US20070104595A1 - Eccentric Screw Pump With Integrated Drive - Google Patents
Eccentric Screw Pump With Integrated Drive Download PDFInfo
- Publication number
- US20070104595A1 US20070104595A1 US11/617,538 US61753806A US2007104595A1 US 20070104595 A1 US20070104595 A1 US 20070104595A1 US 61753806 A US61753806 A US 61753806A US 2007104595 A1 US2007104595 A1 US 2007104595A1
- Authority
- US
- United States
- Prior art keywords
- armature
- rotor
- screw pump
- eccentric screw
- pump according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/06—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/107—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0057—Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
- F04C15/0061—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0057—Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
- F04C15/008—Prime movers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/107—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
- F04C2/1071—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
- F04C2/1073—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
Definitions
- the invention relates to a screw or eccentric screw pump such as is used especially for conveying highly viscous media or media mixed with solids.
- Eccentric screw pumps corresponding to the prior art generally have a fixed external stator and a rotor running therein.
- the rotor is generally driven by an external electric motor which is connected to the rotor by means of a Cardan shaft or flexible shaft.
- screw and eccentric screw pumps since this has no effects on the principle forming the basis of the invention.
- EP 0 357 317 B1 discloses a motor which simultaneously implement a rotary movement and a lifting movement in conjunction with an eccentric screw pump.
- an elastic stator a without jacket is used to compensate for the eccentric movement of the screw.
- this pump is not suitable for high pressures.
- the device according to the invention comprises an eccentric screw pump, comprising a stator 2 and a rotor 1 running therein.
- a drive motor is provided for driving the rotor 1 which is connected to the rotor.
- This drive motor comprises an armature 3 as well as a stator winding 4 .
- the armature is constructed as an approximately cylindrical armature and rotates on an eccentric orbit inside an approximately cylindrical pot 5 as a result of its rigid connection to the rotor.
- This pot 5 is at least partly enclosed by a stator winding 4 .
- the stator winding can also be integrated in this pot.
- the drive and pump are integrated in an extremely space-saving manner in a single unit.
- the mechanical construction is substantially simplified.
- the conversion member such as a Cardan shaft or a flexible shaft, for example, for transformation of the centric rotation of the drive motor into the eccentric movement of the rotor can also be omitted.
- FIG. 1 is a schematic view showing a device according to the invention in general form.
- FIG. 2 is a perspective view showing a device according to the invention in general form.
- FIG. 3 shows a device according to the invention with a second armature.
- FIG. 4 is a perspective view of a device according to the invention with a second armature.
- FIG. 1 is a schematic diagram showing a device according to the invention in a section perpendicular to the axis of rotation.
- An eccentric screw pump has a rotor 1 which moves in a stator 2 .
- the rotor 1 is rigidly connected to an armature 3 .
- the armature rotates on an eccentric orbit inside the pot 5 .
- the medium to be conveyed passes through the pot 5 .
- At least one stator winding 4 is provided to produce the torque.
- the stator winding is integrated in the pot but can preferably be arranged outside the pot and thus outside the medium. However, it can optionally be integrated in the pot, for example, potted.
- the stator winding comprises individual coils. These coils can optionally be supplied with current by a control unit.
- a position sensor which indicates the exact position of the rotor or the armature in relation to the stator or the pot, is preferably provided for correct control of the coils.
- Such a position sensor can be implemented, for example by means of or with the aid of the magnets integrated in the rotor.
- FIG. 2 shows the arrangement shown previously in perspective view.
- FIG. 3 shows another device according to the invention with a second armature 3 a .
- This second armature is arranged on the end of the rotor opposite to the first armature. Accordingly, a second pot 5 a and a second stator winding 4 a are allocated to the second armature to produce the torque.
- the two armatures are constructed such that they produce an axial thrust force directed towards one another which holds the two armatures and the rotor in a predetermined position.
- the armatures can advantageously be constructed as at least slightly tapered.
- FIG. 4 shows the arrangement shown previously in perspective view.
- a second armature 3 a is provided as an approximately cylindrical armature.
- This armature is disposed on the end of the rotor 1 opposite to the first armature.
- This armature is rigidly connected to the rotor and thus also rotates on an eccentric orbit inside a second pot 5 a .
- This second pot is likewise enclosed by a second stator winding or contains a second stator winding.
- a further advantageous embodiment of the invention consists in that the motor comprising the armature 3 and the stator winding 4 is embodied in the form of a reluctance motor.
- the stator winding has coils for producing a rotating magnetic field.
- Located in the armature is a preferably tooth-shaped part made of magnetically conductive or soft magnetic material, such as iron for example.
- the teeth are aligned according to the magnetic field. A rotation of the rotor can thus be achieved by a rotation of the magnetic field.
- a control unit is provided for controlling the corresponding parts of the stator winding 4 . This now controls the current flow through the stator winding in such a manner that in order to produce a torque, the flux is preferably guided through those areas of the pot 5 which are at a minimal distance from the surface of the armature 3 .
- a position sensor which indicates the exact position of the rotor or the armature in relation to the stator is preferably provided for correct control of the coils.
- Such a position sensor can, for example, be implemented using magnets integrated in the rotor.
- the motor is designed in the form of an asynchronous motor.
- the armature is embodied as a resistance armature or preferably as a short-circuiting armature.
- windings for producing a rotating field are provided in the stator winding.
- the rotating field induces voltages in the rotor windings or in the conducting rotor structure which results in corresponding currents depending on the electrical resistance of the windings or the conducting rotor structure. These currents in turn produce a magnetic field and therefore a torque.
- An optional control circuit advantageously a frequency inverter, is provided for controlling the windings to produce the phase-shifted signals of variable frequency to generate a rotating field of the desired frequency of rotation.
- Grooves for receiving rotor windings can optionally be provided in the rotor.
- a different embodiment of the invention provides that axial holes through which the medium can flow are preferably provided in the armature 3 .
- a diversion channel for the medium is no longer necessary.
- a particularly compact, space-saving structure of the arrangement is thus obtained.
- the magnetic components or permanent magnets in the armature as well as the coils in the stator are arranged so that a pre-determined force is exerted in the axial direction on the rotor. It is especially advantageous if the axial force counteracts the pump pressure with the same strength.
- a position controller which controls the position of the rotor using at least one position sensor.
- a further embodiment of the invention provides a rotor which can be displaced in the axial direction by the axial force.
- a reduction in the break-away torque when starting up the pump can be achieved by means of this displaceability.
- the pump outlet can thereby be closed by the rotor itself, for example.
- a valve body can naturally also be actuated by the axial movement of the rotor. Especially in the case of metering pumps, this allows particularly fine metering, free from overrun.
- coils in the armature have opposite polarity to the coils which transmit the torque to the rotor.
- a force is produced in the rotor which acts in the direction opposite to the direction of flow of the pumped medium and thereby compensates or reduced the hydraulic forces produced by the medium on the front sides of the rotor.
- the required numbers of coils of inverse polarity can be variably adapted to the conveying pressure produced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Percussion Or Vibration Massage (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004038686A DE102004038686B3 (de) | 2004-08-10 | 2004-08-10 | Exzenterschneckenpumpe mit integriertem Antrieb |
DE102004038686.2 | 2004-08-10 | ||
PCT/DE2005/001251 WO2006015571A1 (de) | 2004-08-10 | 2005-07-15 | Exzenterschneckenpumpe mit integriertem antrieb |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2005/001251 Continuation WO2006015571A1 (de) | 2004-08-10 | 2005-07-15 | Exzenterschneckenpumpe mit integriertem antrieb |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070104595A1 true US20070104595A1 (en) | 2007-05-10 |
Family
ID=34802032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/617,538 Abandoned US20070104595A1 (en) | 2004-08-10 | 2006-12-28 | Eccentric Screw Pump With Integrated Drive |
Country Status (13)
Country | Link |
---|---|
US (1) | US20070104595A1 (pt) |
EP (1) | EP1778980B1 (pt) |
JP (1) | JP2008509335A (pt) |
KR (1) | KR100874043B1 (pt) |
CN (1) | CN100460680C (pt) |
AT (1) | ATE377150T1 (pt) |
BR (1) | BRPI0513307A (pt) |
CA (1) | CA2553795C (pt) |
DE (3) | DE102004038686B3 (pt) |
ES (1) | ES2294727T3 (pt) |
MX (1) | MXPA06011759A (pt) |
RU (1) | RU2361116C2 (pt) |
WO (1) | WO2006015571A1 (pt) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100054976A1 (en) * | 2008-08-27 | 2010-03-04 | Sander Dollner | Eccentric screw pump |
US20110033279A1 (en) * | 2007-08-20 | 2011-02-10 | Heishin Sobi Kabushiki Kaisha | Rotor drive mechanism and pump apparatus |
CN103423064A (zh) * | 2013-08-29 | 2013-12-04 | 中矿瑞杰(北京)科技有限公司 | 一种液力马达 |
WO2017154023A1 (en) * | 2016-03-07 | 2017-09-14 | Sona Pumps | Motor with positive displacement helical pump inside motor shaft |
US11035361B2 (en) | 2014-05-12 | 2021-06-15 | Hugo Vogelsang Maschinenbau Gmbh | Eccentric screw pump |
CN113062859A (zh) * | 2021-04-21 | 2021-07-02 | 中国石油大学(华东) | 一种转子内置式机泵一体全金属螺杆泵采油装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024088A1 (de) | 2009-06-06 | 2010-12-09 | Zeus Gmbh | Reifenfüllmasse, Verfahren zur Herstellung einer Reifenfüllung und Vorrichtung zur Durchführung des Verfahrens |
MD4338C1 (ro) * | 2013-05-21 | 2015-10-31 | Юрий ЩИГОРЕВ | Pompă electrică cu şnec cu răcire autonomă |
JP6635694B2 (ja) * | 2014-08-05 | 2020-01-29 | 兵神装備株式会社 | ポンプ体、ポンプ装置、流量計及び発電機 |
BE1025347B1 (nl) * | 2017-06-28 | 2019-02-05 | Atlas Copco Airpower Naamloze Vennootschap | Cilindrisch symmetrische volumetrische machine |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2212417A (en) * | 1938-02-10 | 1940-08-20 | Robbins & Myers | Combined motor and pump |
US2957427A (en) * | 1956-12-28 | 1960-10-25 | Walter J O'connor | Self-regulating pumping mechanism |
US4802827A (en) * | 1986-12-24 | 1989-02-07 | Kabushiki Kaisha Toshiba | Compressor |
US4957161A (en) * | 1987-06-30 | 1990-09-18 | Institut Francais Du Petrole | Device for pumping a fluid at the bottom of a well |
US4981281A (en) * | 1983-12-21 | 1991-01-01 | Robert W. Brundage | Solenoid controlled fluid flow valve |
US5549160A (en) * | 1994-05-27 | 1996-08-27 | National-Oilwell Canada Ltd. | Downhole progressing cavity pump rotor valve |
US5549464A (en) * | 1994-10-29 | 1996-08-27 | Varadan; Rajan | Drive arrangement for progressing cavity pump |
US6361292B1 (en) * | 2000-04-12 | 2002-03-26 | Sheldon S. L. Chang | Linear flow blood pump |
US20060122456A1 (en) * | 2004-12-03 | 2006-06-08 | Larose Jeffrey A | Wide blade, axial flow pump |
US7074018B2 (en) * | 2003-07-10 | 2006-07-11 | Sheldon Chang | Direct drive linear flow blood pump |
US7150711B2 (en) * | 2001-04-30 | 2006-12-19 | Berlin Heart Ag | Method for controlling an assist pump for fluid delivery systems with pulsatile pressure |
US7374005B2 (en) * | 2000-01-10 | 2008-05-20 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Opposing pump/motors |
US7438538B2 (en) * | 2004-12-22 | 2008-10-21 | Pratt & Whitney Canada Corp. | Pump and method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1559710A (pt) * | 1966-12-26 | 1969-03-14 | ||
US3951097A (en) * | 1975-05-01 | 1976-04-20 | Wallace Clark | Hydraulic motor or pump |
DE3621967A1 (de) * | 1986-07-01 | 1988-01-14 | Heinrich Josef Lettmann | Rohrfoermiges pumpenaggregat mit antriebsmotor |
JP2619642B2 (ja) * | 1987-05-30 | 1997-06-11 | 京セラ株式会社 | 偏心ねじポンプ |
GB8820444D0 (en) * | 1988-08-30 | 1988-09-28 | Framo Dev Ltd | Electric motor |
DE4313442A1 (de) * | 1993-04-24 | 1994-10-27 | Resch Maschinen Und Geraetebau | Fluidpumpe |
US5759019A (en) * | 1994-02-14 | 1998-06-02 | Steven M. Wood | Progressive cavity pumps using composite materials |
US5779460A (en) * | 1996-06-07 | 1998-07-14 | Ici Canada Inc. | Progressive cavity pump with tamper-proof safety |
CN1068935C (zh) * | 1998-01-26 | 2001-07-25 | 宋志超 | 金属定子螺杆泵 |
JP4365984B2 (ja) * | 1999-05-14 | 2009-11-18 | キヤノン株式会社 | 再生プラスチック材料の製造方法 |
CN2528964Y (zh) * | 2002-03-08 | 2003-01-01 | 宋其国 | 外驱动式双转动螺旋泵 |
DE10251846A1 (de) * | 2002-11-07 | 2004-05-19 | Netzsch-Mohnopumpen Gmbh | Pumpenantrieb |
-
2004
- 2004-08-10 DE DE102004038686A patent/DE102004038686B3/de not_active Expired - Fee Related
-
2005
- 2005-07-15 RU RU2006145438/06A patent/RU2361116C2/ru not_active IP Right Cessation
- 2005-07-15 JP JP2007525158A patent/JP2008509335A/ja active Pending
- 2005-07-15 MX MXPA06011759A patent/MXPA06011759A/es active IP Right Grant
- 2005-07-15 CA CA002553795A patent/CA2553795C/en not_active Expired - Fee Related
- 2005-07-15 KR KR1020067015387A patent/KR100874043B1/ko not_active IP Right Cessation
- 2005-07-15 DE DE502005001849T patent/DE502005001849D1/de active Active
- 2005-07-15 ES ES05768100T patent/ES2294727T3/es active Active
- 2005-07-15 WO PCT/DE2005/001251 patent/WO2006015571A1/de active IP Right Grant
- 2005-07-15 AT AT05768100T patent/ATE377150T1/de not_active IP Right Cessation
- 2005-07-15 DE DE112005002517T patent/DE112005002517A5/de not_active Withdrawn
- 2005-07-15 CN CNB2005800263773A patent/CN100460680C/zh not_active Expired - Fee Related
- 2005-07-15 BR BRPI0513307-6A patent/BRPI0513307A/pt not_active IP Right Cessation
- 2005-07-15 EP EP05768100A patent/EP1778980B1/de not_active Not-in-force
-
2006
- 2006-12-28 US US11/617,538 patent/US20070104595A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2212417A (en) * | 1938-02-10 | 1940-08-20 | Robbins & Myers | Combined motor and pump |
US2957427A (en) * | 1956-12-28 | 1960-10-25 | Walter J O'connor | Self-regulating pumping mechanism |
US4981281A (en) * | 1983-12-21 | 1991-01-01 | Robert W. Brundage | Solenoid controlled fluid flow valve |
US4802827A (en) * | 1986-12-24 | 1989-02-07 | Kabushiki Kaisha Toshiba | Compressor |
US4957161A (en) * | 1987-06-30 | 1990-09-18 | Institut Francais Du Petrole | Device for pumping a fluid at the bottom of a well |
US5549160A (en) * | 1994-05-27 | 1996-08-27 | National-Oilwell Canada Ltd. | Downhole progressing cavity pump rotor valve |
US5549464A (en) * | 1994-10-29 | 1996-08-27 | Varadan; Rajan | Drive arrangement for progressing cavity pump |
US7374005B2 (en) * | 2000-01-10 | 2008-05-20 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Opposing pump/motors |
US6361292B1 (en) * | 2000-04-12 | 2002-03-26 | Sheldon S. L. Chang | Linear flow blood pump |
US7150711B2 (en) * | 2001-04-30 | 2006-12-19 | Berlin Heart Ag | Method for controlling an assist pump for fluid delivery systems with pulsatile pressure |
US7074018B2 (en) * | 2003-07-10 | 2006-07-11 | Sheldon Chang | Direct drive linear flow blood pump |
US20060122456A1 (en) * | 2004-12-03 | 2006-06-08 | Larose Jeffrey A | Wide blade, axial flow pump |
US7438538B2 (en) * | 2004-12-22 | 2008-10-21 | Pratt & Whitney Canada Corp. | Pump and method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110033279A1 (en) * | 2007-08-20 | 2011-02-10 | Heishin Sobi Kabushiki Kaisha | Rotor drive mechanism and pump apparatus |
US8622689B2 (en) * | 2007-08-20 | 2014-01-07 | Heishin Sobi Kabushiki Kaisha | Rotor drive mechanism and pump apparatus |
US20100054976A1 (en) * | 2008-08-27 | 2010-03-04 | Sander Dollner | Eccentric screw pump |
CN103423064A (zh) * | 2013-08-29 | 2013-12-04 | 中矿瑞杰(北京)科技有限公司 | 一种液力马达 |
US11035361B2 (en) | 2014-05-12 | 2021-06-15 | Hugo Vogelsang Maschinenbau Gmbh | Eccentric screw pump |
WO2017154023A1 (en) * | 2016-03-07 | 2017-09-14 | Sona Pumps | Motor with positive displacement helical pump inside motor shaft |
CN113062859A (zh) * | 2021-04-21 | 2021-07-02 | 中国石油大学(华东) | 一种转子内置式机泵一体全金属螺杆泵采油装置 |
Also Published As
Publication number | Publication date |
---|---|
CN100460680C (zh) | 2009-02-11 |
EP1778980A1 (de) | 2007-05-02 |
DE502005001849D1 (de) | 2007-12-13 |
KR20070033954A (ko) | 2007-03-27 |
CA2553795C (en) | 2009-07-14 |
ATE377150T1 (de) | 2007-11-15 |
BRPI0513307A (pt) | 2008-05-06 |
WO2006015571A1 (de) | 2006-02-16 |
RU2006145438A (ru) | 2008-09-20 |
KR100874043B1 (ko) | 2008-12-12 |
EP1778980B1 (de) | 2007-10-31 |
MXPA06011759A (es) | 2007-05-31 |
CA2553795A1 (en) | 2006-02-16 |
DE102004038686B3 (de) | 2005-08-25 |
DE112005002517A5 (de) | 2007-07-12 |
JP2008509335A (ja) | 2008-03-27 |
ES2294727T3 (es) | 2008-04-01 |
RU2361116C2 (ru) | 2009-07-10 |
CN101006276A (zh) | 2007-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2553795C (en) | Eccentric screw pump with integrated drive | |
EP0481423B1 (en) | Electric pump assembly | |
US6700268B2 (en) | Rotational electric machine and a vehicle loaded therewith | |
US8063517B2 (en) | Combination drive with a hybrid reluctance motor | |
RU2198459C2 (ru) | Электронно-коммутируемый синхронный реактивный электродвигатель | |
US5219276A (en) | Pump, in particular an enclosed medical pump | |
EP0678966B1 (en) | Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor | |
US7304450B2 (en) | Motor-reduction unit switched on an absolute position signal | |
US7884518B2 (en) | Electrical synchronous machine | |
US9553494B2 (en) | Electronically controlled universal motor | |
US5197865A (en) | Integral electronically commutated drive system | |
KR20100014886A (ko) | 중첩식 가변 필드 다이나모일렉트릭 장치 | |
EP1819030A1 (en) | Motor/Generator | |
WO1997008807A1 (de) | Elektromotor | |
CN109863674A (zh) | 具有用于将定子固定在壳体中的轴承元件的用于车窗升降器的驱动设备 | |
US6914362B2 (en) | Construction and mode of operation of opposite statorless electronically switched motors | |
EP1552150B1 (en) | Screw pump and method of operating the same | |
US6710483B2 (en) | Actuator capable of revolving | |
CA2009361A1 (en) | Electric motor driven diaphragm pump | |
US7034500B2 (en) | Electric drive assembly | |
CN111226384A (zh) | 电气的机动车流体泵 | |
CN106712418B (zh) | 无机械差速共轴反转动力装置 | |
US20030201677A1 (en) | Step motor with multiple stators | |
KR200225225Y1 (ko) | 무정류자 직류모터 | |
EP3154179B1 (en) | Variable stroke linear electrodynamic machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NETZSCH-MOHNOPUMPEN GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JABERG, HELMUT;SCHMIDT, DIRK;SCHUELER, RALF;AND OTHERS;REEL/FRAME:019006/0800;SIGNING DATES FROM 20070129 TO 20070228 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |