US20120109279A1 - Apparatus and method of placement of a graft or graft system - Google Patents

Apparatus and method of placement of a graft or graft system Download PDF

Info

Publication number
US20120109279A1
US20120109279A1 US13/287,907 US201113287907A US2012109279A1 US 20120109279 A1 US20120109279 A1 US 20120109279A1 US 201113287907 A US201113287907 A US 201113287907A US 2012109279 A1 US2012109279 A1 US 2012109279A1
Authority
US
United States
Prior art keywords
prosthesis
fenestration
graft
opening
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/287,907
Inventor
Kevin Mayberry
Craig Welk
Richard Monetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endologix LLC
Original Assignee
Endologix LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/287,907 priority Critical patent/US20120109279A1/en
Application filed by Endologix LLC filed Critical Endologix LLC
Assigned to ENDOLOGIX, INC. reassignment ENDOLOGIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MONETTI, RICHARD, MAYBERRY, KEVIN, WELK, CRAIG
Publication of US20120109279A1 publication Critical patent/US20120109279A1/en
Priority to US15/414,499 priority patent/US11406518B2/en
Assigned to DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT reassignment DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Assigned to DEERFIELD ELGX REVOLVER, LLC, AS AGENT reassignment DEERFIELD ELGX REVOLVER, LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Assigned to ENDOLOGIX, INC., TRIVASCULAR, INC., NELLIX, INC. reassignment ENDOLOGIX, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEERFIELD ELGX REVOLVER, LLC, AS AGENT
Assigned to DEERFIELD ELGX REVOLVER, LLC, AS AGENT reassignment DEERFIELD ELGX REVOLVER, LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC.
Assigned to ENDOLOGIX LLC reassignment ENDOLOGIX LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC.
Assigned to DEERFIELD PRIVATE DESIGN FUND IV, L.P. reassignment DEERFIELD PRIVATE DESIGN FUND IV, L.P. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX LLC (F/K/A ENDOLOGIX, INC.), NELLIX, INC., TRIVASCULAR CANADA, LLC, TRIVASCULAR TECHNOLOGIES, INC., TRIVASCULAR, INC.
Priority to US17/882,378 priority patent/US20230218416A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/97Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/061Blood vessels provided with means for allowing access to secondary lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/821Ostial stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/0008Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a position by translation along an axis or two perpendicular axes

Definitions

  • Endoluminal vascular prostheses delivery devices and methods of deploying such prostheses for use in the treatment of aneurysms at branches of arterial vessels, in particular the aorta, are described.
  • An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen.
  • the diseased region of the blood vessels can extend across branch vessels.
  • the blood flow into these branch vessels is critical for the perfusion of the peripheral regions of the body and vital organs.
  • Many arteries branch off the aorta For example, the carotid arteries supply blood into the brain, the renal arteries supply blood into the kidneys, the superior mesenteric artery (“SMA”) supplies the pancreas, the hypogastric arteries supply blood to the reproductive organs, and the subclavian arteries supply blood to the arms.
  • SMA superior mesenteric artery
  • the hypogastric arteries supply blood to the reproductive organs
  • the subclavian arteries supply blood to the arms.
  • the branch vessels may also be affected.
  • Thoracic aortic aneurysms may involve the subclavian and carotid arteries, abdominal aneurysms may involve the SMA, renal and hypogastric arteries.
  • Aortic dissections may involve all branch vessels mentioned above. When this occurs, it may be detrimental to implant a conventional tubular graft or stent graft in this location of the aorta or the blood vessel, since such a graft may obstruct the flow of blood from the aorta into the branches.
  • Prior branch graft arrangements are complex and require many steps of insertion and removal to orient and align fenestrations in a main body to the surrounding anatomy and still more steps to insert, deploy, and seal a branch graft (covered stent) to the main stent graft body and to the wall of the branch vessel without unacceptable leakage.
  • the main graft is positioned within the main blood vessel such as the aorta so that the lateral openings (also referred to herein as fenestrations) can be aligned with the branch blood vessels, to allow blood to flow through the openings in the main graft and into the branch vessels.
  • the positions of the branch blood vessels can vary from one patient's anatomy to the next, the graft systems disclosed herein allow a surgeon to adjust the position of the fenestrations in the main body so as to align them with the branch vessels to improve the efficiency of branch graft deployment.
  • the branch graft system can comprise a tubular expandable main body and at least one fenestration or at least one branch graft at any desired location.
  • the main graft body and/or the branch graft can be made from an expandable material, such as but not limited to ePTFE.
  • the main graft can have two fenestrations or branch grafts formed therein at generally diametrically opposed locations or at positions that are offset from the diametrically opposed positions.
  • cut-outs, scallops, or fenestrations such as but not limited to a fenestration for the superior mesenteric artery (“SMA”), can be formed in the main graft depending on the patient's anatomy and position of the graft.
  • SMA superior mesenteric artery
  • the main graft body can have a tubular shape and can have a diameter that can be significantly larger than the diameter of the target vessel into which the graft is intended to be deployed.
  • the oversized diameter of a portion of the main graft can provide excess or slack graft material in the main graft to allow the fenestrations to each be moved in one or a combination of lateral, axial and angular directions so that the fenestrations can be aligned with the branch arteries.
  • One or more branch grafts can be supported by the main graft body adjacent to the one or more fenestrations (openings) that can be formed in the main graft body.
  • a compressed branch graft is small enough to allow it to be manipulated into the desired vascular position by moving the branch graft over a guidewire.
  • the branch graft can be expanded to the diameter of the branch vessel by mechanical means, which can be a dilation balloon, or by the removal of a surrounding restraint in the case of a self-expanding device.
  • a fenestrated graft deployment system comprising a delivery catheter having a catheter body, a prosthesis having a main graft body, the main graft body having lumen therethrough and a first opening laterally through a wall of the main graft body, a first guidewire prepositioned within the delivery catheter extending through at least a portion of the catheter body into a main lumen of the endoluminal prosthesis and through the first opening in the wall of the prosthesis when the delivery catheter is in a predeployment state.
  • the system can have a first fenestration alignment device extending through at least a portion of the delivery catheter configured to be axially moveable relative to the first guidewire.
  • the first fenestration alignment device can be configured such that a portion of the fenestration alignment device contacts the main graft body adjacent to the first opening to approximately align the first fenestration with an ostium of a target branch vessel when advanced relative to the fenestration.
  • a fenestration push device for use in a fenestrated prostheses deployment catheter, comprising a body portion defining a lumen therethrough, the lumen having a first diameter or cross-sectional size or perimeter, and a protrusion supported at or adjacent to a distal end of the body portion, the protrusion projecting away from an outside surface of the body portion and defining a second cross-sectional or perimeter size.
  • the second cross-sectional size of the fenestration push device at the location of the protrusion is greater than the first diameter or size of the body portion.
  • the second cross-sectional size of the protrusion is greater than a cross-sectional size of a fenestration formed in a respective fenestrated graft.
  • Some embodiments relate to method of deploying a fenestrated endoluminal prosthesis in a patient's vasculature, comprising advancing a catheter supporting the endoluminal prosthesis therein through a patient's vasculature to a target vessel location, wherein the prosthesis has a main graft body comprising a first opening through a wall thereof, advancing a first guide sheath through the first opening and into a first branch vessel, and advancing a first fenestration alignment device into contact with the prosthesis adjacent to the first opening through the wall of the prosthesis so as to approximately align the first opening with an ostium of the first branch vessel.
  • Some embodiments or arrangements are directed to methods for deploying an endoluminal prosthesis, comprising advancing a catheter supporting the endoluminal prosthesis therein through a patient's vasculature to a target vessel location, advancing one or more catheters through one or more fenestrations formed in the main graft body and into one or more branch vessels in the patient's vasculature, at least partially expanding at least the second portion of the main graft body, and substantially aligning the one or more fenestrations formed within the second portion of the main graft body with the one or more branch vessels by moving the one or more fenestrations in a circumferential and/or axial direction toward the ostium of the one or more branch vessels.
  • the prosthesis can have a main graft body comprising a first portion, a second portion, and a third portion.
  • the second portion of the main graft body has a cross-sectional size that is significantly larger than a cross-sectional size of the first portion and the third portion, and also significantly larger than a cross-sectional size of the target vessel.
  • Some embodiments or arrangements are directed to methods for deploying a fenestrated prosthesis in a patient's blood vessel having at least a first branch blood vessel, comprising advancing a delivery catheter into a blood vessel, exposing at least one guide sheath, the guide sheath being positioned within the delivery catheter so as to extend from a main lumen of the prosthesis through a first opening formed through a wall of the prosthesis, and advancing an angiographic catheter through the guide sheath and cannulating a first target branch vessel before completely removing the second restraint.
  • the delivery catheter can support the fenestrated prosthesis having a main graft body and at least one fenestration extending through the main graft body, a first restraint restraining a proximal portion of the prosthesis, and a second restraint restraining a distal portion of the prosthesis, the distal portion of the prosthesis being closer to a proximal portion of the delivery catheter than the proximal portion of the prosthesis.
  • Some embodiments or arrangements are directed to methods for deploying a fenestrated prosthesis in a patient's blood vessel having at least a first branch blood vessel, comprising advancing a delivery catheter into a blood vessel, exposing at least one guide sheath, the guide sheath being positioned within the delivery catheter so as to extend from a main lumen of the prosthesis through a first opening formed through a wall of the prosthesis, and advancing the guide sheath into a first target branch vessel before completely removing the second restraint.
  • the delivery catheter can support the fenestrated prosthesis, and the fenestrated prosthesis can have a main graft body and at least one fenestration therein, a first restraint restraining a proximal portion of the prosthesis, and a second restraint restraining a distal portion of the prosthesis, the distal portion of the prosthesis being closer to a proximal portion of the delivery catheter than the proximal portion of the prosthesis,
  • Some embodiments or arrangements are directed to delivery systems for deploying an endoluminal prosthesis, comprising a first restraint configured to restrain a portion of the prosthesis, a second restraint configured to restrain a second portion of the prosthesis, a first opening through a wall of the prosthesis, a first guide sheath extending from a proximal end of the delivery system into a main lumen of the endoluminal prosthesis and through the first opening in the wall of the prosthesis, a first stent configured to support the first portion of the endoluminal prosthesis, and a second stent configured to support the second portion of the endoluminal prosthesis, wherein the guide sheath is moveable before removing the first and second restraints.
  • the first opening can be positioned between the first and second portions.
  • Some embodiments or arrangements are directed to endoluminal prostheses comprising a main graft body defining a flow lumen therethrough, a first opening passing through a wall of the main graft body, and a first support member supported by the main graft body and overlapping an edge of the first opening, the first support member being configured to increase the tear resistance of the main graft body adjacent to the first opening.
  • Some embodiments or arrangements are directed to methods for forming an endoluminal prosthesis having at least one reinforced fenestration in a main portion thereof, comprising forming a graft body having a tubular main body portion, forming a first opening through a wall of the main body portion, the first opening having a first state in which the first opening is substantially unstretched and a second state in which the first opening is stretched so that a size of the first opening increases, advancing a tubular member partially through the first opening, and fastening a first end portion and a second end portion of the tubular member to the wall of the main body portion adjacent to the first opening so that the tubular member completely overlaps an edge of the first opening.
  • Some embodiments or arrangements are directed to methods of deploying an endoluminal prosthesis, comprising advancing a catheter supporting the endoluminal prosthesis therein through a patient's vasculature to a target vessel location, advancing one or more catheters through one or more fenestrations formed in the main graft body and into one or more branch vessels in the patient's vasculature, at least partially expanding at least the second portion of the main graft body, and substantially aligning the one or more fenestrations formed within the second portion of the main graft body with the one or more branch vessels by moving the one or more fenestrations in a circumferential and/or axial direction toward an ostium of the one or more branch vessels by advancing one or more alignment devices relative to the one or more fenestrations, engaging such fenestrations with the one or more alignment devices, and aligning such fenestrations with the one or more branch vessels.
  • the prosthesis can have a main graft body which can have a first portion, a second portion, and a third portion, and the second portion of the main graft body can have a cross-sectional size that is significantly larger than a cross-sectional size of the first portion and the third portion, and also significantly larger than a cross-sectional size of the target vessel.
  • Some embodiments or arrangements are directed to methods of deploying a graft in a patient's blood vessel having at least a first branch blood vessel, comprising advancing a delivery catheter into a blood vessel, the delivery catheter supporting a fenestrated prosthesis comprising a main graft body therein, exposing at least one branch sheath, the branch sheath being positioned within the delivery catheter so as to extend from a main lumen of the prosthesis through a first opening formed through a wall of the main graft body, advancing an angiographic catheter into the branch sheath and cannulating a first target branch vessel before expanding the main graft body of the prosthesis, engaging the main graft body adjacent to the first opening, and advancing the main graft body adjacent to the first opening into approximate alignment with an ostium of the target branch blood vessel.
  • main graft body, branch grafts, or any other component of the endoluminal prostheses or deployment systems disclosed herein can have at least one radiopaque suture or marker attached thereto to assist with the placement of such components.
  • FIG. 1 is a partial sectional view of a patient's vasculature illustrating an endoluminal prosthesis deployed in the patient's vasculature.
  • FIG. 2 is a side view of the endoluminal prosthesis illustrated in FIG. 1 .
  • FIG. 3 is a cross-sectional view of the endoluminal prosthesis deployed in the patient's anatomy, taken at 3 - 3 in FIG. 1 , before the fenestrations have been aligned with the respective branch vessels.
  • FIG. 4 is a cross-sectional view of the endoluminal prosthesis deployed in the patient's anatomy, taken at 3 - 3 in FIG. 1 , after the fenestrations have been aligned with the respective branch vessels.
  • FIG. 5A is a side view of a catheter system comprising an introducer catheter and a delivery catheter.
  • FIG. 5B is an oblique view of a catheter system illustrated in FIG. 5A , showing the outer sheath in a partially retracted position.
  • FIG. 6 is an oblique view of introducer catheter shown in FIGS. 5A and 5B .
  • FIG. 7 is an exploded view the introducer catheter shown in FIGS. 5A and 5B .
  • FIG. 8 is a close up view the delivery catheter shown in FIGS. 5A and 5B .
  • FIG. 9 is an exploded view the delivery catheter shown in FIG. 5A .
  • FIG. 10 is a sectional view of a portion 10 - 10 of delivery catheter shown in FIG. 5A .
  • FIG. 11A is a sectional view of the delivery catheter shown in FIGS. 5A and 5B , taken at 11 A- 11 A in FIG. 10 .
  • FIG. 11B is a sectional view the delivery catheter shown in FIGS. 5A and 5B , taken at 11 B- 11 B in FIG. 10 .
  • FIG. 12 is a side view the catheter system shown in FIG. 5B , showing the outer sheath in a partially retracted position.
  • FIG. 13 is an close up side view of the portion 13 - 13 of the catheter system shown in FIG. 12 , showing the outer sheath in a partially retracted position.
  • FIG. 14 is an close up side view of the portion 14 - 14 of the catheter system shown in FIG. 12 , showing the outer sheath in a partially retracted position and the proximal sheath in a partially advanced position.
  • FIG. 15 is a side view the catheter system shown in FIGS. 5A and 5B , showing the outer sheath in a partially retracted position and one branch sheath and one fenestration alignment component in a partially advanced position.
  • FIG. 16 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter of FIG. 5A being advanced through a patient's abdominal aorta.
  • FIG. 17 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter of FIG. 5A and an angiographic catheter being advanced through a branch sheath of the delivery catheter toward a branch vessel.
  • FIG. 18 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter illustrated in FIG. 5A and the branch sheaths of the delivery catheter being advanced into a patient's branch arteries.
  • FIG. 19 is a sectional view of a portion of a patient's vasculature, showing a distal sheath of the delivery catheter illustrated in FIG. 5A being advanced to deploy a proximal portion of the prosthesis.
  • FIG. 20 is a sectional view of a portion of a patient's vasculature, showing a peelable sheath of the delivery catheter illustrated in FIG. 5A being removed to deploy a distal portion of the prosthesis.
  • FIG. 21 is a sectional view of a portion of a patient's vasculature, showing a fenestration alignment component of the delivery catheter illustrated in FIG. 5A advancing an inner wall of the prosthesis adjacent to a fenestration toward an ostium of the target branch vessel.
  • FIG. 22 is a sectional view of a portion of a patient's vasculature, showing a branch stent being advanced into the target branch vessel.
  • FIG. 23 is a sectional view of a portion of a patient's vasculature, showing the branch stent of FIG. 22 being expanded in the target branch vessel and flared.
  • FIGS. 24A and 24B are oblique views of a prosthesis having one or more fenestrations therein, the graft being shown in dashed lines in FIG. 24B for clarity.
  • FIG. 25 is a top view of the prosthesis of FIG. 24 .
  • FIG. 26 is an enlarged view of a portion of the prosthesis of FIG. 24 , defined by curve 26 - 26 of FIG. 24B .
  • FIG. 27 is a side view of the stent shown in FIG. 24 , perpendicular to an axis projecting through the fenestration.
  • FIG. 28 is a side view of the stent shown in FIG. 24 , along an axis projecting through the fenestration.
  • FIG. 29 is an oblique view of a fenestration alignment component, which is also referred to herein as a fenestration alignment component.
  • FIG. 30 is a side view of the fenestration alignment component illustrated in FIG. 29 .
  • FIG. 31A is an end view of the fenestration alignment component illustrated in FIG. 29 .
  • FIG. 31B is a sectional view through a portion of the fenestration alignment component, taken at 31 B- 31 B of FIG. 31A .
  • FIG. 32 is an oblique view of a delivery catheter having the fenestration alignment component of FIG. 29 .
  • FIG. 33 is an exploded view of the delivery catheter shown in FIG. 32 .
  • FIG. 34 is a sectional view of a portion of a patient's vasculature, showing the fenestration alignment component illustrated in FIG. 29 advancing an inner wall of the prosthesis adjacent to a fenestration toward an ostium of the target branch vessel.
  • FIG. 35 is a sectional view of a portion of a patient's vasculature, showing a branch stent being advanced into the target branch vessel while the fenestration alignment component illustrated in FIG. 29 can be used to maintain the inner wall of the prosthesis adjacent to a fenestration in the prosthesis in the desired position relative to the ostium of the target branch vessel.
  • Some embodiments described herein are directed to systems, methods, and apparatuses to treat lesions, aneurysms, or other defects in the aorta, including, but not limited to, the thoracic, ascending, and abdominal aorta, to name a few.
  • the systems, methods, and apparatuses may have application to other vessels or areas of the body, or to other fields, and such additional applications are intended to form a part of this disclosure.
  • the systems, methods, and apparatuses may have application to the treatment of blood vessels in animals.
  • any of the graft embodiments disclosed herein can be configured to have excess or slack graft material in at least a portion thereof relative to the stent or support member which supports the graft.
  • the excess or slack material can result from either an enlarged diametric portion of the graft, excess length of the graft material relative to a stent or other support structure, or a combination of both the enlarged diametric portion of the graft and excess length of the graft material.
  • the excess graft material can form a bulge or other enlargement in the graft in the approximate location of one or more fenestrations formed through the graft material.
  • the excess or slack material along the circumference of the graft can allow for circumferential and/or axial movement of the graft material and, hence, can allow for circumferential and/or axial movement of the one or more fenestrations, relative to the stent and the ostium of the patient's branch vessels. Therefore, the diameter of the graft at and/or adjacent to the location of one or more fenestrations through the graft material can be larger than the local diameter of the target vessel. Similarly, the diameter of the graft at and/or adjacent to the location of one or more fenestrations can be larger than the diameter of the non-enlarged portion of the graft material.
  • any of the embodiments disclosed herein can be configured such that the graft has an enlarged or excess slack portion at or adjacent to the location of the fenestrations, wherein such enlarged or excess slack portion is free of attachment points or has only a minimal number of attachment points to the stent or support structure radially adjacent to the enlarged or excess slack portion.
  • this can result in both freedom of circumferential and axial movement of the fenestrations, thereby improving the positional adjustability of the fenestrations.
  • any of the graft embodiments described herein can be configured to have excess circumferential or longitudinal material at any portion of the graft to increase the positional adjustability of one or more fenestrations formed in the graft.
  • any of the graft embodiments disclosed herein, including those with diametrically enlarged portions, can have excess graft material in an axial direction.
  • the excess or slack material along the length of the graft can increase the circumferential and/or axial movement of the graft material adjacent to the one or more fenestrations formed in the graft material.
  • the length of the graft material between the proximal and distal attachment points to the stent can be longer than that of the stent between the proximal and distal attachment points.
  • the graft material in a mid-portion of the graft, including on either side of the enlarged portion can have an increased length relative to the stent adjacent to such graft portion.
  • FIG. 1 is a partial cross sectional view of a patient's vasculature illustrating an endoluminal prosthesis deployed in the desired position within the patient's vasculature.
  • FIG. 1 shows an endoluminal prosthesis deployed in a patient's aorta 10 .
  • An aneurysmal sac 10 A is also shown.
  • FIG. 2 is a side view of the endoluminal prosthesis 20 illustrated in FIG. 1 .
  • the endoluminal prosthesis 20 illustrated in FIGS. 1 and 2 has a main graft body 22 , a first fenestration 24 , and a second fenestration 26 .
  • the main graft is a bifurcated graft having a first bifurcated branch 28 and a second bifurcated branch 30 for placement in the ipsilateral and contralateral iliac arteries.
  • the main graft body 22 has a generally cylindrical, tubular shape.
  • the endoluminal prosthesis 20 can be formed from any suitable material, such as, but not limited to, ePTFE.
  • the endoluminal prosthesis 20 is formed from an expandable material.
  • the endoluminal prosthesis 20 is formed such that the main graft body 22 can be sized to be larger than the target vessel into which the main graft body 22 is to be deployed. As illustrated in FIG. 1 , the target vessel can be the aortic artery, and the endoluminal prosthesis can be deployed so as to span across an aneurysm in the abdominal aortic.
  • the diameter of the graft body (such as without limitation the main graft body 22 ) or an enlarged portion of any embodiment of a graft body disclosed herein can be approximately 30% larger than the diameter of the target vessel or the diameter of the non-enlarged portion of the graft body.
  • the diameter of the graft body (such as without limitation the main graft body 22 ) or an enlarged portion of any embodiment of a graft body disclosed herein can be less than approximately 20%, or from approximately 20% to approximately 50% or more, or from approximately 25% to approximately 40% larger than the target vessel or the diameter of the non-enlarged portion of the graft body, or to or from any values within these ranges.
  • At least a portion of the graft material adjacent to the one or more fenestrations or openings can be free to translate in a circumferential or axial direction relative to the stent that the graft is supported by.
  • particular portions such as the end portions of the graft material can be sutured or otherwise fastened to the stent, while a mid-portion of the graft having one or more fenestrations therethrough can be unattached to the stent so that such mid portion can be free to translate relative to the stent and, hence, permit the adjustability of the fenestrations relative to the stent.
  • the fenestrations can be adjusted to align with the ostium of the patient's branch vessels.
  • the diameter of the main graft body 22 configured for placement in an approximately 26 mm vessel can be approximately 34 mm in diameter. Therefore, the diameter of the main graft body 22 can be approximately 8 mm larger than the diameter of the target vessel.
  • the diameter of the main graft body 22 can be between approximately 2 mm and approximately 14 mm, or between approximately 4 mm and approximately 12 mm, or between approximately 6 mm and approximately 10 mm larger than the diameter of the target vessel, or to or from any values within these ranges.
  • the oversized diameter of the main graft body 22 can provide excess or slack graft material in the main graft body 22 such that the fenestrations 24 , 26 can each be moved in an axial, rotational, or angular direction, or a combination thereof to align the fenestrations 24 , 26 with the branch vessels arteries, as will be described in greater detail below.
  • two or more fenestrations can be formed in the main graft body 22 at any desired location.
  • the two fenestrations 24 , 26 can be formed at generally diametrically opposed locations.
  • any number of fenestrations can be formed in the main graft body 22 at any desired locations.
  • scallops or cutouts can be formed in the distal end portion or at any suitable location in the main graft body 22 , the scallops or cutouts being configured to prevent obstruction of other arteries branching off of the main vessel into which the main graft body 22 is to be deployed.
  • an additional fenestration 32 can be formed in a distal portion of the main graft body 22 .
  • the fenestration 32 can be formed so as to align with a patient's SMA
  • FIG. 3 is a cross-sectional view of the endoluminal prosthesis 20 deployed in the patient's anatomy, taken at 3 - 3 in FIG. 1 , as it might appear before the fenestrations 24 , 26 have become aligned with the respective branch vessels, for example renal arteries 12 , 14 .
  • the main graft body 22 (which can be oversized) has been deployed in the target vessel.
  • the main graft body 22 can have a larger diameter than the vessel diameter, folds, wrinkles, or other undulations (collectively referred to as folds) 34 can form in the main graft body 22 about the circumference of the main graft body 22 .
  • the folds 34 can form in the main graft body 22 as a result of the fact that there can be excess or slack material in the main graft body 22 after the main graft body 22 has been deployed in the target vessel.
  • At least a portion of the main graft body 22 can have undulations, folds, bends, corrugations, or other similar features in the axial direction therein when the main graft body 22 is in a relaxed state (i.e., before the graft has been deployed).
  • a middle portion of the graft can have undulations, folds, bends, corrugations or other similar features while the distal or upstream portion defines a smooth contour
  • FIG. 4 is a cross-sectional view of the endoluminal prosthesis 20 deployed in the patient's anatomy, taken at 3 - 3 in FIG. 1 , after the fenestrations 24 , 26 have become aligned with the respective branch vessels.
  • the oversized main graft body 22 is aligned with the patient's anatomy by the fenestration 24 following a angiographic or guide catheter over which it is threaded to align with the respective branch vessel as the main body is deployed, but after the branch vessel guidewires are positioned in the branch vessels.
  • the fenestration 24 as it moves closer to the fenestration 26 , causes a gathering of slack material or folds 34 in a first portion 22 a of the main graft body 22 and partially or fully removing the slack material or folds from a second portion 22 b of the main graft body 22 .
  • a covered stent, a bare wire stent, or any other suitable stent or anchoring device can be deployed within the main graft to secure the graft in the desired location (not illustrated).
  • a bare metal stent deployed within the main graft body 22 can compress the folds 34 that are formed in the main graft body 22 , if any, against the wall of the vessel and secure the main graft body 22 and the fenestrations 24 , 26 in the desired locations.
  • a supra renal stent can be deployed at a distal or upper portion of the main graft body to secure the distal or upper portion of the main graft body in the desired location within the patient's vasculature, and one or more axial springs can be anchored to the main graft body to provide axial or column strength to the main graft body.
  • the springs can have a helical shape, as illustrated, and can have any suitable size, length, pitch, or diameter. However, such helical shape is not required.
  • the springs can have any suitable shape, including a straight, flat, round, or non-round shape.
  • the springs can be formed from any suitable biocompatible material, such as without limitation stainless steel, Nitinol, or suitable metallic or polymeric materials.
  • Provisional Application 61/409,504 entitled APPARATUS AND METHOD OF PLACEMENT OF A GRAFT OR GRAFT SYSTEM, filed Nov. 2, 2010, can be used, with or without modification, in place of or in combination with any of the features or details of any of the grafts, stents, prostheses, or other components or apparatuses disclosed herein.
  • 12/496,446, 12/390,346, and 12/101,863 can be used, with or without modification, to deploy any of grafts, stents, or other apparatuses disclosed herein, or in combination with any of the components or features of the deployment systems disclosed herein.
  • the complete disclosures of U.S. patent application Ser. Nos. 12/496,446, 12/390,346, and 12/101,863 are hereby incorporated by reference as if set forth fully herein.
  • FIG. 5A is a side view of a catheter system 1000 comprising an introducer catheter 1002 (also referred to as an introducer) and a delivery catheter 1004 .
  • the delivery catheter 1004 can be configured for the delivery of an endoluminal prosthesis, including without limitation any endoluminal prosthesis embodiment disclosed herein or any other suitable prosthesis, or for any other suitable use.
  • FIG. 5B is an oblique view of a catheter system 1000 illustrated in FIG. 5A , showing an outer sheath 1006 of the delivery catheter 1004 in a partially retracted position.
  • the outer sheath 1006 can be used to constrain at least a portion of a prosthesis 1010 .
  • the prosthesis 1010 can have any of the same features, components, or other details of any of the other prosthesis embodiments disclosed herein, including without limitation the embodiments of the prosthesis 1200 described below.
  • the prosthesis 1010 can have any number of stents or other support members, connectors, grafts, cuts, fenestrations, or other suitable components or features.
  • distal refers to the end of the prosthesis that is further from the patient's heart
  • proximal refers to the end of the prosthesis that is closer to the patient's heart.
  • distal refers to the end of the catheter system that is further from the surgeon or medical practitioner using the catheter system
  • proximal refers to the end of the catheter system that is closer to the surgeon or medical practitioner.
  • a distal sheath 1012 (also referred to herein as a first restraint or first restraining means) can be used to constrain a proximal portion of the stent graft 1010 .
  • the distal sheath 1012 can be supported by (connected to) a distal tip 1014 of the catheter system 1000 .
  • the distal tip 1014 can comprise an atraumatic material and design.
  • the distal tip 1014 and, hence, the distal sheath 1012 can be attached to an inner tube 1016 to control the position of the distal tip 1014 and the distal sheath 1012 relative to an inner core 1020 of the delivery catheter 1004 .
  • the inner core 1020 can be rotatable relative to the outer sheath 1006 so that a prosthesis supported by the delivery catheter 1004 can be rotated during deployment.
  • the inner tube 1016 can be slidably positioned coaxially within a lumen in an outer tube 1018 that can connect a support member 1022 to the inner core 1020 .
  • the outer tube 1018 can be connected to an opening or partial lumen 1019 in the inner core 1020 so as to be axially and rotationally fixed to the inner core 1020 .
  • the catheter system 1000 can be configured such that advancing the inner tube 1016 relative to an inner core 1020 of the delivery catheter 1004 causes the distal sheath 1012 to advance relative to the prosthesis 1010 , causing the proximal portion of the prosthesis 1010 to be deployed.
  • the prosthesis 1010 (or any other prosthesis disclosed herein) can be at least partially self-expanding such that, as the tubular distal sheath 1012 is advanced relative to the prosthesis 1010 , a proximal portion of the prosthesis 1010 expands against a vessel wall.
  • only some segments or portions of the prosthesis 1010 such as, portions of the prosthesis axially adjacent to enlarged graft portions of the prosthesis, can be configured to be self-expanding.
  • the inner core 1020 can be slidably received within the outer sheath 1006 of the delivery catheter 1004 .
  • the outer sheath 1006 of the delivery catheter 1004 can be longer than an introducer sheath 1008 of the introducer catheter 1002 .
  • a clip 1007 can be supported by the outer sheath 1006 to limit the range of axial movement of the outer sheath 1006 relative to the introducer catheter 1002 .
  • a core assembly 1021 can be connected to a proximal end portion of the inner core 1020 , the core assembly 1021 having a reduced cross-sectional profile so as to permit one or more sheath members, fenestration alignment components (also referred to herein as fenestration alignment components), or other tubular or other components to pass through the main body of the delivery catheter 1004 and be advanced into one or more lumen within the inner core 1020 .
  • the inner core 1020 can be configured to accommodate the insertion of such sheath members, fenestration alignment components, or other tubular components into the lumen of the inner core 1020 .
  • a proximal end portion of the core assembly 1021 can comprise a handle member 1023 that is positioned outside a proximal end portion of the delivery catheter 1004 so as to be accessible by a user.
  • the handle member 1023 can be configured to permit a user to axially or rotationally adjust the position of the inner core 1020 relative to the outer sheath 1006 .
  • the inner core 1020 can extend proximally past the proximal end portion 1004 a of the delivery catheter system 1004 so that a user can adjust and/or change the axial and/or radial position of the inner core 1020 and, hence, the prosthesis 1010 , relative to the outer sheath 1006 .
  • the inner tube 1016 can extend proximally past the proximal end portion 1004 a of the delivery catheter 1004 and a proximal end portion 1021 a of the core assembly 1021 so that a user can adjust and change the position of the inner tube 1016 relative to the inner core 1020 .
  • the prosthesis 1010 supported by the catheter system 1000 can be exposed and, potentially, deployed.
  • a distal portion of the prosthesis 1010 can be exposed and deployed by retracting the outer sheath 1006 relative to the inner core 1020 or distally advancing the inner core 1020 relative to the outer sheath 1006 , causing at least a portion of the distal portion of the prosthesis 1010 to self-expand.
  • the prosthesis 1010 can be configured to have radially self-expanding support members therein along only a portion or portions of the prosthesis 1010 .
  • a graft of the prosthesis 1010 can be radially unsupported at or adjacent to fenestrations formed in the graft.
  • at least the distal portion of the prosthesis 1010 can be constrained within a sheath, such as a peelable sheath. Embodiments of the sheath will be described in greater detail below.
  • the delivery catheter 1004 can also have one or more branch or guide sheaths 1024 supported thereby.
  • the delivery catheter 1004 can have three or more branch sheaths 1024 .
  • Such a configuration can be used for deploying branch stents into one or more branch vessels in the thoracic aorta.
  • Each of the one or more branch sheaths 1024 can be configured to be slidably supported within one or more lumen 1025 formed in the inner core 1020 so that each of the one or more branch sheaths 1024 can be axially advanced or retracted relative to the inner core 1020 .
  • the delivery catheter 1004 can be configured such that the branch sheaths 1024 can be rotationally adjusted or twisted relative to the inner core 1020 .
  • each branch sheath 1024 can be positioned within the delivery catheter 1004 such that, in the loaded configuration wherein a prosthesis 1010 is supported (compressed) within the delivery catheter 1004 , each branch sheath 1024 is pre-positioned so as to be advanced through a fenestration or branch graft of the prosthesis 1010 .
  • Each branch sheath 1024 can be positioned within the delivery catheter 1004 such that a distal end portion of each branch sheath 1024 projects past an end portion of the inner core 1020 and is constrained within the outer sheath 1006 . As illustrated in FIGS. 5A-5B , in this configuration, the distal end portion of each branch sheath 1024 can be exposed by retracting the outer sheath 1006 relative to the inner core 1020 and/or the branch sheaths 1024 .
  • the delivery catheter 1004 can have one or more fenestration alignment components 1026 supported thereby.
  • the one or more fenestration alignment components 1026 can be slidably received within one or more lumen 1027 formed in the inner core 1020 .
  • the one or more fenestration alignment components 1026 can each have an end portion 1026 a that can be sized and configured to surround an outer surface of each of the branch sheaths 1024 .
  • each fenestration alignment component 1026 can have, an open or closed annular or circular shape and can be of sufficient size and stiffness to permit a user to engage a fenestration or branch graft formed in or supported by a main body of the prosthesis 1010 .
  • a user can independently or collectively axially advance the fenestration alignment component 1026 over the branch sheaths 1024 such that the end portion 1026 a of each fenestration alignment component 1026 contacts the edge or surface adjacent to and surrounding the fenestration or branch graft of the prosthesis 1010 and pushes the fenestration or branch graft toward an ostium of the target branch vessel of the patient's vasculature.
  • each of the one or more fenestration alignment components 1026 is configured to be slidably supported within a lumen formed in the inner core 1020 so that each of the one or more fenestration alignment components 1026 can be axially advanced relative to the inner core 1020 .
  • the delivery catheter 1004 can be configured such that the fenestration alignment components 1026 can be axially or rotationally adjusted or twisted relative to the inner core 1020 , for increased maneuverability of the fenestration alignment components 1026 .
  • each fenestration alignment component 1026 can be positioned within the delivery catheter 1004 such that, in the loaded configuration wherein a prosthesis 1010 is supported (compressed) within the delivery catheter 1004 , each fenestration alignment component 1026 is pre-positioned so that the end portion 1026 a of each fenestration alignment component 1026 is positioned distal to the end portion of the inner core 1020 . In the loaded configuration, each fenestration alignment component 1026 can be positioned such that the end portion 1026 a of each fenestration alignment component 1026 is located within the main lumen of the main body of the prosthesis 1010 .
  • the branch sheaths 1024 and fenestration alignment components 1026 can have any suitable size and can be made from any suitable material.
  • the branch sheaths 1024 can have an approximately 6.5 French diameter, or from an approximately 5 Fr diameter or less to an approximately 8 Fr diameter or more, or to or from any values within this range.
  • the fenestration alignment components 1026 can be formed from stainless steel, Nitinol, or any other suitable metallic or non-metallic material, and can have a thickness suitable to prevent the fenestration alignment components 1026 from buckling when axially advanced against a portion of the prosthesis 1010 .
  • the fenestration alignment components 1026 can have an approximately 1 Fr diameter, or between approximately a 1 Fr and approximately a 4 Fr diameter.
  • the fenestration alignment component or catheters can be formed from a 0.035 in guidewire or otherwise have a 0.035 in diameter.
  • the catheter system 1000 can be configured such that the distal sheath 1012 can be advanced relative to the inner core 1020 and the prosthesis 1010 , to expose a proximal portion of the prosthesis 1010 .
  • advancing the distal sheath 1012 can be accomplished by advancing the inner tube 1016 connected to the distal tip 1014 and the distal sheath 1012 , so that the distal sheath 1012 releases the proximal portion of the prosthesis 1010 .
  • Other details regarding the distal sheath 1012 or methods of using the distal sheath can be found in U.S. Pat. No. 6,953,475, which application is incorporated by reference as if fully set forth herein.
  • FIGS. 6 and 7 are oblique and exploded views, respectively, of the introducer catheter 1002 shown in FIG. 5A .
  • the introducer catheter 1002 can have any of the features or components of any of the embodiments disclosed in U.S. patent application Ser. No. 12/496,446, which disclosure is hereby incorporated by reference as if set forth herein.
  • the introducer 1002 can have a main body 1030 , a threadably engageable hub portion 1032 , a threaded cap 1034 configured to threadably engage with a threaded distal end portion 1030 a of the main body 1030 so as to secure the outer sheath 1006 to the main body 1030 .
  • the outer sheath 1006 can have a flanged end portion 1036 secured thereto or integrally formed therewith.
  • the main body 1030 can support a seal assembly 1040 therein to seal around the inner core 1020 of the delivery catheter 1004 and/or other components of the catheter system 1000 .
  • a threaded end member 1042 having a threaded proximal end portion 1042 a can be supported by the main body 1030 .
  • An annular seal member 1046 can be supported by the main body 1030 of the introducer catheter 1002 .
  • the introducer catheter 1002 can be configured such that the seal member 1046 can be adjusted to provide an additional seal around the inner core 1020 of the delivery catheter 1004 by threadably engaging the hub portion 1032 .
  • seal assembly 1040 and seal member 1046 can have any of the details, features, or components of any of the embodiments of the introducer catheter described in U.S. patent application Ser. No. 12/496,446, which application is incorporated by reference as if fully set forth herein.
  • a tube assembly 1048 can be supported by the main body 1030 of the introducer catheter 1002 so as to provide an orifice or access port into the main body 1030 .
  • the tube assembly 1048 can be used to flush the introducer catheter 1002 with saline or other suitable substances at any stage, such as but not limited to prior to the advancement of an endoluminal prosthesis through the introducer catheter 1002 and/or delivery catheter 1004 , or prior to other procedures for which another type of delivery catheter may be used.
  • the tube assembly 1048 can support any suitable medical connector and/or valve on the distal end thereof.
  • FIGS. 8 and 9 are oblique and exploded views, respectively of the delivery catheter 1004 shown in FIG. 5A .
  • FIG. 10 is a sectional view of a portion 10 - 10 of the delivery catheter 1004 shown in FIG. 5A .
  • FIG. 11A is a sectional view of the delivery catheter 1004 shown in FIG. 5A , taken at 11 A- 11 A shown in FIG. 10 .
  • FIG. 11B is a sectional view of the delivery catheter 1004 shown in FIG. 5A , taken at 11 B- 11 B shown in FIG. 10 .
  • the delivery catheter 1004 can have a main body 1050 that can support the inner core 1020 and/or core assembly 1021 , one or more access ports 1052 for the one or more branch sheaths 1024 , and one or more access ports 1054 for the one or more fenestration alignment components 1026 .
  • the access ports 1052 , 1054 can be configured to sealingly tighten around the branch sheaths 1024 or the fenestration alignment components 1026 , and to constrict around the branch sheaths 1024 or the fenestration alignment components 1026 so as to substantially axially secure the branch sheaths 1024 or the fenestration alignment components 1026 .
  • a sealable cap assembly 1051 can be threadably engaged with the main body 1050 of the delivery catheter 1004 .
  • the cap assembly 1051 can be configured such that, when a user tightens the cap assembly 1051 relative to the main body 1050 of the delivery catheter 1004 , the core assembly 1021 and/or inner core 1020 will be axially and/or rotational secured to the main body 1050 of the delivery catheter 1004 .
  • a tube assembly 1059 can be supported by the main body 1050 of the delivery catheter 1004 so as to provide an orifice or access port into the main body 1050 .
  • the tube assembly 1059 can be used to flush the delivery catheter 1004 with saline or other suitable substances.
  • the tube assembly 1059 can support any suitable medical connector and/or valve on the distal end thereof.
  • the support member 1022 can be connected to a distal end portion of the outer tube 1018 so as to be axially engaged by the outer tube 1018 .
  • the support member 1022 can have a substantially cylindrical shape and can be sized to fit within the inner lumen of a main body of the prosthesis 1010 when the prosthesis 1010 is in a constrained configuration.
  • the prosthesis 1010 in the loaded configuration, can be positioned over the support member 1022 so that a proximal portion of a main body of the prosthesis 1010 is positioned distally of the support member 1022 and so that a distal portion of a main body of the prosthesis 1010 is positioned proximally of the support member 1022 .
  • a proximal end portion 1012 a of the distal sheath 1012 can be positioned over a distal portion 1022 a of the support member 1022 , and a distal end portion 1006 a of the outer sheath 1006 over a proximal portion 1022 b of the support member 1022 .
  • one or more tab members 1074 can be supported by the outer tube 1018 .
  • the one or more tab members 1074 can be configured to increase the rotational engagement of the constrained prosthesis 1010 relative to the outer tube 1018 so that the constrained prosthesis 1010 can be rotated with greater accuracy during deployment.
  • the one or more tab members 1074 can have a generally flat, plate-like shape, such as is illustrated in FIG. 8 .
  • the one or more tab members 1074 can be formed from a suitable polymeric or metallic material.
  • the one or more tab members 1074 can comprise one or more radiopaque features or be formed from a radiopaque material to improve the visibility and alignability of the delivery catheter 1004 under fluoroscopy during deployment of the prosthesis 1010 .
  • the one or more tab members 1074 can be similar to any of the embodiments of the torsion tab (such as the torsion tab 196 ) disclosed in U.S. patent application Ser. No. 12/101,863, which disclosure is incorporated by reference as if fully set forth herein.
