US20070238926A1 - Selectively rotatable shaft coupler - Google Patents
Selectively rotatable shaft coupler Download PDFInfo
- Publication number
- US20070238926A1 US20070238926A1 US11/809,696 US80969607A US2007238926A1 US 20070238926 A1 US20070238926 A1 US 20070238926A1 US 80969607 A US80969607 A US 80969607A US 2007238926 A1 US2007238926 A1 US 2007238926A1
- Authority
- US
- United States
- Prior art keywords
- shaft
- adapter
- collar
- housing
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00121—Connectors, fasteners and adapters, e.g. on the endoscope handle
- A61B1/00128—Connectors, fasteners and adapters, e.g. on the endoscope handle mechanical, e.g. for tubes or pipes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00039—Operational features of endoscopes provided with input arrangements for the user
- A61B1/00042—Operational features of endoscopes provided with input arrangements for the user for mechanical operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00121—Connectors, fasteners and adapters, e.g. on the endoscope handle
- A61B1/00124—Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/32—Articulated members
- Y10T403/32114—Articulated members including static joint
- Y10T403/32213—Articulate joint is a swivel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/32—Articulated members
- Y10T403/32975—Rotatable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/32—Articulated members
- Y10T403/32975—Rotatable
- Y10T403/32983—Rod in socket
Definitions
- the present invention relates to shaft couplers for medical devices in general and to rotatable shaft couplers in particular.
- Endoscopes are also commonly used to perform surgical, therapeutic, diagnostic or other medical procedures under direct visualization.
- a conventional imaging endoscope used for such procedures generally include an illuminating mechanism such as a fiber optic light guide connected to a proximal source of light, and an imaging means such as an imaging light guide to carry an image to a remote camera or eye piece or a miniature video camera within the endoscope itself.
- most endoscopes include one or more working channels through which medical devices such as biopsy forceps, snares, fulguration probes and other tools may be passed in order to perform a procedure at a desired location in the patient's body.
- an operator control module is typically provided that allows a user to control and steer the operation of the endoscope.
- the endoscope is guided through the patient's tract or canal until an opening at the distal end of the endoscope is proximate to the area of the patient's body which is to be examined or receive treatment. At this point, the endoscope allows other components, such as a catheter, to access the targeted area.
- an endoscope shaft with low torque transfer characteristic allows for shaft rotation by allowing the shaft to twist around its central axis; however, excessive rotation of the shaft can damage the cables, tubes and electrical wires within the shaft.
- an endoscope shaft that is not allowed to rotate at all may loop over itself during clinical use, causing damage to the internal components as well as discomfort to the patient.
- the present invention is a system for rotatably coupling a shaft to a housing.
- the system includes a selectively rotatable shaft coupler that connects a shaft to a housing that allows a limited amount of shaft rotation, but which sets a restriction on the maximum amount of shaft rotation.
- the rotatable shaft coupler comprises a shaft adapter having a rotatably securable hollow body with a first end adapted to be secured to an end of a shaft and a second end adapted to be rotatably attached to a collar.
- a collar extends from a housing that rotatably receives the shaft adapter.
- At least one stop element is provided that is capable of limiting the rotation of the shaft adapter with respect to the housing.
- the present invention provides a selectively rotatable shaft coupler that attaches an endoscope shaft to a housing and maintains the effective length of the endoscope shaft during rotation.
- the rotatable shaft coupler comprises a shaft adapter having a hollow body with a first end adapted to be secured to an end of a shaft, a second end adapted to be slidably connected to a rotary adapter, and a circular flange adjacent to the first end.
- a collar extends from the housing with a first end adapted to receive the flange on the shaft adapter and a threaded lumen with a first stop element and a second stop element, wherein the first stop element and the second stop element are spaced apart from one another at a predetermined width inside the collar.
- a rotary adapter is provided with a hollow body having a first end adapted to slidably connect to the second end of the shaft adapter and a second end comprising an engagement element.
- the engagement element rides inside the threads of the collar, and rotation of the rotary adapter in the threaded collar causes incremental movement of the rotary adapter along the collar lumen until either the engagement element contacts the first stop element on the collar, limiting further rotation in the clockwise direction, or until the engagement element contacts the second stop element on the collar, limiting further rotation in the counterclockwise direction.
- the present invention provides a shaft coupling system for connecting a proximal end of an endoscope shaft to a housing or other structure without the use of adhesive or epoxies.
- the shaft coupling system comprises a housing with a first end adapted to receive a shaft retainer and a shaft retainer comprising a plurality of retention barbs capable of securing an end of an endoscope shaft.
- FIG. 1 is a diagram illustrating a selectively rotatable shaft coupler in accordance with one embodiment of the invention
- FIG. 2 shows a cross-sectional view of a shaft adapter that is included in the shaft coupler shown in FIG. 1 ;
- FIG. 3A is a diagram illustrating the selectively rotatable shaft adapter of FIG. 2 shown in a position of maximum rotation in a first direction;
- FIG. 3B shows the selectively rotatable shaft adapter of FIG. 2 shown in a position of minimal endoscope shaft rotation
- FIG. 3C shows the selectively rotatable shaft adapter of FIG. 2 coupled to an endoscope shaft showing maximum rotation in a second direction;
- FIG. 4 illustrates another embodiment of a selectively rotatable shaft coupler in accordance with the present invention
- FIG. 5 illustrates another embodiment of a selectively rotatable shaft coupler that maintains the effective length of an endoscope shaft during rotation, in accordance with another embodiment of the present invention
- FIG. 6 shows a perspective view of the interface between the tangs and notches on interconnecting members of the shaft adapter shown in FIG. 5 ;
- FIG. 7 illustrates yet another embodiment of a selectively rotatable shaft coupler that maintains the effective length of the endoscope shaft during rotation, in accordance with the present invention
- FIG. 8A shows a perspective view of a shaft adapter having grooves along the longitudinal axis in accordance with one embodiment of the present invention
- FIG. 8B shows a perspective view of the interface between the shaft adapter having grooves and a rotary adapter having corresponding ribs, in accordance with one embodiment of the present invention
- FIG. 9 shows a selectively rotatable shaft coupler having a non-rotatable shaft adapter in accordance with one embodiment of the present invention.
- FIG. 10A illustrates a shaft retainer having inward and outward facing barbs, in accordance with another embodiment of the invention
- FIG. 10B shows a perspective view of the shaft retainer having inward and outward facing barbs in accordance with one embodiment of the invention
- FIG. 11A illustrates an alternative embodiment of a shaft retainer having anti-rotation bosses coupled to a breakout box housing
- FIG. 11B shows a perspective view of the shaft retainer having anti-rotation bosses in accordance with one embodiment of the invention.
- the present invention is a system for rotatably coupling a shaft to a housing.
- the system comprises a selectively rotatable shaft coupler that allows a limited amount of device (e.g., endoscope) shaft rotation, but which sets a restriction on the maximum amount of shaft rotation in order to provide increased manipulation of the endoscope while protecting the internal components of the shaft.
- device e.g., endoscope
- the present invention is described as allowing rotation of an endoscope, it will be appreciated that the invention is useful with catheters, sheaths or other devices that are inserted into a patient, wherein selective rotation of a shaft with respect to another part of the device is desired.
- the shaft coupler system of the present invention comprises at least one selectively rotatable shaft adapter that connects the endoscope shaft to a connector that is secured to the device to which the shaft is to be rotatably connected.
- the shaft coupler system comprises one selectively rotatable shaft coupler positioned either proximal an endoscope connector or at a breakout box as described in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and a continuation-in-part patent application entitled VIDEO ENDOSCOPE, filed Sep. 30, 2004, and identified by Attorney Docket No. BSEN-1-23550, are herein incorporated by reference.
- the shaft coupler system comprises a first rotatable shaft coupler positioned at one end of the shaft and a second rotatable shaft coupler positioned at the other end of the shaft to provide an increased rotational range.
- FIG. 1 illustrates an exemplary embodiment of a selectively rotatable shaft coupler 100 for connecting an endoscope shaft (not shown) to a proximal connector housing 102 .
- the proximal connector housing 102 is rigidly secured to a retainer wall of another object to which. the endoscope is to be rotatably secured.
- the proximal connector housing has a threaded bore 104 into which a corresponding threaded end 110 of a shaft adapter 708 is inserted.
- the proximal connector also includes an outwardly extended threaded nipple 106 having a smooth bore 107 therein.
- the proximal connector housing 102 may be secured to the retainer wall by a variety of means such as an adhesive, or with any suitable fastener, or may be integrally formed with the retainer wall.
- the depth of the bore 107 determines the maximum range of endoscope shaft rotation.
- a shaft adapter 108 has a distal threaded end 110 that is threaded within the connector housing 102 and a proximal end that is secured to an end of the endoscope. Between the distal and proximal ends of the shaft adapter is a circular flange 114 . A cap 116 is threaded onto the nipple 106 to close the flange 114 in the bore 107 .
- the shaft coupler 100 comprising the shaft adapter 108 and the connector housing 102 may be packaged as a preformed unit that is removably attached to a housing or to any desired object with any suitable connection means.
- FIG. 2 shows a cross-sectional view of the shaft adapter 108 .
- the shaft adapter 108 has a hollow body with a first end 110 adapted to be threaded with the proximal connector 102 and a second end 112 adapted to be secured to the end of an endoscope.
- the shaft adapter body has a central hollow lumen through which control cables and other elements of the endoscope are passed to allow electrical, irrigation and aspiration connections to extend into the endoscope.
- a counter-bored detail 120 inside the second end 112 of the shaft adapter 108 receives an end of an endoscope shaft.
- the second end of the shaft adapter may be sized to fit inside an end of an endoscope shaft and secure the shaft by any suitable means, such as with the use of an adhesive and/or any suitable fastener.
- FIGS. 3 A-C illustrate the rotational movement of the shaft adapter 108 in the proximal connector housing 102 when coupled to a rotating endoscope shaft 122 .
- an end of an endoscope shaft 122 is first secured to the proximal end of the shaft adapter, causing the shaft adapter 108 to rotate along with the endoscope shaft 122 .
- Rotation of the shaft 122 in a first direction causes axial movement of the shaft adapter 108 until the flange 114 is moved towards the bottom of the bore 107 by the threads on the distal end 110 of the shaft adapter 108 .
- a first direction e.g. clockwise
- the flange 114 is in an intermediate position in the cylindrical bore 107 , indicating a midway rotation of the endoscope shaft 122 .
- rotation in a full counterclockwise direction causes axial movement of the shaft adapter 108 towards the cap 116 until the flange 114 in the bore 107 contacts the interior surface of the cap 116 .
- the depth of the bore 107 and the width of the flange 114 and/or the pitch of the threads that secure the shaft adapter 108 to the proximal connector housing 102 may be adjusted to allow for various amounts of rotational motion of the shaft.
- FIG. 4 is a partial cutaway view of another embodiment of a selectively rotatable shaft coupler 120 attached to, for example, a proximal connector housing 124 .
- an internally threaded collar 126 extends from, or is attached to the proximal connector housing 124 .
- a shaft adapter 132 is secured to an end of an endoscope shaft 136 and an engagement element such as a pin 134 is sized to be received in the grooves 128 of the threaded collar 126 .
- the engagement pin 134 or other equivalent engagement element on the shaft adapter 132 rides in the grooves 128 of the threaded collar 126 , causing the shaft adapter 132 to move axially in and out of the collar during rotation of the endoscope shaft 136 .
- at least two stop elements 130 A,B are positioned to extend into. the threads 128 of the threaded collar to prevent movement of the engagement pin 134 . The location of each of the two stop pins 130 A,B in the threads determines the range of endoscope shaft rotation.
- the stop elements 130 A,B may be tightened onto the shaft adapter 132 , thereby locking the endoscope shaft 136 into a desired orientation during clinical use.
- the embodiment shown uses two stop pins 130 A,B, it will be appreciated that a single stop pin could be used by limiting the depth of the threads in the collar 126 .
- stop elements may comprise any suitable structure capable of preventing the rotation of the shaft adapter 132 in the collar 126 , such as blocks, tabs and the like.
- a suitable engagement element is not limited to a pin, but also includes any structure capable of allowing rotation in the collar 126 such as tabs, blocks, a smaller threaded section, and the like.
- FIG. 5 is a partial cutaway view of another embodiment of a selectively rotatable shaft coupler 140 that extends from, or is attached to, for example, a proximal connector housing 142 in accordance with this aspect of the invention.
- an internally threaded collar 144 extends from and is integrally formed with, or is attached to the housing 142 .
- An endoscope shaft 170 is secured to a first end of a shaft adapter 150 .
- a second end of the shaft adapter 150 has alternating tangs and notches that slidably engage a corresponding set of tangs and notches on a rotary adapter 156 .
- a circular flange 18 O on the shaft adapter 150 is rotatably fitted in an annular slot 182 that extends around the interior of the collar 144 .
- An engagement pin 158 on the rotary adapter 156 rides in the threaded grooves 146 of the collar 144 and causes the rotary adapter 156 to move axially in and out of the collar 144 during rotation of the endoscope shaft 170 .
- stop elements 148 A,B extend into the grooves 146 of the threaded collar 144 , to prevent further rotation of the engagement pin 158 .
- the location of each of the two stop pins 148 A,B determines the range of endoscope shaft rotation.
- FIG. 6 illustrates the interlocking elements on the shaft adapter 150 and the rotary adapter 156 in the selectively rotatable shaft coupler 140 .
- the first end of the shaft adapter 150 is adapted to be secured to the endoscope shaft 170 and the second end has two opposing tangs 152 A,B alternating with two opposing notches 154 A,B.
- the rotary adapter 156 has a corresponding set of tangs 162 A,B and notches 160 A,B which fit within the notches 154 A,B and tangs 152 A,B of the shaft adapter 150 , respectively.
- the rotary adapter 156 As the rotary adapter 156 is rotated in the threaded collar 144 , the rotary adapter and the shaft adapter separate or are faced closer together because the shaft adapter is held by the circular flange 182 in the annular slot.
- the length of the tangs and notches are chosen to allow continued slideable engagement through the desired range of endoscope shaft rotation.
- the rotation of the endoscope shaft 170 causes the flange 180 on the shaft adapter 150 to rotate in the annular slot 182 in the collar 144 .
- the tangs on the shaft adapter engage in the notches of the rotary adapter, causing the rotary adapter 156 to rotate along with the endoscope shaft 170 .
- the engagement pin 158 moves along the grooves 146 of the threaded collar 144 , causing the rotary adapter to move axially away from the shaft adapter until the engagement pin 158 contacts the stop pin 148 A, thereby preventing further clockwise rotation.
- the rotary adapter moves toward the shaft adapter until the stop pin 148 B prevents further rotation. Due to the circular flange 182 of the shaft adapter being retrained in the annular slot, the shaft adapter is not able to move axially in the channel during rotation of the shaft. Therefore, the effective length of the endoscope shaft does not change during rotation.
- This aspect of the invention advantageously allows the axial position of the endoscope tip to be maintained in the body during rotation. Furthermore, the components in the endoscope shaft do not contract or stretch during rotation.
- FIG. 5 uses two stop pins 148 A,B, it will be appreciated that a single stop pin 148 B could be used by limiting the depth of the threads in the collar 144 such that the engagement pin 158 on the rotary adapter 156 cannot ride in the threaded grooves and thereby limiting rotation of the endoscope shaft 170 .
- FIG. 7 is a partial cutaway drawing illustrating an alternative embodiment of a selectively rotatable shaft coupler 180 that attaches an endoscope shaft to a collar 190 .
- the shaft coupler 180 maintains the effective length of the endoscope shaft during rotation.
- a shaft adapter 182 has a set of grooves 184 cut along its longitudinal axis that slidably engage a corresponding set of ribs 194 on a rotary adapter 192 .
- An engagement pin 198 on the rotary adapter rides in the threaded grooves of the collar 190 and a stop 199 at the end thereof prevents further axial movement of the rotary adapter, thereby limiting rotation.
- FIG. 8A illustrates the longitudinal grooves 184 on the shaft adapter 182 .
- FIG. 8B illustrates the rotary adapter 192 with ribs 194 slidably engaged in the grooves 184 on the shaft adapter 182 .
- the endoscope shaft 196 is corrugated to provide a secure attachment to the shaft adapter 182 .
- a circular flange 185 allows the rotary adapter 182 to rotate in the collar (see FIG. 7 ), but prevents axial movement of the shaft adapter 182 , thereby maintaining the effective length of the endoscope shaft during rotation.
- the rotatable shaft coupler 180 is preferably assembled by forming the collar 190 in two halves that are fitted over the rotary adapter 192 and the shaft adapter 182 .
- the present invention provides a selectively rotatable shaft coupler 200 having a shaft adapter with a first end non-rotatably fixed to a housing or other object and a second end adapted to rotatably receive an endoscope shaft.
- the coupler 200 comprises a shaft adapter 202 with a first end 203 that is non-rotatably attached to a housing 206 and a second end 205 sized to rotatably receive an end of a shaft 216 .
- the shaft adapter 202 has a threaded section 204 midway between the first end 203 and the second end 205 .
- a set of ratchets 208 Positioned between the threaded section 204 and the second end 205 is a set of ratchets 208 capable of functioning as one-way stop elements as further described below.
- a collar 210 non-rotatably secured over an end of a shaft 216 .
- the collar 210 has a stop pin extending inwardly toward the shaft 217 and located at a position chosen to stop rotation of the shaft 216 .
- the shaft 216 has a threaded section 212 at or near its proximate end, the threaded section capable of screwing onto the threaded section 204 on the shaft adapter 202 . In operation, the collar 212 is secured over the end of the shaft 216 .
- the shaft 216 is then screwed onto the shaft adapter 202 over the ratchets 208 in a clockwise direction.
- the shaft 216 can be rotated in a clockwise direction until the end of the shaft 216 and/or collar 210 contacts the wall of the housing 206 . Rotation of the shaft 216 in a counterclockwise direction is permitted until the stop element 214 on the collar 210 contacts the ratchets 208 , thereby preventing further counterclockwise rotation.
- the present invention provides a shaft coupling system for connecting a proximal end of an endoscope shaft 302 to a housing 310 or other structure without the use of adhesive or epoxies.
- a representative embodiment of the shaft coupling system 300 is shown in FIG. 10A .
- an endoscope shaft 302 is coupled to the housing 310 via a shaft retainer 304 that is press-fit into the housing 310 .
- the shaft retainer 304 has a cylindrical hollow shape that is sized to fit into the housing 310 .
- the outward surface of the shaft retainer 304 has a plurality of outward extending barbs 308 capable of securing the shaft retainer 304 into the housing 310 .
- the inward surface of the shaft retainer body has a plurality of inward rearwardly extending barbs 306 that are capable of securing the endoscope shaft 302 into the shaft retainer.
- the shaft retainer 304 may additionally have a circular flange at one end to ease the insertion of the endoscope shaft 302 .
- the shaft retainer 304 may be made out of metal and be stamped to form the plurality of inward rearwardly and outwardly extending barbs. The stamped shaft retainer 304 may then be press-fit into the housing 310 . In operation, the outwardly extending barbs 308 on the shaft retainer 304 secure the retainer ring in the housing without the need for adhesives or epoxies. Once the shaft retainer is secured in the housing, the endoscope shaft 302 is fitted into the housing via the inward rearwardly extending barbs 306 on the shaft retainer 304 .
- FIG. 11A An alternative embodiment of a shaft coupling system 320 is shown in FIG. 11A .
- an endoscope shaft 322 is secured in a shaft retainer 324 having one or more anti-rotation bosses.
- the shaft retainer 324 is fitted into a housing 330 having pockets or slots that are sized to receive the one or more anti-rotation bosses.
- the shaft retainer 324 has two anti-rotation bosses 326 A, 326 B that protrude from the outward facing side of the shaft retainer body.
- the inward facing side of the shaft retainer body comprises a plurality of inward rearwardly extending barbs 328 capable of securing the endoscope shaft 322 .
- the shaft retainer with anti-rotation bosses 324 may be injection molded and fitted onto the proximal end of an endoscope shaft, wherein the inwardly extending barbs 328 secure the endoscope shaft without the need for adhesives or epoxies.
- the shaft retainer secured to the endoscope shaft may then be assembled with two halves of the housing, the one or more anti-rotation bosses fitted into preformed pockets in the housing.
- the coupling system 320 thereby allows for a secured connection between the endoscope shaft and a housing without allowing rotation or pull-out of the endoscope shaft and without the need for adhesives or epoxies.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
Abstract
In one aspect, the present invention is a system for rotatably coupling a shaft to a housing. The system includes a selectively rotatable shaft coupler that connects a shaft to a housing that allows a limited amount of shaft rotation, but which sets a restriction on the maximum amount of shaft rotation. In another aspect, the invention provides a shaft coupling system for connecting a proximal end of an endoscope shaft to a housing without the use of adhesive or epoxies.
Description
- The present invention relates to shaft couplers for medical devices in general and to rotatable shaft couplers in particular.
- It has become well established that there are major health benefits from regular endoscopic examinations of a patient's internal structures such as the alimentary canals and airways, e.g., the esophagus, stomach, lungs, colon, uterus, urethra, kidney, and other organ systems. Endoscopes are also commonly used to perform surgical, therapeutic, diagnostic or other medical procedures under direct visualization. A conventional imaging endoscope used for such procedures generally include an illuminating mechanism such as a fiber optic light guide connected to a proximal source of light, and an imaging means such as an imaging light guide to carry an image to a remote camera or eye piece or a miniature video camera within the endoscope itself. In addition, most endoscopes include one or more working channels through which medical devices such as biopsy forceps, snares, fulguration probes and other tools may be passed in order to perform a procedure at a desired location in the patient's body.
- In connection with the endoscope, an operator control module is typically provided that allows a user to control and steer the operation of the endoscope. The endoscope is guided through the patient's tract or canal until an opening at the distal end of the endoscope is proximate to the area of the patient's body which is to be examined or receive treatment. At this point, the endoscope allows other components, such as a catheter, to access the targeted area.
- In many endoscope procedures, the physician or operator needs to rotate an endoscope shaft in order to obtain the desired images, to obtain a desired position of the distal tip, or to perform a desired surgical function (e.g. polyp removal, drainage, and the like). An endoscope shaft with low torque transfer characteristic allows for shaft rotation by allowing the shaft to twist around its central axis; however, excessive rotation of the shaft can damage the cables, tubes and electrical wires within the shaft. On the other hand, an endoscope shaft that is not allowed to rotate at all may loop over itself during clinical use, causing damage to the internal components as well as discomfort to the patient.
- To address these and other problems, in one aspect the present invention is a system for rotatably coupling a shaft to a housing. The system includes a selectively rotatable shaft coupler that connects a shaft to a housing that allows a limited amount of shaft rotation, but which sets a restriction on the maximum amount of shaft rotation. The rotatable shaft coupler comprises a shaft adapter having a rotatably securable hollow body with a first end adapted to be secured to an end of a shaft and a second end adapted to be rotatably attached to a collar. A collar extends from a housing that rotatably receives the shaft adapter. At least one stop element is provided that is capable of limiting the rotation of the shaft adapter with respect to the housing.
- In another aspect, the present invention provides a selectively rotatable shaft coupler that attaches an endoscope shaft to a housing and maintains the effective length of the endoscope shaft during rotation. The rotatable shaft coupler comprises a shaft adapter having a hollow body with a first end adapted to be secured to an end of a shaft, a second end adapted to be slidably connected to a rotary adapter, and a circular flange adjacent to the first end. A collar extends from the housing with a first end adapted to receive the flange on the shaft adapter and a threaded lumen with a first stop element and a second stop element, wherein the first stop element and the second stop element are spaced apart from one another at a predetermined width inside the collar. A rotary adapter is provided with a hollow body having a first end adapted to slidably connect to the second end of the shaft adapter and a second end comprising an engagement element. The engagement element rides inside the threads of the collar, and rotation of the rotary adapter in the threaded collar causes incremental movement of the rotary adapter along the collar lumen until either the engagement element contacts the first stop element on the collar, limiting further rotation in the clockwise direction, or until the engagement element contacts the second stop element on the collar, limiting further rotation in the counterclockwise direction.
- In another aspect, the present invention provides a shaft coupling system for connecting a proximal end of an endoscope shaft to a housing or other structure without the use of adhesive or epoxies. The shaft coupling system comprises a housing with a first end adapted to receive a shaft retainer and a shaft retainer comprising a plurality of retention barbs capable of securing an end of an endoscope shaft.
- The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is a diagram illustrating a selectively rotatable shaft coupler in accordance with one embodiment of the invention; -
FIG. 2 shows a cross-sectional view of a shaft adapter that is included in the shaft coupler shown inFIG. 1 ; -
FIG. 3A is a diagram illustrating the selectively rotatable shaft adapter ofFIG. 2 shown in a position of maximum rotation in a first direction; -
FIG. 3B shows the selectively rotatable shaft adapter ofFIG. 2 shown in a position of minimal endoscope shaft rotation; -
FIG. 3C shows the selectively rotatable shaft adapter ofFIG. 2 coupled to an endoscope shaft showing maximum rotation in a second direction; -
FIG. 4 illustrates another embodiment of a selectively rotatable shaft coupler in accordance with the present invention; -
FIG. 5 illustrates another embodiment of a selectively rotatable shaft coupler that maintains the effective length of an endoscope shaft during rotation, in accordance with another embodiment of the present invention; -
FIG. 6 shows a perspective view of the interface between the tangs and notches on interconnecting members of the shaft adapter shown inFIG. 5 ; -
FIG. 7 illustrates yet another embodiment of a selectively rotatable shaft coupler that maintains the effective length of the endoscope shaft during rotation, in accordance with the present invention; -
FIG. 8A shows a perspective view of a shaft adapter having grooves along the longitudinal axis in accordance with one embodiment of the present invention; -
FIG. 8B shows a perspective view of the interface between the shaft adapter having grooves and a rotary adapter having corresponding ribs, in accordance with one embodiment of the present invention; -
FIG. 9 shows a selectively rotatable shaft coupler having a non-rotatable shaft adapter in accordance with one embodiment of the present invention; -
FIG. 10A illustrates a shaft retainer having inward and outward facing barbs, in accordance with another embodiment of the invention; -
FIG. 10B shows a perspective view of the shaft retainer having inward and outward facing barbs in accordance with one embodiment of the invention; -
FIG. 11A illustrates an alternative embodiment of a shaft retainer having anti-rotation bosses coupled to a breakout box housing; and -
FIG. 11B shows a perspective view of the shaft retainer having anti-rotation bosses in accordance with one embodiment of the invention. - To address the problems associated with excessive endoscope shaft rotation, the present invention is a system for rotatably coupling a shaft to a housing. The system comprises a selectively rotatable shaft coupler that allows a limited amount of device (e.g., endoscope) shaft rotation, but which sets a restriction on the maximum amount of shaft rotation in order to provide increased manipulation of the endoscope while protecting the internal components of the shaft. Although the present invention is described as allowing rotation of an endoscope, it will be appreciated that the invention is useful with catheters, sheaths or other devices that are inserted into a patient, wherein selective rotation of a shaft with respect to another part of the device is desired.
- The shaft coupler system of the present invention comprises at least one selectively rotatable shaft adapter that connects the endoscope shaft to a connector that is secured to the device to which the shaft is to be rotatably connected. In one embodiment, the shaft coupler system comprises one selectively rotatable shaft coupler positioned either proximal an endoscope connector or at a breakout box as described in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and a continuation-in-part patent application entitled VIDEO ENDOSCOPE, filed Sep. 30, 2004, and identified by Attorney Docket No. BSEN-1-23550, are herein incorporated by reference. In another embodiment, the shaft coupler system comprises a first rotatable shaft coupler positioned at one end of the shaft and a second rotatable shaft coupler positioned at the other end of the shaft to provide an increased rotational range.
-
FIG. 1 illustrates an exemplary embodiment of a selectivelyrotatable shaft coupler 100 for connecting an endoscope shaft (not shown) to aproximal connector housing 102. In the embodiment shown, theproximal connector housing 102 is rigidly secured to a retainer wall of another object to which. the endoscope is to be rotatably secured. The proximal connector housing has a threadedbore 104 into which a corresponding threadedend 110 of a shaft adapter 708 is inserted. The proximal connector also includes an outwardly extended threadednipple 106 having asmooth bore 107 therein. Theproximal connector housing 102 may be secured to the retainer wall by a variety of means such as an adhesive, or with any suitable fastener, or may be integrally formed with the retainer wall. The depth of thebore 107 determines the maximum range of endoscope shaft rotation. - A
shaft adapter 108 has a distal threadedend 110 that is threaded within theconnector housing 102 and a proximal end that is secured to an end of the endoscope. Between the distal and proximal ends of the shaft adapter is acircular flange 114. Acap 116 is threaded onto thenipple 106 to close theflange 114 in thebore 107. Theshaft coupler 100 comprising theshaft adapter 108 and theconnector housing 102 may be packaged as a preformed unit that is removably attached to a housing or to any desired object with any suitable connection means. -
FIG. 2 shows a cross-sectional view of theshaft adapter 108. As shown, theshaft adapter 108 has a hollow body with afirst end 110 adapted to be threaded with theproximal connector 102 and asecond end 112 adapted to be secured to the end of an endoscope. As shown, the shaft adapter body has a central hollow lumen through which control cables and other elements of the endoscope are passed to allow electrical, irrigation and aspiration connections to extend into the endoscope. Acounter-bored detail 120 inside thesecond end 112 of theshaft adapter 108 receives an end of an endoscope shaft. Alternatively, the second end of the shaft adapter may be sized to fit inside an end of an endoscope shaft and secure the shaft by any suitable means, such as with the use of an adhesive and/or any suitable fastener. - FIGS. 3A-C illustrate the rotational movement of the
shaft adapter 108 in theproximal connector housing 102 when coupled to arotating endoscope shaft 122. In operation, as shown inFIG. 3A , an end of anendoscope shaft 122 is first secured to the proximal end of the shaft adapter, causing theshaft adapter 108 to rotate along with theendoscope shaft 122. Rotation of theshaft 122 in a first direction (e.g. clockwise) causes axial movement of theshaft adapter 108 until theflange 114 is moved towards the bottom of thebore 107 by the threads on thedistal end 110 of theshaft adapter 108. As shown inFIG. 3B , theflange 114 is in an intermediate position in thecylindrical bore 107, indicating a midway rotation of theendoscope shaft 122. Finally, as shown inFIG. 3C , rotation in a full counterclockwise direction causes axial movement of theshaft adapter 108 towards thecap 116 until theflange 114 in thebore 107 contacts the interior surface of thecap 116. The depth of thebore 107 and the width of theflange 114 and/or the pitch of the threads that secure theshaft adapter 108 to theproximal connector housing 102, may be adjusted to allow for various amounts of rotational motion of the shaft. -
FIG. 4 is a partial cutaway view of another embodiment of a selectivelyrotatable shaft coupler 120 attached to, for example, aproximal connector housing 124. As shown, an internally threaded collar 126 extends from, or is attached to theproximal connector housing 124. Ashaft adapter 132 is secured to an end of anendoscope shaft 136 and an engagement element such as apin 134 is sized to be received in thegrooves 128 of the threaded collar 126. In operation, theengagement pin 134, or other equivalent engagement element on theshaft adapter 132 rides in thegrooves 128 of the threaded collar 126, causing theshaft adapter 132 to move axially in and out of the collar during rotation of theendoscope shaft 136. To limit rotation of the shaft, at least twostop elements 130A,B are positioned to extend into. thethreads 128 of the threaded collar to prevent movement of theengagement pin 134. The location of each of the twostop pins 130A,B in the threads determines the range of endoscope shaft rotation. - In some embodiments, the
stop elements 130A,B may be tightened onto theshaft adapter 132, thereby locking theendoscope shaft 136 into a desired orientation during clinical use. Although the embodiment shown uses twostop pins 130A,B, it will be appreciated that a single stop pin could be used by limiting the depth of the threads in the collar 126. - Similarly, although the embodiment shown in
FIG. 4 is described with reference to stop elements as pins, those of skill in the art will understand that the stop elements may comprise any suitable structure capable of preventing the rotation of theshaft adapter 132 in the collar 126, such as blocks, tabs and the like. Similarly, those of skill in the art will understand that a suitable engagement element is not limited to a pin, but also includes any structure capable of allowing rotation in the collar 126 such as tabs, blocks, a smaller threaded section, and the like. - In another aspect, the present invention provides a selectively rotatable shaft coupler that attaches an endoscope shaft to a housing and maintains the effective length of the endoscope shaft during rotation.
FIG. 5 is a partial cutaway view of another embodiment of a selectivelyrotatable shaft coupler 140 that extends from, or is attached to, for example, aproximal connector housing 142 in accordance with this aspect of the invention. As shown, an internally threadedcollar 144 extends from and is integrally formed with, or is attached to thehousing 142. Anendoscope shaft 170 is secured to a first end of ashaft adapter 150. A second end of theshaft adapter 150 has alternating tangs and notches that slidably engage a corresponding set of tangs and notches on arotary adapter 156. A circular flange 18O on theshaft adapter 150 is rotatably fitted in anannular slot 182 that extends around the interior of thecollar 144. - An
engagement pin 158 on therotary adapter 156 rides in the threadedgrooves 146 of thecollar 144 and causes therotary adapter 156 to move axially in and out of thecollar 144 during rotation of theendoscope shaft 170. To limit rotation of the shaft, stopelements 148A,B extend into thegrooves 146 of the threadedcollar 144, to prevent further rotation of theengagement pin 158. The location of each of the twostop pins 148A,B determines the range of endoscope shaft rotation. -
FIG. 6 illustrates the interlocking elements on theshaft adapter 150 and therotary adapter 156 in the selectivelyrotatable shaft coupler 140. As shown, the first end of theshaft adapter 150 is adapted to be secured to theendoscope shaft 170 and the second end has two opposingtangs 152A,B alternating with two opposingnotches 154A,B. Therotary adapter 156 has a corresponding set oftangs 162A,B andnotches 160A,B which fit within thenotches 154A,B and tangs 152A,B of theshaft adapter 150, respectively. As therotary adapter 156 is rotated in the threadedcollar 144, the rotary adapter and the shaft adapter separate or are faced closer together because the shaft adapter is held by thecircular flange 182 in the annular slot. The length of the tangs and notches are chosen to allow continued slideable engagement through the desired range of endoscope shaft rotation. - Referring now to
FIG. 5 , in operation, the rotation of theendoscope shaft 170 causes theflange 180 on theshaft adapter 150 to rotate in theannular slot 182 in thecollar 144. During rotation of theshaft adapter 150, the tangs on the shaft adapter engage in the notches of the rotary adapter, causing therotary adapter 156 to rotate along with theendoscope shaft 170. As therotary adapter 156 rotates in a first direction (e.g. Clockwise), theengagement pin 158 moves along thegrooves 146 of the threadedcollar 144, causing the rotary adapter to move axially away from the shaft adapter until theengagement pin 158 contacts thestop pin 148A, thereby preventing further clockwise rotation. Similarly, when the rotation is in the counterclockwise direction, the rotary adapter moves toward the shaft adapter until thestop pin 148B prevents further rotation. Due to thecircular flange 182 of the shaft adapter being retrained in the annular slot, the shaft adapter is not able to move axially in the channel during rotation of the shaft. Therefore, the effective length of the endoscope shaft does not change during rotation. This aspect of the invention advantageously allows the axial position of the endoscope tip to be maintained in the body during rotation. Furthermore, the components in the endoscope shaft do not contract or stretch during rotation. - Although the embodiment shown in
FIG. 5 uses twostop pins 148A,B, it will be appreciated that asingle stop pin 148B could be used by limiting the depth of the threads in thecollar 144 such that theengagement pin 158 on therotary adapter 156 cannot ride in the threaded grooves and thereby limiting rotation of theendoscope shaft 170. -
FIG. 7 is a partial cutaway drawing illustrating an alternative embodiment of a selectivelyrotatable shaft coupler 180 that attaches an endoscope shaft to acollar 190. Theshaft coupler 180 maintains the effective length of the endoscope shaft during rotation. In the embodiment shown inFIG. 7 , ashaft adapter 182 has a set ofgrooves 184 cut along its longitudinal axis that slidably engage a corresponding set ofribs 194 on arotary adapter 192. Anengagement pin 198 on the rotary adapter rides in the threaded grooves of thecollar 190 and astop 199 at the end thereof prevents further axial movement of the rotary adapter, thereby limiting rotation. Thelongitudinal grooves 184 on theshaft adapter 182 are best shown inFIG. 8A .FIG. 8B illustrates therotary adapter 192 withribs 194 slidably engaged in thegrooves 184 on theshaft adapter 182. In the embodiment shown, theendoscope shaft 196 is corrugated to provide a secure attachment to theshaft adapter 182. Acircular flange 185 allows therotary adapter 182 to rotate in the collar (seeFIG. 7 ), but prevents axial movement of theshaft adapter 182, thereby maintaining the effective length of the endoscope shaft during rotation. Therotatable shaft coupler 180 is preferably assembled by forming thecollar 190 in two halves that are fitted over therotary adapter 192 and theshaft adapter 182. - In another aspect, the present invention provides a selectively
rotatable shaft coupler 200 having a shaft adapter with a first end non-rotatably fixed to a housing or other object and a second end adapted to rotatably receive an endoscope shaft. As shown inFIG. 9 , thecoupler 200 comprises ashaft adapter 202 with afirst end 203 that is non-rotatably attached to ahousing 206 and asecond end 205 sized to rotatably receive an end of ashaft 216. Theshaft adapter 202 has a threadedsection 204 midway between thefirst end 203 and thesecond end 205. Positioned between the threadedsection 204 and thesecond end 205 is a set ofratchets 208 capable of functioning as one-way stop elements as further described below. Also included in thecoupler 200 is acollar 210 non-rotatably secured over an end of ashaft 216. Thecollar 210 has a stop pin extending inwardly toward the shaft 217 and located at a position chosen to stop rotation of theshaft 216. Theshaft 216 has a threadedsection 212 at or near its proximate end, the threaded section capable of screwing onto the threadedsection 204 on theshaft adapter 202. In operation, thecollar 212 is secured over the end of theshaft 216. Theshaft 216 is then screwed onto theshaft adapter 202 over theratchets 208 in a clockwise direction. Once the threadedsection 212 of theshaft 216 is screwed onto the threadedsection 204 of theshaft adapter 202, theshaft 216 can be rotated in a clockwise direction until the end of theshaft 216 and/orcollar 210 contacts the wall of thehousing 206. Rotation of theshaft 216 in a counterclockwise direction is permitted until thestop element 214 on thecollar 210 contacts theratchets 208, thereby preventing further counterclockwise rotation. - In another aspect, the present invention provides a shaft coupling system for connecting a proximal end of an
endoscope shaft 302 to ahousing 310 or other structure without the use of adhesive or epoxies. A representative embodiment of theshaft coupling system 300 is shown inFIG. 10A . As shown, anendoscope shaft 302 is coupled to thehousing 310 via ashaft retainer 304 that is press-fit into thehousing 310. As shown more clearly inFIG. 10B , theshaft retainer 304 has a cylindrical hollow shape that is sized to fit into thehousing 310. The outward surface of theshaft retainer 304 has a plurality of outward extendingbarbs 308 capable of securing theshaft retainer 304 into thehousing 310. The inward surface of the shaft retainer body has a plurality of inwardrearwardly extending barbs 306 that are capable of securing theendoscope shaft 302 into the shaft retainer. Theshaft retainer 304 may additionally have a circular flange at one end to ease the insertion of theendoscope shaft 302. - The
shaft retainer 304 may be made out of metal and be stamped to form the plurality of inward rearwardly and outwardly extending barbs. The stampedshaft retainer 304 may then be press-fit into thehousing 310. In operation, the outwardly extendingbarbs 308 on theshaft retainer 304 secure the retainer ring in the housing without the need for adhesives or epoxies. Once the shaft retainer is secured in the housing, theendoscope shaft 302 is fitted into the housing via the inwardrearwardly extending barbs 306 on theshaft retainer 304. - An alternative embodiment of a
shaft coupling system 320 is shown inFIG. 11A . In this embodiment, anendoscope shaft 322 is secured in ashaft retainer 324 having one or more anti-rotation bosses. Theshaft retainer 324 is fitted into ahousing 330 having pockets or slots that are sized to receive the one or more anti-rotation bosses. As shown more clearly inFIG. 11B ., theshaft retainer 324 has twoanti-rotation bosses rearwardly extending barbs 328 capable of securing theendoscope shaft 322. The shaft retainer withanti-rotation bosses 324 may be injection molded and fitted onto the proximal end of an endoscope shaft, wherein the inwardly extendingbarbs 328 secure the endoscope shaft without the need for adhesives or epoxies. The shaft retainer secured to the endoscope shaft may then be assembled with two halves of the housing, the one or more anti-rotation bosses fitted into preformed pockets in the housing. Thecoupling system 320 thereby allows for a secured connection between the endoscope shaft and a housing without allowing rotation or pull-out of the endoscope shaft and without the need for adhesives or epoxies. - While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention.
Claims (19)
1. A system for rotatably coupling a shaft to a housing, the system comprising:
i) a shaft adapter having a rotatably securable hollow body with a first end adapted to be secured to an end of a shaft and a second end adapted to be rotatably attached to a collar;
ii) a collar extending from the housing that rotatably receives the shaft adapter; and
iii) at least one stop element capable of limiting the rotation of the shaft adapter with respect to the housing.
2. The system of claim 1 , wherein the stop element is located on the shaft adapter.
3. The system of claim 2 , wherein the stop element is a circular flange.
4. The system of claim 3 , further comprising a bore within the collar and a cap secured over the bore such that the flange is movable in the bore by rotation of the shaft.
5. The system of claim 1 , wherein at least a portion of the collar is threaded.
6. The system of claim 5 , comprising at least two stop elements located on the collar, wherein the space between the stop elements determines the range of shaft rotation.
7. The system of claim 6 , further comprising an engagement element located on the shaft adapter body, wherein the engagement element rides in the grooves of the threaded collar, wherein rotation of the shaft adapter in the collar causes axial movement of the shaft adapter along the collar until the engagement element contacts the first or second stop element.
8. The system of claim 5 , comprising at least one stop element located on the collar, limiting rotation of the endoscope shaft in a first direction and wherein the depth of the threads on the collar limits rotation of the shaft in a second direction.
9. A system for rotatably coupling a shaft to a housing while maintaining the effective length of the shaft during rotation, the system comprising:
(i) a shaft adapter having a hollow body with a first end adapted to be secured to an end of a shaft, a second end adapted to be slidably connected to a rotary adapter, and a circular flange adjacent to the first end;
(ii) a collar extending from the housing with a first end adapted to receive the flange on the shaft adapter and a threaded lumen with a first stop element and a second stop element, wherein the first stop element and the second stop element are spaced apart from one another at a predetermined width inside the collar; and
(iii) a rotary adapter having a hollow body with a first end adapted to slidably connect to the second end of the shaft adapter and a second end comprising an engagement element, wherein the engagement element rides inside the threads of the collar, wherein rotation of the rotary adapter in the threaded collar causes incremental movement of the rotary adapter along the collar lumen until either the engagement element contacts the first stop element on the collar, limiting further rotation in the clockwise direction, or until the engagement element contacts the second stop element on the collar, limiting further rotation in the counterclockwise direction, wherein the effective length of the shaft is maintained during rotation.
10. The system of claim 9 , wherein the shaft adapter and the rotary adapter are slidably connected with interfacing tangs and notches.
11. The system of claim 9 , wherein the shaft adapter and the rotary adapter are slidably connected with interfacing grooves and ribs.
12. A system for rotatably coupling a shaft to a housing while maintaining the effective length of the shaft during rotation, the system comprising:
a shaft having a proximal end and a distal end and one or more lumens therein;
a housing;
a threaded collar attached to the housing;
means for rotatably coupling the shaft to the housing; and
means for selectively rotating the shaft with respect to the housing, wherein the effective length of the shaft is maintained during rotation.
13. The system of claim 12 , wherein the means for rotatably coupling the shaft to the housing includes a shaft adapter sized to rotate in the threaded collar, the shaft adapter having a first end adapted to be secured to the proximal end of the shaft, a second end adapted to slidably connect to a rotary adapter and means to prevent axial motion of the shaft.
14. The system of claim 13 , wherein the means for selectively rotating the shaft with respect to the housing includes a rotary adapter intermediate the shaft adapter and the housing having a hollow body with a first end adapted to slidably connect to the second end of the shaft adapter, wherein the shaft adapter and the rotary adapter cooperate to limit rotation of the shaft.
15. The system of claim 14 , wherein the rotary adapter comprises an engagement element adapted to engage the threads of the collar.
16. The system of claim 15 , wherein the threaded collar has at least one stop element.
17. A system for rotatably coupling a shaft to a housing, the system comprising:
a shaft;
a housing;
a shaft adapter and
a rotary adapter;
wherein the housing comprises a threaded collar extending therefrom;
wherein the shaft adapter and rotary adapter are sized to fit inside the collar;
wherein a first end of the shaft adapter is rotatably attached to one end of the shaft;
wherein the rotary adapter is intermediate the shaft adapter and the housing and wherein the shaft adapter and rotary adapter cooperate to maintaining the effective length of the shaft.
18. A shaft coupling system for coupling an endoscope shaft to a housing, the system comprising:
(i) a housing with a first end adapted to receive a shaft retainer;
(ii) the shaft retainer comprising a plurality of retention barbs capable of securing an end of the endoscope shaft.
19. The system of claim 18 , wherein the plurality of retention barbs include inward rearwardly extending barbs that are capable of securing an end of the endoscope shaft and outwardly extending barbs capable of securing the shaft retainer in the housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/809,696 US20070238926A1 (en) | 2004-09-30 | 2007-06-01 | Selectively rotatable shaft coupler |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/955,960 US7241263B2 (en) | 2004-09-30 | 2004-09-30 | Selectively rotatable shaft coupler |
US11/809,696 US20070238926A1 (en) | 2004-09-30 | 2007-06-01 | Selectively rotatable shaft coupler |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/955,960 Continuation US7241263B2 (en) | 2004-09-30 | 2004-09-30 | Selectively rotatable shaft coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070238926A1 true US20070238926A1 (en) | 2007-10-11 |
Family
ID=35539432
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/955,960 Expired - Fee Related US7241263B2 (en) | 2004-09-30 | 2004-09-30 | Selectively rotatable shaft coupler |
US11/238,153 Expired - Fee Related US8197400B2 (en) | 2004-09-30 | 2005-09-28 | Selectively rotatable shaft coupler |
US11/809,696 Abandoned US20070238926A1 (en) | 2004-09-30 | 2007-06-01 | Selectively rotatable shaft coupler |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/955,960 Expired - Fee Related US7241263B2 (en) | 2004-09-30 | 2004-09-30 | Selectively rotatable shaft coupler |
US11/238,153 Expired - Fee Related US8197400B2 (en) | 2004-09-30 | 2005-09-28 | Selectively rotatable shaft coupler |
Country Status (2)
Country | Link |
---|---|
US (3) | US7241263B2 (en) |
WO (1) | WO2006039261A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080249536A1 (en) * | 2007-02-15 | 2008-10-09 | Hansen Medical, Inc. | Interface assembly for controlling orientation of robotically controlled medical instrument |
US20100268023A1 (en) * | 2009-03-20 | 2010-10-21 | Rudi Campo | Medical Instrument, In Particular Hysteroscope |
US9585547B2 (en) * | 2014-11-24 | 2017-03-07 | Gyrus Acmi, Inc. | Adjustable endoscope sheath |
Families Citing this family (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8840547B2 (en) * | 2002-09-20 | 2014-09-23 | Syntheon, Llc | Flexible, selectively rotatable tissue retractor and method for using the retractor |
FR2860135B1 (en) * | 2003-09-30 | 2005-12-02 | Alain Queyroux | FIBROSCOPE WITH SEPARABLE INSERTION TUBE |
US8075476B2 (en) * | 2004-07-27 | 2011-12-13 | Intuitive Surgical Operations, Inc. | Cannula system and method of use |
US7828720B2 (en) * | 2005-04-20 | 2010-11-09 | Nico Corporation | Surgical adapter |
US8203132B2 (en) * | 2005-09-08 | 2012-06-19 | Carestream Health, Inc. | Apparatus and method for imaging ionizing radiation |
US8041409B2 (en) * | 2005-09-08 | 2011-10-18 | Carestream Health, Inc. | Method and apparatus for multi-modal imaging |
US8660631B2 (en) * | 2005-09-08 | 2014-02-25 | Bruker Biospin Corporation | Torsional support apparatus and method for craniocaudal rotation of animals |
US20100220836A1 (en) | 2005-09-08 | 2010-09-02 | Feke Gilbert D | Apparatus and method for multi-modal imaging |
US8050735B2 (en) * | 2005-09-08 | 2011-11-01 | Carestream Health, Inc. | Apparatus and method for multi-modal imaging |
US20090281383A1 (en) * | 2005-09-08 | 2009-11-12 | Rao Papineni | Apparatus and method for external fluorescence imaging of internal regions of interest in a small animal using an endoscope for internal illumination |
JP4703724B2 (en) | 2006-04-28 | 2011-06-15 | ゼルティック エステティックス インコーポレイテッド | Antifreeze for use in therapeutic devices with improved cooling of subcutaneous lipid-rich cells |
US7753843B2 (en) | 2006-05-09 | 2010-07-13 | Boston Scientific Scimed, Inc. | Medical device positioning system |
DE102006030521A1 (en) | 2006-07-01 | 2008-01-03 | Karl Storz Gmbh & Co.Kg | Method for producing an endoscope and such endoscope |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US20100286477A1 (en) * | 2009-05-08 | 2010-11-11 | Ouyang Xiaolong | Internal tissue visualization system comprising a rf-shielded visualization sensor module |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
US8285390B2 (en) | 2007-08-21 | 2012-10-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
WO2009059112A2 (en) * | 2007-10-31 | 2009-05-07 | Schlage Lock Company | Motor drive mechanism for an electronic deadbolt lock |
JP5618835B2 (en) * | 2008-02-05 | 2014-11-05 | クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc | Adapter system comprising an adapter for directing an elongated medical device relative to an endoscope |
JP5336760B2 (en) * | 2008-05-01 | 2013-11-06 | オリンパスメディカルシステムズ株式会社 | Endoscope system |
US20100022824A1 (en) | 2008-07-22 | 2010-01-28 | Cybulski James S | Tissue modification devices and methods of using the same |
US8197154B2 (en) * | 2008-10-31 | 2012-06-12 | Midmark Corporation | Articulating joint for dental or medical lights |
US20100121139A1 (en) | 2008-11-12 | 2010-05-13 | Ouyang Xiaolong | Minimally Invasive Imaging Systems |
US20110009694A1 (en) * | 2009-07-10 | 2011-01-13 | Schultz Eric E | Hand-held minimally dimensioned diagnostic device having integrated distal end visualization |
BRPI1014623B1 (en) | 2009-04-30 | 2020-01-07 | Zeltiq Aesthetics, Inc. | SYSTEM FOR TREATING SUBCUTANEOUS CELLS RICH IN LIPIDS IN A TARGET AREA |
US9101268B2 (en) | 2009-06-18 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US11864734B2 (en) | 2009-06-18 | 2024-01-09 | Endochoice, Inc. | Multi-camera endoscope |
US9872609B2 (en) | 2009-06-18 | 2018-01-23 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US9492063B2 (en) | 2009-06-18 | 2016-11-15 | Endochoice Innovation Center Ltd. | Multi-viewing element endoscope |
US11547275B2 (en) | 2009-06-18 | 2023-01-10 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US9402533B2 (en) | 2011-03-07 | 2016-08-02 | Endochoice Innovation Center Ltd. | Endoscope circuit board assembly |
US8926502B2 (en) | 2011-03-07 | 2015-01-06 | Endochoice, Inc. | Multi camera endoscope having a side service channel |
US9554692B2 (en) | 2009-06-18 | 2017-01-31 | EndoChoice Innovation Ctr. Ltd. | Multi-camera endoscope |
US10524645B2 (en) | 2009-06-18 | 2020-01-07 | Endochoice, Inc. | Method and system for eliminating image motion blur in a multiple viewing elements endoscope |
US9101287B2 (en) | 2011-03-07 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi camera endoscope assembly having multiple working channels |
US9706903B2 (en) | 2009-06-18 | 2017-07-18 | Endochoice, Inc. | Multiple viewing elements endoscope system with modular imaging units |
US9901244B2 (en) | 2009-06-18 | 2018-02-27 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
US9642513B2 (en) | 2009-06-18 | 2017-05-09 | Endochoice Inc. | Compact multi-viewing element endoscope system |
US9713417B2 (en) | 2009-06-18 | 2017-07-25 | Endochoice, Inc. | Image capture assembly for use in a multi-viewing elements endoscope |
US11278190B2 (en) | 2009-06-18 | 2022-03-22 | Endochoice, Inc. | Multi-viewing element endoscope |
US10165929B2 (en) | 2009-06-18 | 2019-01-01 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US9474440B2 (en) | 2009-06-18 | 2016-10-25 | Endochoice, Inc. | Endoscope tip position visual indicator and heat management system |
US8363097B2 (en) * | 2009-07-23 | 2013-01-29 | Smith & Nephew, Inc. | Endoscopic imaging system |
DE102009056107B4 (en) * | 2009-11-30 | 2020-08-06 | Karl Storz Se & Co. Kg | Adapter device for coupling an endoscope to a medical device |
US10080486B2 (en) | 2010-09-20 | 2018-09-25 | Endochoice Innovation Center Ltd. | Multi-camera endoscope having fluid channels |
US9560953B2 (en) | 2010-09-20 | 2017-02-07 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
CA2811742A1 (en) * | 2010-10-27 | 2012-05-03 | Gore Enterprise Holdings, Inc. | Imaging catheter with rotatable array |
JP5944912B2 (en) | 2010-10-28 | 2016-07-05 | エンドチョイス イノベーション センター リミテッド | Optical system for multi-sensor endoscope |
US10663714B2 (en) | 2010-10-28 | 2020-05-26 | Endochoice, Inc. | Optical system for an endoscope |
US9706908B2 (en) | 2010-10-28 | 2017-07-18 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
US9814374B2 (en) | 2010-12-09 | 2017-11-14 | Endochoice Innovation Center Ltd. | Flexible electronic circuit board for a multi-camera endoscope |
US9320419B2 (en) | 2010-12-09 | 2016-04-26 | Endochoice Innovation Center Ltd. | Fluid channeling component of a multi-camera endoscope |
US11889986B2 (en) | 2010-12-09 | 2024-02-06 | Endochoice, Inc. | Flexible electronic circuit board for a multi-camera endoscope |
CN103491854B (en) | 2011-02-07 | 2016-08-24 | 恩多卓斯创新中心有限公司 | Multicomponent cover for many cameras endoscope |
US10517464B2 (en) | 2011-02-07 | 2019-12-31 | Endochoice, Inc. | Multi-element cover for a multi-camera endoscope |
DE102011011086A1 (en) * | 2011-02-11 | 2012-08-16 | Olympus Winter & Ibe Gmbh | Endoscope with a shaft tube and head piece for it |
DE102011106386A1 (en) * | 2011-07-04 | 2013-01-10 | Karl Storz Gmbh & Co. Kg | Endoscopic arrangement |
EP3659491A1 (en) | 2011-12-13 | 2020-06-03 | EndoChoice Innovation Center Ltd. | Removable tip endoscope |
CA2798729A1 (en) * | 2011-12-13 | 2013-06-13 | Peermedical Ltd. | Rotatable connector for an endoscope |
US9560954B2 (en) | 2012-07-24 | 2017-02-07 | Endochoice, Inc. | Connector for use with endoscope |
US9986899B2 (en) | 2013-03-28 | 2018-06-05 | Endochoice, Inc. | Manifold for a multiple viewing elements endoscope |
US9636003B2 (en) | 2013-06-28 | 2017-05-02 | Endochoice, Inc. | Multi-jet distributor for an endoscope |
US9993142B2 (en) | 2013-03-28 | 2018-06-12 | Endochoice, Inc. | Fluid distribution device for a multiple viewing elements endoscope |
US10595714B2 (en) | 2013-03-28 | 2020-03-24 | Endochoice, Inc. | Multi-jet controller for an endoscope |
US9667935B2 (en) | 2013-05-07 | 2017-05-30 | Endochoice, Inc. | White balance enclosure for use with a multi-viewing elements endoscope |
US10499794B2 (en) | 2013-05-09 | 2019-12-10 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
WO2015023772A1 (en) | 2013-08-15 | 2015-02-19 | Intuitive Surgical Operations, Inc. | Surgical instruments and methods of cleaning surgical instruments |
US9943218B2 (en) * | 2013-10-01 | 2018-04-17 | Endochoice, Inc. | Endoscope having a supply cable attached thereto |
US9968242B2 (en) | 2013-12-18 | 2018-05-15 | Endochoice, Inc. | Suction control unit for an endoscope having two working channels |
US11547446B2 (en) | 2014-01-13 | 2023-01-10 | Trice Medical, Inc. | Fully integrated, disposable tissue visualization device |
US9370295B2 (en) | 2014-01-13 | 2016-06-21 | Trice Medical, Inc. | Fully integrated, disposable tissue visualization device |
US10342579B2 (en) | 2014-01-13 | 2019-07-09 | Trice Medical, Inc. | Fully integrated, disposable tissue visualization device |
WO2015112747A2 (en) | 2014-01-22 | 2015-07-30 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
ES2974899T3 (en) | 2014-01-31 | 2024-07-02 | Zeltiq Aesthetics Inc | Compositions and treatment systems for enhanced cooling of lipid-rich tissue |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
CN111436896A (en) | 2014-07-21 | 2020-07-24 | 恩多巧爱思股份有限公司 | Multi-focus and multi-camera endoscope system |
US10935174B2 (en) * | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
CN106687024B (en) | 2014-08-29 | 2020-10-09 | 恩多巧爱思股份有限公司 | System and method for varying the stiffness of an endoscope insertion tube |
EP3235241B1 (en) | 2014-12-18 | 2023-09-06 | EndoChoice, Inc. | System for processing video images generated by a multiple viewing elements endoscope |
US10376181B2 (en) | 2015-02-17 | 2019-08-13 | Endochoice, Inc. | System for detecting the location of an endoscopic device during a medical procedure |
US10078207B2 (en) | 2015-03-18 | 2018-09-18 | Endochoice, Inc. | Systems and methods for image magnification using relative movement between an image sensor and a lens assembly |
US10401611B2 (en) | 2015-04-27 | 2019-09-03 | Endochoice, Inc. | Endoscope with integrated measurement of distance to objects of interest |
US20170042408A1 (en) | 2015-08-11 | 2017-02-16 | Trice Medical, Inc. | Fully integrated, disposable tissue visualization device |
WO2017070112A1 (en) | 2015-10-19 | 2017-04-27 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
EP3367950A4 (en) | 2015-10-28 | 2019-10-02 | Endochoice, Inc. | Device and method for tracking the position of an endoscope within a patient's body |
CN108697302B (en) | 2015-11-24 | 2021-07-27 | 安多卓思公司 | Disposable air/water and suction valve for endoscope |
JP6464104B2 (en) * | 2016-01-20 | 2019-02-06 | 富士フイルム株式会社 | Endoscope connector, endoscope and endoscope system |
US10488648B2 (en) | 2016-02-24 | 2019-11-26 | Endochoice, Inc. | Circuit board assembly for a multiple viewing element endoscope using CMOS sensors |
WO2017160792A1 (en) | 2016-03-14 | 2017-09-21 | Endochoice, Inc. | System and method for guiding and tracking a region of interest using an endoscope |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US11871977B2 (en) | 2016-05-19 | 2024-01-16 | Csa Medical, Inc. | Catheter extension control |
EP3918972B1 (en) | 2016-06-21 | 2023-10-25 | EndoChoice, Inc. | Endoscope system with multiple connection interfaces to interface with different video data signal sources |
WO2018026985A1 (en) * | 2016-08-04 | 2018-02-08 | Csa Medical, Inc. | Rotational cryogen delivery device |
CN110325098A (en) | 2016-11-28 | 2019-10-11 | 适内有限责任公司 | With the endoscope for separating disposable axis |
US10352740B2 (en) * | 2017-02-22 | 2019-07-16 | Microsoft Technology Licensing, Llc | Sensing tip retention |
WO2019191705A1 (en) | 2018-03-29 | 2019-10-03 | Trice Medical, Inc. | Fully integrated endoscope with biopsy capabilities and methods of use |
USD902252S1 (en) * | 2018-06-04 | 2020-11-17 | Transportation IP Holdings, LLP | Modular cam shaft |
EP3829496A1 (en) | 2018-07-31 | 2021-06-09 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
DE102019004433A1 (en) | 2019-06-22 | 2020-12-24 | Karl Storz Se & Co. Kg | Video endoscope and handle for a video endoscope |
US11191586B2 (en) | 2019-07-02 | 2021-12-07 | Jamison Alexander | Removable tip for use with electrosurgical devices |
US11172979B2 (en) * | 2019-07-02 | 2021-11-16 | Jamison Alexander | Removable tip for use with electrosurgical devices |
CN110367919B (en) * | 2019-08-22 | 2021-08-27 | 青岛大学附属医院 | Medical science breathes bronchoscope and uses soft bronchus connecting device |
US20210121666A1 (en) * | 2019-10-23 | 2021-04-29 | Acclarent, Inc. | Illuminating guidewire with slip coupling between segments |
USD1018844S1 (en) | 2020-01-09 | 2024-03-19 | Adaptivendo Llc | Endoscope handle |
USD1031035S1 (en) | 2021-04-29 | 2024-06-11 | Adaptivendo Llc | Endoscope handle |
CN114114566B (en) * | 2021-10-09 | 2023-01-06 | 华为技术有限公司 | Connection box |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4576144A (en) * | 1982-03-08 | 1986-03-18 | Olympus Optical Co., Ltd. | Endoscope connecting device |
US4662360A (en) * | 1984-10-23 | 1987-05-05 | Intelligent Medical Systems, Inc. | Disposable speculum |
US5188093A (en) * | 1991-02-04 | 1993-02-23 | Citation Medical Corporation | Portable arthroscope with periscope optics |
US5289555A (en) * | 1992-06-18 | 1994-02-22 | Sanso David W | Optical-fibre cable coupler for endoscope light source |
US5621830A (en) * | 1995-06-07 | 1997-04-15 | Smith & Nephew Dyonics Inc. | Rotatable fiber optic joint |
US5707340A (en) * | 1994-12-10 | 1998-01-13 | Richard Wolf Gmbh | Device for connecting an endoscope to an auxiliary apparatus |
US5782752A (en) * | 1996-04-05 | 1998-07-21 | Vista Medical Technologies, Inc. | Device for carrying two units in end to end disposition and for moving one of the units alongside the other of the units |
US5909539A (en) * | 1995-09-20 | 1999-06-01 | Casio Computer Co., Ltd. | Image generating system and method |
US6154286A (en) * | 1996-11-29 | 2000-11-28 | Kabushiki Kaisha Toshiba | Image forming apparatus |
US6313921B1 (en) * | 1997-09-24 | 2001-11-06 | Canon Kabushiki Kaisha | Image forming system, image forming apparatus and method of controlling the same |
US6460319B2 (en) * | 1999-07-14 | 2002-10-08 | Black & Decker Inc. | Vegetation trimming and edging device with adjustable head orientation |
US20030229543A1 (en) * | 2002-06-10 | 2003-12-11 | Zimmerman Shannon M. | Centralized management of packaging data with rule-based content validation |
US6692431B2 (en) * | 2001-09-07 | 2004-02-17 | Smith & Nephew, Inc. | Endoscopic system with a solid-state light source |
Family Cites Families (543)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US692431A (en) * | 1901-03-25 | 1902-02-04 | Andrew E Hathaway | Warp stop-motion for looms. |
US3266059A (en) | 1963-06-19 | 1966-08-16 | North American Aviation Inc | Prestressed flexible joint for mechanical arms and the like |
US3470876A (en) | 1966-09-28 | 1969-10-07 | John Barchilon | Dirigible catheter |
US3572325A (en) | 1968-10-25 | 1971-03-23 | Us Health Education & Welfare | Flexible endoscope having fluid conduits and control |
US3581738A (en) | 1968-11-12 | 1971-06-01 | Welch Allyn Inc | Disposable illuminating endoscope and method of manufacture |
FR1595285A (en) * | 1968-12-18 | 1970-06-08 | ||
US4108211A (en) | 1975-04-28 | 1978-08-22 | Fuji Photo Optical Co., Ltd. | Articulated, four-way bendable tube structure |
US4060264A (en) * | 1976-06-16 | 1977-11-29 | I-T-E Imperial Corporation Efcor Division | Swivel conduit coupling assembly |
JPS5641684Y2 (en) | 1977-11-24 | 1981-09-30 | ||
JPS5586436A (en) | 1978-12-22 | 1980-06-30 | Olympus Optical Co | Endoscope |
JPS6041203Y2 (en) | 1979-04-03 | 1985-12-14 | 富士写真光機株式会社 | Curved tube part of endoscope |
US4315309A (en) | 1979-06-25 | 1982-02-09 | Coli Robert D | Integrated medical test data storage and retrieval system |
US4294162A (en) | 1979-07-23 | 1981-10-13 | United Technologies Corporation | Force feel actuator fault detection with directional threshold |
JPS5645629A (en) | 1979-09-20 | 1981-04-25 | Olympus Optical Co | System for transmitting data of endoscope |
JPH0122641Y2 (en) | 1979-10-20 | 1989-07-07 | ||
JPS5846308A (en) | 1981-09-12 | 1983-03-17 | Fuji Photo Film Co Ltd | Zoom lens for endoscope with moving solid-state image pickup element |
DE3277287D1 (en) | 1981-10-15 | 1987-10-22 | Olympus Optical Co | Endoscope system with an electric bending mechanism |
JPS5869528A (en) | 1981-10-20 | 1983-04-25 | 富士写真フイルム株式会社 | Signal transmission system in endoscope |
JPS58141135A (en) | 1981-10-20 | 1983-08-22 | 富士写真フイルム株式会社 | Image transmitting system of endoscope using solid image sensor |
DE3278275D1 (en) | 1981-10-22 | 1988-05-05 | Olympus Optical Co | Endoscope apparatus with motor-driven bending mechanism |
JPS5886129A (en) | 1981-11-17 | 1983-05-23 | 旭光学工業株式会社 | Flexible tube of endoscope and production thereof |
EP0085518B1 (en) | 1982-01-22 | 1989-08-16 | British Aerospace Public Limited Company | Control apparatus |
JPS58132812A (en) | 1982-01-22 | 1983-08-08 | ブリテイツシユ・エアロスペイス・パブリツク・リミテツド・カンパニ− | Controller |
US4425113A (en) | 1982-06-21 | 1984-01-10 | Baxter Travenol Laboratories, Inc. | Flow control mechanism for a plasmaspheresis assembly or the like |
US4491865A (en) | 1982-09-29 | 1985-01-01 | Welch Allyn, Inc. | Image sensor assembly |
GB2132378B (en) | 1982-11-19 | 1986-05-21 | Gwyndann Group | Illumination of optical instruments |
SE442852B (en) | 1983-04-18 | 1986-02-03 | Saab Scania Ab | PROCEDURE AND DEVICE FOR CONTROL SYSTEM TO ASTADKOMMA Elevated Torque Gradient for Small Maneuvering Disorders |
US4515444A (en) | 1983-06-30 | 1985-05-07 | Dyonics, Inc. | Optical system |
JPS6048011A (en) | 1983-08-27 | 1985-03-15 | Olympus Optical Co Ltd | Endoscope device |
JPH0685762B2 (en) | 1983-09-05 | 1994-11-02 | オリンパス光学工業株式会社 | Endoscopic imaging device |
US4615330A (en) | 1983-09-05 | 1986-10-07 | Olympus Optical Co., Ltd. | Noise suppressor for electronic endoscope |
DE3435598C2 (en) | 1983-09-30 | 1986-06-19 | Olympus Optical Co., Ltd., Tokio/Tokyo | Endoscope arrangement |
JPS6077731A (en) | 1983-10-03 | 1985-05-02 | オリンパス光学工業株式会社 | Endoscope apparatus using solid-image pick-up element |
JPS6081979A (en) | 1983-10-12 | 1985-05-10 | Omron Tateisi Electronics Co | Image pickup device |
JPS60104915A (en) | 1983-11-11 | 1985-06-10 | Fuji Photo Optical Co Ltd | Endoscope |
JPS60169818A (en) | 1984-02-15 | 1985-09-03 | Olympus Optical Co Ltd | Objective lens for endoscope |
JPS60179713A (en) | 1984-02-28 | 1985-09-13 | Olympus Optical Co Ltd | Endoscope device |
US4617915A (en) | 1984-03-27 | 1986-10-21 | Fuji Photo Optical Co., Ltd. | Construction of manual control section of endoscope |
JPS60182001U (en) | 1984-05-16 | 1985-12-03 | 富士写真光機株式会社 | Endoscope with observation surface image projection and recording device |
US4586923A (en) | 1984-06-25 | 1986-05-06 | Cordis Corporation | Curving tip catheter |
JPH0648327B2 (en) | 1984-07-28 | 1994-06-22 | オリンパス光学工業株式会社 | Endoscope objective lens |
US4616630A (en) | 1984-08-20 | 1986-10-14 | Fuji Photo Optical Co., Ltd. | Endoscope with an obtusely angled connecting section |
JPS6150478A (en) | 1984-08-20 | 1986-03-12 | Fuji Photo Optical Co Ltd | Endoscope |
JPS6150546A (en) | 1984-08-20 | 1986-03-12 | 富士写真光機株式会社 | Endoscope |
JPS6142513U (en) | 1984-08-23 | 1986-03-19 | 富士写真光機株式会社 | Endoscope |
JPH0614707B2 (en) | 1984-08-31 | 1994-02-23 | オリンパス光学工業株式会社 | Imaging device |
JP2655568B2 (en) | 1984-08-31 | 1997-09-24 | オリンパス光学工業株式会社 | Endoscope using solid-state imaging device |
JPS6162453A (en) | 1984-09-03 | 1986-03-31 | オリンパス光学工業株式会社 | Tissue biopsy recording apparatus for endoscope |
US4643170A (en) | 1984-12-05 | 1987-02-17 | Olympus Optical Co., Ltd. | Endoscope apparatus |
JPH0535374Y2 (en) | 1984-12-28 | 1993-09-08 | ||
JP2628627B2 (en) | 1985-01-11 | 1997-07-09 | オリンパス光学工業株式会社 | Aspheric objective lens for endoscope |
US4971034A (en) | 1985-01-16 | 1990-11-20 | Asahi Kogaku Kogyo Kabushiki Kaisha | Body cavity pressure adjusting device for endoscope and laser medical treatment apparatus including body cavity pressure adjusting device |
US4667655A (en) | 1985-01-21 | 1987-05-26 | Olympus Optical Co., Ltd. | Endoscope apparatus |
JPS626212A (en) | 1985-07-02 | 1987-01-13 | Olympus Optical Co Ltd | Image signal processing circuit |
DE3633444A1 (en) | 1985-10-02 | 1987-04-09 | Olympus Optical Co | ENDOSCOPIC PHOTOGRAPHER |
US4633604A (en) * | 1985-12-02 | 1987-01-06 | Russell Corporation | Automatic garment portion loader |
US4700693A (en) | 1985-12-09 | 1987-10-20 | Welch Allyn, Inc. | Endoscope steering section |
JPH07104492B2 (en) | 1985-12-28 | 1995-11-13 | オリンパス光学工業株式会社 | Illumination optical system for endoscope |
US4649904A (en) | 1986-01-02 | 1987-03-17 | Welch Allyn, Inc. | Biopsy seal |
JPH0783486B2 (en) | 1986-02-06 | 1995-09-06 | 株式会社東芝 | Endoscope device |
US4714075A (en) | 1986-02-10 | 1987-12-22 | Welch Allyn, Inc. | Biopsy channel for endoscope |
JPH0693777B2 (en) | 1986-02-27 | 1994-11-16 | 株式会社東芝 | Electronic endoscopic device |
US4686963A (en) | 1986-03-05 | 1987-08-18 | Circon Corporation | Torsion resistant vertebrated probe of simple construction |
JPS6365840A (en) | 1986-04-04 | 1988-03-24 | オリンパス光学工業株式会社 | Endoscope |
JPS62261332A (en) | 1986-05-08 | 1987-11-13 | オリンパス光学工業株式会社 | Electronic endoscope |
DE3715417A1 (en) | 1986-05-13 | 1987-11-19 | Olympus Optical Co | SEMICONDUCTOR IMAGE GENERATION DEVICE, AND ENDOSCOPE HERE EQUIPPED WITH IT |
US4819077A (en) | 1986-05-14 | 1989-04-04 | Kabushiki Kaisha Toshiba | Color image processing system |
US4727417A (en) | 1986-05-14 | 1988-02-23 | Olympus Optical Co., Ltd. | Endoscope video apparatus |
JPH07111500B2 (en) | 1986-05-22 | 1995-11-29 | オリンパス光学工業株式会社 | Endoscope objective lens |
US4748970A (en) | 1986-05-30 | 1988-06-07 | Olympus Optical Co., Ltd. | Endoscope systems |
DE3722075A1 (en) | 1986-07-02 | 1988-03-17 | Toshiba Kawasaki Kk | Image diagnostics system |
JPS6335226A (en) | 1986-07-30 | 1988-02-15 | オリンパス光学工業株式会社 | Endoscope |
JPS6338430A (en) | 1986-08-01 | 1988-02-19 | オリンパス光学工業株式会社 | Electronic endoscope |
JPS6389138A (en) | 1986-10-03 | 1988-04-20 | オリンパス光学工業株式会社 | Cover of curved pipe for endoscope |
DE3734979A1 (en) | 1986-10-16 | 1988-04-28 | Olympus Optical Co | ENDOSCOPE |
US4895431A (en) | 1986-11-13 | 1990-01-23 | Olympus Optical Co., Ltd. | Method of processing endoscopic images |
JP2543862B2 (en) | 1986-12-03 | 1996-10-16 | 株式会社東芝 | Image data management system |
JPS63143025A (en) | 1986-12-04 | 1988-06-15 | オリンパス光学工業株式会社 | Suction controller of endoscope |
JPS63164935A (en) | 1986-12-27 | 1988-07-08 | 株式会社東芝 | Suction apparatus of endoscope |
JPS63164931A (en) | 1986-12-27 | 1988-07-08 | 株式会社東芝 | Constant pressure apparatus of endoscope |
US4918521A (en) | 1987-01-20 | 1990-04-17 | Olympus Optical Co., Ltd. | Solid state imaging apparatus |
US4800869A (en) | 1987-02-13 | 1989-01-31 | Olympus Optical Co. Ltd. | Endoscope |
US4845555A (en) | 1987-02-13 | 1989-07-04 | Olympus Optical Co., Ltd. | Electronic endoscope apparatus |
US4853772A (en) | 1987-02-26 | 1989-08-01 | Olympus Optical Co., Ltd. | Electronic endoscope apparatus having isolated patient and secondary circuitry |
US4869237A (en) | 1987-03-02 | 1989-09-26 | Olympus Optical Co., Ltd. | Electronic endoscope apparatus |
JP2602823B2 (en) | 1987-03-11 | 1997-04-23 | 株式会社東芝 | Liquid feeding device for endoscope |
US4905666A (en) | 1987-03-27 | 1990-03-06 | Olympus Optical Co., Ltd. | Bending device for an endoscope |
JPH069540B2 (en) | 1987-04-03 | 1994-02-09 | オリンパス光学工業株式会社 | Endoscope |
JPS63286131A (en) | 1987-05-18 | 1988-11-22 | Asahi Optical Co Ltd | Hue control apparatus of endoscope |
JPS63290539A (en) | 1987-05-22 | 1988-11-28 | Olympus Optical Co Ltd | Image input apparatus for endoscope |
JPS63290091A (en) | 1987-05-22 | 1988-11-28 | Olympus Optical Co Ltd | Image data compression device for endoscope |
JP2697822B2 (en) | 1987-05-25 | 1998-01-14 | オリンパス光学工業株式会社 | Endoscope objective lens |
JPH07104494B2 (en) | 1987-06-26 | 1995-11-13 | オリンパス光学工業株式会社 | Illumination optical system for endoscope |
US4806011A (en) | 1987-07-06 | 1989-02-21 | Bettinger David S | Spectacle-mounted ocular display apparatus |
US4790294A (en) | 1987-07-28 | 1988-12-13 | Welch Allyn, Inc. | Ball-and-socket bead endoscope steering section |
US4762119A (en) | 1987-07-28 | 1988-08-09 | Welch Allyn, Inc. | Self-adjusting steering mechanism for borescope or endoscope |
US4796607A (en) | 1987-07-28 | 1989-01-10 | Welch Allyn, Inc. | Endoscope steering section |
IT1235460B (en) | 1987-07-31 | 1992-07-30 | Confida Spa | FLEXIBLE ENDOSCOPE. |
US4831437A (en) | 1987-08-11 | 1989-05-16 | Olympus Optical Co., Ltd. | Video endoscope system provided with color balance adjusting means |
US4787369A (en) | 1987-08-14 | 1988-11-29 | Welch Allyn, Inc. | Force relieving, force limiting self-adjusting steering for borescope or endoscope |
JPS6454978A (en) | 1987-08-26 | 1989-03-02 | Toshiba Corp | Solid-state image pickup element |
JPH0824668B2 (en) | 1987-09-14 | 1996-03-13 | オリンパス光学工業株式会社 | Electronic endoscopic device |
US4920980A (en) | 1987-09-14 | 1990-05-01 | Cordis Corporation | Catheter with controllable tip |
JPS6485631A (en) | 1987-09-28 | 1989-03-30 | Toshiba Corp | Electronic endoscopic apparatus |
US5001556A (en) | 1987-09-30 | 1991-03-19 | Olympus Optical Co., Ltd. | Endoscope apparatus for processing a picture image of an object based on a selected wavelength range |
US4884134A (en) | 1987-10-07 | 1989-11-28 | Olympus Optical Co., Ltd. | Video endoscope apparatus employing device shutter |
JPH0796005B2 (en) | 1987-10-27 | 1995-10-18 | オリンパス光学工業株式会社 | Endoscope device |
US4986642A (en) | 1987-11-20 | 1991-01-22 | Olympus Optical Co., Ltd. | Objective lens system for endoscopes and image pickup system equipped with said objective lens system |
US5172225A (en) | 1987-11-25 | 1992-12-15 | Olympus Optical Co., Ltd. | Endoscope system |
US5061994A (en) | 1987-11-25 | 1991-10-29 | Olympus Optical Co., Ltd. | Endoscope device using a display and recording system with means for monitoring the status of the recording medium |
JPH01160525A (en) | 1987-12-17 | 1989-06-23 | Olympus Optical Co Ltd | Endoscope |
US4928172A (en) | 1988-01-07 | 1990-05-22 | Olympus Optical Co., Ltd. | Endoscope output signal control device and endoscope apparatus making use of the same |
JP2933165B2 (en) | 1988-01-08 | 1999-08-09 | オリンパス光学工業株式会社 | Electronic endoscope device |
JP2693978B2 (en) | 1988-02-26 | 1997-12-24 | オリンパス光学工業株式会社 | Electronic endoscope device |
JPH0773569B2 (en) | 1988-01-14 | 1995-08-09 | オリンパス光学工業株式会社 | Endoscope |
JPH0673517B2 (en) | 1988-02-04 | 1994-09-21 | オリンパス光学工業株式会社 | Electronic endoscope system |
US4901143A (en) | 1988-02-16 | 1990-02-13 | Olympus Optical Co., Ltd. | Electronic endoscope system provided with a means of imaging frozen pictures having few picture image smears |
JP2594627B2 (en) | 1988-02-26 | 1997-03-26 | オリンパス光学工業株式会社 | Electronic endoscope device |
US4931867A (en) | 1988-03-01 | 1990-06-05 | Olympus Optical Co., Ltd. | Electronic endoscope apparatus having an isolation circuit for isolating a patient circuit from a secondary circuit |
US4844071A (en) | 1988-03-31 | 1989-07-04 | Baxter Travenol Laboratories, Inc. | Endoscope coupler device |
US5005558A (en) | 1988-05-16 | 1991-04-09 | Kabushiki Kaisha Toshiba | Endoscope |
JP2917995B2 (en) | 1988-05-25 | 1999-07-12 | 株式会社東芝 | Endoscope device |
JP2821141B2 (en) | 1988-07-28 | 1998-11-05 | オリンパス光学工業株式会社 | Automatic dimming control device for endoscope |
US4882623A (en) | 1988-08-11 | 1989-11-21 | Olympus Optical Co., Ltd. | Signal processing apparatus for endoscope capable of changing outline enhancement frequency |
US4899732A (en) | 1988-09-02 | 1990-02-13 | Baxter International, Inc. | Miniscope |
US5005957A (en) | 1988-09-07 | 1991-04-09 | Olympus Optical Co., Ltd. | Objective lens system for endoscopes |
JP2940827B2 (en) | 1988-09-07 | 1999-08-25 | オリンパス光学工業株式会社 | Medical image filing equipment |
JP2596810B2 (en) | 1988-09-12 | 1997-04-02 | オリンパス光学工業株式会社 | Optical system for endoscope |
JPH07122692B2 (en) | 1988-09-29 | 1995-12-25 | 富士写真光機株式会社 | Objective lens for endoscope |
JP2807487B2 (en) | 1988-11-02 | 1998-10-08 | オリンパス光学工業株式会社 | Endoscope device |
US5174293A (en) | 1988-11-17 | 1992-12-29 | Olympus Optical Co., Ltd. | Medical apparatus including on isolating transformer apparatus for isolating medical apparatus from non-medical apparatus to prevent electrical shocks to patients |
US4875468A (en) | 1988-12-23 | 1989-10-24 | Welch Allyn, Inc. | Elastomer-ePTFE biopsy channel |
US4960127A (en) | 1989-01-23 | 1990-10-02 | L.O.N. Research, Inc. | Disposable transducer manifold |
JP3217343B2 (en) | 1989-03-23 | 2001-10-09 | オリンパス光学工業株式会社 | Image processing device |
JPH0617942B2 (en) | 1989-02-15 | 1994-03-09 | 株式会社東芝 | Electronic endoscopic device |
US5018509A (en) | 1989-02-21 | 1991-05-28 | Olympus Optical Co., Ltd. | Endoscope insertion controlling apparatus |
JP2542089B2 (en) | 1989-03-16 | 1996-10-09 | オリンパス光学工業株式会社 | Light source device for endoscope |
JP2559510B2 (en) | 1989-04-06 | 1996-12-04 | オリンパス光学工業株式会社 | Electronic endoscopic device |
US4919112B1 (en) | 1989-04-07 | 1993-12-28 | Low-cost semi-disposable endoscope | |
JPH0681614B2 (en) | 1989-04-12 | 1994-10-19 | 株式会社東芝 | Electronic endoscopic device |
US4996974A (en) | 1989-04-17 | 1991-03-05 | Welch Allyn, Inc. | Adjustable steering control for flexible probe |
JPH02277015A (en) | 1989-04-19 | 1990-11-13 | Olympus Optical Co Ltd | Endoscope objective optical system |
US5198931A (en) | 1989-04-19 | 1993-03-30 | Olympus Optical Co., Ltd. | Objective optical system for endoscopes |
JPH034831A (en) | 1989-06-01 | 1991-01-10 | Toshiba Corp | Endoscope device |
US4979497A (en) | 1989-06-06 | 1990-12-25 | Olympus Optical Co., Ltd. | Endoscope |
US5068719A (en) | 1989-06-07 | 1991-11-26 | Olympus Optical Co., Ltd. | Endoscope photometric apparatus |
US5040069A (en) | 1989-06-16 | 1991-08-13 | Fuji Photo Optical Co., Ltd. | Electronic endoscope with a mask bump bonded to an image pick-up device |
US4982725A (en) | 1989-07-04 | 1991-01-08 | Olympus Optical Co., Ltd. | Endoscope apparatus |
CA1337714C (en) | 1989-07-31 | 1995-12-12 | Karen E. Kullas | Irrigation system for use with endoscopic procedure |
JP3017245B2 (en) | 1989-09-22 | 2000-03-06 | オリンパス光学工業株式会社 | Endoscope |
US5331551A (en) | 1989-10-02 | 1994-07-19 | Olympus Optical Co., Ltd. | Endoscope image recording system for compressing and recording endoscope image data |
US4941456A (en) | 1989-10-05 | 1990-07-17 | Welch Allyn, Inc. | Portable color imager borescope |
US4941454A (en) | 1989-10-05 | 1990-07-17 | Welch Allyn, Inc. | Servo actuated steering mechanism for borescope or endoscope |
US5209220A (en) | 1989-10-05 | 1993-05-11 | Olympus Optical Co., Ltd. | Endoscope image data compressing apparatus |
JP2920670B2 (en) | 1989-10-13 | 1999-07-19 | オリンパス光学工業株式会社 | Endoscope objective lens |
US5140265A (en) | 1989-12-20 | 1992-08-18 | Olympus Optical Co., Ltd | Eddy current flaw detecting endoscope apparatus which produces signals which control other devices |
US5049989A (en) | 1990-01-04 | 1991-09-17 | Olympus Optical Co., Ltd. | Method and circuit for reducing the influence of a bright image area in an endoscope image signal |
US5290283A (en) | 1990-01-31 | 1994-03-01 | Kabushiki Kaisha Toshiba | Power supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage |
US5820591A (en) | 1990-02-02 | 1998-10-13 | E. P. Technologies, Inc. | Assemblies for creating compound curves in distal catheter regions |
US4998182A (en) | 1990-02-08 | 1991-03-05 | Welch Allyn, Inc. | Connector for optical sensor |
US5208702A (en) | 1990-04-11 | 1993-05-04 | Olympus Optical Co., Ltd. | Objective lens system for endoscopes |
US5191878A (en) | 1990-04-12 | 1993-03-09 | Olympus Optical Co., Ltd. | Endoscope device |
JPH0427285A (en) | 1990-04-13 | 1992-01-30 | Toshiba Corp | Image recorder |
JP3041015B2 (en) | 1990-04-18 | 2000-05-15 | オリンパス光学工業株式会社 | Endoscope image file system |
US5431645A (en) | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
JP2926189B2 (en) | 1990-05-14 | 1999-07-28 | 旭光学工業株式会社 | Flexible tube for endoscope and method for manufacturing the same |
US4989581A (en) | 1990-06-01 | 1991-02-05 | Welch Allyn, Inc. | Torsional strain relief for borescope |
JPH0452614A (en) | 1990-06-20 | 1992-02-20 | Olympus Optical Co Ltd | Endoscope |
JP2649185B2 (en) | 1990-06-25 | 1997-09-03 | 富士写真光機株式会社 | Ultrasonic inspection equipment |
JPH0759236B2 (en) | 1990-06-29 | 1995-06-28 | オリンパス光学工業株式会社 | Endoscopic treatment device |
US5379757A (en) | 1990-08-28 | 1995-01-10 | Olympus Optical Co. Ltd. | Method of compressing endoscope image data based on image characteristics |
JP2848574B2 (en) | 1990-09-21 | 1999-01-20 | オリンパス光学工業株式会社 | Color shift correction device |
JP3003944B2 (en) | 1990-10-04 | 2000-01-31 | オリンパス光学工業株式会社 | Solid-state imaging device |
JPH06104102B2 (en) | 1990-10-09 | 1994-12-21 | 株式会社東芝 | Electronic endoscopic device |
JP2598568B2 (en) | 1990-11-20 | 1997-04-09 | オリンパス光学工業株式会社 | Electronic endoscope device |
NL194053C (en) | 1990-12-05 | 2001-05-03 | Koninkl Philips Electronics Nv | Device with a rotationally symmetrical body. |
JP3007698B2 (en) | 1991-01-25 | 2000-02-07 | オリンパス光学工業株式会社 | Endoscope system |
JP3041099B2 (en) | 1991-02-01 | 2000-05-15 | オリンパス光学工業株式会社 | Electronic endoscope device |
US5400769A (en) | 1991-02-18 | 1995-03-28 | Olympus Optical Co., Ltd. | Electrically bendable endoscope apparatus having controlled fixed bending speed |
US5223982A (en) | 1991-03-05 | 1993-06-29 | Olympus Optical Co., Ltd. | Objective lens system for endoscopes |
JP3078085B2 (en) | 1991-03-26 | 2000-08-21 | オリンパス光学工業株式会社 | Image processing apparatus and image processing method |
JP3063784B2 (en) | 1991-03-26 | 2000-07-12 | オリンパス光学工業株式会社 | Endoscope device |
US5201908A (en) | 1991-06-10 | 1993-04-13 | Endomedical Technologies, Inc. | Sheath for protecting endoscope from contamination |
US5159446A (en) | 1991-06-21 | 1992-10-27 | Olympus Optical Co., Ltd. | Electronic endoscope system provided with a separate camera controlling unit and motor controlling unit |
US5257628A (en) | 1991-07-11 | 1993-11-02 | Fuji Photo Optical Co., Ltd. | Ultrasound internal examination system |
ES2129434T3 (en) | 1991-08-21 | 1999-06-16 | Smith & Nephew Inc | FLUID CONTROL SYSTEM. |
US5889670A (en) | 1991-10-24 | 1999-03-30 | Immersion Corporation | Method and apparatus for tactilely responsive user interface |
US5485316A (en) | 1991-10-25 | 1996-01-16 | Olympus Optical Co., Ltd. | Illumination optical system for endoscopes |
US5855560A (en) | 1991-11-08 | 1999-01-05 | Ep Technologies, Inc. | Catheter tip assembly |
US5271381A (en) | 1991-11-18 | 1993-12-21 | Vision Sciences, Inc. | Vertebrae for a bending section of an endoscope |
US5228356A (en) | 1991-11-25 | 1993-07-20 | Chuang Keh Shih K | Variable effort joystick |
US5469840A (en) | 1991-12-10 | 1995-11-28 | Olympus Optical, Ltd. | Electromotive warping type endoscope with velocity control |
WO1993013704A1 (en) | 1992-01-09 | 1993-07-22 | Endomedix Corporation | Bi-directional miniscope |
US5892630A (en) | 1992-02-10 | 1999-04-06 | Linvatec Corporation | Disposable endoscope |
US5645075A (en) | 1992-02-18 | 1997-07-08 | Symbiosis Corporation | Jaw assembly for an endoscopic instrument |
US5658238A (en) | 1992-02-25 | 1997-08-19 | Olympus Optical Co., Ltd. | Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned |
JP2660994B2 (en) | 1992-03-02 | 1997-10-08 | 富士写真光機株式会社 | Electronic endoscope device |
US5299559A (en) | 1992-03-13 | 1994-04-05 | Acuson Corporation | Endoscope with overload protective device |
DE4237286A1 (en) | 1992-04-06 | 1994-05-05 | Laser Medizin Zentrum Ggmbh Be | Method and device for increasing the efficiency of an optical work shaft for photo-thermotherapy |
JP3184598B2 (en) | 1992-04-14 | 2001-07-09 | 株式会社東芝 | Endoscope connector and endoscope device |
JP3302074B2 (en) | 1992-04-23 | 2002-07-15 | オリンパス光学工業株式会社 | Endoscope device |
JPH05307139A (en) | 1992-04-28 | 1993-11-19 | Olympus Optical Co Ltd | Endoscope objective |
US5619380A (en) | 1992-05-25 | 1997-04-08 | Olympus Optical Co. Ltd. | Objective optical system for endoscopes |
US5325845A (en) | 1992-06-08 | 1994-07-05 | Adair Edwin Lloyd | Steerable sheath for use with selected removable optical catheter |
US5311858A (en) | 1992-06-15 | 1994-05-17 | Adair Edwin Lloyd | Imaging tissue or stone removal basket |
US5482029A (en) | 1992-06-26 | 1996-01-09 | Kabushiki Kaisha Toshiba | Variable flexibility endoscope system |
US6449006B1 (en) | 1992-06-26 | 2002-09-10 | Apollo Camera, Llc | LED illumination system for endoscopic cameras |
US5342299A (en) | 1992-07-06 | 1994-08-30 | Catheter Imaging Systems | Steerable catheter |
US5402768A (en) | 1992-09-01 | 1995-04-04 | Adair; Edwin L. | Endoscope with reusable core and disposable sheath with passageways |
US5347989A (en) | 1992-09-11 | 1994-09-20 | Welch Allyn, Inc. | Control mechanism for steerable elongated probe having a sealed joystick |
JP2790948B2 (en) | 1992-09-25 | 1998-08-27 | 富士写真光機株式会社 | Signal processing circuit of electronic endoscope device |
US5412478A (en) | 1992-09-30 | 1995-05-02 | Olympus Optical Co., Ltd. | Endoscope system which changes over switches in interlocking relation to each other within video processor and image display apparatus to perform display of endoscope image |
US5495114A (en) | 1992-09-30 | 1996-02-27 | Adair; Edwin L. | Miniaturized electronic imaging chip |
JP3372273B2 (en) | 1992-10-01 | 2003-01-27 | オリンパス光学工業株式会社 | Endoscope device |
WO1994009694A1 (en) | 1992-10-28 | 1994-05-11 | Arsenault, Dennis, J. | Electronic endoscope |
CA2148498A1 (en) * | 1992-11-13 | 1994-05-26 | Michael Roy Chambers | Corrosion resistant connection for use with tubular members |
US5674182A (en) | 1993-02-26 | 1997-10-07 | Olympus Optical Co., Ltd. | Endoscope system including endoscope and protection cover |
JP3219521B2 (en) | 1993-03-01 | 2001-10-15 | オリンパス光学工業株式会社 | Endoscope |
US5695450A (en) | 1993-03-05 | 1997-12-09 | Olympus Optical Co., Ltd. | Cover-type endoscope apparatus |
AU687045B2 (en) | 1993-03-31 | 1998-02-19 | Luma Corporation | Managing information in an endoscopy system |
JPH06327628A (en) | 1993-05-20 | 1994-11-29 | Fuji Photo Optical Co Ltd | Signal processing circuit of synchronous electronic endoscope equipment |
DE4320962C2 (en) | 1993-06-24 | 1997-04-17 | Osypka Peter | Catheter made of a flexible plastic tube |
US5447148A (en) | 1993-07-08 | 1995-09-05 | Vision Sciences, Inc. | Endoscopic contamination protection system to facilitate cleaning of endoscopes |
US5724264A (en) | 1993-07-16 | 1998-03-03 | Immersion Human Interface Corp. | Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object |
US5739811A (en) | 1993-07-16 | 1998-04-14 | Immersion Human Interface Corporation | Method and apparatus for controlling human-computer interface systems providing force feedback |
US6057828A (en) | 1993-07-16 | 2000-05-02 | Immersion Corporation | Method and apparatus for providing force sensations in virtual environments in accordance with host software |
US5731804A (en) | 1995-01-18 | 1998-03-24 | Immersion Human Interface Corp. | Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems |
US5721566A (en) | 1995-01-18 | 1998-02-24 | Immersion Human Interface Corp. | Method and apparatus for providing damping force feedback |
US5701140A (en) | 1993-07-16 | 1997-12-23 | Immersion Human Interface Corp. | Method and apparatus for providing a cursor control interface with force feedback |
US5767839A (en) | 1995-01-18 | 1998-06-16 | Immersion Human Interface Corporation | Method and apparatus for providing passive force feedback to human-computer interface systems |
US5805140A (en) | 1993-07-16 | 1998-09-08 | Immersion Corporation | High bandwidth force feedback interface using voice coils and flexures |
US5837083A (en) * | 1993-08-12 | 1998-11-17 | Booth; John Peter | Method of forming a rigid tubular body |
US6014630A (en) | 1993-08-26 | 2000-01-11 | Patient Education Services, Inc. | Customized system for providing procedure-specific patient education |
JP3236716B2 (en) | 1993-10-15 | 2001-12-10 | 富士写真光機株式会社 | Shield structure of electronic endoscope device |
JP3271838B2 (en) | 1993-10-18 | 2002-04-08 | オリンパス光学工業株式会社 | Image processing device for endoscope |
US5436640A (en) | 1993-10-29 | 1995-07-25 | Thrustmaster, Inc. | Video game and simulator joystick controller with geared potentiometer actuation |
US5868666A (en) | 1993-11-26 | 1999-02-09 | Olympus Optical Co., Ltd. | Endoscope apparatus using programmable integrated circuit to constitute internal structure thereof |
US5659334A (en) | 1993-12-15 | 1997-08-19 | Interlink Electronics, Inc. | Force-sensing pointing device |
US5789047A (en) | 1993-12-21 | 1998-08-04 | Japan Gore-Tex, Inc | Flexible, multilayered tube |
US5473235A (en) | 1993-12-21 | 1995-12-05 | Honeywell Inc. | Moment cell counterbalance for active hand controller |
JPH07191265A (en) | 1993-12-27 | 1995-07-28 | Olympus Optical Co Ltd | Endoscope optical system |
US5841126A (en) | 1994-01-28 | 1998-11-24 | California Institute Of Technology | CMOS active pixel sensor type imaging system on a chip |
ATE207269T1 (en) | 1994-02-23 | 2001-11-15 | Smith & Nephew Inc | CAMERA HEAD WITH MEMORY |
US5464007A (en) | 1994-02-23 | 1995-11-07 | Welch Allyn, Inc. | Fluid insensitive braking for an endoscope |
JPH07299029A (en) | 1994-03-11 | 1995-11-14 | Olympus Optical Co Ltd | Endoscopic device |
CA2145232A1 (en) | 1994-03-24 | 1995-09-25 | Arie Avny | Viewing method and apparatus particularly useful for viewing the interior of the large intestine |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5685823A (en) | 1994-03-30 | 1997-11-11 | Asahi Kogaku Kogyo Kabushiki Kaisha | End structure of endoscope |
US5704896A (en) | 1994-04-27 | 1998-01-06 | Kabushiki Kaisha Toshiba | Endoscope apparatus with lens for changing the incident angle of light for imaging |
US5591202A (en) | 1994-04-28 | 1997-01-07 | Symbiosis Corporation | Endoscopic instruments having low friction sheath |
US5496260A (en) | 1994-05-16 | 1996-03-05 | Welch Allyn, Inc. | Torque override knob for endoscopes, borescopes, or guide tubes |
JP3482238B2 (en) | 1994-05-27 | 2003-12-22 | オリンパス株式会社 | Endoscope imaging device |
NL9401107A (en) | 1994-07-01 | 1996-02-01 | Cordis Europ | Controlled bendable catheter. |
JPH0819507A (en) | 1994-07-07 | 1996-01-23 | Fuji Photo Optical Co Ltd | Endoscope |
US5821920A (en) | 1994-07-14 | 1998-10-13 | Immersion Human Interface Corporation | Control input device for interfacing an elongated flexible object with a computer system |
US5708482A (en) | 1994-09-08 | 1998-01-13 | Asahi Kogaku Kogyo Kabushiki Kaisha | Image-signal clamping circuit for electronic endoscope |
US5647840A (en) | 1994-09-14 | 1997-07-15 | Circon Corporation | Endoscope having a distally heated distal lens |
US5829444A (en) | 1994-09-15 | 1998-11-03 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications |
US5698866A (en) | 1994-09-19 | 1997-12-16 | Pdt Systems, Inc. | Uniform illuminator for phototherapy |
JPH08106043A (en) | 1994-10-05 | 1996-04-23 | Fuji Photo Optical Co Ltd | Objective lens for endoscope |
US5873816A (en) | 1994-11-02 | 1999-02-23 | Olympus Optical Co., Ltd. | Electronic endoscope having an insertional portion a part of which is a conductive armor |
US5695491A (en) | 1994-11-22 | 1997-12-09 | Washington Research Foundation | Endoscopic accessory and containment system |
US5836869A (en) | 1994-12-13 | 1998-11-17 | Olympus Optical Co., Ltd. | Image tracking endoscope system |
US5569159A (en) | 1994-12-16 | 1996-10-29 | Anderson; Keven C. | Endoscopic sleeve |
JP3331273B2 (en) | 1994-12-26 | 2002-10-07 | 富士写真光機株式会社 | Endoscope |
US5762995A (en) | 1995-01-13 | 1998-06-09 | Fuji Photo Optical Co., Ltd. | Flexible sheathing tube construction, and method for fabrication thereof |
US6690963B2 (en) | 1995-01-24 | 2004-02-10 | Biosense, Inc. | System for determining the location and orientation of an invasive medical instrument |
JP3070032B2 (en) | 1995-02-14 | 2000-07-24 | 富士写真光機株式会社 | Endoscope hand operation structure |
JP3500219B2 (en) | 1995-03-03 | 2004-02-23 | オリンパス株式会社 | Endoscope |
US5876326A (en) | 1995-03-10 | 1999-03-02 | Olympus Optical Co., Ltd. | Electronic endoscope with grounded spirally-wound lead wires |
DE19510712C2 (en) | 1995-03-15 | 2001-03-29 | Dmv Medizintechnik Gmbh | Method and device for introducing a gas |
GB9506954D0 (en) | 1995-04-04 | 1995-05-24 | Street Graham S B | Method and apparatus for image enhancement |
US6080104A (en) | 1995-05-16 | 2000-06-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronic endoscope system |
US5703724A (en) | 1995-05-16 | 1997-12-30 | Fuji Photo Film, Co., Ltd. | Objective lens system for endoscope |
JP3498426B2 (en) | 1995-05-16 | 2004-02-16 | 富士写真光機株式会社 | Endoscope flexible tube |
US5830124A (en) | 1995-05-18 | 1998-11-03 | Fuji Photo Optical Co., Ltd. | Guide structure for electronic endoscope systems |
US5691898A (en) | 1995-09-27 | 1997-11-25 | Immersion Human Interface Corp. | Safe and low cost computer peripherals with force feedback for consumer applications |
WO1996039917A1 (en) | 1995-06-07 | 1996-12-19 | Chilcoat Robert T | Articulated endospcope with specific advantages for laryngoscopy |
US5589854A (en) | 1995-06-22 | 1996-12-31 | Tsai; Ming-Chang | Touching feedback device |
US5812983A (en) | 1995-08-03 | 1998-09-22 | Kumagai; Yasuo | Computed medical file and chart system |
US5788714A (en) | 1995-08-14 | 1998-08-04 | Asahi Kogaku Kogyo Kabushiki Kaisha | Flexible tube for an endoscope |
US5724068A (en) | 1995-09-07 | 1998-03-03 | Microsoft Corporation | Joystick with uniform center return force |
US5999168A (en) | 1995-09-27 | 1999-12-07 | Immersion Corporation | Haptic accelerator for force feedback computer peripherals |
US5959613A (en) | 1995-12-01 | 1999-09-28 | Immersion Corporation | Method and apparatus for shaping force signals for a force feedback device |
US5810715A (en) | 1995-09-29 | 1998-09-22 | Olympus Optical Co., Ltd. | Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member |
US6283960B1 (en) | 1995-10-24 | 2001-09-04 | Oratec Interventions, Inc. | Apparatus for delivery of energy to a surgical site |
US6100874A (en) | 1995-11-17 | 2000-08-08 | Immersion Corporation | Force feedback mouse interface |
US5860953A (en) | 1995-11-21 | 1999-01-19 | Catheter Imaging Systems, Inc. | Steerable catheter having disposable module and sterilizable handle and method of connecting same |
US6007531A (en) | 1995-11-21 | 1999-12-28 | Catheter Imaging Systems, Inc. | Steerable catheter having disposable module and sterilizable handle and method of connecting same |
US6061004A (en) | 1995-11-26 | 2000-05-09 | Immersion Corporation | Providing force feedback using an interface device including an indexing function |
US6078308A (en) | 1995-12-13 | 2000-06-20 | Immersion Corporation | Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object |
JP3627344B2 (en) | 1996-01-09 | 2005-03-09 | フジノン株式会社 | Fluid delivery device for body cavity inspection device |
DE69738869D1 (en) | 1996-01-11 | 2008-09-11 | Symbiosis Corp | FLEXIBLE MICRO-SURGICAL INSTRUMENTS WITH A WRAPPING THAT FEATURES VISUAL AND TOUCHABLE POSITION INDICATORS |
AU721158B2 (en) | 1996-02-15 | 2000-06-22 | Biosense, Inc. | Medical probes with field transducers |
DE69733249T8 (en) | 1996-02-15 | 2006-04-27 | Biosense Webster, Inc., Diamond Bar | DETERMINATION OF THE EXACT POSITION OF ENDOSCOPES |
EP0883374B1 (en) | 1996-02-15 | 2005-06-22 | Biosense Webster, Inc. | Movable transmit or receive coils for location system |
US5868664A (en) | 1996-02-23 | 1999-02-09 | Envision Medical Corporation | Electrically isolated sterilizable endoscopic video camera head |
US5933809A (en) | 1996-02-29 | 1999-08-03 | Medcom Solutions, Inc. | Computer software for processing medical billing record information |
US5704371A (en) | 1996-03-06 | 1998-01-06 | Shepard; Franziska | Medical history documentation system and method |
US6050718A (en) | 1996-03-28 | 2000-04-18 | Immersion Corporation | Method and apparatus for providing high bandwidth force feedback with improved actuator feel |
JP3315859B2 (en) | 1996-04-03 | 2002-08-19 | 旭光学工業株式会社 | Electronic endoscope |
US5843000A (en) | 1996-05-07 | 1998-12-01 | The General Hospital Corporation | Optical biopsy forceps and method of diagnosing tissue |
WO1997044089A1 (en) | 1996-05-17 | 1997-11-27 | Biosense Inc. | Self-aligning catheter |
DE19721713C2 (en) | 1996-05-24 | 2003-08-07 | Pentax Corp | Electronic endoscope |
US6911916B1 (en) | 1996-06-24 | 2005-06-28 | The Cleveland Clinic Foundation | Method and apparatus for accessing medical data over a network |
US6496099B2 (en) | 1996-06-24 | 2002-12-17 | Computer Motion, Inc. | General purpose distributed operating room control system |
US5823948A (en) | 1996-07-08 | 1998-10-20 | Rlis, Inc. | Medical records, documentation, tracking and order entry system |
US5857963A (en) | 1996-07-17 | 1999-01-12 | Welch Allyn, Inc. | Tab imager assembly for use in an endoscope |
JP3708238B2 (en) | 1996-08-08 | 2005-10-19 | オリンパス株式会社 | Manufacturing method of gradient index optical element |
JP3688822B2 (en) | 1996-09-03 | 2005-08-31 | 株式会社東芝 | Electronic medical record system |
US5882293A (en) | 1996-09-05 | 1999-03-16 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treatment accessories for endoscope |
US6078353A (en) | 1996-09-12 | 2000-06-20 | Fuji Photo Optical Co., Ltd. | All-pixels reading type electronic endoscope apparatus |
US6002425A (en) | 1996-09-12 | 1999-12-14 | Fuji Photo Optical Co., Ltd. | All pixels read type electronic endoscope system |
US6221070B1 (en) | 1996-10-18 | 2001-04-24 | Irvine Biomedical, Inc. | Steerable ablation catheter system having disposable shaft |
US5828197A (en) | 1996-10-25 | 1998-10-27 | Immersion Human Interface Corporation | Mechanical interface having multiple grounded actuators |
US6015088A (en) | 1996-11-05 | 2000-01-18 | Welch Allyn, Inc. | Decoding of real time video imaging |
US5876331A (en) | 1996-11-12 | 1999-03-02 | Johnson & Johnson Medical, Inc. | Endoscope with improved flexible insertion tube |
US5941817A (en) | 1996-11-14 | 1999-08-24 | Vista Medical Technologies, Inc. | Endoscope wherein electrical components are electrically isolated from patient-engaging components |
JP3448169B2 (en) | 1996-11-14 | 2003-09-16 | 富士写真光機株式会社 | All-pixel readout electronic endoscope |
US5897507A (en) | 1996-11-25 | 1999-04-27 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US6142956A (en) | 1996-11-25 | 2000-11-07 | Symbiosis Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US6128006A (en) | 1998-03-26 | 2000-10-03 | Immersion Corporation | Force feedback mouse wheel and other control wheels |
JP3615890B2 (en) | 1996-12-04 | 2005-02-02 | フジノン株式会社 | Electronic endoscope device |
JP3532368B2 (en) | 1996-12-10 | 2004-05-31 | 富士写真フイルム株式会社 | Endoscope |
US5950168A (en) | 1996-12-18 | 1999-09-07 | Knowmed Systems | Collapsible flowsheet for displaying patient information in an electronic medical record |
US5821466A (en) | 1996-12-23 | 1998-10-13 | Cable Design Technologies, Inc. | Multiple twisted pair data cable with geometrically concentric cable groups |
US6030360A (en) | 1996-12-30 | 2000-02-29 | Biggs; Robert C. | Steerable catheter |
US6146355A (en) | 1996-12-30 | 2000-11-14 | Myelotec, Inc. | Steerable catheter |
JPH10192220A (en) | 1997-01-14 | 1998-07-28 | Fuji Photo Optical Co Ltd | Endoscope |
US5876427A (en) | 1997-01-29 | 1999-03-02 | Light Sciences Limited Partnership | Compact flexible circuit configuration |
JP2815346B2 (en) | 1997-01-31 | 1998-10-27 | 株式会社亀田医療情報研究所 | Medical planning support system |
US5928136A (en) | 1997-02-13 | 1999-07-27 | Karl Storz Gmbh & Co. | Articulated vertebra for endoscopes and method to make it |
JP3853899B2 (en) | 1997-02-27 | 2006-12-06 | オリンパス株式会社 | Composite coaxial cable for electronic endoscope and electronic endoscope |
JPH10260348A (en) | 1997-03-19 | 1998-09-29 | Fuji Photo Optical Co Ltd | Objective for endoscope |
US5876373A (en) | 1997-04-04 | 1999-03-02 | Eclipse Surgical Technologies, Inc. | Steerable catheter |
US5873877A (en) | 1997-04-11 | 1999-02-23 | Vidamed, Inc. | Medical probe device with transparent distal extremity |
US5827186A (en) | 1997-04-11 | 1998-10-27 | Light Sciences Limited Partnership | Method and PDT probe for minimizing CT and MRI image artifacts |
US6020876A (en) | 1997-04-14 | 2000-02-01 | Immersion Corporation | Force feedback interface with selective disturbance filter |
US6656110B1 (en) | 1997-04-16 | 2003-12-02 | Karl Storz Gmbh & Co. Kg | Endoscopic system |
NZ500566A (en) | 1997-05-12 | 2002-05-31 | Mlk Software | Internet based collection of data with data validation at source and centralized database |
JP4113591B2 (en) | 1997-06-23 | 2008-07-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Image guided surgery system |
US5991729A (en) | 1997-06-28 | 1999-11-23 | Barry; James T. | Methods for generating patient-specific medical reports |
JPH1132986A (en) | 1997-07-16 | 1999-02-09 | Olympus Optical Co Ltd | Endoscope system |
US6063035A (en) | 1997-07-24 | 2000-05-16 | Fuji Photo Optical Co., Ltd. | Coupling adaptor for endoscopically inserting ultrasound probe |
DE19731894C1 (en) | 1997-07-24 | 1999-05-12 | Storz Karl Gmbh & Co | Endoscopic instrument for performing endoscopic interventions or examinations and endoscopic instruments containing such an endoscopic instrument |
US5956689A (en) | 1997-07-31 | 1999-09-21 | Accordant Health Services, Inc. | Systems, methods and computer program products for using event specificity to identify patients having a specified disease |
US6184922B1 (en) | 1997-07-31 | 2001-02-06 | Olympus Optical Co., Ltd. | Endoscopic imaging system in which still image-specific or motion picture-specific expansion unit can be coupled to digital video output terminal in freely uncoupled manner |
CN100381853C (en) | 1997-08-01 | 2008-04-16 | 奥林巴斯株式会社 | Objective of endoscope |
US6059719A (en) | 1997-08-06 | 2000-05-09 | Olympus Optical Co., Ltd. | Endoscope system |
US6132369A (en) | 1997-08-21 | 2000-10-17 | Fuji Photo Optical Co., Ltd. | Opening/closing and flow rate controller for an endoscope pipe |
US5956690A (en) | 1997-09-03 | 1999-09-21 | The Detroit Medical Center | Bundled billing accounting computer systems |
US6211904B1 (en) | 1997-09-11 | 2001-04-03 | Edwin L. Adair | Surgical devices incorporating reduced area imaging devices |
US6043839A (en) | 1997-10-06 | 2000-03-28 | Adair; Edwin L. | Reduced area imaging devices |
US5929901A (en) | 1997-10-06 | 1999-07-27 | Adair; Edwin L. | Reduced area imaging devices incorporated within surgical instruments |
US5980468A (en) | 1997-09-22 | 1999-11-09 | Zimmon Scientific Corporation | Apparatus and method for serial collection storage and processing of biopsy specimens |
JPH11112889A (en) | 1997-09-29 | 1999-04-23 | Fuji Photo Optical Co Ltd | Signal transmission circuit for solid-state image pickup element |
US6310642B1 (en) | 1997-11-24 | 2001-10-30 | Micro-Medical Devices, Inc. | Reduced area imaging devices incorporated within surgical instruments |
US5986693A (en) | 1997-10-06 | 1999-11-16 | Adair; Edwin L. | Reduced area imaging devices incorporated within surgical instruments |
US5991730A (en) | 1997-10-08 | 1999-11-23 | Queue Corporation | Methods and systems for automated patient tracking and data acquisition |
US6095971A (en) | 1997-10-22 | 2000-08-01 | Fuji Photo Optical Co., Ltd. | Endoscope fluid controller |
US6020875A (en) | 1997-10-31 | 2000-02-01 | Immersion Corporation | High fidelity mechanical transmission system and interface device |
US6104382A (en) | 1997-10-31 | 2000-08-15 | Immersion Corporation | Force feedback transmission mechanisms |
IL122111A (en) | 1997-11-04 | 2004-06-01 | Sightline Techn Ltd | Video rectoscope |
US6982740B2 (en) | 1997-11-24 | 2006-01-03 | Micro-Medical Devices, Inc. | Reduced area imaging devices utilizing selected charge integration periods |
US5935085A (en) | 1997-11-24 | 1999-08-10 | Stephen W. Welsh | Method for prepping a patient for an endoscopic procedure |
US5980454A (en) | 1997-12-01 | 1999-11-09 | Endonetics, Inc. | Endoscopic imaging system employing diffractive optical elements |
JP3370916B2 (en) | 1997-12-11 | 2003-01-27 | 富士写真光機株式会社 | An electronic endoscope device that displays a display without a scope |
US6032120A (en) | 1997-12-16 | 2000-02-29 | Acuson Corporation | Accessing stored ultrasound images and other digital medical images |
US6847933B1 (en) | 1997-12-31 | 2005-01-25 | Acuson Corporation | Ultrasound image and other medical image storage system |
US6489987B1 (en) | 1998-01-09 | 2002-12-03 | Fuji Photo Optical Co., Ltd. | Electronic endoscope apparatus |
DE19802572A1 (en) | 1998-01-23 | 1999-08-05 | Siemens Health Service Gmbh & | Medical system architecture |
US6216104B1 (en) | 1998-02-20 | 2001-04-10 | Philips Electronics North America Corporation | Computer-based patient record and message delivery system |
US7090683B2 (en) | 1998-02-24 | 2006-08-15 | Hansen Medical, Inc. | Flexible instrument |
US7214230B2 (en) | 1998-02-24 | 2007-05-08 | Hansen Medical, Inc. | Flexible instrument |
US6949106B2 (en) | 1998-02-24 | 2005-09-27 | Endovia Medical, Inc. | Surgical instrument |
US20020087048A1 (en) | 1998-02-24 | 2002-07-04 | Brock David L. | Flexible instrument |
US6309347B1 (en) | 1998-03-17 | 2001-10-30 | Fuji Photo Optical Co., Ltd. | Air and water supply system for endoscopes |
US6141037A (en) | 1998-03-18 | 2000-10-31 | Linvatec Corporation | Video camera system and related method |
JP3367415B2 (en) | 1998-03-18 | 2003-01-14 | ペンタックス株式会社 | Flexible tube for endoscope and method for manufacturing the same |
US6155988A (en) | 1998-03-26 | 2000-12-05 | Nivarox-Far S.A. | Device for taking samples, for example for a biopsy, and rack system fitted to such a device |
JP4175711B2 (en) | 1998-03-31 | 2008-11-05 | オリンパス株式会社 | Imaging device |
US6067077A (en) | 1998-04-10 | 2000-05-23 | Immersion Corporation | Position sensing for force feedback devices |
US6545703B1 (en) | 1998-06-26 | 2003-04-08 | Pentax Corporation | Electronic endoscope |
JP2000019427A (en) | 1998-07-06 | 2000-01-21 | Fuji Photo Optical Co Ltd | Image-pickup device assembly unit for endoscope |
US6149607A (en) | 1998-08-04 | 2000-11-21 | Endonetics, Inc. | Multiple sample biopsy device |
US6139508A (en) | 1998-08-04 | 2000-10-31 | Endonetics, Inc. | Articulated medical device |
DE19836481C1 (en) | 1998-08-12 | 2000-03-30 | Storz Karl Gmbh & Co Kg | Handle for a medical instrument |
JP2000066115A (en) | 1998-08-21 | 2000-03-03 | Fuji Photo Optical Co Ltd | Light source device for endoscope |
US6488619B1 (en) | 1998-09-08 | 2002-12-03 | Olympus Optical Co., Ltd. | Distal endoscope part having light emitting source such as light emitting diodes as illuminating means |
US6478730B1 (en) | 1998-09-09 | 2002-11-12 | Visionscope, Inc. | Zoom laparoscope |
JP4223596B2 (en) | 1998-09-16 | 2009-02-12 | Hoya株式会社 | Electronic endoscope system |
JP3669471B2 (en) | 1998-09-30 | 2005-07-06 | フジノン株式会社 | Video signal transmission device |
US6690410B1 (en) | 1999-06-09 | 2004-02-10 | Olympus Optical Co., Ltd. | Image processing unit with expandable image signal processing capability and endoscopic imaging system |
JP4014186B2 (en) | 1998-11-30 | 2007-11-28 | フジノン株式会社 | Endoscope objective lens |
US6152877A (en) | 1998-12-16 | 2000-11-28 | Scimed Life Systems, Inc. | Multimode video controller for ultrasound and X-ray video exchange system |
US6574629B1 (en) | 1998-12-23 | 2003-06-03 | Agfa Corporation | Picture archiving and communication system |
US6381029B1 (en) | 1998-12-23 | 2002-04-30 | Etrauma, Llc | Systems and methods for remote viewing of patient images |
US6083152A (en) | 1999-01-11 | 2000-07-04 | Welch Allyn, Inc. | Endoscopic insertion tube |
US6597390B1 (en) | 1999-01-11 | 2003-07-22 | Fuji Photo Optical Co., Ltd. | Electronic endoscope apparatus |
JP4183819B2 (en) | 1999-01-26 | 2008-11-19 | オリンパス株式会社 | Medical image filing system |
US6346075B1 (en) | 1999-02-01 | 2002-02-12 | Fuji Photo Optical Co., Ltd. | Air and water supply valve structure in endoscope |
JP3809026B2 (en) | 1999-02-02 | 2006-08-16 | ペンタックス株式会社 | Endoscope air supply safety device |
JP2000236555A (en) | 1999-02-12 | 2000-08-29 | Fuji Photo Optical Co Ltd | Electronic endoscope device |
US6602185B1 (en) | 1999-02-18 | 2003-08-05 | Olympus Optical Co., Ltd. | Remote surgery support system |
US6425858B1 (en) | 1999-03-19 | 2002-07-30 | Fuji Photo Optical Co., Ltd. | Electronic endoscope apparatus having magnification changing function |
US6715068B1 (en) | 1999-03-31 | 2004-03-30 | Fuji Photo Optical Co., Ltd. | Multi-microcomputer system |
US6565554B1 (en) | 1999-04-07 | 2003-05-20 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
JP3574590B2 (en) | 1999-04-14 | 2004-10-06 | ペンタックス株式会社 | Endoscope flexible tube |
JP3579615B2 (en) | 1999-05-07 | 2004-10-20 | 富士写真光機株式会社 | Endoscope with variable magnification function |
EP1099405B1 (en) | 1999-05-18 | 2005-08-03 | Olympus Corporation | Endoscope |
US6928490B1 (en) | 1999-05-20 | 2005-08-09 | St. Louis University | Networking infrastructure for an operating room |
DE19924361C2 (en) | 1999-05-27 | 2002-05-08 | Winter & Ibe Olympus | endoscope |
DE19924440A1 (en) | 1999-05-28 | 2000-12-07 | Storz Karl Gmbh & Co Kg | Shaft for a flexible endoscope |
JP3394742B2 (en) | 1999-05-31 | 2003-04-07 | オリンパス光学工業株式会社 | Data filing system for endoscope |
IL130486A (en) | 1999-06-15 | 2005-08-31 | Given Imaging Ltd | Optical system |
JP2001008199A (en) | 1999-06-24 | 2001-01-12 | Fuji Photo Optical Co Ltd | Electronic endoscope device |
JP2001061861A (en) | 1999-06-28 | 2001-03-13 | Siemens Ag | System having image photographing means and medical work station |
DE19932022A1 (en) | 1999-07-09 | 2001-02-08 | Etm Endoskopische Technik Gmbh | Endoscopic device, especially for emergency intubation |
JP2001034631A (en) | 1999-07-22 | 2001-02-09 | Olympus Optical Co Ltd | Image file device and data base production method of the image file device |
JP3565099B2 (en) | 1999-08-02 | 2004-09-15 | 富士写真光機株式会社 | Endoscope fluid supply device |
US6785410B2 (en) | 1999-08-09 | 2004-08-31 | Wake Forest University Health Sciences | Image reporting method and system |
DE60045206D1 (en) | 1999-08-17 | 2010-12-23 | Fujinon Corp | Optionally mechanically or electrically operable endoscope channel control device |
JP2001061764A (en) | 1999-08-25 | 2001-03-13 | Asahi Optical Co Ltd | Endoscope device |
US6796939B1 (en) | 1999-08-26 | 2004-09-28 | Olympus Corporation | Electronic endoscope |
US6651669B1 (en) | 1999-09-07 | 2003-11-25 | Scimed Life Systems, Inc. | Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage |
KR20020035588A (en) | 1999-09-08 | 2002-05-11 | 기시모토 마사도시 | Image pickup optical system for endoscope |
US6697101B1 (en) | 1999-09-20 | 2004-02-24 | Pentax Corporation | Electronic endoscope |
DE19945228C1 (en) | 1999-09-21 | 2001-06-07 | Storz Karl Gmbh & Co Kg | Medical instrument |
JP4317297B2 (en) | 1999-09-30 | 2009-08-19 | フジノン株式会社 | Electronic endoscope device |
JP2001095747A (en) * | 1999-09-30 | 2001-04-10 | Olympus Optical Co Ltd | Electronic endoscope |
US6780151B2 (en) | 1999-10-26 | 2004-08-24 | Acmi Corporation | Flexible ureteropyeloscope |
US6749560B1 (en) | 1999-10-26 | 2004-06-15 | Circon Corporation | Endoscope shaft with slotted tube |
US6611846B1 (en) | 1999-10-30 | 2003-08-26 | Medtamic Holdings | Method and system for medical patient data analysis |
DE10055725B4 (en) | 1999-11-11 | 2007-12-27 | Pentax Corp. | Electronic endoscope system |
DE10056178B4 (en) | 1999-11-12 | 2008-04-17 | Pentax Corp. | Electronic endoscope system with multiple video processors |
US6677984B2 (en) | 1999-11-30 | 2004-01-13 | Pentax Corporation | Electronic endoscope system |
DE10059661B4 (en) | 1999-12-03 | 2016-01-28 | Hoya Corp. | Electronic endoscope |
JP3689294B2 (en) | 1999-12-13 | 2005-08-31 | ペンタックス株式会社 | Endoscopic flexible tube and method for manufacturing endoscope flexible tube |
DE19961027B4 (en) | 1999-12-16 | 2007-01-18 | Karl Storz Gmbh & Co. Kg | Medical instrument for treating tissue or bone cement in the human or animal body |
GB2357856B (en) | 1999-12-29 | 2001-12-19 | Keymed | Annular light source in borescopes and endoscopes |
JP3842941B2 (en) | 2000-01-14 | 2006-11-08 | ペンタックス株式会社 | Electronic endoscope |
DE10102433B4 (en) | 2000-01-21 | 2008-07-10 | Pentax Corp. | Flexible tube for an endoscope |
US6589162B2 (en) | 2000-02-21 | 2003-07-08 | Pentax Corporation | Endoscope system and video camera for endoscope |
US6398724B1 (en) | 2000-03-16 | 2002-06-04 | Medivision, Inc. | Focusable optical instrument with a sealed optical system having no internal optical moving parts |
US6800056B2 (en) | 2000-04-03 | 2004-10-05 | Neoguide Systems, Inc. | Endoscope with guiding apparatus |
US6842196B1 (en) | 2000-04-04 | 2005-01-11 | Smith & Nephew, Inc. | Method and system for automatic correction of motion artifacts |
IL135571A0 (en) | 2000-04-10 | 2001-05-20 | Doron Adler | Minimal invasive surgery imaging system |
JP2001353124A (en) | 2000-04-10 | 2001-12-25 | Olympus Optical Co Ltd | Endoscopic apparatus |
US6673012B2 (en) | 2000-04-19 | 2004-01-06 | Pentax Corporation | Control device for an endoscope |
AU2001248487A1 (en) | 2000-04-21 | 2001-11-07 | Universite Pierre Et Marie Curie (Paris Vi) | Device for positioning, exploring and/or operating in particular in the field ofendoscopy and/or minimally invasive surgery |
US6582536B2 (en) | 2000-04-24 | 2003-06-24 | Biotran Corporation Inc. | Process for producing steerable sheath catheters |
EP1149555A3 (en) | 2000-04-24 | 2002-04-17 | Fuji Photo Film Co., Ltd. | Fluorescent endoscope apparatus |
US6860849B2 (en) | 2000-05-08 | 2005-03-01 | Pentax Corporation | Flexible tube for an endoscope |
US6663598B1 (en) | 2000-05-17 | 2003-12-16 | Scimed Life Systems, Inc. | Fluid seal for endoscope |
US6468204B2 (en) | 2000-05-25 | 2002-10-22 | Fuji Photo Film Co., Ltd. | Fluorescent endoscope apparatus |
US6829003B2 (en) | 2000-06-02 | 2004-12-07 | Pentax Corporation | Sampling pulse generator of electronic endoscope |
US6475141B2 (en) | 2000-06-29 | 2002-11-05 | Fuji Photo Optical Co., Ltd. | Electronic endoscope device using separated area photometry |
US6530882B1 (en) | 2000-06-30 | 2003-03-11 | Inner Vision Imaging, L.L.C. | Endoscope having microscopic and macroscopic magnification |
JP4574806B2 (en) | 2000-07-04 | 2010-11-04 | オリンパス株式会社 | Endoscope |
JP4472130B2 (en) | 2000-07-14 | 2010-06-02 | オリンパス株式会社 | Endoscope device |
JP3945133B2 (en) | 2000-08-02 | 2007-07-18 | フジノン株式会社 | Endoscope observation window cleaning device |
US6717092B2 (en) | 2000-08-11 | 2004-04-06 | Pentax Corporation | Method of manufacturing treatment instrument of endoscope |
JP2002065582A (en) | 2000-08-25 | 2002-03-05 | Asahi Optical Co Ltd | Electronic endoscope device |
US6540669B2 (en) | 2000-08-31 | 2003-04-01 | Pentax Corporation | Flexible tube for an endoscope and electronic endoscope equipped with the flexible tube |
JP3927764B2 (en) | 2000-09-01 | 2007-06-13 | ペンタックス株式会社 | Endoscope flexible tube |
US6595913B2 (en) | 2000-09-07 | 2003-07-22 | Fuji Photo Optical Co., Ltd. | Cable structure in electronic endoscope |
US6605035B2 (en) | 2000-09-07 | 2003-08-12 | Fuji Photo Optical Co., Ltd. | Endoscope |
JP2002078674A (en) | 2000-09-08 | 2002-03-19 | Fuji Photo Optical Co Ltd | Curved surface structure of endoscope |
JP3835146B2 (en) | 2000-09-13 | 2006-10-18 | フジノン株式会社 | Flexible tube and manufacturing method thereof |
JP3533163B2 (en) | 2000-09-18 | 2004-05-31 | ペンタックス株式会社 | Endoscope tip |
AU2001292836A1 (en) | 2000-09-23 | 2002-04-02 | The Board Of Trustees Of The Leland Stanford Junior University | Endoscopic targeting method and system |
US7108063B2 (en) * | 2000-09-25 | 2006-09-19 | Carstensen Kenneth J | Connectable rod system for driving downhole pumps for oil field installations |
JP3923718B2 (en) | 2000-10-02 | 2007-06-06 | オリンパス株式会社 | Endoscope |
JP3600194B2 (en) | 2000-10-02 | 2004-12-08 | オリンパス株式会社 | Endoscope |
US6663561B2 (en) | 2000-10-05 | 2003-12-16 | Pentax Corporation | Video endoscope system |
US7106479B2 (en) | 2000-10-10 | 2006-09-12 | Stryker Corporation | Systems and methods for enhancing the viewing of medical images |
US6716226B2 (en) | 2001-06-25 | 2004-04-06 | Inscope Development, Llc | Surgical clip |
JP2002185873A (en) | 2000-12-13 | 2002-06-28 | Asahi Optical Co Ltd | Video signal output device |
JP4786790B2 (en) | 2000-12-14 | 2011-10-05 | Hoya株式会社 | End of the endoscope |
JP3961765B2 (en) | 2000-12-28 | 2007-08-22 | ペンタックス株式会社 | Electronic endoscope system |
US6758806B2 (en) | 2001-01-12 | 2004-07-06 | Napoli, Llc | Endoscopic devices and method of use |
US6699181B2 (en) | 2001-01-19 | 2004-03-02 | Fuji Photo Optical Co., Ltd. | Connector device for endoscope |
US6736773B2 (en) | 2001-01-25 | 2004-05-18 | Scimed Life Systems, Inc. | Endoscopic vision system |
US6454162B1 (en) | 2001-01-25 | 2002-09-24 | David Teller | Process for controlling the misuse of disposable medical products |
US6871086B2 (en) | 2001-02-15 | 2005-03-22 | Robin Medical Inc. | Endoscopic examining apparatus particularly useful in MRI, a probe useful in such apparatus, and a method of making such probe |
JP3958526B2 (en) | 2001-02-28 | 2007-08-15 | ペンタックス株式会社 | Observation site display system for electronic endoscope apparatus |
JP4005318B2 (en) | 2001-02-28 | 2007-11-07 | ペンタックス株式会社 | Flexible endoscope device |
JP4643044B2 (en) | 2001-03-16 | 2011-03-02 | 富士フイルム株式会社 | Electronic endoscope apparatus having a zooming function |
JP4578708B2 (en) | 2001-03-26 | 2010-11-10 | オリンパス株式会社 | Biological tissue clip device |
DE10214174B4 (en) | 2001-03-30 | 2008-08-28 | Fujinon Corp. | Curvature actuating device for an endoscope |
JP3922890B2 (en) | 2001-03-30 | 2007-05-30 | フジノン株式会社 | Electronic endoscope device |
JP2002306509A (en) | 2001-04-10 | 2002-10-22 | Olympus Optical Co Ltd | Remote operation supporting system |
US6669629B2 (en) | 2001-04-24 | 2003-12-30 | Olympus Optical Co., Ltd. | Endoscope system comprising an electrically bendable endoscope |
JP2003010101A (en) | 2001-04-27 | 2003-01-14 | Fuji Photo Film Co Ltd | Imaging method and device of endoscope system |
JP3720727B2 (en) | 2001-05-07 | 2005-11-30 | オリンパス株式会社 | Endoscope shape detection device |
US6808491B2 (en) | 2001-05-21 | 2004-10-26 | Syntheon, Llc | Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments |
US6846286B2 (en) | 2001-05-22 | 2005-01-25 | Pentax Corporation | Endoscope system |
JP2002345733A (en) | 2001-05-29 | 2002-12-03 | Fuji Photo Film Co Ltd | Imaging device |
JP2002357773A (en) | 2001-06-04 | 2002-12-13 | Olympus Optical Co Ltd | Optical component and endoscope and endoscopic optical system using the same |
US6855109B2 (en) | 2001-07-18 | 2005-02-15 | Pentax Corporation | Portable endoscope |
US6929600B2 (en) * | 2001-07-24 | 2005-08-16 | Stephen D. Hill | Apparatus for intubation |
US6614969B2 (en) | 2001-07-26 | 2003-09-02 | The Ludlow Company, Lp | High speed electronic remote medical imaging system and method |
US6745065B2 (en) | 2001-08-02 | 2004-06-01 | Olympus Corporation | Endoscope apparatus |
US6916286B2 (en) | 2001-08-09 | 2005-07-12 | Smith & Nephew, Inc. | Endoscope with imaging probe |
JP3870049B2 (en) * | 2001-08-17 | 2007-01-17 | Necトーキン株式会社 | Electromagnetic relay device |
US6749561B2 (en) | 2001-08-23 | 2004-06-15 | Smith & Nephew, Inc. | Autofocusing endoscopic system |
US6758807B2 (en) | 2001-08-27 | 2004-07-06 | Fuji Photo Optical Co., Ltd. | Electronic endoscope with power scaling function |
JP3869692B2 (en) | 2001-09-03 | 2007-01-17 | ペンタックス株式会社 | Electronic endoscope apparatus and electronic endoscope system |
US6728599B2 (en) | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
US20030161105A1 (en) | 2001-10-04 | 2003-08-28 | Vijay Kataria | Thermal dissipation assembly for electronic components |
JP3869698B2 (en) | 2001-10-23 | 2007-01-17 | ペンタックス株式会社 | Electronic endoscope device |
FR2832516B1 (en) * | 2001-11-19 | 2004-01-23 | Tokendo Sarl | ROTARY ENDOSCOPES WITH A DEVIED DISTAL VIEW |
JP2003188489A (en) | 2001-12-14 | 2003-07-04 | Pentax Corp | Substrate structure for electronic scope |
JP2003180628A (en) | 2001-12-14 | 2003-07-02 | Pentax Corp | Board structure of electronic scope |
JP4197877B2 (en) | 2002-02-25 | 2008-12-17 | オリンパス株式会社 | Electric bending endoscope apparatus and calibration method |
DE10209124A1 (en) | 2002-03-01 | 2003-10-16 | Wolf Gmbh Richard | Suction valve for an endoscope |
DE10209986B4 (en) | 2002-03-07 | 2004-07-29 | Stm Medizintechnik Starnberg Gmbh | Endoscope shaft with a movable end section |
JP4026744B2 (en) | 2002-03-22 | 2007-12-26 | フジノン株式会社 | Endoscope suction valve |
US7137981B2 (en) | 2002-03-25 | 2006-11-21 | Ethicon Endo-Surgery, Inc. | Endoscopic ablation system with a distally mounted image sensor |
US6858014B2 (en) | 2002-04-05 | 2005-02-22 | Scimed Life Systems, Inc. | Multiple biopsy device |
US6711426B2 (en) | 2002-04-09 | 2004-03-23 | Spectros Corporation | Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load |
US6830545B2 (en) | 2002-05-13 | 2004-12-14 | Everest Vit | Tube gripper integral with controller for endoscope of borescope |
JP2004029554A (en) | 2002-06-27 | 2004-01-29 | Olympus Corp | Image pickup lens unit and image pickup device |
US6824539B2 (en) | 2002-08-02 | 2004-11-30 | Storz Endoskop Produktions Gmbh | Touchscreen controlling medical equipment from multiple manufacturers |
US6863668B2 (en) | 2002-08-16 | 2005-03-08 | Edwards Lifesciences Corporation | Articulation mechanism for medical devices |
US6892090B2 (en) | 2002-08-19 | 2005-05-10 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual endoscopy |
JP4169549B2 (en) | 2002-09-06 | 2008-10-22 | オリンパス株式会社 | Endoscope |
JP4323150B2 (en) | 2002-09-30 | 2009-09-02 | オリンパス株式会社 | Electric bending endoscope |
JP4323149B2 (en) | 2002-09-30 | 2009-09-02 | オリンパス株式会社 | Electric bending endoscope |
JP4311994B2 (en) | 2002-09-30 | 2009-08-12 | オリンパス株式会社 | Electric bending endoscope |
JP4200731B2 (en) | 2002-10-23 | 2008-12-24 | フジノン株式会社 | Endoscope forceps plug |
US6908427B2 (en) | 2002-12-30 | 2005-06-21 | PARÉ Surgical, Inc. | Flexible endoscope capsule |
JP2004251779A (en) | 2003-02-20 | 2004-09-09 | Fuji Photo Optical Co Ltd | Three-dimensional shape detector for long flexible member |
US6943946B2 (en) | 2003-05-01 | 2005-09-13 | Itt Manufacturing Enterprises, Inc. | Multiple aperture imaging system |
JP4550048B2 (en) | 2003-05-01 | 2010-09-22 | ギブン イメージング リミテッド | Panorama field of view imaging device |
US8182417B2 (en) * | 2004-11-24 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Articulating mechanism components and system for easy assembly and disassembly |
JP4383107B2 (en) | 2003-07-04 | 2009-12-16 | オリンパス株式会社 | Objective optical system |
WO2005023082A2 (en) | 2003-09-09 | 2005-03-17 | Image In Ltd. | Endoscope |
US6905057B2 (en) | 2003-09-29 | 2005-06-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission |
JP2005160660A (en) | 2003-12-02 | 2005-06-23 | Olympus Corp | System and method for examination management |
US7708688B2 (en) | 2004-03-15 | 2010-05-04 | Paradigm Optics, Incorporated | Polymer endoscopic shaft |
JP2005301434A (en) | 2004-04-07 | 2005-10-27 | Fuji Photo Film Co Ltd | Examination reservation method and system, and server used therefor |
US7828808B2 (en) | 2004-06-07 | 2010-11-09 | Novare Surgical Systems, Inc. | Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools |
-
2004
- 2004-09-30 US US10/955,960 patent/US7241263B2/en not_active Expired - Fee Related
-
2005
- 2005-09-28 WO PCT/US2005/034575 patent/WO2006039261A2/en active Application Filing
- 2005-09-28 US US11/238,153 patent/US8197400B2/en not_active Expired - Fee Related
-
2007
- 2007-06-01 US US11/809,696 patent/US20070238926A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4576144A (en) * | 1982-03-08 | 1986-03-18 | Olympus Optical Co., Ltd. | Endoscope connecting device |
US4662360A (en) * | 1984-10-23 | 1987-05-05 | Intelligent Medical Systems, Inc. | Disposable speculum |
US5188093A (en) * | 1991-02-04 | 1993-02-23 | Citation Medical Corporation | Portable arthroscope with periscope optics |
US5289555A (en) * | 1992-06-18 | 1994-02-22 | Sanso David W | Optical-fibre cable coupler for endoscope light source |
US5707340A (en) * | 1994-12-10 | 1998-01-13 | Richard Wolf Gmbh | Device for connecting an endoscope to an auxiliary apparatus |
US5621830A (en) * | 1995-06-07 | 1997-04-15 | Smith & Nephew Dyonics Inc. | Rotatable fiber optic joint |
US5909539A (en) * | 1995-09-20 | 1999-06-01 | Casio Computer Co., Ltd. | Image generating system and method |
US5782752A (en) * | 1996-04-05 | 1998-07-21 | Vista Medical Technologies, Inc. | Device for carrying two units in end to end disposition and for moving one of the units alongside the other of the units |
US6154286A (en) * | 1996-11-29 | 2000-11-28 | Kabushiki Kaisha Toshiba | Image forming apparatus |
US6313921B1 (en) * | 1997-09-24 | 2001-11-06 | Canon Kabushiki Kaisha | Image forming system, image forming apparatus and method of controlling the same |
US6460319B2 (en) * | 1999-07-14 | 2002-10-08 | Black & Decker Inc. | Vegetation trimming and edging device with adjustable head orientation |
US6692431B2 (en) * | 2001-09-07 | 2004-02-17 | Smith & Nephew, Inc. | Endoscopic system with a solid-state light source |
US20030229543A1 (en) * | 2002-06-10 | 2003-12-11 | Zimmerman Shannon M. | Centralized management of packaging data with rule-based content validation |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080249536A1 (en) * | 2007-02-15 | 2008-10-09 | Hansen Medical, Inc. | Interface assembly for controlling orientation of robotically controlled medical instrument |
US20080262480A1 (en) * | 2007-02-15 | 2008-10-23 | Stahler Gregory J | Instrument assembly for robotic instrument system |
US20080262513A1 (en) * | 2007-02-15 | 2008-10-23 | Hansen Medical, Inc. | Instrument driver having independently rotatable carriages |
US20100268023A1 (en) * | 2009-03-20 | 2010-10-21 | Rudi Campo | Medical Instrument, In Particular Hysteroscope |
US9462936B2 (en) * | 2009-03-20 | 2016-10-11 | Karl Storz Gmbh & Co. Kg | Medical instrument, in particular hysteroscope |
US9585547B2 (en) * | 2014-11-24 | 2017-03-07 | Gyrus Acmi, Inc. | Adjustable endoscope sheath |
US10918263B2 (en) | 2014-11-24 | 2021-02-16 | Gyrus Acmi, Inc. | Adjustable endoscope sheath |
US11684244B2 (en) | 2014-11-24 | 2023-06-27 | Gyrs ACMI, Inc. | Adjustable endoscope sheath |
Also Published As
Publication number | Publication date |
---|---|
WO2006039261A3 (en) | 2006-07-13 |
US20060069307A1 (en) | 2006-03-30 |
US7241263B2 (en) | 2007-07-10 |
US8197400B2 (en) | 2012-06-12 |
US20060111613A1 (en) | 2006-05-25 |
WO2006039261A2 (en) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7241263B2 (en) | Selectively rotatable shaft coupler | |
US20240215809A1 (en) | Method for forming an endoscope articulation joint | |
US10926059B2 (en) | Method of making a sealed lumen and associated computing module | |
US10448811B2 (en) | Medical device introduction and imaging system, and associated method | |
EP1161174B1 (en) | Controllable endoscopic sheath | |
US6506150B1 (en) | Self-retaining endoscope | |
WO2004049911A2 (en) | Systems and methods for providing gastrointestinal pain management | |
US20220304550A1 (en) | Systems and methods for modular endoscope | |
JP2007268270A (en) | Endscope ancillary attaching device | |
WO2017087579A1 (en) | Medical device introduction and imaging system, and associated method | |
US20180228362A1 (en) | Endoscopic assistance devices and methods of use | |
CN210931284U (en) | Endoscope with a detachable handle | |
US11871977B2 (en) | Catheter extension control | |
EP2519140B1 (en) | Disposable probe for hydrothermal ablation | |
JP3780170B2 (en) | Endoscope | |
US11478130B2 (en) | Endoscope with integrated attachment mechanisms and methods of use | |
US20240260820A1 (en) | Systems and methods for configurable endoscope bending section | |
JP2000316797A (en) | Endoscope | |
CN118633891A (en) | Active bending section, insertion section and endoscope | |
JP2005046279A (en) | Endoscope | |
CN118632651A (en) | Endoscope with keyed orientation feature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |