US20060159550A1 - Horizontal axis wind turbine - Google Patents

Horizontal axis wind turbine Download PDF

Info

Publication number
US20060159550A1
US20060159550A1 US11/329,050 US32905006A US2006159550A1 US 20060159550 A1 US20060159550 A1 US 20060159550A1 US 32905006 A US32905006 A US 32905006A US 2006159550 A1 US2006159550 A1 US 2006159550A1
Authority
US
United States
Prior art keywords
wind turbine
rotor
horizontal axis
angle
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/329,050
Other languages
English (en)
Inventor
Toru Nagao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Assigned to FUJI JUKOGYO KABUSHIKI KAISHA reassignment FUJI JUKOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAGAO, TORU
Publication of US20060159550A1 publication Critical patent/US20060159550A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/30Non-positive-displacement machines or engines, e.g. steam turbines characterised by having a single rotor operable in either direction of rotation, e.g. by reversing of blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/40Flow geometry or direction
    • F05B2210/404Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/40Flow geometry or direction
    • F05D2210/44Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This horizontal axis wind turbine utilizes a characteristic that an upflow angle or a downflow angle of a wind depends on the lay of the land. Specifically, when a wind direction toward a wind turbine 100 is, in a direction with a certain azimuth angle, one as indicated by an arrow Q in FIG. 5 having an angle of ⁇ to the horizontal plane, a nacelle 102 rotates on each of an inner cam track 104 and an outer cam track 105 so that a rotor shaft 103 a of a rotor 103 turns to point to a certain azimuth angle of the wind direction and stops. At a stop position, a tilt angle, that is a wind-direction angle to the horizontal plane) is set to ⁇ , corresponding to the certain azimuth angle.
  • the inclination angle of the rotor shaft 103 a with respect to the upper surface of a tower head pedestal 101 a in a plane parallel to the horizontal plane comes to be ⁇ .
  • the wind turbine 100 comes to be a state that the rotor 103 faces perpendicularly to the flow of wind in the wind direction. Further, in FIG.
  • the horizontal axis wind turbine described above is so constructed that the nacelle moves to turn by 180 degrees when a wind flow in a direction of a certain azimuth angle changes to a wind flow in the opposite direction, and as to the displacement in a tilt angle direction corresponding to a wind direction in a certain azimuth angle direction, the cam tracks are provided with surfaces formed in advance so that the value of a tilt angle differs according to the azimuth angle.
  • the cam tracks have to be produced having different values of tilt angles correlative to azimuth angles for every installing position, and further a difficulty occurs in work for correcting the angle once set.
  • Patent Document 1 JP-2003-35249A (pages 2-4, and FIGS. 3 and 4).
  • the horizontal axis wind turbine comprises: a nacelle to support the rotor; a tower head which the nacelle is mounted on and comprises a rail with a circular or arc shape thereon; and a roller to support the nacelle, which is movable on and guided by the rail, to control an azimuth direction of the wind turbine.
  • each roller is moved on the rail with a circular or arc shape, in a limited range to correspond to the change of wind direction in the range, which allows the wind turbine to be adjusted within a narrow range for the wind direction in the azimuth-angle direction.
  • the inclination angle can be controlled by extending and retracting the actuators without producing a special cam track which was required by the above-described conventional example, therefore installation cost can be reduced including omission of work to lift a large cam, and further a horizontal axis wind turbine more precisely facing the wind direction can be implemented.
  • the actuator is a hydraulic jack.
  • the wind turbine when the wind turbine is installed at a place where wind directions are changeable, in addition to the above-described changes of the pitch angle and the reverse of rotation, the wind turbine follows the azimuth direction of a wind using the rails and the rollers rotatably moving thereon, and controls the inclination angle by up-and-down control of the actuators to coincide with the wind direction. Accordingly, the wind turbine of the invention has advantages in that installation can be relatively easier and the change after the installation can be also easier.
  • FIG. 3A is a view for illustrating the operation of a horizontal axis wind turbine according to a second embodiment of the invention
  • FIG. 3B is a partially sectional view taken along the line A-A in FIG. 3A ;
  • Such a horizontal axis wind turbine 1 includes a tower 2 placed on the ground, an approximately cylindrical nacelle 4 directly fixed to the tower 2 , a rotor shaft (not shown) rotatably supported to the nacelle 4 , a hub 6 a fixed to the rotor shaft, and a rotor 6 having three blades 6 b 1 - 6 b 3 in the embodiment, each blade attached to the hub 6 a so that its pitch angle is changeable.
  • Each of the blades 6 b 1 - 6 b 3 is attached to the hub 6 a so as to be perpendicular to the rotor shaft.
  • the wind turbine 1 when the wind turbine 1 is placed on the lay of the land like coastline, it is required to control mainly the azimuth angle because wind directions are relatively stable such that a wind blows from the sea to the land in the daytime and from the land to the sea at night, and blows along the ground.
  • the rotor 6 of the wind turbine 1 rotates with a rotating surface facing perpendicular to the flowing direction of the wind, and each of the blades 6 b 1 - 6 b 3 of the rotor 6 is controlled to have a predetermined pitch angle as described above.
  • a horizontal axis wind turbine 20 is a downwind horizontal axis wind turbine similar to the above-described wind turbine 1 . However, the wind turbine 20 can control azimuth angles and tilt angles according to the change of wind direction which is indicated by an arrow in FIG. 3A .
  • the wind turbine 20 is in a state that the rotation plane of the rotor 6 is perpendicular to the flow of the wind direction.
  • the wind direction changes at night to one in a certain azimuth-angle direction, as indicated by an arrow N of the rear side, having an angle of “y” influenced by the lay of the land where the tower 2 is placed (as shown by broken lines)
  • the pitch angle of each of the blades 6 b 1 - 6 b 3 is changed to correspond to the wind direction changed, to reverse the rotating direction of the rotor 6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
US11/329,050 2005-01-19 2006-01-11 Horizontal axis wind turbine Abandoned US20060159550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005011225A JP2006200400A (ja) 2005-01-19 2005-01-19 水平軸風車
JP2005-011225 2005-01-19

Publications (1)

Publication Number Publication Date
US20060159550A1 true US20060159550A1 (en) 2006-07-20

Family

ID=35589532

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/329,050 Abandoned US20060159550A1 (en) 2005-01-19 2006-01-11 Horizontal axis wind turbine

Country Status (4)

Country Link
US (1) US20060159550A1 (fr)
EP (1) EP1683965B1 (fr)
JP (1) JP2006200400A (fr)
ES (1) ES2703817T3 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111697A1 (en) * 2008-11-05 2010-05-06 Frontline Aerospace, Inc Wind energy generation device
US20100140938A1 (en) * 2009-10-30 2010-06-10 Mark Lee Cook System, device, and method for controlling a wind turbine using seasonal parameters
WO2010098814A1 (fr) * 2009-02-28 2010-09-02 Ener2 Llc Dispositif amélioré à énergie éolienne
US20100239411A1 (en) * 2008-12-12 2010-09-23 Annette Lane Dual-mode wind machine
US20100301612A1 (en) * 2009-05-26 2010-12-02 Jia-Yuan Lee Wind turbine
US20110148112A1 (en) * 2008-03-07 2011-06-23 Vestas Wind Systems A/S Control System and a Method for Controlling a Wind Turbine
US20110262272A1 (en) * 2010-04-22 2011-10-27 Jacob Johannes Nies Tilt adjustment system
US20130302139A1 (en) * 2010-12-23 2013-11-14 IFP Energies Nouvelles Floating offshore wind turbine comprising an active nacelle tilt stabilization system
US20130330188A1 (en) * 2011-08-17 2013-12-12 Arnold Ramsland Horizontal Axis Wind Turbine with Ball-and-Socket Hub
CN104295449A (zh) * 2014-09-23 2015-01-21 丁健威 一种叶片后置式风力发电装置
US20150211484A1 (en) * 2012-07-26 2015-07-30 Mhi Vestas Offshore Wind A/S Wind turbine tilt optimization and control
CN105114262A (zh) * 2015-07-30 2015-12-02 佛山市腾龙源节能环保科技有限公司 一种抗台风的风力电站
WO2016024028A1 (fr) * 2014-08-13 2016-02-18 Nabrawind Sl Intégration d'un générateur dans le système de transmission d'une éolienne
DK201500087A1 (en) * 2015-02-13 2016-07-11 Gulløv Innovation Aps Maintenance Member for a Wind Turbine and Method for using it
US9771923B1 (en) 2016-12-30 2017-09-26 Arnold Ramsland Hub assembly for horizontal axis, fluid-driven turbine enabling teetering
CN107503893A (zh) * 2017-08-22 2017-12-22 南京航空航天大学 一种可主动控制风轮仰角的高发电量风力机及其使用方法
CN108698678A (zh) * 2016-03-01 2018-10-23 株式会社铃诗苑 横轴旋翼以及具备横轴旋翼的舟艇
US10221835B2 (en) * 2015-10-22 2019-03-05 Dreiventum, S.L.U. Multi-platform wind turbine tower
US20190252947A1 (en) * 2018-02-09 2019-08-15 Siemens Gamesa Renewable Energy A/S Rotation device and method for rotating a wind turbine generator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100117368A1 (en) * 2008-11-07 2010-05-13 Benito Pedro Drive train supporting structure for a wind turbine
JP2015166626A (ja) * 2014-02-17 2015-09-24 大洋プラント株式会社 軸受け構造および該軸受け構造を備えた風力エネルギー利用装置
WO2017121433A1 (fr) * 2016-01-13 2017-07-20 Vestas Wind Systems A/S Perfectionnements apportés à un capteur de lacet pour éolienne
NO20200232A1 (no) * 2020-02-26 2021-08-27 Bjarte Nordvik Fundament for en offshore vindturbin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330714A (en) * 1980-06-26 1982-05-18 Smith Otto J M Wind turbine system
US4371346A (en) * 1979-08-31 1983-02-01 Vidal Jean Pierre System for propulsion of boats by means of winds and streams and for recovery of energy
US4439108A (en) * 1982-06-08 1984-03-27 Richard Will Windmill having centrifically feathered rotors to control rotor speed
US6783326B2 (en) * 2001-08-20 2004-08-31 General Electric Company Means for adjusting the rotor blade of a wind power plant rotor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113247A1 (de) * 1981-04-02 1982-10-21 Theodorus Johannes van 5000 Köln Deijl Windkraftanlage
US6327957B1 (en) * 1998-01-09 2001-12-11 Wind Eagle Joint Venture Wind-driven electric generator apparatus of the downwind type with flexible changeable-pitch blades
GB9904107D0 (en) * 1999-02-24 1999-04-14 I T Power Limited Water current turbine with pitch control
JP2003035249A (ja) 2001-07-23 2003-02-07 Fuji Heavy Ind Ltd 水平軸風車のティルト角制御方法及びその装置
CH695790A5 (de) * 2002-01-11 2006-08-31 Paul Rosenich Windkraftanlage.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371346A (en) * 1979-08-31 1983-02-01 Vidal Jean Pierre System for propulsion of boats by means of winds and streams and for recovery of energy
US4330714A (en) * 1980-06-26 1982-05-18 Smith Otto J M Wind turbine system
US4439108A (en) * 1982-06-08 1984-03-27 Richard Will Windmill having centrifically feathered rotors to control rotor speed
US6783326B2 (en) * 2001-08-20 2004-08-31 General Electric Company Means for adjusting the rotor blade of a wind power plant rotor

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110148112A1 (en) * 2008-03-07 2011-06-23 Vestas Wind Systems A/S Control System and a Method for Controlling a Wind Turbine
US8546967B2 (en) 2008-03-07 2013-10-01 Vestas Wind Systems A/S Control system and a method for controlling a wind turbine
US20100111697A1 (en) * 2008-11-05 2010-05-06 Frontline Aerospace, Inc Wind energy generation device
US8882465B2 (en) * 2008-12-12 2014-11-11 Annette Lane Dual-mode wind machine
US20100239411A1 (en) * 2008-12-12 2010-09-23 Annette Lane Dual-mode wind machine
WO2010098814A1 (fr) * 2009-02-28 2010-09-02 Ener2 Llc Dispositif amélioré à énergie éolienne
US8033794B2 (en) * 2009-05-26 2011-10-11 Jia-Yuan Lee Wind turbine
US20100301612A1 (en) * 2009-05-26 2010-12-02 Jia-Yuan Lee Wind turbine
US7880320B2 (en) * 2009-10-30 2011-02-01 General Electric Company System, device, and method for controlling a wind turbine using seasonal parameters
US20100140938A1 (en) * 2009-10-30 2010-06-10 Mark Lee Cook System, device, and method for controlling a wind turbine using seasonal parameters
US20110262272A1 (en) * 2010-04-22 2011-10-27 Jacob Johannes Nies Tilt adjustment system
CN102235296A (zh) * 2010-04-22 2011-11-09 通用电气公司 倾斜调节系统
US8277184B2 (en) * 2010-04-22 2012-10-02 General Electric Company Tilt adjustment system
US20130302139A1 (en) * 2010-12-23 2013-11-14 IFP Energies Nouvelles Floating offshore wind turbine comprising an active nacelle tilt stabilization system
US10180127B2 (en) * 2010-12-23 2019-01-15 IFP Energies Nouvelles Floating offshore wind turbine comprising an active nacelle tilt stabilization system
US9194366B2 (en) * 2011-08-17 2015-11-24 Arnold Ramsland Horizontal axis wind turbine with ball-and-socket hub
US20130330188A1 (en) * 2011-08-17 2013-12-12 Arnold Ramsland Horizontal Axis Wind Turbine with Ball-and-Socket Hub
US20150211484A1 (en) * 2012-07-26 2015-07-30 Mhi Vestas Offshore Wind A/S Wind turbine tilt optimization and control
US9777706B2 (en) * 2012-07-26 2017-10-03 Vestas Wind Systems A/S Wind turbine tilt optimization and control
WO2016024028A1 (fr) * 2014-08-13 2016-02-18 Nabrawind Sl Intégration d'un générateur dans le système de transmission d'une éolienne
CN104295449A (zh) * 2014-09-23 2015-01-21 丁健威 一种叶片后置式风力发电装置
DK201500087A1 (en) * 2015-02-13 2016-07-11 Gulløv Innovation Aps Maintenance Member for a Wind Turbine and Method for using it
DK178578B1 (en) * 2015-02-13 2016-07-11 Gulløv Innovation Aps Maintenance Member for a Wind Turbine and Method for using it
CN105114262A (zh) * 2015-07-30 2015-12-02 佛山市腾龙源节能环保科技有限公司 一种抗台风的风力电站
US10221835B2 (en) * 2015-10-22 2019-03-05 Dreiventum, S.L.U. Multi-platform wind turbine tower
CN108698678A (zh) * 2016-03-01 2018-10-23 株式会社铃诗苑 横轴旋翼以及具备横轴旋翼的舟艇
US9771923B1 (en) 2016-12-30 2017-09-26 Arnold Ramsland Hub assembly for horizontal axis, fluid-driven turbine enabling teetering
CN107503893A (zh) * 2017-08-22 2017-12-22 南京航空航天大学 一种可主动控制风轮仰角的高发电量风力机及其使用方法
US20190252947A1 (en) * 2018-02-09 2019-08-15 Siemens Gamesa Renewable Energy A/S Rotation device and method for rotating a wind turbine generator
US10879764B2 (en) * 2018-02-09 2020-12-29 Siemens Gamesa Renewable Energy A/S Rotation device and method for rotating a wind turbine generator

Also Published As

Publication number Publication date
EP1683965B1 (fr) 2018-12-26
EP1683965A2 (fr) 2006-07-26
ES2703817T3 (es) 2019-03-12
JP2006200400A (ja) 2006-08-03
EP1683965A3 (fr) 2012-02-29

Similar Documents

Publication Publication Date Title
EP1683965B1 (fr) Éolienne à axe horizontal
DK1766231T3 (en) Wind turbine with vertical axis
US8946608B2 (en) Solar tracking system
CN101815861B (zh) 具有至少一个叶片组的能量提取装置
CA2669956C (fr) Dispositif de commande de pas d'aerogenerateur et aerogenerateur
ES2938869T3 (es) Procedimientos y sistemas para hacer funcionar una turbina eólica en modos de funcionamiento de ruido reducido
US20100143136A1 (en) Systems and methods for assembling a pitch assembly for use in a wind turbine
PL1747375T3 (pl) Sposób sterowania i regulacji turbiny wiatrowej
CN102306028B (zh) 一种用于太阳跟踪的自适应回转装置及其工作方法
WO2010098814A1 (fr) Dispositif amélioré à énergie éolienne
AU2013224698B2 (en) A wind turbine system
US11637525B2 (en) Photovoltaic plant, in particular a ground photovoltaic plant
WO2011065840A2 (fr) Procédé permettant de tourner une centrale éolienne par rapport à la direction du vent
KR20100035206A (ko) 풍력발전기용 블레이드 피치 자동 조절장치
KR20090008504A (ko) 태양광 발전용 트래커
JP2007247577A (ja) 風車装置およびそれを用いた風力発電装置
KR20210084353A (ko) 풍력발전기의 피치제어방법
US20110219615A1 (en) Vessel and method for mounting an offshore wind turbine
NL2010479C2 (en) A method of orienting a section of an object at a desired angle.
TWI730337B (zh) 風力發電裝置的控制方法
CN219549022U (zh) 风力涡轮机以及风力发电设备
KR102507916B1 (ko) 틸팅각 조절장치를 갖는 수직형 풍력터빈
KR102541544B1 (ko) 풍력발전기의 블레이드 각도 조절장치
KR20220090942A (ko) 풍력발전기 피치시스템
KR101174445B1 (ko) 수직축 풍력발전장치

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI JUKOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAGAO, TORU;REEL/FRAME:017465/0655

Effective date: 20051123

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION