 4,810,749; 4,738,740; 4,743,252 and 5,229,431, herein incorporated by reference, may be employed. From such elastomeric fibers may be formed a woven or non-woven textile-like layer with sufficient fiber density to form a sealing layer while allowing a puncturing member such as a hypodermic needle or cannula to penetrate between the individual fibers. Furthermore, the elastomeric fibers of said textile-like structure may be employed under tension or compression to facilitate the recovery of the fibers displaced by the penetrating member to their original position after removal by the penetrating member.
  • [0054]
    Furthermore the elastomeric layer of the present invention may additionally be impregnated with a gel to provide enhanced sealing capabilities. Examples of such gels are hydrogels formed from natural materials including, but not limited to, gelatin, collagen, albumin, casein, algin, carboxy methyl cellulose, carageenan, furcellaran, agarose, guar, locust bean gum, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyalkylmethyl cellulose, pectin, partially deacetylated chitosan, starch and starch derivatives, including amylose and amylopectin, xanthan, polylysine, hyaluronic acid, and its derivatives, heparin, their salts, and mixtures thereof.
  • [0055]
    A number of different flowable polymer layers may be interposed between said first and second tubular structures to provide a self-sealing graft. The flowable polymer layer seals the graft by possessing an amorphous quality which fills in any space left open subsequent to puncture of the graft. It may simply fill in the space left open in the interposed middle layer, or it may additionally penetrate into the first and/or second ePTFE tubular structures to fill any void left form puncture of either layer.
  • [0056]
    An example of a flowable polymer which may be used in the present invention is an uncured or partially cured polymer. The polymer may be cured by a number of activating means which would activate curing subsequent to puncture of the graft, thereby sealing with the curing of the polymer. Examples of materials for such a flowable layer include, but are not limited to, uncured elastomers such as natural or synthetic rubbers, and natural gums such as gum arabic. Materials that are particularly useful in a flowable layer include non-crosslinked polyisobutylene which is also known as uncured butyl rubber.
  • [0057]
    Another flowable polymer layer which may be employed in the present invention a gel. Gels are generally suspensions or emulsions of polymers which have properties intermediate the liquid and solid states. A hydrogel may also be used in the present invention, and refers to polymeric material which swells in water without dissolving, and which retains a significant amount of water in its structure. The gels and hydrogels employed in the present invention may be biodegradable, or non-biodegradable. They also further may have polymeric beads (not to be confused with the pre-sintered PTFE bead-wrap, which imparts structural stability) suspended within the gel to effectuate sealing of the prosthesis. Some examples of gels which may be used in the present invention include, but are not limited to, silicone gels, gum arabic, and low molecular weight ethylene/vinyl acetate polymers.
  • [0058]
    The following examples serve to provide further appreciation of the invention but are not meant in any way to restrict the scope of the invention.
  • EXAMPLE I
  • [0059]
    A thin extruded tube having wall thickness of 0.41 mm and an inner diameter of 6.2 mm was expanded over a stainless steel mandrel at 500° F. to 900% elongation. The ePTFE tube was then sintered at 660° F. for 14 minutes, cooled, and removed from the oven. A second thin extruded tube having wall thickness of 0.45 mm and an inner diameter of 6.9 mm was expanded over the first tube/mandrel combination at 500° F. and 400% elongation. The composite was then sintered at 660° F. for 14 minutes, cooled and removed from the oven. The resultant composite tube had a wall thickness of 0.65 mm and ID of 5.8 mm.
  • EXAMPLE 2
  • [0060]
    A thin extruded tube having wall thickness of 0.41 mm and an inner diameter of 6.2 mm was expanded over a stainless steel mandrel at 500° F. to 700% elongation. The ePTFE tube was then sintered at 660° F. for 14 minutes, cooled, and removed from the oven. A second thin extruded tube having wall thickness of 0.45 mm and an inner diameter of 6.9 mm was expanded over the first tube at 500° F. and 400% elongation. The composite was sintered at 660° F. for 14 minutes, cooled, and removed from the oven. The resultant composite tube had a wall thickness of 0.67 mm and an inner diameter of 5.8 mm.
  • [0061]
    Table I presents physical property data for a vascular graft of the type depicted in Example I described above. The composite graft was removed from the mandrel and subjected to standard testing of radial tensile strength and suture hole elongation. The radial strength of the 900%/400% composite graft is equivalent to a single layer 400% elongation graft and substantially stronger than a single layer 900% elongation graft, despite an overall thinner wall dimension. Additionally, the superior strength of the composite graft is demonstrated by the higher elongation capable of being borne by the graft prior to failure. The lower suture hole elongation, indicative of a smaller tear being caused by suturing and tensioning at a fixed value of 100 grams is clearly demonstrated for the graft prepared by the method of the current invention.
    TABLE 1
    400% 900%/
    Elongation 400% 900%
    Single Elongation Elongation
    Physical Property Layer Composite Single Layer
    Measurement Graft Graft Graft
    Radial Tensile Strength (kg/mm2) 0.48 0.48 0.2
    Radial Strain at Break (%) 550 690 531
    Suture Hole Elongation (%) 87 81 158
    Wall Thickness 0.72 0.65 0.73
  • EXAMPLE 3
  • [0062]
    Three composite grafts were constructed and their ability to reseal after a puncture was tested. Graft No. 1 is an ePTFE helically tape-wrapped graft with no resealable layer, and graft Nos. two (2) and three (3) were constructed with a resealable intermediate layer in the below-described procedure.
  • [0063]
