US20070202698A1 - Methods for fabricating one or more metal damascene structures in a semiconductor wafer - Google Patents
Methods for fabricating one or more metal damascene structures in a semiconductor wafer Download PDFInfo
- Publication number
- US20070202698A1 US20070202698A1 US11/743,114 US74311407A US2007202698A1 US 20070202698 A1 US20070202698 A1 US 20070202698A1 US 74311407 A US74311407 A US 74311407A US 2007202698 A1 US2007202698 A1 US 2007202698A1
- Authority
- US
- United States
- Prior art keywords
- polishing
- layer
- metal
- wafer
- semiconductor wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 126
- 239000002184 metal Substances 0.000 title claims abstract description 104
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 104
- 239000004065 semiconductor Substances 0.000 title claims abstract description 69
- 238000005498 polishing Methods 0.000 claims abstract description 305
- 230000003628 erosive effect Effects 0.000 claims abstract description 26
- 238000012876 topography Methods 0.000 claims abstract description 26
- 230000004888 barrier function Effects 0.000 claims description 64
- 239000002002 slurry Substances 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 abstract description 84
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 158
- 235000012431 wafers Nutrition 0.000 description 128
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/7684—Smoothing; Planarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
- H01L21/32125—Planarisation by chemical mechanical polishing [CMP] by simultaneously passing an electrical current, i.e. electrochemical mechanical polishing, e.g. ECMP
Definitions
- the invention relates generally to semiconductor processing methods, and more particularly to a method for fabricating copper damascene structures.
- a preferred method to planarize semiconductor wafers is the chemical mechanical polishing (CMP) method, where a surface of a semiconductor wafer is polished using a slurry solution supplied between the wafer and a polishing pad.
- CMP chemical mechanical polishing
- the CMP method is also widely used for damascene process to form copper (Cu) interconnect structures on the semiconductor wafers.
- a semiconductor wafer 10 having a dielectric layer 12 with trenches, a barrier metal layer 14 and a Cu layer 16 is fabricated.
- the Cu layer 16 is then polished using a first continuous CMP process at a first polishing unit of a polishing apparatus until the barrier layer 14 on the upper surface of the dielectric layer 12 is exposed to remove the Cu layer above the barrier layer.
- the barrier layer 14 on the upper surface of the dielectric layer 12 is polished at a second polishing unit of the polishing apparatus using a second CMP process to remove the barrier layer on the upper surface of the dielectric layer, which results in the semiconductor wafer 20 with the Cu damascene structure, as illustrated in FIG. 1B .
- the Cu layer 16 is polished using first and second serial CMP processes at first and second polishing units of a polishing apparatus, respectively, to remove the Cu layer above the barrier layer 14 until the barrier layer on the upper surface of the dielectric layer 12 is exposed.
- the barrier layer 14 on the upper surface of the dielectric layer 12 is polished at a third polishing unit of the polishing apparatus using a third CMP process to remove the barrier layer on the upper surface of the dielectric layer, which results in the semiconductor wafer 20 with the Cu damascene structure, as illustrated in FIG. 1B .
- a concern with the conventional CMP methods for forming a Cu damascene structure is that the resulting Cu damascene structure will typically have a non-planar erosion topography 22 , as illustrated in FIG. 1B , which can significantly degrade the final semiconductor device.
- This erosion topography 22 is formed during the process of removing the Cu layer 16 , the barrier metal layer 14 or both of the layers.
- Another concern with the conventional CMP methods is that the throughput of the polishing apparatus with two or three polishing units drops drastically for Cu damascene structures that require removing a thicker portion of the Cu layer over the barrier metal layer. It is noted that the thicker the Cu layer to be removed is, the polishing times of the respective polishing units become more unbalanced, and therefore, the last polishing unit of the polishing apparatus to remove the barrier metal layer idles while the other polishing units polish the Cu layers.
- Methods for fabricating one or more metal (e.g., copper) damascene structures in a semiconductor wafer use at least three polishing steps to reduce erosion topography in the resulting metal damascene structures and/or increase throughput.
- the polishing steps may be performed at four polishing units of a polishing apparatus, which may include one or more pivotable load/unload cups to transfer the semiconductor wafer between some of the polishing units.
- a method for fabricating a metal damascene structure in a semiconductor wafer in accordance with a first embodiment of the invention comprises providing the semiconductor wafer that includes a dielectric layer with trenches below an upper surface, a barrier layer over the dielectric layer and a metal layer over the barrier layer, removing an upper portion of the metal layer using a first polishing technique such that a lower portion of the metal layer remains over the barrier layer on the upper surface of the dielectric layer, removing the lower portion of the metal layer using a second polishing technique until the barrier layer on the upper surface of the dielectric layer is exposed, removing the barrier layer on the upper surface of the dielectric layer using a third polishing technique until the upper layer of the dielectric layer is exposed to produce the metal damascene structure with erosion topography, and planarizing the metal damascene structure with the erosion topography using a fourth polishing technique to reduce the erosion topography of the metal damascene structure.
- a method for fabricating a metal damascene structure in a semiconductor wafer in accordance with a second embodiment of the invention comprises providing the semiconductor wafer that includes a dielectric layer with trenches below an upper surface, a barrier layer over the dielectric layer and a metal layer over the barrier layer, removing an upper portion of the metal layer using a first polishing technique such that an intermediate portion and a lower portion of the metal layer remain over the barrier layer, removing the intermediate portion of the metal layer using a second polishing technique such that the lower portion of the metal layer remains over the barrier layer, removing the lower portion of the metal layer using a third polishing technique until the barrier layer on the upper surface of the dielectric layer is exposed, and removing the barrier layer on the upper surface of the dielectric using a fourth polishing technique until the upper surface of the dielectric layer is exposed to produce the metal damascene structure.
- a method for fabricating metal damascene structures in a semiconductor wafer in accordance with an embodiment of the invention comprises forming a first metal damascene structure in the semiconductor wafer and forming a second metal damascene structure in the semiconductor wafer.
- the first metal damascene structure in the semiconductor wafer is formed using the above method for fabricating a metal damascene structure in accordance with the first embodiment of the invention with or without the step of planarizing the metal damascene structure.
- the second metal damascene structure in the semiconductor wafer is formed using the above method for fabricating a metal damascene structure in accordance with the second embodiment of the invention.
- a method for fabricating a metal damascene structure in a semiconductor wafer in accordance with another embodiment of the invention comprises providing the semiconductor wafer at a polishing apparatus that comprises four polishing units, the semiconductor wafer including a dielectric layer with trenches below an upper surface, a barrier layer over the dielectric layer and a metal layer over the barrier layer, removing an upper portion of the metal layer using a first polishing technique at a first polishing unit of the polishing apparatus such that a lower portion of the metal layer remains over the barrier layer on the upper surface of the dielectric layer, removing the lower portion of the metal layer using a second polishing technique at a second polishing unit of the polishing apparatus until the barrier layer on the upper surface of the dielectric layer is exposed, and removing the barrier layer on the upper surface of the electric layer using a third polishing technique at a third polishing unit of the polishing apparatus until the upper layer of the dielectric layer is exposed to produce the metal damascene structure.
- FIGS. 1A and 1B are partial cross-sectional views of a semiconductor wafer before and after a conventional chemical-mechanical polishing method in accordance with the prior art is performed to form a copper (Cu) damascene structure in the wafer.
- Cu copper
- FIG. 2 is a diagram of a polishing apparatus with four polishing units and three pivotable load/unload cups that can be used to perform methods for fabricating one or more Cu damascene structures in a semiconductor wafer in accordance with the invention.
- FIG. 3 is a flow diagram of a method for fabricating a Cu damascene structure in a semiconductor device in accordance with a first embodiment of the invention.
- FIGS. 4A-4E are partial cross-sectional views of a semiconductor wafer at different stages during the fabrication method in accordance with the first embodiment of the invention.
- FIG. 5 is a flow diagram of a method for fabricating a Cu damascene structure in a semiconductor device in accordance with a second embodiment of the invention.
- FIGS. 6A-6E are partial cross-sectional views of a semiconductor wafer at different stages during the fabrication method in accordance with the second embodiment of the invention.
- FIG. 7 is a partial cross-sectional view of a semiconductor wafer with multi-level dual Cu damascene structures, which are formed using both the fabrication method in accordance with the first or alternative first embodiment of the invention and the fabrication method in accordance with the second or alternative second embodiment of the invention.
- Methods for fabricating one or more copper (Cu) damascene structures in a semiconductor wafer in accordance with the invention produce Cu damascene structures with reduced non-planar erosion topography, which significantly increases the quality of the final semiconductor products, and/or produce the Cu damascene structures with increased throughput.
- These methods for fabricating one or more Cu damascene structures are described herein as being performed using a polishing apparatus 200 with four polishing units 202 A, 202 B, 202 C and 202 D and three pivotable load/unload cups 204 A, 204 B and 204 C, which is illustrated in FIG. 2 .
- the polishing apparatus 200 is described in U.S. Patent Application Publication No.
- the polishing apparatus 200 comprises the four polishing units 202 A, 202 B, 202 C and 202 D and the three pivotable load/unload cups 204 A, 204 B and 204 C.
- Each of the polishing units 202 A, 202 B, 202 C and 202 D includes a polishing table 206 and a wafer polishing head or wafer carrier 208 .
- the polishing table 206 has a polishing surface on which a semiconductor wafer can be polished.
- a polishing pad is attached to the polishing table 206 to provide the polishing surface.
- the polishing table 206 is designed to be rotated or orbited about an axis.
- the wafer polishing head 208 is configured to hold a semiconductor wafer to polish the wafer on the respective polishing table 206 .
- the wafer polishing head 208 is part of a wafer carrier assembly, which operates to rotate the wafer polishing head and lower and raise the wafer polishing head onto the polishing surface of the respective polishing table 206 .
- Each of the pivotable load/unload cups 204 A, 204 B and 204 C includes a load/unload cup 210 and a shaft 212 .
- the load/unload cup 210 is configured to receive a semiconductor wafer from one of the wafer polishing heads 208 of the polishing units 202 A, 202 B and 202 C and to transfer the wafer to another wafer polishing head of the polishing units 202 B, 202 C and 202 D.
- the load/unload cup 210 may be further configured to clean the wafer using, for example, deionized water, while transferring the wafer.
- the shaft 212 is attached to the load/unload cup 210 .
- the shaft 212 is also connected to a motor 214 that can pivot the load/unload cup 210 about a pivoting axis via the shaft 212 .
- the length of the shaft 212 and the location of the pivoting axis are selected so that the load/unload cup 210 can reach the wafer polishing heads 208 of adjacent polishing units 202 A, 202 B, 202 C and 202 D.
- the pivotable load/unload cup 204 A is used to receive a semiconductor wafer from the wafer polishing head 208 of the polishing unit 202 A and transfer the wafer to the wafer polishing head 208 of the polishing unit 202 B.
- the pivotable load/unload cup 204 B is used to receive the wafer from the wafer polishing head 208 of the polishing unit 202 B and transfer the wafer to the wafer polishing head 208 of the polishing unit 202 C.
- the pivotable load/unload cup 204 C is similarly used to receive the wafer from the wafer polishing head 208 of the polishing unit 202 C and transfer the wafer to the wafer polishing head 208 of the polishing unit 202 D.
- FIG. 3 A method for fabricating a Cu damascene structure in a semiconductor wafer using the polishing apparatus 200 in accordance with a first embodiment of the invention is described with reference to a flow diagram of FIG. 3 along with FIGS. 4A-4E , which are partial cross-sectional views of a semiconductor wafer 400 at different stages during the fabrication method.
- the semiconductor wafer 400 having a dielectric layer 402 with trenches, a barrier metal layer 404 over the dielectric layer and a Cu layer 406 over the barrier metal layer is provided, as illustrated in FIG. 4A .
- the trenches in the dielectric layer 402 is located below the upper surface of the dielectric layer.
- the dielectric layer 402 may be an oxide layer.
- the barrier metal layer 404 is conformal to the upper surface of the dielectric layer 402 , as well as the sides of the trenches in the dielectric layer.
- the barrier metal layer 404 may be a layer of tantalum (Ta) or tantalum nitride (TaN).
- the semiconductor wafer 400 can be formed using conventional patterning and deposition processes.
- the wafer 400 is loaded onto the wafer polishing head 208 of the first polishing unit 202 A of the polishing apparatus 200 .
- the wafer 400 may be loaded onto the wafer polishing head 208 of the first polishing unit 202 A by a wafer transfer robot.
- an upper portion 408 of the Cu layer 406 of the wafer 400 is removed at the first polishing unit 202 A using a first polishing technique such that a substantial lower portion 410 of the Cu layer remains over the barrier metal layer 404 on the upper surface of the dielectric layer 402 , as illustrated in FIG. 4B .
- the first polishing technique involves performing a chemical-mechanical polishing (CMP) process using the first polishing head 208 and the first polishing table 206 of the first polishing unit 202 A and a first slurry.
- CMP chemical-mechanical polishing
- Both the upper and lower portions 408 and 410 of the Cu layer 406 which are above the barrier metal layer 404 on the upper surface of the dielectric layer 402 , are shown in FIG. 4A .
- the upper portion 408 of the Cu layer 406 is thicker than the lower portion 410 of the Cu layer.
- the wafer 400 is transferred from the wafer polishing head 208 of the first polishing unit 202 A to the wafer polishing head 208 of the second polishing unit 202 B of the polishing apparatus 200 using the first pivotable load/unload cup 204 A.
- the lower portion 410 of the Cu layer 406 of the wafer 400 is removed at the second polishing unit 202 B using a second polishing technique until the barrier metal layer 404 on the upper surface of the dielectric layer 402 is exposed, as illustrated in FIG. 4C .
- the second polishing technique involves performing a CMP process using the second polishing head 208 and the second polishing table 206 of the second polishing unit 202 B and a second slurry.
- the second polishing technique has a lower removal rate than the removal rate of the first polishing technique.
- the wafer is transferred from the wafer polishing head 208 of the second polishing unit 202 B to the wafer polishing head 208 of the third polishing unit 202 C of the polishing apparatus 200 using the second pivotable load/unload cup 204 B.
- the barrier metal layer 404 on the upper surface of the dielectric layer 402 of the wafer 400 is removed at the third polishing unit 202 C using a third polishing technique until the upper surface of the dielectric layer is exposed, as illustrated in FIG. 4D .
- the third polishing technique involves performing a CMP process using the third polishing head 208 and the third polishing table 206 of the third polishing unit 202 C and a third slurry.
- the resulting wafer 400 includes a Cu damascene structure with erosion topography 412 , which produces dielectric protrusions 414 .
- the wafer 400 is transferred from the wafer polishing head 208 of the third polishing unit 202 C to the wafer polishing head 208 of the fourth polishing unit 202 D of the polishing apparatus 200 using the third pivotable load/unload cup 204 C.
- the Cu damascene structure with the erosion topography 412 is planarized at the fourth polishing unit 202 D using a fourth polishing technique to reduce the dielectric protrusions 414 to reduce the non-planar erosion topography of the Cu damascene structure in the wafer 400 , as illustrated in FIG. 4E .
- the fourth polishing technique involves performing a CMP process using the fourth polishing head 208 and the fourth polishing table 206 of the polishing unit 202 D and a fourth slurry.
- the fourth slurry has a higher removal rate of the dielectric layer 402 than the Cu layer 406 and the barrier metal layer 404 . Therefore, the dielectric protrusions 414 can be removed more quickly than the Cu layer 406 and the barrier metal layer 404 to reduce the erosion topography 412 .
- the polishing of the wafer 400 at block 318 can also reduce defects such as scratches and particles generated during the previous polishing processes of removing the Cu layer 406 and the barrier metal layer 404 .
- planarization of the Cu damascene structure at the fourth polishing unit 202 D of the polishing apparatus 200 is optional.
- the fabrication method in accordance with the first embodiment of the invention can be completed at block 314 , where the barrier metal layer 404 on the upper surface of the dielectric layer 402 of the wafer 400 is removed at the third polishing unit 202 C using a third polishing technique until the upper surface of the dielectric layer is exposed.
- the first polishing technique performed at the first polishing unit 202 A involves performing an electro-chemical-mechanical polishing (ECMP) process or an electro-chemical polishing (ECP) process using an appropriate polishing solution.
- ECMP electro-chemical-mechanical polishing
- ECP electro-chemical polishing
- Both the ECMP and ECP processes require conducting electrical current through the semiconductor wafer being polished via the wafer polishing head and the polishing table.
- a difference between the two polishing processes is that the ECMP process involves a nominal mechanical polishing, e.g., in the order of 0.5 psi.
- the first polishing unit 202 A needs to be modified so that the wafer polishing head 208 and the polishing table 206 are electrically connected to an electrical power source to conduct electric current between the wafer polishing head and the polishing table through the semiconductor wafer being polished.
- FIG. 5 A method for fabricating a Cu damascene structure in a semiconductor wafer using the polishing apparatus 200 in accordance with a second embodiment of the invention is described with reference to a flow diagram of FIG. 5 along with FIGS. 6A-6E , which are partial cross-sectional views of a semiconductor wafer 600 at different stages during the fabrication method.
- the semiconductor wafer 600 having a dielectric layer 602 with trenches, a barrier metal layer 604 over the dielectric layer and a Cu layer 606 over the barrier metal layer is provided, as illustrated in FIG. 6A .
- the semiconductor wafer 600 of FIG. 6A is similar to the semiconductor wafer 400 of FIG. 4A .
- the trenches of the wafer 600 are deeper than the trenches of the wafer 400 , and therefore, the Cu layer 606 of the wafer 600 is thicker than the Cu layer 406 of the wafer 400 .
- the wafer 600 is loaded onto the wafer polishing head 208 of the first polishing unit 202 A of the polishing apparatus 200 .
- an upper portion 608 of the Cu layer 606 of the wafer 600 is removed at the first polishing unit 202 A using a first polishing technique such that an intermediate portion 610 and a substantial lower portion 612 of the Cu layer 606 remain over the barrier layer 604 on the upper surface of the dielectric layer 602 , as illustrated in FIG. 6B .
- the first polishing technique involves performing a CMP process using the first polishing head 208 and the first polishing table 206 of the first polishing unit 202 A and a first slurry.
- the upper, intermediate and lower portions 608 , 610 and 612 of the Cu layer 606 which are above the barrier metal layer 604 on the upper surface of the dielectric layer 602 , are shown in FIG. 6A .
- the wafer 600 is transferred from the wafer polishing head 208 of the first polishing unit 202 A to the wafer polishing head 208 of the second polishing unit 202 B of the polishing apparatus 200 using the first pivotable load/unload cup 204 A.
- the intermediate portion 610 of the Cu layer 606 of the wafer 600 is removed at the second polishing unit 202 B using a second polishing technique such that only the lower portion 612 of the Cu layer 606 remains over the barrier metal layer 604 on the upper surface of the dielectric layer 602 , as illustrated in FIG. 6C .
- the second polishing technique involves performing a CMP process using the second polishing head 208 and the second polishing table 206 of the second polishing unit 202 B and the same first slurry or a different kind of slurry.
- the upper and intermediate portions 608 and 610 of the Cu layer 606 of the wafer 600 have substantially the same thickness, and the lower portion 612 of the Cu layer 606 is thinner than the upper and intermediate portions 608 and 610 of the Cu layer 606 .
- the wafer 600 is transferred from the wafer polishing head 208 of the second polishing unit 202 B to the wafer polishing head 208 of the third polishing unit 202 C of the polishing apparatus 200 using the second pivotable load/unload cup 204 B.
- the lower portion 612 of the Cu layer 606 of the wafer 600 is removed at the third polishing unit 202 C using a third polishing technique until the barrier metal layer 604 on the upper surface of the dielectric layer 602 is exposed, as illustrated in FIG. 6D .
- the third polishing technique involves performing a CMP process using the third polishing head 208 and the third polishing table 206 of the third polishing unit 202 C and a second slurry.
- the third polishing technique has a lower removal rate than the removal rates of the first and second polishing techniques.
- the wafer 600 is transferred from the wafer polishing head 208 of the third polishing unit 202 C to the wafer polishing head 208 of the fourth polishing unit 202 D of the polishing unit 200 using the third pivotable load/unload cup 204 C.
- the barrier metal layer 604 on the upper surface of the dielectric layer 602 of the wafer 600 is removed at the fourth polishing unit 202 D using a fourth polishing technique until the upper surface of the dielectric layer 602 is exposed, as illustrated in FIG. 6E .
- the fourth polishing technique involves performing a CMP process using the fourth polishing head 208 and the fourth polishing table 206 of the fourth polishing unit 202 D and a third slurry.
- one or both of the first polishing technique performed at the first polishing unit 202 A and the second polishing technique performed at the second polishing unit 202 B involve performing an ECMP process or an ECP process using an appropriate polishing solution. If the ECMP or ECP process is to be performed at one or both of the polishing units 202 A and 202 B, one or both of these polishing units need to be modified so that the respective wafer polishing head 208 and the respective polishing table 206 are electrically connected to an electrical power source to conduct electric current between the wafer polishing head and the polishing table through the semiconductor wafer being polished.
- the above-described methods for fabricating a Cu damascene structure in a semiconductor wafer in accordance with different embodiments of the invention can be combined to fabricate a semiconductor wafer 700 with multi-level dual Cu damascene structures, as illustrated in FIG. 7 .
- the wafer 700 includes dual Cu damascene structures 702 A, 702 B, 702 C, 702 D, 702 E and 702 F at different metal layers, M 1 , M 2 , M 3 . . . M 6 , M 7 and M 8 .
- the planar layers between adjacent metal layers are diffusion barrier layers.
- the wafer 700 in FIG. 7 is shown as having a particular number dual Cu damascene structures, the wafer may include any number of Cu damascene structures.
- the trench depth of the Cu damascene structures 702 A, 702 B, 702 C, 702 D, 702 E and 702 F of the wafer 700 increases from the lowest level metal layer, i.e., M 1 layer, to the highest level metal layer, i.e., M 8 layer.
- M 1 layer the lowest level metal layer
- M 8 layer the highest level metal layer
- the trench depth of the damascene structure 702 A is shallowest, e.g., 0.3 microns
- the trench depth of the damascene structure 702 F at M 8 layer is deepest, e.g., 1.5 microns.
- the fabrication method in accordance with the first embodiment or the alternative first embodiment of the invention can be used, which can reduce erosion topography, and therefore, improve the planarity of the polished surfaces.
- the fabrication method in accordance with the optional embodiment of the first embodiment of the invention can be used, which does not perform planarization CMP to reduce erosion topography.
- the fabrication method in accordance with the second embodiment or the alternative second embodiment of the invention can be used to increase throughput.
- erosion topography is relatively less important for the higher-level Cu damascene structures than for lower-level Cu damascene structures, it is more productive to use the fabrication method in accordance with the second embodiment or the alternative second embodiment of the invention to form these higher-level Cu damascene structures 702 D, 702 E and 702 F than to use the fabrication method in accordance with the first embodiment or the alternative first embodiment of the invention.
- the Cu damascene structures 702 A, 702 B, 702 C, 702 D, 702 E and 702 F of the wafer 700 can be fabricated on the same polishing apparatus with four polishing units, such as the polishing apparatus 200 , or on different polishing apparatus with four polishing units, such as multiple polishing apparatus 200 .
- the fabrication methods in accordance with the invention may use a metal or a metal alloy (collectively referred to herein as “metal”) other than Cu to form the damascene structures.
- metal a metal or a metal alloy
- the scope of the invention is to be defined by the claims appended hereto and their equivalents.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Methods for fabricating one or more metal (e.g., copper) damascene structures in a semiconductor wafer use at least three polishing steps to reduce erosion topography in the resulting metal damascene structures and/or increase throughput. The polishing steps may be performed at four polishing units of a polishing apparatus, which may include one or more pivotable load/unload cups to transfer the semiconductor wafer between some of the polishing units.
Description
- The present application is a divisional application of copending application Ser. No. 11/270,270 filed on Nov. 8, 2005, which is entitled to the benefit of U.S. Provisional Patent Application Ser. No. 60/627,029, filed on Nov. 10, 2004, which is incorporated herein by reference.
- The invention relates generally to semiconductor processing methods, and more particularly to a method for fabricating copper damascene structures.
- Local and global planarization of semiconductor wafers becomes increasingly important as more metal layers and interlayer dielectric layers are stacked on the wafers. A preferred method to planarize semiconductor wafers is the chemical mechanical polishing (CMP) method, where a surface of a semiconductor wafer is polished using a slurry solution supplied between the wafer and a polishing pad. The CMP method is also widely used for damascene process to form copper (Cu) interconnect structures on the semiconductor wafers.
- As illustrated in
FIG. 1A , in order to form a Cu damascene structure using a conventional CMP method, asemiconductor wafer 10 having adielectric layer 12 with trenches, abarrier metal layer 14 and aCu layer 16 is fabricated. TheCu layer 16 is then polished using a first continuous CMP process at a first polishing unit of a polishing apparatus until thebarrier layer 14 on the upper surface of thedielectric layer 12 is exposed to remove the Cu layer above the barrier layer. Next, thebarrier layer 14 on the upper surface of thedielectric layer 12 is polished at a second polishing unit of the polishing apparatus using a second CMP process to remove the barrier layer on the upper surface of the dielectric layer, which results in thesemiconductor wafer 20 with the Cu damascene structure, as illustrated inFIG. 1B . - In an another conventional CMP method, the
Cu layer 16 is polished using first and second serial CMP processes at first and second polishing units of a polishing apparatus, respectively, to remove the Cu layer above thebarrier layer 14 until the barrier layer on the upper surface of thedielectric layer 12 is exposed. Next, thebarrier layer 14 on the upper surface of thedielectric layer 12 is polished at a third polishing unit of the polishing apparatus using a third CMP process to remove the barrier layer on the upper surface of the dielectric layer, which results in thesemiconductor wafer 20 with the Cu damascene structure, as illustrated inFIG. 1B . - A concern with the conventional CMP methods for forming a Cu damascene structure is that the resulting Cu damascene structure will typically have a
non-planar erosion topography 22, as illustrated inFIG. 1B , which can significantly degrade the final semiconductor device. Thiserosion topography 22 is formed during the process of removing theCu layer 16, thebarrier metal layer 14 or both of the layers. - Another concern with the conventional CMP methods is that the throughput of the polishing apparatus with two or three polishing units drops drastically for Cu damascene structures that require removing a thicker portion of the Cu layer over the barrier metal layer. It is noted that the thicker the Cu layer to be removed is, the polishing times of the respective polishing units become more unbalanced, and therefore, the last polishing unit of the polishing apparatus to remove the barrier metal layer idles while the other polishing units polish the Cu layers.
- In view of these concerns, there is a need for methods for fabricating one or more Cu damascene structures in a semiconductor wafer that reduce erosion topography of the Cu damascene structures and/or increase throughput.
- Methods for fabricating one or more metal (e.g., copper) damascene structures in a semiconductor wafer use at least three polishing steps to reduce erosion topography in the resulting metal damascene structures and/or increase throughput. The polishing steps may be performed at four polishing units of a polishing apparatus, which may include one or more pivotable load/unload cups to transfer the semiconductor wafer between some of the polishing units.
- A method for fabricating a metal damascene structure in a semiconductor wafer in accordance with a first embodiment of the invention comprises providing the semiconductor wafer that includes a dielectric layer with trenches below an upper surface, a barrier layer over the dielectric layer and a metal layer over the barrier layer, removing an upper portion of the metal layer using a first polishing technique such that a lower portion of the metal layer remains over the barrier layer on the upper surface of the dielectric layer, removing the lower portion of the metal layer using a second polishing technique until the barrier layer on the upper surface of the dielectric layer is exposed, removing the barrier layer on the upper surface of the dielectric layer using a third polishing technique until the upper layer of the dielectric layer is exposed to produce the metal damascene structure with erosion topography, and planarizing the metal damascene structure with the erosion topography using a fourth polishing technique to reduce the erosion topography of the metal damascene structure.
- A method for fabricating a metal damascene structure in a semiconductor wafer in accordance with a second embodiment of the invention comprises providing the semiconductor wafer that includes a dielectric layer with trenches below an upper surface, a barrier layer over the dielectric layer and a metal layer over the barrier layer, removing an upper portion of the metal layer using a first polishing technique such that an intermediate portion and a lower portion of the metal layer remain over the barrier layer, removing the intermediate portion of the metal layer using a second polishing technique such that the lower portion of the metal layer remains over the barrier layer, removing the lower portion of the metal layer using a third polishing technique until the barrier layer on the upper surface of the dielectric layer is exposed, and removing the barrier layer on the upper surface of the dielectric using a fourth polishing technique until the upper surface of the dielectric layer is exposed to produce the metal damascene structure.
- A method for fabricating metal damascene structures in a semiconductor wafer in accordance with an embodiment of the invention comprises forming a first metal damascene structure in the semiconductor wafer and forming a second metal damascene structure in the semiconductor wafer. The first metal damascene structure in the semiconductor wafer is formed using the above method for fabricating a metal damascene structure in accordance with the first embodiment of the invention with or without the step of planarizing the metal damascene structure. The second metal damascene structure in the semiconductor wafer is formed using the above method for fabricating a metal damascene structure in accordance with the second embodiment of the invention.
- A method for fabricating a metal damascene structure in a semiconductor wafer in accordance with another embodiment of the invention comprises providing the semiconductor wafer at a polishing apparatus that comprises four polishing units, the semiconductor wafer including a dielectric layer with trenches below an upper surface, a barrier layer over the dielectric layer and a metal layer over the barrier layer, removing an upper portion of the metal layer using a first polishing technique at a first polishing unit of the polishing apparatus such that a lower portion of the metal layer remains over the barrier layer on the upper surface of the dielectric layer, removing the lower portion of the metal layer using a second polishing technique at a second polishing unit of the polishing apparatus until the barrier layer on the upper surface of the dielectric layer is exposed, and removing the barrier layer on the upper surface of the electric layer using a third polishing technique at a third polishing unit of the polishing apparatus until the upper layer of the dielectric layer is exposed to produce the metal damascene structure.
- Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrated by way of example of the principles of the invention.
-
FIGS. 1A and 1B are partial cross-sectional views of a semiconductor wafer before and after a conventional chemical-mechanical polishing method in accordance with the prior art is performed to form a copper (Cu) damascene structure in the wafer. -
FIG. 2 is a diagram of a polishing apparatus with four polishing units and three pivotable load/unload cups that can be used to perform methods for fabricating one or more Cu damascene structures in a semiconductor wafer in accordance with the invention. -
FIG. 3 is a flow diagram of a method for fabricating a Cu damascene structure in a semiconductor device in accordance with a first embodiment of the invention. -
FIGS. 4A-4E are partial cross-sectional views of a semiconductor wafer at different stages during the fabrication method in accordance with the first embodiment of the invention. -
FIG. 5 is a flow diagram of a method for fabricating a Cu damascene structure in a semiconductor device in accordance with a second embodiment of the invention. -
FIGS. 6A-6E are partial cross-sectional views of a semiconductor wafer at different stages during the fabrication method in accordance with the second embodiment of the invention. -
FIG. 7 is a partial cross-sectional view of a semiconductor wafer with multi-level dual Cu damascene structures, which are formed using both the fabrication method in accordance with the first or alternative first embodiment of the invention and the fabrication method in accordance with the second or alternative second embodiment of the invention. - Methods for fabricating one or more copper (Cu) damascene structures in a semiconductor wafer in accordance with the invention produce Cu damascene structures with reduced non-planar erosion topography, which significantly increases the quality of the final semiconductor products, and/or produce the Cu damascene structures with increased throughput. These methods for fabricating one or more Cu damascene structures are described herein as being performed using a
polishing apparatus 200 with fourpolishing units unload cups FIG. 2 . Thepolishing apparatus 200 is described in U.S. Patent Application Publication No. US 2004/0209550 A1, entitled “Apparatus and Method for Polishing Semiconductor Wafers using One or More Polishing Surfaces”, application Ser. No. 10/829,593, filed on Oct. 21, 2004, which is incorporated herein by reference. Although the methods for fabricating one or more Cu damascene structures in accordance with the invention are described herein as using thepolishing apparatus 200 ofFIG. 2 , any polishing apparatus with four polishing units may be used to perform these methods. - As shown in
FIG. 2 , thepolishing apparatus 200 comprises the fourpolishing units unload cups polishing units wafer carrier 208. The polishing table 206 has a polishing surface on which a semiconductor wafer can be polished. In an embodiment, a polishing pad is attached to the polishing table 206 to provide the polishing surface. The polishing table 206 is designed to be rotated or orbited about an axis. The wafer polishinghead 208 is configured to hold a semiconductor wafer to polish the wafer on the respective polishing table 206. Thewafer polishing head 208 is part of a wafer carrier assembly, which operates to rotate the wafer polishing head and lower and raise the wafer polishing head onto the polishing surface of the respective polishing table 206. - Each of the pivotable load/
unload cups unload cup 210 and ashaft 212. The load/unload cup 210 is configured to receive a semiconductor wafer from one of the wafer polishingheads 208 of thepolishing units polishing units unload cup 210 may be further configured to clean the wafer using, for example, deionized water, while transferring the wafer. Theshaft 212 is attached to the load/unload cup 210. Theshaft 212 is also connected to amotor 214 that can pivot the load/unload cup 210 about a pivoting axis via theshaft 212. The length of theshaft 212 and the location of the pivoting axis are selected so that the load/unload cup 210 can reach thewafer polishing heads 208 ofadjacent polishing units - In operation, the pivotable load/unload
cup 204A is used to receive a semiconductor wafer from thewafer polishing head 208 of thepolishing unit 202A and transfer the wafer to thewafer polishing head 208 of thepolishing unit 202B. Similarly, the pivotable load/unloadcup 204B is used to receive the wafer from thewafer polishing head 208 of thepolishing unit 202B and transfer the wafer to thewafer polishing head 208 of thepolishing unit 202C. The pivotable load/unloadcup 204C is similarly used to receive the wafer from thewafer polishing head 208 of thepolishing unit 202C and transfer the wafer to thewafer polishing head 208 of thepolishing unit 202D. - A method for fabricating a Cu damascene structure in a semiconductor wafer using the
polishing apparatus 200 in accordance with a first embodiment of the invention is described with reference to a flow diagram ofFIG. 3 along withFIGS. 4A-4E , which are partial cross-sectional views of asemiconductor wafer 400 at different stages during the fabrication method. Atblock 302, thesemiconductor wafer 400 having adielectric layer 402 with trenches, abarrier metal layer 404 over the dielectric layer and aCu layer 406 over the barrier metal layer is provided, as illustrated inFIG. 4A . As shown inFIG. 4A , the trenches in thedielectric layer 402 is located below the upper surface of the dielectric layer. As an example, thedielectric layer 402 may be an oxide layer. Thebarrier metal layer 404 is conformal to the upper surface of thedielectric layer 402, as well as the sides of the trenches in the dielectric layer. As an example, thebarrier metal layer 404 may be a layer of tantalum (Ta) or tantalum nitride (TaN). Thesemiconductor wafer 400 can be formed using conventional patterning and deposition processes. - Next, at
block 304, thewafer 400 is loaded onto thewafer polishing head 208 of thefirst polishing unit 202A of thepolishing apparatus 200. As an example, thewafer 400 may be loaded onto thewafer polishing head 208 of thefirst polishing unit 202A by a wafer transfer robot. Next, atblock 306, anupper portion 408 of theCu layer 406 of thewafer 400 is removed at thefirst polishing unit 202A using a first polishing technique such that a substantiallower portion 410 of the Cu layer remains over thebarrier metal layer 404 on the upper surface of thedielectric layer 402, as illustrated inFIG. 4B . The first polishing technique involves performing a chemical-mechanical polishing (CMP) process using thefirst polishing head 208 and the first polishing table 206 of thefirst polishing unit 202A and a first slurry. Both the upper andlower portions Cu layer 406, which are above thebarrier metal layer 404 on the upper surface of thedielectric layer 402, are shown inFIG. 4A . In an embodiment, theupper portion 408 of theCu layer 406 is thicker than thelower portion 410 of the Cu layer. - Next, at
block 308, thewafer 400 is transferred from thewafer polishing head 208 of thefirst polishing unit 202A to thewafer polishing head 208 of thesecond polishing unit 202B of thepolishing apparatus 200 using the first pivotable load/unloadcup 204A. Next, atblock 310, thelower portion 410 of theCu layer 406 of thewafer 400 is removed at thesecond polishing unit 202B using a second polishing technique until thebarrier metal layer 404 on the upper surface of thedielectric layer 402 is exposed, as illustrated inFIG. 4C . The second polishing technique involves performing a CMP process using thesecond polishing head 208 and the second polishing table 206 of thesecond polishing unit 202B and a second slurry. In an embodiment, the second polishing technique has a lower removal rate than the removal rate of the first polishing technique. - Next, at
block 312, the wafer is transferred from thewafer polishing head 208 of thesecond polishing unit 202B to thewafer polishing head 208 of thethird polishing unit 202C of thepolishing apparatus 200 using the second pivotable load/unloadcup 204B. Next, atblock 314, thebarrier metal layer 404 on the upper surface of thedielectric layer 402 of thewafer 400 is removed at thethird polishing unit 202C using a third polishing technique until the upper surface of the dielectric layer is exposed, as illustrated inFIG. 4D . The third polishing technique involves performing a CMP process using thethird polishing head 208 and the third polishing table 206 of thethird polishing unit 202C and a third slurry. As shown inFIG. 4D , the resultingwafer 400 includes a Cu damascene structure witherosion topography 412, which producesdielectric protrusions 414. - Next, at
block 316, thewafer 400 is transferred from thewafer polishing head 208 of thethird polishing unit 202C to thewafer polishing head 208 of thefourth polishing unit 202D of thepolishing apparatus 200 using the third pivotable load/unloadcup 204C. Next, atblock 318, the Cu damascene structure with theerosion topography 412 is planarized at thefourth polishing unit 202D using a fourth polishing technique to reduce thedielectric protrusions 414 to reduce the non-planar erosion topography of the Cu damascene structure in thewafer 400, as illustrated inFIG. 4E . The fourth polishing technique involves performing a CMP process using thefourth polishing head 208 and the fourth polishing table 206 of thepolishing unit 202D and a fourth slurry. In an embodiment, the fourth slurry has a higher removal rate of thedielectric layer 402 than theCu layer 406 and thebarrier metal layer 404. Therefore, thedielectric protrusions 414 can be removed more quickly than theCu layer 406 and thebarrier metal layer 404 to reduce theerosion topography 412. In addition to reducing theerosion topography 412, the polishing of thewafer 400 atblock 318 can also reduce defects such as scratches and particles generated during the previous polishing processes of removing theCu layer 406 and thebarrier metal layer 404. - The planarization of the Cu damascene structure at the
fourth polishing unit 202D of thepolishing apparatus 200 is optional. Thus, the fabrication method in accordance with the first embodiment of the invention can be completed atblock 314, where thebarrier metal layer 404 on the upper surface of thedielectric layer 402 of thewafer 400 is removed at thethird polishing unit 202C using a third polishing technique until the upper surface of the dielectric layer is exposed. - In an alternative first embodiment, the first polishing technique performed at the
first polishing unit 202A involves performing an electro-chemical-mechanical polishing (ECMP) process or an electro-chemical polishing (ECP) process using an appropriate polishing solution. Both the ECMP and ECP processes require conducting electrical current through the semiconductor wafer being polished via the wafer polishing head and the polishing table. A difference between the two polishing processes is that the ECMP process involves a nominal mechanical polishing, e.g., in the order of 0.5 psi. In order to perform the ECMP or ECP process, thefirst polishing unit 202A needs to be modified so that thewafer polishing head 208 and the polishing table 206 are electrically connected to an electrical power source to conduct electric current between the wafer polishing head and the polishing table through the semiconductor wafer being polished. - A method for fabricating a Cu damascene structure in a semiconductor wafer using the
polishing apparatus 200 in accordance with a second embodiment of the invention is described with reference to a flow diagram ofFIG. 5 along withFIGS. 6A-6E , which are partial cross-sectional views of asemiconductor wafer 600 at different stages during the fabrication method. Atblock 502, thesemiconductor wafer 600 having adielectric layer 602 with trenches, abarrier metal layer 604 over the dielectric layer and aCu layer 606 over the barrier metal layer is provided, as illustrated inFIG. 6A . Thesemiconductor wafer 600 ofFIG. 6A is similar to thesemiconductor wafer 400 ofFIG. 4A . However, the trenches of thewafer 600 are deeper than the trenches of thewafer 400, and therefore, theCu layer 606 of thewafer 600 is thicker than theCu layer 406 of thewafer 400. - Next, at
block 504, thewafer 600 is loaded onto thewafer polishing head 208 of thefirst polishing unit 202A of thepolishing apparatus 200. Next, atblock 506, anupper portion 608 of theCu layer 606 of thewafer 600 is removed at thefirst polishing unit 202A using a first polishing technique such that anintermediate portion 610 and a substantiallower portion 612 of theCu layer 606 remain over thebarrier layer 604 on the upper surface of thedielectric layer 602, as illustrated inFIG. 6B . The first polishing technique involves performing a CMP process using thefirst polishing head 208 and the first polishing table 206 of thefirst polishing unit 202A and a first slurry. The upper, intermediate andlower portions Cu layer 606, which are above thebarrier metal layer 604 on the upper surface of thedielectric layer 602, are shown inFIG. 6A . - Next, at
block 508, thewafer 600 is transferred from thewafer polishing head 208 of thefirst polishing unit 202A to thewafer polishing head 208 of thesecond polishing unit 202B of thepolishing apparatus 200 using the first pivotable load/unloadcup 204A. Next, atblock 510, theintermediate portion 610 of theCu layer 606 of thewafer 600 is removed at thesecond polishing unit 202B using a second polishing technique such that only thelower portion 612 of theCu layer 606 remains over thebarrier metal layer 604 on the upper surface of thedielectric layer 602, as illustrated inFIG. 6C . The second polishing technique involves performing a CMP process using thesecond polishing head 208 and the second polishing table 206 of thesecond polishing unit 202B and the same first slurry or a different kind of slurry. In an embodiment, the upper andintermediate portions Cu layer 606 of thewafer 600 have substantially the same thickness, and thelower portion 612 of theCu layer 606 is thinner than the upper andintermediate portions Cu layer 606. - Next, at
block 512, thewafer 600 is transferred from thewafer polishing head 208 of thesecond polishing unit 202B to thewafer polishing head 208 of thethird polishing unit 202C of thepolishing apparatus 200 using the second pivotable load/unloadcup 204B. Next, atblock 514, thelower portion 612 of theCu layer 606 of thewafer 600 is removed at thethird polishing unit 202C using a third polishing technique until thebarrier metal layer 604 on the upper surface of thedielectric layer 602 is exposed, as illustrated inFIG. 6D . The third polishing technique involves performing a CMP process using thethird polishing head 208 and the third polishing table 206 of thethird polishing unit 202C and a second slurry. In an embodiment, the third polishing technique has a lower removal rate than the removal rates of the first and second polishing techniques. - Next, at
block 516, thewafer 600 is transferred from thewafer polishing head 208 of thethird polishing unit 202C to thewafer polishing head 208 of thefourth polishing unit 202D of thepolishing unit 200 using the third pivotable load/unloadcup 204C. Next, atblock 518, thebarrier metal layer 604 on the upper surface of thedielectric layer 602 of thewafer 600 is removed at thefourth polishing unit 202D using a fourth polishing technique until the upper surface of thedielectric layer 602 is exposed, as illustrated inFIG. 6E . The fourth polishing technique involves performing a CMP process using thefourth polishing head 208 and the fourth polishing table 206 of thefourth polishing unit 202D and a third slurry. - In an alternative second embodiment, one or both of the first polishing technique performed at the
first polishing unit 202A and the second polishing technique performed at thesecond polishing unit 202B involve performing an ECMP process or an ECP process using an appropriate polishing solution. If the ECMP or ECP process is to be performed at one or both of the polishingunits wafer polishing head 208 and the respective polishing table 206 are electrically connected to an electrical power source to conduct electric current between the wafer polishing head and the polishing table through the semiconductor wafer being polished. - The above-described methods for fabricating a Cu damascene structure in a semiconductor wafer in accordance with different embodiments of the invention can be combined to fabricate a
semiconductor wafer 700 with multi-level dual Cu damascene structures, as illustrated inFIG. 7 . As shown inFIG. 7 , thewafer 700 includes dualCu damascene structures wafer 700 inFIG. 7 is shown as having a particular number dual Cu damascene structures, the wafer may include any number of Cu damascene structures. The trench depth of theCu damascene structures wafer 700 increases from the lowest level metal layer, i.e., M1 layer, to the highest level metal layer, i.e., M8 layer. Thus, the trench depth of thedamascene structure 702A is shallowest, e.g., 0.3 microns, while the trench depth of thedamascene structure 702F at M8 layer is deepest, e.g., 1.5 microns. - The Cu damascene structures of the
wafer 700 at lower levels, such as M1-M3 layers, have relatively shallow trenches, and therefore, relatively thin Cu layers are deposited to fill the trenches of theCu damascene structures Cu damascene structures Cu damascene structures - The Cu damascene structures of the
wafer 700 at higher levels, such as M6-M8 layers, have relatively deep trenches, and therefore, relatively thick Cu layers are deposited to fill the trenches of theCu damascene structures Cu damascene structures Cu damascene structures - The
Cu damascene structures wafer 700 can be fabricated on the same polishing apparatus with four polishing units, such as the polishingapparatus 200, or on different polishing apparatus with four polishing units, such as multiple polishingapparatus 200. - Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. As an example, the fabrication methods in accordance with the invention may use a metal or a metal alloy (collectively referred to herein as “metal”) other than Cu to form the damascene structures. The scope of the invention is to be defined by the claims appended hereto and their equivalents.
Claims (16)
1. A method for fabricating a metal damascene structure in a semiconductor wafer, said method comprising:
providing said semiconductor wafer that includes a dielectric layer with trenches below an upper surface, a barrier layer over said dielectric layer and a metal layer over said barrier layer;
removing an upper portion of said metal layer using a first polishing technique such that a lower portion of said metal layer remains over said barrier layer on said upper surface of said dielectric layer;
removing said lower portion of said metal layer using a second polishing technique until said barrier layer on said upper surface of said dielectric layer is exposed;
removing said barrier layer on said upper surface of said dielectric layer using a third polishing technique until said upper layer of said dielectric layer is exposed to produce said metal damascene structure with erosion topography; and
planarizing said metal damascene structure with said erosion topography using a fourth polishing technique to reduce said erosion topography of said metal damascene structure.
2. The method of claim 1 wherein said removing of said upper portion of said metal layer includes performing a first chemical-mechanical polishing using a first slurry and wherein said removing of said lower portion of said metal layer includes performing a second chemical-mechanical polishing using a second slurry, said second chemical-mechanical polishing having a lower removal rate than said first chemical-mechanical polishing.
3. The method of claim 1 wherein said planarizing of said metal damascene structure with said erosion topography includes performing a chemical-mechanical polishing using a slurry, said slurry having a higher removal rate of said dielectric layer than said metal layer and said barrier layer.
4. The method of claim 1 wherein said upper portion of said metal layer is thicker than said lower portion of said metal layer.
5. The method of claim 1 wherein said removing of said upper portion of said metal layer includes performing one of electro-chemical-mechanical polishing and electrochemical polishing.
6. The method of claim 1 wherein said removing of said upper portion of said metal layer includes polishing said upper portion of said metal layer at a first polishing unit of a polishing apparatus, wherein said removing of said lower portion of said metal layer includes polishing said lower portion of said metal layer at a second polishing unit of said polishing apparatus, wherein said removing of said barrier layer includes polishing said barrier layer on said upper surface of said dielectric layer at a third polishing unit of said polishing apparatus, and wherein said planarizing said metal damascene structure with said erosion topography includes polishing said metal damascene structure with said erosion topography at a fourth polishing unit of said polishing apparatus.
7. The method of claim 6 wherein said removing of said upper portion of said metal layer includes polishing said upper portion of said metal layer using a first wafer polishing head at said first polishing unit of a polishing apparatus, wherein said removing of said lower portion of said metal layer includes polishing said lower portion of said metal layer using a second wafer polishing head at said second polishing unit of said polishing apparatus, wherein said removing of said barrier layer includes polishing said barrier layer on said upper surface of said dielectric layer using a third wafer polishing head at said third polishing unit of said polishing apparatus, and wherein said planarizing said metal damascene structure with said erosion topography includes polishing said metal damascene structure with said erosion topography using said fourth wafer polishing head at said fourth polishing unit of said polishing apparatus.
8. The method of claim 6 further comprising transferring said semiconductor wafer between said first, second, third and fourth polishing units of said polishing apparatus using at least one pivotable load/unload cup.
9. The method of claim 8 wherein said transferring of said semiconductor wafer between said first, second, third and fourth polishing units includes:
transferring said semiconductor wafer from said first polishing unit to said second polishing unit using a first pivotable load/unload cup;
transferring said semiconductor wafer from said second polishing unit to said third polishing unit using a second pivotable load/unload cup; and
transferring said semiconductor wafer from said third polishing unit to said fourth polishing unit using a third pivotable load/unload cup.
10. A method for fabricating a metal damascene structure in a semiconductor wafer, said method comprising:
providing said semiconductor wafer at a polishing apparatus that comprises four polishing units, said semiconductor wafer including a dielectric layer with trenches below an upper surface, a barrier layer over said dielectric layer and a metal layer over said barrier layer;
removing an upper portion of said metal layer using a first polishing technique at a first polishing unit of said polishing apparatus such that a lower portion of said metal layer remains over said barrier layer on said upper surface of said dielectric layer;
removing said lower portion of said metal layer using a second polishing technique at a second polishing unit of said polishing apparatus until said barrier layer on said upper surface of said dielectric layer is exposed; and
removing said barrier layer on said upper surface of said dielectric layer using a third polishing technique at a third polishing unit of said polishing apparatus until said upper layer of said dielectric layer is exposed to produce said metal damascene structure.
11. The method of claim 10 further comprising planarizing said metal damascene structure using a fourth polishing technique at a fourth polishing unit of said polishing apparatus to reduce erosion topography of said metal damascene structure.
12. The method of claim 11 wherein said planarizing of said metal damascene structure includes performing a chemical-mechanical polishing using a slurry at said fourth polishing unit of said polishing apparatus, said slurry having a higher removal rate of said dielectric layer than said metal layer and said barrier layer.
13. The method of claim 10 wherein said removing of said upper portion of said metal layer includes performing a first chemical-mechanical polishing using a first slurry at said first polishing unit of said polishing apparatus and wherein said removing of said lower portion of said metal layer includes performing a second chemical-mechanical polishing using a second slurry at said second polishing unit of said polishing apparatus, said second chemical-mechanical polishing having a lower removal rate than said first chemical-mechanical polishing.
14. The method of claim 10 wherein said removing of said upper portion of said metal layer includes performing one of electro-chemical-mechanical polishing and electro-chemical polishing at said first polishing unit of said polishing apparatus.
15. The method of claim 10 further comprising transferring said semiconductor wafer between some of said first, second and third polishing units of said polishing apparatus using at least one pivotable load/unload cup.
16. The method of claim 15 wherein said transferring of said semiconductor wafer between some of said first, second and third polishing units includes:
transferring said semiconductor wafer from said first polishing unit to said second polishing unit using a first pivotable load/unload cup; and
transferring said semiconductor wafer from said second polishing unit to said third polishing unit using a second pivotable load/unload cup.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/743,114 US20070202698A1 (en) | 2004-11-10 | 2007-05-01 | Methods for fabricating one or more metal damascene structures in a semiconductor wafer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62702904P | 2004-11-10 | 2004-11-10 | |
US11/270,270 US7238614B2 (en) | 2004-11-10 | 2005-11-08 | Methods for fabricating one or more metal damascene structures in a semiconductor wafer |
US11/743,114 US20070202698A1 (en) | 2004-11-10 | 2007-05-01 | Methods for fabricating one or more metal damascene structures in a semiconductor wafer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/270,270 Division US7238614B2 (en) | 2004-11-10 | 2005-11-08 | Methods for fabricating one or more metal damascene structures in a semiconductor wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070202698A1 true US20070202698A1 (en) | 2007-08-30 |
Family
ID=36337234
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/270,270 Expired - Fee Related US7238614B2 (en) | 2004-11-10 | 2005-11-08 | Methods for fabricating one or more metal damascene structures in a semiconductor wafer |
US11/743,114 Abandoned US20070202698A1 (en) | 2004-11-10 | 2007-05-01 | Methods for fabricating one or more metal damascene structures in a semiconductor wafer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/270,270 Expired - Fee Related US7238614B2 (en) | 2004-11-10 | 2005-11-08 | Methods for fabricating one or more metal damascene structures in a semiconductor wafer |
Country Status (6)
Country | Link |
---|---|
US (2) | US7238614B2 (en) |
JP (1) | JP2008520106A (en) |
KR (1) | KR100875754B1 (en) |
CN (1) | CN101124662A (en) |
TW (1) | TW200625527A (en) |
WO (1) | WO2006053180A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050265587A1 (en) * | 2004-06-01 | 2005-12-01 | Schneider John K | Fingerprint image database and method of matching fingerprint sample to fingerprint images |
KR100899973B1 (en) | 2006-06-14 | 2009-05-28 | 이노플라 아엔씨 | Semiconductor wafer polishing apparatus |
US7619310B2 (en) * | 2006-11-03 | 2009-11-17 | Infineon Technologies Ag | Semiconductor interconnect and method of making same |
CN101740378B (en) * | 2008-11-13 | 2011-07-20 | 中芯国际集成电路制造(北京)有限公司 | Copper chemical mechanical polishing method |
JP5941763B2 (en) * | 2012-06-15 | 2016-06-29 | 株式会社荏原製作所 | Polishing method |
US11951587B2 (en) | 2018-09-26 | 2024-04-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Zone-based CMP target control |
US12033964B2 (en) * | 2021-08-25 | 2024-07-09 | Applied Materials, Inc. | Chemical mechanical polishing for copper dishing control |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6656842B2 (en) * | 1999-09-22 | 2003-12-02 | Applied Materials, Inc. | Barrier layer buffing after Cu CMP |
US7485162B2 (en) * | 2003-09-30 | 2009-02-03 | Fujimi Incorporated | Polishing composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6184141B1 (en) * | 1998-11-24 | 2001-02-06 | Advanced Micro Devices, Inc. | Method for multiple phase polishing of a conductive layer in a semidonductor wafer |
JP2001257188A (en) * | 2000-03-14 | 2001-09-21 | Hitachi Ltd | Method of manufacturing semiconductor integrated circuit device |
JP4573479B2 (en) * | 2001-09-04 | 2010-11-04 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
JP2004172338A (en) * | 2002-11-20 | 2004-06-17 | Sony Corp | Polishing method, polisher, and manufacturing method of semiconductor device |
-
2005
- 2005-11-08 US US11/270,270 patent/US7238614B2/en not_active Expired - Fee Related
- 2005-11-09 JP JP2007541337A patent/JP2008520106A/en active Pending
- 2005-11-09 KR KR1020077010494A patent/KR100875754B1/en not_active IP Right Cessation
- 2005-11-09 CN CNA2005800385287A patent/CN101124662A/en active Pending
- 2005-11-09 WO PCT/US2005/040867 patent/WO2006053180A2/en active Application Filing
- 2005-11-10 TW TW094139423A patent/TW200625527A/en unknown
-
2007
- 2007-05-01 US US11/743,114 patent/US20070202698A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6656842B2 (en) * | 1999-09-22 | 2003-12-02 | Applied Materials, Inc. | Barrier layer buffing after Cu CMP |
US7485162B2 (en) * | 2003-09-30 | 2009-02-03 | Fujimi Incorporated | Polishing composition |
Also Published As
Publication number | Publication date |
---|---|
JP2008520106A (en) | 2008-06-12 |
KR100875754B1 (en) | 2008-12-26 |
US20060099807A1 (en) | 2006-05-11 |
US7238614B2 (en) | 2007-07-03 |
KR20070063583A (en) | 2007-06-19 |
WO2006053180A2 (en) | 2006-05-18 |
WO2006053180A3 (en) | 2007-07-12 |
TW200625527A (en) | 2006-07-16 |
CN101124662A (en) | 2008-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7077725B2 (en) | Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus | |
US7172497B2 (en) | Fabrication of semiconductor interconnect structures | |
US20060057945A1 (en) | Chemical mechanical polishing process | |
US7238614B2 (en) | Methods for fabricating one or more metal damascene structures in a semiconductor wafer | |
US7208404B2 (en) | Method to reduce Rs pattern dependence effect | |
JP2001148386A (en) | Barrier layer buff processing after copper cmp | |
US7247558B2 (en) | Method and system for electroprocessing conductive layers | |
JP2000208443A (en) | Method and apparatus for manufacturing electronic device | |
US6555477B1 (en) | Method for preventing Cu CMP corrosion | |
US7361582B2 (en) | Method of forming a damascene structure with integrated planar dielectric layers | |
JP2001085378A (en) | Semiconductor device and manufacturing method thereof | |
US6726535B2 (en) | Method for preventing localized Cu corrosion during CMP | |
US7204743B2 (en) | Integrated circuit interconnect fabrication systems | |
US20040023607A1 (en) | Method and apparatus for integrated chemical mechanical polishing of copper and barrier layers | |
JP4205914B2 (en) | Semiconductor device manufacturing method and manufacturing apparatus | |
US6638868B1 (en) | Method for preventing or reducing anodic Cu corrosion during CMP | |
US7025661B2 (en) | Chemical mechanical polishing process | |
US7947604B2 (en) | Method for corrosion prevention during planarization | |
US6462409B1 (en) | Semiconductor wafer polishing apparatus | |
US20030146512A1 (en) | Conductor abrasiveless chemical-mechanical polishing in integrated circuit interconnects | |
US6426297B1 (en) | Differential pressure chemical-mechanical polishing in integrated circuit interconnects | |
US20020173140A1 (en) | Conductor chemical-mechanical polishing in integrated circuit interconnects | |
JP2005044913A (en) | Semiconductor device and manufacturing method thereof | |
JP2003347243A (en) | Polishing method, polishing device, and method of manufacturing semiconductor device | |
WO2002041392A2 (en) | Conductor chemical-mechanical polishing in integrated circuit interconnects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KOMICO TECHNOLOGY, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INOPLA INC.;REEL/FRAME:022917/0246 Effective date: 20090507 Owner name: KOMICO TECHNOLOGY, INC.,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INOPLA INC.;REEL/FRAME:022917/0246 Effective date: 20090507 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |