US20050271679A1 - Recombinant adenylate cyclase toxin of Bordetella induces T cell responses against tumoral antigens - Google Patents

Recombinant adenylate cyclase toxin of Bordetella induces T cell responses against tumoral antigens Download PDF

Info

Publication number
US20050271679A1
US20050271679A1 US10/994,204 US99420404A US2005271679A1 US 20050271679 A1 US20050271679 A1 US 20050271679A1 US 99420404 A US99420404 A US 99420404A US 2005271679 A1 US2005271679 A1 US 2005271679A1
Authority
US
United States
Prior art keywords
cyaa
immunogenic composition
epitope
recombinant protein
hla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/994,204
Other languages
English (en)
Inventor
Gilles Dadaglio
Claude Leclerc
Daniel Ladant
Benoit Van den Eynde
Sandra Morel
Cecile Bauche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludwig Institute for Cancer Research Ltd
Centre National de la Recherche Scientifique CNRS
Institut Pasteur de Lille
Institut National de la Sante et de la Recherche Medicale INSERM
Ludwig Institute for Cancer Research New York
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/994,204 priority Critical patent/US20050271679A1/en
Assigned to LUDWIG INSTITUTE FOR CANCER reassignment LUDWIG INSTITUTE FOR CANCER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VAN DEN EYNDE, BENOIT, MOREL, SANDRA
Assigned to INSTITUT PASTUER reassignment INSTITUT PASTUER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAUCHE, CECILE, LADANT, DANIEL, DADAGLIO, GILLES, LECLERC, CLAUDE
Publication of US20050271679A1 publication Critical patent/US20050271679A1/en
Priority to US12/731,196 priority patent/US20100310594A1/en
Priority to US14/063,164 priority patent/US20140227323A1/en
Assigned to INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM), CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), LUDWIG INSTITUTE FOR CANCER RESEARCH LTD, INSTITUT PASTEUR reassignment INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INSTITUT PASTEUR
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/099Bordetella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6415Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y406/00Phosphorus-oxygen lyases (4.6)
    • C12Y406/01Phosphorus-oxygen lyases (4.6.1)
    • C12Y406/01001Aodenylate cyclase (4.6.1.1)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/06Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
    • F16C27/066Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7886Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted outside the gap between the inner and outer races, e.g. sealing rings mounted to an end face or outer surface of a race
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6068Other bacterial proteins, e.g. OMP
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the invention relates to a recombinant adenylate cyclase toxin of Bordetella which induces T cell responses against tumoral antigens.
  • This invention relates to compositions and methods for treating cancers.
  • T cells play an important role in tumor rejection.
  • a variety of tumor antigens recognized by CD4 + or CD8 + tumor reactive T cells have been identified on both murine and human tumors (1).
  • CD8 + cytotoxic lymphocytes (CTL) are of particular interest because these cells specifically recognize tumor cells and kill them. Therefore, an important goal in cancer immunotherapy is to activate tumor-specific CTL.
  • antigens expressed on tumor cells have also been described, for example, a peptide derived from an intron sequence of the gene that codes for N-acetylglucosaminyl-transferase V (GnT-V) (3). This intron is specifically expressed in melanoma cells and is present in about 50% of melanoma cells.
  • GnT-V N-acetylglucosaminyl-transferase V
  • recombinant plasmids have been used for the expression of Bordetella sp. adenylate cyclase (cyaA) and a heterologous DNA inserted in a permissive site of CyaA. These plasmids and resulting recombinant proteins have been useful for inducing immune responses.
  • the immune responses elicited have been in CD8 + T lymphocytes with class I major histocompatibility complexes, as well as in CD4 + T lymphocytes with class II major histocompatibility complexes. (See U.S. Pat. Nos.
  • the recombinant proteins can be delivered to CD11b expressing cells, such as dendritic cells.
  • CD11b expressing cells such as dendritic cells.
  • This invention aids in fulfilling the needs in the art by providing recombinant CyaA proteins that induce immune responses. These responses can be directed towards tumoral antigens.
  • the invention provides novel methods of treating and immunomonitoring cancers.
  • the invention provides an immunogenic composition comprising a recombinant protein, wherein the recombinant protein comprises a Bordetella adenylate cyclase (CyaA) and a peptide that corresponds to a tumor antigen.
  • a recombinant protein comprises a Bordetella adenylate cyclase (CyaA) and a peptide that corresponds to a tumor antigen.
  • An embodiment of the invention is a method of treating a patient with cancer comprising (1) administering an immunogenic composition to the patient, wherein the immunogenic composition comprises a recombinant protein, wherein the recombinant protein comprises a Bordetella CyaA or a specific fragment thereof, and a peptide that corresponds to a tumor antigen, and (2) inducing an immune response, such as a T cell response, in the patient.
  • An embodiment of the invention is a method of treating a patient with cancer comprising (1) administering an immunogenic composition to the patient, wherein the immunogenic composition comprises a vector expressing a recombinant protein, wherein the recombinant protein comprises Bordetella CyaA or a specific fragment thereof, and a peptide that corresponds to a tumor antigen, and (2) inducing a T cell response in the patient.
  • the immunogenic composition comprises a vector expressing a recombinant protein, wherein the recombinant protein comprises Bordetella CyaA or a specific fragment thereof, and a peptide that corresponds to a tumor antigen, and (2) inducing a T cell response in the patient.
  • the T cell response is a CTL response or a T helper response or a CTL and a T helper response.
  • the tumor is a melanoma.
  • the tumor antigen is an HLA*0201 epitope.
  • the recombinant protein is CyaA-E5-Tyr or CyaA-E5-GnT-V.
  • the recombinant protein comprises more than one tumor antigen.
  • at least one tumor antigen is different from the other(s).
  • the tumor antigen is localized to any permissive site of CyaA.
  • CyaA is from Bordetella pertussis, Bordetella parapertussis , or Bordetella bronchiseptica . In a preferred embodiment CyaA is from Bordetella pertussis.
  • the invention also provides for an immunogenic composition
  • an immunogenic composition comprising a recombinant protein, wherein the recombinant protein comprises at least one specific fragment of the adenylate cyclase protein that is recognized as a ligand on human and animal cells, and at least one epitope specific for a tumoral antigen.
  • CyaA and the tumoral antigen can either be genetically fused or chemically bound (PCT/EPO1/11315).
  • the invention provides a recombinant protein wherein the recombinant protein comprises Bordetella CyaA, or a specific fragment thereof, and a peptide that corresponds to an antigen comprising the GnTV epitope.
  • the antigen is either fused or chemically bound to the CyaA protein or a specific fragment thereof.
  • the invention also provides a nucleic acid sequence coding for a fusion protein comprising Bordetella CyaA, or a specific fragment thereof, and a peptide that corresponds to an antigen comprising the GnTV epitope.
  • said sequence is included in the plasmid deposited at C.N.C.M., Paris, France, on Oct. 16, 2003 under accession number I-3111.
  • Also included in the invention is a vector expressing a recombinant protein which comprises Bordetella CyaA, or a specific fragment thereof, and a peptide that corresponds to an antigen comprising the GnTV epitope.
  • said vector has been deposited at C.N.C.M., Paris, France, on Oct. 16, 2003 under accession number I-3111.
  • the invention further encompasses a host cell that expresses a recombinant protein comprising Bordetella CyaA, or a specific fragment thereof, and a peptide that corresponds to an antigen comprising the GnTV epitope.
  • the host cell expresses the vector that has been deposited at C.N.C.M., Paris, France, on Oct. 16, 2003 under accession number I-3111.
  • the invention also provides a nucleic acid sequence coding for a fusion protein comprising Bordetella CyaA, or a specific fragment thereof, and a peptide that corresponds to an antigen comprising the Tyr epitope.
  • said sequence is included in the plasmid deposited at C.N.C.M., Paris, France, on May 31, 2001 under accession number I-2679.
  • Another embodiment of the invention is a vector expressing a recombinant protein that comprises Bordetella CyaA, or a specific fragment thereof, and a peptide that corresponds to an antigen comprising the Tyr epitope.
  • said vector has been deposited at C.N.C.M., Paris, France, on May 31, 2001, under accession number I-2679.
  • the invention further encompasses a host cell that expresses a recombinant protein comprising Bordetella CyaA, or a specific fragment thereof, and a peptide that corresponds to an antigen comprising the pTyr epitope.
  • the host cell expresses the vector that has been deposited at C.N.C.M., Paris, France, on May 31, 2001, under accession number I-2679.
  • FIG. 1 depicts in vivo induction of CTL responses by recombinant CyaA carrying HLA*0201 restricted melanoma epitopes.
  • HHD-mice received i.p. injections on days 0, 21 and 42 of either 50 ⁇ g control CyaA toxin ( ⁇ , ⁇ ) or recombinant CyaA toxins carrying melanoma epitopes ( ⁇ , ⁇ ) (A, CyaA-Tyr; B, CyaA-GnT-V) in the presence of 1 mg alum.
  • spleen cells from immune mice were stimulated in vitro with the priming peptide pTyr (A), or pGnT-V (B) in the presence of irradiated syngenic spleen cells.
  • the cytotoxic activity of these effector cells was measured on 51 Cr-labeled RMA-S-HHD target cells pulsed with the respective peptide ( ⁇ , ⁇ ) or incubated with medium alone ( ⁇ , ⁇ ).
  • the data represent mean values of duplicates (SD ⁇ 10%). Quadrants represent the number of positive mice versus the number of tested mice, and curves represent mean values ⁇ SD of responder mice per group from three experiments.
  • FIG. 2 depicts induction of melanoma-specific CTL responses by recombinant CyaA carrying melanoma epitopes using different routes of immunization.
  • Panels A and B HHD mice were immunized i.p. twice on days 0 and 21 with 50 ⁇ g wild-type CyaA ( ⁇ , ⁇ ) or recombinant CyaA-Tyr ( ⁇ , ⁇ ) in the presence (A) or in the absence of 1 mg alum (B).
  • Panels C and E HHD mice were immunized by one i.v.
  • spleen cells from immune mice were stimulated in vitro with priming peptides in the presence of irradiated syngeneic spleen cells.
  • the cytotoxic activity was measured on 51 Cr-labeled RMA-S-HHD target cells pulsed with the priming peptide ( ⁇ , ⁇ ) or incubated with medium alone ( ⁇ , ⁇ ).
  • the results show cumulative data from 2-4 experiments. Quadrants represent the number of positive mice versus the number of tested mice, and curves represent mean values ⁇ SD of responder mice per group. The results obtained after immunization with toxic and detoxified CyaA are not statistically different using a t test.
  • FIG. 3 demonstrates that immunization of mice with CyaA-Tyr induces a long-lasting specific memory CTL activity.
  • HHD mice were immunized i.p. twice on days 0 and 21 with 50 ⁇ g wild-type CyaA ( ⁇ , ⁇ ) or recombinant CyaA-Tyr ( ⁇ , ⁇ ) in the presence of 1 mg alum.
  • Quadrants represent the number of positive mice versus the number of tested mice.
  • Curves represent mean values ⁇ SD of responder mice per group from one experiment.
  • FIG. 4 depicts stimulation of human specific CTL clones by human dendritic (DC) cells incubated with recombinant CyaA-E5-Tyr or CyaA-E5-GnT-V. Due to the cytotoxicity of CyaA, only detoxified recombinant CyaA were tested in vitro.
  • DC dendritic
  • Immature HLA*0201 + DC derived from human monocytes were incubated with CyaA-E5 ( ⁇ ), recombinant CyaA-E5-Tyr ( ⁇ ) (A), CyaA-E5-GnT-V ( ⁇ ) (B) or with the relevant antigenic peptide ( ⁇ ), and were used as APC (Antigen Presenting Cells) to stimulate anti-tyrosinase CTL clone IVS-B (A) or anti-GnT-V CTL clone CMU 579 6/3 (B).
  • APC Antigen Presenting Cells
  • the secretion of IFN- ⁇ by the CTL clones was assessed by ELISA. The results are expressed as the mean concentration of IFN- ⁇ released in the supernatants from duplicate wells and are representative of three independent experiments. Standard errors of the mean are indicated.
  • CyaA specifically binds to ⁇ M ⁇ 2 integrin (CD11b/CD18) (14), and thus, targets the CD11b + DC subpopulation, which very efficiently induces primary immune responses (15). Therefore, immunization of mice with a recombinant CyaA toxin bearing a viral epitope leads to the induction of strong CTL responses and to a full protection against a lethal viral challenge (16).
  • CyaA toxins carrying a single CTL epitope can also stimulate efficient protective and therapeutic antitumor immunity in mice (17).
  • genetically detoxified CyaA toxoids retain the property to induce protective antiviral or antitumoral immunity (17, 18).
  • CyaA seems to be a safe and efficient non-replicating vector to induce specific immune responses in mice.
  • two recombinant CyaA carrying HLA*0201 restricted melanoma epitopes derived either from tyrosinase or from GnT-V were constructed.
  • the potency of these recombinant CyaA to induce in vivo HLA*0201 restricted CTL responses against the inserted epitopes and the ability to deliver these epitopes to human antigen presenting cells is demonstrated in the Examples below.
  • CyaA of Bordetella pertussis is able to deliver CD8 + T cell epitopes into the cytosol of CD11b + dendritic cells following its specific interaction with the ⁇ M ⁇ 2 integrin (CD11b/CD18). This delivery results in intracellular processing and presentation by MHC-class I molecules of the CD8 + T cell epitopes inserted into CyaA. Indeed, CyaA toxins carrying a single CTL epitope can induce efficient protective and therapeutic antitumor immunity in mice.
  • CyaA is capable of activating antitumoral CTL in humans, and is a novel factor for cancer immunotherapy.
  • immunogenic composition relates to a composition that leads to an immunological response and that is associated with therapeutic treatments, such as treatments against cancers.
  • Bordetella CyaA or “ Bordetella adenylate cyclase” encompass the CyaA or a fragment thereof, either modified or not. The modifications can include deletion of some internal amino acids. For example, CyaA may have no catalytic activity, but the specific binding to CD11b/CD18 receptor and the process of translocation of the catalytic domain are not affected.
  • Bordetella refers to the adenylate cyclase protein of a pathogen of Bordetella species. Said pathogen can be Bordetella pertussis, Bordetella parapertussis , or Bordetella bronchiseptica.
  • the term “antigen” or “epitope” refers to a peptide including a protein that can induce an immune response.
  • the term “heterologous” refers to the nature of the antigen bound to the CyaA protein, which induces an immune response different from that of the CyaA protein.
  • a heterologous antigen or epitope can be fused to CyaA or chemically bound to CyaA, for instance.
  • the term “immunogenic” refers to a characteristic of a protein as being able to elicit an immune response in a mammal, particularly in a human.
  • the term “immune response” refers to many effects that are caused by cells of the immune system, such as, for instance, a CTL response and/or a T helper response, and in the context of the invention includes, but are not limited to, activation of tumor-specific cytotoxic lymphocytes.
  • the term “immunotherapy” refers to a therapy for a disease that relies on an immune response.
  • the immunogenic composition of the invention can include adjuvants and excipients to allow an increase and modulation in the immune response.
  • adjuvants are diverse in nature. They can, for example, comprise liposomes, oily phases, for example, the Freund type of adjuvants, which are generally used in the form of an emulsion with an aqueous phase, or, more commonly, can comprise water-insoluble inorganic salts.
  • inorganic salts can comprise, for example, aluminum hydroxide, zinc sulfate, colloidal iron hydroxide, calcium phosphate, or calcium chloride.
  • Aluminum hydroxide (Al(OH) 3 ) is the most commonly used adjuvant.
  • the invention also encompasses recombinant proteins comprising Bordetella CyaA, or a specific fragment thereof, and the peptide pTyr (YMDGTMSQV). Said peptide may comprise extended flanking sequences.
  • the pTyr peptide corresponds to the melanoma HLA*0201 restricted epitope from the 369-377 region of tyrosinase. Note that the amino acids 369-377 of human tyrosinase are YMNGTMSQV.
  • an epitope with an extended flanking sequence of amino acid 360-385 of human Tyrosinase is SSMHNALHIYMNGTMSQVQGSANDPI (SEQ ID NO: 1) (with N371 converted to D).
  • VLPDVFIRC Y Guilloux, et al.
  • a peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acctylglucosaminyltransferase V gene, J. Exp. Med. 1996 183: 1173-1183.
  • the Gnt-V epitope is encoded by an intron sequence that may code for a 74 amino acid long polypeptide ( H. sapiens DNA for exon encoding for N-acetylglucosaminyltransferase V; Accession #X91652).
  • the epitope with extended flanking sequences from human N-acetylglucosaminytransferase V is MVLPDVFIRCVVFCL (SEQ ID NO: 2).
  • the invention also encompasses the recombinant fusion protein comprising Bordetella CyaA, or a specific fragment thereof, and the peptide pGnT-V (VLPDVFIRC). Said peptide may comprise extended flanking sequences.
  • the peptide pGnT-V corresponds to the HLA*0201 restricted epitope NA17-A derived from an intron of the N-acetylglucosaminyl-transferase V gene.
  • the recombinant protein is CyaA-Tyr.
  • CyaA-Tyr means a fusion protein comprising the tyrosinase melanoma epitope of HLA*0201, which can be prepared as described in Example 1, and Bordetella pertussis CyaA.
  • CyaA-E5-Tyr refers to the CyaA-Tyr protein in which the catalytic activity of CyaA has been genetically inactivated. See, for instance, Example 1.
  • the recombinant protein is CyaA-E5-GnT-V.
  • CyaA-E5-GnT-V means a fusion protein comprising the NA17-A melanoma epitope of HLA*0201 derived from an intron of the N-acetylglucosaminyl-transferase V gene, which can be prepared as described in Example 1, and Bordetella pertussis CyaA.
  • CyaA-E5-GnT-V refers to the Cya-GnT-V protein in which the catalytic activity of CyaA has been genetically inactivated. Once again, see, for instance, Example 1.
  • the recombinant protein between CyaA and pTyr or pGnT-V is modified from the structure of CyaA-Tyr, CyaA-GnT-V, CyaA-E5-Tyr, or CyaA-E5-GnT-V.
  • Modification of these embodiments can include the addition of flanking regions, which are sequences of amino acids that surround the peptides comprising the recombinant protein, and were described above. These flanking sequences can enhance processing. Flanking sequences can also be sequences which is not naturally surround the antigen but which specifically enhance the antigen processing by antigen preventing cells.
  • the recombinant proteins can be modified by including multiple identical heterologous epitopes. For instance, Tyr or GnT-V epitope, as described above, or other melanoma epitopes.
  • the recombinant protein can include at least one specific fragment of the adenylate cyclase protein, such as, but not limited to, CyaA the 373-1706 region or the 1166-1281 region which are recognized as a ligand on human and animal cells, such as, dendritic cells, and at least one epitope specific for a cancer antigen, such as, but not limited to, pTyr or GnT-V.
  • adenylate cyclase protein such as, but not limited to, CyaA the 373-1706 region or the 1166-1281 region which are recognized as a ligand on human and animal cells, such as, dendritic cells
  • epitope specific for a cancer antigen such as, but not limited to, pTyr or GnT-V.
  • the recombinant protein can include multiple epitopes from one or more tumoral antigens.
  • Another embodiment of the invention includes permissive sites of CyaA that differ from those provided in the Examples.
  • the antigen portion of the recombinant protein used in the tests of the invention can be localized to any permissive site of the CyaA adenylate cyclase protein WO 93/21324.
  • the invention encompasses tests and immunogenic compositions that utilize only fragments of the CyaA adenylate cyclase in the recombinant protein (see EPO 03/291486.3).
  • the term “permissive site” relates to a site where the heterologous peptide can be inserted without substantially affecting the desired functional properties of the adenylate cyclase toxin, i.e. without affecting the domains necessary for the specific binding to CD11b/CD18 receptor and advantageously without affecting the process of translocation of the catalytic domain.
  • Permissive sites of the Bordetella pertussis adenylate cyclase include, but are not limited to, residues 137-138 (Val-Ala), residues 224-225 (Arg-Ala), residues 228-229 (Glu-Ala), residues 235-236 (Arg-Glu), and residues 317-318 (Ser-Ala) (see Sebo et al., 1985).
  • the following additional permissive sites are also included in embodiments of the invention: residues 107-108 (Gly-His), residues 132-133 (Met-Ala), residues 232-233 (Gly-Leu), and 335-336 (Gly-Gln) and 336-337.
  • the terms “specific region of the adenylate cyclase protein” or “fragment of the CyaA adenylate cyclase” relates to a fragment of said protein including the protein wherein some amino acids which are not on the tumoral parts of the protein have been deleted, and the desired functional properties of adenylate cyclase toxin are not substantially affected, i.e. the domains necessary for the specific binding to CD11b/CD18 receptor and the process of translocation of the catalytic domain are not affected.
  • tumor antigen or “cancer antigen” refer to any substance from a tumor that elicits an immune response and reacts specifically with antibodies or T cells. Said substance can be from any origin, either spontaneous or from a virus, which transforms cells to form a tumor. Examples of such viruses are HHV8, HCV, and HBV. The antigen or epitope must be present on the surface of the tumor cell.
  • a peptide that corresponds to an antigen encompass an antigen, an epitope, or an antigen or an epitope flanked by naturally or non-naturally occurring flanking regions, which specifically enhance antigen processing by antigen presenting cells.
  • epitope refers to the minimal peptide sequence of an antigen that can induce an immune response.
  • peptide refers to a series of amino acids linked by amide bonds, comprising at least 3 amino acids, and preferably at least 6 amino acids.
  • the immunogenic composition of the invention can be used in solution, for example, but not limited to, in PBS, or with adjuvants, for example, but not limited to alum.
  • the immunogenic composition can be administered intramuscularly, subcutaneously, intravenously, or intradermally.
  • the immunogenic composition can be administered in amounts from 0.5-10 mg, preferably 1-5 mg, 1.5-3 mg, or more preferably 1.50 mg.
  • the effects of these treatments can be monitored by assaying the levels of IFN- ⁇ with ELISPOT, ELISA, or CTL activation assays, or other appropriate immunoassays.
  • the adenylate cyclase of Bordetella Sp. represents a new delivery system able to specifically stimulate CD8 + T lymphocytes leading to protective antiviral and antitumoral immunity in mice (16, 17).
  • CyaA is a powerful non-replicating vector for induction of adaptive immunity and is useful in vaccines. Demonstration, according to this invention, that the inserted epitopes can be processed and presented in association with human MHC molecules is an indispensable prerequisite for the use of this vector in humans.
  • CyaA represents an efficient vector to induce specific CTL responses in vivo because more than 80% of immunized HHD mice responded to the tyrosinase epitope inserted into CyaA following one i.v.
  • CyaA-Tyr is very efficient in activating HLA*0201-restricted CD8 + T cell in vivo, because a single intravenous immunization or two i.p. injections without adjuvant were sufficient to generate strong specific CTL responses. This is explained by the fact that CyaA targets specifically CD11b + DC, the most potent APC to induce primary response, as a result of its interaction with the ⁇ M ⁇ 2 integrin expressed by these cells (14). Thus, CyaA has the exceptional property of specifically delivering antigens to the cytosolic Ag class I presentation pathway of professional APC.
  • CyaA recombinant strategy Further improvements of the CyaA recombinant strategy are also possible.
  • multiple insertions of CD8 + T cell epitopes into the same recombinant molecule has already been successfully achieved. Indeed, immunization of mice with recombinant CyaA carrying three different epitopes, including a LCMV epitope, leads to the induction of specific CTL responses for each of the three epitopes, as well as protection against a lethal LCMV challenge (31). Detoxified CyaA carrying multiple melanoma epitopes constitute a good alternative to induce multispecific CTL responses. Furthermore, additional insertion of CD4 + T cell epitopic peptides is also possible.
  • T helper cells can also be required to induce efficient anti-tumoral responses (33-35).
  • Recombinant CyaA can also deliver epitopes into the MHC class II processing pathway (36) and is able to induce, in vivo, both specific Th1 and CTL responses (37). This characteristic is of great interest for vaccination strategies where both kinds of T cell responses have to be induced, noticeably in the context of cancer immunotherapy.
  • Plasmid pTRACE5-GnTV is a derivative of the expression vector pTRACG that expresses the cyaC and cyaA genes from Bordetella pertussis under the control of the ⁇ phage Pr promoter (pTRCAG also harbors an ampicillin resistance selectable marker and the thermosensitive ⁇ repressor Cl 857 ).
  • the cyaA gene is modified by insertion of a dipeptide Leu-Gln between codons 188 and 189 of wild-type CyaA (resulting in the inactivation of the adenylate cyclase activity) and by insertion of a DNA sequence encoding the following peptide sequence PASVLPDVFIRCGT (SEQ ID NO: 3) inserted between codons 224 and 240 of CyaA.
  • PASVLPDVFIRCGT SEQ ID NO: 3
  • the underlined peptide (VLPDVFIRC) corresponds to the HLA-A2 restricted melanoma epitope NA17-A derived from the N-acetylglucosaminyl-transferase V gene.
  • Plasmid XL1/pTRACE5-GnTV was deposited at C.N.C.M. on Oct. 16, 2003, with accession number I-3111.
  • Plasmid pTRACE-5-Tyros369 is a derivative of the expression vector pTRACG that expresses the cyaC and cyaA genes from Bordetella pertussis under the control of the ⁇ phage Pr promoter (pTRCAG also harbors an ampicillin resistance selectable marker and the thermosensitive A repressor Cl 857 ).
  • the cyaA gene is modified by insertion of a dipeptide Leu-Gln between codons 188 and 189 of wild-type CyaA (resulting in the inactivation of the adenylate cyclase activity) and by insertion of a DNA sequence encoding the following peptide sequence PASYMDGTMSQVGTRARLK (SEQ ID NO: 5) inserted between codons 224 and 240 of CyaA.
  • the underlined peptide (YMDGTMSQV) (SEQ ID NO: 6) corresponds to the amino acids sequence 369-377 of tyrosinase. Plasmid XL1/pTRACE5-Tyros369 was deposited at C.N.C.M. on May 31, 2001, with accession number I-2679.
  • CTL cytotoxic T lymphocytes
  • DC dendritic cells
  • PBMC peripheral blood mononuclear cells
  • CyaA adenylate cyclase of Bordetella sp
  • Tyr tyrosinase
  • GnT-V N-acetylglucosaminyl-transferase V
  • GM-CSF granulocyte-macrophage colony-stimulating factor
  • IFN interferon
  • i.p. intraperitoneal
  • i.v. intravenous.
  • HHD mice are H-2D ⁇ / ⁇ ⁇ 2m ⁇ / ⁇ double knock out mice expressing the HHD transgene comprising the ⁇ 1 (H) and ⁇ 2 (H) domains of HLA*0201 linked to ⁇ 3 transmembrane and cytoplasmic domains of H-2 D b (D), with the ⁇ 1 domain linked to human ⁇ 2-microglobulin.
  • HHD mice were bred and housed in animal facilities of Institut Pasteur.
  • the synthetic peptides pTyr (YMDGTMSQV) (SEQ ID NO: 6) corresponding to the melanoma HLA*0201 restricted epitope from the 369-377 region of tyrosinase (20, 21) and pGnT-V (VLPDVFIRC) (SEQ ID NO: 4) corresponding to the HLA*0201 restricted epitope NA17-A derived from an intron of the N-acetylglucosaminyl-transferase V gene (3) were purchased from Neosystem (Strasbourg, France).
  • CyaA toxin, CyaA-Tyr harbors a 14 amino acid long polypeptide sequence (PASYMDGTMSQVGT (SEQ ID NO: 7), one-letter code for amino acid) genetically inserted between residues 224 and 225 of CyaA.
  • This sequence contains a single copy of the HLA*0201 restricted melanoma epitope derived from tyrosinase (amino acid 369-377, underlined sequence above).
  • Recombinant CyaA toxin CyaA-GnT-V harbors a 14 amino acid long (PASVLPDVFIRCGT) (SEQ ID NO: 3) insert at the same position and contains a single copy of the HLA*0201 restricted melanoma epitope NA17-A derived from the N-acetylglucosaminy-transferase V gene (underlined sequence above).
  • PASVLPDVFIRCGT 14 amino acid long
  • recombinant toxins were produced in the E. coli strain BLR (Novagen) by using expression vectors that are derivatives of the pTRACG plasmid (22), modified by the insertion between the NheI and KpnI restriction sites of appropriate synthetic double stranded oligonucleotides encoding the indicated polypeptide sequences.
  • the E. coli strain XL1-Blue (Stratagene) was used for all DNA manipulations that were done according to standard protocols.
  • the recombinant proteins were purified to homogeneity from inclusion bodies by a two-step procedure that includes DEAE-Sepharose and Phenyl-Sepharose chromatographies, as described previously (23).
  • the recombinant toxins CyaA-Tyr and CyaA-GnT-V are enzymatically active and therefore cytotoxic.
  • the recombinant toxoids CyaA-E5-Tyr and CyaA-E5-GnT-V are enzymatically inactive, detoxified variants of CyaA-Tyr and CyaA-GnT-V respectively. They are unable to synthesize cAMP as a result of a dipeptide insertion within a critical region of the catalytic site (23). CyaA-E5-Tyr and CyaA-E5-GnT-V toxoids were produced in E.
  • this plasmid was obtained by insertion of the hexanucleotide CTGCAG (SEQ ID NO: 8) in an EcoRV site located in the 5′ part of the cyaA DNA sequence. This results in an in-frame insertion of the dipeptide Leu-Gln between Asp188 and IIe189 of CyaA (23).
  • the same synthetic double stranded oligonucleotides described above were inserted between the NheI and KpnI sites of pTRACE5 to create plasmids pTRAC-E5-Tyr and pTRAC-E5-GnT-V.
  • the recombinant CyaA-E5-Tyr and CyaA-E5-GnT-V toxoids were purified to homogeneity as described (23).
  • Oligonucleotide synthesis and DNA sequencing were performed by Genaxis (France). Cultures in fermentors were performed by the Service des Fermentations facility from Institut Pasteur.
  • mice Six to ten week old female HHD mice were immunized with two or three i.p. injections at 21 day intervals of either 50 ⁇ g CyaA or recombinant CyaA carrying melanoma epitopes in the presence or in the absence of 1 mg alum. In some experiments, mice were immunized with one i.v. injection of 50 ⁇ g of the recombinant CyaA in PBS. Detoxified recombinant CyaA-E5 were used in the same conditions. Spleens were surgically removed seven days after the last injection, except for the analysis of long lasting responses, where spleens were removed three or five months after the last injection.
  • the cytotoxic activity of these effector cells was tested in a 4-h 51 Cr-release assay on HHD transfected TAP ⁇ / ⁇ RMA-S cells (RMA-S-HHD) loaded with the relevant peptides as target cells.
  • 51 Cr-labeling was performed as follows: one day before the cytotoxic test, RMA-S-HHD cells were incubated overnight at room temperature in 7% CO 2 equilibrated RPMI 1640 medium supplemented with 20 mM Hepes. Then, cells were incubated 3 h at room temperature with or without 20 ⁇ g/ml of the relevant peptide, washed once and radiolabeled with 100 ⁇ Ci of 51 Cr for 1 h at 37° C.
  • Human dendritic cells Human dendritic cells were derived from adherent monocytes as follows: Peripheral blood mononuclear cells were isolated from buffy coats obtained from the HLA*0201 hemochromatosis patient LB2050 by centrifugation on Leucosep tubes (Greiner, Frickenhausen, Germany) previously centrifuged 30 sec at 2200 rpm with 15 ml of Lymphoprep (Nycomed Pharma, Oslo, Norway). These tubes were centrifuged at 2200 rpm for 20 min at room temperature and the top part containing plasma was discarded.
  • the interphase containing the PBMC was harvested and washed at least three times in cold phosphate buffer with 1 mM EDTA in order to eliminate the remaining platelets.
  • the PBMC were then left to adhere for 1 h in culture flasks at a density of 2 ⁇ 10 6 cells/cm 2 in RPMI 1640 supplemented with amino-acids (L-arginine 116 ⁇ g/ml, L-asparagine 36 ⁇ g/ml, L-glutamine 216 ⁇ g/ml), antibiotics, and 10% fetal calf serum (hereafter referred as culture medium).
  • Non-adherent cells were discarded, adherent cells were washed twice carefully with 20 ml of medium and incubated in culture medium with 200 U/ml human IL-4 and 70 ng/ml human GM-CSF. On day two and four, 5 ml of medium were removed and 10 ml containing 700 ng of GM-CSF were added. IL-4 was also supplemented at 200 U/ml for the total volume of the flask. The cells were used between day five and seven.
  • CTL clone IVS-B directed against the HLA*0201 restricted Tyr epitope (positions 369-377) of tyrosinase was previously described (24). The clone was stimulated weekly with 50 U/ml human IL-2, irradiated HLA*0201 transfected MZ2-MEL melanoma cells pulsed with 2 ⁇ g/ml pTyr peptide, and irradiated LG2-EBV cells as feeder cells.
  • the CTL clone CMU 579 6/3 specific for the HLA*0201 restricted epitope derived from GnT-V was obtained from the blood of a healthy donor following a recently described method (25).
  • PBMC peripheral blood mononuclear cells
  • PBMC peripheral blood mononuclear cells
  • HLA*0201 tetramer folded with the pGnT-V peptide Tetramer positive lymphocytes were cloned using flow cytometry.
  • the corresponding CTL clones were incubated with these cells (75 ⁇ l of X-vivo medium containing 10 4 anti-tyrosinase CTL clone IVS-B or 10 4 anti-GnT-V CTL clone CMU 579 6/3) and IL-2 (at a final concentration of 25 U/ml).
  • the supernatants were collected after 20 h and their IFN- ⁇ content was determined by ELISA (Biosource International, Camarillo, Calif.).
  • CyaA-GnT-V tyrosinase antigen
  • HHD mice which are transgenic for the human MHC class I molecule HLA*0201 and have been shown to develop HLA*0201-restricted CTL responses against tumoral peptides (26).
  • HHD mice were immunized by 3 i.p. injections of 50 ⁇ g of recombinant CyaA with alum. After in vitro stimulation of splenocytes with the corresponding peptide, CTL responses were tested in a chromium release assay, using as targets peptide-pulsed RMA-S-HHD cells, which express the same transgene as HHD mice. As shown in FIG.
  • both recombinant toxins carrying either Tyr or GnT-V epitopes induce strong CTL responses against target cells loaded with the relevant peptide.
  • These CTL responses were antigen-specific since only peptide sensitized target cells were killed and CTL activity was not detected on target cells loaded with irrelevant peptides (data not shown).
  • no significant CTL responses were observed in mice immunized with the wild type CyaA showing that the induction of specific CTL responses required in vivo priming by the epitope inserted into recombinant CyaA.
  • HHD mice received two i.p. injections of 50 ⁇ g of CyaA-Tyr in the presence of alum. Three and five months after the last injection, splenocytes from immunized mice were stimulated in vitro over five days with the peptide pTyr and then, their cytolytic activity was tested against peptide pulsed RMA-S-HHD target cells. As illustrated in FIG. 3 , CyaA-Tyr induced a long-lasting specific CTL response because specific cytotoxic activity could be detected in all mice three months after the last injection, and even after five months in one animal.
  • HLA*0201-Restricted Peptides Inserted into CyaA are Processed and Presented by HLA*0201 + Human DC
  • CyaA-E5-Tyr Increasing doses of CyaA-E5-Tyr, CyaA-E5-GnT-V or control CyaA-E5 were then added and presentation of the antigenic peptides was assessed by measuring the ability of the treated DC to stimulate the relevant CTL in an IFN- ⁇ production assay.
  • CyaA-Mel 21 which comprises the epitope gp100-280, and includes the inserted sequence YLEPGTVTA formed the GP 100 melanoma-associated tumor antigen, does not include a CTL response.
  • CyaA-CEA 13 which comprises the epitope CEA 571-579, and has the inserted sequence YLSGANLNL from the Carcinoma Embryonic Antigen, does not induce a CTL response. Neither of these toxins induce a CTL response specific for the inserted epitopes in the HHD mouse.
  • some human dendritic cells cannot present the inserted epitope CyaA-Mel 21 (epitope gp100-280) to a human CTL clone.
  • CyaA-Mel21 and CyaA-CEA13 are identical to CyaA-Tyr and CyaA-GnTV, but differ only in the inserted sequences. Therefore, only the epitopes are different, and so the response to CyaA-Tyr and CyaA-GNTV are epitope specific.
  • Cya-Mage toxin which comprises the Mage A10/A2 epitope with the inserted sequence GLYDGMEHL from the melanoma protein Mage 10, induces very good CTL response in HHD mouse, but is inefficient in humans under the protocol described above. Therefore, a positive response in the mouse is not always indicative of a positive response in humans. In general, human responses are epitope and species specific.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Mechanical Engineering (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
US10/994,204 2003-11-21 2004-11-22 Recombinant adenylate cyclase toxin of Bordetella induces T cell responses against tumoral antigens Abandoned US20050271679A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/994,204 US20050271679A1 (en) 2003-11-21 2004-11-22 Recombinant adenylate cyclase toxin of Bordetella induces T cell responses against tumoral antigens
US12/731,196 US20100310594A1 (en) 2003-11-21 2010-03-25 Recombinant adenylate cyclase toxin of bordetella induces t cell responses against tumoral antigens
US14/063,164 US20140227323A1 (en) 2003-11-21 2013-10-25 Recombinant adenylate cyclase toxin of bordetella induces t cell responses against tumoral antigens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52363203P 2003-11-21 2003-11-21
US10/994,204 US20050271679A1 (en) 2003-11-21 2004-11-22 Recombinant adenylate cyclase toxin of Bordetella induces T cell responses against tumoral antigens

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/731,198 Continuation US8465208B2 (en) 2010-03-25 2010-03-25 Re-lubeable center support assembly for bearing
US12/731,196 Continuation US20100310594A1 (en) 2003-11-21 2010-03-25 Recombinant adenylate cyclase toxin of bordetella induces t cell responses against tumoral antigens

Publications (1)

Publication Number Publication Date
US20050271679A1 true US20050271679A1 (en) 2005-12-08

Family

ID=34652257

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/994,204 Abandoned US20050271679A1 (en) 2003-11-21 2004-11-22 Recombinant adenylate cyclase toxin of Bordetella induces T cell responses against tumoral antigens
US12/232,250 Expired - Fee Related US9410139B2 (en) 2003-11-21 2008-09-12 Recombinant adenylate cyclase toxin of bordetella induces T cell responses against tumoral antigens
US12/731,196 Abandoned US20100310594A1 (en) 2003-11-21 2010-03-25 Recombinant adenylate cyclase toxin of bordetella induces t cell responses against tumoral antigens
US14/063,164 Abandoned US20140227323A1 (en) 2003-11-21 2013-10-25 Recombinant adenylate cyclase toxin of bordetella induces t cell responses against tumoral antigens

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/232,250 Expired - Fee Related US9410139B2 (en) 2003-11-21 2008-09-12 Recombinant adenylate cyclase toxin of bordetella induces T cell responses against tumoral antigens
US12/731,196 Abandoned US20100310594A1 (en) 2003-11-21 2010-03-25 Recombinant adenylate cyclase toxin of bordetella induces t cell responses against tumoral antigens
US14/063,164 Abandoned US20140227323A1 (en) 2003-11-21 2013-10-25 Recombinant adenylate cyclase toxin of bordetella induces t cell responses against tumoral antigens

Country Status (11)

Country Link
US (4) US20050271679A1 (de)
EP (2) EP2193804B1 (de)
JP (1) JP4976853B2 (de)
AT (1) ATE450272T1 (de)
CA (1) CA2546452C (de)
DE (1) DE602004024440D1 (de)
ES (1) ES2337694T3 (de)
HK (1) HK1093314A1 (de)
PL (1) PL1684801T3 (de)
PT (1) PT1684801E (de)
WO (1) WO2005053738A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072266A1 (en) * 2004-03-18 2007-03-29 Xavier-Edmond-Edouard Preville Recombinant protein carrying human papillomavirus epitopes inserted in an adenylate cyclase protein or fragment thereof. therapeutic uses thereof
US20100063099A1 (en) * 2007-01-12 2010-03-11 Lonny Levin Adenylyl cyclases as novel targets for the treatment of infection by eukaryotic pathogens
US20100168203A1 (en) * 2007-01-12 2010-07-01 Lonny Levin Adenylyl cyclases as novel targets for antibactrial interventions
US9370564B2 (en) 2000-09-15 2016-06-21 Institut Pasteur Vectors for molecule delivery to CD11b expressing cells

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1684801E (pt) 2003-11-21 2010-03-08 Pasteur Institut A toxina de adenilato ciclase recombinante da bordetella induz respostas das células t contra antigénios tumorais
JP5496669B2 (ja) * 2006-09-01 2014-05-21 ジェンティセル リンパ除去化合物、および抗原配列を含みかつプロフェッショナル抗原提示細胞をターゲットとする分子を含んでなる、特異的ctl応答を誘発する組成物
EP1894941A1 (de) 2006-09-01 2008-03-05 Institut Pasteur Behandlung von Gebärmutterhalskarzinomen mit einer rekombinanten Adenylat-Cyclase die HPV-Antigene trägt
EP2478915A1 (de) * 2011-01-24 2012-07-25 Genticel cyaA-getragene Polypeptid(e) und Verwendung zur Induzierung von therapeutischen und prophylaktischen Immunantworten
US9345755B2 (en) * 2012-02-20 2016-05-24 University Of Virginia Patent Foundation Composition and methods for treating melanoma
EP2690172A1 (de) 2012-07-23 2014-01-29 Genticel CYAA-basierte chimäre Proteine mit einem heterologen Polypeptid und deren Verwendungen bei der Induktion von Immunreaktionen
ES2861450T3 (es) 2015-07-20 2021-10-06 Virttu Biologics Ltd Uso del virus del herpes simple oncolítico en combinación con un inhibidor de puntos de control inmunitario, en el tratamiento del cáncer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503829A (en) * 1992-04-21 1996-04-02 Institut Pasteur Recombinant mutants for inducing specific immune responses
US5821122A (en) * 1995-06-07 1998-10-13 Inserm (Institute Nat'l De La Sante Et De La Recherche . .) Isolated nucleic acid molecules, peptides which form complexes with MHC molecule HLA-A2 and uses thereof
US5935580A (en) * 1992-04-21 1999-08-10 Institut Pasteur Recombinant mutants for inducing specific immune responses

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977074B2 (en) * 1997-07-10 2005-12-20 Mannkind Corporation Method of inducing a CTL response
DE60041183D1 (de) * 1999-05-06 2009-02-05 Univ Wake Forest Zusammensetzungen und methoden zur identifikation von antigenen, die eine immunantwort hervorrufen
EP1222274A2 (de) * 1999-10-19 2002-07-17 Ludwig Institute For Cancer Research Vom mage-12 abgeleitete antigene peptide und deren verwendungen
AUPQ776100A0 (en) 2000-05-26 2000-06-15 Australian National University, The Synthetic molecules and uses therefor
ATE438409T1 (de) * 2000-09-15 2009-08-15 Pasteur Institut Proteinhaltigen vektoren zur einführung von moleküle in cd11b exprimirende zellen
EP1489092A1 (de) * 2003-06-18 2004-12-22 Institut Pasteur Modifizierte Bordetella Adenylatcyclase mit oder ohne CD11b/CD18 Interaktionsdomäne und seine Verwendungen
PT1684801E (pt) 2003-11-21 2010-03-08 Pasteur Institut A toxina de adenilato ciclase recombinante da bordetella induz respostas das células t contra antigénios tumorais

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503829A (en) * 1992-04-21 1996-04-02 Institut Pasteur Recombinant mutants for inducing specific immune responses
US5679784A (en) * 1992-04-21 1997-10-21 Institut Pasteur Recombinant mutants for inducing specific immune responses
US5935580A (en) * 1992-04-21 1999-08-10 Institut Pasteur Recombinant mutants for inducing specific immune responses
US5821122A (en) * 1995-06-07 1998-10-13 Inserm (Institute Nat'l De La Sante Et De La Recherche . .) Isolated nucleic acid molecules, peptides which form complexes with MHC molecule HLA-A2 and uses thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370564B2 (en) 2000-09-15 2016-06-21 Institut Pasteur Vectors for molecule delivery to CD11b expressing cells
US10004794B2 (en) 2000-09-15 2018-06-26 Institut Pasteur Vectors for molecule delivery to CD11b expressing cells
US20070072266A1 (en) * 2004-03-18 2007-03-29 Xavier-Edmond-Edouard Preville Recombinant protein carrying human papillomavirus epitopes inserted in an adenylate cyclase protein or fragment thereof. therapeutic uses thereof
US20110171244A1 (en) * 2004-03-18 2011-07-14 Institut Pasteur Recombinant protein carrying human papillomavirus epitopes inserted in an adenylate cyclase protein or fragment thereof therapeutic uses thereof
US8628779B2 (en) 2004-03-18 2014-01-14 Institut Pasteur Recombinant protein carrying human papillomavirus epitopes inserted in an adenylate cyclase protein or fragment thereof. therapeutic uses thereof
US8637039B2 (en) 2004-03-18 2014-01-28 Institut Pasteur Recombinant protein carrying human papillomavirus epitopes inserted in an adenylate cyclase protein or fragment thereof therapeutic uses thereof
US9387243B2 (en) 2004-03-18 2016-07-12 Institut Pasteur Recombinant protein carrying human papillomavirus epitopes inserted in an adenylate cyclase protein or fragment thereof therapeutic uses thereof
US20100063099A1 (en) * 2007-01-12 2010-03-11 Lonny Levin Adenylyl cyclases as novel targets for the treatment of infection by eukaryotic pathogens
US20100168203A1 (en) * 2007-01-12 2010-07-01 Lonny Levin Adenylyl cyclases as novel targets for antibactrial interventions
US9017681B2 (en) * 2007-01-12 2015-04-28 Cornell Research Foundation, Inc. Adenylyl cyclases as novel targets for antibactrial interventions
US9095578B2 (en) 2007-01-12 2015-08-04 Cornell Research Foundation, Inc. Adenylyl cyclases as novel targets for the treatment of infection by eukaryotic pathogens

Also Published As

Publication number Publication date
WO2005053738A1 (en) 2005-06-16
CA2546452C (en) 2015-01-20
PT1684801E (pt) 2010-03-08
PL1684801T3 (pl) 2010-07-30
ES2337694T3 (es) 2010-04-28
EP2193804B1 (de) 2015-12-23
EP1684801B1 (de) 2009-12-02
JP4976853B2 (ja) 2012-07-18
US20090117143A1 (en) 2009-05-07
EP2193804A3 (de) 2010-06-30
CA2546452A1 (en) 2005-06-16
US20140227323A1 (en) 2014-08-14
EP1684801A1 (de) 2006-08-02
US9410139B2 (en) 2016-08-09
DE602004024440D1 (de) 2010-01-14
HK1093314A1 (en) 2007-03-02
ATE450272T1 (de) 2009-12-15
US20100310594A1 (en) 2010-12-09
EP2193804A2 (de) 2010-06-09
JP2007511233A (ja) 2007-05-10

Similar Documents

Publication Publication Date Title
US9410139B2 (en) Recombinant adenylate cyclase toxin of bordetella induces T cell responses against tumoral antigens
US7084249B1 (en) Tumor associated antigen peptides and use of same as anti-tumor vaccines
US10004794B2 (en) Vectors for molecule delivery to CD11b expressing cells
US7906123B1 (en) Modified Bordetella adenylate cyclase comprising or lacking CD11b/CD18 interaction domain and uses thereof
US6190657B1 (en) Vectors for the diagnosis and treatment of solid tumors including melanoma
CA2715488C (en) Immunogenic control of tumours and tumour cells
Dadaglio et al. Recombinant adenylate cyclase toxin of Bordetella pertussis induces cytotoxic T lymphocyte responses against HLA* 0201‐restricted melanoma epitopes
US20220288179A1 (en) Immunogenic peptides with new oxidoreductase motifs
CA2182889C (en) Peptides recognized by melanoma-specific cytotoxic lymphocytes, and uses therefor
US20070026022A1 (en) Recombinant adenylate cyclase toxin of Bordetella induces T cell responses against tumoral antigens
Dadaglio et al. Recombinant adenylate cyclase toxin of
US7019112B1 (en) Peptides recognized by melanoma-specific A1-, A2- and A3-restricted cytoxic lymphocytes, and uses therefor
BRPI1013485A2 (pt) poliptídeo, derivado de polipeptídeo, composição farmacêutica, uso de um derivado de poliptídeo, e, método para a preparação de um vetor proteináceo
AU2016202443A1 (en) Immunogenic control of tumours and tumour cells
AU2013270496A1 (en) Immunogenic control of tumours and tumour cells

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUDWIG INSTITUTE FOR CANCER, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN DEN EYNDE, BENOIT;MOREL, SANDRA;REEL/FRAME:017153/0523;SIGNING DATES FROM 20050710 TO 20050928

Owner name: INSTITUT PASTUER, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DADAGLIO, GILLES;LECLERC, CLAUDE;LADANT, DANIEL;AND OTHERS;REEL/FRAME:017158/0121;SIGNING DATES FROM 20050628 TO 20050807

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INSTITUT PASTEUR;REEL/FRAME:036966/0028

Effective date: 20151026

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INSTITUT PASTEUR;REEL/FRAME:036966/0028

Effective date: 20151026

Owner name: LUDWIG INSTITUTE FOR CANCER RESEARCH LTD, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INSTITUT PASTEUR;REEL/FRAME:036966/0028

Effective date: 20151026

Owner name: INSTITUT PASTEUR, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INSTITUT PASTEUR;REEL/FRAME:036966/0028

Effective date: 20151026