    Graft No. 1 is an ePTFE graft used as the control in the following experiment. Graft 2 was constructed by first placing an ePTFE tubular structure with an inner diameter of 5 millimeters on a mandrel. A thermoplastic elastomer tubing was then slid over the ePTFE tube. Because of the tackiness of the thermoplastic elastomeric tubing, it was necessary to manipulate the tubing by rolling and stretching it in order to maneuver it over the first ePTFE tubular structure to lie evenly thereon. A second ePTFE tubular structure with an inner diameter of five (5) millimeters was then radially stretched, or expanded to yield an ePTFE tubular structure with an inner diameter of 8 millimeters. A metal sleeve was then placed over the thermoplastic elastomer-covered tubular structure. The second 8 mm inner diameter ePTFE tubular structure was then placed onto the metal sleeve. The metal sleeve was then retracted allowing the second tubular structure to come into contact with the thermoplastic elastomer.
  • [0064]
    Both grafts Nos. 2 and 3 were prepared using this procedure. Graft 2 was then placed in an oven and heated at 350° F. for 10 minutes. There appeared to be little bonding between the layers, and the graft was then heated for an additional 10 minutes at 450° F.
  • [0065]
    Graft 3 was heated for five minutes at 400° F. The material did not appear to bond together, so the graft was then heated at 425° F. for an additional five minutes.
  • [0066]
    Grafts Nos. 1-3 were then tested for quality control. Each graft was placed in a water entry pressure measuring device to provide a constant pressure of water within the graft. The water pressure was maintained at three pounds per square inch. The grafts were then punctured with a 20 gauge needle. The needle was then removed and any water leaving the puncture site was collected in a beaker and measured over the time of collection. This procedure was followed for a number of test runs. The results are shown in table two below.
    TABLE 2
    Graft No. 1 Graft No. 2 Graft No. 3
    Run (grams water/30 (grams water/30 (grams water/30
    Number seconds) seconds) seconds)
    1 21.7 0.2 1.2
    2 20.0 1.3 0.5
    3 23.1 0.2
    4 20.0 1.4
    5 21.9
    Average Of 21.34 0.775 0.85
    Trial Runs
  • [0067]
    Graft No. 1 leaked steadily, as the puncture did not reseal. While graft numbers 2 and 3 showed minimal leakage. In both cases, the water leaked in a small trickle in the first few seconds (2-5 seconds), then stopped or slowed to an immeasurable seepage.
  • EXAMPLE 4
  • [0068]
    Three additional grafts were constructed with an intermediate resealable layer and tested to determine their ability to seal after puncture.
  • [0069]
    Graft No.4 was made using an ePTFE graft with an initial 5 millimeter inner diameter as the inner tubular structure. The 5 mm ePTFE tube was extruded using a die insert of 0.257 inches, and a mandrel of 0.226 inches. The inner tube was then stretched longitudinally to 500% its original length, and sintered. The inner tube was then stretched radially by placing it on a 5.95 mm mandrel. A pre-sintered PTFE bead-wrap (0.014 inch ±0.002 inch diameter, length approximately 30 cm) was then helically wrapped around the exterior of the inner tube at 650 revolutions per minute (RPM), and with a mandrel speed traversely at 800 RPMs. The wrap helically repeated on the tube at approximately every 3.5 cm, and at an angle of approximately 10°-50° with respect to a radial axis. After wrapping, the coil wrapped tube was then heated in an oven at 663° F. for 10 minutes to sinter the beads to the grafts.
  • [0070]
    A second ePTFE tube was then added exterior the beaded coil and inner tube. The second ePTFE tube also had a 5 millimeter inner diameter, and was a tube extruded using a die insert of 0.271 inches and mandrel size 0.257 inches, and was stretched to longitudinally 500% its original length and sintered. The second ePTFE tube was then radially stretched over a tapered 6-10 mm mandrel to a graft of inner diameter of 10 mms. The second graft was then transferred to a 10 mm hollow mandrel within which the inner bead-wrapped graft was placed. The hollow mandrel was then slid out to leave the second ePTFE tube exteriorly placed on the bead covered graft. The composite device was then placed in an oven for 20 minutes and heated at 663° F. Three 3 cm long tubular rings of thermoplastic elastomer (C-FLEX®) were then placed over the composite stent graft. The rings had an inner diameter of 6.5 mms. A third outer ePTFE tubular structure was then placed over the C-FLEX rings. The third outer tubular structure was a 3 mm inner diameter ePTFE extruded tube was made using a die insert of 0.189 inches, and was stretched longitudinally to 700% its original length and sintered. The third outer structure was then expanded radially by stretching the tube over a 4-7 mm continuously tapered mandrel, then further radially expanded over a 6-10 mm continuously tapered mandrel. It was then placed on a 10 mm hollow mandrel with the C-FLEX covered composite graft placed within the mandrel, and the outer tube then covers the C-FLEX® upon removal of the hollow mandrel. Graft 4 was then heated for 5 minutes at 435° F.
  • [0071]
    Graft No. 5 was constructed using a 5 mm inner diameter ePTFE extruded tube as the inner tubular structure. The 5 mm tube was then radially stretched over a 5.95 mm diameter mandrel. A corethane intermediate layer was then spun into a tube of 6 mm diameter with 250 passes, and subsequently loaded onto the inner ePTFE tube. A second outer ePTFE tubular structure (originally a 5 mm inner diameter) was then stretched to 10 mm over a 6-10 mm continuously tapered mandrel. Graft No. 5 was then heated for 15 minutes at 400° F.
  • [0072]
    Graft No. 6 was made using a 5 mm inner diameter ePTFE graft as the inner tubular structure. The inner tube was then stretched over a 6.2 mm hollow expansion mandrel. An ePTFE yarn was then wrapped in two helical directions over the inner tube. A corethane layer was then spun over the yarn wrapping as the third tubular layer at a mandrel speed of 1,000 RPMs and a wrap angle of 50 degrees. The corethane covered graft was then heated at 230° F. for 10 minutes. An outer ePTFE tube with a 5 mm inner diameter was then stretched to 10 mm over a 6-10 mm continuously tapered mandrel. It was then mounted on the corethane layer with the use of the hollow mandrel. Graft 6 was then heated for 30 minutes at 340° F.
  • [0073]
    Grafts 4-6 were all tested by puncturing them with a constant pressure water source attached to them as done with Grafts Nos. 1-3. The results are shown in Table 3 below.
    TABLE 3
    Graft 5 Graft 6
    Graft 4 (grams (grams water/
    Run No. (grams water/seconds) water/seconds) seconds)
    1 0.2 0 0
    2 0 0 0
    3 0 0.7 0
  • [0074]
    Various changes to the foregoing described and shown structures would now be evident to those skilled in the art. Accordingly, the particularly disclosed scope of the invention is set forth in the following claims.

Claims (20)

  1. 1. A multi-layered ePTFE graft comprising:
    a first ePTFE tubular structure having a first internodal distance;
    a second ePTFE tubular structure having a second internodal distance different than said first intemodal distance, said second ePTFE tubular structure being disposed about said first ePTFE tubular structure; and
    a self-sealing gel interposed between said first and second ePTFE tubular structures, wherein said gel is selected from the group consisting of gelatin, collagen, albumin, casein, algin, carboxymethyl cellulose, carageenan, furcellan, agarose, guar, locus bean gum, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyalkylmethyl cellulose, pectin, partially deacetylated chitosan, starch and starch derivatives, including amylase and amylopectin, xanthan, polylysine, hyaluronic acid, and its derivatives, heparin, their salts, and mixtures thereof.
  2. 2. A multi-layered graft according to claim 1, wherein said first intemodal distance is greater than said second internodal distance.
  3. 3. A multi-layered graft according to claim 1, wherein said second ePTFE tubular structure is disposed externally about said first ePTFE tubular structure.
  4. 4. A multi-layered graft according to claim 1, wherein said self-sealing gel comprises a single layer having resealable properties.
  5. 5. A multi-layered graft according to claim 1, wherein said self-sealing gel is flowable.
  6. 6. A multi-layered ePTFE vascular graft useful for repeated hemoaccess comprising:
    a first ePTFE tubular structure having a first internodal distance;
    a second ePTFE tubular structure having a second internodal distance different than said first internodal distance, said second ePTFE tubular structure being disposed about said first ePTFE tubular structure; and
    a self-sealing gel interposed between said first and second ePTFE tubular structures, wherein said gel is selected from the group consisting of gelatin, collagen, albumin, casein, algin, carboxymethyl cellulose, carageenan, furcellan, agarose, guar, locus bean gum, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyalkylmethyl cellulose, pectin, partially deacetylated chitosan, starch and starch derivatives, including amylase and amylopectin, xanthan, polylysine, hyaluronic acid, and its derivatives, heparin, their salts, and mixtures thereof.
  7. 7. A multi-layered graft according to claim 6, wherein said first internodal distance is greater than said second internodal distance.
  8. 8. A multi-layered graft according to claim 6, wherein said second ePTFE tubular structure is disposed externally about said first ePTFE tubular structure.
  9. 9. A multi-layered graft according to claim 6, wherein said self-sealing gel comprises a single layer having resealable properties.
  10. 10. A multi-layered ePTFE graft comprising:
    a first ePTFE tubular structure having a first internodal distance;
    a second ePTFE tubular structure having a second internodal distance different than said first internodal distance, said second ePTFE tubular structure being disposed about said first ePTFE tubular structure; and
    a biodegradable material interposed between said first and second ePTFE tubular structures.
  11. 11. A multi-layered graft according to claim 10, wherein the biodegradable material is a gel.
  12. 12. A multi-layered ePTFE graft comprising:
    a first ePTFE tubular structure; and
    a second ePTFE tubular structure, said second ePTFE tubular structure being disposed about said first ePTFE tubular structure;
    wherein the graft exhibits a radial tensile strength of at least 0.48 kg/mm2.
  13. 13. The multi-layered graft of claim 12, wherein said first ePTFE tubular structure has a first porosity and said second ePTFE tubular structure has a second porosity.
  14. 14. The multi-layered graft of claim 13, wherein said second porosity is different than sand first porosity.
  15. 15. A multi-layered ePTFE graft comprising:
    a first ePTFE tubular structure; and
    a second ePTFE tubular structure, said second ePTFE tubular structure being disposed about said first ePTFE tubular structure;
    wherein the graft is capable of withstanding elongation of at least 690% without breaking.
  16. 16. The multi-layered graft of claim 15, wherein said first ePTFE tubular structure has a first porosity and said second ePTFE structure has a second porosity.
  17. 17. The multi-layered graft of claim 16, wherein said second porosity is different than said first porosity.
  18. 18. A multi-layered ePTFE graft comprising:
    a first ePTFE tubular structure; and
    a second ePTFE tubular structure, said second ePTFE tubular structure being disposed about said first ePTFE tubular structure; and
    a self-sealing material interposed between said first and second ePTFE tubular structures, wherein the graft exhibits no or immeasurable leakage 30 seconds subsequent to puncture with a water source.
  19. 19. The multi-layered graft of claim 18, wherein said first ePTFE tubular structure has a first porosity and said second ePTFE tubular structure has a second porosity.
  20. 20. The multi-layered graft of claim 19, wherein said second porosity is different than said first porosity.
US11810755 1996-01-22 2007-06-07 Self-sealing PTFE vascular graft and manufacturing methods Abandoned US20070244539A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US08588052 US5800512A (en) 1996-01-22 1996-01-22 PTFE vascular graft
US09008265 US6036724A (en) 1996-01-22 1998-01-16 PTFE vascular graft and method of manufacture
US09525710 US6428571B1 (en) 1996-01-22 2000-03-14 Self-sealing PTFE vascular graft and manufacturing methods
US10212609 US6719783B2 (en) 1996-01-22 2002-08-05 PTFE vascular graft and method of manufacture
US10822200 US7244271B2 (en) 1996-01-22 2004-04-09 Self-sealing PTFE vascular graft and manufacturing methods
US11810755 US20070244539A1 (en) 1996-01-22 2007-06-07 Self-sealing PTFE vascular graft and manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11810755 US20070244539A1 (en) 1996-01-22 2007-06-07 Self-sealing PTFE vascular graft and manufacturing methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10822200 Continuation US7244271B2 (en) 1996-01-22 2004-04-09 Self-sealing PTFE vascular graft and manufacturing methods

Publications (1)

Publication Number Publication Date
US20070244539A1 true true US20070244539A1 (en) 2007-10-18

Family

ID=24352275

Family Applications (4)

Application Number Title Priority Date Filing Date
US08588052 Expired - Lifetime US5800512A (en) 1996-01-22 1996-01-22 PTFE vascular graft
US09008265 Expired - Lifetime US6036724A (en) 1996-01-22 1998-01-16 PTFE vascular graft and method of manufacture
US09040880 Expired - Lifetime US6001125A (en) 1996-01-22 1998-03-18 PTFE vascular prosthesis and method of manufacture
US11810755 Abandoned US20070244539A1 (en) 1996-01-22 2007-06-07 Self-sealing PTFE vascular graft and manufacturing methods

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08588052 Expired - Lifetime US5800512A (en) 1996-01-22 1996-01-22 PTFE vascular graft
US09008265 Expired - Lifetime US6036724A (en) 1996-01-22 1998-01-16 PTFE vascular graft and method of manufacture
US09040880 Expired - Lifetime US6001125A (en) 1996-01-22 1998-03-18 PTFE vascular prosthesis and method of manufacture

Country Status (6)

Country Link
US (4) US5800512A (en)
EP (1) EP0879029B1 (en)
JP (1) JPH11504548A (en)
CA (1) CA2243951C (en)
DE (2) DE69733122D1 (en)
WO (1) WO1997025938A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123857A1 (en) * 2008-04-03 2009-10-08 Boston Scientific Scimed, Inc. Thin-walled calendered ptfe
US20100179642A1 (en) * 2005-06-17 2010-07-15 C.R. Bard, Inc. Vascular Graft With Kink Resistance After Clamping
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8257640B2 (en) 2009-08-07 2012-09-04 Zeus Industrial Products, Inc. Multilayered composite structure with electrospun layer
US8313524B2 (en) 2004-08-31 2012-11-20 C. R. Bard, Inc. Self-sealing PTFE graft with kink resistance
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8636794B2 (en) 2005-11-09 2014-01-28 C. R. Bard, Inc. Grafts and stent grafts having a radiopaque marker
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9198749B2 (en) 2006-10-12 2015-12-01 C. R. Bard, Inc. Vascular grafts with multiple channels and methods for making
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
WO2017043693A1 (en) * 2015-09-11 2017-03-16 문병주 Artificial blood vessel

Families Citing this family (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6451047B2 (en) * 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6863686B2 (en) * 1995-04-17 2005-03-08 Donald Shannon Radially expandable tape-reinforced vascular grafts
ES2224132T3 (en) * 1995-08-24 2005-03-01 Bard Peripheral Vascular, Inc. Method of assembling a endoluminal covered stent.
US6428571B1 (en) * 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US5800512A (en) * 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US6416537B1 (en) 1996-12-03 2002-07-09 Atrium Medical Corporation Multi-stage prosthesis
US5897587A (en) 1996-12-03 1999-04-27 Atrium Medical Corporation Multi-stage prosthesis
US5824050A (en) * 1996-12-03 1998-10-20 Atrium Medical Corporation Prosthesis with in-wall modulation
US6102884A (en) 1997-02-07 2000-08-15 Squitieri; Rafael Squitieri hemodialysis and vascular access systems
DE69828798T2 (en) * 1997-03-05 2006-01-05 Boston Scientific Ltd., St. Michael Konformanliegende multilayer stent device
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US5931865A (en) * 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6264687B1 (en) * 1998-04-20 2001-07-24 Cordis Corporation Multi-laminate stent having superelastic articulated sections
US6425855B2 (en) 1999-04-06 2002-07-30 Cordis Corporation Method for making a multi-laminate stent having superelastic articulated sections
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US6156064A (en) 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US7713282B2 (en) 1998-11-06 2010-05-11 Atritech, Inc. Detachable atrial appendage occlusion balloon
US6994092B2 (en) 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US6660030B2 (en) 1998-12-11 2003-12-09 Endologix, Inc. Bifurcation graft deployment catheter
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6187054B1 (en) 1999-02-04 2001-02-13 Endomed Inc. Method of making large diameter vascular prosteheses and a vascular prosthesis made by said method
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6328762B1 (en) * 1999-04-27 2001-12-11 Sulzer Biologics, Inc. Prosthetic grafts
US6699210B2 (en) 1999-04-27 2004-03-02 The Arizona Board Of Regents Glaucoma shunt and a method of making and surgically implanting the same
ES2238287T3 (en) * 1999-05-26 2005-09-01 Bard Peripheral Vascular, Inc. expanded polytetrafluoroethylene vascular graft with improved healing response.
US6652570B2 (en) * 1999-07-02 2003-11-25 Scimed Life Systems, Inc. Composite vascular graft
US6402779B1 (en) 1999-07-26 2002-06-11 Endomed, Inc. Balloon-assisted intraluminal stent graft
US6342294B1 (en) 1999-08-12 2002-01-29 Bruce G. Ruefer Composite PTFE article and method of manufacture
EP1767169B1 (en) 1999-09-01 2009-03-04 Boston Scientific Scimed, Inc. Tubular stent-graft composite device and method of manufacture
US7807211B2 (en) * 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US6312462B1 (en) * 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US6325823B1 (en) 1999-10-29 2001-12-04 Revasc Corporation Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use
US20020055768A1 (en) 1999-11-24 2002-05-09 Kathy Hess Method of manufacturing a thin-layered, endovascular, polymer-covered stent device
US20010053931A1 (en) 1999-11-24 2001-12-20 Salvatore J. Abbruzzese Thin-layered, endovascular silk-covered stent device and method of manufacture thereof
US6355063B1 (en) 2000-01-20 2002-03-12 Impra, Inc. Expanded PTFE drug delivery graft
US6210433B1 (en) * 2000-03-17 2001-04-03 LARRé JORGE CASADO Stent for treatment of lesions of bifurcated vessels
US6616689B1 (en) * 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20020049489A1 (en) * 2000-07-11 2002-04-25 Herweck Steve A. Prosthesis and method of making a prosthesis having an external support structure
US6808533B1 (en) 2000-07-28 2004-10-26 Atrium Medical Corporation Covered stent and method of covering a stent
US6805898B1 (en) 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device
US20020084178A1 (en) 2000-12-19 2002-07-04 Nicast Corporation Ltd. Method and apparatus for manufacturing polymer fiber shells via electrospinning
US7244272B2 (en) 2000-12-19 2007-07-17 Nicast Ltd. Vascular prosthesis and method for production thereof
WO2002074189A3 (en) 2001-03-20 2003-03-13 Nicast Ltd Electrospinning nonwoven materials with rotating electrode
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6635082B1 (en) 2000-12-29 2003-10-21 Advanced Cardiovascular Systems Inc. Radiopaque stent
US6641607B1 (en) 2000-12-29 2003-11-04 Advanced Cardiovascular Systems, Inc. Double tube stent
US6613077B2 (en) 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion
US6994666B2 (en) 2001-06-05 2006-02-07 Edwards Lifesciences Corporation Non-porous smooth ventricular assist device conduit
US6939373B2 (en) 2003-08-20 2005-09-06 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7510571B2 (en) * 2001-06-11 2009-03-31 Boston Scientific, Scimed, Inc. Pleated composite ePTFE/textile hybrid covering
US7560006B2 (en) * 2001-06-11 2009-07-14 Boston Scientific Scimed, Inc. Pressure lamination method for forming composite ePTFE/textile and ePTFE/stent/textile prostheses
WO2002100454A1 (en) * 2001-06-11 2002-12-19 Boston Scientific Limited COMPOSITE ePTFE/TEXTILE PROSTHESIS
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6635083B1 (en) 2001-06-25 2003-10-21 Advanced Cardiovascular Systems, Inc. Stent with non-linear links and method of use
WO2003002243A3 (en) 2001-06-27 2004-03-04 Remon Medical Technologies Ltd Method and device for electrochemical formation of therapeutic species in vivo
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
US6827737B2 (en) 2001-09-25 2004-12-07 Scimed Life Systems, Inc. EPTFE covering for endovascular prostheses and method of manufacture
US7597775B2 (en) * 2001-10-30 2009-10-06 Boston Scientific Scimed, Inc. Green fluoropolymer tube and endovascular prosthesis formed using same
US6814561B2 (en) * 2001-10-30 2004-11-09 Scimed Life Systems, Inc. Apparatus and method for extrusion of thin-walled tubes
US6719784B2 (en) 2001-11-21 2004-04-13 Scimed Life Systems, Inc. Counter rotational layering of ePTFE to improve mechanical properties of a prosthesis
US7090693B1 (en) * 2001-12-20 2006-08-15 Boston Scientific Santa Rosa Corp. Endovascular graft joint and method for manufacture
JP2005512687A (en) * 2001-12-20 2005-05-12 トリバスキュラー,インコーポレイティド Method and apparatus for manufacturing intravascular graft section
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US6790213B2 (en) * 2002-01-07 2004-09-14 C.R. Bard, Inc. Implantable prosthesis
US20030153863A1 (en) * 2002-02-13 2003-08-14 Patel Anilbhai S. Implant system for glaucoma surgery
US20030176516A1 (en) * 2002-03-15 2003-09-18 Greene, Tweed Of Delaware, Inc. Cellular perfluoroelastomeric compositions, sealing members, methods of making the same and cellular materials for medical applications
US7691461B1 (en) * 2002-04-01 2010-04-06 Advanced Cardiovascular Systems, Inc. Hybrid stent and method of making
US7887575B2 (en) * 2002-05-22 2011-02-15 Boston Scientific Scimed, Inc. Stent with segmented graft
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
WO2004026183A3 (en) 2002-09-20 2005-01-13 Nellix Inc Stent-graft with positioning anchor
US7326238B1 (en) 2002-09-30 2008-02-05 Abbott Cardiovascular Systems Inc. Method and apparatus for treating vulnerable plaque
US20060265043A1 (en) * 2002-09-30 2006-11-23 Evgenia Mandrusov Method and apparatus for treating vulnerable plaque
US8088158B2 (en) 2002-12-20 2012-01-03 Boston Scientific Scimed, Inc. Radiopaque ePTFE medical devices
US7318836B2 (en) * 2003-03-11 2008-01-15 Boston Scientific Scimed, Inc. Covered stent
US7452374B2 (en) * 2003-04-24 2008-11-18 Maquet Cardiovascular, Llc AV grafts with rapid post-operative self-sealing capabilities
US7597704B2 (en) * 2003-04-28 2009-10-06 Atritech, Inc. Left atrial appendage occlusion device with active expansion
US20040230289A1 (en) * 2003-05-15 2004-11-18 Scimed Life Systems, Inc. Sealable attachment of endovascular stent to graft
US20040254628A1 (en) 2003-06-13 2004-12-16 Patrice Nazzaro One-branch stent-graft for bifurcated lumens
US8021418B2 (en) * 2003-06-19 2011-09-20 Boston Scientific Scimed, Inc. Sandwiched radiopaque marker on covered stent
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US20050060020A1 (en) * 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US20050137614A1 (en) * 2003-10-08 2005-06-23 Porter Christopher H. System and method for connecting implanted conduits
US7762977B2 (en) 2003-10-08 2010-07-27 Hemosphere, Inc. Device and method for vascular access
JP2005152178A (en) * 2003-11-25 2005-06-16 Terumo Corp Artificial blood vessel
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
US20050118344A1 (en) * 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7530994B2 (en) * 2003-12-30 2009-05-12 Scimed Life Systems, Inc. Non-porous graft with fastening elements
EP1713634B1 (en) * 2003-12-30 2013-07-24 Boston Scientific Limited Method of uniaxially expanding a fluoropolymer tube
WO2005065578A3 (en) 2004-01-06 2005-11-10 Nicast Ltd Vascular prosthesis with anastomotic member
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US8057841B2 (en) 2004-02-12 2011-11-15 University Of Akron Mechanically attached medical device coatings
US20050223440A1 (en) * 2004-03-31 2005-10-06 Council Of Scientific And Industrial Research Tissue culture process for producing cotton plants
US8034096B2 (en) 2004-03-31 2011-10-11 Cook Medical Technologies Llc Stent-graft with graft to graft attachment
US7682381B2 (en) * 2004-04-23 2010-03-23 Boston Scientific Scimed, Inc. Composite medical textile material and implantable devices made therefrom
US8801746B1 (en) 2004-05-04 2014-08-12 Covidien Lp System and method for delivering a left atrial appendage containment device
US7727271B2 (en) * 2004-06-24 2010-06-01 Boston Scientific Scimed, Inc. Implantable prosthesis having reinforced attachment sites
US7955373B2 (en) * 2004-06-28 2011-06-07 Boston Scientific Scimed, Inc. Two-stage stent-graft and method of delivering same
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
US20060142852A1 (en) * 2004-12-29 2006-06-29 Boston Scientific Scimed, Inc. Low profile, durable, reinforced ePTFE composite graft
US20060149366A1 (en) * 2004-12-31 2006-07-06 Jamie Henderson Sintered structures for vascular graft
US7806922B2 (en) 2004-12-31 2010-10-05 Boston Scientific Scimed, Inc. Sintered ring supported vascular graft
US7857843B2 (en) 2004-12-31 2010-12-28 Boston Scientific Scimed, Inc. Differentially expanded vascular graft
US7524445B2 (en) * 2004-12-31 2009-04-28 Boston Scientific Scimed, Inc. Method for making ePTFE and structure containing such ePTFE, such as a vascular graft
US20060224232A1 (en) * 2005-04-01 2006-10-05 Trivascular, Inc. Hybrid modular endovascular graft
US20060233991A1 (en) 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20060233990A1 (en) * 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
JP4917089B2 (en) 2005-05-09 2012-04-18 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Implant delivery device
JP2008543376A (en) * 2005-06-08 2008-12-04 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Graft and stent having an inorganic biocompatible calcium salts
WO2007008600A3 (en) 2005-07-07 2008-01-17 Nellix Inc Systems and methods for endovascular aneurysm treatment
US20100268321A1 (en) * 2005-09-06 2010-10-21 C R Bard, Inc. Drug-releasing graft
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
US7655035B2 (en) * 2005-10-05 2010-02-02 Boston Scientific Scimed, Inc. Variable lamination of vascular graft
JP2009514656A (en) * 2005-11-09 2009-04-09 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Grafts and stent graft having radiopaque beading
US8163002B2 (en) * 2005-11-14 2012-04-24 Vascular Devices Llc Self-sealing vascular graft
US20070167901A1 (en) * 2005-11-17 2007-07-19 Herrig Judson A Self-sealing residual compressive stress graft for dialysis
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
WO2007127802A3 (en) * 2006-04-27 2008-05-15 Wilfrido Castaneda Methods and apparatus for extraluminal femoropoliteal bypass graft
US7790273B2 (en) * 2006-05-24 2010-09-07 Nellix, Inc. Material for creating multi-layered films and methods for making the same
CA2659761A1 (en) 2006-08-02 2008-02-07 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
EP2959925A1 (en) 2006-09-15 2015-12-30 Boston Scientific Limited Medical devices and methods of making the same
US7955382B2 (en) * 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
CA2663271A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
ES2368125T3 (en) 2006-09-15 2011-11-14 Boston Scientific Scimed, Inc. bioerodible endoprostheses biostable inorganic layers.
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
CA2663762A1 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
US8778009B2 (en) 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
DE602007010669D1 (en) 2006-12-28 2010-12-30 Boston Scient Ltd hear it
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US8388679B2 (en) 2007-01-19 2013-03-05 Maquet Cardiovascular Llc Single continuous piece prosthetic tubular aortic conduit and method for manufacturing the same
US20080306580A1 (en) * 2007-02-05 2008-12-11 Boston Scientific Scimed, Inc. Blood acess apparatus and method
US8087923B1 (en) 2007-05-18 2012-01-03 C. R. Bard, Inc. Extremely thin-walled ePTFE
US8721711B2 (en) * 2007-06-20 2014-05-13 Oregon Health & Science University Graft having microporous membrane for uniform fluid infusion
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
WO2009079388A3 (en) * 2007-12-14 2009-09-03 Oregon Health & Science University Drug delivery cuff
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
CA2716995C (en) 2008-03-05 2014-11-04 Hemosphere, Inc. Vascular access system
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
WO2009132309A1 (en) 2008-04-25 2009-10-29 Nellix, Inc. Stent graft delivery system
US20130196438A1 (en) * 2009-04-30 2013-08-01 Cordis Corporation Tissue engineered blood vessels
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
WO2009149294A1 (en) 2008-06-04 2009-12-10 Nellix, Inc. Sealing apparatus and methods of use
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US20090319034A1 (en) * 2008-06-19 2009-12-24 Boston Scientific Scimed, Inc METHOD OF DENSIFYING ePTFE TUBE
EP2520320B1 (en) 2008-07-01 2016-11-02 Endologix, Inc. Catheter system
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US9072586B2 (en) 2008-10-03 2015-07-07 C.R. Bard, Inc. Implantable prosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2384375B1 (en) 2009-01-16 2017-07-05 Zeus Industrial Products, Inc. Electrospinning of ptfe with high viscosity materials
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8945202B2 (en) 2009-04-28 2015-02-03 Endologix, Inc. Fenestrated prosthesis
US9579103B2 (en) 2009-05-01 2017-02-28 Endologix, Inc. Percutaneous method and device to treat dissections
US8491646B2 (en) 2009-07-15 2013-07-23 Endologix, Inc. Stent graft
US8784710B2 (en) * 2009-07-16 2014-07-22 Phillips Scientific Inc. Expandable polymer membrane and tubes, and a method of manufacturing thereof
ES2549000T3 (en) 2009-07-27 2015-10-22 Endologix, Inc. endoprosthesis
ES2581343T3 (en) 2009-12-01 2016-09-05 Altura Medical, Inc. Modular endograft devices
CA2785989A1 (en) 2009-12-31 2011-07-07 Neograft Technologies, Inc. Graft devices and methods of fabrication
US20130045277A1 (en) 2010-02-03 2013-02-21 Tetsushi Taguchi Biocompatible device
ES2656939T3 (en) 2010-03-09 2018-03-01 Solinas Medical Inc. Self-closing devices
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8696738B2 (en) 2010-05-20 2014-04-15 Maquet Cardiovascular Llc Composite prosthesis with external polymeric support structure and methods of manufacturing the same
EP2595695A4 (en) 2010-07-19 2014-01-22 Neograft Technologies Inc Graft devices and methods of use
US8858613B2 (en) 2010-09-20 2014-10-14 Altura Medical, Inc. Stent graft delivery systems and associated methods
WO2012068298A1 (en) 2010-11-17 2012-05-24 Endologix, Inc. Devices and methods to treat vascular dissections
US8696741B2 (en) 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US8609249B2 (en) 2011-02-09 2013-12-17 Phillips Scientific Inc. Thin wall expandable polymer tubes having improved axial and radial strength, and a method of manufacturing thereof
WO2012118901A1 (en) 2011-03-01 2012-09-07 Endologix, Inc. Catheter system and methods of using same
EP2693980A1 (en) 2011-04-06 2014-02-12 Endologix, Inc. Method and system for endovascular aneurysm treatment
JP5665803B2 (en) * 2011-07-15 2015-02-04 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc How to electrospinning a graft layer
WO2013019756A3 (en) 2011-07-29 2014-05-08 Carnegie Mellon University Artificial valved conduits for cardiac reconstructive procedures and methods for their production
WO2013036643A3 (en) 2011-09-06 2013-07-11 Hemosphere, Inc. Vascular access system with connector
US9381112B1 (en) 2011-10-06 2016-07-05 William Eric Sponsell Bleb drainage device, ophthalmological product and methods
WO2013090337A1 (en) * 2011-12-13 2013-06-20 Neograft Technologies, Inc. System and atraumatic mandrel for creating graft devices
US8632489B1 (en) 2011-12-22 2014-01-21 A. Mateen Ahmed Implantable medical assembly and methods
WO2014159093A1 (en) 2013-03-14 2014-10-02 Endologix, Inc. Method for forming materials in situ within a medical device
US9737426B2 (en) 2013-03-15 2017-08-22 Altura Medical, Inc. Endograft device delivery systems and associated methods
US9522072B2 (en) 2013-03-15 2016-12-20 W. L. Gore & Associates, Inc. Porous materials having a fibrillar microstructure and a fracturable coating
US9814560B2 (en) 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices
US9486323B1 (en) 2015-11-06 2016-11-08 Spinal Stabilization Technologies Llc Nuclear implant apparatus and method following partial nuclectomy

Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797485A (en) * 1971-03-26 1974-03-19 Alza Corp Novel drug delivery device for administering drug into blood circulation in blood vessel
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4082893A (en) * 1975-12-24 1978-04-04 Sumitomo Electric Industries, Ltd. Porous polytetrafluoroethylene tubings and process of producing them
US4177334A (en) * 1976-09-13 1979-12-04 Sumitomo Electric Industries, Ltd. Microporous tubes
US4193138A (en) * 1976-08-20 1980-03-18 Sumitomo Electric Industries, Ltd. Composite structure vascular prostheses
US4304010A (en) * 1978-10-12 1981-12-08 Sumitomo Electric Industries, Ltd. Tubular polytetrafluoroethylene prosthesis with porous elastomer coating
US4306318A (en) * 1978-10-12 1981-12-22 Sumitomo Electric Industries, Ltd. Tubular organic prosthesis
US4332035A (en) * 1978-11-30 1982-06-01 Sumitomo Electric Industries, Ltd. Porous structure of polytetrafluoroethylene and process for production thereof
US4385093A (en) * 1980-11-06 1983-05-24 W. L. Gore & Associates, Inc. Multi-component, highly porous, high strength PTFE article and method for manufacturing same
US4478665A (en) * 1980-11-06 1984-10-23 W. L. Gore & Associates, Inc. Method for manufacturing highly porous, high strength PTFE articles
US4478898A (en) * 1982-06-04 1984-10-23 Junkosha Co., Ltd. Laminated porous polytetrafluoroethylene tube and its process of manufacture
US4482516A (en) * 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
US4550447A (en) * 1983-08-03 1985-11-05 Shiley Incorporated Vascular graft prosthesis
US4576608A (en) * 1980-11-06 1986-03-18 Homsy Charles A Porous body-implantable polytetrafluoroethylene
US4598011A (en) * 1982-09-10 1986-07-01 Bowman Jeffery B High strength porous polytetrafluoroethylene product having a coarse microstructure
US4619641A (en) * 1984-11-13 1986-10-28 Mount Sinai School Of Medicine Of The City University Of New York Coaxial double lumen anteriovenous grafts
US4704130A (en) * 1985-10-18 1987-11-03 Mitral Medical, International, Inc. Biocompatible microporous polymeric materials and methods of making same
US4743480A (en) * 1986-11-13 1988-05-10 W. L. Gore & Associates, Inc. Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4822361A (en) * 1985-12-24 1989-04-18 Sumitomo Electric Industries, Ltd. Tubular prosthesis having a composite structure
US4857069A (en) * 1984-03-01 1989-08-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel and process for preparing the same
US4877661A (en) * 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US4925710A (en) * 1988-03-31 1990-05-15 Buck Thomas F Ultrathin-wall fluoropolymer tube with removable fluoropolymer core
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US4973609A (en) * 1988-11-17 1990-11-27 Memron, Inc. Porous fluoropolymer alloy and process of manufacture
US5024671A (en) * 1988-09-19 1991-06-18 Baxter International Inc. Microporous vascular graft
US5026513A (en) * 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
US5061276A (en) * 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5064593A (en) * 1989-12-07 1991-11-12 Daikin Industries Ltd. Process for producing multilayer polytetrafluoroethylene porous membrane
US5074878A (en) * 1989-04-24 1991-12-24 Medical Engineering Corporation Tissue expander and method
US5116360A (en) * 1990-12-27 1992-05-26 Corvita Corporation Mesh composite graft
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US5154866A (en) * 1991-04-04 1992-10-13 Daikin Industries, Ltd. Molding process for preparing porous polytetrafluoroethylene articles
US5171261A (en) * 1989-04-17 1992-12-15 Koken Co., Ltd. Vascular prosthesis, manufacturing method of the same, and substrate for vascular prothesis
US5181903A (en) * 1988-03-25 1993-01-26 Duke University Method for improving a biomaterial's resistance to thrombosis and infection and for improving tissue ingrowth
US5192310A (en) * 1991-09-16 1993-03-09 Atrium Medical Corporation Self-sealing implantable vascular graft
US5246452A (en) * 1992-04-13 1993-09-21 Impra, Inc. Vascular graft with removable sheath
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US5354329A (en) * 1992-04-17 1994-10-11 Whalen Biomedical, Inc. Vascular prosthesis having enhanced compatibility and compliance characteristics
US5358678A (en) * 1991-07-04 1994-10-25 Mitsubishi Kasei Corporation Polytetrafluoroethylene porous film and process for preparing the same
US5370681A (en) * 1991-09-16 1994-12-06 Atrium Medical Corporation Polyumenal implantable organ
US5374473A (en) * 1992-08-19 1994-12-20 W. L. Gore & Associates, Inc. Dense polytetrafluoroethylene articles
US5383925A (en) * 1992-09-14 1995-01-24 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5433909A (en) * 1992-03-13 1995-07-18 Atrium Medical Corporation Method of making controlled porosity expanded polytetrafluoroethylene products
US5437900A (en) * 1991-06-14 1995-08-01 W. L. Gore & Associates, Inc. Surface modified porous expanded polytetrafluoroethylene and process for making
US5453235A (en) * 1993-01-29 1995-09-26 Impra, Inc. Method of forming dual porosity FTFE tubes by extrusion of concentric preforms
US5462781A (en) * 1991-06-14 1995-10-31 W. L. Gore & Associates, Inc. Surface modified porous expanded polytetrafluoroethylene and process for making
US5466509A (en) * 1993-01-15 1995-11-14 Impra, Inc. Textured, porous, expanded PTFE
US5716660A (en) * 1994-08-12 1998-02-10 Meadox Medicals, Inc. Tubular polytetrafluoroethylene implantable prostheses
US5800512A (en) * 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5824050A (en) * 1996-12-03 1998-10-20 Atrium Medical Corporation Prosthesis with in-wall modulation
US5897587A (en) * 1996-12-03 1999-04-27 Atrium Medical Corporation Multi-stage prosthesis
US6319279B1 (en) * 1999-10-15 2001-11-20 Edwards Lifesciences Corp. Laminated self-sealing vascular access graft
US6368347B1 (en) * 1999-04-23 2002-04-09 Sulzer Vascutek Ltd. Expanded polytetrafluoroethylene vascular graft with coating
US6383214B1 (en) * 1995-03-10 2002-05-07 Impra, Inc., A Subsidiary Of C. R. Bard, Inc. Encapsulated stent
US6517571B1 (en) * 1999-01-22 2003-02-11 Gore Enterprise Holdings, Inc. Vascular graft with improved flow surfaces
US6521284B1 (en) * 1999-11-03 2003-02-18 Scimed Life Systems, Inc. Process for impregnating a porous material with a cross-linkable composition
US7244271B2 (en) * 1996-01-22 2007-07-17 Boston Scientific Scimed, Inc. Self-sealing PTFE vascular graft and manufacturing methods

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31618A (en) * 1861-03-05 Water-elevator
US5669936A (en) * 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
JPH0428337A (en) * 1990-05-22 1992-01-30 Nec Corp Pathological data collecting device
JPH0473847A (en) * 1990-07-12 1992-03-09 Matsushita Electric Ind Co Ltd Electron radiation device
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
JPH05243819A (en) * 1991-03-07 1993-09-21 Tdk Corp Strip line and its manufacture
JPH04280512A (en) * 1991-03-08 1992-10-06 Fujitsu Ltd Semiconductor integrated circuit device
JPH04303034A (en) * 1991-03-29 1992-10-27 Aisin Seiki Co Ltd Seat device
US5395349A (en) * 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
JP3370700B2 (en) * 1992-05-26 2003-01-27 淡路技建株式会社 Double floor structure
JP2970320B2 (en) * 1993-06-07 1999-11-02 住友電気工業株式会社 Artificial blood vessels
US6027779A (en) * 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
DE69428282D1 (en) * 1993-08-18 2001-10-18 Gore & Ass Thin-walled, seamless, porous polytetrafluoroäthylenrohr
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
DE69431302T2 (en) * 1993-08-18 2003-05-15 Gore & Ass Rohrfoermiges intraluminal usable tissue
US5505887A (en) * 1994-03-10 1996-04-09 Meadox Medicals, Inc. Extrusion process for manufacturing PTFE products
US5716394A (en) * 1994-04-29 1998-02-10 W. L. Gore & Associates, Inc. Blood contact surfaces using extracellular matrix synthesized in vitro
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
WO1996025897A3 (en) * 1995-02-22 1996-11-21 Menlo Care Inc Covered expanding mesh stent
DE69518337D1 (en) * 1995-03-10 2000-09-14 Impra Inc Endoluminal stent encapsulated and manufacturing
CA2178541C (en) * 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5562697A (en) * 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5928279A (en) * 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US5824046A (en) * 1996-09-27 1998-10-20 Scimed Life Systems, Inc. Covered stent
US5858556A (en) * 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US5824054A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US3797485A (en) * 1971-03-26 1974-03-19 Alza Corp Novel drug delivery device for administering drug into blood circulation in blood vessel
US4082893A (en) * 1975-12-24 1978-04-04 Sumitomo Electric Industries, Ltd. Porous polytetrafluoroethylene tubings and process of producing them
US4193138A (en) * 1976-08-20 1980-03-18 Sumitomo Electric Industries, Ltd. Composite structure vascular prostheses
US4177334A (en) * 1976-09-13 1979-12-04 Sumitomo Electric Industries, Ltd. Microporous tubes
US4250138A (en) * 1976-09-13 1981-02-10 Sumitomo Electric Industries, Ltd. Process for producing microporous tubes of polytetrafluoroethylene
USRE31618E (en) * 1978-10-12 1984-07-03 Sumitomo Electric Industries, Ltd. Tubular organic prosthesis
US4304010A (en) * 1978-10-12 1981-12-08 Sumitomo Electric Industries, Ltd. Tubular polytetrafluoroethylene prosthesis with porous elastomer coating
US4306318A (en) * 1978-10-12 1981-12-22 Sumitomo Electric Industries, Ltd. Tubular organic prosthesis
US4332035A (en) * 1978-11-30 1982-06-01 Sumitomo Electric Industries, Ltd. Porous structure of polytetrafluoroethylene and process for production thereof
US4385093A (en) * 1980-11-06 1983-05-24 W. L. Gore & Associates, Inc. Multi-component, highly porous, high strength PTFE article and method for manufacturing same
US4478665A (en) * 1980-11-06 1984-10-23 W. L. Gore & Associates, Inc. Method for manufacturing highly porous, high strength PTFE articles
US4576608A (en) * 1980-11-06 1986-03-18 Homsy Charles A Porous body-implantable polytetrafluoroethylene
US4478898A (en) * 1982-06-04 1984-10-23 Junkosha Co., Ltd. Laminated porous polytetrafluoroethylene tube and its process of manufacture
US4482516A (en) * 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
US4598011A (en) * 1982-09-10 1986-07-01 Bowman Jeffery B High strength porous polytetrafluoroethylene product having a coarse microstructure
US4550447A (en) * 1983-08-03 1985-11-05 Shiley Incorporated Vascular graft prosthesis
US4857069A (en) * 1984-03-01 1989-08-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel and process for preparing the same
US4619641A (en) * 1984-11-13 1986-10-28 Mount Sinai School Of Medicine Of The City University Of New York Coaxial double lumen anteriovenous grafts
US4704130A (en) * 1985-10-18 1987-11-03 Mitral Medical, International, Inc. Biocompatible microporous polymeric materials and methods of making same
US4822361A (en) * 1985-12-24 1989-04-18 Sumitomo Electric Industries, Ltd. Tubular prosthesis having a composite structure
US4743480A (en) * 1986-11-13 1988-05-10 W. L. Gore & Associates, Inc. Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5061276A (en) * 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5026513A (en) * 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
US4877661A (en) * 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US5308664A (en) * 1987-10-19 1994-05-03 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US5181903A (en) * 1988-03-25 1993-01-26 Duke University Method for improving a biomaterial's resistance to thrombosis and infection and for improving tissue ingrowth
US4925710A (en) * 1988-03-31 1990-05-15 Buck Thomas F Ultrathin-wall fluoropolymer tube with removable fluoropolymer core
US5024671A (en) * 1988-09-19 1991-06-18 Baxter International Inc. Microporous vascular graft
US4973609A (en) * 1988-11-17 1990-11-27 Memron, Inc. Porous fluoropolymer alloy and process of manufacture
US5171261A (en) * 1989-04-17 1992-12-15 Koken Co., Ltd. Vascular prosthesis, manufacturing method of the same, and substrate for vascular prothesis
US5074878A (en) * 1989-04-24 1991-12-24 Medical Engineering Corporation Tissue expander and method
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5064593A (en) * 1989-12-07 1991-11-12 Daikin Industries Ltd. Process for producing multilayer polytetrafluoroethylene porous membrane
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US5116360A (en) * 1990-12-27 1992-05-26 Corvita Corporation Mesh composite graft
US5154866A (en) * 1991-04-04 1992-10-13 Daikin Industries, Ltd. Molding process for preparing porous polytetrafluoroethylene articles
US5462781A (en) * 1991-06-14 1995-10-31 W. L. Gore & Associates, Inc. Surface modified porous expanded polytetrafluoroethylene and process for making
US5437900A (en) * 1991-06-14 1995-08-01 W. L. Gore & Associates, Inc. Surface modified porous expanded polytetrafluoroethylene and process for making
US5358678A (en) * 1991-07-04 1994-10-25 Mitsubishi Kasei Corporation Polytetrafluoroethylene porous film and process for preparing the same
US5192310A (en) * 1991-09-16 1993-03-09 Atrium Medical Corporation Self-sealing implantable vascular graft
US5370681A (en) * 1991-09-16 1994-12-06 Atrium Medical Corporation Polyumenal implantable organ
US5433909A (en) * 1992-03-13 1995-07-18 Atrium Medical Corporation Method of making controlled porosity expanded polytetrafluoroethylene products
US5246452A (en) * 1992-04-13 1993-09-21 Impra, Inc. Vascular graft with removable sheath
US5354329A (en) * 1992-04-17 1994-10-11 Whalen Biomedical, Inc. Vascular prosthesis having enhanced compatibility and compliance characteristics
US5374473A (en) * 1992-08-19 1994-12-20 W. L. Gore & Associates, Inc. Dense polytetrafluoroethylene articles
US5383925A (en) * 1992-09-14 1995-01-24 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5466509A (en) * 1993-01-15 1995-11-14 Impra, Inc. Textured, porous, expanded PTFE
US5453235A (en) * 1993-01-29 1995-09-26 Impra, Inc. Method of forming dual porosity FTFE tubes by extrusion of concentric preforms
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5716660A (en) * 1994-08-12 1998-02-10 Meadox Medicals, Inc. Tubular polytetrafluoroethylene implantable prostheses
US6383214B1 (en) * 1995-03-10 2002-05-07 Impra, Inc., A Subsidiary Of C. R. Bard, Inc. Encapsulated stent
US5800512A (en) * 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US7244271B2 (en) * 1996-01-22 2007-07-17 Boston Scientific Scimed, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US5897587A (en) * 1996-12-03 1999-04-27 Atrium Medical Corporation Multi-stage prosthesis
US5824050A (en) * 1996-12-03 1998-10-20 Atrium Medical Corporation Prosthesis with in-wall modulation
US6517571B1 (en) * 1999-01-22 2003-02-11 Gore Enterprise Holdings, Inc. Vascular graft with improved flow surfaces
US6368347B1 (en) * 1999-04-23 2002-04-09 Sulzer Vascutek Ltd. Expanded polytetrafluoroethylene vascular graft with coating
US6319279B1 (en) * 1999-10-15 2001-11-20 Edwards Lifesciences Corp. Laminated self-sealing vascular access graft
US6521284B1 (en) * 1999-11-03 2003-02-18 Scimed Life Systems, Inc. Process for impregnating a porous material with a cross-linkable composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9572654B2 (en) 2004-08-31 2017-02-21 C.R. Bard, Inc. Self-sealing PTFE graft with kink resistance
US8313524B2 (en) 2004-08-31 2012-11-20 C. R. Bard, Inc. Self-sealing PTFE graft with kink resistance
US8652284B2 (en) 2005-06-17 2014-02-18 C. R. Bard, Inc. Vascular graft with kink resistance after clamping
US20100179642A1 (en) * 2005-06-17 2010-07-15 C.R. Bard, Inc. Vascular Graft With Kink Resistance After Clamping
US8066758B2 (en) 2005-06-17 2011-11-29 C. R. Bard, Inc. Vascular graft with kink resistance after clamping
US8636794B2 (en) 2005-11-09 2014-01-28 C. R. Bard, Inc. Grafts and stent grafts having a radiopaque marker
US9155491B2 (en) 2005-11-09 2015-10-13 C.R. Bard, Inc. Grafts and stent grafts having a radiopaque marker
US9198749B2 (en) 2006-10-12 2015-12-01 C. R. Bard, Inc. Vascular grafts with multiple channels and methods for making
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US20090252926A1 (en) * 2008-04-03 2009-10-08 Boston Scientific Scimed, Inc. Thin-walled calendered ptfe
WO2009123857A1 (en) * 2008-04-03 2009-10-08 Boston Scientific Scimed, Inc. Thin-walled calendered ptfe
US9034031B2 (en) 2009-08-07 2015-05-19 Zeus Industrial Products, Inc. Prosthetic device including electrostatically spun fibrous layer and method for making the same
US8262979B2 (en) 2009-08-07 2012-09-11 Zeus Industrial Products, Inc. Process of making a prosthetic device from electrospun fibers
US8257640B2 (en) 2009-08-07 2012-09-04 Zeus Industrial Products, Inc. Multilayered composite structure with electrospun layer
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
WO2017043693A1 (en) * 2015-09-11 2017-03-16 문병주 Artificial blood vessel

Also Published As

Publication number Publication date Type
US6001125A (en) 1999-12-14 grant
EP0879029B1 (en) 2005-04-27 grant
US5800512A (en) 1998-09-01 grant
WO1997025938A1 (en) 1997-07-24 application
DE69733122D1 (en) 2005-06-02 grant
CA2243951C (en) 2002-09-10 grant
DE69733122T2 (en) 2005-12-01 grant
US6036724A (en) 2000-03-14 grant
EP0879029A1 (en) 1998-11-25 application
CA2243951A1 (en) 1997-07-24 application
JPH11504548A (en) 1999-04-27 application

Similar Documents

Publication Publication Date Title
US3479670A (en) Tubular prosthetic implant having helical thermoplastic wrapping therearound
US5972441A (en) Thin-wall polytetrafluoroethylene tube
US5980799A (en) Methods of making controlled porosity expanded polytetrafluoroethylene products and fabrication
US4902289A (en) Multilayer bioreplaceable blood vessel prosthesis
US4725273A (en) Artificial vessel having excellent patency
US4550447A (en) Vascular graft prosthesis
US7108716B2 (en) Stent-graft with bioabsorbable structural support
US7056336B2 (en) Covered endoprosthesis and delivery system
EP0493788B1 (en) Three-layer vascular prosthesis
US4857069A (en) Artificial vessel and process for preparing the same
US4787900A (en) Process for forming multilayer bioreplaceable blood vessel prosthesis
US5851229A (en) Bioresorbable sealants for porous vascular grafts
US6863757B1 (en) Method of making an expandable medical device formed of a compacted porous polymeric material
US5925074A (en) Vascular endoprosthesis and method
US6652570B2 (en) Composite vascular graft
US6312457B1 (en) Intraluminal lining
US20040024446A1 (en) Helically formed stent/graft assembly
US6019788A (en) Vascular shunt graft and junction for same
US20020026231A1 (en) Radially expandable stented tubular PTFE grafts
US20060036311A1 (en) Stent and process for producing the same
US5843171A (en) Method of insitu bypass to hold open venous valves
US4905367A (en) Manufacture of stretchable porous sutures
US20060259133A1 (en) Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
EP0689805A2 (en) Bistable luminal graft endoprostheses
US5653747A (en) Luminal graft endoprostheses and manufacture thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACACIA RESEARCH GROUP LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:029940/0514

Effective date: 20121220

AS Assignment

Owner name: LIFEPORT SCIENCES LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACACIA RESEARCH GROUP LLC;REEL/FRAME:030003/0055

Effective date: 20121227

AS Assignment

Owner name: ACACIA RESEARCH GROUP LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIFEPORT SCIENCES LLC;REEL/FRAME:030310/0588

Effective date: 20121228

AS Assignment

Owner name: LIFESHIELD SCIENCES LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACACIA RESEARCH GROUP LLC;REEL/FRAME:030740/0225

Effective date: 20130515

AS Assignment

Owner name: LIFEPORT SCIENCES LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIFESHIELD SCIENCES LLC;REEL/FRAME:032420/0587

Effective date: 20140130