  • the one or more tab members 1074 can be integrally formed with the outer tube 1018 , or secured thereto such as by thermal bonding, adhesive bonding, and/or any of a variety of other securing techniques known in the art.
  • the main body portion of the prosthesis 1010 can be constrained by a peelable sheath or by the outer sheath 1006 such that the prosthesis 1010 is engaged with the one or more tab members 1074 .
  • the one or more tabs 1074 can engage a stent or other portion of an endoskeleton of the prosthesis 1010 , or, can engage the material of the graft 1204 surrounding the tab member 1074 so that the prosthesis 1010 can substantially rotate with the inner core 1020 of the deployment catheter 1004 .
  • FIG. 12 is a side view of the catheter system 1000 showing the outer sheath 1006 in a partially retracted position, similar to the configuration shown in FIG. 5B .
  • FIG. 13 is an enlarged side view of the portion 13 - 13 of the catheter system shown in FIG. 12 .
  • the mid portion of the prosthesis 1010 adjacent to the one or more fenestrations 1011 and/or the distal portion 1010 a of the prosthesis can be constrained within a peelable sheath 1060 .
  • the peelable sheath 1060 can have a release wire 1062 threadably advanced through a plurality of openings 1064 formed along at least a portion of the sheath 1060 .
  • the peelable sheath 1060 , release wire 1062 , and openings 1064 can have any of the same features, materials, or other details of the similar components disclosed in U.S. patent application Ser. No. 12/101,863, which application is incorporated by reference as if fully set forth herein.
  • the release wire 1062 can be slidably received within a lumen in the inner core 1020 so that a user can retract the release wire 1062 by grasping and retracting a proximal portion of the release wire 1062 positioned outside the patient's body.
  • the mid portion of the prosthesis 1010 adjacent to the one or more fenestrations 1011 and/or the distal portion 1010 a of the prosthesis can be constrained within one or more tubular sheaths, such as the outer sheath 1006 (also referred to herein as a second restraint or second restraining means) and/or distal sheath 1012 such that additional restraining means such as the sheath 1060 are not required (not illustrated). Therefore, any of the embodiments disclosed herein having the optional sheath 1060 should be understood to be configurable to not use the sheath 1060 to restrain one or more portions of the prosthesis 1010 .
  • the prosthesis 1010 can be configured such that the mid portion of the prosthesis 1010 adjacent to the one or more fenestrations 1011 is not radially supported by a stent, connectors, struts, or any other similar structure such that, when the outer sheath 1006 is partially retracted, the mid portion of the prosthesis does not self-expand.
  • the prosthesis 1010 can have one or more openings 1011 formed therein.
  • the fenestrations or openings 1011 can be formed in the prosthesis 1010 at diametrically opposing positions.
  • one or more of the openings 1011 can be formed in the prosthesis 1010 at a position that is angularly offset from the diametrically opposing position.
  • the sheath 1060 can have one or more openings 1061 formed therein, the openings 1061 being positioned adjacent to the similar number of openings 1011 formed in the prosthesis.
  • the catheter system 1000 can be configured such that the sheaths 1024 are advanced through the openings 1011 formed in the prosthesis 1010 and the openings 1061 formed in the sheath 1060 , when the prosthesis 1010 is loaded within the catheter system 1000 .
  • the prosthesis 1010 can be efficiently packed within the outer sheath 1006 so as to surround the sheaths 1024 and efficiently fill the space within the outer sheath 1006 .
  • the prosthesis 1010 can be loaded within the outer sheath 1006 so that the sheaths 1024 are advanced between many of the struts, bends, loops, and other features that the stent can comprise, thereby permitting the sheaths 1024 sufficient space to be loaded within the outer sheath 1006 so that the lumen of the sheaths 1024 are not compressed or collapsed in the loaded state.
  • the graft can be formed from a bidirectionally expanded, layered PTFE material have thin walls to further increase the space efficiency of the prosthesis 1010 .
  • the peelable sheath 1060 can have one or more release wires 1062 (two being shown) advanced through openings or perforations 1064 formed in the sheath 1060 along two sides of the sheath 1060 .
  • the release wires 1062 can be configured to tear the sheath 1060 along two lines of perforations 1064 and/or scores formed along two sides of the sheath 1060 , so that the sheath 1060 can be removed from the prosthesis 1010 while the sheaths 1024 are advanced through the fenestrations 1011 , 1061 , respectively, in the prosthesis 1010 and sheath 1060 .
  • each of the two release wires 1062 can be secured to a proximal end portion 1060 a of the sheath 1060 , so that both halves of the sheath 1060 can be retracted through the outer sheath 1006 .
  • FIG. 14 is an enlarged side view of the catheter system 1000 shown in FIG. 5A , defined by curve 14 - 14 shown in FIG. 12 , showing the outer sheath 1006 in a partially retracted position and the distal sheath 1012 in a partially advanced position.
  • the perforations 1064 formed in the sheath 1060 can be arranged along an axial line along the length of the portion of the sheath 1060 from the fenestrations 1061 to the distal end of the sheath 1060 , and also arranged to split the sheath 1060 between the two fenestrations 1061 formed in the sheath 1060 . As illustrated in FIG.
  • the perforations 1064 formed in the sheath 1060 arranged along the length of the sheath 1060 can be positioned to tear the sheath 1060 from one of the fenestrations 1061 to the distal end 1060 b of the sheath 1060 , and also to circumferentially tear the sheath 1060 between the fenestrations 1061 .
  • the catheter system 1000 can be configured such that a proximal portion 1010 b of the prosthesis 1010 can be deployed by axially advancing the inner tube 1016 relative to the inner core 1020 of the delivery catheter 1004 and, hence, the prosthesis 1010 .
  • the prosthesis 1010 can be self-expanding such that removing the radial constraint provided by the distal sheath 1012 can cause the portion of the prosthesis 1010 constrained by the inner tube 1016 to expand toward the vessel wall.
  • the proximal portion 1010 b of the prosthesis 1010 can be deployed in this manner before the distal portion 1010 a of the prosthesis 1010 is deployed, or simultaneously with the deployment of the distal portion 1010 a of the prosthesis 1010 .
  • the proximal portion 1010 b of the prosthesis 1010 can be deployed in this manner after the distal portion 1010 a of the prosthesis 1010 is deployed.
  • FIG. 15 is a side view of the catheter system 1000 shown in FIG. 5A , showing the outer sheath 1006 in a partially retracted position and one branch sheath 1024 ′ and one fenestration alignment component 1026 ′ in a partially advanced position.
  • the branch sheath 1024 ′ can be advanced relative to the inner core 1020 , the prosthesis, and the second branch sheath 1024 ′′ by advancing a proximal portion of the branch sheath 1024 ′ in the direction of arrow A 1 in FIG. 15 through the access port 1052 ′ at the proximal end of the delivery catheter 1004 .
  • the second branch sheath 1024 ′′ can be advanced relative to the inner core 1020 , the prosthesis, and the first branch sheath 1024 ′ by advancing a proximal portion of the branch sheath 1024 ′′ through the access port 1052 ′′ at the proximal end of the delivery catheter 1004 .
  • either of the fenestration alignment components 1026 ′, 1026 ′′ can be advanced relative to the branch sheaths 1024 ′, 1024 ′′ by advancing the respective fenestration alignment component 1026 through the respective access port 1054 .
  • the fenestration alignment component 1026 ′ can be advanced by advancing the proximal portion of the fenestration alignment component 1026 ′ in the direction of arrow A 2 in FIG. 15 .
  • FIG. 16 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter 1000 being advanced through a patient's abdominal aorta over a guidewire 1070 positioned within a patient's vasculature.
  • the delivery catheter 1000 can be advanced through a prosthesis 1080 (which can be a bifurcated prosthesis) deployed within the patient's vasculature.
  • FIG. 17 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter 1000 and an angiographic catheter 1065 being advanced through a branch sheath 1024 of the delivery catheter toward a target branch vessel.
  • an outer sheath 1006 of the catheter system 1000 has been retracted relative to the inner core (not shown) and the prosthesis 1010 , exposing a middle portion of the prosthesis 1010 (i.e., a portion of the prosthesis 1010 radially adjacent to the one or more fenestrations 1011 ) and the branch sheaths 1024 a , 1024 b .
  • a suitable angiographic catheter 1065 can be advanced through the lumen of either or both of the branch sheaths 1024 a , 1024 b and directed into the target branch vessel or vessels.
  • a user can rotate the inner core 1020 to approximately rotationally align the fenestrations 1011 of the prosthesis 1010 or the branch sheaths 1024 with the branch vessels.
  • the optional sheath 1060 can constrain the mid and distal portions of the prosthesis 1010 such that, when the outer sheath 1006 is retracted, the mid and distal portions of the prosthesis 1010 do not self-expand.
  • the mid portion of the prosthesis 1010 radially adjacent to the one or more fenestrations 1011 can be unsupported by any stents 1254 .
  • the prosthesis 1010 can be configured such that there is no radial force or support provided to the mid portion of the prosthesis 1010 , or such that the mid portion of the prosthesis 1010 will not be biased to self-expand when the outer sheath 1006 is retracted.
  • some embodiments can be configured such that no additional restraint in addition to, for example, the outer sheath 1006 , is required. Therefore, only the outer sheath 1006 and the distal sheath 1012 can be used to restrain the prosthesis 1010 .
  • the outer sheath 1006 can be partially retracted to release the sheaths 1024 so that one or more angiographic catheters 1065 can be advanced through the sheaths 1024 and into the target branch vessels before the proximal and distal portions of the prosthesis 1010 are released from the deployment catheter 1004 .
  • the angiographic catheter 1065 can be configured such that an end portion thereof is biased to have a curved disposition (shape), as is well known in the art.
  • an angiographic catheter 1065 is being advanced relative to the branch sheath 1024 a and into the target branch vessel, in this case a renal artery.
  • the delivery catheter 1000 can be configured such that an angiographic catheter can be advanced through the desired branch sheath 1024 and into the target vessel without retracting the outer sheath 1006 .
  • the branch sheaths 1024 can be independently or simultaneously advanced over the angiographic catheters 1065 into the target branch vessels, as is illustrated in FIG. 18 .
  • the branch sheaths 1024 , the fenestrations 1011 , 1061 formed in either the prosthesis 1010 or the sheath 1060 , respectively, and/or any other components or features of the delivery catheter 1000 can have radiopaque markers or other indicators to assist a medical practitioner in the deployment procedures described herein or other suitable deployment procedures.
  • a proximal portion 1010 b of the prosthesis 1010 can be deployed by axially advancing the distal sheath 1012 relative to the inner core 1020 and the prosthesis 1010 .
  • the prosthesis 1010 can be axially and rotationally secured to the outer tube 1018 , which can be axially and rotationally secured to the inner core 1020 , such that advancing the distal sheath 1012 relative to the inner core 1020 will advance the distal sheath 1012 relative to the prosthesis 1010 .
  • the distal sheath 1012 can be advanced relative to the inner core 1020 and the prosthesis 1010 by advancing the inner tube 1016 relative to the inner core 1020 , the inner tube 1016 being axially engaged with the distal tip 1014 which can support the distal sheath 1012 .
  • FIG. 20 is a sectional view of a portion of a patient's vasculature, showing a peelable sheath 1060 being removed from the distal portion 1010 a of the prosthesis 1010 so as to deploy a distal portion 1010 a of the prosthesis 1010 .
  • the sheath 1060 can be removed by axially retracting a release wire 1062 , which can be looped or other otherwise threaded through openings or perforations 1064 formed in the sheath material.
  • the release wire 1062 can be configured to tear through the sheath material between the perforations 1064 , thereby permitting the self-expanding prosthesis 1010 to expand toward the vessel walls.
  • the prosthesis 1010 can be configured to be restrained within the outer sheath 1006 and the distal sheath 1012 such that an additional restraint, such as the peelable sheath 1060 , is not required.
  • a distal portion 1060 a of the sheath 1060 can be torn by the release wire 1062 before a proximal portion 1060 b of the sheath 1060 is torn by the release wire so that a proximal portion 1010 b of the prosthesis (i.e., adjacent to the proximal portion 1060 a of the sheath 1060 ) can be deployed before a distal portion 1010 a of the sheath 1010 .
  • a proximal portion 1060 b or a middle portion of the sheath 1060 can be torn by the release wire 1062 before a distal portion 1060 a of the sheath 1060 is torn by the release wire (not illustrated).
  • the release wire 1062 can be secured to the proximal portion 1060 b or other suitable portion of the sheath 1060 such that, after the sheath 1060 has been torn, the sheath 1060 can be removed through the delivery catheter 1000 by continuing to axially retract the release wire 1062 relative to the prosthesis 1010 .
  • a distal portion 1010 a of the prosthesis 1010 (i.e., the downstream portion of the prosthesis 1010 ) can be deployed within an opening of an adjacent prosthesis, such as without limitation the bifurcated prosthesis 1080 illustrated in FIG. 20 .
  • the delivery catheter 1000 or any other delivery catheter described herein can be used to deploy any suitable prosthesis, including a bifurcated prosthesis or otherwise, in any portion of a patient's vasculature.
  • the prosthesis 1010 can be a bifurcated prosthesis.
  • FIG. 21 is a sectional view of a portion of a patient's vasculature, showing a fenestration alignment component 1026 contacting and pushing an inner wall of the prosthesis 1010 adjacent to a fenestration 1011 toward an ostium of the target branch vessel.
  • the fenestration alignment component 1026 can be advanced through a lumen in the inner core 1020 to push the fenestration 1011 of the prosthesis 1010 over the branch sheath 1024 and into approximate alignment with the ostium of the branch vessel.
  • the catheter system 1000 can be configured to not have a fenestration alignment component 1026 , and can accordingly be configured to deploy a fenestrated graft without the use of such a component
  • a covered or uncovered branch stent 1084 can be deployed in the branch vessel by advancing the branch stent 1084 through the branch sheath 1024 using a suitable catheter, such as a renal stent catheter, into the target vessel, after the angiographic catheter has been removed from the branch sheath 1024 .
  • the stent 1084 can be supported on an inflation balloon 1086 , which can be supported by a guidewire 1088 .
  • the guidewire 1088 can be configured to have an inflation lumen therein, to inflate the balloon 1086 and expand the branch stent 1084 in the target location after the branch sheath 1024 has been at least partially retracted so as to not interfere with the expansion of the branch stent 1084 , as illustrated in FIG. 23 .
  • the inflation balloon 1086 can be configured to expand and flare a portion of the stent 1084 within or to the inside of the fenestration 1011 formed in the prosthesis.
  • the fenestration alignment component 1026 described above can be configured to be supported within a renal or branch stent delivery catheter.
  • the fenestration alignment component 1026 can be configured to be supported within a modified renal stent catheter, such as the renal stent catheter illustrated in FIG. 22 .
  • the fenestration alignment component 1026 can be configured to only partially surround the branch sheath 1024 or the branch stent delivery catheter. In this configuration, the fenestration alignment component 1026 can be configured to be entirely positioned within and advanceable through a lumen of the branch sheath 1024 or the branch stent delivery catheter.
  • the fenestration alignment component 1026 can have an expandable end portion that can automatically expand when the end portion is advanced past the end of the lumen, so as to enable the end portion to snare or engage the graft material surrounding the fenestration.
  • the branch stent delivery catheter can be configured to have a snare, protrusion, or other object tethered to the balloon or stent, or to be projecting from an outside surface thereof to snare or engage the graft material adjacent to the fenestration, so as to cause the fenestration to be advanced toward the ostium as the branch stent delivery catheter is advanced through the fenestrations.
  • the branch stent delivery catheter can have a biased wire member supported on an outside surface of the branch stent delivery catheter that is biased to expand when the wire member is advanced past the end of the branch sheath 1024 .
  • the wire member can expand to a size that is larger than the size of the fenestration.
  • the wire member can be supported at a position that is offset from an end of the branch stent delivery catheter.
  • the fenestration 1011 in the prosthesis 1010 can expand as the branch stent 1084 is being expanded, to improve the seal between the fenestration 1011 and the branch stent 1084 .
  • a second expansion balloon can be positioned in the portion of the stent 1084 within or to the inside of the fenestration 1011 to flare that portion of the stent 1084 , either with or without removing the first balloon used to expand the main portion of the branch stent 1084 .
  • Some arrangements are directed to methods of deploying an endoluminal prosthesis, such as without limitation the prosthesis 1010 described above, comprising inserting a delivery catheter such as catheter system 1000 into an artery, exposing one or more branch sheaths 1024 , advancing one or more angiographic catheters having one or more guidewires into the one or more branch sheaths 1024 and cannulating the target branch vessels, advancing the one or more branch sheaths 1024 over the angiographic catheters and into the target branch vessels, advancing the wall of the prosthesis adjacent to each of one or more fenestrations in the prosthesis toward the ostium of the target branch vessels, removing the one or more angiographic catheters and/or guidewires, inserting one or more branch stents into the branch vessels, retracting the branch sheaths, expanding the branch stents, and flaring a portion of the branch stents.
  • the target branch vessels are the renal arteries.
  • embodiments are directed to apparatuses for placing a prosthesis across at least one branch vessel, the prosthesis having a distal end, a proximal end, a midsection, and at least one lateral opening in the midsection of the prosthesis.
  • the prosthesis can be constrained in a delivery system having a distal and a proximal end.
  • the apparatus can comprise a catheter extending from the proximal end of the delivery system through the lateral opening in the prosthesis, wherein a guidewire can be passed from the proximal end of the delivery system through the catheter, into the branch vessel with at least the proximal and distal ends of the prosthesis remaining constrained in the delivery system.
  • the prosthesis can be a stent graft.
  • FIGS. 24A and 24B are oblique views of a prosthesis 1200 comprising one or more fenestrations 1202 formed in the graft 1204 , and a stent or support member 1206 .
  • the graft 1204 is shown in dashed lines in FIG. 24B for clarity.
  • the prosthesis 1200 can have any of the features, components, or other details of any other prosthesis embodiments disclosed herein such as, prosthesis 1010 described above. Further, any of the features of the prosthesis 1200 can be used in combination with any of the other prosthesis embodiments disclosed herein.
  • the graft 1204 can be supported by the stent 1206 along at least a portion of the graft 1204 . Further, the graft 1204 can be overlapped and can have stitching or sutures 1208 along one or more edges of the graft 1204 , which can improve the tear resistance of the graft 1204 and can improve the connection between the graft 1204 and the stent 1206 .
  • the graft 1204 can be configured to have excess or slack graft material in at least a portion thereof relative to the stent which supports the graft.
  • the excess graft material can form a bulge or other enlargement in the graft 1204 in the approximate location of one or more fenestrations 1202 formed through the graft material.
  • the excess or slack material along the circumference of the graft 1204 can allow for circumferential and/or axial movement of the graft material and, hence, the one or more fenestrations 1202 , relative to the stent 1206 and the ostium of the patient's branch vessels. Therefore, the diameter of the graft 1204 at and/or adjacent to the location of one or more fenestrations 1202 can be larger than the local diameter of the target vessel. Similarly, the diameter of the graft 1204 at and/or adjacent to the location of one or more fenestrations 1202 can be larger than the diameter of the non-enlarged portion of the graft material.
  • the outside surface of the graft 1204 in the enlarged portion 1204 a or otherwise can be free from any corrugations or other preformed folds, overlaps, or other similar pre-formed features.
  • the graft 1204 can have excess graft material in an axial direction, in addition to or in the alternative of the diametrically enlarged portion.
  • the excess or slack material along the length of the graft 1204 can increase the circumferential and/or axial adjustability or movement of the graft material adjacent to the one or more fenestrations 1202 formed in the graft 1204 .
  • the length of the graft material between the proximal and distal attachment points to the stent 1206 can be longer than that of the stent 1206 between the proximal and distal attachment points.
  • the graft material in a mid-portion of the graft 1204 including on either side of the enlarged portion 1204 a , can have an increased length relative to the stent radially adjacent to such graft portion.
  • the enlarged portion and/or excess length of the graft 1204 or any other graft embodiment disclosed herein can be free from any attachment points to the stent or support member which supports the graft 1204 .
  • the positional adjustability of the fenestrations can be increased because the graft material is free to move in an axial and/or circumferential direction relative to the stent and relative to the ostium of the target branch vessels.
  • the enlarged portion and/or excess length of the graft 1204 or any other graft embodiment disclosed herein can be configured to have only a limited number of attachment points to the stent or support member which supports the graft 1204 .
  • the attachment points can be sufficiently away from the fenestration or opening so as to not substantially affect the adjustability of the fenestration.
  • the prosthesis 1010 can be configured such that the enlarged or slack portion of the graft has only a limited number of attachments to a stent or connector (such as connector 1254 ) away from the fenestrations 1202 so that the adjustability of the enlarged or slack portion is not significantly affected.
  • the attachment or attachments to the stent or other support member can be positioned on an opposite side of the graft as compared to the position of the fenestration. In these configurations, the positional adjustability of the fenestrations can be increased because the graft material is substantially free to move in an axial and/or circumferential direction relative to the stent and relative to the ostium of the target branch vessels.
  • the graft 1204 can have one or more enlarged portions 1204 a having an enlarged diameter relative to the target vessel or relative to one or more non-enlarged portions of the graft 1204 , such as portions 1204 b , 1204 c that can improve the radial and/or axial adjustability of the fenestrations 1202 formed in the enlarged portions 1204 a to better accommodate asymmetrically positioned branch vessel ostium.
  • portions 1204 b , 1204 c can improve the radial and/or axial adjustability of the fenestrations 1202 formed in the enlarged portions 1204 a to better accommodate asymmetrically positioned branch vessel ostium.
  • the graft 1204 can have an enlarged middle portion 1204 a having one or more fenestrations 1202 formed therein, a non-enlarged proximal portion 1204 b , and a non-enlarged distal portion 1204 c.
  • the enlarged portion 1204 a of the graft 1204 can have a diameter that is approximately 30% larger than a diameter of the target vessel or the diameter of the non-enlarged portions 1204 b , 1204 c of the graft 1204 .
  • the diameter of the enlarged portion 1204 a of the graft 1204 can be from approximately 20% or less to approximately 50% or more, or from approximately 25% to approximately 40% larger than the target vessel or the diameter of the non-enlarged portions 1204 b , 1204 c of the graft 1204 , or to or from any values within these ranges.
  • the enlarged portion 1204 a or portion of the graft 1204 adjacent to the enlarged portion 1204 a of the graft 1204 can be sized and configured to be substantially longer (i.e., in the axial direction) than the stent 1206 , which can improve the radial and/or axial adjustability of the fenestrations 1202 formed in the enlarged portions 1204 a to better accommodate the asymmetric and/or non-uniform positioning of branch vessel ostium.
  • the graft 1204 can be longer than the stent 1206 in both the enlarged portion 1204 a of the graft 1204 and/or in the portion of the non-enlarged distal portion 1204 c of the graft adjacent to the enlarged portion 1204 a of the graft 1204 .
  • the enlarged portion 1204 a or portion of the graft 1204 adjacent to the enlarged portion 1204 a of the graft 1204 can be sized and configured to be approximately 20% longer in the axial direction than the stent 1206 .
  • the enlarged portion 1204 a or portion of the graft 1204 adjacent to the enlarged portion 1204 a of the graft 1204 can be sized and configured to be from approximately 10% to approximately 40% or more longer in the axial direction than the stent 1206 .
  • FIG. 25 is a top view of the prosthesis 1200 of FIG. 24 .
  • the prosthesis 1200 can have fenestrations 1202 formed in an enlarged portion 1204 a of the graft 1204 .
  • the fenestrations 1202 can be formed at non-diametrically opposed positions. This can improve the alignment of the fenestrations 1202 with the ostium of the target branch vessels, which in general can be located at non-diametrically opposed positions.
  • the fenestrations 1202 formed in either the enlarged portion or portions 1204 a or non-enlarged portions 1204 b , 1204 c of the graft 1204 can be angled away from the diametrically opposed position (represented by angle X in FIG. 25 ) such that the fenestrations 1202 are separated by an angle (represented by angle Y in FIG. 25 ) that is less than 180 degrees.
  • the graft 1204 can have two fenestrations 1202 formed at an angle away from the diametrically opposed position (represented by angle X in FIG. 25 ) of approximately 15 degrees such that the fenestrations 1202 are separated by an angle (represented by angle Y in FIG. 25 ) that is approximately 150 degrees.
  • the graft 1204 can have two fenestrations 1202 formed at an angle away from the diametrically opposed position of between approximately 10 degrees or less and approximately 20 degrees or more, such that the fenestrations 1202 are separated by an angle (represented by angle Y in FIG. 25 ) that is between approximately 160 degrees and approximately 140 degrees.
  • the graft 1204 can have two fenestrations 1202 formed in an enlarged portion 1204 a of the graft and wherein the fenestrations 1202 are separated by an angle that is less than 180 degrees, for example approximately 150 degrees.
  • positioning the fenestrations 1202 to be separated by an angle that is less than 180 degrees can improve the alignment of the fenestrations 1202 with the ostium of the target branch vessels such that the enlarged portion 1204 a of the graft 1204 can be from approximately 20% to approximately 60% greater than the non-enlarged portion 1204 b , 1204 c of the graft 1204 .
  • the enlarged portion 1204 a of the graft 1204 can be from approximately 20% to approximately 40% greater than the non-enlarged portion 1204 b , 1204 c of the graft 1204 .
  • the graft 1204 which can be a bifurcated or other suitably configured graft, can have two fenestrations 1202 formed in an enlarged portion 1204 a of the graft, wherein the fenestrations 1202 can be separated by an angle that is less than 180 degrees, and wherein the length of at least a portion of the graft 1204 can be substantially greater than the length of the stent 1206 , for example approximately 10% greater than the length of the stent 1206 .
  • positioning the fenestrations 1202 to be separated by an angle that is less than 180 degrees (such as, for example, approximately 150 degrees) and increasing the length of the graft 1204 to be approximately 10% greater than the length of the stent 1206 can improve the alignment/alignability of the fenestrations 1202 with the ostium of the target branch vessels such that the enlarged portion 1204 a of the graft 1204 can be from approximately 10% or less to approximately 20% greater than the non-enlarged portion 1204 b , 1204 c of the graft 1204 .
  • the prosthesis 1200 can have reinforced fenestrations 1202 comprising a tubular member 1210 inserted through the fenestration 1202 and stitched to the graft 1204 with one or more sutures 1212 .
  • the tubular member 1210 can improve the tear resistance of the fenestration 1202 and also improve the sealability between the fenestrations 1202 and the branch grafts and stents deployed within the fenestrations 1202 as well as the pull-out resistance of the branch grafts and stents within the fenestrations 1202 .
  • This configuration can reduce leakage between the fenestrations 1202 and the branch grafts and stents deployed within the fenestrations 1202 .
  • this configuration can also increase the force required to pull the branch grafts and stents deployed within the fenestrations 1202 out of the fenestrations 1202 , thereby reducing the inadvertent axial movement of the branch grafts and stents deployed within the fenestrations 1202 .
  • the graft 1204 can have a scallop or cut-away 1230 at a proximal end portion 1204 b of the graft 1204 .
  • the cut-away 1230 can be sized and configured to permit unrestricted blood flow through a branch artery, such as the suprarenal and/or the celiac arteries.
  • the size of the cut-away 1230 can be based on the anatomy of a patient, or can be sized to accommodate a wide range of vessel anatomies.
  • the cut-away 1230 can have a length approximately equal to the length of two stent struts, such as stent strut 1246 described below.
  • the graft 1204 can be overlapped and have stitching 1208 along an edge of the cut-away 1230 .
  • the prosthesis 1200 can have a flared proximal end portion to increase the sealability of such end portion of the prosthesis 1200 .
  • the prosthesis 1200 can have one or more radiopaque markers, such as but not limited to the annular radiopaque marker 1222 surrounding at least a portion of the fenestration 1202 , for improved visibility under fluoroscopy during deployment.
  • Any of the radiopaque markers can be formed from gold or platinum, or any suitable material.
  • Any of the radiopaque markers can be formed from a suitable non-reinforcing metallic material.
  • FIG. 27 is a side view of the stent 1206 shown in FIG. 24 , viewed along a line that is perpendicular to an axis projecting through a fenestration formed in the graft 1204 (not shown). For clarity, the location of a fenestration 1202 is shown dashed lines.
  • FIG. 28 is a side view of the stent 1206 , viewed along an axis projecting through a fenestration. Again, for clarity, the location of a fenestration 1202 is shown dashed lines.
  • the stent 1206 can be formed from one or more wires forming a plurality of loops 1240 , which can be closed loops or eyelets, bends 1242 , and struts 1246 . Some of the bends 1242 can be configured to slide along a portion of the length of a respective strut 1246 , to improve the flexibility and bendability of the stent 1206 .
  • the positioning of the plurality of loops 1240 and bends 1242 can be longitudinally offset or staggered to decrease the collapsed diameter of the prosthesis 1200 .
  • the stent 1206 can comprise a first stent segment 1250 formed from one or more lengths of wire, a second stent segment 1252 formed from one or more lengths of wire, and one or more connecting members 1254 formed from one or more lengths of wire.
  • the first and second stent segments 1250 , 1252 can be positioned proximally and distally relative to the location of the fenestration (shown in dashed lines) that can be formed in the graft (not illustrated) that can be supported by the stent 1206 .
  • the length of the first stent segment 1250 can be sufficient to result in an increased seal zone in the suprarenal portion of the aorta, such as a length that extends to a position adjacent to or overlapping the superior mesenteric artery and/or the celiac artery.
  • two connecting members 1254 can be positioned between the first and second stent segments 1250 , 1252 , and can be sized and offset from one another to provide a significant gap around the position of the fenestrations 1202 to increase the accessibility and adjustability of the fenestrations 1202 during deployment of the prosthesis 1200 .
  • the connecting members 1254 can have four struts.
  • the connecting members 1254 can have three or less struts, or can have five or more struts.
  • the connecting members 1254 can have a first connecting member 1254 having fewer struts than a second connecting member 1254 .
  • FIGS. 29-31 are oblique, side, and end views, respectively, of a fenestration alignment component 2026 (also referred to as a push member or alignment device) that can be used in any of the delivery catheter embodiments disclosed herein.
  • FIG. 32 is an oblique view of a delivery catheter 2004 having the fenestration alignment component 2026 of FIG. 29 .
  • FIG. 33 is an exploded view of the delivery catheter 2004 shown in FIG. 32 .
  • one or more fenestration alignment components 2026 can be used in place of or in conjunction with one or more fenestration alignment components 1026 described above in any of the delivery catheter embodiments disclosed herein.
  • the fenestration alignment component 2026 can serve the same or similar function or be used for the same or similar procedural step or steps as with the embodiments of the fenestration alignment component 1026 described above. Therefore, the fenestration alignment component 2026 can be used in any of the procedures, steps, or methods as described above for the fenestration alignment component 1026 .
  • a user can independently or collectively axially advance the fenestration alignment component 2026 relative to the guide sheath 2024 (which can be the same as the guide sheath 1024 described above) supporting the fenestration alignment component 2026 such that a portion of the fenestration alignment component 2026 engages the fenestration or branch graft of the prosthesis 1010 and pushes the fenestration or branch graft toward an ostium of the target branch vessel of the patient's vasculature.
  • the guide sheath 2024 which can be the same as the guide sheath 1024 described above
  • a body portion 2027 of the fenestration alignment component 2026 can be slidably positioned around or over an outside surface of the guide sheath 2024 .
  • the body portion 2027 can be cylindrical or tubular.
  • the body portion 2027 can have an inside diameter or size that is greater than an outside diameter or size of the guide sheath 1024 so that the fenestration alignment component 2026 can axially translate relative to the guide sheath 1024 .
  • the body portion 2027 can have in inner diameter or cross-sectional size of approximately 0.114 in, or from approximately 0.10 in or less to approximately 0.125 inches or more.
  • the body portion 2027 can have in outer diameter or cross-sectional size of approximately 0.126 in, or from approximately 0.110 in or less to approximately 0.15 inches or more.
  • the body portion 2027 can have a length of approximately 7.1 cm (2.80 in), or from approximately 5 cm (1.97 in) or less to approximately 10 cm (3.94 in), or between any values within the foregoing range.
  • the body portion 2027 can be formed from a PEBAX covered alloy coil.
  • the body portion 2027 can have a stainless steel coil with a PEBAX tube surrounding the coil.
  • the PEBAX can have varying hardness.
  • the body portion 2027 can have a PTFE liner surrounding all or a portion of the body portion 2027 .
  • the body portion 2027 can have a radiopaque marker or band supported thereon, or have portions or components thereof that are made from a radiopaque material.
  • a radiopaque band having a length of approximately 0.020 in to approximately 0.060 in can be supported by the body portion 2037 .
  • the fenestration alignment component 2026 can have a snare, tab, protrusion, or other similar feature supported by the body portion to engage a portion of the prosthesis adjacent to the fenestration.
  • the fenestration alignment component 2026 can have a tab or protruding portion 2028 (also referred to as a protrusion or projection) projecting from the body portion 2027 .
  • the protruding portion 2028 can project away from the outside surface of the body portion 2027 by approximately 0.036 in, or from approximately 0.025 in to approximately 0.050 in, or from approximately 0.030 in to approximately 0.045 in, or between any values within any of the foregoing ranges.
  • the protruding portion 2028 can define a cross-sectional size (in at least one direction) or diameter that is from approximately 20% or less to approximately 40% or more greater than a cross-sectional size or diameter of the body portion 2027 and/or the fenestration, or between any values within this range.
  • the protruding portion or other component or element supported at an end of the body portion 2027 can be inflatable or otherwise moveable between a first position and a second position wherein, in the second position, such component or element projects away from the body portion 2027 more than in the first position.
  • the component or element can be a small inflatable balloon positioned at an end of the body portion having a hollow wire in fluid communication with an inner volume thereof.
  • the positioning wire 2030 could be made hollow to allow for inflation of the inflatable component or element.
  • the protruding portion 2028 can be integrally formed with the body portion 2027 , or can be formed separately and adhered to, supported by, or otherwise coupled with the body portion 2027 .
  • the protruding portion 2028 can have a length of approximately 7 mm (0.276 in) or from approximately 5 mm (0.197 in) or less to approximately 10 mm (0.394 in) or more, or between any values within the foregoing range.
  • the protruding portion 2028 can be made from PEBAX.
  • the protruding portion 2028 can be made from a PEBAX material having a higher hardness value than the PEBAX material used to form the body portion 2027 .
  • the fenestration alignment component 2026 can be configured to engage a fenestration of a prosthesis deployable by the delivery catheter 2004 .
  • the enlarged or protruding portion 2028 can have a size or profile that is greater than a size or profile of the guide sheath 2024 or of the body portion 2027 of the fenestration alignment component 2026 so that, while the guide sheath 2024 can be advanced through the fenestration, the protruding portion 2028 can be sized and configured to be larger than the size or diameter of the fenestration so that the protruding portion 2028 does not pass through the fenestration.
  • the enlarged portion 2028 of the fenestration alignment component 2026 can have a circular cross-sectional shape or, as illustrated in FIGS. 29-31A , a non-circular cross-sectional shape.
  • the enlarged portion 2028 can have an approximately triangular or pointed shape with a rounded upper surface or portion 2028 a .
  • the enlarged portion 2028 can have a circular cross-sectional shape or a pointed shape with more than one pointed or protruding portion, or any other suitable shape.
  • the enlarged portion 2028 can have a tapered surface 2028 b at the trailing end of the enlarged portion 2028 .
  • the tapered surface 2028 b can facilitate the removability of the fenestration alignment component 2026 if the enlarged portion 2028 of the fenestration alignment component 2026 is inadvertently advanced through a fenestration.
  • the fenestration alignment components 2026 can each be attached to positioning wires 2030 such that axially advancing or retracting the positioning wires 2030 will advance or retract the fenestration alignment components 2026 .
  • the positioning wires 2030 can each define a tapering cross-sectional size that decreases toward a distal end of the positioning wire 2030 such that a cross-sectional size of the positioning wire 2030 near the body portion 2027 is smaller than a cross-sectional size of the positioning wire 2030 near the catheter handle.
  • the positioning wire 2030 can made from a PTFE coated stainless steel, such as 304, or from any other suitable material or combination of materials.
  • the positioning wire 2030 can have a diameter or cross-sectional size as large as approximately 0.0345 in, tapering down to a diameter or cross-sectional size of approximately 0.0200 in.
  • the positioning wire 2030 can have a uniform diameter or cross-sectional size along the length thereof.
  • an end portion 2030 a of the positioning wire 2030 can overlap and be affixed to the body portion 2037 of the fenestration alignment component 2026 .
  • the end portion 2030 a can be bonded to the body portion 2037 using any suitable technique or process.
  • the end portion 2030 a can be thermally bonded to the body portion 2037 using one or more PET sleeves.
  • a portion of the end portion 2030 a can be coined or flattened.
  • the end portion can have a greater surface area than a remainder of the end portion 2030 a .
  • approximately half of the end portion 2030 a can be coined or flattened.
  • FIG. 32 is an oblique view of a delivery catheter 2004 having the fenestration alignment component 2026 of FIG. 29 .
  • FIG. 33 is an exploded view of the delivery catheter 2004 shown in FIG. 32 .
  • FIG. 32 illustrates a handle portion 2050 of the delivery catheter 2004 , which can provide an entry point for the guide sheaths 2024 and the positioning wires 2030 so as to provide an orifice or access port for these components into the main body of the delivery catheter 2004 .
  • a surgeon or user can manipulate the guide sheaths 2024 and fenestration alignment components 2026 by manipulating the end portions of the guide sheaths 2024 and positioning wires 2030 that extend proximally from the end of the handle portion 2050 of the delivery catheter.
  • the catheter 2004 can have two or more guide sheaths 2024 and two or more fenestration alignment components 2026 , or the same number of guide sheaths 2024 and fenestration alignment components 2026 as the number of fenestrations in the prosthesis.
  • the catheter 2004 having guide sheaths 2024 with fenestration alignment components 2026 as described herein can be configured such that the guide sheaths 2024 , fenestration alignment components 2026 , and/or positioning wires 2030 are advanceable within standard lumen formed in the delivery catheter 2004 .
  • the lumen of the delivery catheter 2004 may be enlarged or sized and configured to accommodate such guide sheaths 2024 with fenestration alignment components 2026 .
  • FIG. 34 is a sectional view of a portion of a patient's vasculature, showing the fenestration alignment component 2026 illustrated in FIG. 29 advancing an inner wall of the prosthesis adjacent to a fenestration toward an ostium of the target branch vessel.
  • the fenestration alignment component 2026 of the catheter 2004 can be axially advanced relative to the guide sheath 2024 (which can be the same as any other guide sheath embodiments disclosed herein, including without limitation guide sheath 1024 ) by advancing the positioning wire 2030 distally to push the fenestration 1011 of the prosthesis 1010 over the branch sheath 2024 and into approximate alignment with the ostium of the branch vessel.
  • the catheter system 2004 can be configured to not have a fenestration alignment component 2026 , and can accordingly be configured to deploy a fenestrated graft without the use of such a component.
  • a fenestration alignment component 2026 can be configured to deploy a fenestrated graft without the use of such a component.
  • snares, protrusions, tabs, or other features can be formed on the sheaths 1024 to push the fenestrations toward the branch vessel ostium.
  • FIG. 35 is a sectional view of a portion of a patient's vasculature, showing a branch stent being advanced into the target branch vessel while the fenestration alignment component 2026 can be used to maintain the inner wall of the prosthesis adjacent to a fenestration in the prosthesis in the desired position relative to the ostium of the target branch vessel.
  • the fenestration alignment components 2026 have been advanced to a second position, the second position being defined as the position where the fenestrations 1011 are approximately aligned with the ostium of the target branch vessels.
  • FIG. 35 is a sectional view of a portion of a patient's vasculature, showing a branch stent being advanced into the target branch vessel while the fenestration alignment component 2026 can be used to maintain the inner wall of the prosthesis adjacent to a fenestration in the prosthesis in the desired position relative to the ostium of the target branch vessel.
  • the fenestration alignment components 2026 have been advanced
  • a covered or uncovered branch stent 1084 can be deployed in the branch vessel by advancing the branch stent 1084 through the branch sheath 2024 using a suitable catheter, such as a renal stent catheter, into the target vessel, after the angiographic catheter has been removed from the branch sheath 2024 .
  • the stent 1084 can be supported on an inflation balloon 1086 , which can be supported by a guidewire 1088 .
  • the guidewire 1088 can be configured to have an inflation lumen therein, to inflate the balloon 1086 and expand the branch stent 1084 in the target location after the branch sheath 2024 has been at least partially retracted so as to not interfere with the expansion of the branch stent 1084 .
  • the fenestration alignment components 2026 may need to be at least partially withdrawn before deploying the stents 1084 , to enable the inflation balloon to expand the stents 1084 .
  • the inflation balloon 1086 can be configured to expand and flare a portion of the stent 1084 within or to the inside of the fenestration 1011 formed in the prosthesis. Thereafter, the components comprising the delivery catheter 2004 can be withdrawn, and/or additional prostheses can be deployed in the patient's vasculature, including without limitation a suprarenal stent graft, or other desired components.
  • any embodiments of the delivery catheter 2004 can have any of the same features, materials, components, dimensions, or other details of any other catheter disclosed herein, including without limitation the embodiment(s) of the delivery catheter 1004 described above.
  • Like numbered features shown in the illustrations of the delivery catheter 2004 can be the same or similar to the same numbered features of the delivery catheter 1004 embodiments described herein.
  • any embodiments of the fenestration alignment components or devices disclosed herein can be used to deploy any suitable fenestrated prosthesis, with or without modification within the scope of one of ordinary skill in the art.
  • any embodiments of the fenestration alignment components or devices disclosed herein can be used in combination with any of the delivery devices disclosed in either of the foregoing applications, and such combinations are hereby incorporated by reference as if fully set forth herein.

Abstract

A fenestrated graft deployment system, with a delivery catheter having a catheter body, An endoluminal prosthesis having a main graft body, the main graft body having a lumen therethrough and a first opening laterally through a wall of the main graft body. A first guidewire prepositioned within the delivery catheter extending through at least a portion of the catheter body into a main lumen of the endoluminal prosthesis and through the first opening in the wall of the prosthesis when the delivery catheter is in a predeployed configuration. A first fenestration alignment device is configured to extend through at least a portion of the delivery catheter and is configured to be axially moveable relative to the first guidewire. The first fenestration alignment device has an end portion having an outside perimeter configured such that when an end portion of the fenestration alignment device moves toward the first opening of said main graft body the outside perimeter of the first opening is smaller than the outside perimeter of the first fenestration alignment device and prevents it from passing through the first opening and causes the main graft body adjacent to the first opening to move with the end of the first fenestration alignment device to act as alignment tool to allow an operator to align the first opening in the side of the endoluminal prosthesis with an ostium of a target branch vessel into which said first opening is to extend and act as a guide and seal for a subsequently delivered branch graft endoluminal prosthesis.

Description

    PRIORITY INFORMATION AND INCORPORATION BY REFERENCE
  • This application claims priority benefit of U.S. Provisional Application 61/409,504 (titled “APPARATUS AND METHOD OF PLACEMENT OF A GRAFT OR GRAFT SYSTEM”), filed Nov. 2, 2010, which application is hereby incorporated by reference in its entirety as if fully set forth herein. The benefit of priority is claimed under the appropriate legal basis including, without limitation, under 35 U.S.C. §119(e). Additionally, U.S. patent application Ser. No. 12/769,506, filed on Apr. 28, 2010 (entitled “APPARATUS AND METHOD OF PLACEMENT OF A GRAFT OR GRAFT SYSTEM”) is also hereby incorporated by reference in its entirety as if fully set forth herein.
  • BACKGROUND OF THE DISCLOSURE
  • 1. Technical Field
  • Endoluminal vascular prostheses delivery devices and methods of deploying such prostheses for use in the treatment of aneurysms at branches of arterial vessels, in particular the aorta, are described.
  • 2. Description of the Related Art
  • An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen.
  • In certain conditions, the diseased region of the blood vessels can extend across branch vessels. The blood flow into these branch vessels is critical for the perfusion of the peripheral regions of the body and vital organs. Many arteries branch off the aorta. For example, the carotid arteries supply blood into the brain, the renal arteries supply blood into the kidneys, the superior mesenteric artery (“SMA”) supplies the pancreas, the hypogastric arteries supply blood to the reproductive organs, and the subclavian arteries supply blood to the arms. When the aorta is diseased, the branch vessels may also be affected. Thoracic aortic aneurysms may involve the subclavian and carotid arteries, abdominal aneurysms may involve the SMA, renal and hypogastric arteries. Aortic dissections may involve all branch vessels mentioned above. When this occurs, it may be detrimental to implant a conventional tubular graft or stent graft in this location of the aorta or the blood vessel, since such a graft may obstruct the flow of blood from the aorta into the branches.
  • Prior branch graft arrangements are complex and require many steps of insertion and removal to orient and align fenestrations in a main body to the surrounding anatomy and still more steps to insert, deploy, and seal a branch graft (covered stent) to the main stent graft body and to the wall of the branch vessel without unacceptable leakage.
  • Thus, there is a need to simplify the delivery of branch graft devices to provide improved reliability and reduced procedure duration.
  • SUMMARY OF SOME EXEMPLIFYING EMBODIMENTS
  • Designs and methods of placement of a branch graft or branch graft system having lateral openings in the main graft are disclosed. The main graft is positioned within the main blood vessel such as the aorta so that the lateral openings (also referred to herein as fenestrations) can be aligned with the branch blood vessels, to allow blood to flow through the openings in the main graft and into the branch vessels. The positions of the branch blood vessels can vary from one patient's anatomy to the next, the graft systems disclosed herein allow a surgeon to adjust the position of the fenestrations in the main body so as to align them with the branch vessels to improve the efficiency of branch graft deployment.
  • The branch graft system can comprise a tubular expandable main body and at least one fenestration or at least one branch graft at any desired location. The main graft body and/or the branch graft can be made from an expandable material, such as but not limited to ePTFE. The main graft can have two fenestrations or branch grafts formed therein at generally diametrically opposed locations or at positions that are offset from the diametrically opposed positions. Depending on the particular patient's anatomy, other cut-outs, scallops, or fenestrations, such as but not limited to a fenestration for the superior mesenteric artery (“SMA”), can be formed in the main graft depending on the patient's anatomy and position of the graft.
  • The main graft body can have a tubular shape and can have a diameter that can be significantly larger than the diameter of the target vessel into which the graft is intended to be deployed. As will be described in greater detail below, the oversized diameter of a portion of the main graft can provide excess or slack graft material in the main graft to allow the fenestrations to each be moved in one or a combination of lateral, axial and angular directions so that the fenestrations can be aligned with the branch arteries.
  • One or more branch grafts can be supported by the main graft body adjacent to the one or more fenestrations (openings) that can be formed in the main graft body. A compressed branch graft is small enough to allow it to be manipulated into the desired vascular position by moving the branch graft over a guidewire. The branch graft can be expanded to the diameter of the branch vessel by mechanical means, which can be a dilation balloon, or by the removal of a surrounding restraint in the case of a self-expanding device.
  • Some embodiments relate to a fenestrated graft deployment system, comprising a delivery catheter having a catheter body, a prosthesis having a main graft body, the main graft body having lumen therethrough and a first opening laterally through a wall of the main graft body, a first guidewire prepositioned within the delivery catheter extending through at least a portion of the catheter body into a main lumen of the endoluminal prosthesis and through the first opening in the wall of the prosthesis when the delivery catheter is in a predeployment state. The system can have a first fenestration alignment device extending through at least a portion of the delivery catheter configured to be axially moveable relative to the first guidewire. The first fenestration alignment device can be configured such that a portion of the fenestration alignment device contacts the main graft body adjacent to the first opening to approximately align the first fenestration with an ostium of a target branch vessel when advanced relative to the fenestration.
  • Some embodiments relate to a fenestration push device for use in a fenestrated prostheses deployment catheter, comprising a body portion defining a lumen therethrough, the lumen having a first diameter or cross-sectional size or perimeter, and a protrusion supported at or adjacent to a distal end of the body portion, the protrusion projecting away from an outside surface of the body portion and defining a second cross-sectional or perimeter size. The second cross-sectional size of the fenestration push device at the location of the protrusion is greater than the first diameter or size of the body portion. Additionally, the second cross-sectional size of the protrusion is greater than a cross-sectional size of a fenestration formed in a respective fenestrated graft.
  • Some embodiments relate to method of deploying a fenestrated endoluminal prosthesis in a patient's vasculature, comprising advancing a catheter supporting the endoluminal prosthesis therein through a patient's vasculature to a target vessel location, wherein the prosthesis has a main graft body comprising a first opening through a wall thereof, advancing a first guide sheath through the first opening and into a first branch vessel, and advancing a first fenestration alignment device into contact with the prosthesis adjacent to the first opening through the wall of the prosthesis so as to approximately align the first opening with an ostium of the first branch vessel.
  • Some embodiments or arrangements are directed to methods for deploying an endoluminal prosthesis, comprising advancing a catheter supporting the endoluminal prosthesis therein through a patient's vasculature to a target vessel location, advancing one or more catheters through one or more fenestrations formed in the main graft body and into one or more branch vessels in the patient's vasculature, at least partially expanding at least the second portion of the main graft body, and substantially aligning the one or more fenestrations formed within the second portion of the main graft body with the one or more branch vessels by moving the one or more fenestrations in a circumferential and/or axial direction toward the ostium of the one or more branch vessels. In any of the embodiments or arrangements disclosed herein, the prosthesis can have a main graft body comprising a first portion, a second portion, and a third portion. The second portion of the main graft body has a cross-sectional size that is significantly larger than a cross-sectional size of the first portion and the third portion, and also significantly larger than a cross-sectional size of the target vessel.
  • Some embodiments or arrangements are directed to methods for deploying a fenestrated prosthesis in a patient's blood vessel having at least a first branch blood vessel, comprising advancing a delivery catheter into a blood vessel, exposing at least one guide sheath, the guide sheath being positioned within the delivery catheter so as to extend from a main lumen of the prosthesis through a first opening formed through a wall of the prosthesis, and advancing an angiographic catheter through the guide sheath and cannulating a first target branch vessel before completely removing the second restraint. The delivery catheter can support the fenestrated prosthesis having a main graft body and at least one fenestration extending through the main graft body, a first restraint restraining a proximal portion of the prosthesis, and a second restraint restraining a distal portion of the prosthesis, the distal portion of the prosthesis being closer to a proximal portion of the delivery catheter than the proximal portion of the prosthesis.
  • Some embodiments or arrangements are directed to methods for deploying a fenestrated prosthesis in a patient's blood vessel having at least a first branch blood vessel, comprising advancing a delivery catheter into a blood vessel, exposing at least one guide sheath, the guide sheath being positioned within the delivery catheter so as to extend from a main lumen of the prosthesis through a first opening formed through a wall of the prosthesis, and advancing the guide sheath into a first target branch vessel before completely removing the second restraint. The delivery catheter can support the fenestrated prosthesis, and the fenestrated prosthesis can have a main graft body and at least one fenestration therein, a first restraint restraining a proximal portion of the prosthesis, and a second restraint restraining a distal portion of the prosthesis, the distal portion of the prosthesis being closer to a proximal portion of the delivery catheter than the proximal portion of the prosthesis,
  • Some embodiments or arrangements are directed to delivery systems for deploying an endoluminal prosthesis, comprising a first restraint configured to restrain a portion of the prosthesis, a second restraint configured to restrain a second portion of the prosthesis, a first opening through a wall of the prosthesis, a first guide sheath extending from a proximal end of the delivery system into a main lumen of the endoluminal prosthesis and through the first opening in the wall of the prosthesis, a first stent configured to support the first portion of the endoluminal prosthesis, and a second stent configured to support the second portion of the endoluminal prosthesis, wherein the guide sheath is moveable before removing the first and second restraints. The first opening can be positioned between the first and second portions.
  • Some embodiments or arrangements are directed to endoluminal prostheses comprising a main graft body defining a flow lumen therethrough, a first opening passing through a wall of the main graft body, and a first support member supported by the main graft body and overlapping an edge of the first opening, the first support member being configured to increase the tear resistance of the main graft body adjacent to the first opening.
  • Some embodiments or arrangements are directed to methods for forming an endoluminal prosthesis having at least one reinforced fenestration in a main portion thereof, comprising forming a graft body having a tubular main body portion, forming a first opening through a wall of the main body portion, the first opening having a first state in which the first opening is substantially unstretched and a second state in which the first opening is stretched so that a size of the first opening increases, advancing a tubular member partially through the first opening, and fastening a first end portion and a second end portion of the tubular member to the wall of the main body portion adjacent to the first opening so that the tubular member completely overlaps an edge of the first opening.
  • Some embodiments or arrangements are directed to methods of deploying an endoluminal prosthesis, comprising advancing a catheter supporting the endoluminal prosthesis therein through a patient's vasculature to a target vessel location, advancing one or more catheters through one or more fenestrations formed in the main graft body and into one or more branch vessels in the patient's vasculature, at least partially expanding at least the second portion of the main graft body, and substantially aligning the one or more fenestrations formed within the second portion of the main graft body with the one or more branch vessels by moving the one or more fenestrations in a circumferential and/or axial direction toward an ostium of the one or more branch vessels by advancing one or more alignment devices relative to the one or more fenestrations, engaging such fenestrations with the one or more alignment devices, and aligning such fenestrations with the one or more branch vessels. The prosthesis can have a main graft body which can have a first portion, a second portion, and a third portion, and the second portion of the main graft body can have a cross-sectional size that is significantly larger than a cross-sectional size of the first portion and the third portion, and also significantly larger than a cross-sectional size of the target vessel.
  • Some embodiments or arrangements are directed to methods of deploying a graft in a patient's blood vessel having at least a first branch blood vessel, comprising advancing a delivery catheter into a blood vessel, the delivery catheter supporting a fenestrated prosthesis comprising a main graft body therein, exposing at least one branch sheath, the branch sheath being positioned within the delivery catheter so as to extend from a main lumen of the prosthesis through a first opening formed through a wall of the main graft body, advancing an angiographic catheter into the branch sheath and cannulating a first target branch vessel before expanding the main graft body of the prosthesis, engaging the main graft body adjacent to the first opening, and advancing the main graft body adjacent to the first opening into approximate alignment with an ostium of the target branch blood vessel.
  • In any of the embodiments disclosed (directly or by incorporation by reference) herein, main graft body, branch grafts, or any other component of the endoluminal prostheses or deployment systems disclosed herein can have at least one radiopaque suture or marker attached thereto to assist with the placement of such components.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial sectional view of a patient's vasculature illustrating an endoluminal prosthesis deployed in the patient's vasculature.
  • FIG. 2 is a side view of the endoluminal prosthesis illustrated in FIG. 1.
  • FIG. 3 is a cross-sectional view of the endoluminal prosthesis deployed in the patient's anatomy, taken at 3-3 in FIG. 1, before the fenestrations have been aligned with the respective branch vessels.
  • FIG. 4 is a cross-sectional view of the endoluminal prosthesis deployed in the patient's anatomy, taken at 3-3 in FIG. 1, after the fenestrations have been aligned with the respective branch vessels.
  • FIG. 5A is a side view of a catheter system comprising an introducer catheter and a delivery catheter.
  • FIG. 5B is an oblique view of a catheter system illustrated in FIG. 5A, showing the outer sheath in a partially retracted position.
  • FIG. 6 is an oblique view of introducer catheter shown in FIGS. 5A and 5B.
  • FIG. 7 is an exploded view the introducer catheter shown in FIGS. 5A and 5B.
  • FIG. 8 is a close up view the delivery catheter shown in FIGS. 5A and 5B.
  • FIG. 9 is an exploded view the delivery catheter shown in FIG. 5A.
  • FIG. 10 is a sectional view of a portion 10-10 of delivery catheter shown in FIG. 5A.
  • FIG. 11A is a sectional view of the delivery catheter shown in FIGS. 5A and 5B, taken at 11A-11A in FIG. 10.
  • FIG. 11B is a sectional view the delivery catheter shown in FIGS. 5A and 5B, taken at 11B-11B in FIG. 10.
  • FIG. 12 is a side view the catheter system shown in FIG. 5B, showing the outer sheath in a partially retracted position.
  • FIG. 13 is an close up side view of the portion 13-13 of the catheter system shown in FIG. 12, showing the outer sheath in a partially retracted position.
  • FIG. 14 is an close up side view of the portion 14-14 of the catheter system shown in FIG. 12, showing the outer sheath in a partially retracted position and the proximal sheath in a partially advanced position.
  • FIG. 15 is a side view the catheter system shown in FIGS. 5A and 5B, showing the outer sheath in a partially retracted position and one branch sheath and one fenestration alignment component in a partially advanced position.
  • FIG. 16 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter of FIG. 5A being advanced through a patient's abdominal aorta.
  • FIG. 17 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter of FIG. 5A and an angiographic catheter being advanced through a branch sheath of the delivery catheter toward a branch vessel.
  • FIG. 18 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter illustrated in FIG. 5A and the branch sheaths of the delivery catheter being advanced into a patient's branch arteries.
  • FIG. 19 is a sectional view of a portion of a patient's vasculature, showing a distal sheath of the delivery catheter illustrated in FIG. 5A being advanced to deploy a proximal portion of the prosthesis.
  • FIG. 20 is a sectional view of a portion of a patient's vasculature, showing a peelable sheath of the delivery catheter illustrated in FIG. 5A being removed to deploy a distal portion of the prosthesis.
  • FIG. 21 is a sectional view of a portion of a patient's vasculature, showing a fenestration alignment component of the delivery catheter illustrated in FIG. 5A advancing an inner wall of the prosthesis adjacent to a fenestration toward an ostium of the target branch vessel.
  • FIG. 22 is a sectional view of a portion of a patient's vasculature, showing a branch stent being advanced into the target branch vessel.
  • FIG. 23 is a sectional view of a portion of a patient's vasculature, showing the branch stent of FIG. 22 being expanded in the target branch vessel and flared.
  • FIGS. 24A and 24B are oblique views of a prosthesis having one or more fenestrations therein, the graft being shown in dashed lines in FIG. 24B for clarity.
  • FIG. 25 is a top view of the prosthesis of FIG. 24.
  • FIG. 26 is an enlarged view of a portion of the prosthesis of FIG. 24, defined by curve 26-26 of FIG. 24B.
  • FIG. 27 is a side view of the stent shown in FIG. 24, perpendicular to an axis projecting through the fenestration.
  • FIG. 28 is a side view of the stent shown in FIG. 24, along an axis projecting through the fenestration.
  • FIG. 29 is an oblique view of a fenestration alignment component, which is also referred to herein as a fenestration alignment component.
  • FIG. 30 is a side view of the fenestration alignment component illustrated in FIG. 29.
  • FIG. 31A is an end view of the fenestration alignment component illustrated in FIG. 29.
  • FIG. 31B is a sectional view through a portion of the fenestration alignment component, taken at 31B-31B of FIG. 31A.
  • FIG. 32 is an oblique view of a delivery catheter having the fenestration alignment component of FIG. 29.
  • FIG. 33 is an exploded view of the delivery catheter shown in FIG. 32.
  • FIG. 34 is a sectional view of a portion of a patient's vasculature, showing the fenestration alignment component illustrated in FIG. 29 advancing an inner wall of the prosthesis adjacent to a fenestration toward an ostium of the target branch vessel.
  • FIG. 35 is a sectional view of a portion of a patient's vasculature, showing a branch stent being advanced into the target branch vessel while the fenestration alignment component illustrated in FIG. 29 can be used to maintain the inner wall of the prosthesis adjacent to a fenestration in the prosthesis in the desired position relative to the ostium of the target branch vessel.
  • DETAILED DESCRIPTION
  • In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout the description and the drawings.
  • Some embodiments described herein are directed to systems, methods, and apparatuses to treat lesions, aneurysms, or other defects in the aorta, including, but not limited to, the thoracic, ascending, and abdominal aorta, to name a few. However, the systems, methods, and apparatuses may have application to other vessels or areas of the body, or to other fields, and such additional applications are intended to form a part of this disclosure. For example, it will be appreciated that the systems, methods, and apparatuses may have application to the treatment of blood vessels in animals.
  • As will be described, any of the graft embodiments disclosed herein can be configured to have excess or slack graft material in at least a portion thereof relative to the stent or support member which supports the graft. The excess or slack material can result from either an enlarged diametric portion of the graft, excess length of the graft material relative to a stent or other support structure, or a combination of both the enlarged diametric portion of the graft and excess length of the graft material. The excess graft material can form a bulge or other enlargement in the graft in the approximate location of one or more fenestrations formed through the graft material. The excess or slack material along the circumference of the graft (in the enlarged portion of the graft) can allow for circumferential and/or axial movement of the graft material and, hence, can allow for circumferential and/or axial movement of the one or more fenestrations, relative to the stent and the ostium of the patient's branch vessels. Therefore, the diameter of the graft at and/or adjacent to the location of one or more fenestrations through the graft material can be larger than the local diameter of the target vessel. Similarly, the diameter of the graft at and/or adjacent to the location of one or more fenestrations can be larger than the diameter of the non-enlarged portion of the graft material.
  • For example, any of the embodiments disclosed herein can be configured such that the graft has an enlarged or excess slack portion at or adjacent to the location of the fenestrations, wherein such enlarged or excess slack portion is free of attachment points or has only a minimal number of attachment points to the stent or support structure radially adjacent to the enlarged or excess slack portion. In some embodiments, this can result in both freedom of circumferential and axial movement of the fenestrations, thereby improving the positional adjustability of the fenestrations. The enlarged or excess slack portions of the graft can be radially unsupported by the stent or support member, or can be supported by a stent or support member or by connectors connecting support members positioned axially adjacent to the enlarged or excess slack portion. Accordingly, any of the graft embodiments described herein can be configured to have excess circumferential or longitudinal material at any portion of the graft to increase the positional adjustability of one or more fenestrations formed in the graft.
  • Further, any of the graft embodiments disclosed herein, including those with diametrically enlarged portions, can have excess graft material in an axial direction. The excess or slack material along the length of the graft can increase the circumferential and/or axial movement of the graft material adjacent to the one or more fenestrations formed in the graft material. Accordingly, the length of the graft material between the proximal and distal attachment points to the stent can be longer than that of the stent between the proximal and distal attachment points. Or, the graft material in a mid-portion of the graft, including on either side of the enlarged portion, can have an increased length relative to the stent adjacent to such graft portion.
  • FIG. 1 is a partial cross sectional view of a patient's vasculature illustrating an endoluminal prosthesis deployed in the desired position within the patient's vasculature.
  • As an example, FIG. 1 shows an endoluminal prosthesis deployed in a patient's aorta 10. An aneurysmal sac 10A is also shown. For reference, also illustrated are a patient's first and second renal arteries 12, 14, respectively, and a patient's ipsilateral and contralateral iliac arteries 16, 18, respectively. FIG. 2 is a side view of the endoluminal prosthesis 20 illustrated in FIG. 1. the endoluminal prosthesis 20 illustrated in FIGS. 1 and 2 has a main graft body 22, a first fenestration 24, and a second fenestration 26. The main graft is a bifurcated graft having a first bifurcated branch 28 and a second bifurcated branch 30 for placement in the ipsilateral and contralateral iliac arteries.
  • The main graft body 22 has a generally cylindrical, tubular shape. The endoluminal prosthesis 20 can be formed from any suitable material, such as, but not limited to, ePTFE. The endoluminal prosthesis 20 is formed from an expandable material. The endoluminal prosthesis 20 is formed such that the main graft body 22 can be sized to be larger than the target vessel into which the main graft body 22 is to be deployed. As illustrated in FIG. 1, the target vessel can be the aortic artery, and the endoluminal prosthesis can be deployed so as to span across an aneurysm in the abdominal aortic.
  • In any of the graft embodiments disclosed herein, the diameter of the graft body (such as without limitation the main graft body 22) or an enlarged portion of any embodiment of a graft body disclosed herein can be approximately 30% larger than the diameter of the target vessel or the diameter of the non-enlarged portion of the graft body. The diameter of the graft body (such as without limitation the main graft body 22) or an enlarged portion of any embodiment of a graft body disclosed herein can be less than approximately 20%, or from approximately 20% to approximately 50% or more, or from approximately 25% to approximately 40% larger than the target vessel or the diameter of the non-enlarged portion of the graft body, or to or from any values within these ranges.
  • Further, in any of the graft embodiments disclosed herein, at least a portion of the graft material adjacent to the one or more fenestrations or openings can be free to translate in a circumferential or axial direction relative to the stent that the graft is supported by. For example, particular portions such as the end portions of the graft material can be sutured or otherwise fastened to the stent, while a mid-portion of the graft having one or more fenestrations therethrough can be unattached to the stent so that such mid portion can be free to translate relative to the stent and, hence, permit the adjustability of the fenestrations relative to the stent. In this configuration, the fenestrations can be adjusted to align with the ostium of the patient's branch vessels.
  • As one non-limiting example, the diameter of the main graft body 22 configured for placement in an approximately 26 mm vessel can be approximately 34 mm in diameter. Therefore, the diameter of the main graft body 22 can be approximately 8 mm larger than the diameter of the target vessel. The diameter of the main graft body 22 can be between approximately 2 mm and approximately 14 mm, or between approximately 4 mm and approximately 12 mm, or between approximately 6 mm and approximately 10 mm larger than the diameter of the target vessel, or to or from any values within these ranges.
  • The oversized diameter of the main graft body 22 can provide excess or slack graft material in the main graft body 22 such that the fenestrations 24, 26 can each be moved in an axial, rotational, or angular direction, or a combination thereof to align the fenestrations 24, 26 with the branch vessels arteries, as will be described in greater detail below.
  • As described above, two or more fenestrations can be formed in the main graft body 22 at any desired location. With reference to FIG. 2, the two fenestrations 24, 26 can be formed at generally diametrically opposed locations. However, any number of fenestrations can be formed in the main graft body 22 at any desired locations. Additionally, scallops or cutouts can be formed in the distal end portion or at any suitable location in the main graft body 22, the scallops or cutouts being configured to prevent obstruction of other arteries branching off of the main vessel into which the main graft body 22 is to be deployed. For example, an additional fenestration 32 can be formed in a distal portion of the main graft body 22. The fenestration 32 can be formed so as to align with a patient's SMA
  • FIG. 3 is a cross-sectional view of the endoluminal prosthesis 20 deployed in the patient's anatomy, taken at 3-3 in FIG. 1, as it might appear before the fenestrations 24, 26 have become aligned with the respective branch vessels, for example renal arteries 12, 14. With reference to FIG. 3, the main graft body 22 (which can be oversized) has been deployed in the target vessel. After the main graft body 22 has been deployed in the target vessel, because the main graft body 22 can have a larger diameter than the vessel diameter, folds, wrinkles, or other undulations (collectively referred to as folds) 34 can form in the main graft body 22 about the circumference of the main graft body 22. The folds 34 can form in the main graft body 22 as a result of the fact that there can be excess or slack material in the main graft body 22 after the main graft body 22 has been deployed in the target vessel.
  • At least a portion of the main graft body 22 can have undulations, folds, bends, corrugations, or other similar features in the axial direction therein when the main graft body 22 is in a relaxed state (i.e., before the graft has been deployed). A middle portion of the graft can have undulations, folds, bends, corrugations or other similar features while the distal or upstream portion defines a smooth contour
  • FIG. 4 is a cross-sectional view of the endoluminal prosthesis 20 deployed in the patient's anatomy, taken at 3-3 in FIG. 1, after the fenestrations 24, 26 have become aligned with the respective branch vessels. With reference to FIG. 4, the oversized main graft body 22 is aligned with the patient's anatomy by the fenestration 24 following a angiographic or guide catheter over which it is threaded to align with the respective branch vessel as the main body is deployed, but after the branch vessel guidewires are positioned in the branch vessels. For example, the fenestration 24 as it moves closer to the fenestration 26, causes a gathering of slack material or folds 34 in a first portion 22 a of the main graft body 22 and partially or fully removing the slack material or folds from a second portion 22 b of the main graft body 22.
  • After the main graft body 22 has been positioned within the patient's anatomy such that the fenestrations 24, 26 have been aligned with the respective branch vessels, a covered stent, a bare wire stent, or any other suitable stent or anchoring device can be deployed within the main graft to secure the graft in the desired location (not illustrated). A bare metal stent deployed within the main graft body 22 can compress the folds 34 that are formed in the main graft body 22, if any, against the wall of the vessel and secure the main graft body 22 and the fenestrations 24, 26 in the desired locations.
  • Alternatively, a supra renal stent can be deployed at a distal or upper portion of the main graft body to secure the distal or upper portion of the main graft body in the desired location within the patient's vasculature, and one or more axial springs can be anchored to the main graft body to provide axial or column strength to the main graft body. The springs can have a helical shape, as illustrated, and can have any suitable size, length, pitch, or diameter. However, such helical shape is not required. The springs can have any suitable shape, including a straight, flat, round, or non-round shape. The springs can be formed from any suitable biocompatible material, such as without limitation stainless steel, Nitinol, or suitable metallic or polymeric materials.
  • Additionally, any of the features, components, or details of any of the graft, stents, or other apparatuses disclosed in U.S. patent application Ser. No. 12/496,446, filed on Jul. 1, 2009, entitled CATHETER SYSTEM AND METHODS OF USING SAME, U.S. patent application Ser. No. 12/390,346, filed on Feb. 20, 2009, entitled DESIGN AND METHOD OF PLACEMENT OF A GRAFT OR GRAFT SYSTEM, U.S. patent application Ser. No. 12/101,863, filed on Apr. 11, 2008, entitled BIFURCATED GRAFT DEPLOYMENT SYSTEMS AND METHODS, and U.S. Provisional Application 61/409,504, entitled APPARATUS AND METHOD OF PLACEMENT OF A GRAFT OR GRAFT SYSTEM, filed Nov. 2, 2010, can be used, with or without modification, in place of or in combination with any of the features or details of any of the grafts, stents, prostheses, or other components or apparatuses disclosed herein. Similarly, any of the features, components, or details of the delivery apparatuses and deployment methods disclosed in U.S. patent application Ser. Nos. 12/496,446, 12/390,346, and 12/101,863, can be used, with or without modification, to deploy any of grafts, stents, or other apparatuses disclosed herein, or in combination with any of the components or features of the deployment systems disclosed herein. The complete disclosures of U.S. patent application Ser. Nos. 12/496,446, 12/390,346, and 12/101,863 are hereby incorporated by reference as if set forth fully herein.
  • FIG. 5A is a side view of a catheter system 1000 comprising an introducer catheter 1002 (also referred to as an introducer) and a delivery catheter 1004. The delivery catheter 1004 can be configured for the delivery of an endoluminal prosthesis, including without limitation any endoluminal prosthesis embodiment disclosed herein or any other suitable prosthesis, or for any other suitable use.
  • FIG. 5B is an oblique view of a catheter system 1000 illustrated in FIG. 5A, showing an outer sheath 1006 of the delivery catheter 1004 in a partially retracted position. With reference to FIGS. 5A and 5B, the outer sheath 1006 can be used to constrain at least a portion of a prosthesis 1010. The prosthesis 1010 can have any of the same features, components, or other details of any of the other prosthesis embodiments disclosed herein, including without limitation the embodiments of the prosthesis 1200 described below. The prosthesis 1010 can have any number of stents or other support members, connectors, grafts, cuts, fenestrations, or other suitable components or features. As used herein, when referring to the prosthesis 1010, distal refers to the end of the prosthesis that is further from the patient's heart, and proximal refers to the end of the prosthesis that is closer to the patient's heart. As used herein with regard to the embodiments of the catheter system 1000, the term distal refers to the end of the catheter system that is further from the surgeon or medical practitioner using the catheter system, and the term proximal refers to the end of the catheter system that is closer to the surgeon or medical practitioner.
  • As illustrated in FIG. 5B, a distal sheath 1012 (also referred to herein as a first restraint or first restraining means) can be used to constrain a proximal portion of the stent graft 1010. The distal sheath 1012 can be supported by (connected to) a distal tip 1014 of the catheter system 1000. The distal tip 1014 can comprise an atraumatic material and design. As will be described in greater detail below, the distal tip 1014 and, hence, the distal sheath 1012 can be attached to an inner tube 1016 to control the position of the distal tip 1014 and the distal sheath 1012 relative to an inner core 1020 of the delivery catheter 1004. The inner core 1020 can be rotatable relative to the outer sheath 1006 so that a prosthesis supported by the delivery catheter 1004 can be rotated during deployment. The inner tube 1016 can be slidably positioned coaxially within a lumen in an outer tube 1018 that can connect a support member 1022 to the inner core 1020. The outer tube 1018 can be connected to an opening or partial lumen 1019 in the inner core 1020 so as to be axially and rotationally fixed to the inner core 1020.
  • In this configuration, the catheter system 1000 can be configured such that advancing the inner tube 1016 relative to an inner core 1020 of the delivery catheter 1004 causes the distal sheath 1012 to advance relative to the prosthesis 1010, causing the proximal portion of the prosthesis 1010 to be deployed. The prosthesis 1010 (or any other prosthesis disclosed herein) can be at least partially self-expanding such that, as the tubular distal sheath 1012 is advanced relative to the prosthesis 1010, a proximal portion of the prosthesis 1010 expands against a vessel wall. In some embodiments, only some segments or portions of the prosthesis 1010 such as, portions of the prosthesis axially adjacent to enlarged graft portions of the prosthesis, can be configured to be self-expanding.
  • The inner core 1020 can be slidably received within the outer sheath 1006 of the delivery catheter 1004. As in the illustrated embodiment, the outer sheath 1006 of the delivery catheter 1004 can be longer than an introducer sheath 1008 of the introducer catheter 1002. Further, a clip 1007 can be supported by the outer sheath 1006 to limit the range of axial movement of the outer sheath 1006 relative to the introducer catheter 1002.
  • Although not required, a core assembly 1021 can be connected to a proximal end portion of the inner core 1020, the core assembly 1021 having a reduced cross-sectional profile so as to permit one or more sheath members, fenestration alignment components (also referred to herein as fenestration alignment components), or other tubular or other components to pass through the main body of the delivery catheter 1004 and be advanced into one or more lumen within the inner core 1020. The inner core 1020 can be configured to accommodate the insertion of such sheath members, fenestration alignment components, or other tubular components into the lumen of the inner core 1020.
  • In the illustrated embodiment, a proximal end portion of the core assembly 1021 can comprise a handle member 1023 that is positioned outside a proximal end portion of the delivery catheter 1004 so as to be accessible by a user. The handle member 1023 can be configured to permit a user to axially or rotationally adjust the position of the inner core 1020 relative to the outer sheath 1006.
  • As discussed above, the inner core 1020, or components axially connected to the inner core 1020 such as the core assembly 1021, can extend proximally past the proximal end portion 1004 a of the delivery catheter system 1004 so that a user can adjust and/or change the axial and/or radial position of the inner core 1020 and, hence, the prosthesis 1010, relative to the outer sheath 1006. Similarly, the inner tube 1016 can extend proximally past the proximal end portion 1004 a of the delivery catheter 1004 and a proximal end portion 1021 a of the core assembly 1021 so that a user can adjust and change the position of the inner tube 1016 relative to the inner core 1020.
  • In the partially retracted position of the outer sheath 1006 illustrated in FIG. 5B, at least a portion of the prosthesis 1010 supported by the catheter system 1000 can be exposed and, potentially, deployed. A distal portion of the prosthesis 1010 can be exposed and deployed by retracting the outer sheath 1006 relative to the inner core 1020 or distally advancing the inner core 1020 relative to the outer sheath 1006, causing at least a portion of the distal portion of the prosthesis 1010 to self-expand. As will be described, the prosthesis 1010 can be configured to have radially self-expanding support members therein along only a portion or portions of the prosthesis 1010. For example, a graft of the prosthesis 1010 can be radially unsupported at or adjacent to fenestrations formed in the graft. Alternatively, at least the distal portion of the prosthesis 1010 can be constrained within a sheath, such as a peelable sheath. Embodiments of the sheath will be described in greater detail below.
  • The delivery catheter 1004 can also have one or more branch or guide sheaths 1024 supported thereby. The delivery catheter 1004 can have three or more branch sheaths 1024. Such a configuration can be used for deploying branch stents into one or more branch vessels in the thoracic aorta. Each of the one or more branch sheaths 1024 can be configured to be slidably supported within one or more lumen 1025 formed in the inner core 1020 so that each of the one or more branch sheaths 1024 can be axially advanced or retracted relative to the inner core 1020. Further, the delivery catheter 1004 can be configured such that the branch sheaths 1024 can be rotationally adjusted or twisted relative to the inner core 1020. In some embodiments, each branch sheath 1024 can be positioned within the delivery catheter 1004 such that, in the loaded configuration wherein a prosthesis 1010 is supported (compressed) within the delivery catheter 1004, each branch sheath 1024 is pre-positioned so as to be advanced through a fenestration or branch graft of the prosthesis 1010. Each branch sheath 1024 can be positioned within the delivery catheter 1004 such that a distal end portion of each branch sheath 1024 projects past an end portion of the inner core 1020 and is constrained within the outer sheath 1006. As illustrated in FIGS. 5A-5B, in this configuration, the distal end portion of each branch sheath 1024 can be exposed by retracting the outer sheath 1006 relative to the inner core 1020 and/or the branch sheaths 1024.
  • Additionally, with reference to FIG. 5B, although not required, the delivery catheter 1004 can have one or more fenestration alignment components 1026 supported thereby. The one or more fenestration alignment components 1026 can be slidably received within one or more lumen 1027 formed in the inner core 1020. The one or more fenestration alignment components 1026 can each have an end portion 1026 a that can be sized and configured to surround an outer surface of each of the branch sheaths 1024. The end portion 1026 a of each fenestration alignment component 1026 can have, an open or closed annular or circular shape and can be of sufficient size and stiffness to permit a user to engage a fenestration or branch graft formed in or supported by a main body of the prosthesis 1010. For example, as will be described in greater detail below, after the main body of the prosthesis 1010 has been released from the outer sheath 1006 and any other radial restraints, a user can independently or collectively axially advance the fenestration alignment component 1026 over the branch sheaths 1024 such that the end portion 1026 a of each fenestration alignment component 1026 contacts the edge or surface adjacent to and surrounding the fenestration or branch graft of the prosthesis 1010 and pushes the fenestration or branch graft toward an ostium of the target branch vessel of the patient's vasculature.
  • Accordingly, in this configuration, at least a portion of each of the one or more fenestration alignment components 1026 is configured to be slidably supported within a lumen formed in the inner core 1020 so that each of the one or more fenestration alignment components 1026 can be axially advanced relative to the inner core 1020. Further, the delivery catheter 1004 can be configured such that the fenestration alignment components 1026 can be axially or rotationally adjusted or twisted relative to the inner core 1020, for increased maneuverability of the fenestration alignment components 1026.
  • In some embodiments, each fenestration alignment component 1026 can be positioned within the delivery catheter 1004 such that, in the loaded configuration wherein a prosthesis 1010 is supported (compressed) within the delivery catheter 1004, each fenestration alignment component 1026 is pre-positioned so that the end portion 1026 a of each fenestration alignment component 1026 is positioned distal to the end portion of the inner core 1020. In the loaded configuration, each fenestration alignment component 1026 can be positioned such that the end portion 1026 a of each fenestration alignment component 1026 is located within the main lumen of the main body of the prosthesis 1010.
  • The branch sheaths 1024 and fenestration alignment components 1026 can have any suitable size and can be made from any suitable material. For example, the branch sheaths 1024 can have an approximately 6.5 French diameter, or from an approximately 5 Fr diameter or less to an approximately 8 Fr diameter or more, or to or from any values within this range. The fenestration alignment components 1026 can be formed from stainless steel, Nitinol, or any other suitable metallic or non-metallic material, and can have a thickness suitable to prevent the fenestration alignment components 1026 from buckling when axially advanced against a portion of the prosthesis 1010. For example, the fenestration alignment components 1026 can have an approximately 1 Fr diameter, or between approximately a 1 Fr and approximately a 4 Fr diameter. Further, the fenestration alignment component or catheters can be formed from a 0.035 in guidewire or otherwise have a 0.035 in diameter.
  • Additionally, as will be described below in greater detail, the catheter system 1000 can be configured such that the distal sheath 1012 can be advanced relative to the inner core 1020 and the prosthesis 1010, to expose a proximal portion of the prosthesis 1010. In particular, advancing the distal sheath 1012 can be accomplished by advancing the inner tube 1016 connected to the distal tip 1014 and the distal sheath 1012, so that the distal sheath 1012 releases the proximal portion of the prosthesis 1010. Other details regarding the distal sheath 1012 or methods of using the distal sheath can be found in U.S. Pat. No. 6,953,475, which application is incorporated by reference as if fully set forth herein.
  • FIGS. 6 and 7 are oblique and exploded views, respectively, of the introducer catheter 1002 shown in FIG. 5A. The introducer catheter 1002 can have any of the features or components of any of the embodiments disclosed in U.S. patent application Ser. No. 12/496,446, which disclosure is hereby incorporated by reference as if set forth herein. With reference to FIGS. 6-7, the introducer 1002 can have a main body 1030, a threadably engageable hub portion 1032, a threaded cap 1034 configured to threadably engage with a threaded distal end portion 1030 a of the main body 1030 so as to secure the outer sheath 1006 to the main body 1030. The outer sheath 1006 can have a flanged end portion 1036 secured thereto or integrally formed therewith. The main body 1030 can support a seal assembly 1040 therein to seal around the inner core 1020 of the delivery catheter 1004 and/or other components of the catheter system 1000. A threaded end member 1042 having a threaded proximal end portion 1042 a can be supported by the main body 1030. An annular seal member 1046 can be supported by the main body 1030 of the introducer catheter 1002. The introducer catheter 1002 can be configured such that the seal member 1046 can be adjusted to provide an additional seal around the inner core 1020 of the delivery catheter 1004 by threadably engaging the hub portion 1032. The seal assembly 1040 and seal member 1046 can have any of the details, features, or components of any of the embodiments of the introducer catheter described in U.S. patent application Ser. No. 12/496,446, which application is incorporated by reference as if fully set forth herein.
  • A tube assembly 1048 can be supported by the main body 1030 of the introducer catheter 1002 so as to provide an orifice or access port into the main body 1030. The tube assembly 1048 can be used to flush the introducer catheter 1002 with saline or other suitable substances at any stage, such as but not limited to prior to the advancement of an endoluminal prosthesis through the introducer catheter 1002 and/or delivery catheter 1004, or prior to other procedures for which another type of delivery catheter may be used. The tube assembly 1048 can support any suitable medical connector and/or valve on the distal end thereof.
  • FIGS. 8 and 9 are oblique and exploded views, respectively of the delivery catheter 1004 shown in FIG. 5A. FIG. 10 is a sectional view of a portion 10-10 of the delivery catheter 1004 shown in FIG. 5A. FIG. 11A is a sectional view of the delivery catheter 1004 shown in FIG. 5A, taken at 11A-11A shown in FIG. 10. FIG. 11B is a sectional view of the delivery catheter 1004 shown in FIG. 5A, taken at 11B-11B shown in FIG. 10.
  • As shown therein, the delivery catheter 1004 can have a main body 1050 that can support the inner core 1020 and/or core assembly 1021, one or more access ports 1052 for the one or more branch sheaths 1024, and one or more access ports 1054 for the one or more fenestration alignment components 1026. The access ports 1052, 1054 can be configured to sealingly tighten around the branch sheaths 1024 or the fenestration alignment components 1026, and to constrict around the branch sheaths 1024 or the fenestration alignment components 1026 so as to substantially axially secure the branch sheaths 1024 or the fenestration alignment components 1026. A sealable cap assembly 1051 can be threadably engaged with the main body 1050 of the delivery catheter 1004. The cap assembly 1051 can be configured such that, when a user tightens the cap assembly 1051 relative to the main body 1050 of the delivery catheter 1004, the core assembly 1021 and/or inner core 1020 will be axially and/or rotational secured to the main body 1050 of the delivery catheter 1004.
  • A tube assembly 1059 can be supported by the main body 1050 of the delivery catheter 1004 so as to provide an orifice or access port into the main body 1050. The tube assembly 1059 can be used to flush the delivery catheter 1004 with saline or other suitable substances. The tube assembly 1059 can support any suitable medical connector and/or valve on the distal end thereof.
  • As mentioned above, the support member 1022 can be connected to a distal end portion of the outer tube 1018 so as to be axially engaged by the outer tube 1018. The support member 1022 can have a substantially cylindrical shape and can be sized to fit within the inner lumen of a main body of the prosthesis 1010 when the prosthesis 1010 is in a constrained configuration. As will be described, in the loaded configuration, the prosthesis 1010 can be positioned over the support member 1022 so that a proximal portion of a main body of the prosthesis 1010 is positioned distally of the support member 1022 and so that a distal portion of a main body of the prosthesis 1010 is positioned proximally of the support member 1022. In this configuration, a proximal end portion 1012 a of the distal sheath 1012 can be positioned over a distal portion 1022 a of the support member 1022, and a distal end portion 1006 a of the outer sheath 1006 over a proximal portion 1022 b of the support member 1022.
  • In some embodiments, one or more tab members 1074 can be supported by the outer tube 1018. The one or more tab members 1074 can be configured to increase the rotational engagement of the constrained prosthesis 1010 relative to the outer tube 1018 so that the constrained prosthesis 1010 can be rotated with greater accuracy during deployment. The one or more tab members 1074 can have a generally flat, plate-like shape, such as is illustrated in FIG. 8. The one or more tab members 1074 can be formed from a suitable polymeric or metallic material. The one or more tab members 1074 can comprise one or more radiopaque features or be formed from a radiopaque material to improve the visibility and alignability of the delivery catheter 1004 under fluoroscopy during deployment of the prosthesis 1010.
  • The one or more tab members 1074 can be similar to any of the embodiments of the torsion tab (such as the torsion tab 196) disclosed in U.S. patent application Ser. No. 12/101,863, which disclosure is incorporated by reference as if fully set forth herein. The one or more tab members 1074 can be integrally formed with the outer tube 1018, or secured thereto such as by thermal bonding, adhesive bonding, and/or any of a variety of other securing techniques known in the art.
  • As is illustrated, the main body portion of the prosthesis 1010 can be constrained by a peelable sheath or by the outer sheath 1006 such that the prosthesis 1010 is engaged with the one or more tab members 1074. The one or more tabs 1074 can engage a stent or other portion of an endoskeleton of the prosthesis 1010, or, can engage the material of the graft 1204 surrounding the tab member 1074 so that the prosthesis 1010 can substantially rotate with the inner core 1020 of the deployment catheter 1004.
  • FIG. 12 is a side view of the catheter system 1000 showing the outer sheath 1006 in a partially retracted position, similar to the configuration shown in FIG. 5B. FIG. 13 is an enlarged side view of the portion 13-13 of the catheter system shown in FIG. 12.
  • With reference to FIG. 13, the mid portion of the prosthesis 1010 adjacent to the one or more fenestrations 1011 and/or the distal portion 1010 a of the prosthesis can be constrained within a peelable sheath 1060. The peelable sheath 1060 can have a release wire 1062 threadably advanced through a plurality of openings 1064 formed along at least a portion of the sheath 1060. The peelable sheath 1060, release wire 1062, and openings 1064 can have any of the same features, materials, or other details of the similar components disclosed in U.S. patent application Ser. No. 12/101,863, which application is incorporated by reference as if fully set forth herein. The release wire 1062 can be slidably received within a lumen in the inner core 1020 so that a user can retract the release wire 1062 by grasping and retracting a proximal portion of the release wire 1062 positioned outside the patient's body.
  • However, the mid portion of the prosthesis 1010 adjacent to the one or more fenestrations 1011 and/or the distal portion 1010 a of the prosthesis can be constrained within one or more tubular sheaths, such as the outer sheath 1006 (also referred to herein as a second restraint or second restraining means) and/or distal sheath 1012 such that additional restraining means such as the sheath 1060 are not required (not illustrated). Therefore, any of the embodiments disclosed herein having the optional sheath 1060 should be understood to be configurable to not use the sheath 1060 to restrain one or more portions of the prosthesis 1010. The prosthesis 1010 can be configured such that the mid portion of the prosthesis 1010 adjacent to the one or more fenestrations 1011 is not radially supported by a stent, connectors, struts, or any other similar structure such that, when the outer sheath 1006 is partially retracted, the mid portion of the prosthesis does not self-expand.
  • The prosthesis 1010 can have one or more openings 1011 formed therein. For example and the fenestrations or openings 1011 can be formed in the prosthesis 1010 at diametrically opposing positions. As will be described in greater detail below, one or more of the openings 1011 can be formed in the prosthesis 1010 at a position that is angularly offset from the diametrically opposing position. Similarly, when used, the sheath 1060 can have one or more openings 1061 formed therein, the openings 1061 being positioned adjacent to the similar number of openings 1011 formed in the prosthesis. The catheter system 1000 can be configured such that the sheaths 1024 are advanced through the openings 1011 formed in the prosthesis 1010 and the openings 1061 formed in the sheath 1060, when the prosthesis 1010 is loaded within the catheter system 1000.
  • With reference to FIG. 11B, due to the non-uniform design of the stent within the graft material, the prosthesis 1010 can be efficiently packed within the outer sheath 1006 so as to surround the sheaths 1024 and efficiently fill the space within the outer sheath 1006. In this configuration, for example, the prosthesis 1010 can be loaded within the outer sheath 1006 so that the sheaths 1024 are advanced between many of the struts, bends, loops, and other features that the stent can comprise, thereby permitting the sheaths 1024 sufficient space to be loaded within the outer sheath 1006 so that the lumen of the sheaths 1024 are not compressed or collapsed in the loaded state. Additionally, the graft can be formed from a bidirectionally expanded, layered PTFE material have thin walls to further increase the space efficiency of the prosthesis 1010.
  • As illustrated in FIG. 13, where used, the peelable sheath 1060 can have one or more release wires 1062 (two being shown) advanced through openings or perforations 1064 formed in the sheath 1060 along two sides of the sheath 1060. The release wires 1062 can be configured to tear the sheath 1060 along two lines of perforations 1064 and/or scores formed along two sides of the sheath 1060, so that the sheath 1060 can be removed from the prosthesis 1010 while the sheaths 1024 are advanced through the fenestrations 1011, 1061, respectively, in the prosthesis 1010 and sheath 1060. In this configuration, each of the two release wires 1062 can be secured to a proximal end portion 1060 a of the sheath 1060, so that both halves of the sheath 1060 can be retracted through the outer sheath 1006.
  • However, as illustrated in FIG. 14, the catheter system 1000 can be configured to only have one release wire 1062 threadably advanced through the sheath 1060. FIG. 14 is an enlarged side view of the catheter system 1000 shown in FIG. 5A, defined by curve 14-14 shown in FIG. 12, showing the outer sheath 1006 in a partially retracted position and the distal sheath 1012 in a partially advanced position.
  • The perforations 1064 formed in the sheath 1060 can be arranged along an axial line along the length of the portion of the sheath 1060 from the fenestrations 1061 to the distal end of the sheath 1060, and also arranged to split the sheath 1060 between the two fenestrations 1061 formed in the sheath 1060. As illustrated in FIG. 14, the perforations 1064 formed in the sheath 1060 arranged along the length of the sheath 1060 can be positioned to tear the sheath 1060 from one of the fenestrations 1061 to the distal end 1060 b of the sheath 1060, and also to circumferentially tear the sheath 1060 between the fenestrations 1061.
  • As mentioned above, with reference to FIG. 14, the catheter system 1000 can be configured such that a proximal portion 1010 b of the prosthesis 1010 can be deployed by axially advancing the inner tube 1016 relative to the inner core 1020 of the delivery catheter 1004 and, hence, the prosthesis 1010. The prosthesis 1010 can be self-expanding such that removing the radial constraint provided by the distal sheath 1012 can cause the portion of the prosthesis 1010 constrained by the inner tube 1016 to expand toward the vessel wall. The proximal portion 1010 b of the prosthesis 1010 can be deployed in this manner before the distal portion 1010 a of the prosthesis 1010 is deployed, or simultaneously with the deployment of the distal portion 1010 a of the prosthesis 1010. The proximal portion 1010 b of the prosthesis 1010 can be deployed in this manner after the distal portion 1010 a of the prosthesis 1010 is deployed.
  • FIG. 15 is a side view of the catheter system 1000 shown in FIG. 5A, showing the outer sheath 1006 in a partially retracted position and one branch sheath 1024′ and one fenestration alignment component 1026′ in a partially advanced position. The branch sheath 1024′ can be advanced relative to the inner core 1020, the prosthesis, and the second branch sheath 1024″ by advancing a proximal portion of the branch sheath 1024′ in the direction of arrow A1 in FIG. 15 through the access port 1052′ at the proximal end of the delivery catheter 1004. Similarly (not shown), the second branch sheath 1024″ can be advanced relative to the inner core 1020, the prosthesis, and the first branch sheath 1024′ by advancing a proximal portion of the branch sheath 1024″ through the access port 1052″ at the proximal end of the delivery catheter 1004. Additionally, either of the fenestration alignment components 1026′, 1026″ can be advanced relative to the branch sheaths 1024′, 1024″ by advancing the respective fenestration alignment component 1026 through the respective access port 1054. For example, the fenestration alignment component 1026′ can be advanced by advancing the proximal portion of the fenestration alignment component 1026′ in the direction of arrow A2 in FIG. 15.
  • With the embodiments of the catheter system 1000 having been described, several configurations of deployment methods for an endoluminal prosthesis, including any suitable prosthesis or any endoluminal prosthesis disclosed herein, will now be described with reference to FIGS. 16-23. FIG. 16 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter 1000 being advanced through a patient's abdominal aorta over a guidewire 1070 positioned within a patient's vasculature. As in the illustrated embodiment, the delivery catheter 1000 can be advanced through a prosthesis 1080 (which can be a bifurcated prosthesis) deployed within the patient's vasculature.
  • FIG. 17 is a sectional view of a portion of a patient's vasculature, showing the delivery catheter 1000 and an angiographic catheter 1065 being advanced through a branch sheath 1024 of the delivery catheter toward a target branch vessel. As illustrated, an outer sheath 1006 of the catheter system 1000 has been retracted relative to the inner core (not shown) and the prosthesis 1010, exposing a middle portion of the prosthesis 1010 (i.e., a portion of the prosthesis 1010 radially adjacent to the one or more fenestrations 1011) and the branch sheaths 1024 a, 1024 b. After the branch sheaths 1024 a, 1024 b have been exposed, a suitable angiographic catheter 1065 can be advanced through the lumen of either or both of the branch sheaths 1024 a, 1024 b and directed into the target branch vessel or vessels. A user can rotate the inner core 1020 to approximately rotationally align the fenestrations 1011 of the prosthesis 1010 or the branch sheaths 1024 with the branch vessels.
  • As discussed above, the optional sheath 1060 can constrain the mid and distal portions of the prosthesis 1010 such that, when the outer sheath 1006 is retracted, the mid and distal portions of the prosthesis 1010 do not self-expand. However, the mid portion of the prosthesis 1010 radially adjacent to the one or more fenestrations 1011 can be unsupported by any stents 1254. In this configuration, the prosthesis 1010 can be configured such that there is no radial force or support provided to the mid portion of the prosthesis 1010, or such that the mid portion of the prosthesis 1010 will not be biased to self-expand when the outer sheath 1006 is retracted. Accordingly, some embodiments can be configured such that no additional restraint in addition to, for example, the outer sheath 1006, is required. Therefore, only the outer sheath 1006 and the distal sheath 1012 can be used to restrain the prosthesis 1010. In this configuration, the outer sheath 1006 can be partially retracted to release the sheaths 1024 so that one or more angiographic catheters 1065 can be advanced through the sheaths 1024 and into the target branch vessels before the proximal and distal portions of the prosthesis 1010 are released from the deployment catheter 1004.
  • The angiographic catheter 1065 can be configured such that an end portion thereof is biased to have a curved disposition (shape), as is well known in the art.
  • As shown, an angiographic catheter 1065 is being advanced relative to the branch sheath 1024 a and into the target branch vessel, in this case a renal artery. The delivery catheter 1000 can be configured such that an angiographic catheter can be advanced through the desired branch sheath 1024 and into the target vessel without retracting the outer sheath 1006. After the angiographic catheters 1065 have been directed into the target location, in this case the branch vessels, either or both of the branch sheaths 1024 can be independently or simultaneously advanced over the angiographic catheters 1065 into the target branch vessels, as is illustrated in FIG. 18. The branch sheaths 1024, the fenestrations 1011, 1061 formed in either the prosthesis 1010 or the sheath 1060, respectively, and/or any other components or features of the delivery catheter 1000 can have radiopaque markers or other indicators to assist a medical practitioner in the deployment procedures described herein or other suitable deployment procedures.
  • With the branch sheaths 1024 in the target vessels and the outer sheath 1006 axially retracted, as shown in FIG. 19, a proximal portion 1010 b of the prosthesis 1010 can be deployed by axially advancing the distal sheath 1012 relative to the inner core 1020 and the prosthesis 1010. The prosthesis 1010 can be axially and rotationally secured to the outer tube 1018, which can be axially and rotationally secured to the inner core 1020, such that advancing the distal sheath 1012 relative to the inner core 1020 will advance the distal sheath 1012 relative to the prosthesis 1010. As described above, the distal sheath 1012 can be advanced relative to the inner core 1020 and the prosthesis 1010 by advancing the inner tube 1016 relative to the inner core 1020, the inner tube 1016 being axially engaged with the distal tip 1014 which can support the distal sheath 1012.
  • FIG. 20 is a sectional view of a portion of a patient's vasculature, showing a peelable sheath 1060 being removed from the distal portion 1010 a of the prosthesis 1010 so as to deploy a distal portion 1010 a of the prosthesis 1010. The sheath 1060 can be removed by axially retracting a release wire 1062, which can be looped or other otherwise threaded through openings or perforations 1064 formed in the sheath material. The release wire 1062 can be configured to tear through the sheath material between the perforations 1064, thereby permitting the self-expanding prosthesis 1010 to expand toward the vessel walls. As mentioned, the prosthesis 1010 can be configured to be restrained within the outer sheath 1006 and the distal sheath 1012 such that an additional restraint, such as the peelable sheath 1060, is not required.
  • As illustrated, a distal portion 1060 a of the sheath 1060 can be torn by the release wire 1062 before a proximal portion 1060 b of the sheath 1060 is torn by the release wire so that a proximal portion 1010 b of the prosthesis (i.e., adjacent to the proximal portion 1060 a of the sheath 1060) can be deployed before a distal portion 1010 a of the sheath 1010. A proximal portion 1060 b or a middle portion of the sheath 1060 can be torn by the release wire 1062 before a distal portion 1060 a of the sheath 1060 is torn by the release wire (not illustrated). The release wire 1062 can be secured to the proximal portion 1060 b or other suitable portion of the sheath 1060 such that, after the sheath 1060 has been torn, the sheath 1060 can be removed through the delivery catheter 1000 by continuing to axially retract the release wire 1062 relative to the prosthesis 1010.
  • As illustrated, a distal portion 1010 a of the prosthesis 1010 (i.e., the downstream portion of the prosthesis 1010) can be deployed within an opening of an adjacent prosthesis, such as without limitation the bifurcated prosthesis 1080 illustrated in FIG. 20. However, the delivery catheter 1000 or any other delivery catheter described herein can be used to deploy any suitable prosthesis, including a bifurcated prosthesis or otherwise, in any portion of a patient's vasculature. As such, the prosthesis 1010 can be a bifurcated prosthesis.
  • FIG. 21 is a sectional view of a portion of a patient's vasculature, showing a fenestration alignment component 1026 contacting and pushing an inner wall of the prosthesis 1010 adjacent to a fenestration 1011 toward an ostium of the target branch vessel. As illustrated, the fenestration alignment component 1026 can be advanced through a lumen in the inner core 1020 to push the fenestration 1011 of the prosthesis 1010 over the branch sheath 1024 and into approximate alignment with the ostium of the branch vessel. The catheter system 1000 can be configured to not have a fenestration alignment component 1026, and can accordingly be configured to deploy a fenestrated graft without the use of such a component
  • As illustrated in FIG. 22, a covered or uncovered branch stent 1084 can be deployed in the branch vessel by advancing the branch stent 1084 through the branch sheath 1024 using a suitable catheter, such as a renal stent catheter, into the target vessel, after the angiographic catheter has been removed from the branch sheath 1024. The stent 1084 can be supported on an inflation balloon 1086, which can be supported by a guidewire 1088. The guidewire 1088 can be configured to have an inflation lumen therein, to inflate the balloon 1086 and expand the branch stent 1084 in the target location after the branch sheath 1024 has been at least partially retracted so as to not interfere with the expansion of the branch stent 1084, as illustrated in FIG. 23. The inflation balloon 1086 can be configured to expand and flare a portion of the stent 1084 within or to the inside of the fenestration 1011 formed in the prosthesis.
  • The fenestration alignment component 1026 described above can be configured to be supported within a renal or branch stent delivery catheter. For example, the fenestration alignment component 1026 can be configured to be supported within a modified renal stent catheter, such as the renal stent catheter illustrated in FIG. 22. The fenestration alignment component 1026 can be configured to only partially surround the branch sheath 1024 or the branch stent delivery catheter. In this configuration, the fenestration alignment component 1026 can be configured to be entirely positioned within and advanceable through a lumen of the branch sheath 1024 or the branch stent delivery catheter. For example, the fenestration alignment component 1026 can have an expandable end portion that can automatically expand when the end portion is advanced past the end of the lumen, so as to enable the end portion to snare or engage the graft material surrounding the fenestration.
  • Additionally, the branch stent delivery catheter can be configured to have a snare, protrusion, or other object tethered to the balloon or stent, or to be projecting from an outside surface thereof to snare or engage the graft material adjacent to the fenestration, so as to cause the fenestration to be advanced toward the ostium as the branch stent delivery catheter is advanced through the fenestrations. For example, the branch stent delivery catheter can have a biased wire member supported on an outside surface of the branch stent delivery catheter that is biased to expand when the wire member is advanced past the end of the branch sheath 1024. The wire member can expand to a size that is larger than the size of the fenestration. The wire member can be supported at a position that is offset from an end of the branch stent delivery catheter.
  • The fenestration 1011 in the prosthesis 1010 can expand as the branch stent 1084 is being expanded, to improve the seal between the fenestration 1011 and the branch stent 1084. A second expansion balloon can be positioned in the portion of the stent 1084 within or to the inside of the fenestration 1011 to flare that portion of the stent 1084, either with or without removing the first balloon used to expand the main portion of the branch stent 1084.
  • Some arrangements are directed to methods of deploying an endoluminal prosthesis, such as without limitation the prosthesis 1010 described above, comprising inserting a delivery catheter such as catheter system 1000 into an artery, exposing one or more branch sheaths 1024, advancing one or more angiographic catheters having one or more guidewires into the one or more branch sheaths 1024 and cannulating the target branch vessels, advancing the one or more branch sheaths 1024 over the angiographic catheters and into the target branch vessels, advancing the wall of the prosthesis adjacent to each of one or more fenestrations in the prosthesis toward the ostium of the target branch vessels, removing the one or more angiographic catheters and/or guidewires, inserting one or more branch stents into the branch vessels, retracting the branch sheaths, expanding the branch stents, and flaring a portion of the branch stents. In some arrangements, the target branch vessels are the renal arteries. Some arrangements also comprise deploying a proximal and distal portion of the prosthesis. The steps of the foregoing procedure can be performed in the sequence described, or can be performed in any suitable sequence.
  • embodiments are directed to apparatuses for placing a prosthesis across at least one branch vessel, the prosthesis having a distal end, a proximal end, a midsection, and at least one lateral opening in the midsection of the prosthesis. The prosthesis can be constrained in a delivery system having a distal and a proximal end. The apparatus can comprise a catheter extending from the proximal end of the delivery system through the lateral opening in the prosthesis, wherein a guidewire can be passed from the proximal end of the delivery system through the catheter, into the branch vessel with at least the proximal and distal ends of the prosthesis remaining constrained in the delivery system. The prosthesis can be a stent graft.
  • FIGS. 24A and 24B are oblique views of a prosthesis 1200 comprising one or more fenestrations 1202 formed in the graft 1204, and a stent or support member 1206. the graft 1204 is shown in dashed lines in FIG. 24B for clarity. The prosthesis 1200 can have any of the features, components, or other details of any other prosthesis embodiments disclosed herein such as, prosthesis 1010 described above. Further, any of the features of the prosthesis 1200 can be used in combination with any of the other prosthesis embodiments disclosed herein.
  • The graft 1204 can be supported by the stent 1206 along at least a portion of the graft 1204. Further, the graft 1204 can be overlapped and can have stitching or sutures 1208 along one or more edges of the graft 1204, which can improve the tear resistance of the graft 1204 and can improve the connection between the graft 1204 and the stent 1206.
  • Similar to other graft embodiments described herein, the graft 1204 can be configured to have excess or slack graft material in at least a portion thereof relative to the stent which supports the graft. For example, the excess graft material can form a bulge or other enlargement in the graft 1204 in the approximate location of one or more fenestrations 1202 formed through the graft material. The excess or slack material along the circumference of the graft 1204 (for example, in the enlarged portion 1204 a of the graft 1204) can allow for circumferential and/or axial movement of the graft material and, hence, the one or more fenestrations 1202, relative to the stent 1206 and the ostium of the patient's branch vessels. Therefore, the diameter of the graft 1204 at and/or adjacent to the location of one or more fenestrations 1202 can be larger than the local diameter of the target vessel. Similarly, the diameter of the graft 1204 at and/or adjacent to the location of one or more fenestrations 1202 can be larger than the diameter of the non-enlarged portion of the graft material. In some embodiments, the outside surface of the graft 1204 in the enlarged portion 1204 a or otherwise can be free from any corrugations or other preformed folds, overlaps, or other similar pre-formed features.
  • Further, similar to any of the other graft embodiments disclosed herein, the graft 1204 can have excess graft material in an axial direction, in addition to or in the alternative of the diametrically enlarged portion. The excess or slack material along the length of the graft 1204 can increase the circumferential and/or axial adjustability or movement of the graft material adjacent to the one or more fenestrations 1202 formed in the graft 1204. Accordingly, the length of the graft material between the proximal and distal attachment points to the stent 1206 can be longer than that of the stent 1206 between the proximal and distal attachment points. Or, the graft material in a mid-portion of the graft 1204, including on either side of the enlarged portion 1204 a, can have an increased length relative to the stent radially adjacent to such graft portion.
  • Further, the enlarged portion and/or excess length of the graft 1204 or any other graft embodiment disclosed herein can be free from any attachment points to the stent or support member which supports the graft 1204. In these configurations, the positional adjustability of the fenestrations can be increased because the graft material is free to move in an axial and/or circumferential direction relative to the stent and relative to the ostium of the target branch vessels. The enlarged portion and/or excess length of the graft 1204 or any other graft embodiment disclosed herein can be configured to have only a limited number of attachment points to the stent or support member which supports the graft 1204. The attachment points can be sufficiently away from the fenestration or opening so as to not substantially affect the adjustability of the fenestration. For example, the prosthesis 1010 can be configured such that the enlarged or slack portion of the graft has only a limited number of attachments to a stent or connector (such as connector 1254) away from the fenestrations 1202 so that the adjustability of the enlarged or slack portion is not significantly affected. For example, in embodiments having only one fenestration in the enlarged portion, the attachment or attachments to the stent or other support member can be positioned on an opposite side of the graft as compared to the position of the fenestration. In these configurations, the positional adjustability of the fenestrations can be increased because the graft material is substantially free to move in an axial and/or circumferential direction relative to the stent and relative to the ostium of the target branch vessels.
  • With reference to FIGS. 24A-25, the graft 1204 can have one or more enlarged portions 1204 a having an enlarged diameter relative to the target vessel or relative to one or more non-enlarged portions of the graft 1204, such as portions 1204 b, 1204 c that can improve the radial and/or axial adjustability of the fenestrations 1202 formed in the enlarged portions 1204 a to better accommodate asymmetrically positioned branch vessel ostium. In some embodiments, with reference to FIGS. 24A and 24B, the graft 1204 can have an enlarged middle portion 1204 a having one or more fenestrations 1202 formed therein, a non-enlarged proximal portion 1204 b, and a non-enlarged distal portion 1204 c.
  • As discussed above, in the prosthesis 1200, the enlarged portion 1204 a of the graft 1204 can have a diameter that is approximately 30% larger than a diameter of the target vessel or the diameter of the non-enlarged portions 1204 b, 1204 c of the graft 1204. The diameter of the enlarged portion 1204 a of the graft 1204 can be from approximately 20% or less to approximately 50% or more, or from approximately 25% to approximately 40% larger than the target vessel or the diameter of the non-enlarged portions 1204 b, 1204 c of the graft 1204, or to or from any values within these ranges.
  • Additionally, the enlarged portion 1204 a or portion of the graft 1204 adjacent to the enlarged portion 1204 a of the graft 1204 can be sized and configured to be substantially longer (i.e., in the axial direction) than the stent 1206, which can improve the radial and/or axial adjustability of the fenestrations 1202 formed in the enlarged portions 1204 a to better accommodate the asymmetric and/or non-uniform positioning of branch vessel ostium. The graft 1204 can be longer than the stent 1206 in both the enlarged portion 1204 a of the graft 1204 and/or in the portion of the non-enlarged distal portion 1204 c of the graft adjacent to the enlarged portion 1204 a of the graft 1204. For example, the enlarged portion 1204 a or portion of the graft 1204 adjacent to the enlarged portion 1204 a of the graft 1204 can be sized and configured to be approximately 20% longer in the axial direction than the stent 1206. The enlarged portion 1204 a or portion of the graft 1204 adjacent to the enlarged portion 1204 a of the graft 1204 can be sized and configured to be from approximately 10% to approximately 40% or more longer in the axial direction than the stent 1206.
  • FIG. 25 is a top view of the prosthesis 1200 of FIG. 24. With reference to FIGS. 24-25, the prosthesis 1200 can have fenestrations 1202 formed in an enlarged portion 1204 a of the graft 1204. The fenestrations 1202 can be formed at non-diametrically opposed positions. This can improve the alignment of the fenestrations 1202 with the ostium of the target branch vessels, which in general can be located at non-diametrically opposed positions. The fenestrations 1202 formed in either the enlarged portion or portions 1204 a or non-enlarged portions 1204 b, 1204 c of the graft 1204, can be angled away from the diametrically opposed position (represented by angle X in FIG. 25) such that the fenestrations 1202 are separated by an angle (represented by angle Y in FIG. 25) that is less than 180 degrees.
  • For example, the graft 1204 can have two fenestrations 1202 formed at an angle away from the diametrically opposed position (represented by angle X in FIG. 25) of approximately 15 degrees such that the fenestrations 1202 are separated by an angle (represented by angle Y in FIG. 25) that is approximately 150 degrees. The graft 1204 can have two fenestrations 1202 formed at an angle away from the diametrically opposed position of between approximately 10 degrees or less and approximately 20 degrees or more, such that the fenestrations 1202 are separated by an angle (represented by angle Y in FIG. 25) that is between approximately 160 degrees and approximately 140 degrees.
  • The graft 1204 can have two fenestrations 1202 formed in an enlarged portion 1204 a of the graft and wherein the fenestrations 1202 are separated by an angle that is less than 180 degrees, for example approximately 150 degrees. In this configuration, positioning the fenestrations 1202 to be separated by an angle that is less than 180 degrees (such as, for example, approximately 150 degrees) can improve the alignment of the fenestrations 1202 with the ostium of the target branch vessels such that the enlarged portion 1204 a of the graft 1204 can be from approximately 20% to approximately 60% greater than the non-enlarged portion 1204 b, 1204 c of the graft 1204. In this configuration, the enlarged portion 1204 a of the graft 1204 can be from approximately 20% to approximately 40% greater than the non-enlarged portion 1204 b, 1204 c of the graft 1204.
  • The graft 1204, which can be a bifurcated or other suitably configured graft, can have two fenestrations 1202 formed in an enlarged portion 1204 a of the graft, wherein the fenestrations 1202 can be separated by an angle that is less than 180 degrees, and wherein the length of at least a portion of the graft 1204 can be substantially greater than the length of the stent 1206, for example approximately 10% greater than the length of the stent 1206. In this configuration, positioning the fenestrations 1202 to be separated by an angle that is less than 180 degrees (such as, for example, approximately 150 degrees) and increasing the length of the graft 1204 to be approximately 10% greater than the length of the stent 1206 can improve the alignment/alignability of the fenestrations 1202 with the ostium of the target branch vessels such that the enlarged portion 1204 a of the graft 1204 can be from approximately 10% or less to approximately 20% greater than the non-enlarged portion 1204 b, 1204 c of the graft 1204.
  • With reference to FIGS. 24-25, though not required, the prosthesis 1200 can have reinforced fenestrations 1202 comprising a tubular member 1210 inserted through the fenestration 1202 and stitched to the graft 1204 with one or more sutures 1212. In this configuration, which will be described in greater detail below, the tubular member 1210 can improve the tear resistance of the fenestration 1202 and also improve the sealability between the fenestrations 1202 and the branch grafts and stents deployed within the fenestrations 1202 as well as the pull-out resistance of the branch grafts and stents within the fenestrations 1202. This configuration can reduce leakage between the fenestrations 1202 and the branch grafts and stents deployed within the fenestrations 1202. In some embodiments, this configuration can also increase the force required to pull the branch grafts and stents deployed within the fenestrations 1202 out of the fenestrations 1202, thereby reducing the inadvertent axial movement of the branch grafts and stents deployed within the fenestrations 1202.
  • With reference to FIGS. 24A and 24B, although not required, the graft 1204 can have a scallop or cut-away 1230 at a proximal end portion 1204 b of the graft 1204. The cut-away 1230 can be sized and configured to permit unrestricted blood flow through a branch artery, such as the suprarenal and/or the celiac arteries. The size of the cut-away 1230 can be based on the anatomy of a patient, or can be sized to accommodate a wide range of vessel anatomies. The cut-away 1230 can have a length approximately equal to the length of two stent struts, such as stent strut 1246 described below. The graft 1204 can be overlapped and have stitching 1208 along an edge of the cut-away 1230. The prosthesis 1200 can have a flared proximal end portion to increase the sealability of such end portion of the prosthesis 1200.
  • As described above, the prosthesis 1200 can have one or more radiopaque markers, such as but not limited to the annular radiopaque marker 1222 surrounding at least a portion of the fenestration 1202, for improved visibility under fluoroscopy during deployment. Any of the radiopaque markers can be formed from gold or platinum, or any suitable material. Any of the radiopaque markers can be formed from a suitable non-reinforcing metallic material.
  • FIG. 27 is a side view of the stent 1206 shown in FIG. 24, viewed along a line that is perpendicular to an axis projecting through a fenestration formed in the graft 1204 (not shown). For clarity, the location of a fenestration 1202 is shown dashed lines. FIG. 28 is a side view of the stent 1206, viewed along an axis projecting through a fenestration. Again, for clarity, the location of a fenestration 1202 is shown dashed lines.
  • With reference to FIGS. 26 and 27-28, the stent 1206 can be formed from one or more wires forming a plurality of loops 1240, which can be closed loops or eyelets, bends 1242, and struts 1246. Some of the bends 1242 can be configured to slide along a portion of the length of a respective strut 1246, to improve the flexibility and bendability of the stent 1206. The positioning of the plurality of loops 1240 and bends 1242 can be longitudinally offset or staggered to decrease the collapsed diameter of the prosthesis 1200.
  • The stent 1206 can comprise a first stent segment 1250 formed from one or more lengths of wire, a second stent segment 1252 formed from one or more lengths of wire, and one or more connecting members 1254 formed from one or more lengths of wire. The first and second stent segments 1250, 1252 can be positioned proximally and distally relative to the location of the fenestration (shown in dashed lines) that can be formed in the graft (not illustrated) that can be supported by the stent 1206. The length of the first stent segment 1250 can be sufficient to result in an increased seal zone in the suprarenal portion of the aorta, such as a length that extends to a position adjacent to or overlapping the superior mesenteric artery and/or the celiac artery.
  • In some embodiments, two connecting members 1254 can be positioned between the first and second stent segments 1250, 1252, and can be sized and offset from one another to provide a significant gap around the position of the fenestrations 1202 to increase the accessibility and adjustability of the fenestrations 1202 during deployment of the prosthesis 1200. As illustrated, the connecting members 1254 can have four struts. The connecting members 1254 can have three or less struts, or can have five or more struts. The connecting members 1254 can have a first connecting member 1254 having fewer struts than a second connecting member 1254.
  • FIGS. 29-31 are oblique, side, and end views, respectively, of a fenestration alignment component 2026 (also referred to as a push member or alignment device) that can be used in any of the delivery catheter embodiments disclosed herein. FIG. 32 is an oblique view of a delivery catheter 2004 having the fenestration alignment component 2026 of FIG. 29. FIG. 33 is an exploded view of the delivery catheter 2004 shown in FIG. 32. In some delivery catheter embodiments, one or more fenestration alignment components 2026 can be used in place of or in conjunction with one or more fenestration alignment components 1026 described above in any of the delivery catheter embodiments disclosed herein.
  • Therefore, the fenestration alignment component 2026 can serve the same or similar function or be used for the same or similar procedural step or steps as with the embodiments of the fenestration alignment component 1026 described above. Therefore, the fenestration alignment component 2026 can be used in any of the procedures, steps, or methods as described above for the fenestration alignment component 1026. For example, after the main body of a prosthesis (such as prosthesis 1010) has been released from the outer sheath 1006 and any other radial restraints, a user can independently or collectively axially advance the fenestration alignment component 2026 relative to the guide sheath 2024 (which can be the same as the guide sheath 1024 described above) supporting the fenestration alignment component 2026 such that a portion of the fenestration alignment component 2026 engages the fenestration or branch graft of the prosthesis 1010 and pushes the fenestration or branch graft toward an ostium of the target branch vessel of the patient's vasculature.
  • A body portion 2027 of the fenestration alignment component 2026 can be slidably positioned around or over an outside surface of the guide sheath 2024. As illustrated in FIGS. 29, 31, and 32, the body portion 2027 can be cylindrical or tubular. The body portion 2027 can have an inside diameter or size that is greater than an outside diameter or size of the guide sheath 1024 so that the fenestration alignment component 2026 can axially translate relative to the guide sheath 1024. The body portion 2027 can have in inner diameter or cross-sectional size of approximately 0.114 in, or from approximately 0.10 in or less to approximately 0.125 inches or more. The body portion 2027 can have in outer diameter or cross-sectional size of approximately 0.126 in, or from approximately 0.110 in or less to approximately 0.15 inches or more.
  • The body portion 2027 can have a length of approximately 7.1 cm (2.80 in), or from approximately 5 cm (1.97 in) or less to approximately 10 cm (3.94 in), or between any values within the foregoing range. The body portion 2027 can be formed from a PEBAX covered alloy coil. For example, the body portion 2027 can have a stainless steel coil with a PEBAX tube surrounding the coil. The PEBAX can have varying hardness. The body portion 2027 can have a PTFE liner surrounding all or a portion of the body portion 2027. Additionally, the body portion 2027 can have a radiopaque marker or band supported thereon, or have portions or components thereof that are made from a radiopaque material. For example, a radiopaque band having a length of approximately 0.020 in to approximately 0.060 in can be supported by the body portion 2037.
  • As will be described in greater detail, the fenestration alignment component 2026 can have a snare, tab, protrusion, or other similar feature supported by the body portion to engage a portion of the prosthesis adjacent to the fenestration. For example, with reference to the illustrated embodiments, the fenestration alignment component 2026 can have a tab or protruding portion 2028 (also referred to as a protrusion or projection) projecting from the body portion 2027. The protruding portion 2028 can project away from the outside surface of the body portion 2027 by approximately 0.036 in, or from approximately 0.025 in to approximately 0.050 in, or from approximately 0.030 in to approximately 0.045 in, or between any values within any of the foregoing ranges. The protruding portion 2028 can define a cross-sectional size (in at least one direction) or diameter that is from approximately 20% or less to approximately 40% or more greater than a cross-sectional size or diameter of the body portion 2027 and/or the fenestration, or between any values within this range.
  • In some embodiments, the protruding portion or other component or element supported at an end of the body portion 2027 can be inflatable or otherwise moveable between a first position and a second position wherein, in the second position, such component or element projects away from the body portion 2027 more than in the first position. For example, without limitation, the component or element can be a small inflatable balloon positioned at an end of the body portion having a hollow wire in fluid communication with an inner volume thereof. The positioning wire 2030 could be made hollow to allow for inflation of the inflatable component or element.
  • The protruding portion 2028 can be integrally formed with the body portion 2027, or can be formed separately and adhered to, supported by, or otherwise coupled with the body portion 2027. The protruding portion 2028 can have a length of approximately 7 mm (0.276 in) or from approximately 5 mm (0.197 in) or less to approximately 10 mm (0.394 in) or more, or between any values within the foregoing range. The protruding portion 2028 can be made from PEBAX. The protruding portion 2028 can be made from a PEBAX material having a higher hardness value than the PEBAX material used to form the body portion 2027.
  • As mentioned, the fenestration alignment component 2026 can be configured to engage a fenestration of a prosthesis deployable by the delivery catheter 2004. For example, the enlarged or protruding portion 2028 can have a size or profile that is greater than a size or profile of the guide sheath 2024 or of the body portion 2027 of the fenestration alignment component 2026 so that, while the guide sheath 2024 can be advanced through the fenestration, the protruding portion 2028 can be sized and configured to be larger than the size or diameter of the fenestration so that the protruding portion 2028 does not pass through the fenestration.
  • The enlarged portion 2028 of the fenestration alignment component 2026 can have a circular cross-sectional shape or, as illustrated in FIGS. 29-31A, a non-circular cross-sectional shape. For example, the enlarged portion 2028 can have an approximately triangular or pointed shape with a rounded upper surface or portion 2028 a. The enlarged portion 2028 can have a circular cross-sectional shape or a pointed shape with more than one pointed or protruding portion, or any other suitable shape.
  • With reference to FIGS. 29-30, the enlarged portion 2028 can have a tapered surface 2028 b at the trailing end of the enlarged portion 2028. The tapered surface 2028 b can facilitate the removability of the fenestration alignment component 2026 if the enlarged portion 2028 of the fenestration alignment component 2026 is inadvertently advanced through a fenestration.
  • The fenestration alignment components 2026 can each be attached to positioning wires 2030 such that axially advancing or retracting the positioning wires 2030 will advance or retract the fenestration alignment components 2026. The positioning wires 2030 can each define a tapering cross-sectional size that decreases toward a distal end of the positioning wire 2030 such that a cross-sectional size of the positioning wire 2030 near the body portion 2027 is smaller than a cross-sectional size of the positioning wire 2030 near the catheter handle. The positioning wire 2030 can made from a PTFE coated stainless steel, such as 304, or from any other suitable material or combination of materials. The positioning wire 2030 can have a diameter or cross-sectional size as large as approximately 0.0345 in, tapering down to a diameter or cross-sectional size of approximately 0.0200 in. The positioning wire 2030 can have a uniform diameter or cross-sectional size along the length thereof.
  • With reference to FIG. 31B, an end portion 2030 a of the positioning wire 2030 can overlap and be affixed to the body portion 2037 of the fenestration alignment component 2026. For example, between approximately 1.0 cm (0.394 in) or less and 1.5 cm (0.591 in) or more of the positioning wire 2030 can overlap the body portion 2037. The end portion 2030 a can be bonded to the body portion 2037 using any suitable technique or process. For example, the end portion 2030 a can be thermally bonded to the body portion 2037 using one or more PET sleeves. A portion of the end portion 2030 a can be coined or flattened. The end portion can have a greater surface area than a remainder of the end portion 2030 a. For example, approximately half of the end portion 2030 a can be coined or flattened.
  • FIG. 32 is an oblique view of a delivery catheter 2004 having the fenestration alignment component 2026 of FIG. 29. FIG. 33 is an exploded view of the delivery catheter 2004 shown in FIG. 32. FIG. 32 illustrates a handle portion 2050 of the delivery catheter 2004, which can provide an entry point for the guide sheaths 2024 and the positioning wires 2030 so as to provide an orifice or access port for these components into the main body of the delivery catheter 2004. In this configuration, a surgeon or user can manipulate the guide sheaths 2024 and fenestration alignment components 2026 by manipulating the end portions of the guide sheaths 2024 and positioning wires 2030 that extend proximally from the end of the handle portion 2050 of the delivery catheter.
  • The catheter 2004 can have two or more guide sheaths 2024 and two or more fenestration alignment components 2026, or the same number of guide sheaths 2024 and fenestration alignment components 2026 as the number of fenestrations in the prosthesis. The catheter 2004 having guide sheaths 2024 with fenestration alignment components 2026 as described herein can be configured such that the guide sheaths 2024, fenestration alignment components 2026, and/or positioning wires 2030 are advanceable within standard lumen formed in the delivery catheter 2004. The lumen of the delivery catheter 2004 may be enlarged or sized and configured to accommodate such guide sheaths 2024 with fenestration alignment components 2026.
  • FIG. 34 is a sectional view of a portion of a patient's vasculature, showing the fenestration alignment component 2026 illustrated in FIG. 29 advancing an inner wall of the prosthesis adjacent to a fenestration toward an ostium of the target branch vessel. As illustrated, the fenestration alignment component 2026 of the catheter 2004 can be axially advanced relative to the guide sheath 2024 (which can be the same as any other guide sheath embodiments disclosed herein, including without limitation guide sheath 1024) by advancing the positioning wire 2030 distally to push the fenestration 1011 of the prosthesis 1010 over the branch sheath 2024 and into approximate alignment with the ostium of the branch vessel. The catheter system 2004 can be configured to not have a fenestration alignment component 2026, and can accordingly be configured to deploy a fenestrated graft without the use of such a component. As will be described below, snares, protrusions, tabs, or other features can be formed on the sheaths 1024 to push the fenestrations toward the branch vessel ostium.
  • FIG. 35 is a sectional view of a portion of a patient's vasculature, showing a branch stent being advanced into the target branch vessel while the fenestration alignment component 2026 can be used to maintain the inner wall of the prosthesis adjacent to a fenestration in the prosthesis in the desired position relative to the ostium of the target branch vessel. As illustrated in FIG. 35, the fenestration alignment components 2026 have been advanced to a second position, the second position being defined as the position where the fenestrations 1011 are approximately aligned with the ostium of the target branch vessels. As illustrated in FIG. 35, a covered or uncovered branch stent 1084 can be deployed in the branch vessel by advancing the branch stent 1084 through the branch sheath 2024 using a suitable catheter, such as a renal stent catheter, into the target vessel, after the angiographic catheter has been removed from the branch sheath 2024.
  • The stent 1084 can be supported on an inflation balloon 1086, which can be supported by a guidewire 1088. The guidewire 1088 can be configured to have an inflation lumen therein, to inflate the balloon 1086 and expand the branch stent 1084 in the target location after the branch sheath 2024 has been at least partially retracted so as to not interfere with the expansion of the branch stent 1084. The fenestration alignment components 2026 may need to be at least partially withdrawn before deploying the stents 1084, to enable the inflation balloon to expand the stents 1084. The inflation balloon 1086 can be configured to expand and flare a portion of the stent 1084 within or to the inside of the fenestration 1011 formed in the prosthesis. Thereafter, the components comprising the delivery catheter 2004 can be withdrawn, and/or additional prostheses can be deployed in the patient's vasculature, including without limitation a suprarenal stent graft, or other desired components.
  • As mentioned, any embodiments of the delivery catheter 2004 can have any of the same features, materials, components, dimensions, or other details of any other catheter disclosed herein, including without limitation the embodiment(s) of the delivery catheter 1004 described above. Like numbered features shown in the illustrations of the delivery catheter 2004 can be the same or similar to the same numbered features of the delivery catheter 1004 embodiments described herein.
  • While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated can be made without departing from the spirit of the disclosure. Additionally, the various features and processes described above can be used independently of one another, or can be combined in various ways. All possible combinations and sub combinations are intended to fall within the scope of this disclosure.
  • As will be recognized, certain embodiments described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. Unless otherwise defined herein, the term approximate or approximately means values within 10% of the stated value.
  • Additionally, any embodiments of the fenestration alignment components or devices disclosed herein can be used to deploy any suitable fenestrated prosthesis, with or without modification within the scope of one of ordinary skill in the art. For example and any embodiments of the fenestration alignment components or devices disclosed by the references previously incorporated by reference in their entireties as if fully set forth herein. All such embodiments and combinations of embodiments are hereby incorporated by reference as if fully set forth herein. Further, any embodiments of the fenestration alignment components or devices disclosed herein can be used in combination with any of the delivery devices disclosed in either of the foregoing applications, and such combinations are hereby incorporated by reference as if fully set forth herein.

Claims (20)

1. A fenestrated graft deployment system, comprising:
a delivery catheter comprising a catheter body;
an endoluminal prosthesis having a main graft body, the main graft body having lumen therethrough and a first opening laterally through a wall of the main graft body;
a first guidewire prepositioned within the delivery catheter extending through at least a portion of the catheter body into a main lumen of the endoluminal prosthesis and through the first opening in the wall of the prosthesis when the delivery catheter is in a predeployment state; and
a first fenestration alignment device extending through at least a portion of the delivery catheter configured to be axially moveable relative to the first guidewire between a first position and a second position;
wherein:
the first fenestration alignment device is independently moveable relative to the first guidewire between at least the first and the second positions; and
at least a portion of the first fenestration alignment device is larger than the first opening in at least one direction such that a portion of the fenestration alignment device engages the main graft body adjacent to the first opening when the first fenestration alignment device is advanced toward the second position.
2. The fenestrated graft system of claim 1, wherein the first fenestration alignment device is configured to approximately align the first opening with an ostium of a first target branch vessel when the first fenestration alignment device is advanced to the second position.
3. The fenestrated graft system of claim 1, wherein at least a portion of the fenestration alignment device is configured to slide over an outside surface of the first guidewire.
4. The fenestrated graft system of claim 1, wherein a distal end portion of the first fenestration alignment device has a wall portion that surrounds at least a portion of the guidewire.
5. The fenestrated graft system of claim 1, wherein the first guidewire prepositioned through the opening is a hollow guidewire or hollow sheath.
6. The fenestrated graft system of claim 1, wherein a distal end portion of the first fenestration alignment device comprises a coiled component that is flexible enough to bend when being advanced over the first guidewire.
7. The fenestrated graft system of claim 1, wherein the first fenestration alignment device comprises a tubular shaped member and a protrusion projecting from an outside surface of a distal portion of the tubular shaped member, the protrusion being sized and configured to engage the main graft body adjacent to the first opening when the first fenestration alignment device is advanced toward the second position.
8. The fenestrated graft system of claim 1, further comprising a first branch stent configured to be deployed at least partially within the first opening after the first opening has been approximately aligned with the ostium of the first target vessel.
9. The fenestrated graft system of claim 1, comprising a second guidewire and a second fenestration alignment device.
10. A fenestration push device for use in a fenestrated prostheses deployment catheter, comprising:
a body portion defining a lumen therethrough, the lumen having a first diameter or cross-sectional size; and
a protrusion supported at or adjacent to a distal end of the body portion, the protrusion projecting away from an outside surface of the body portion and defining a second cross-sectional size;
wherein:
the second cross-sectional size of the fenestration push device at the location of the protrusion is greater than the first diameter or size of the body portion; and
the second cross-sectional size of the protrusion is greater than a cross-sectional size of a fenestration formed in a fenestrated graft that the fenestration push device will be used with.
11. A delivery catheter comprising the fenestration push device of claim 10 and a fenestrated prosthesis.
12. The delivery catheter of claim 11, further comprising a guide sheath prepositioned in the delivery catheter such that, when the delivery catheter and the fenestrated prosthesis are in a pre-deployment state, the guide sheath is positioned through a lumen of the fenestrated prosthesis and advanced through a fenestration in the fenestrated prosthesis.
13. The delivery catheter of claim 12, wherein the body portion is configured to axially translate over the outside surface of the guide sheath.
14. The delivery catheter of claim 11, wherein at least a proximal portion of the fenestration push device extends proximally from a handle portion of the delivery catheter toward a user of the device so that the user can advance the fenestration push device toward a fenestration in the fenestrated prosthesis by distally advancing the proximal portion of the fenestration push device.
15. The delivery catheter of claim 14, wherein the proximal portion of the fenestration push device comprises a wire.
16. A method of deploying a fenestrated endoluminal prosthesis in a patient's vasculature, comprising:
advancing a catheter supporting a fenestrated endoluminal prosthesis through a patient's vasculature to a target vessel location, wherein the prosthesis has a main graft body comprising a first opening through a wall thereof;
advancing a first guide sheath through the first opening and into a first branch vessel; and
advancing a first fenestration alignment device into contact with the prosthesis adjacent to the first opening through the wall of the prosthesis so as to approximately align the first opening with an ostium of the first branch vessel.
17. The method of deploying an endoluminal prosthesis of claim 16, further comprising deploying a first branch stent at least partially within the first opening through the wall of the endoluminal prosthesis.
18. The method of deploying an endoluminal prosthesis of claim 16, wherein advancing the first fenestration alignment device into contact with the prosthesis adjacent to the first opening through the wall of the prosthesis so as to approximately align the first opening with an ostium of the first branch vessel comprises advancing the first fenestration alignment device along the first guide sheath.
19. The method of deploying an endoluminal prosthesis of claim 16, wherein:
the first fenestration alignment device comprises a tubular body portion configured to surround the first guide sheath; and
advancing the first fenestration alignment device into contact with the prosthesis adjacent to the first opening through the wall of the prosthesis so as to approximately align the first opening with an ostium of the first branch vessel comprises advancing the first fenestration alignment device over an outside surface of the first guide sheath.
20. The method of deploying an endoluminal prosthesis of claim 16, wherein the first guide sheath is pre-positioned through the first opening through the wall of the prosthesis when the prosthesis is in a pre-deployment state.
US13/287,907 2010-11-02 2011-11-02 Apparatus and method of placement of a graft or graft system Abandoned US20120109279A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/287,907 US20120109279A1 (en) 2010-11-02 2011-11-02 Apparatus and method of placement of a graft or graft system
US15/414,499 US11406518B2 (en) 2010-11-02 2017-01-24 Apparatus and method of placement of a graft or graft system
US17/882,378 US20230218416A1 (en) 2010-11-02 2022-08-05 Apparatus and method of placement of a graft or graft system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40950410P 2010-11-02 2010-11-02
US13/287,907 US20120109279A1 (en) 2010-11-02 2011-11-02 Apparatus and method of placement of a graft or graft system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/414,499 Division US11406518B2 (en) 2010-11-02 2017-01-24 Apparatus and method of placement of a graft or graft system

Publications (1)

Publication Number Publication Date
US20120109279A1 true US20120109279A1 (en) 2012-05-03

Family

ID=44936580

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/287,907 Abandoned US20120109279A1 (en) 2010-11-02 2011-11-02 Apparatus and method of placement of a graft or graft system
US15/414,499 Active 2033-08-05 US11406518B2 (en) 2010-11-02 2017-01-24 Apparatus and method of placement of a graft or graft system
US17/882,378 Abandoned US20230218416A1 (en) 2010-11-02 2022-08-05 Apparatus and method of placement of a graft or graft system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/414,499 Active 2033-08-05 US11406518B2 (en) 2010-11-02 2017-01-24 Apparatus and method of placement of a graft or graft system
US17/882,378 Abandoned US20230218416A1 (en) 2010-11-02 2022-08-05 Apparatus and method of placement of a graft or graft system

Country Status (4)

Country Link
US (3) US20120109279A1 (en)
EP (1) EP2635241B1 (en)
JP (1) JP6261339B2 (en)
WO (1) WO2012061526A2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120071748A1 (en) * 2004-10-28 2012-03-22 Mark Joseph L Surgical access assembly and method of using same
US20120226341A1 (en) * 2011-03-01 2012-09-06 Endologix, Inc. Catheter system and methods of using same
US20130204287A1 (en) * 2004-10-28 2013-08-08 Nico Corporation Surgical access assembly and method of using same
US20130289696A1 (en) * 2012-04-27 2013-10-31 Medtronic Vascular, Inc. Reconfigurable stent-graft delivery system and method of use
US20140025162A1 (en) * 2007-04-24 2014-01-23 W.L. Gore & Associates, Inc. Side branched endoluminal prostheses and methods of delivery thereof
WO2015071135A1 (en) * 2013-11-18 2015-05-21 Claude Mialhe Chimney-graft stent
US9168162B2 (en) 2011-11-17 2015-10-27 Elgco, Llc Methods and apparatus for treating a type 2 endoleak from within an endoluminal stent
US9592143B2 (en) 2010-11-16 2017-03-14 W. L. Gore & Associates, Inc. Sleeves for expandable medical devices
US9622777B2 (en) 2004-10-28 2017-04-18 Nico Corporation Surgical access assembly and method of using same
US9700701B2 (en) 2008-07-01 2017-07-11 Endologix, Inc. Catheter system and methods of using same
US10179057B2 (en) * 2015-05-28 2019-01-15 George Kramer Tracheobronchial Y-stents, delivery catheters and delivery apparatus, and methods for delivering bronchial Y-stents
US10245166B2 (en) 2008-02-22 2019-04-02 Endologix, Inc. Apparatus and method of placement of a graft or graft system
CN109833112A (en) * 2019-01-02 2019-06-04 杭州嘉和众邦生物科技有限公司 Bracket and its application method in a kind of art
US10307183B2 (en) 2011-10-24 2019-06-04 Nico Corporation Surgical access system with navigation element and method of using same
US10524944B1 (en) * 2014-01-29 2020-01-07 W. L. Gore & Associates, Inc. Delivery systems and methods of endoluminal delivery of branched vascular endoprosthetic devices
US10603196B2 (en) 2009-04-28 2020-03-31 Endologix, Inc. Fenestrated prosthesis
EP3695808A4 (en) * 2017-11-27 2021-08-11 Kawasumi Laboratories, Inc. Stent graft and stent graft indwelling device
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US11147698B2 (en) 2016-09-15 2021-10-19 W. L. Gore & Associates, Inc. Staged deployment of expandable implant
US11324618B2 (en) 2017-02-28 2022-05-10 Cook Medical Technologies Llc Delivery system for a preloaded fenestrated device having a ratcheted wire release
US11406518B2 (en) 2010-11-02 2022-08-09 Endologix Llc Apparatus and method of placement of a graft or graft system
US11484423B2 (en) * 2018-08-21 2022-11-01 Cook Medical Technologies Llc Apparatuses to facilitate prosthesis placement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012111223A1 (en) 2012-11-21 2014-05-22 Jotec Gmbh Vascular implant with asymmetric stent springs
JP2022525788A (en) 2019-03-20 2022-05-19 インキュベート メディカル テクノロジーズ、 エルエルシー Aortic dissection implant
US20230190502A1 (en) * 2021-12-20 2023-06-22 Medtronic Vascular, Inc. Delivery system for delivering a cardiovascular device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010003161A1 (en) * 1996-11-04 2001-06-07 Vardi Gil M. Catheter with side sheath
US20010016767A1 (en) * 1999-10-05 2001-08-23 Wilson W. Stan Stent and catheter assembly and method for treating bifurcations
US20010039445A1 (en) * 1998-09-10 2001-11-08 Percardia, Inc. Stent delivery system and method of use
US20020042650A1 (en) * 1998-01-14 2002-04-11 Advanced Stent Technologies, Inc. Extendible stent apparatus
US20020052648A1 (en) * 2000-10-13 2002-05-02 Mcguckin James F. Covered stent with side branch
US20020156518A1 (en) * 2001-03-23 2002-10-24 Hassan Tehrani Branched aortic arch stent graft and method of deployment
US20020173835A1 (en) * 1999-06-04 2002-11-21 Advanced Stent Technologies, Llc Short sleeve stent delivery catheter and methods
US20030028233A1 (en) * 1996-11-04 2003-02-06 Vardi Gil M. Catheter with attached flexible side sheath
US20030167083A1 (en) * 1997-09-24 2003-09-04 Lashinski Robert D. Endolumenal prothesis and method of use in bifurcation regions of body lumens
US20030236566A1 (en) * 2002-06-21 2003-12-25 Heuser Richard R. Stent system
US20040049204A1 (en) * 2001-01-11 2004-03-11 Eran Harari System and corresponding method for deploying an implantable intraluminal device
US20040098084A1 (en) * 2002-09-02 2004-05-20 Cook Incorporated Branch grafting device and method
US20040230287A1 (en) * 2003-04-03 2004-11-18 William A. Cook Australia Pty Ltd Branch stent graft deployment and method
US20050085845A1 (en) * 2003-10-16 2005-04-21 Minvasys, Sa Catheter system for stenting bifurcated vessels
US20050131519A1 (en) * 2003-10-10 2005-06-16 William A. Cook Australia Pty. Ltd. Composite stent graft
US20060247760A1 (en) * 2005-04-29 2006-11-02 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent branch arteries

Family Cites Families (669)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2127903A (en) 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US2437542A (en) 1944-05-05 1948-03-09 American Catheter Corp Catheter-type instrument
US2845959A (en) 1956-03-26 1958-08-05 John B Sidebotham Bifurcated textile tubes and method of weaving the same
US2990605A (en) 1957-01-30 1961-07-04 Demsyk Paul Method of forming artificial vascular members
US3096560A (en) 1958-11-21 1963-07-09 William J Liebig Process for synthetic vascular implants
US3029819A (en) 1959-07-30 1962-04-17 J L Mcatee Artery graft and method of producing artery grafts
US3805301A (en) 1972-07-28 1974-04-23 Meadox Medicals Inc Tubular grafts having indicia thereon
JPS5629871B2 (en) 1974-05-22 1981-07-10
SE395627B (en) 1974-06-07 1977-08-22 Asea Ab PRESSURE FOR HYDROSTATIC EXTENSION OF TUBE
US6436135B1 (en) 1974-10-24 2002-08-20 David Goldfarb Prosthetic vascular graft
DE2714810A1 (en) 1976-04-05 1977-10-13 Anvar PROCESS FOR MANUFACTURING ORGAN DENTALS PRODUCED ACCORDING TO THE PROCESS
US4362156A (en) 1979-04-18 1982-12-07 Riverain Corporation Intravenous infusion assembly
US4503568A (en) 1981-11-25 1985-03-12 New England Deaconess Hospital Small diameter vascular bypass and method
US4501263A (en) 1982-03-31 1985-02-26 Harbuck Stanley C Method for reducing hypertension of a liver
US4473067A (en) 1982-04-28 1984-09-25 Peter Schiff Introducer assembly for intra-aortic balloons and the like incorporating a sliding, blood-tight seal
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4525157A (en) 1983-07-28 1985-06-25 Manresa, Inc. Closed system catheter with guide wire
US4592754A (en) 1983-09-09 1986-06-03 Gupte Pradeep M Surgical prosthetic vessel graft and catheter combination and method
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5275622A (en) 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US6221102B1 (en) 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US5108424A (en) 1984-01-30 1992-04-28 Meadox Medicals, Inc. Collagen-impregnated dacron graft
US4562596A (en) 1984-04-25 1986-01-07 Elliot Kornberg Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair
US4617932A (en) 1984-04-25 1986-10-21 Elliot Kornberg Device and method for performing an intraluminal abdominal aortic aneurysm repair
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4756307A (en) 1987-02-09 1988-07-12 Zimmer, Inc. Nail device
US4907336A (en) 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
IT1210722B (en) 1987-05-11 1989-09-20 Sorin Biomedica Spa DEVICES FOR THE CONDITIONING OF BLOOD FLOWS
US4795465A (en) 1987-05-14 1989-01-03 Hood Laboratories Tracheobronchial stent
US4816028A (en) 1987-07-01 1989-03-28 Indu Kapadia Woven vascular graft
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4840940A (en) 1987-10-21 1989-06-20 Sottiurai Vikrom S Method for reducing the occurrence of distal anastomotic intimal hyperplasia using fractionated heparin
JPH0784524B2 (en) 1987-12-24 1995-09-13 東ソー株式会社 Method for producing aromatic sulfide amide polymer
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US4981478A (en) 1988-09-06 1991-01-01 Advanced Cardiovascular Systems Composite vascular catheter
US5071425A (en) * 1988-09-12 1991-12-10 Devices For Vascular Intervention, Inc. Atherectomy catheter and method of forming the same
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US5078726A (en) 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US5178634A (en) 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5545118A (en) 1989-08-02 1996-08-13 Romanauskas; William A. Tension band centrifuge rotor
US5662701A (en) 1989-08-18 1997-09-02 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
US5571169A (en) 1993-06-07 1996-11-05 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5123917A (en) 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5100424A (en) * 1990-05-21 1992-03-31 Cardiovascular Imaging Systems, Inc. Intravascular catheter having combined imaging abrasion head
JPH0425755A (en) 1990-05-22 1992-01-29 Japan Electron Control Syst Co Ltd Oxygen sensor
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5156619A (en) 1990-06-15 1992-10-20 Ehrenfeld William K Flanged end-to-side vascular graft
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
DK0480667T3 (en) 1990-10-09 1996-06-10 Cook Inc Percutaneous stent construction
JPH0717314Y2 (en) 1990-10-18 1995-04-26 ソン ホーヨン Self-expanding intravascular stent
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5135536A (en) 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5669934A (en) 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5628783A (en) 1991-04-11 1997-05-13 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system and method
CA2065634C (en) 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
US5158545A (en) 1991-05-02 1992-10-27 Brigham And Women's Hospital Diameter expansion cannula
US5304200A (en) 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5135535A (en) 1991-06-11 1992-08-04 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5282478A (en) 1991-08-21 1994-02-01 Baxter International, Inc. Guidewire extension system with coil connectors
US5415178A (en) 1991-08-26 1995-05-16 Target Therapeutics Extendable guidewire assembly
US5197976A (en) 1991-09-16 1993-03-30 Atrium Medical Corporation Manually separable multi-lumen vascular graft
US5443498A (en) 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5464450A (en) 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
US5151105A (en) 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5282860A (en) 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5720776A (en) 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
AU669338B2 (en) 1991-10-25 1996-06-06 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5693084A (en) 1991-10-25 1997-12-02 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5211658A (en) 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5370683A (en) 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5201757A (en) 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5263932A (en) 1992-04-09 1993-11-23 Jang G David Bailout catheter for fixed wire angioplasty
US5246452A (en) 1992-04-13 1993-09-21 Impra, Inc. Vascular graft with removable sheath
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5817102A (en) 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5496365A (en) 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
WO1994003127A1 (en) 1992-08-06 1994-02-17 William Cook Europe A/S A prosthetic device for sustaining a blood-vessel or hollow organ lumen
DE59206251D1 (en) 1992-10-31 1996-06-13 Schneider Europ Ag Arrangement for implanting self-expanding endoprostheses
BE1006440A3 (en) 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
US5256141A (en) 1992-12-22 1993-10-26 Nelson Gencheff Biological material deployment method and apparatus
JPH08500757A (en) 1992-12-30 1996-01-30 シュナイダー・(ユーエスエイ)・インコーポレーテッド Device for deploying a stent implantable in the body
US5523092A (en) 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
AU689094B2 (en) 1993-04-22 1998-03-26 C.R. Bard Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
ATE164056T1 (en) 1993-04-23 1998-04-15 Schneider Europ Ag STENT HAVING A COATING OF ELASTIC MATERIAL AND METHOD FOR APPLYING THE COATING TO THE STENT
WO1994024961A1 (en) 1993-04-23 1994-11-10 Schneider (Usa) Inc. Covered stent and stent delivery device
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5643171A (en) 1993-05-04 1997-07-01 Neocardia, Llc Method and apparatus for uniform radiation treatment of vascular lumens
US5320602A (en) 1993-05-14 1994-06-14 Wilson-Cook Medical, Inc. Peel-away endoscopic retrograde cholangio pancreatography catheter and a method for using the same
US5414664A (en) 1993-05-28 1995-05-09 Macronix International Co., Ltd. Flash EPROM with block erase flags for over-erase protection
US5425765A (en) 1993-06-25 1995-06-20 Tiefenbrun; Jonathan Surgical bypass method
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5464449A (en) 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
CA2125258C (en) 1993-08-05 1998-12-22 Dinah B Quiachon Multicapsule intraluminal grafting system and method
US6159565A (en) 1993-08-18 2000-12-12 W. L. Gore & Associates, Inc. Thin-wall intraluminal graft
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
EP0714270B1 (en) 1993-08-18 2002-09-04 W.L. Gore & Associates, Inc. A tubular intraluminally insertable graft
US5669880A (en) 1993-08-24 1997-09-23 Cordis Corporation Stent delivery system
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5782904A (en) 1993-09-30 1998-07-21 Endogad Research Pty Limited Intraluminal graft
ATE165231T1 (en) 1993-10-20 1998-05-15 Schneider Europ Ag ENDOPROSTHESIS
US5632772A (en) 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5989280A (en) 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
DE69419877T2 (en) 1993-11-04 1999-12-16 Bard Inc C R Fixed vascular prosthesis
WO1995013033A1 (en) 1993-11-08 1995-05-18 Lazarus Harrison M Intraluminal vascular graft and method
DE9319267U1 (en) 1993-12-15 1994-02-24 Vorwerk Dierk Dr Aortic endoprosthesis
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US5403341A (en) 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5549635A (en) 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US5817100A (en) 1994-02-07 1998-10-06 Kabushikikaisya Igaki Iryo Sekkei Stent device and stent supplying system
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5653746A (en) 1994-03-08 1997-08-05 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5824044A (en) 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
US5456694A (en) 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
DE4418336A1 (en) 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
EP1051953A3 (en) 1994-06-17 2001-02-28 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US5522881A (en) 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
DE69529338T3 (en) 1994-07-08 2007-05-31 Ev3 Inc., Plymouth Intravascular filter device
US5397355A (en) 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5571172A (en) 1994-08-15 1996-11-05 Origin Medsystems, Inc. Method and apparatus for endoscopic grafting
US5591230A (en) 1994-09-07 1997-01-07 Global Therapeutics, Inc. Radially expandable stent
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5653743A (en) 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5765682A (en) 1994-10-13 1998-06-16 Menlo Care, Inc. Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same
CA2175720C (en) 1996-05-03 2011-11-29 Ian M. Penn Bifurcated stent and method for the manufacture and delivery of same
CA2134997C (en) 1994-11-03 2009-06-02 Ian M. Penn Stent
JP3611578B2 (en) 1994-11-09 2005-01-19 エンドテックス インターベンショナル システムズ,インコーポレイテッド Delivery catheter and graft for the treatment of aneurysms
AU3783195A (en) 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
US5616114A (en) 1994-12-08 1997-04-01 Neocardia, Llc. Intravascular radiotherapy employing a liquid-suspended source
US5630829A (en) 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
US5690671A (en) 1994-12-13 1997-11-25 Micro Interventional Systems, Inc. Embolic elements and methods and apparatus for their delivery
US5879366A (en) 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
NL9500094A (en) 1995-01-19 1996-09-02 Industrial Res Bv Y-shaped stent and method of deployment.
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5755770A (en) 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5522883A (en) 1995-02-17 1996-06-04 Meadox Medicals, Inc. Endoprosthesis stent/graft deployment system
EP0810845A2 (en) 1995-02-22 1997-12-10 Menlo Care Inc. Covered expanding mesh stent
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5662675A (en) 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
US5681345A (en) 1995-03-01 1997-10-28 Scimed Life Systems, Inc. Sleeve carrying stent
US6818014B2 (en) 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US6039755A (en) 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
EP0813397A4 (en) 1995-03-10 1999-10-06 Cardiovascular Concepts Inc Tubular endoluminar prosthesis having oblique ends
EP0814729B1 (en) 1995-03-10 2000-08-09 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US5591197A (en) 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5647857A (en) 1995-03-16 1997-07-15 Endotex Interventional Systems, Inc. Protective intraluminal sheath
CA2171896C (en) 1995-03-17 2007-05-15 Scott C. Anderson Multi-anchor stent
US5666968A (en) 1995-03-17 1997-09-16 Intelliwire, Inc. Flexible guide wire with extension capability and guide wire extension for use therewith
US5643278A (en) 1995-04-06 1997-07-01 Leocor, Inc. Stent delivery system
EP0740928B1 (en) 1995-04-12 2004-07-07 Corvita Europe Self-expanding stent for introducing a medical device in a body cavity and manufacturing process
JP3199383B2 (en) 1995-04-14 2001-08-20 シュナイダー(ユーエスエー)インク Rolling membrane type stent supply device
US5641373A (en) 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US5609628A (en) 1995-04-20 1997-03-11 Keranen; Victor J. Intravascular graft and catheter
DE69601437T2 (en) 1995-04-21 1999-09-30 Bard Inc C R Interlocking catheter unit
US5591198A (en) 1995-04-27 1997-01-07 Medtronic, Inc. Multiple sinusoidal wave configuration stent
FR2733682B1 (en) 1995-05-04 1997-10-31 Dibie Alain ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR
US5662614A (en) 1995-05-09 1997-09-02 Edoga; John K. Balloon expandable universal access sheath
US5628786A (en) 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
WO1996036297A1 (en) 1995-05-19 1996-11-21 Kanji Inoue Transplantation instrument, method of bending same and method of transplanting same
US6151404A (en) 1995-06-01 2000-11-21 Medical Media Systems Anatomical visualization system
EP0831753B1 (en) 1995-06-01 2005-12-28 Meadox Medicals, Inc. Implantable intraluminal prosthesis
AU5950696A (en) 1995-06-05 1996-12-24 Creative Products Resource, Inc. Dry-cleaning kit for in-dryer use
US6033434A (en) 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
RU2157146C2 (en) 1995-06-13 2000-10-10 ВИЛЬЯМ КУК Европа, A/S Device for performing implantation in blood vessels and hollow organs
US5676685A (en) 1995-06-22 1997-10-14 Razavi; Ali Temporary stent
WO1997001368A1 (en) 1995-06-26 1997-01-16 Trimedyne, Inc. Therapeutic appliance releasing device
US5766203A (en) 1995-07-20 1998-06-16 Intelliwire, Inc. Sheath with expandable distal extremity and balloon catheters and stents for use therewith and method
GB9518400D0 (en) 1995-09-08 1995-11-08 Anson Medical Ltd A surgical graft/stent system
US5562697A (en) 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
WO1997010757A1 (en) 1995-09-22 1997-03-27 Autogenics Sewing ring with integral retaining springs
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US6099558A (en) 1995-10-10 2000-08-08 Edwards Lifesciences Corp. Intraluminal grafting of a bifuricated artery
US6616675B1 (en) 1996-02-02 2003-09-09 Transvascular, Inc. Methods and apparatus for connecting openings formed in adjacent blood vessels or other anatomical structures
WO1997014375A1 (en) 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
US5669924A (en) 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US6287315B1 (en) 1995-10-30 2001-09-11 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
US6348066B1 (en) 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
ATE177928T1 (en) 1995-11-14 1999-04-15 Schneider Europ Gmbh DEVICE FOR STENT IMPLANTATION
US5593417A (en) 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6576009B2 (en) 1995-12-01 2003-06-10 Medtronic Ave, Inc. Bifurcated intraluminal prostheses construction and methods
EP0950385A3 (en) 1995-12-14 1999-10-27 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5693066A (en) 1995-12-21 1997-12-02 Medtronic, Inc. Stent mounting and transfer device and method
US5604435A (en) 1995-12-29 1997-02-18 General Electric Company Spiral scanning method for monitoring physiological changes
EP0955954B1 (en) 1996-01-05 2005-03-16 Medtronic, Inc. Expansible endoluminal prostheses
US5690642A (en) 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
AUPN775296A0 (en) 1996-01-25 1996-02-22 Endogad Research Pty Limited Directional catheter
US6017363A (en) 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US5871537A (en) 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
US5690643A (en) 1996-02-20 1997-11-25 Leocor, Incorporated Stent delivery system
US5695516A (en) 1996-02-21 1997-12-09 Iso Stent, Inc. Longitudinally elongating balloon expandable stent
US5810836A (en) 1996-03-04 1998-09-22 Myocardial Stents, Inc. Device and method for trans myocardial revascularization (TMR)
WO1997033532A2 (en) 1996-03-13 1997-09-18 Medtronic, Inc. Endoluminal prostheses and therapies for multiple-branch body lumen systems
US5843160A (en) 1996-04-01 1998-12-01 Rhodes; Valentine J. Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen
US5630830A (en) 1996-04-10 1997-05-20 Medtronic, Inc. Device and method for mounting stents on delivery systems
JP3410922B2 (en) 1996-04-23 2003-05-26 株式会社東芝 Clock control circuit
US6440165B1 (en) 1996-05-03 2002-08-27 Medinol, Ltd. Bifurcated stent with improved side branch aperture and method of making same
UA58485C2 (en) 1996-05-03 2003-08-15 Медінол Лтд. Method for manufacture of bifurcated stent (variants) and bifurcated stent (variants)
FR2749160B1 (en) 1996-05-28 1999-05-21 Patrice Bergeron MODULAR BIFURCED VASCULAR PROSTHESIS
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
GB9614950D0 (en) 1996-07-16 1996-09-04 Anson Medical Ltd A ductus stent and delivery catheter
US6905505B2 (en) 1996-07-26 2005-06-14 Kensey Nash Corporation System and method of use for agent delivery and revascularizing of grafts and vessels
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5823198A (en) 1996-07-31 1998-10-20 Micro Therapeutics, Inc. Method and apparatus for intravasculer embolization
US6254628B1 (en) 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
DE69726317T2 (en) 1996-09-18 2004-09-16 Micro Therapeutics, Inc., Irvine INTRACRANIAL STENT
WO1998011847A1 (en) 1996-09-20 1998-03-26 Houser Russell A Radially expanding prostheses and systems for their deployment
US6027508A (en) 1996-10-03 2000-02-22 Scimed Life Systems, Inc. Stent retrieval device
AU4896797A (en) 1996-11-04 1998-05-29 Davidson, Charles Extendible stent apparatus and method for deploying the same
US6835203B1 (en) 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US7220275B2 (en) 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6395017B1 (en) 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
JP2001504017A (en) 1996-11-15 2001-03-27 クック インコーポレーティッド. Separable sleeve, stent deployment device
US5860998A (en) 1996-11-25 1999-01-19 C. R. Bard, Inc. Deployment device for tubular expandable prosthesis
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US5879321A (en) 1997-01-22 1999-03-09 The University Of Kentucky Research Foundation Portocaval-right atrial shunt
JP4042998B2 (en) 1997-01-29 2008-02-06 クック インコーポレイテッド Bell bottom modular stent graft
US6203735B1 (en) 1997-02-03 2001-03-20 Impra, Inc. Method of making expanded polytetrafluoroethylene products
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5720735A (en) 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US5928248A (en) 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US6951572B1 (en) 1997-02-20 2005-10-04 Endologix, Inc. Bifurcated vascular graft and method and apparatus for deploying same
US6090128A (en) 1997-02-20 2000-07-18 Endologix, Inc. Bifurcated vascular graft deployment device
US5893868A (en) 1997-03-05 1999-04-13 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US6152944A (en) 1997-03-05 2000-11-28 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US6048360A (en) 1997-03-18 2000-04-11 Endotex Interventional Systems, Inc. Methods of making and using coiled sheet graft for single and bifurcated lumens
US5824053A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5868783A (en) 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US6143016A (en) 1997-04-21 2000-11-07 Advanced Cardiovascular Systems, Inc. Sheath and method of use for a stent delivery system
US5957929A (en) 1997-05-02 1999-09-28 Micro Therapeutics, Inc. Expandable stent apparatus and method
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
AUPO700897A0 (en) 1997-05-26 1997-06-19 William A Cook Australia Pty Ltd A method and means of deploying a graft
US5906641A (en) 1997-05-27 1999-05-25 Schneider (Usa) Inc Bifurcated stent graft
CA2235911C (en) 1997-05-27 2003-07-29 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
CA2238117C (en) 1997-05-30 2006-01-10 United States Surgical Corporation Method and instrumentation for implant insertion
EP0884029B1 (en) 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
US5855600A (en) 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US6221090B1 (en) 1997-08-13 2001-04-24 Advanced Cardiovascular Systems, Inc. Stent delivery assembly
US6361544B1 (en) 1997-08-13 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US7955379B2 (en) 1997-08-13 2011-06-07 Abbott Cardiovascular Systems Inc. Stent and catheter assembly and method for treating bifurcations
US6165195A (en) 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US5984929A (en) 1997-08-29 1999-11-16 Target Therapeutics, Inc. Fast detaching electronically isolated implant
US5855599A (en) 1997-09-02 1999-01-05 Sitek, Inc. Silicon micro machined occlusion implant
US6187033B1 (en) 1997-09-04 2001-02-13 Meadox Medicals, Inc. Aortic arch prosthetic graft
US5984955A (en) 1997-09-11 1999-11-16 Wisselink; Willem System and method for endoluminal grafting of bifurcated or branched vessels
US6592548B2 (en) 1997-09-18 2003-07-15 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and method of use
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US6086611A (en) 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US5948017A (en) 1997-10-12 1999-09-07 Taheri; Syde A. Modular graft assembly
US5893887A (en) 1997-10-14 1999-04-13 Iowa-India Investments Company Limited Stent for positioning at junction of bifurcated blood vessel and method of making
ES1038606Y (en) 1997-10-28 1999-01-01 Costilla Garcia Serafin Marcos FORKED SELF-EXPANDING PROSTHESIS CONVEYOR EQUIPMENT.
US5961548A (en) 1997-11-18 1999-10-05 Shmulewitz; Ascher Bifurcated two-part graft and methods of implantation
AUPP083597A0 (en) * 1997-12-10 1998-01-08 William A Cook Australia Pty Ltd Endoluminal aortic stents
US6235051B1 (en) 1997-12-16 2001-05-22 Timothy P. Murphy Method of stent-graft system delivery
US6068654A (en) 1997-12-23 2000-05-30 Vascular Science, Inc. T-shaped medical graft connector
US6475170B1 (en) 1997-12-30 2002-11-05 Remon Medical Technologies Ltd Acoustic biosensor for monitoring physiological conditions in a body implantation site
US6074398A (en) 1998-01-13 2000-06-13 Datascope Investment Corp. Reduced diameter stent/graft deployment catheter
US7520890B2 (en) 1998-01-26 2009-04-21 Phillips Peter W Reinforced graft and method of deployment
DE69928224T2 (en) 1998-01-26 2006-08-03 Anson Medical Ltd., Didcot REINFORCED IMPLANT
US6148349A (en) 1998-02-06 2000-11-14 Ncr Corporation Dynamic and consistent naming of fabric attached storage by a file system on a compute node storing information mapping API system I/O calls for data objects with a globally unique identification
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6395018B1 (en) 1998-02-09 2002-05-28 Wilfrido R. Castaneda Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6077296A (en) 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US6224609B1 (en) 1998-03-16 2001-05-01 Teramed Inc. Bifurcated prosthetic graft
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
WO1999047077A1 (en) 1998-03-18 1999-09-23 Meadox Medicals, Inc. Improved ptfe vascular prosthesis and method of manufacture
ATE324835T1 (en) 1998-03-27 2006-06-15 Cook Urological Inc MINIMAL-INVASIVE DEVICE FOR CATCHING OBJECTS IN HOLLOW ORGANS
US6063092A (en) 1998-04-07 2000-05-16 Medtronic Inc. Heat set and crimping process to optimize stent retention
US6524336B1 (en) 1998-04-09 2003-02-25 Cook Incorporated Endovascular graft
US6146389A (en) 1998-04-23 2000-11-14 Boston Scientific Corporation Stent deployment device and method for deploying a stent
US6511325B1 (en) 1998-05-04 2003-01-28 Advanced Research & Technology Institute Aortic stent-graft calibration and training model
US6352554B2 (en) 1998-05-08 2002-03-05 Sulzer Vascutek Limited Prosthetic tubular aortic conduit and method for manufacturing the same
US6093203A (en) 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
JP4399585B2 (en) 1998-06-02 2010-01-20 クック インコーポレイティド Multi-sided medical device
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
US6224627B1 (en) 1998-06-15 2001-05-01 Gore Enterprise Holdings, Inc. Remotely removable covering and support
WO1999065419A1 (en) 1998-06-19 1999-12-23 Endologix, Inc. Self expanding bifurcated endovascular prosthesis
US6143002A (en) 1998-08-04 2000-11-07 Scimed Life Systems, Inc. System for delivering stents to bifurcation lesions
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US6296622B1 (en) 1998-12-21 2001-10-02 Micrus Corporation Endoluminal device delivery system using axially recovering shape memory material
US6514281B1 (en) 1998-09-04 2003-02-04 Scimed Life Systems, Inc. System for delivering bifurcation stents
US6093194A (en) 1998-09-14 2000-07-25 Endocare, Inc. Insertion device for stents and methods for use
US6096027A (en) 1998-09-30 2000-08-01 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Bag enclosed stent loading apparatus
US6273909B1 (en) 1998-10-05 2001-08-14 Teramed Inc. Endovascular graft system
US6544278B1 (en) 1998-11-06 2003-04-08 Scimed Life Systems, Inc. Rolling membrane stent delivery system
US6059813A (en) 1998-11-06 2000-05-09 Scimed Life Systems, Inc. Rolling membrane stent delivery system
US6733523B2 (en) 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
ATE303107T1 (en) 1998-12-11 2005-09-15 Endologix Inc ENDOLUMINAL VASCULAR PROSTHESIS
US6197049B1 (en) 1999-02-17 2001-03-06 Endologix, Inc. Articulating bifurcation graft
US6660030B2 (en) 1998-12-11 2003-12-09 Endologix, Inc. Bifurcation graft deployment catheter
US6187036B1 (en) 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
US6059824A (en) 1998-12-23 2000-05-09 Taheri; Syde A. Mated main and collateral stent and method for treatment of arterial disease
US6254609B1 (en) 1999-01-11 2001-07-03 Scimed Life Systems, Inc. Self-expanding stent delivery system with two sheaths
US6193726B1 (en) 1999-01-15 2001-02-27 Heartstent Corporation Insertion tool for transmyocardial implant
ATE382310T1 (en) 1999-01-22 2008-01-15 Gore Enterprise Holdings Inc METHOD FOR COMPRESSING AN ENDOPROSTHESIS
AU772868C (en) 1999-02-01 2005-08-11 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
US6361557B1 (en) 1999-02-05 2002-03-26 Medtronic Ave, Inc. Staplebutton radiopaque marker
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
NL1011779C2 (en) 1999-04-13 2000-10-16 Elephant Dental Bv Biomedical device or implant.
US6425765B1 (en) 1999-04-14 2002-07-30 Irwin, Iii Albert J. Training device for archers
US6162237A (en) 1999-04-19 2000-12-19 Chan; Winston Kam Yew Temporary intravascular stent for use in retrohepatic IVC or hepatic vein injury
EP1095635A4 (en) 1999-05-06 2007-06-20 Kanji Inoue Apparatus for folding instrument and use of the same apparatus
US6146415A (en) 1999-05-07 2000-11-14 Advanced Cardiovascular Systems, Inc. Stent delivery system
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6287329B1 (en) 1999-06-28 2001-09-11 Nitinol Development Corporation Stent keeper for a self-expanding stent delivery system
US6440161B1 (en) 1999-07-07 2002-08-27 Endologix, Inc. Dual wire placement catheter
AU757744B2 (en) 1999-07-16 2003-03-06 Cook Medical Technologies Llc Stent adapted for tangle-free deployment
AU7066300A (en) 1999-08-23 2001-03-19 Conceptus, Inc. Insertion/deployment catheter system for intrafallopian contraception
US6409757B1 (en) 1999-09-15 2002-06-25 Eva Corporation Method and apparatus for supporting a graft assembly
US6183481B1 (en) 1999-09-22 2001-02-06 Endomed Inc. Delivery system for self-expanding stents and grafts
US6344056B1 (en) 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
JP4542297B2 (en) 1999-10-04 2010-09-08 寛治 井上 Method for folding transplantation device and transplantation device
US20020198585A1 (en) 1999-10-05 2002-12-26 Willem Wisselink System and method for edoluminal grafting of bifurcated or branched vessels
ATE301426T1 (en) 1999-10-08 2005-08-15 Gen Hospital Corp PERCUTANE STENT PROSTHESIS
JP2003521971A (en) 1999-10-12 2003-07-22 ウィル,アラン アール Method and apparatus for protecting passages in the body
US7074235B1 (en) 1999-10-16 2006-07-11 Sumit Roy Low-profile, non-stented prosthesis for transluminal implantation
US6402764B1 (en) 1999-11-15 2002-06-11 Cardica, Inc. Everter and threadthrough system for attaching graft vessel to anastomosis device
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
AU1723201A (en) 1999-11-18 2001-05-30 Petrus Besselink Method for placing bifurcated stents
US6652567B1 (en) * 1999-11-18 2003-11-25 David H. Deaton Fenestrated endovascular graft
US6936065B2 (en) 1999-11-22 2005-08-30 Cordis Corporation Stent delivery system having a fixed guidewire
US6280466B1 (en) 1999-12-03 2001-08-28 Teramed Inc. Endovascular graft system
US6387120B2 (en) 1999-12-09 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6331184B1 (en) 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6361555B1 (en) 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
US6280465B1 (en) 1999-12-30 2001-08-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for delivering a self-expanding stent on a guide wire
US6334866B1 (en) 2000-01-14 2002-01-01 William H. Wall Stent device for performing endovascular repair of aneurysms
US6622604B1 (en) 2000-01-31 2003-09-23 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US6398807B1 (en) 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
ATE255860T1 (en) 2000-03-03 2003-12-15 Cook Inc ENDOVASCULAR DEVICE WITH STENT
US6814752B1 (en) 2000-03-03 2004-11-09 Endovascular Technologies, Inc. Modular grafting system and method
US6416474B1 (en) 2000-03-10 2002-07-09 Ramon Medical Technologies Ltd. Systems and methods for deploying a biosensor in conjunction with a prosthesis
US6695875B2 (en) 2000-03-14 2004-02-24 Cook Incorporated Endovascular stent graft
US7201770B2 (en) 2000-03-21 2007-04-10 Cordis Corporation Everting balloon stent delivery system having tapered leading edge
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
DE10017147C2 (en) 2000-04-03 2003-06-12 Wolfram Voelker Washable guidewire for a catheter
US6517573B1 (en) 2000-04-11 2003-02-11 Endovascular Technologies, Inc. Hook for attaching to a corporeal lumen and method of manufacturing
US6702843B1 (en) 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US6432130B1 (en) 2000-04-20 2002-08-13 Scimed Life Systems, Inc. Fully sheathed balloon expandable stent delivery system
US6942691B1 (en) 2000-04-27 2005-09-13 Timothy A. M. Chuter Modular bifurcated graft for endovascular aneurysm repair
US7232449B2 (en) 2000-04-29 2007-06-19 Medtronic, Inc. Components, systems and methods for forming anastomoses using magnetism or other coupling means
US7241300B2 (en) 2000-04-29 2007-07-10 Medtronic, Inc, Components, systems and methods for forming anastomoses using magnetism or other coupling means
US7666221B2 (en) 2000-05-01 2010-02-23 Endovascular Technologies, Inc. Lock modular graft component junctions
US6592612B1 (en) 2000-05-04 2003-07-15 Cardeon Corporation Method and apparatus for providing heat exchange within a catheter body
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
SE522805C2 (en) 2000-06-22 2004-03-09 Jan Otto Solem Stent Application System
US6482211B1 (en) 2000-07-31 2002-11-19 Advanced Cardiovascular Systems, Inc. Angulated stent delivery system and method of use
US6475166B1 (en) 2000-08-18 2002-11-05 Endovascular Technologies, Inc. Guidewire placement system for delivery of an aneurysm graft limb
DE60115712T2 (en) 2000-08-23 2006-09-07 Thoratec Corp., Pleasanton COATED TUBE TRANSPLANTS AND USE METHOD
NO312223B1 (en) 2000-09-05 2002-04-15 Leiv Eiriksson Nyfotek As Coated expandable stent
US6607552B1 (en) 2000-09-18 2003-08-19 Scimed Life Systems, Inc. Rolling socks
US6582394B1 (en) 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
WO2002039888A2 (en) 2000-11-15 2002-05-23 Endologix, Inc. Implantable vascular graft
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US7314483B2 (en) 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US6942692B2 (en) 2000-11-16 2005-09-13 Cordis Corporation Supra-renal prosthesis and renal artery bypass
US7229472B2 (en) 2000-11-16 2007-06-12 Cordis Corporation Thoracic aneurysm repair prosthesis and system
US6582460B1 (en) 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US20040106972A1 (en) 2000-11-20 2004-06-03 Deaton David H. Fenestrated endovascular graft
US6579308B1 (en) 2000-11-28 2003-06-17 Scimed Life Systems, Inc. Stent devices with detachable distal or proximal wires
US6645242B1 (en) 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
WO2002056799A2 (en) 2001-01-19 2002-07-25 Boston Scientific Limited Introducer for deployment of branched prosthesis
US6899727B2 (en) 2001-01-22 2005-05-31 Gore Enterprise Holdings, Inc. Deployment system for intraluminal devices
US6840950B2 (en) 2001-02-20 2005-01-11 Scimed Life Systems, Inc. Low profile emboli capture device
WO2002067653A2 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US20020123786A1 (en) 2001-03-02 2002-09-05 Ventrica, Inc. Methods and devices for bypassing an obstructed target vessel by placing the vessel in communication with a heart chamber containing blood
ATE272369T1 (en) 2001-03-27 2004-08-15 Cook William Europ VESSEL TRANSPLANT FOR THE AORTA
US7160318B2 (en) 2001-03-28 2007-01-09 Cook Incorporated Modular stent graft assembly and use thereof
US7175651B2 (en) 2001-07-06 2007-02-13 Andrew Kerr Stent/graft assembly
US20040073288A1 (en) 2001-07-06 2004-04-15 Andrew Kerr Stent/graft assembly
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US7105017B2 (en) 2001-04-11 2006-09-12 Andrew Kerr Axially-connected stent/graft assembly
US20040138734A1 (en) 2001-04-11 2004-07-15 Trivascular, Inc. Delivery system and method for bifurcated graft
US7201940B1 (en) 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
AU2002316254A1 (en) 2001-06-18 2003-01-02 Eva Corporation Prosthetic graft assembly and method of use
US6994722B2 (en) 2001-07-03 2006-02-07 Scimed Life Systems, Inc. Implant having improved fixation to a body lumen and method for implanting the same
US6887251B1 (en) 2001-07-12 2005-05-03 William D. Suval Method and apparatus for vessel harvesting
US6767359B2 (en) 2001-09-28 2004-07-27 Ethicon, Inc. Prosthesis for the repair of thoracic or abdominal aortic aneurysms and method therefor
US6981977B2 (en) 2001-10-26 2006-01-03 Atrium Medical Corporation Body fluid cartridge exchange platform device
AUPR847301A0 (en) 2001-10-26 2001-11-15 Cook Incorporated Endoluminal prostheses for curved lumens
US7029496B2 (en) 2001-11-07 2006-04-18 Scimed Life Systems, Inc. Interlocking endoluminal device
CN100479786C (en) 2001-11-28 2009-04-22 阿普特斯内系统公司 Endovascular aneurysm repair system
US7637932B2 (en) 2001-11-28 2009-12-29 Aptus Endosystems, Inc. Devices, systems, and methods for prosthesis delivery and implantation
US6929661B2 (en) 2001-11-28 2005-08-16 Aptus Endosystems, Inc. Multi-lumen prosthesis systems and methods
US20030176914A1 (en) 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
US7014653B2 (en) 2001-12-20 2006-03-21 Cleveland Clinic Foundation Furcated endovascular prosthesis
US7125464B2 (en) 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
US6723116B2 (en) * 2002-01-14 2004-04-20 Syde A. Taheri Exclusion of ascending/descending aorta and/or aortic arch aneurysm
US6939368B2 (en) 2002-01-17 2005-09-06 Scimed Life Systems, Inc. Delivery system for self expanding stents for use in bifurcated vessels
US7162302B2 (en) 2002-03-04 2007-01-09 Nanoset Llc Magnetically shielded assembly
EP1469794B1 (en) 2002-01-28 2009-03-18 OrbusNeich Medical, Inc. Flared ostial endoprosthesis and delivery system
US6790224B2 (en) 2002-02-04 2004-09-14 Scimed Life Systems, Inc. Medical devices
US7785340B2 (en) 2002-02-04 2010-08-31 Boston Scientific Scimed, Inc. Bonding sleeve for medical device
US7029494B2 (en) 2002-02-08 2006-04-18 Scimed Life Systems, Inc. Braided modular stent with hourglass-shaped interfaces
US7235095B2 (en) 2002-02-22 2007-06-26 Scimed Life Systems, Inc. Method and system for deploying multi-part endoluminal devices
US7004964B2 (en) 2002-02-22 2006-02-28 Scimed Life Systems, Inc. Apparatus and method for deployment of an endoluminal device
US7708771B2 (en) 2002-02-26 2010-05-04 Endovascular Technologies, Inc. Endovascular graft device and methods for attaching components thereof
US6989024B2 (en) 2002-02-28 2006-01-24 Counter Clockwise, Inc. Guidewire loaded stent for delivery through a catheter
WO2003082153A2 (en) * 2002-03-25 2003-10-09 Cook Incorporated Branched vessel prothesis
US6800065B2 (en) 2002-04-04 2004-10-05 Medtronic Ave, Inc. Catheter and guide wire exchange system
US7131991B2 (en) 2002-04-24 2006-11-07 Medtronic Vascular, Inc. Endoluminal prosthetic assembly and extension method
US7550002B2 (en) 2002-04-30 2009-06-23 Olympus Corporation Stent delivery device
US7122048B2 (en) 2002-05-03 2006-10-17 Scimed Life Systems, Inc. Hypotube endoluminal device
US7485141B2 (en) 2002-05-10 2009-02-03 Cordis Corporation Method of placing a tubular membrane on a structural frame
US7189256B2 (en) 2002-05-10 2007-03-13 Scimed Life Systems, Inc. Endoluminal device and system and method for detecting a change in pressure differential across an endoluminal device
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US6827706B2 (en) 2002-05-14 2004-12-07 Dennis R. Tollini Winged catheter securing tape
US7195648B2 (en) 2002-05-16 2007-03-27 Cordis Neurovascular, Inc. Intravascular stent device
DE10223232B4 (en) 2002-05-24 2004-06-03 OCé PRINTING SYSTEMS GMBH Method and device for conveying toner material from a storage container and the associated toner storage container
WO2003101347A1 (en) 2002-05-31 2003-12-11 Wilson-Cook Medical Inc. Stent introducer apparatus
US7261733B1 (en) 2002-06-07 2007-08-28 Endovascular Technologies, Inc. Endovascular graft with sensors design and attachment methods
US7264632B2 (en) 2002-06-07 2007-09-04 Medtronic Vascular, Inc. Controlled deployment delivery system
US20030236565A1 (en) 2002-06-21 2003-12-25 Dimatteo Kristian Implantable prosthesis
US6833003B2 (en) 2002-06-24 2004-12-21 Cordis Neurovascular Expandable stent and delivery system
CA2487131C (en) 2002-06-28 2011-04-26 Cook Incorporated Thoracic stent graft introducer
US6802859B1 (en) 2002-07-12 2004-10-12 Endovascular Technologies, Inc. Endovascular stent-graft with flexible bifurcation
US7122051B1 (en) 2002-07-12 2006-10-17 Endovascular Technologies, Inc. Universal length sizing and dock for modular bifurcated endovascular graft
US6761734B2 (en) * 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
AU2003272226A1 (en) 2002-08-20 2004-03-11 Cook Incorporated Stent graft with improved proximal end
WO2004017868A1 (en) 2002-08-23 2004-03-04 William A. Cook Australia Pty. Ltd. Asymmetric stent graft attachment
US7264631B2 (en) 2002-09-16 2007-09-04 Scimed Life Systems, Inc. Devices and methods for AAA management
US20040059406A1 (en) * 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
US7001422B2 (en) 2002-09-23 2006-02-21 Cordis Neurovascular, Inc Expandable stent and delivery system
US6994721B2 (en) 2002-10-21 2006-02-07 Israel Henry M Stent assembly
US20040098096A1 (en) 2002-10-22 2004-05-20 The University Of Miami Endograft device to inhibit endoleak and migration
US7144422B1 (en) 2002-11-13 2006-12-05 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making the same
US7527636B2 (en) 2002-11-14 2009-05-05 Medtronic Vascular, Inc Intraluminal guidewire with hydraulically collapsible self-expanding protection device
EP1560548A2 (en) 2002-11-15 2005-08-10 GMP Cardiac Care, Inc. Rail stent-graft for repairing abdominal aortic aneurysm
US6923829B2 (en) 2002-11-25 2005-08-02 Advanced Bio Prosthetic Surfaces, Ltd. Implantable expandable medical devices having regions of differential mechanical properties and methods of making same
DE03790040T1 (en) 2002-11-26 2007-01-04 Endologix, Inc., Irvine IMPLANT FILING SYSTEM
US9408731B2 (en) 2002-12-04 2016-08-09 Cook Medical Technologies Llc Method and device for treating aortic dissection
US6948017B2 (en) 2002-12-18 2005-09-20 International Business Machines Corporation Method and apparatus having dynamically scalable clock domains for selectively interconnecting subsystems on a synchronous bus
US7300460B2 (en) 2002-12-31 2007-11-27 Counter Clockwise, Inc. Bifurcated guidewire and methods of use
US6849084B2 (en) 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US7407509B2 (en) 2003-01-14 2008-08-05 The Cleveland Clinic Foundation Branched vessel endoluminal device with fenestration
EP3141215B1 (en) 2003-01-14 2021-03-24 The Cleveland Clinic Foundation Branched vessel endoluminal device
US9125733B2 (en) 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
US7004926B2 (en) 2003-02-25 2006-02-28 Cleveland Clinic Foundation Apparatus and method for auto-retroperfusion of a coronary vein
US7182735B2 (en) 2003-02-26 2007-02-27 Scimed Life Systems, Inc. Elongated intracorporal medical device
US7025779B2 (en) 2003-02-26 2006-04-11 Scimed Life Systems, Inc. Endoluminal device having enhanced affixation characteristics
DE602004024766D1 (en) 2003-03-12 2010-02-04 Cook Inc
US7220274B1 (en) 2003-03-21 2007-05-22 Quinn Stephen F Intravascular stent grafts and methods for deploying the same
US20050049672A1 (en) 2003-03-24 2005-03-03 Murphy Kieran P. Stent delivery system and method using a balloon for a self-expandable stent
ES2346059T3 (en) 2003-03-26 2010-10-08 Biosensors International Group Ltd. IMPLANT SUPPLY CATHETER WITH ELECTROLYTICALLY EROSIONABLE JOINTS.
US6984244B2 (en) 2003-03-27 2006-01-10 Endovascular Technologies, Inc. Delivery system for endoluminal implant
US8109987B2 (en) 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7972372B2 (en) 2003-04-14 2011-07-05 Tryton Medical, Inc. Kit for treating vascular bifurcations
US7591832B2 (en) 2003-04-24 2009-09-22 Medtronic, Inc. Expandable guide sheath and apparatus with distal protection and methods for use
US7438721B2 (en) 2003-04-25 2008-10-21 Medtronic Vascular, Inc. Universal modular stent graft assembly to accommodate flow to collateral branches
JP2006526464A (en) 2003-06-05 2006-11-24 フローメディカ,インコーポレイテッド System and method for performing bilateral intervention or diagnosis in a branched body lumen
US7105015B2 (en) 2003-06-17 2006-09-12 Medtronic Vascular, Inc. Method and system for treating an ostium of a side-branch vessel
US20050159758A1 (en) * 2003-07-25 2005-07-21 Lawrence Laks Ophthalmic irrigation-aspiration system
WO2005013855A2 (en) 2003-08-01 2005-02-17 Cook Urological, Incorporated Implant delivery device
US8784472B2 (en) 2003-08-15 2014-07-22 Boston Scientific Scimed, Inc. Clutch driven stent delivery system
US20050060025A1 (en) 2003-09-12 2005-03-17 Mackiewicz David A. Radiopaque markers for medical devices
US7651519B2 (en) 2003-09-16 2010-01-26 Cook Incorporated Prosthesis deployment system
US20050059923A1 (en) 2003-09-17 2005-03-17 Ricardo Gamboa Fenestration with intrinsic means of selective closure incorporated to a tubular body and used in interventional cardiovascular procedures
US20050059994A1 (en) 2003-09-17 2005-03-17 Steven Walak Fatigue resistant medical devices
US7559948B2 (en) 2003-09-17 2009-07-14 Ricardo Gamboa Fenestrated asymmetric intracardiac device for the completion of total cavopulmonary anastomosis through cardiac catheterization
US7122052B2 (en) 2003-09-29 2006-10-17 Stout Medical Group Lp Integral support stent graft assembly
US20050113693A1 (en) 2003-10-03 2005-05-26 Smith Stephen W. Kits including 3-D ultrasound imaging catheters, connectable deployable tools, and deployment devices for use in deployment of such tools
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
WO2005034803A2 (en) 2003-10-10 2005-04-21 The Cleveland Clinic Foundation Endoluminal prosthesis with interconnectable modules
RU2318474C1 (en) 2003-10-10 2008-03-10 Аршад КВАДРИ System and method for endoluminal prosthetics of branched vessels and those with bifurcations
WO2005034808A1 (en) 2003-10-10 2005-04-21 William A. Cook Australia Pty. Ltd. Fenestrated stent grafts
WO2005034809A1 (en) 2003-10-10 2005-04-21 William A. Cook Australia Pty. Ltd. Stent graft fenestration
US7553324B2 (en) 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
EP1691719B1 (en) 2003-10-14 2016-09-14 Cook Medical Technologies LLC Introducer for an iliac side branch device
EP1679095A4 (en) 2003-10-15 2011-08-03 Igaki Iryo Sekkei Kk Vessel stent feeder
US7695508B2 (en) 2003-10-16 2010-04-13 Minvasys Sa Catheter system for stenting bifurcated vessels
JP2007510491A (en) * 2003-11-03 2007-04-26 ビー−バルーン リミティド Treatment method of blood vessel bifurcation
US7144421B2 (en) 2003-11-06 2006-12-05 Carpenter Judith T Endovascular prosthesis, system and method
US9974674B2 (en) 2003-11-08 2018-05-22 Cook Medical Technologies Llc Branch vessel prothesis with positional indicator system and method
US20050131526A1 (en) 2003-12-10 2005-06-16 Shing-Chiu Wong Stent and balloon system for bifurcated vessels and lesions
AU2005206193B2 (en) 2004-01-20 2010-04-22 Cook Medical Technologies Llc Endoluminal stent graft with sutured attachment
US7632299B2 (en) 2004-01-22 2009-12-15 Boston Scientific Scimed, Inc. Medical devices
US20050240153A1 (en) 2004-01-23 2005-10-27 Opie John C Vascular sheath
US20050165480A1 (en) 2004-01-23 2005-07-28 Maybelle Jordan Endovascular treatment devices and methods
ATE455520T1 (en) 2004-01-27 2010-02-15 Med Inst Inc BARB FOR ATTACHING TO A MEDICAL PROSTHESIS
US20050177221A1 (en) 2004-02-06 2005-08-11 Mustapha Jihad A. Ostial stent
US7294145B2 (en) 2004-02-26 2007-11-13 Boston Scientific Scimed, Inc. Stent with differently coated inside and outside surfaces
US20060142838A1 (en) 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for loading and deploying same
US7753951B2 (en) 2004-03-04 2010-07-13 Y Med, Inc. Vessel treatment devices
US8007528B2 (en) 2004-03-17 2011-08-30 Boston Scientific Scimed, Inc. Bifurcated stent
US7402106B2 (en) 2004-03-24 2008-07-22 Bay Tek Games, Inc. Computer controlled car racing game
US20050216043A1 (en) 2004-03-26 2005-09-29 Blatter Duane D Stented end graft vessel device for anastomosis and related methods for percutaneous placement
US7674284B2 (en) 2004-03-31 2010-03-09 Cook Incorporated Endoluminal graft
EP1732470B1 (en) 2004-03-31 2010-05-26 Wilson-Cook Medical Inc. Stent introducer system
WO2005096989A1 (en) 2004-03-31 2005-10-20 Cook Incorporated Graft material and stent graft comprising extra collagen matrix and method of preparation
US8377110B2 (en) 2004-04-08 2013-02-19 Endologix, Inc. Endolumenal vascular prosthesis with neointima inhibiting polymeric sleeve
US7758633B2 (en) 2004-04-12 2010-07-20 Boston Scientific Scimed, Inc. Varied diameter vascular graft
CA2562463C (en) 2004-04-12 2014-03-25 Cook Incorporated Stent graft repair device
US7285130B2 (en) 2004-04-27 2007-10-23 Boston Scientific Scimed, Inc. Stent delivery system
CA2559540A1 (en) 2004-06-08 2005-12-29 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
WO2005122962A1 (en) 2004-06-15 2005-12-29 Cook Incorporated Stent graft with internal tube
EP1621161B1 (en) 2004-07-28 2009-11-18 Cordis Corporation Device having connected bifurcated legs to treat abdominal aortic aneurysm
CA2578287C (en) 2004-09-02 2013-06-25 Med Institute, Inc. Modular prosthesis and method for branch vessels
US8226706B2 (en) 2004-09-22 2012-07-24 Cook Medical Technologies Llc Stent graft with integral side arm
US7635383B2 (en) 2004-09-28 2009-12-22 Boston Scientific Scimed, Inc. Rotating stent delivery system for side branch access and protection and method of using same
US7699883B2 (en) 2004-10-25 2010-04-20 Myles Douglas Vascular graft and deployment system
US20060089704A1 (en) 2004-10-25 2006-04-27 Myles Douglas Vascular graft and deployment system
US7347868B2 (en) 2004-10-26 2008-03-25 Baronova, Inc. Medical device delivery catheter
CA2586018A1 (en) 2004-11-03 2006-07-13 Jacques Seguin Vascular graft and deployment system
US7959660B2 (en) 2004-12-15 2011-06-14 Cook Medical Technologies Llc Multifilar cable catheter
US20060217794A1 (en) 2004-12-16 2006-09-28 Carlos Ruiz Separable sheath and method for insertion of a medical device into a bodily vessel using a separable sheath
US20070150051A1 (en) 2005-01-10 2007-06-28 Duke Fiduciary, Llc Vascular implants and methods of fabricating the same
US8128680B2 (en) 2005-01-10 2012-03-06 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US20060155366A1 (en) 2005-01-10 2006-07-13 Laduca Robert Apparatus and method for deploying an implantable device within the body
US8287583B2 (en) 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US7306623B2 (en) 2005-01-13 2007-12-11 Medtronic Vascular, Inc. Branch vessel graft design and deployment method
CA2593670A1 (en) 2005-01-21 2006-07-27 Gen4 Llc. Modular stent graft employing bifurcated graft and leg locking stent elements
US7972354B2 (en) 2005-01-25 2011-07-05 Tyco Healthcare Group Lp Method and apparatus for impeding migration of an implanted occlusive structure
US20060173525A1 (en) 2005-02-02 2006-08-03 Percutaneous Systems, Inc. Methods and systems for deploying luminal prostheses
US7828837B2 (en) 2005-02-17 2010-11-09 Khoury Medical Devices, LLC. Vascular endograft
US20060224232A1 (en) 2005-04-01 2006-10-05 Trivascular, Inc. Hybrid modular endovascular graft
US7402168B2 (en) 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
US20060229699A1 (en) 2005-04-12 2006-10-12 Tehrani Nasser S Stent-stabilizing device
US20060233991A1 (en) 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20060233990A1 (en) 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20060259063A1 (en) 2005-04-25 2006-11-16 Bates Brian L Wire guides having distal anchoring devices
WO2006127825A1 (en) 2005-05-23 2006-11-30 Incept Llc Apparatus and methods for locating an ostium of a vessel
US20070027522A1 (en) 2005-06-14 2007-02-01 Chang Jean C Stent delivery and guidewire systems
CA2612914C (en) 2005-06-20 2010-12-07 Wilson-Cook Medical Inc. Single peel stent introducer apparatus
EP1901796B1 (en) * 2005-07-08 2020-11-11 C. R. Bard, Inc. Implantable medical device delivery apparatus
JP2009501567A (en) 2005-07-14 2009-01-22 カペラ・インコーポレイテッド Supply system and method for use in deployment of self-expanding intravascular devices
WO2007014088A2 (en) 2005-07-25 2007-02-01 Cook Incorporated Intraluminal prosthesis and stent
US8202311B2 (en) 2005-07-27 2012-06-19 Cook Medical Technologies Llc Stent/graft device and method for open surgical placement
AU2006280948B2 (en) 2005-08-18 2011-10-27 Cook Incorporated Assembly of stent grafts
US7582111B2 (en) 2005-08-22 2009-09-01 Incept, Llc Steep-taper flared stents and apparatus and methods for delivering them
US20070050016A1 (en) 2005-08-29 2007-03-01 Boston Scientific Scimed, Inc. Stent with expanding side branch geometry
CA2621223C (en) 2005-08-31 2011-06-21 Vance Products Incorporated Coaxial dilatation method for stent implantation
US8911491B2 (en) 2005-09-02 2014-12-16 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent branch arteries including branch artery flow lumen alignment
US7955374B2 (en) 2005-09-02 2011-06-07 Medtronic Vascular, Inc. Modular branch vessel stent-graft assembly
US8043366B2 (en) 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US8864808B2 (en) 2005-09-21 2014-10-21 The Cleveland Clinic Foundation Endoluminal delivery assembly
US8231669B2 (en) 2005-09-22 2012-07-31 Boston Scientific Scimed, Inc. Tether guided stent side branch
US20070067023A1 (en) 2005-09-22 2007-03-22 Boston Scientific Scimed, Inc. Tether guided stent side branch
US7670369B2 (en) 2005-10-13 2010-03-02 Cook Incorporated Endoluminal prosthesis
WO2007051183A1 (en) 2005-10-28 2007-05-03 Incept, Llc Flared stents and apparatus and methods for delivering them
US8343204B2 (en) 2005-10-31 2013-01-01 Cook Medical Technologies Llc Composite stent graft
US20070112420A1 (en) 2005-11-14 2007-05-17 Duke Fiduciary Llc Detachable therapeutic tube
US8845708B2 (en) 2005-11-16 2014-09-30 The Cleveland Clinic Foundation Stent graft introducer
US20070149166A1 (en) 2005-12-23 2007-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Voice call continuity for emergency calls
US8778008B2 (en) 2006-01-13 2014-07-15 Aga Medical Corporation Intravascular deliverable stent for reinforcement of vascular abnormalities
WO2007088549A2 (en) 2006-02-03 2007-08-09 Design & Performance - Cyprus Limited Implantable graft assembly and aneurysm treatment
US7914572B2 (en) 2006-02-13 2011-03-29 William A. Cook Australia Pty. Ltd. Side branch stent graft construction
WO2007095031A2 (en) 2006-02-13 2007-08-23 Bay Street Medical, Inc. System for delivering a stent
GB0603685D0 (en) 2006-02-23 2006-04-05 Angiomed Ag Vascular prosthesis for aneurysms, set of vascular prostheses, method for manufacturing a vascular prosthesis and method for inserting a vascular prosthesis
JP2007236472A (en) * 2006-03-06 2007-09-20 Terumo Corp Catheter
US20070225798A1 (en) 2006-03-23 2007-09-27 Daniel Gregorich Side branch stent
US20070225797A1 (en) 2006-03-24 2007-09-27 Medtronic Vascular, Inc. Prosthesis With Adjustable Opening for Side Branch Access
US9757260B2 (en) 2006-03-30 2017-09-12 Medtronic Vascular, Inc. Prosthesis with guide lumen
US9211206B2 (en) 2006-04-13 2015-12-15 Medtronic Vascular, Inc. Short handle for a long stent
US20070244547A1 (en) 2006-04-18 2007-10-18 Medtronic Vascular, Inc., A Delaware Corporation Device and Method for Controlling the Positioning of a Stent Graft Fenestration
US7678141B2 (en) 2006-04-18 2010-03-16 Medtronic Vascular, Inc. Stent graft having a flexible, articulable, and axially compressible branch graft
US9017361B2 (en) 2006-04-20 2015-04-28 Covidien Lp Occlusive implant and methods for hollow anatomical structure
US8828074B2 (en) 2006-04-21 2014-09-09 Medtronic Vascular, Inc. Stent graft having short tube graft for branch vessel
US20070260304A1 (en) 2006-05-02 2007-11-08 Daniel Gregorich Bifurcated stent with minimally circumferentially projected side branch
CA2653996A1 (en) 2006-06-02 2007-12-13 William Cook Europe Aps Multi-port delivery device
AU2007258592B2 (en) 2006-06-06 2012-10-25 Cook Incorporated Stent with a crush-resistant zone
US7771465B2 (en) 2006-06-23 2010-08-10 Gore Enterprise Holdings, Inc. Branched stent delivery system
US7824438B2 (en) 2006-07-06 2010-11-02 Robert Kipperman Method for placement of a stent assembly in a bifurcated vessel
US8029558B2 (en) 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
EP2043566B1 (en) 2006-07-24 2010-01-20 William, a Cook Australia Pty. Ltd. Medical device introducer with docking arrangement
US9044350B2 (en) 2006-08-21 2015-06-02 Boston Scientific Scimed, Inc. Alignment sheath apparatus and method
US20080065197A1 (en) 2006-09-12 2008-03-13 Boston Scientific Scimed, Inc. Bifurcated Stent
US20080071343A1 (en) 2006-09-15 2008-03-20 Kevin John Mayberry Multi-segmented graft deployment system
WO2008042270A1 (en) 2006-09-28 2008-04-10 Med Institute, Inc. Endovascular delivery device
US8608790B2 (en) 2006-10-06 2013-12-17 Boston Scientific Scimed, Inc. Bifurcation catheter and method
US8414611B2 (en) * 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Main vessel constraining side-branch access balloon
JP5109194B2 (en) 2006-11-07 2012-12-26 ウィリアム・エイ・クック・オーストラリア・プロプライエタリー・リミテッド Stent graft
US20080114444A1 (en) 2006-11-09 2008-05-15 Chun Ho Yu Modular stent graft and delivery system
US7615072B2 (en) 2006-11-14 2009-11-10 Medtronic Vascular, Inc. Endoluminal prosthesis
US20080133000A1 (en) 2006-12-01 2008-06-05 Medtronic Vascular, Inc. Bifurcated Stent With Variable Length Branches
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
DE102006062360A1 (en) 2006-12-22 2008-06-26 Aesculap Ag & Co. Kg Woven artificial organ for an aortic sinus has a first cylindrical section away from a heart, a second cylindrical section with a wider diameter to form a bulbus and a third cylindrical section near to a heart
DE102006062384A1 (en) 2006-12-22 2008-06-26 Aesculap Ag & Co. Kg Tubular vascular prosthesis for replacement of the ascending aorta
US8216298B2 (en) 2007-01-05 2012-07-10 Medtronic Vascular, Inc. Branch vessel graft method and delivery system
US20080172119A1 (en) 2007-01-12 2008-07-17 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US20080188921A1 (en) 2007-02-02 2008-08-07 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
US7815601B2 (en) 2007-02-05 2010-10-19 Boston Scientific Scimed, Inc. Rapid exchange enteral stent delivery system
JP2010517703A (en) 2007-02-09 2010-05-27 タヘリ ラドュカ エルエルシー Vascular graft and method for processing the same
CN101715329B (en) 2007-03-05 2012-11-14 恩多斯潘有限公司 Multi-component expandable supportive bifurcated endoluminal grafts and methods for using same
US20080294237A1 (en) 2007-04-04 2008-11-27 Jack Fa-De Chu Inflatable devices and methods to protect aneurysmal wall
US8133266B2 (en) 2007-04-12 2012-03-13 Medtronic Vascular, Inc. Expandable tip delivery system and method
US7806917B2 (en) 2007-04-17 2010-10-05 Medtronic Vascular, Inc. Stent graft fixation system and method
US8715336B2 (en) 2007-04-19 2014-05-06 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent to branch arteries
US8273115B2 (en) 2007-04-24 2012-09-25 W. L. Gore & Associates, Inc. Side branched endoluminal prostheses and methods of delivery thereof
US9358142B2 (en) 2007-04-24 2016-06-07 W. L. Gore & Associates, Inc. Catheter having guidewire channel
US8048147B2 (en) 2007-06-27 2011-11-01 Aga Medical Corporation Branched stent/graft and method of fabrication
DE102007031148A1 (en) 2007-06-27 2009-01-08 Aesculap Ag aortic sinus
WO2009020653A1 (en) 2007-08-08 2009-02-12 Cleveland Clinic Foundation Branched stent graft system
US20090088791A1 (en) 2007-10-02 2009-04-02 Boston Scientific Scimed, Inc. Carotid System Simplification
CN101917929A (en) 2007-10-04 2010-12-15 特里瓦斯库拉尔公司 Modular vascular graft for low profile percutaneous delivery
FR2923008B1 (en) 2007-10-26 2010-01-08 Thales Sa METHOD AND DEVICE FOR DISPLAYING FORECASTS ON A NAVIGATION PLAN
WO2009064806A1 (en) 2007-11-12 2009-05-22 Endologix, Inc. Method and agent for in-situ stabilization of vascular tissue
US20090164001A1 (en) 2007-12-21 2009-06-25 Biggs David P Socket For Fenestrated Tubular Prosthesis
US8221494B2 (en) 2008-02-22 2012-07-17 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US8100960B2 (en) * 2008-03-20 2012-01-24 Medtronic Vascular, Inc. Bloused stent-graft and fenestration method
US20090259296A1 (en) 2008-04-10 2009-10-15 Medtronic Vascular, Inc. Gate Cannulation Apparatus and Methods
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
US20090259290A1 (en) 2008-04-14 2009-10-15 Medtronic Vascular, Inc. Fenestration Segment Stent-Graft and Fenestration Method
US20090264985A1 (en) 2008-04-17 2009-10-22 Medtronic Vascular, Inc. Branch Vessel Suture Stent System and Method
US8206430B2 (en) * 2008-04-21 2012-06-26 Medtronic Vascular, Inc. Endolumenal sealant delivery apparatus and methods
US20090287145A1 (en) 2008-05-15 2009-11-19 Altura Interventional, Inc. Devices and methods for treatment of abdominal aortic aneurysms
EP2293838B1 (en) 2008-07-01 2012-08-08 Endologix, Inc. Catheter system
WO2010024849A1 (en) 2008-08-29 2010-03-04 Cook Incorporated Prosthesis with moveable fenestration
US20100261662A1 (en) 2009-04-09 2010-10-14 Endologix, Inc. Utilization of mural thrombus for local drug delivery into vascular tissue
WO2010127040A1 (en) * 2009-04-28 2010-11-04 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US8491646B2 (en) 2009-07-15 2013-07-23 Endologix, Inc. Stent graft
WO2011017123A2 (en) 2009-07-27 2011-02-10 Endologix, Inc. Stent graft
JP6261339B2 (en) 2010-11-02 2018-01-17 エンドロジックス、インク Apparatus and method for placement of a graft or graft system
WO2012118901A1 (en) 2011-03-01 2012-09-07 Endologix, Inc. Catheter system and methods of using same
EP2785277B1 (en) 2011-12-04 2017-04-05 Endospan Ltd. Branched stent-graft system
US20150173932A1 (en) 2012-08-13 2015-06-25 The United States Of America As Represented By The Secretary Of The Army Pelvic trauma device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030028233A1 (en) * 1996-11-04 2003-02-06 Vardi Gil M. Catheter with attached flexible side sheath
US20010003161A1 (en) * 1996-11-04 2001-06-07 Vardi Gil M. Catheter with side sheath
US20030167083A1 (en) * 1997-09-24 2003-09-04 Lashinski Robert D. Endolumenal prothesis and method of use in bifurcation regions of body lumens
US20020042650A1 (en) * 1998-01-14 2002-04-11 Advanced Stent Technologies, Inc. Extendible stent apparatus
US20010039445A1 (en) * 1998-09-10 2001-11-08 Percardia, Inc. Stent delivery system and method of use
US20020173835A1 (en) * 1999-06-04 2002-11-21 Advanced Stent Technologies, Llc Short sleeve stent delivery catheter and methods
US20010016767A1 (en) * 1999-10-05 2001-08-23 Wilson W. Stan Stent and catheter assembly and method for treating bifurcations
US20020052648A1 (en) * 2000-10-13 2002-05-02 Mcguckin James F. Covered stent with side branch
US20040049204A1 (en) * 2001-01-11 2004-03-11 Eran Harari System and corresponding method for deploying an implantable intraluminal device
US20020156518A1 (en) * 2001-03-23 2002-10-24 Hassan Tehrani Branched aortic arch stent graft and method of deployment
US20030236566A1 (en) * 2002-06-21 2003-12-25 Heuser Richard R. Stent system
US20040098084A1 (en) * 2002-09-02 2004-05-20 Cook Incorporated Branch grafting device and method
US20040230287A1 (en) * 2003-04-03 2004-11-18 William A. Cook Australia Pty Ltd Branch stent graft deployment and method
US20050131519A1 (en) * 2003-10-10 2005-06-16 William A. Cook Australia Pty. Ltd. Composite stent graft
US20050085845A1 (en) * 2003-10-16 2005-04-21 Minvasys, Sa Catheter system for stenting bifurcated vessels
US20060247760A1 (en) * 2005-04-29 2006-11-02 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent branch arteries

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9770261B2 (en) * 2004-10-28 2017-09-26 Nico Corporation Surgical access assembly and method of using same
US9387010B2 (en) * 2004-10-28 2016-07-12 Nico Corporation Surgical access assembly and method of using same
US11864793B2 (en) 2004-10-28 2024-01-09 Nico Corporation Surgical access assembly and method of using same
US9622777B2 (en) 2004-10-28 2017-04-18 Nico Corporation Surgical access assembly and method of using same
US20130204287A1 (en) * 2004-10-28 2013-08-08 Nico Corporation Surgical access assembly and method of using same
US10449340B2 (en) 2004-10-28 2019-10-22 Nico Corporation Surgical access assembly and method of using same
US11464539B2 (en) 2004-10-28 2022-10-11 Nico Corporation Surgical access assembly and method of using same
US20120071748A1 (en) * 2004-10-28 2012-03-22 Mark Joseph L Surgical access assembly and method of using same
US20140025162A1 (en) * 2007-04-24 2014-01-23 W.L. Gore & Associates, Inc. Side branched endoluminal prostheses and methods of delivery thereof
US9622886B2 (en) * 2007-04-24 2017-04-18 W. L. Gore & Associates, Inc. Side branched endoluminal prostheses and methods of delivery thereof
US9597208B2 (en) 2007-04-24 2017-03-21 W. L. Gore & Associates, Inc. Side branched endoluminal prostheses and methods of delivery thereof
US10245166B2 (en) 2008-02-22 2019-04-02 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US9700701B2 (en) 2008-07-01 2017-07-11 Endologix, Inc. Catheter system and methods of using same
US10512758B2 (en) 2008-07-01 2019-12-24 Endologix, Inc. Catheter system and methods of using same
US10603196B2 (en) 2009-04-28 2020-03-31 Endologix, Inc. Fenestrated prosthesis
US11406518B2 (en) 2010-11-02 2022-08-09 Endologix Llc Apparatus and method of placement of a graft or graft system
US10610395B2 (en) 2010-11-16 2020-04-07 W. L. Gore & Associates, Inc. Sleeves for expandable medical devices
US9592143B2 (en) 2010-11-16 2017-03-14 W. L. Gore & Associates, Inc. Sleeves for expandable medical devices
US9687374B2 (en) 2011-03-01 2017-06-27 Endologix, Inc. Catheter system and methods of using same
US9549835B2 (en) 2011-03-01 2017-01-24 Endologix, Inc. Catheter system and methods of using same
US20120226341A1 (en) * 2011-03-01 2012-09-06 Endologix, Inc. Catheter system and methods of using same
US10660775B2 (en) 2011-03-01 2020-05-26 Endologix, Inc. Catheter system and methods of using same
US8808350B2 (en) * 2011-03-01 2014-08-19 Endologix, Inc. Catheter system and methods of using same
US11284917B2 (en) 2011-10-24 2022-03-29 Nico Corporation Surgical access assembly and method of using same
US10307183B2 (en) 2011-10-24 2019-06-04 Nico Corporation Surgical access system with navigation element and method of using same
US9168162B2 (en) 2011-11-17 2015-10-27 Elgco, Llc Methods and apparatus for treating a type 2 endoleak from within an endoluminal stent
US9452069B2 (en) * 2012-04-27 2016-09-27 Medtronic Vascular, Inc. Reconfigurable stent-graft delivery system and method of use
US20130289696A1 (en) * 2012-04-27 2013-10-31 Medtronic Vascular, Inc. Reconfigurable stent-graft delivery system and method of use
US10314687B2 (en) 2013-11-18 2019-06-11 Claude Mialhe Chimney-graft stent
WO2015071135A1 (en) * 2013-11-18 2015-05-21 Claude Mialhe Chimney-graft stent
FR3013209A1 (en) * 2013-11-18 2015-05-22 Claude Mialhe ENDOVASCULAR PROSTHESIS FOR FITTING IN CHIMNEY
US10524944B1 (en) * 2014-01-29 2020-01-07 W. L. Gore & Associates, Inc. Delivery systems and methods of endoluminal delivery of branched vascular endoprosthetic devices
US11559417B1 (en) 2014-01-29 2023-01-24 W. L. Gore & Associates, Inc. Delivery systems and methods of endoluminal delivery of branched vascular endoprosthetic devices
US10179057B2 (en) * 2015-05-28 2019-01-15 George Kramer Tracheobronchial Y-stents, delivery catheters and delivery apparatus, and methods for delivering bronchial Y-stents
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US11147698B2 (en) 2016-09-15 2021-10-19 W. L. Gore & Associates, Inc. Staged deployment of expandable implant
US11324618B2 (en) 2017-02-28 2022-05-10 Cook Medical Technologies Llc Delivery system for a preloaded fenestrated device having a ratcheted wire release
US11382735B2 (en) 2017-11-27 2022-07-12 SB-Kawasumi Laboratories, Inc. Stent graft and stent graft indwelling device
EP3695808A4 (en) * 2017-11-27 2021-08-11 Kawasumi Laboratories, Inc. Stent graft and stent graft indwelling device
US11484423B2 (en) * 2018-08-21 2022-11-01 Cook Medical Technologies Llc Apparatuses to facilitate prosthesis placement
EP3906892A4 (en) * 2019-01-02 2022-11-23 Hangzhou Innocardiac Medical Technology Co., Ltd Intraoperative stent and use method therefor
CN109833112A (en) * 2019-01-02 2019-06-04 杭州嘉和众邦生物科技有限公司 Bracket and its application method in a kind of art

Also Published As

Publication number Publication date
US11406518B2 (en) 2022-08-09
JP6261339B2 (en) 2018-01-17
WO2012061526A2 (en) 2012-05-10
US20170128246A1 (en) 2017-05-11
WO2012061526A3 (en) 2012-08-23
EP2635241A2 (en) 2013-09-11
JP2014500056A (en) 2014-01-09
EP2635241B1 (en) 2019-02-20
US20230218416A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US20230218416A1 (en) Apparatus and method of placement of a graft or graft system
US10603196B2 (en) Fenestrated prosthesis
US9757263B2 (en) Stent graft and introducer assembly
US9925032B2 (en) Stent graft and introducer assembly
US8491646B2 (en) Stent graft
US8337546B2 (en) Mobile external coupling for branch vessel connection
EP2268227B1 (en) Bifurcated graft deployment systems
US9237960B2 (en) Apparatus for curving an implantable medical device in a lumen
JP5841120B2 (en) Preload wire for intraluminal devices
US20100268318A1 (en) Prosthesis for Antegrade Deployment
US9717611B2 (en) Stent graft and introducer assembly
US20110270379A1 (en) Mobile External Coupling for Branch Vessel Connection
JP2009532111A (en) Prosthesis with guide lumen
TW202241364A (en) Vascular and aortic grafts and deployment tool

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDOLOGIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAYBERRY, KEVIN;WELK, CRAIG;MONETTI, RICHARD;SIGNING DATES FROM 20120106 TO 20120117;REEL/FRAME:027563/0885

AS Assignment

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT,

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:042141/0354

Effective date: 20170403

Owner name: DEERFIELD ELGX REVOLVER, LLC, AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:042146/0454

Effective date: 20170403

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:042141/0354

Effective date: 20170403

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: TRIVASCULAR, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEERFIELD ELGX REVOLVER, LLC, AS AGENT;REEL/FRAME:045059/0971

Effective date: 20180112

Owner name: NELLIX, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEERFIELD ELGX REVOLVER, LLC, AS AGENT;REEL/FRAME:045059/0971

Effective date: 20180112

Owner name: ENDOLOGIX, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEERFIELD ELGX REVOLVER, LLC, AS AGENT;REEL/FRAME:045059/0971

Effective date: 20180112

AS Assignment

Owner name: DEERFIELD ELGX REVOLVER, LLC, AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:046762/0169

Effective date: 20180809

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA

Free format text: SECURITY INTEREST;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:052918/0530

Effective date: 20200224

AS Assignment

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX LLC (F/K/A ENDOLOGIX, INC.);NELLIX, INC.;TRIVASCULAR TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:053971/0052

Effective date: 20201001

Owner name: ENDOLOGIX LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:053971/0135

Effective date: 20201001