US20050267520A1 - Access and closure device and method - Google Patents
Access and closure device and method Download PDFInfo
- Publication number
- US20050267520A1 US20050267520A1 US10/844,247 US84424704A US2005267520A1 US 20050267520 A1 US20050267520 A1 US 20050267520A1 US 84424704 A US84424704 A US 84424704A US 2005267520 A1 US2005267520 A1 US 2005267520A1
- Authority
- US
- United States
- Prior art keywords
- arteriotomy
- lumen
- introduction
- wall
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 117
- 230000002792 vascular Effects 0.000 claims abstract description 23
- 210000004204 blood vessel Anatomy 0.000 claims description 18
- 230000003416 augmentation Effects 0.000 claims description 9
- 210000002808 connective tissue Anatomy 0.000 claims description 3
- 238000007789 sealing Methods 0.000 abstract description 6
- 230000000153 supplemental effect Effects 0.000 description 18
- 238000000576 coating method Methods 0.000 description 8
- 230000023597 hemostasis Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- -1 polypropylene Polymers 0.000 description 6
- 102000008186 Collagen Human genes 0.000 description 5
- 108010035532 Collagen Proteins 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229920001436 collagen Polymers 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 208000007536 Thrombosis Diseases 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910001000 nickel titanium Inorganic materials 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 229920004934 Dacron® Polymers 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 235000019364 tetracycline Nutrition 0.000 description 3
- 150000003522 tetracyclines Chemical class 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 108010037464 Cyclooxygenase 1 Proteins 0.000 description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 102000001776 Matrix metalloproteinase-9 Human genes 0.000 description 2
- 108010015302 Matrix metalloproteinase-9 Proteins 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 2
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910000701 elgiloys (Co-Cr-Ni Alloy) Inorganic materials 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000012858 resilient material Substances 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000002885 thrombogenetic effect Effects 0.000 description 2
- UKVFUEBRZQZUSZ-BRPMRXRMSA-N (8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-pent-4-en-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthrene Chemical compound C1CC2CCCC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@@H](CC=C)C)[C@@]1(C)CC2 UKVFUEBRZQZUSZ-BRPMRXRMSA-N 0.000 description 1
- DSUFPYCILZXJFF-UHFFFAOYSA-N 4-[[4-[[4-(pentoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamoyloxy]butyl n-[4-[[4-(butoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamate Chemical compound C1CC(NC(=O)OCCCCC)CCC1CC1CCC(NC(=O)OCCCCOC(=O)NC2CCC(CC3CCC(CC3)NC(=O)OCCCC)CC2)CC1 DSUFPYCILZXJFF-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229940013181 advil Drugs 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229920006018 co-polyamide Polymers 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003260 cyclooxygenase 1 inhibitor Substances 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002884 effect on inflammation Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000013171 endarterectomy Methods 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000005550 inflammation mediator Substances 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 229960003464 mefenamic acid Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 229940099538 rapamune Drugs 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940087652 vioxx Drugs 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3415—Trocars; Puncturing needles for introducing tubes or catheters, e.g. gastrostomy tubes, drain catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/02—Holding devices, e.g. on the body
- A61M25/04—Holding devices, e.g. on the body in the body, e.g. expansible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B17/0644—Surgical staples, i.e. penetrating the tissue penetrating the tissue, deformable to closed position
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12009—Implements for ligaturing other than by clamps or clips, e.g. using a loop with a slip knot
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/128—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord for applying or removing clamps or clips
- A61B17/1285—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord for applying or removing clamps or clips for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00637—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for sealing trocar wounds through abdominal wall
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00646—Type of implements
- A61B2017/00659—Type of implements located only on one side of the opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00672—Locating means therefor, e.g. bleed back lumen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00676—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect promotion of self-sealing of the puncture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0403—Dowels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0406—Pledgets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0417—T-fasteners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0419—H-fasteners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B2017/0496—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B2017/06052—Needle-suture combinations in which a suture is extending inside a hollow tubular needle, e.g. over the entire length of the needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
- A61B2017/3405—Needle locating or guiding means using mechanical guide means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M2025/0001—Catheters; Hollow probes for pressure measurement
- A61M2025/0002—Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
Definitions
- the present invention relates to the field of accessing a biological lumen and closing the access port thereby created.
- a number of diagnostic and interventional vascular procedures are now performed translumenally, where a catheter is introduced to the vascular system at a convenient access location—such as the femoral, brachial, or subclavian arteries—and guided through the vascular system to a target location to perform therapy or diagnosis.
- a catheter is introduced to the vascular system at a convenient access location—such as the femoral, brachial, or subclavian arteries—and guided through the vascular system to a target location to perform therapy or diagnosis.
- vascular access is no longer required, the catheter and other vascular access devices must be removed from the vascular entrance and bleeding at the puncture site must be stopped.
- hemostasis is achieved by manual compression, the patient is required to remain recumbent for six to eighteen hours under observation to assure continued hemostasis. During this time bleeding from the vascular access wound can restart, potentially resulting in major complications. These complications may require blood transfusion and/or surgical intervention.
- Bioabsorbable fasteners have also been used to stop bleeding. Generally, these approaches rely on the placement of a thrombogenic and bioabsorbable material, such as collagen, at the superficial arterial wall over the puncture site. This method generally presents difficulty locating the interface of the overlying tissue and the adventitial surface of the blood vessel. Implanting the fastener too far from the desired location can result in failure to provide hemostasis. If, however, the fastener intrudes into the vascular lumen, thrombus can form on the fastener. Thrombus can embolize downstram and/or block normal blood flow at the thrombus site. Implanted fasteners can also cause infection and auto-immune reactions/rejections of the implant.
- a thrombogenic and bioabsorbable material such as collagen
- Suturing methods are also used to provide hemostasis after vascular access.
- the suture-applying device is introduced through the tissue tract with a distal end of the device located at the vascular puncture. Needles in the device draw suture through the blood vessel wall on opposite sides of the punctures, and the suture is secured directly over the adventitial surface of the blood vessel wall to close the vascular access wound.
- suturing methods need to be performed with a precise control.
- the needles need to be properly directed through the blood vessel wall so that the suture is well anchored in tissue to provide for tight closure.
- Suturing methods also require additional steps for the surgeon.
- vascular closure device and method that does not implant a foreign substance and is self-sealing.
- vascular closure device and method requiring no or few extra steps to close the vascular site.
- a device for accessing a biological lumen has a lumen wall having a longitudinal lumen wall axis.
- the device has an elongated member that has a longitudinal member axis.
- the member is configured to access the lumen at a first angle.
- the first angle is defined by the longitudinal lumen wall axis and the longitudinal member axis. The first angle is less than about 19 degrees.
- the first angle can be less than about 15 degrees.
- the first angle can be less than about 10 degrees.
- the device can also have an anchor.
- the anchor can be configured to hold the elongated member at a fixed angle with respect to the longitudinal lumen wall axis.
- the device can also have a retainer.
- the retainer can be configured to hold the elongated member at a fixed angle with respect to the longitudinal lumen axis.
- the biological lumen has a lumen wall and a longitudinal lumen wall axis.
- the device has a first elongated member and a second elongated member.
- the first elongated member has a first elongated member axis.
- the second elongated member has a second elongated member axis.
- the second elongated member is configured so that the second elongated member axis is parallel to the longitudinal lumen wall axis.
- the second elongated member can have a retainer.
- the retainer can have an inflatable member.
- the retainer can have a resilient member.
- the second elongated member can extend substantially adjacent to the lumen wall.
- the device for closing an opening on a biological lumen wall.
- the device has a longitudinal axis, a first force-applying member, a second force-applying member, and a resilient member.
- the resilient member provides to the first and the second force-applying members a force that is radially outward with respect to the longitudinal axis.
- a method of accessing a blood vessel through a blood vessel wall is also disclosed.
- the blood vessel wall has a longitudinal wall axis.
- the method includes entering the vessel at an angle of less than about 19 degrees with respect to the longitudinal wall axis.
- the method also includes inserting a lumenal tool into the vessel.
- the biological lumen has a lumen wall and a longitudinal lumen wall axis.
- the method includes inserting in the biological lumen a second elongated member.
- the second elongated member has a second elongated member axis.
- the method also includes aligning the second elongated member so that the second elongated member axis is substantially parallel to the longitudinal lumen wall axis.
- the method includes inserting in the biological lumen a first elongated member comprising a first elongated member axis.
- the vascular opening has an inside surface and a longitudinal axis.
- the method includes inserting a device in the opening and applying a force to the inside surface.
- the force is directed in at least one radially outward direction from the longitudinal axis.
- the method can include maintaining the force.
- the applying a force can include the device applying at least a part of the force.
- the applying of a force can include the device applying all of the force.
- the method includes forming an arteriotomy and deploying a closure augmentation device in the arteriotomy.
- the closure augmentation device produces pressure on the inside surface and the outside surface.
- FIG. 1 is a front perspective view of an embodiment of the arteriotomy device.
- FIG. 2 is a side view of the arteriotomy device of FIG. 1 .
- FIG. 3 is a close-up view of the arteriotomy device of FIG. 1 .
- FIGS. 4 and 5 are close-up views of various embodiments of the anchor.
- FIG. 6 is a side perspective view of an embodiment of the arteriotomy device with the introduction device deployed.
- FIG. 7 is a close-up view of an embodiment of the arteriotomy device with the introduction device deployed.
- FIGS. 8 and 9 are side views of various embodiments of the arteriotomy device with the introduction devices deployed.
- FIG. 10 is a bottom perspective view of an embodiment of the arteriotomy device.
- FIG. 11 is a side view of an embodiment of the arteriotomy device with the lumenal retainer deployed.
- FIG. 12 is a bottom perspective view of an embodiment of the arteriotomy device with the lumenal retainer deployed.
- FIG. 13 is a side perspective view of an embodiment of the arteriotomy device.
- FIG. 14 is a side perspective view of an embodiment of the arteriotomy device with the entry wall retainer deployed.
- FIGS. 15 and 16 illustrate various embodiments of the tensioner.
- FIGS. 17 and 18 illustrate various embodiments of the pressure clip.
- FIGS. 19 and 20 illustrate various embodiments of the toggle.
- FIG. 21 illustrates a method for deploying the arteriotomy device in a cross-section of a lumen.
- FIGS. 22 and 23 illustrate methods for deploying the retainers in a cross-section of a lumen.
- FIGS. 24 and 25 illustrate a method for deploying the introduction device in a cross-section of a lumen.
- FIG. 26 illustrates a method for deploying a guidewire in a cross-section of a lumen.
- FIGS. 27-30 illustrate a method for deploying the introduction device in a cross-section of a lumen.
- FIG. 31 illustrates a method for deploying a guidewire in a cross-section of a lumen.
- FIG. 32 illustrates a portion of an arteriotomized lumen.
- FIG. 33 illustrates section A-A of FIG. 28 .
- FIGS. 34-36 illustrate a method for deploying a tensioner in a see-through portion of lumen wall.
- FIGS. 37-40 illustrate methods for deploying various embodiments of the pressure clip in a cross-section of a lumen.
- FIG. 41 illustrates a method of using a suture on a portion of an arteriotomized lumen.
- FIG. 42 illustrates section B-B of FIG. 41 with the out-of-section suture.
- FIG. 43 illustrates a method of using pledgets on a portion of an arteriotomized lumen.
- FIG. 44 illustrates section C-C of FIG. 43 .
- FIG. 45 illustrates an embodiment of the toggle deployment device in a first configuration.
- FIG. 46 is a close-up view of FIG. 45 .
- FIG. 47 illustrates an embodiment of the toggle deployment device in a second configuration.
- FIG. 48 is a close-up view of FIG. 47 .
- FIG. 49 illustrates a method of using the toggle deployment device in a cross-section of a lumen.
- FIG. 50 illustrates FIG. 49 with a portion of the toggle deployment device shown in section D-D.
- FIG. 51 illustrates a method of using the toggle deployment device in a cross-section of a lumen.
- FIG. 52 illustrates FIG. 51 with a portion of the toggle deployment device shown in section E-E.
- FIGS. 53-55 illustrate a method of using the toggle deployment device in a cross-section of a lumen.
- FIG. 56 is a close-up view of FIG. 55 .
- FIG. 57 illustrates an embodiment of a deployed toggle in a cross-section of a lumen.
- FIG. 58 is a close-up view of FIG. 59 .
- FIG. 62 is a close-up view of FIG. 61 .
- FIG. 63 illustrates a method for deploying a toggle in a cross-section of a lumen.
- FIGS. 64-66 shown, in cross-section, a method for deploying the guidewire through an arteriotomy.
- FIGS. 1 through 3 illustrate a device for accessing a biological lumen, such as an arteriotomy device 2 .
- the arteriotomy device 2 can have a delivery guide 4 .
- the delivery guide 4 can be slidably attached to an anchor 6 .
- the anchor 6 can be rigid, flexible or combinations thereof.
- the anchor 6 can be resilient, deformable or combinations thereof.
- the anchor 6 can be retractable and extendable from the delivery guide 4 .
- the delivery guide 4 can have an introducer lumen 8 .
- the introducer lumen 8 can have an introducer lumen exit port 10 .
- the introducer lumen exit port 10 can be on the surface of the delivery guide 4 .
- the anchor 6 can have an anchor angle section 12 .
- the anchor 6 can have an anchor extension section 14 , for example a guide eye sheath or an attachable guidewire.
- the anchor extension section 14 can extend from the anchor angle section 12 .
- the anchor extension section 14 can be separate from and attached to, or integral with, the anchor angle section 12 .
- the anchor angle section 12 can have an anchor angle first sub-section 16 , an anchor bend 20 and an anchor angle second sub-section 18 .
- the anchor angle first and/or second sub-sections 16 and/or 18 can be part of the anchor bend 20 .
- the anchor bend 20 can have a sharp or gradual curve.
- the radius of curvature for the anchor bend 20 can be from about 0.1 mm (0.004 in.) to about 2.0 mm (0.079 in.).
- the anchor angle first sub-section 16 can have an anchor angle first sub-section diameter 22 from about 0.38 mm (0.015 in.) to about 1.0 mm (0.039 in.), for example about 0.71 mm (0.028 in.).
- the anchor angle second sub-section 18 can have an anchor angle second sub-section diameter 24 from about 0.38 mm (0.015 in.) to about 1.0 mm (0.039 in.), for example about 0.71 mm (0.028 in.).
- the anchor angle first sub-section 16 can have a delivery longitudinal axis 26 .
- the anchor angle second sub-section 18 can have an anchor longitudinal axis 28 .
- the intersection of the delivery longitudinal axis 26 and the anchor longitudinal axis 28 can be an anchoring angle 30 .
- the anchoring angle 30 can be from about 20° to about 90°, more narrowly from about 30° to about 60°, for example about 45°.
- any or all elements of the arteriotomy device 2 or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct.
- nickel titanium alloys e.g., Nitinol
- cobalt-chrome alloys e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.
- CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.
- molybdenum alloys e.g., moly
- tungsten-rhenium alloys for example, as disclosed in International Pub. No. WO 03/082363
- polymers such as polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ether ketone (PEEK), nylon, polyether-block co-polyamide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), polylactic acid (PLA), polydioxanone, and pseudo
- any or all elements of the arteriotomy device 2 can be or have a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth.
- the matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.
- the elements of the arteriotomy device 2 and/or the fabric can be filled and/or coated with an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent.
- the agents within these matrices can include radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), CO
- FIG. 4 illustrates that the anchor angle section 12 and the anchor extension section 14 can have a flexible elongated element.
- the flexible elongated element can be resilient and/or deformable.
- the flexible elongated element can have an integral, or multiple separate and fixedly attached, wound wire 32 .
- the anchor angle section 12 can be in a sheath 34 .
- FIG. 5 illustrates that the anchor angle section 12 can have a wire coating 36 , for example a lubricious coating and/or a coating made from urethane.
- FIGS. 6 and 7 illustrate that the arteriotomy device 2 can have an introduction device 38 .
- the introduction device 38 can be slidably attached to the introducer lumen 8 .
- the introduction device 38 can have a hollow needle (as shown in FIG. 6 ).
- the introduction device 38 can have a solid needle (as shown in FIG. 7 ).
- the introduction device 38 can have a guidewire.
- the introduction device 38 can have an introduction longitudinal axis 40 .
- the intersection of the introduction longitudinal axis 40 and the anchor longitudinal axis 28 can be an introduction angle 42 .
- the introduction angle 42 can be less than or equal to about 19°, more narrowly less than or equal to about 15°, yet more narrowly from about 5° to about 10°, for example about °10.
- the introduction device 38 can have an introduction device diameter 44 .
- the introduction device diameter 44 can be from about 0.25 mm (0.010 in.) to about 1.0 mm (0.039 in.), for example about 0.56 mm (0.022 in.).
- FIGS. 8 and 9 illustrate that the arteriotomy device 2 can be configured so that the introduction device 38 can be deployed from the anchor 6 .
- the anchor 6 can have an introduction device port 46 .
- the introduction device 38 can be a hollow needle (as shown in FIG. 8 ). When fully deployed, the introduction device 38 can contact the introducer lumen exit port 10 .
- the introduction device 38 can be a channel between the introducer lumen 8 and the anchor 6 .
- the anchor 6 can have a port (not shown) configured to communicate with the biological lumen and the introduction device 38 .
- the introduction device 38 can be a solid needle (as shown in FIG. 9 ).
- FIG. 10 illustrates that a lumenal retainer 48 can have a first retracted configuration.
- the lumenal retainer 48 can be seated in a lumenal retainer port 50 .
- the lumenal retainer port 50 can be in the anchor 6 .
- the lumenal retainer 48 can be a wire, scaffold or stent—for example made from a deformable or resilient material, such as a shape memory alloy—an inflatable balloon, or combinations thereof.
- Intralumenal inflatable balloons such as those inflated with saline solution or carbon dioxide, are known to those having ordinary skill in the art.
- the lumenal retainer 48 can extend into the delivery guide 4 .
- FIGS. 11 and 12 illustrate that the lumenal retainer 48 can have a second deployed configuration.
- FIG. 11 shows that the lumenal retainer 48 can be a wire or balloon.
- FIG. 12 shows that the lumenal retainer 48 can be a wire.
- the lumenal retainer 48 can deploy away from the lumenal retainer port.
- the lumenal retainer 48 can have a lumenal retainer deployed diameter 52 .
- the lumenal retainer deployed diameter 52 can be from about 2.54 mm (0.100 in.) to about 10.2 mm (0.400 in.), for example about 6.35 mm (0.250 in.).
- FIG. 13 illustrates that the arteriotomy device 2 can have an entry wall retainer port 54 .
- the entry wall retainer port 54 can be at or near the anchor bend 20 .
- the entry wall retainer port 54 can be at or near the anchor angle first sub-section 16 .
- the entry wall retainer port 54 can be in fluid communication with a sensor or port (not shown) on or near the delivery guide 4 of the arteriotomy device 2 .
- FIG. 14 illustrates that an entry wall retainer 56 can be deployed through the entry wall retainer port 54 .
- the entry wall retainer 56 can have a first retracted configuration (as shown in FIG. 13 ).
- the entry wall retainer 56 can have a second deployed configuration (as shown in FIG. 14 ).
- FIGS. 15 through 20 illustrate various supplemental closure devices.
- the supplemental closure devices can be completely or partially bioabsorbable, bioresorbable, bioadsorbable or combinations thereof.
- the supplemental closure devices can be made from homografts, heterografts or combinations thereof.
- the supplemental closure devices can be made from autografts, allografts or combinations thereof.
- FIG. 15 illustrates a tensioner 58 .
- the tensioner 58 can be resilient, deformable, or combinations thereof.
- the tensioner 58 can have a tensioner longitudinal axis 60 .
- the tensioner 58 can have a resilient element, such as a spring, for example a tensioner head 62 .
- the tensioner head 62 can have a tensioner first shoulder 64 .
- the tensioner head 62 can have a tensioner second shoulder 66 .
- the tensioner first and second shoulders 64 and 66 can rotatably attached to a separate or integral tensioner first leg 68 and a separate or integral tensioner second leg 70 , respectively.
- the tensioner first and second legs 68 and 70 can attach to tensioner first and second feet 72 and 74 , respectively.
- the tensioner legs 68 and 70 can have tensioner leg diameters 76 .
- the tensioner leg diameters 76 can be from about 0.1 mm (0.005 in.) to about 0.76 mm (0.030 in.), for example about 0.38 mm (0.015 in.).
- the tensioner first and second legs 68 and 70 can have a tensioner inter-leg outer diameter 78 .
- the tensioner inter-leg outer diameter 78 can be from about 1.3 mm (0.050 in.) to about 5.08 mm (0.200 in.), for example about 4.06 mm (0.160 in.).
- the tensioner shoulders 64 and/or 66 and/or the tensioner feet 72 and/or 74 can extend to a greater radius from the tensioner longitudinal axis 60 than their respective tensioner inter-leg radius.
- FIG. 16 illustrates a tensioner first strut 80 that can attach to the tensioner first leg 68 and the tensioner second leg 70 .
- the tensioner first leg 68 can be resilient, deformable or combinations thereof
- a tensioner second strut 82 can attach to the tensioner first leg 68 and the tensioner second leg 70 .
- the tensioner second leg 70 can be resilient and/or deformable.
- the tensioner 58 can have no tensioner head 62 .
- the tensioner 58 can have more than two tensioner struts 80 and 82 .
- FIG. 17 illustrates a pressure clip 84 .
- the pressure clip 84 can be resilient.
- the pressure clip 84 can be deformable.
- the pressure clip 84 can have a pressure clip longitudinal axis 86 .
- the pressure clip 84 can have a pressure clip head 88 .
- the pressure clip head 88 can be rotatably attached to a separate or integral pressure clip first leg 90 .
- the pressure clip head 88 can be rotatably attached to a separate or integral pressure clip second leg 92 .
- the pressure clip can have a pressure clip first end 94 and a pressure clip second end 96 .
- the pressure clip first leg 90 can terminate in the pressure clip first end 94 .
- the pressure clip second leg 92 can terminate in the pressure clip second end 96 .
- the pressure clip first leg 90 and/or the pressure clip second leg 92 can be biased toward the pressure clip longitudinal axis 86 .
- FIG. 18 illustrates the pressure clip 84 that can have a pressure clip sheath 98 slidably attached to the pressure clip second leg 92 .
- the pressure clip first and/or second ends 94 and/or 96 can be pressure dissipaters, such as flat and/or curved portions, for example circular loops.
- the pressure clip first and/or second ends 94 and/or 96 can be resilient and/or deformable.
- the pressure clip first leg 90 can be rotatably attached to the pressure clip second leg 92 .
- the pressure clip first leg 90 can be attached to the pressure clip second leg 92 via a rotatable, and/or deformable, and/or flexural joint in the pressure clip head 88 .
- FIG. 19 illustrates a toggle 100 .
- the toggle 100 can have a toggle first end 102 .
- the toggle 100 can have a toggle second end 104 .
- the toggle first and/or second ends 102 and/or 104 can be bars, dowels, rods, beams, or combinations thereof.
- the toggle 100 can have a filament 106 .
- the filament 106 can be fixedly attached at a filament first end 107 to the toggle first end 102 .
- the filament 106 can be fixedly attached at a filament second end 109 to the toggle second end 104 .
- the filament 106 can be resilient or deformable.
- the filament 106 can be substantially flexible.
- FIG. 20 illustrates the toggle 100 that can have the filament 106 that can be slidably attached to the toggle second end 104 at a hole 108 .
- the filament 106 can frictionally fit the hole 108 .
- the filament 106 can have no pawls 110 (not shown in FIG. 20 ).
- the filament 106 can interference fit the hole 108 .
- the filament 106 can have one or more pawls 110 .
- the hole 108 can have one or more notches 112 .
- the notches 112 can be internal to the hole 108 .
- the notches 112 and the pawls 110 can be configured to allow the toggle second end 104 to slide toward the toggle first end 102 .
- the notches 112 and the pawls 110 can be configured to provide an interference fit when the toggle second end 104 is attempted to be moved away from the toggle first end 102 .
- the elements of the arteriotomy device 2 can be directly attached by, for example, melting, screwing, gluing, welding or use of an interference fit or pressure fit such as crimping, snapping, or combining methods thereof.
- the elements can be integrated, for example, molding, die cutting, laser cutting, electrical discharge machining (EDM) or stamping from a single piece or material. Any other methods can be used as known to those having ordinary skill in the art.
- Integrated parts can be made from pre-formed resilient materials, for example resilient alloys (e.g., Nitinol, ELGILOY®) that are preformed and biased into the post-deployment shape and then compressed into the deployment shape as known to those having ordinary skill in the art.
- resilient alloys e.g., Nitinol, ELGILOY®
- any elements of the arteriotomy device 2 can be coated by dip-coating, brush-coating or spray-coating methods known to one having ordinary skill in the art. For example, these methods can be used to coat the wound wire 32 with the wire coating 36 can be spray coated, dip-coated or brushed onto the wire 32 .
- the supplemental closure devices can be covered with a fabric, for example polyester (e.g., DACRON® from E. I. du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.
- DACRON® from E. I. du Pont de Nemours and Company, Wilmington, Del.
- FIG. 21 illustrates a method of inserting the anchor 6 into a biological lumen 114 , for example a blood vessel, such as a femoral artery.
- the biological lumen 114 can have a lumen wall 116 and a lumen wall surface 118 .
- the anchor 6 can be inserted into the biological lumen 114 using a Seldinger technique, modified Seldinger technique, or other method known to one having ordinary skill in the art.
- the anchor 6 can create a first arteriotomy 120 .
- the anchor 6 can be inserted into the lumen 114 so that the anchor angle second sub-section 18 can be substantially parallel with the lumen wall surface 118 .
- the anchor 6 can be inserted into the lumen 114 so that the anchor angle second sub-section 18 can be substantially in contact with the lumen wall surface 118 .
- FIG. 22 illustrates a method of deploying, as shown by arrow, the lumenal retainer 48 from the first retracted configuration to the second deployed configuration.
- the lumenal retainer 48 can be deployed by extending a wire, scaffold or stent, or by inflating a balloon.
- the anchor angle second sub-section 18 can be made substantially parallel with the lumen wall surface 118 .
- the anchor angle second sub-section 18 can be made to be substantially in contact with the lumen wall surface 118 .
- FIG. 23 illustrates a method of deploying, as shown by arrow 122 , the entry wall retainer 56 from the first retracted configuration to the second deployed configuration.
- the lumenal retainer 48 can be substantially parallel with the lumen wall surface 118 .
- the lumenal retainer 48 can be substantially in contact with the lumen wall surface 118 .
- a proximal force can be applied to the anchor 6 , for example by being applied to the delivery guide 4 .
- the anchor angle second sub-section 18 can be made substantially parallel with the lumen wall surface 118 .
- the anchor angle second sub-section 18 can be made to be substantially in contact with the lumen wall surface 118 .
- FIGS. 24 and 25 illustrate a method for deploying the introduction device 38 .
- the introduction device 38 can egress from the introducer lumen 8 and the introducer lumen exit port 10 .
- the introduction device 38 can be pushed, as shown by arrow, into and through the lumen wall 116 .
- the introduction device 38 can form a second arteriotomy 128 .
- the introduction device 38 can be pushed, as shown by arrow, adjacent to or through the anchor 6 .
- the anchor 6 can be configured to have ports suitable to allow the introduction device 38 to pass through the anchor 6 .
- a tip of the introduction device 38 can enter the lumen 114 .
- the introduction device 38 can pass through an introduction run 132 and an introduction rise 134 .
- the introduction run 132 can be the component of the length of the introduction device 38 in the lumen wall 116 that is parallel to the lumen wall 116 .
- the introduction run 132 can be the component of the length parallel to the lumen wall 116 between the opening of the second arteriotomy 128 on the outside of the lumen wall 116 and the opening of the second arteriotomy 128 on the inside lumen wall surface 118 .
- the introduction run 132 can be from about 0.10 cm (0.010 in.) to about 3.810 cm (1.500 in.), for example about 0.64 cm (0.25 in.).
- the introduction rise 134 can be the component of the length of the introduction device 38 in the lumen wall 116 that is perpendicular to the lumen wall 116 .
- the introduction rise 134 can be the component of the length perpendicular to the lumen wall 116 between the opening of the second arteriotomy 128 on the outside of the lumen wall 116 and the opening of the second arteriotomy 128 on the inside lumen wall surface 118 .
- the introduction rise 134 can be from about 0.51 mm (0.020 in.) to about 5.08 mm (0.200 in.), for example about 1.0 mm (0.040 in.).
- An introduction slope can be the ratio of the introduction rise 134 to the introduction run 132 .
- the introduction slope can be from about 1 ⁇ 2 to about 1/40 or less, for example about 1 ⁇ 6, also for example about 1 ⁇ 3.
- the introduction slope can be, for examples, equal to or less than about 1 ⁇ 2 or 1 ⁇ 3, more narrowly equal to or less than about 1 ⁇ 3 or 1 ⁇ 4, yet more narrowly equal to or less than about 1 ⁇ 5 or 1 ⁇ 6, even still more narrowly than about equal to or less than about 1/10.
- the introduction rise 134 and the introduction run 132 can be components of an introduction vector.
- the introduction run 132 can be the component of the introduction vector parallel to the lumen wall 116 .
- the introduction rise 134 can be the component of the introduction vector perpendicular to the lumen wall 116 .
- the introduction vector can be a vector from an outer opening 136 to an inner opening 138 .
- the outer opening 136 can be a temporary or permanent opening on the outside of the lumen wall 116 formed by the introduction device 38 .
- the inner opening 138 can be a temporary or permanent opening on the inside of the vessel wall.
- FIG. 26 illustrates that the introduction device 38 , for example a hollow needle, can act as a pathway for a lumenal tool, for example tools such as a guidewire 168 , to be deployed, as shown by arrow, into the lumen 114 .
- the introduction device 38 for example a solid needle, can be removed from the second arteriotomy 128 and the lumenal tool can be deployed through, for example, the introducer lumen exit port 10 , and the second arteriotomy 128 .
- the introduction device 38 can be the lumenal tool, for example a guidewire.
- the introduction device 38 can be further deployed and used as a lumenal tool after passing through the lumen wall 116 .
- FIGS. 27 through 30 illustrates a method of deploying the introduction device 38 that can have a pre-formed bend.
- the arteriotomy device 2 can be configured to deploy the introduction device 38 at the introduction angle 42 from about 0° to about 5°, for example about 0°.
- the introduction device 38 can be pushed, as shown by arrow, through the lumen wall 116 .
- the introduction device 38 can cleave a plane in the lumen wall 116 .
- the plane can be substantially parallel with the lumen wall surface 118 .
- the introduction device 38 can be adjacent to the adventitia in a blood vessel.
- the introduction device 38 can be advanced along the subintimal or submedial cleavage plane in a blood vessel.
- a subintimal angioplasty can be performed as known to one having ordinary skill in the art.
- a remote endarterectomy can be performed as known to one having ordinary skill in the art.
- Bent and straight introduction devices 38 can be swapped during use to selectively cleave the lumen wall 116 .
- Tools, such as guidewires can be inserted through hollow introduction devices 38 to selectively cleave the lumen wall 116 .
- FIG. 29 when the bend in the introduction device 38 moves into the lumen wall 116 , the introduction device 38 can rotate, as shown by arrow, toward the biological lumen 114 . As shown in FIG. 30 , the bend in the introduction device 38 can continue to rotate the introduction device 38 toward the biological lumen 114 . As described infra, the introduction device 38 can enter the lumen 114 .
- FIG. 31 illustrates that the introduction device 38 that can have the bend can act as a pathway for a lumenal tool, as described infra.
- An introducer sheath can be inserted over the guidewire 168 and/or the introduction device 38 .
- the introducer sheath can be less than about 22 French (7.3 mm, 0.29 in. diameter) or less than the diameter of the lumen to which the introducer sheath is introduced.
- the introducer sheath can be, for examples, about 6 French (2.3 mm, 0.092 in. diameter), and about 8 French (2.67 mm, 0.105 in. diameter).
- the introducer sheath can be known to one having ordinary skill in the art, for example the introducer sheath described in U.S. Pat. No. 5,183,464 to Dubrul, et al.
- the introducer sheath can be inserted into the second arteriotomy 128 .
- the introducer sheath can expand the second arteriotomy 128 to a workable size.
- the introducer sheath can be inserted into the second arteriotomy 128 before and/or after and/or concurrently with the supplemental closure device is deployed and/or other closure method is used.
- FIGS. 32 and 33 illustrate an exemplary biological lumen 114 after the arteriotomy device 2 has been deployed to, and removed from, the biological lumen 114 .
- the biological lumen 114 can have the first and second arteriotomies 120 and 128 .
- the biological lumen 114 can have a second arteriotomy 128 .
- the biological lumen 114 can have a first web 140 on one side of the arteriotomy (shown for the second arteriotomy 128 ), and a second web 142 on the opposite side of the arteriotomy 120 or 128 .
- the natural pressure, shown by arrows, from the first and second webs 140 and 142 can self-seal the arteriotomy 120 or 128 .
- One or more supplemental closure devices can be deployed to the first and/or second arteriotomies 120 and/or 128 .
- the supplemental closure devices can provide a force or restraint to aid hemostasis.
- the supplemental closure devices can be permanently or temporarily deployed.
- the supplemental closure devices can biodissolve after hemostasis is achieved and/or after the relevant arteriotomy 120 or 128 is substantially or completely healed.
- the force from the supplemental closure device can be maintained from about 15 minutes to about 24 hours or more, for example about 120 minutes.
- FIG. 34 illustrates a tensioner 58 in a compressed configuration. Compressive forces, shown by arrows, can compress the tensioner first and second legs 68 and 70 .
- the tensioner inter-leg outer diameter 78 can be from about 0.51 mm (0.020 in.) to about 2.54 mm (0.100 in.), for example about 1.5 mm (0.060 in.).
- FIGS. 35 and 36 illustrate a method of deploying the tensioner 58 .
- the tensioner 58 can be in a compressed configuration.
- the tensioner 58 can be exposed to the compressive forces, as shown by arrows 144 .
- the compressive forces can be applied by a retractable sheath, clamps, other methods known to one having ordinary skill in the art, or combinations thereof.
- a deployment force shown by arrow 146 , can deploy the tensioner 58 into the arteriotomy 120 or 128 .
- the arteriotomy 120 or 128 can have an arteriotomy diameter 148 .
- the arteriotomy diameter 148 can be from about 0.5 mm (0.020 in.) to about 400 mm (15 in.), yet a narrower range from about 1.0 mm (0.040 in.) to about 10.2 mm (0.400 in.), for example about 2.54 mm (0.100 in.).
- the tensioner inter-leg outer diameter 78 can be smaller than the arteriotomy diameter 148 .
- the tensioner first and second shoulders 64 and 66 can be wide enough to interference fit with the arteriotomy 120 or 128 .
- the tensioner first and second shoulders 64 and 66 can dissipate force on the lumen wall surface 118 .
- the compressive forces can be removed from the tensioner 58 .
- the tensioner first and second leg 68 and 70 can expand, as shown by arrows.
- the tensioner 58 can force the arteriotomy 120 or 128 into a substantially or completely flat and/or closed and/or stretched configuration.
- the walls of the arteriotomy 120 or 128 can come into close contact.
- the arteriotomy 120 or 128 can have an arteriotomy width 150 and an arteriotomy height 152 .
- the arteriotomy width 150 can be about half the circumference of the arteriotomy 120 or 128 .
- the arteriotomy width 150 can be from about 1.0 mm (0.040 in.) to about 10.2 mm (0.400 in.), for example about 4.06 mm (0.160 in.).
- the arteriotomy height 152 can be about the tensioner leg diameter 76 .
- the arteriotomy height 152 can be less than about 0.51 mm (0.020 in.), more narrowly, less than about 0.38 mm (0.015 in.).
- the arteriotomy height 152 can be from about 0.25 mm (0.010 in.) to about 1.3 mm (0.050 in.), for example about 0.38 mm (0.015 in.).
- the arteriotomy height 152 can be small enough to enable cell growth, blood clotting, acoustic sealing, heat sealing, gluing, enhanced self-sealing and combinations thereof across the arteriotomy 120 or 128 .
- the tensioner first and second shoulders 64 and 66 can be wide enough to interference fit with the arteriotomy 120 or 128 .
- the tensioner first and second feet 72 and 74 can be wide enough to interference fit with the arteriotomy 120 or 128 .
- the tensioner first and second feet 72 and 74 can dissipate force on the lumen wall surface 118 .
- the arteriotomy 120 or 128 can be plugged, and/or packed, and/or tamponed before, and/or concurrent with, and/or after using any of any of the supplemental closure devices infra and/or supra, the self-sealing closure method, or combinations thereof.
- the plug, pack, tampon, or combinations thereof can be made from gelfoam, collagen, other implantable and biocompatible tampon materials known to those having ordinary skill in the art, or combinations thereof.
- FIGS. 37 through 40 illustrate deploying the pressure clip 84 to the arteriotomy 120 or 128 .
- FIG. 37 illustrates extending, and/or thinning, and/or straightening, and/or tensioning the pressure clip second end 96 .
- the pressure clip sheath 98 can be translated, as shown by arrow, along the pressure clip second leg 92 and onto the pressure clip second end 96 .
- the pressure clip 84 can be deployed to the arteriotomy after the pressure clip second end 96 is extended, and/or thinned, and/or straightened, and/or tensioned.
- the pressure clip second leg 92 can be rotated with respect to the pressure clip head 88 , so that the pressure clip second leg 92 and the pressure clip head 88 are substantially aligned.
- the pressure clip second leg 92 can be deployed, as shown by the arrow, through the first arteriotomy 120 .
- the pressure clip second leg 92 can be deployed through the lumen wall 116 (e.g., if there is no existing first arteriotomy 120 , if the first arteriotomy 120 is not suitably located with respect to the second arteriotomy 128 ).
- FIG. 39 illustrates contracting, and/or widening, and/or releasing and/or relaxing the pressure clip second end 96 .
- the pressure clip sheath 98 can be translated, as shown by arrow, along the pressure clip second leg 92 and off of the pressure clip second end 96 .
- the pressure clip second end 96 can be contracted, and/or widened, and/or released and/or relaxed after the pressure clip 84 is deployed to the arteriotomy.
- the pressure clip second leg 92 can be released or deformed so as to rotate with respect to the pressure clip head 88 .
- the pressure clip head 88 can seat in the first arteriotomy 120 .
- the pressure clip first and second legs 90 and 92 can apply force, as shown by arrows, to the first and second webs 140 and 142 , respectively.
- FIGS. 41 and 42 illustrate a method of deploying a stitch 154 surrounding and/or through the arteriotomy 120 or 128 .
- the stitch 154 can be tightened to apply additional pressure to the arteriotomy 120 or 128 .
- the stitch 154 can have a knot 156 , or other tying configuration or device, for example a pledget or clamp.
- FIGS. 43 and 44 illustrate a method of deploying the filament 106 adjacent to and/or through the arteriotomy 120 or 128 .
- the filament 106 can be attached to a first pledget 158 a by a first knot 156 a or other tying configuration or device.
- the filament 106 can be attached to a second pledget 158 b by a second knot 156 b or other tying configuration or device.
- the first and second pledgets 158 a and 158 b can be other pressure diffusers known to one having ordinary skill in the art, such as the toggles 100 described infra and supra.
- FIGS. 45 and 46 illustrate a toggle deployment device 159 that can be in a first retracted configuration.
- the toggle deployment device 159 can have a pressure check port 160 .
- the pressure check port 160 can be in fluid communication with a sensor or port on or near the handle (not shown) of the toggle deployment device 159 , such as an external lumen where blood flow can be observed, for example from flow from the end of an external tube or port and/or through a transparent or translucent window.
- the pressure check port 160 can facilitate deployment of the toggle deployment device 159 to a location where the pressure check port 160 is introduced to pressure, for example when the pressure check port 160 enters the biological lumen 114 .
- the sensor or port on or near the handle of the toggle deployment device 159 will signal that the pressure check port 160 has been placed into the biological lumen 114 (e.g., by displaying a small amount of blood flow).
- the pressure check port 160 can be deployed into the biological lumen 114 and then withdrawn from the biological lumen 114 to the point where the lumen wall 116 just stops the pressure in the pressure check port 160 .
- the entry wall retainer port 54 can additionally perform the function as described herein for the pressure check port 160 .
- the toggle deployment device 159 can have a delivery needle port 161 .
- FIGS. 47 and 48 illustrate the toggle deployment device 159 that can be in a second delivery configuration.
- a delivery needle 162 can be slidably attached to the toggle deployment device 159 .
- the delivery needle 162 can egress from the delivery needle port 161 when the toggle deployment device 159 is in the second delivery configuration.
- FIGS. 49 and 50 illustrate that the toggle deployment device 159 can be deployed into the arteriotomy 120 or 128 at a location where the pressure check port 160 can be located in the biological lumen 114 .
- the delivery needle port 161 can be in, or adjacent to, the lumen wall 116 .
- FIGS. 51 and 52 illustrate that the toggle deployment device 159 can be placed in the second delivery configuration.
- the delivery needle port is in, or adjacent to, the lumen wall 116 when the toggle deployment device 159 is placed in the second delivery configuration
- the delivery needle 162 can enter the lumen wall 116 .
- the delivery needle 162 can enter the second web 142 .
- the delivery needle 162 can exit the second web 142 and enter, as shown by arrows, the biological lumen 114 .
- FIG. 53 illustrates that a pusher 164 can be slidably attached to the delivery needle 162 .
- the delivery needle 162 can have a needle tip port 166 .
- the toggle 100 can be in the delivery needle 162 .
- the toggle 100 can be configured in the delivery needle 162 such that the toggle first end 102 can be located on the needle tip port 166 -side of the pusher 164 .
- FIG. 54 illustrates that the pusher 164 can be moved, as shown by arrow, toward the needle tip port 166 .
- the delivery needle 162 can be moved back relative to the pusher 164 , the pusher 164 can be moved forward relative to the delivery needle 162 , or combinations thereof.
- the pusher 164 can push the toggle first end 102 out of the delivery needle 162 .
- the pusher 164 can push the toggle first end 102 into the biological lumen 114 .
- FIGS. 55 and 56 illustrate that the toggle deployment device 159 can be in a first retracted configuration after deploying the toggle first end 102 into the biological lumen 114 .
- the toggle second end 104 can be in the toggle deployment device 159 .
- the filament 106 can extend though the delivery needle port 161 .
- FIGS. 57 and 58 illustrate that the toggle 100 can be deployed across the lumen wall.
- the toggle deployment device 159 When the toggle deployment device 159 is removed from the arteriotomy, the toggle second end 104 can deploy on the outside of the lumen wall 116 from the delivery needle port 161 .
- the toggle first end 102 can form an interference fit with the lumen wall surface 118 .
- the toggle second end 104 can form an interference fit with the outside of the lumen wall 116 or the surrounding tissue, such as subcutaneous tissue.
- the toggle second end 104 can be slidably translated along the filament 106 toward the lumen wall 116 , for example for the toggle 100 illustrated in FIG. 20 .
- the length of the filament 106 on the opposite side of toggle second end 104 from the toggle first end 102 can be cut, snapped, torn or otherwise removed.
- FIGS. 59 through 63 illustrate a method for deploying the toggle 100 .
- the delivery needle 162 can egress, as shown by arrow, from a toggle deployment delivery port 163 .
- the toggle deployment delivery port 163 can be in the delivery guide 4 .
- the delivery needle 162 can be advanced toward the lumen 114 .
- FIG. 60 illustrates that the delivery needle 162 can be deployed through the lumen wall.
- the delivery needle 162 When the delivery needle 162 is deployed through the lumen wall 116 , the delivery needle can intersect, or pass adjacent to, the second arteriotomy.
- FIGS. 61 and 62 illustrate that the pusher 164 can be advanced, as shown by arrow, through the delivery needle 162 .
- the toggle first end 102 can egress from the needle tip port 166 .
- the toggle first end 102 can deploy into the lumen 114 .
- FIG. 63 illustrates that the delivery needle 162 can be retracted into the delivery guide 4 and/or the filament 106 can be pulled taught, both shown by arrow.
- the toggle first end 102 can form an interference fit with the lumen wall surface 118 .
- the toggle second end 104 (not shown in FIG. 63 ) can be slidably translated on the filament 106 down to, and form an interference fit with, the outside of the lumen wall 116 .
- the length of the filament 106 on the opposite side of toggle second end 104 from the toggle first end 102 can be cut, snapped, tom or otherwise removed.
- FIG. 64 illustrates an introducer needle 165 that can have an end inserted, as shown by arrow, through the lumen wall 116 and into the lumen 114 , for example by using the Seldinger technique.
- the introducer needle 165 can be hollow and/or have a longitudinal channel.
- FIG. 65 illustrates that the guidewire 168 can be deployed, shown by arrows, through the hollow and/or longitudinal channel of the introducer needle 165 .
- FIG. 66 illustrates that the introducer needle 165 can be removed, as shown by arrow, from the lumen wall 116 .
- the guidewire 168 can remain substantially in place. After the introducer needle 165 is removed, a portion of the guidewire 168 can be outside the lumen 114 and another portion of the guidewire 168 can be inside the lumen 114 .
- FIG. 67 illustrates a method of fixedly or slidably attaching the guidewire 168 to the anchor 6 .
- a guidewire proximal end 170 can be placed in proximity to an anchor distal end 172 .
- the guidewire proximal end 170 can then be attached, as shown by arrows, to the anchor distal end 172 .
- the guidewire proximal end 170 can be attached to the anchor distal end 172 while some or all of the guidewire 168 is in the lumen 114 .
- the guidewire proximal end 170 can be configured to snap-fit, interference fit, slidably attach or combinations thereof, to the anchor 6 .
- the guidewire 168 can act as the anchor extension section 14 and/or the lumenal tool.
- FIG. 68 illustrates the guidewire 168 attached to the anchor 6 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Cardiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/844,247 US20050267520A1 (en) | 2004-05-12 | 2004-05-12 | Access and closure device and method |
CN200580023327.XA CN101431948B (zh) | 2004-05-12 | 2005-05-12 | 进入与封闭装置和方法 |
CN201410385081.1A CN104257410A (zh) | 2004-05-12 | 2005-05-12 | 进入与封闭装置和方法 |
CA002566743A CA2566743A1 (en) | 2004-05-12 | 2005-05-12 | Access and closure device and method |
EP14196344.7A EP2913008A1 (en) | 2004-05-12 | 2005-05-12 | Access and closure device and method |
EP12156932A EP2499976A3 (en) | 2004-05-12 | 2005-05-12 | Access and closure device and method |
AU2005244834A AU2005244834A1 (en) | 2004-05-12 | 2005-05-12 | Access and closure device and method |
PCT/US2005/016623 WO2005112791A2 (en) | 2004-05-12 | 2005-05-12 | Access and closure device and method |
JP2007513356A JP4871268B2 (ja) | 2004-05-12 | 2005-05-12 | 接近および閉鎖デバイスならびに方法 |
EP20080011884 EP1972282A3 (en) | 2004-05-12 | 2005-05-12 | Access and closure device and method |
EP05747814A EP1748735A4 (en) | 2004-05-12 | 2005-05-12 | ACCESS AND CLOSURE DEVICE AND METHOD |
US11/544,177 US7998169B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/545,272 US8002793B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,365 US8002792B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,149 US8012168B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,196 US8002791B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
IL179173A IL179173A (en) | 2004-05-12 | 2006-11-09 | Device for closing access door |
JP2008123950A JP2008253791A (ja) | 2004-05-12 | 2008-05-09 | 接近および閉鎖デバイスならびに方法 |
JP2010181964A JP2011005270A (ja) | 2004-05-12 | 2010-08-16 | 接近および閉鎖デバイスならびに方法 |
US13/332,899 US20120089166A1 (en) | 2004-05-12 | 2011-12-21 | Access and Closure Device and Method |
JP2012061872A JP2012130766A (ja) | 2004-05-12 | 2012-03-19 | 接近および閉鎖デバイスならびに方法 |
JP2013170128A JP2013255826A (ja) | 2004-05-12 | 2013-08-20 | 接近および閉鎖デバイスならびに方法 |
IL232275A IL232275A0 (en) | 2004-05-12 | 2014-04-28 | A device for closing an access opening |
US14/965,673 US20160095621A1 (en) | 2004-05-12 | 2015-12-10 | Access and closure device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/844,247 US20050267520A1 (en) | 2004-05-12 | 2004-05-12 | Access and closure device and method |
Related Child Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/544,365 Continuation US8002792B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,196 Continuation US8002791B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,149 Continuation US8012168B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/545,272 Continuation US8002793B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,177 Continuation US7998169B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US13/332,899 Continuation US20120089166A1 (en) | 2004-05-12 | 2011-12-21 | Access and Closure Device and Method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050267520A1 true US20050267520A1 (en) | 2005-12-01 |
Family
ID=35426402
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/844,247 Abandoned US20050267520A1 (en) | 2004-05-12 | 2004-05-12 | Access and closure device and method |
US11/544,196 Expired - Fee Related US8002791B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,177 Expired - Fee Related US7998169B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/545,272 Expired - Fee Related US8002793B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,365 Expired - Fee Related US8002792B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,149 Expired - Fee Related US8012168B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US13/332,899 Abandoned US20120089166A1 (en) | 2004-05-12 | 2011-12-21 | Access and Closure Device and Method |
US14/965,673 Abandoned US20160095621A1 (en) | 2004-05-12 | 2015-12-10 | Access and closure device and method |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/544,196 Expired - Fee Related US8002791B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,177 Expired - Fee Related US7998169B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/545,272 Expired - Fee Related US8002793B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,365 Expired - Fee Related US8002792B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US11/544,149 Expired - Fee Related US8012168B2 (en) | 2004-05-12 | 2006-10-06 | Access and closure device and method |
US13/332,899 Abandoned US20120089166A1 (en) | 2004-05-12 | 2011-12-21 | Access and Closure Device and Method |
US14/965,673 Abandoned US20160095621A1 (en) | 2004-05-12 | 2015-12-10 | Access and closure device and method |
Country Status (8)
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060270989A1 (en) * | 2005-05-27 | 2006-11-30 | Mcmichael Donald J | Gastric fastening system |
US20060270993A1 (en) * | 2005-05-27 | 2006-11-30 | Mcmichael Donald J | Clamp for flexible tube |
US20080121553A1 (en) * | 2006-08-28 | 2008-05-29 | Fred Gobel | Percutaneous gastrointestinal anchoring kit |
WO2008026121A3 (en) * | 2006-08-28 | 2008-06-26 | Kimberly Clark Co | A tissue to tissue anchoring device and method of using the same |
WO2008027366A3 (en) * | 2006-08-28 | 2008-08-07 | Vascular Prec | Devices and methods for creating and closing controlled openings in tissue |
US20100016810A1 (en) * | 2008-07-21 | 2010-01-21 | Arstasis. Inc., | Devices and methods for forming tracts in tissue |
US20100016786A1 (en) * | 2008-07-21 | 2010-01-21 | Arstasis, Inc. | Devices, methods, and kits for forming tracts in tissue |
US7678133B2 (en) | 2004-07-10 | 2010-03-16 | Arstasis, Inc. | Biological tissue closure device and method |
US20100152772A1 (en) * | 2005-04-29 | 2010-06-17 | Gerard Brett | Interventional medical closure device |
WO2011038026A1 (en) * | 2009-09-22 | 2011-03-31 | Arstasis, Inc. | Devices, methods, and kits for forming tracts in tissue |
US20110118759A1 (en) * | 2008-07-07 | 2011-05-19 | X-Seal Technologies Ltd. | Tissue access site system and method |
WO2011085401A1 (en) | 2010-01-11 | 2011-07-14 | Arstasis, Inc. | Device for forming tracts in tissue |
US7998169B2 (en) | 2004-05-12 | 2011-08-16 | Arstasis, Inc. | Access and closure device and method |
US8002794B2 (en) | 2005-05-12 | 2011-08-23 | Arstasis, Inc. | Access and closure device and method |
US20120053609A1 (en) * | 2007-10-17 | 2012-03-01 | Arstasis, Inc. | Methods for forming tracts in tissue |
CN102405022A (zh) * | 2009-03-14 | 2012-04-04 | 瓦索斯蒂奇股份有限公司 | 血管进入和闭合装置 |
US8574245B2 (en) | 2008-08-13 | 2013-11-05 | Silk Road Medical, Inc. | Suture delivery device |
US20140039546A1 (en) * | 2012-08-01 | 2014-02-06 | Arstasis Inc. | Access closure configuration |
WO2014022509A1 (en) | 2012-08-01 | 2014-02-06 | Arstasis, Inc. | Access closure configuration |
US8858490B2 (en) | 2007-07-18 | 2014-10-14 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US20140350465A1 (en) * | 2004-04-21 | 2014-11-27 | Acclarent, Inc. | Devices and Methods for Delivering Therapeutic Substances for the Treatment of Sinusitis and Other Disorders |
US20140364899A1 (en) * | 2013-06-11 | 2014-12-11 | ProMed, Inc. | Systems and methods for improved vessel access closure |
US9011467B2 (en) | 2008-08-13 | 2015-04-21 | Silk Road Medical, Inc. | Suture delivery device |
US9060751B2 (en) | 2010-12-30 | 2015-06-23 | Vivasure Medical Limited | Surgical closure systems and methods |
US9277915B2 (en) | 2010-06-26 | 2016-03-08 | Vasostitch, Inc. | Method and apparatus for transapical access and closure |
US9358002B2 (en) | 2008-04-01 | 2016-06-07 | Covidien Lp | Anchoring device |
US9572558B2 (en) | 2012-02-29 | 2017-02-21 | Vivasure Medical Limited | Devices and methods for delivering implants for percutaneous perforation closure |
US9610070B2 (en) | 2007-06-15 | 2017-04-04 | Vivasure Medical Limited | Closure device |
WO2017114837A1 (en) * | 2015-12-28 | 2017-07-06 | Koninklijke Philips N.V. | Elongated interventional device for optical shape sensing |
US9850013B2 (en) | 2013-03-15 | 2017-12-26 | Vivasure Medical Limited | Loading devices and methods for percutaneous perforation closure systems |
US10159479B2 (en) | 2012-08-09 | 2018-12-25 | Silk Road Medical, Inc. | Suture delivery device |
US10182801B2 (en) | 2014-05-16 | 2019-01-22 | Silk Road Medical, Inc. | Vessel access and closure assist system and method |
US10206668B2 (en) | 2014-12-15 | 2019-02-19 | Vivasure Medical Limited | Implantable sealable member with mesh layer |
US10376261B2 (en) | 2008-04-01 | 2019-08-13 | Covidien Lp | Anchoring suture |
US10433826B2 (en) | 2014-12-15 | 2019-10-08 | Vivasure Medical Limited | Closure apparatus with flexible sealable member and flexible support member |
US10441753B2 (en) | 2012-05-25 | 2019-10-15 | Arstasis, Inc. | Vascular access configuration |
US10675447B2 (en) | 2012-05-25 | 2020-06-09 | Arstasis, Inc. | Vascular access configuration |
US11311280B2 (en) | 2015-12-15 | 2022-04-26 | Vivasure Medical Limited | Arteriotomy closure apparatus with slotted shoe for advantageous pressure distribution |
US11357486B2 (en) | 2009-12-30 | 2022-06-14 | Vivasure Medical Limited | Closure system and uses thereof |
WO2024035669A1 (en) * | 2022-08-09 | 2024-02-15 | Boston Scientific Scimed, Inc. | Tissue traction devices, systems |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050251178A1 (en) * | 2004-05-03 | 2005-11-10 | Tirabassi Michael V | Hooked rod delivery system for use in minimally invasive surgery |
US20100168767A1 (en) * | 2008-06-30 | 2010-07-01 | Cardiva Medical, Inc. | Apparatus and methods for delivering hemostatic materials for blood vessel closure |
US8911472B2 (en) | 2005-12-13 | 2014-12-16 | Cardiva Medical, Inc. | Apparatus and methods for delivering hemostatic materials for blood vessel closure |
CA2761677A1 (en) * | 2009-05-15 | 2010-11-18 | Arstasis, Inc. | Devices, methods and kits for forming tracts in tissue |
WO2012170597A1 (en) | 2011-06-07 | 2012-12-13 | St. Jude Medical Puerto Rico Llc | Large bore closure device and methods |
US20130060279A1 (en) | 2011-09-02 | 2013-03-07 | Cardiva Medical, Inc. | Catheter with sealed hydratable hemostatic occlusion element |
WO2013074490A1 (en) | 2011-11-16 | 2013-05-23 | St. Jude Medical Puerto Rico Llc | Large bore vascular closure device with inner and outer seals |
WO2013074488A1 (en) | 2011-11-16 | 2013-05-23 | St. Jude Medical Puerto Rico Llc | Vascular closure system |
WO2013081905A1 (en) | 2011-11-28 | 2013-06-06 | St. Jude Medical Puerto Rico Llc | Anchor device for large bore vascular closure |
JP6164698B2 (ja) * | 2011-12-07 | 2017-07-19 | リサーチ メディカル プロプライエタリー リミテッドResearch Medical Pty Ltd | 外科用トロカール |
US9358077B2 (en) | 2012-03-14 | 2016-06-07 | St. Jude Medical Puerto Rico Llc | Markers for tissue tract depth indication and methods |
US9655606B2 (en) | 2012-08-03 | 2017-05-23 | St. Jude Medical Puerto Rico Llc | Large bore introducer with improved seal |
US10016200B2 (en) | 2012-08-24 | 2018-07-10 | St. Jude Medical Puerto Rico Llc | Balloon bailout and bioadhesive delivery device for suture based closure and methods |
US9554785B2 (en) | 2012-12-21 | 2017-01-31 | Essential Medical, Inc. | Vascular locating systems and methods of use |
US10136885B2 (en) | 2013-03-11 | 2018-11-27 | St. Jude Medical Puerto Rico Llc | Three suture large bore closure device and methods |
US9055933B2 (en) | 2013-03-12 | 2015-06-16 | St. Jude Medical Puerto Rico Llc | Large bore closure secondary hemostasis bioadhesive delivery systems and methods |
US10531868B2 (en) | 2017-12-01 | 2020-01-14 | Cardiva Medical, Inc. | Apparatus and methods for accessing and closing multiple penetrations on a blood vessel |
US11832818B2 (en) * | 2018-01-04 | 2023-12-05 | Seger Surgical Solutions Ltd. | Tissue alignment for surgical closure |
EP4401641A1 (en) * | 2021-09-17 | 2024-07-24 | Teleflex Life Sciences LLC | Depth gauge system |
Citations (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727614A (en) * | 1971-05-13 | 1973-04-17 | Merck & Co Inc | Multiple dosage inoculator |
US4006747A (en) * | 1975-04-23 | 1977-02-08 | Ethicon, Inc. | Surgical method |
US4890611A (en) * | 1988-04-05 | 1990-01-02 | Thomas J. Fogarty | Endarterectomy apparatus and method |
US5183464A (en) * | 1991-05-17 | 1993-02-02 | Interventional Thermodynamics, Inc. | Radially expandable dilator |
US5304184A (en) * | 1992-10-19 | 1994-04-19 | Indiana University Foundation | Apparatus and method for positive closure of an internal tissue membrane opening |
US5380290A (en) * | 1992-04-16 | 1995-01-10 | Pfizer Hospital Products Group, Inc. | Body access device |
US5383897A (en) * | 1992-10-19 | 1995-01-24 | Shadyside Hospital | Method and apparatus for closing blood vessel punctures |
US5391183A (en) * | 1990-09-21 | 1995-02-21 | Datascope Investment Corp | Device and method sealing puncture wounds |
US5391182A (en) * | 1993-08-03 | 1995-02-21 | Origin Medsystems, Inc. | Apparatus and method for closing puncture wounds |
US5403329A (en) * | 1992-09-23 | 1995-04-04 | United States Surgical Corporation | Instrument for closing trocar puncture wounds |
US5489288A (en) * | 1992-10-09 | 1996-02-06 | Advanced Surgical, Inc. | Device and method for applying large-diameter ligating loop |
US5496334A (en) * | 1993-03-31 | 1996-03-05 | J. Stro/ bel & Sohne GmbH & Co. | Suturing apparatus |
US5496332A (en) * | 1994-10-20 | 1996-03-05 | Cordis Corporation | Wound closure apparatus and method for its use |
US5503634A (en) * | 1993-04-28 | 1996-04-02 | Christy; William J. | Surgical stab wound closure device and method |
US5507744A (en) * | 1992-04-23 | 1996-04-16 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US5613974A (en) * | 1992-12-10 | 1997-03-25 | Perclose, Inc. | Apparatus and method for vascular closure |
US5620461A (en) * | 1989-05-29 | 1997-04-15 | Muijs Van De Moer; Wouter M. | Sealing device |
US5622188A (en) * | 1989-08-18 | 1997-04-22 | Endovascular Instruments, Inc. | Method of restoring reduced or absent blood flow capacity in an artery |
US5709224A (en) * | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US5860990A (en) * | 1995-08-24 | 1999-01-19 | Nr Medical, Inc. | Method and apparatus for suturing |
US5868762A (en) * | 1997-09-25 | 1999-02-09 | Sub-Q, Inc. | Percutaneous hemostatic suturing device and method |
US5882302A (en) * | 1992-02-21 | 1999-03-16 | Ths International, Inc. | Methods and devices for providing acoustic hemostasis |
US6010514A (en) * | 1998-03-17 | 2000-01-04 | Burney; Bryan T. | Suturing assembly and method of use |
US6033401A (en) * | 1997-03-12 | 2000-03-07 | Advanced Closure Systems, Inc. | Vascular sealing device with microwave antenna |
US6036721A (en) * | 1996-11-16 | 2000-03-14 | Cap Incorporated | Puncture closure |
US6036699A (en) * | 1992-12-10 | 2000-03-14 | Perclose, Inc. | Device and method for suturing tissue |
US6042601A (en) * | 1998-03-18 | 2000-03-28 | United States Surgical Corporation | Apparatus for vascular hole closure |
US6171317B1 (en) * | 1999-09-14 | 2001-01-09 | Perclose, Inc. | Knot tying device and method |
US6179832B1 (en) * | 1997-09-11 | 2001-01-30 | Vnus Medical Technologies, Inc. | Expandable catheter having two sets of electrodes |
US6190396B1 (en) * | 1999-09-14 | 2001-02-20 | Perclose, Inc. | Device and method for deploying and organizing sutures for anastomotic and other attachments |
US6197042B1 (en) * | 2000-01-05 | 2001-03-06 | Medical Technology Group, Inc. | Vascular sheath with puncture site closure apparatus and methods of use |
US6203554B1 (en) * | 1999-11-23 | 2001-03-20 | William Roberts | Apparatus, kit and methods for puncture site closure |
US6206895B1 (en) * | 1999-07-13 | 2001-03-27 | Scion Cardio-Vascular, Inc. | Suture with toggle and delivery system |
US6206893B1 (en) * | 1993-11-08 | 2001-03-27 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
US6358556B1 (en) * | 1995-04-19 | 2002-03-19 | Boston Scientific Corporation | Drug release stent coating |
US6358244B1 (en) * | 1996-07-12 | 2002-03-19 | Endo Surgical Devices, Inc. | Endarterectomy surgical instrument and procedure |
US6371975B2 (en) * | 1998-11-06 | 2002-04-16 | Neomend, Inc. | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers |
US6506210B1 (en) * | 2000-09-01 | 2003-01-14 | Angiolink Corporation | Wound site management and wound closure device |
US6524321B2 (en) * | 2001-01-03 | 2003-02-25 | Nozomu Kanesaka | Closure device for puncture in vessel |
US6524326B1 (en) * | 1995-12-07 | 2003-02-25 | Loma Linda University Medical Center | Tissue opening locator and everter and method |
US6533795B1 (en) * | 2000-04-11 | 2003-03-18 | Opus Medical, Inc | Dual function suturing apparatus and method |
US6682489B2 (en) * | 2001-01-12 | 2004-01-27 | Radi Medical Systems Ab | Technique to confirm correct positioning of arterial wall sealing device |
US6689152B2 (en) * | 1998-09-09 | 2004-02-10 | Edwards Lifesciences Corp. | Introducer/dilator with balloon protection and methods of use |
US20040044350A1 (en) * | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
US20040068242A1 (en) * | 1998-12-09 | 2004-04-08 | Mcguckin James F. | Hollow curved superelastic medical needle and method |
US6719750B2 (en) * | 2000-08-30 | 2004-04-13 | The Johns Hopkins University | Devices for intraocular drug delivery |
US6719694B2 (en) * | 1999-12-23 | 2004-04-13 | Therus Corporation | Ultrasound transducers for imaging and therapy |
US6840952B2 (en) * | 2000-12-07 | 2005-01-11 | Mark B. Saker | Tissue tract sealing device |
US6843792B2 (en) * | 1998-11-17 | 2005-01-18 | Scimed Life Systems, Inc. | Device for controlled endoscopic penetration of injection needle |
US6846321B2 (en) * | 2000-06-21 | 2005-01-25 | Cardiodex, Ltd. | Mechanical method and apparatus for enhancing hemostatis following arterial catheterization |
US6846319B2 (en) * | 2000-12-14 | 2005-01-25 | Core Medical, Inc. | Devices for sealing openings through tissue and apparatus and methods for delivering them |
US6846320B2 (en) * | 1998-05-01 | 2005-01-25 | Sub-Q, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US20050033361A1 (en) * | 2003-06-16 | 2005-02-10 | Galdonik Jason A. | Temporary hemostatic plug apparatus and method of use |
US6860895B1 (en) * | 1999-06-18 | 2005-03-01 | Radi Medical Systems Ab | Tool, a sealing device, a system and a method for closing a wound |
US20050049634A1 (en) * | 2003-08-07 | 2005-03-03 | Scimed Life Systems, Inc. | Medical closure device |
US6863680B2 (en) * | 2001-11-08 | 2005-03-08 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20050065852A1 (en) * | 2001-11-19 | 2005-03-24 | Wolfgang Bross | Methods, software modules and software application for logging transaction-tax-related transactions |
US20050065853A1 (en) * | 2003-09-18 | 2005-03-24 | Philip Ferreira | Reverse auction system and method |
US20050075653A1 (en) * | 1999-06-25 | 2005-04-07 | Usgi Medical Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US6881983B2 (en) * | 2002-02-25 | 2005-04-19 | Kopin Corporation | Efficient light emitting diodes and lasers |
US20050085856A1 (en) * | 2003-10-17 | 2005-04-21 | Ensure Medical, Inc. | Locator and delivery device and method of use |
US20050085773A1 (en) * | 2003-10-15 | 2005-04-21 | Forsberg Andrew T. | Method and apparatus for locating vascular punctures |
US20050090860A1 (en) * | 2003-10-23 | 2005-04-28 | Paprocki Loran J. | Segmented plug for tissue tracts |
US20060009802A1 (en) * | 2004-07-10 | 2006-01-12 | Modesitt D B | Biological tissue closure device and method |
US6994686B2 (en) * | 1998-08-26 | 2006-02-07 | Neomend, Inc. | Systems for applying cross-linked mechanical barriers |
US20060036218A1 (en) * | 2002-09-20 | 2006-02-16 | Flowmedica, Inc. | Method and apparatus for selective material delivery via an intra-renal catheter |
US7001400B1 (en) * | 1999-03-04 | 2006-02-21 | Abbott Laboratories | Articulating suturing device and method |
US7008442B2 (en) * | 2003-01-20 | 2006-03-07 | Medtronic Vascular, Inc. | Vascular sealant delivery device and sheath introducer and method |
US7008440B2 (en) * | 2001-11-08 | 2006-03-07 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20060064101A1 (en) * | 2004-02-12 | 2006-03-23 | Arthrocare Corporation | Bone access system |
US20060064159A1 (en) * | 2003-10-08 | 2006-03-23 | Porter Christopher H | Device and method for vascular access |
US20060069396A1 (en) * | 2004-09-20 | 2006-03-30 | Suturtek Incorporated | Apparatus and method for minimally invasive suturing |
US7025776B1 (en) * | 2001-04-24 | 2006-04-11 | Advanced Catheter Engineering, Inc. | Arteriotomy closure devices and techniques |
US20060079914A1 (en) * | 1999-03-04 | 2006-04-13 | Modesitt D B | Articulating suturing device and method |
US7029489B1 (en) * | 2001-05-18 | 2006-04-18 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site |
US20070027455A1 (en) * | 2004-05-12 | 2007-02-01 | Modesitt D B | Access and closure device and method |
US7175646B2 (en) * | 1995-09-15 | 2007-02-13 | Boston Scientific Scimed, Inc. | Apparatus and method for percutaneous sealing of blood vessel punctures |
US7179270B2 (en) * | 1995-10-13 | 2007-02-20 | Medtronic Vascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
US7182763B2 (en) * | 2004-11-23 | 2007-02-27 | Instrasurgical, Llc | Wound closure device |
US7186251B2 (en) * | 2003-03-27 | 2007-03-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US7316704B2 (en) * | 2003-06-04 | 2008-01-08 | Accessclosure, Inc. | Occlusion member and tensioner apparatus and methods of their use for sealing a vascular puncture |
US7322976B2 (en) * | 2003-03-04 | 2008-01-29 | Cardiva Medical, Inc. | Apparatus and methods for closing vascular penetrations |
US7335220B2 (en) * | 2004-11-05 | 2008-02-26 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
US7361180B2 (en) * | 2004-05-07 | 2008-04-22 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US20080097347A1 (en) * | 2006-09-22 | 2008-04-24 | Babak Arvanaghi | Bendable needle assembly |
US7494460B2 (en) * | 2002-08-21 | 2009-02-24 | Medtronic, Inc. | Methods and apparatus providing suction-assisted tissue engagement through a minimally invasive incision |
US7648517B2 (en) * | 1995-10-13 | 2010-01-19 | Medtronic Vascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
US7662128B2 (en) * | 2002-12-23 | 2010-02-16 | Salcudean Septimiu E | Steerable needle |
US20100063375A1 (en) * | 2007-01-22 | 2010-03-11 | Kassab Ghassan S | Devices, systems and methods for epicardial cardiac monitoring system |
US7867249B2 (en) * | 2003-01-30 | 2011-01-11 | Integrated Vascular Systems, Inc. | Clip applier and methods of use |
US7875052B2 (en) * | 2004-12-17 | 2011-01-25 | Terumo Kabushiki Kaisha | Tissue closure and tissue closing device |
Family Cites Families (162)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2857925A (en) | 1954-10-01 | 1958-10-28 | Higginbotham Richard Stopford | Ground gripping ferrule for use on walking sticks, crutches and the like |
US3730185A (en) | 1971-10-29 | 1973-05-01 | Cook Inc | Endarterectomy apparatus |
US4774949A (en) | 1983-06-14 | 1988-10-04 | Fogarty Thomas J | Deflector guiding catheter |
US4744949A (en) * | 1986-03-26 | 1988-05-17 | Nalco Chemical Company | Method for preventing corrosion in aqueous systems |
US4744364A (en) * | 1987-02-17 | 1988-05-17 | Intravascular Surgical Instruments, Inc. | Device for sealing percutaneous puncture in a vessel |
US4850960A (en) * | 1987-07-08 | 1989-07-25 | Joseph Grayzel | Diagonally tapered, bevelled tip introducing catheter and sheath and method for insertion |
US4921484A (en) * | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
US4955897A (en) | 1988-08-22 | 1990-09-11 | Ship Arthur G | Tissue forceps |
US4962755A (en) * | 1989-07-21 | 1990-10-16 | Heart Tech Of Minnesota, Inc. | Method for performing endarterectomy |
US5571169A (en) | 1993-06-07 | 1996-11-05 | Endovascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
NL9000487A (nl) | 1990-03-01 | 1991-10-01 | Advanced Protective Injection | Beveiligingssamenstel voor een injectiespuit. |
US5358507A (en) | 1991-07-26 | 1994-10-25 | Pat O. Daily | Thromboendarterectomy suction dissector |
US6818008B1 (en) | 1992-01-07 | 2004-11-16 | Cch Associates, Inc. | Percutaneous puncture sealing method |
US5271415A (en) * | 1992-01-28 | 1993-12-21 | Baxter International Inc. | Guidewire extension system |
WO1993016641A1 (en) | 1992-02-21 | 1993-09-02 | Diasonics, Inc. | Ultrasound intracavity system for imaging therapy planning and treatment of focal disease |
US6063085A (en) | 1992-04-23 | 2000-05-16 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US5810810A (en) * | 1992-04-23 | 1998-09-22 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US5368601A (en) | 1992-04-30 | 1994-11-29 | Lasersurge, Inc. | Trocar wound closure device |
US6398782B1 (en) | 1992-10-13 | 2002-06-04 | Edwards Lifesciences Corporation | Bipolar vascular sealing apparatus and methods |
US5415657A (en) * | 1992-10-13 | 1995-05-16 | Taymor-Luria; Howard | Percutaneous vascular sealing method |
US5336221A (en) * | 1992-10-14 | 1994-08-09 | Premier Laser Systems, Inc. | Method and apparatus for applying thermal energy to tissue using a clamp |
US5364389A (en) | 1992-11-25 | 1994-11-15 | Premier Laser Systems, Inc. | Method and apparatus for sealing and/or grasping luminal tissue |
US5467786A (en) | 1992-12-10 | 1995-11-21 | William C. Allen | Method for repairing tears and incisions in soft tissue |
US5527321A (en) | 1993-07-14 | 1996-06-18 | United States Surgical Corporation | Instrument for closing trocar puncture wounds |
US5462561A (en) | 1993-08-05 | 1995-10-31 | Voda; Jan K. | Suture device |
JPH0788114A (ja) * | 1993-09-22 | 1995-04-04 | Igaki Iryo Sekkei:Kk | 穿刺部位閉塞材 |
US5470338A (en) | 1993-10-08 | 1995-11-28 | United States Surgical Corporation | Instrument for closing trocar puncture wounds |
US5474568A (en) | 1993-10-08 | 1995-12-12 | United States Surgical Corporation | Instrument for closing trocar puncture wounds |
US5437665A (en) | 1993-10-12 | 1995-08-01 | Munro; Malcolm G. | Electrosurgical loop electrode instrument for laparoscopic surgery |
US5385507A (en) * | 1993-11-04 | 1995-01-31 | Martin Engineering Company | Twist tensioner with selectively engageable coupling |
US5439469A (en) | 1993-11-05 | 1995-08-08 | Advanced Surgical, Inc. | Wound closure device |
US5476470A (en) | 1994-04-15 | 1995-12-19 | Fitzgibbons, Jr.; Robert J. | Trocar site suturing device |
WO1995032671A1 (en) | 1994-06-01 | 1995-12-07 | Perclose, Inc. | Method and device for providing vascular hemostasis |
WO1995032669A1 (en) | 1994-06-01 | 1995-12-07 | Perclose, Inc. | Apparatus and method for advancing surgical knots |
US6302898B1 (en) * | 1994-06-24 | 2001-10-16 | Advanced Closure Systems, Inc. | Devices for sealing punctures in body vessels |
US5536255A (en) | 1994-10-03 | 1996-07-16 | Moss; Gerald | Dilator/introducer apparatus for percutaneous gastrostomy |
US5451230A (en) | 1994-10-11 | 1995-09-19 | Steinert; Roger F. | Cataract disassembly |
US5695504A (en) * | 1995-02-24 | 1997-12-09 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
DE69622969T2 (de) | 1995-06-07 | 2003-04-24 | Medtronic, Inc. | Wundverschlussvorrichtung |
US6132438A (en) | 1995-06-07 | 2000-10-17 | Ep Technologies, Inc. | Devices for installing stasis reducing means in body tissue |
US5902311A (en) * | 1995-06-15 | 1999-05-11 | Perclose, Inc. | Low profile intraluminal suturing device and method |
US5846253A (en) | 1995-07-14 | 1998-12-08 | C. R. Bard, Inc. | Wound closure apparatus and method |
US5700273A (en) | 1995-07-14 | 1997-12-23 | C.R. Bard, Inc. | Wound closure apparatus and method |
US6117144A (en) | 1995-08-24 | 2000-09-12 | Sutura, Inc. | Suturing device and method for sealing an opening in a blood vessel or other biological structure |
US5653717A (en) | 1995-08-28 | 1997-08-05 | Urohealth Systems, Inc. | Wound closure device |
US5645566A (en) | 1995-09-15 | 1997-07-08 | Sub Q Inc. | Apparatus and method for percutaneous sealing of blood vessel punctures |
US5772673A (en) | 1996-03-07 | 1998-06-30 | United States Surgical Corporation | Apparatus for applying surgical clips |
US6152918A (en) | 1996-04-05 | 2000-11-28 | Eclipse Surgical Technologies, Inc. | Laser device with auto-piercing tip for myocardial revascularization procedures |
US6468228B1 (en) | 1996-06-18 | 2002-10-22 | Vance Products Incorporated | Surgical tissue morcellator |
US5766183A (en) | 1996-10-21 | 1998-06-16 | Lasersurge, Inc. | Vascular hole closure |
US5782861A (en) * | 1996-12-23 | 1998-07-21 | Sub Q Inc. | Percutaneous hemostasis device |
US6475182B1 (en) | 1997-03-12 | 2002-11-05 | Olexander Hnojewyj | Fluidic media introduction apparatus |
US6733515B1 (en) | 1997-03-12 | 2004-05-11 | Neomend, Inc. | Universal introducer |
IL132195A0 (en) | 1997-04-11 | 2001-03-19 | Transvascular Inc | Method and apparatus for transmyocardial direct coronary revascularization |
US5830232A (en) | 1997-04-14 | 1998-11-03 | Hasson; Harrith M. | Device for closing an opening in tissue and method of closing a tissue opening using the device |
US5984948A (en) | 1997-04-14 | 1999-11-16 | Hasson; Harrith M. | Device for closing an opening in tissue and method of closing a tissue opening using the device |
US5941897A (en) | 1997-05-09 | 1999-08-24 | Myers; Gene E. | Energy activated fibrin plug |
US6071292A (en) | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
EP0895753A1 (en) | 1997-07-31 | 1999-02-10 | Academisch Ziekenhuis Utrecht | Temporary vascular seal for anastomosis |
US5954732A (en) | 1997-09-10 | 1999-09-21 | Hart; Charles C. | Suturing apparatus and method |
US6258084B1 (en) | 1997-09-11 | 2001-07-10 | Vnus Medical Technologies, Inc. | Method for applying energy to biological tissue including the use of tumescent tissue compression |
US5972013A (en) | 1997-09-19 | 1999-10-26 | Comedicus Incorporated | Direct pericardial access device with deflecting mechanism and method |
US6139556A (en) | 1997-10-29 | 2000-10-31 | X-Site, L.L.C. | Device and method for suturing blood vessels and the like |
US6159232A (en) | 1997-12-16 | 2000-12-12 | Closys Corporation | Clotting cascade initiating apparatus and methods of use and methods of closing wounds |
US5972005A (en) | 1998-02-17 | 1999-10-26 | Advanced Cardiovascular Systems, Ind. | Wound closure assembly and method of use |
US5980539A (en) * | 1998-05-06 | 1999-11-09 | X-Site L.L.C. | Device and method for suturing blood vessels and the like |
US6936053B1 (en) | 1998-07-02 | 2005-08-30 | Jeffrey N. Weiss | Ocular implant needle |
US6080175A (en) | 1998-07-29 | 2000-06-27 | Corvascular, Inc. | Surgical cutting instrument and method of use |
US6143004A (en) | 1998-08-18 | 2000-11-07 | Atrion Medical Products, Inc. | Suturing device |
US6458147B1 (en) | 1998-11-06 | 2002-10-01 | Neomend, Inc. | Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue |
ATE322230T1 (de) | 1998-09-10 | 2006-04-15 | Percardia Inc | Tmr vorrichtung |
US6949114B2 (en) | 1998-11-06 | 2005-09-27 | Neomend, Inc. | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US7279001B2 (en) | 1998-11-06 | 2007-10-09 | Neomend, Inc. | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US6248124B1 (en) * | 1999-02-22 | 2001-06-19 | Tyco Healthcare Group | Arterial hole closure apparatus |
US7235087B2 (en) | 1999-03-04 | 2007-06-26 | Abbott Park | Articulating suturing device and method |
US6136010A (en) * | 1999-03-04 | 2000-10-24 | Perclose, Inc. | Articulating suturing device and method |
US20040092964A1 (en) | 1999-03-04 | 2004-05-13 | Modesitt D. Bruce | Articulating suturing device and method |
US6139560A (en) | 1999-03-16 | 2000-10-31 | Kremer; Frederic B. | Cutting device and method for making controlled surgical incisions |
US6981983B1 (en) | 1999-03-31 | 2006-01-03 | Rosenblatt Peter L | System and methods for soft tissue reconstruction |
US6146397A (en) | 1999-04-06 | 2000-11-14 | Harkrider, Jr.; William W. | Endarterectomy loop |
US7666204B2 (en) * | 1999-04-09 | 2010-02-23 | Evalve, Inc. | Multi-catheter steerable guiding system and methods of use |
US6565583B1 (en) | 1999-07-08 | 2003-05-20 | Acumen Vascular, Inc. | Endarterectomy apparatus and method |
US7341595B2 (en) | 1999-09-13 | 2008-03-11 | Rex Medical, L.P | Vascular hole closure device |
EP1211983B1 (en) | 1999-09-13 | 2007-03-07 | Rex Medical, LP | Vascular closure |
AU2619301A (en) | 1999-10-25 | 2001-06-06 | Therus Corporation | Use of focused ultrasound for vascular sealing |
AU1464401A (en) | 1999-11-05 | 2001-06-06 | Onux Medical, Inc. | Apparatus and method for approximating and closing the walls of a hole or puncture in a physiological shell structure |
US6641592B1 (en) * | 1999-11-19 | 2003-11-04 | Lsi Solutions, Inc. | System for wound closure |
US6626855B1 (en) | 1999-11-26 | 2003-09-30 | Therus Corpoation | Controlled high efficiency lesion formation using high intensity ultrasound |
US6942674B2 (en) | 2000-01-05 | 2005-09-13 | Integrated Vascular Systems, Inc. | Apparatus and methods for delivering a closure device |
US6780197B2 (en) | 2000-01-05 | 2004-08-24 | Integrated Vascular Systems, Inc. | Apparatus and methods for delivering a vascular closure device to a body lumen |
US7077848B1 (en) | 2000-03-11 | 2006-07-18 | John Hopkins University | Sutureless occular surgical methods and instruments for use in such methods |
US6802822B1 (en) | 2000-03-31 | 2004-10-12 | 3M Innovative Properties Company | Dispenser for an adhesive tissue sealant having a flexible link |
US7083628B2 (en) * | 2002-09-03 | 2006-08-01 | Edwards Lifesciences Corporation | Single catheter mitral valve repair device and method for use |
US20040215233A1 (en) * | 2000-06-16 | 2004-10-28 | Magenta Medical Corporation | Methods and apparatus for forming anastomotic sites |
WO2002005865A2 (en) | 2000-07-14 | 2002-01-24 | Sub-Q, Inc. | Sheath-mounted arterial plug delivery device |
US6890342B2 (en) | 2000-08-02 | 2005-05-10 | Loma Linda University | Method and apparatus for closing vascular puncture using hemostatic material |
US20040093024A1 (en) | 2000-09-01 | 2004-05-13 | James Lousararian | Advanced wound site management systems and methods |
US6767356B2 (en) | 2000-09-01 | 2004-07-27 | Angiolink Corporation | Advanced wound site management systems and methods |
US7074232B2 (en) | 2000-09-01 | 2006-07-11 | Medtronic Angiolink, Inc. | Advanced wound site management systems and methods |
US7029481B1 (en) | 2000-11-06 | 2006-04-18 | Abbott Laboratories | Systems, devices and methods for suturing patient tissue |
WO2002043569A2 (en) | 2000-11-28 | 2002-06-06 | Intuitive Surgical, Inc. | Endoscopic beating-heart stabilizer and vessel occlusion fastener |
US6623510B2 (en) | 2000-12-07 | 2003-09-23 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
US6896692B2 (en) | 2000-12-14 | 2005-05-24 | Ensure Medical, Inc. | Plug with collet and apparatus and method for delivering such plugs |
US6890343B2 (en) | 2000-12-14 | 2005-05-10 | Ensure Medical, Inc. | Plug with detachable guidewire element and methods for use |
US6969397B2 (en) | 2000-12-14 | 2005-11-29 | Ensure Medical, Inc. | Guide wire element for positioning vascular closure devices and methods for use |
CN1503951A (zh) | 2001-01-09 | 2004-06-09 | 托普科德公司 | 用于编码竞赛的系统和方法 |
US7041119B2 (en) | 2001-02-27 | 2006-05-09 | Green David T | Apparatus for suturing a blood vessel |
US6454777B1 (en) | 2001-02-27 | 2002-09-24 | David T. Green | Apparatus and method for suturing a blood vessel |
US6743195B2 (en) | 2001-03-14 | 2004-06-01 | Cardiodex | Balloon method and apparatus for vascular closure following arterial catheterization |
FR2824253B1 (fr) | 2001-05-04 | 2005-02-18 | Francis Navarro | Intrument permettant de fermer par suture sous-cutanee un orifice realise dans la paroi abdominale d'un patient |
US6457182B1 (en) | 2001-06-08 | 2002-10-01 | The United States Of America As Represented By The Secretary Of The Army | Protective glove |
JP4170897B2 (ja) | 2001-06-08 | 2008-10-22 | モリス イノヴェイティヴ リサーチ, インコーポレイテッド | 生体刺入口を封印するための方法および装置 |
JP4159805B2 (ja) | 2001-06-15 | 2008-10-01 | ラディ・メディカル・システムズ・アクチェボラーグ | 閉鎖方法用の突き押し機構 |
RU2206092C2 (ru) | 2001-08-24 | 2003-06-10 | Хайрок Холдинг Лимитед | Способ выявления in vitro непереносимости пищевых антигенов |
US6773699B1 (en) | 2001-10-09 | 2004-08-10 | Tissue Adhesive Technologies, Inc. | Light energized tissue adhesive conformal patch |
US6939364B1 (en) | 2001-10-09 | 2005-09-06 | Tissue Adhesive Technologies, Inc. | Composite tissue adhesive |
US6893431B2 (en) | 2001-10-15 | 2005-05-17 | Scimed Life Systems, Inc. | Medical device for delivering patches |
US7037322B1 (en) | 2001-11-08 | 2006-05-02 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture with a staging tube |
US7037323B2 (en) | 2001-11-08 | 2006-05-02 | Sub-Q, Inc. | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20030093114A1 (en) | 2001-11-13 | 2003-05-15 | Melvin Levinson | Method for effecting hemostasis |
US7609673B2 (en) | 2002-02-08 | 2009-10-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Packet-based conversational service for a multimedia session in a mobile communications system |
EP1458437B1 (en) | 2001-12-26 | 2010-03-03 | Yale University | Vascular access device |
US7247162B1 (en) | 2002-01-14 | 2007-07-24 | Edwards Lifesciences Corporation | Direct access atherectomy devices |
US6749621B2 (en) | 2002-02-21 | 2004-06-15 | Integrated Vascular Systems, Inc. | Sheath apparatus and methods for delivering a closure device |
US6743463B2 (en) | 2002-03-28 | 2004-06-01 | Scimed Life Systems, Inc. | Method for spray-coating a medical device having a tubular wall such as a stent |
AU2003234239A1 (en) | 2002-04-24 | 2003-11-10 | Surgical Connections, Inc. | Resection and anastomosis devices and methods |
US6984983B2 (en) * | 2002-05-31 | 2006-01-10 | Schlumberger Technology Corporation | System and method for evaluation of thinly laminated earth formations |
ES2220876T3 (es) * | 2002-06-12 | 2004-12-16 | Radi Medical Systems Ab | Dispositivo de cierre. |
TWI314464B (en) * | 2002-06-24 | 2009-09-11 | Alza Corp | Reusable, spring driven autoinjector |
US7381210B2 (en) | 2003-03-14 | 2008-06-03 | Edwards Lifesciences Corporation | Mitral valve repair system and method for use |
US6939348B2 (en) | 2003-03-27 | 2005-09-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US7850654B2 (en) | 2003-04-24 | 2010-12-14 | St. Jude Medical Puerto Rico B.V. | Device and method for positioning a closure device |
US20040220604A1 (en) | 2003-04-30 | 2004-11-04 | Fogarty Thomas J. | Tissue separation apparatus and method |
US20040220594A1 (en) * | 2003-05-02 | 2004-11-04 | Cardio Life Research S.A. | Two-part clamping device |
US9289195B2 (en) | 2003-06-04 | 2016-03-22 | Access Closure, Inc. | Auto-retraction apparatus and methods for sealing a vascular puncture |
DE602004031953D1 (enrdf_load_stackoverflow) | 2003-08-14 | 2011-05-05 | Univ Loma Linda Med | |
US8337522B2 (en) | 2003-10-15 | 2012-12-25 | St. Jude Medical Puerto Rico Llc | Vascular sealing device with locking hub |
US7931670B2 (en) | 2003-10-15 | 2011-04-26 | St. Jude Medical Puerto Rico Llc | Tissue puncture closure device with automatic tamping |
US8007514B2 (en) | 2003-10-17 | 2011-08-30 | St. Jude Medical Puerto Rico Llc | Automatic suture locking device |
US8852229B2 (en) | 2003-10-17 | 2014-10-07 | Cordis Corporation | Locator and closure device and method of use |
US20050096697A1 (en) | 2003-11-04 | 2005-05-05 | Forsberg Andrew T. | Vascular insertion sheath with stiffened tip |
US7597705B2 (en) | 2003-12-03 | 2009-10-06 | St. Jude Medical Puerto Rico Llc | Vascular puncture seal anchor nest |
US20050251189A1 (en) | 2004-05-07 | 2005-11-10 | Usgi Medical Inc. | Multi-position tissue manipulation assembly |
US7390328B2 (en) * | 2003-12-19 | 2008-06-24 | Abbott Laboratories | Device and method for suturing of internal puncture sites |
US7993366B2 (en) | 2004-05-27 | 2011-08-09 | Cardiva Medical, Inc. | Self-tensioning vascular occlusion device and method for its use |
US7572274B2 (en) | 2004-05-27 | 2009-08-11 | Cardiva Medical, Inc. | Self-tensioning vascular occlusion device and method for its use |
US9017374B2 (en) | 2004-04-09 | 2015-04-28 | Cardiva Medical, Inc. | Device and method for sealing blood vessels |
US20050234507A1 (en) | 2004-04-16 | 2005-10-20 | Jeff Geske | Medical tool for access to internal tissue |
US7293300B2 (en) * | 2004-04-21 | 2007-11-13 | Watkins Manufacturing Corporation | Trickle waterfall for spa |
US7390329B2 (en) | 2004-05-07 | 2008-06-24 | Usgi Medical, Inc. | Methods for grasping and cinching tissue anchors |
JP5124274B2 (ja) | 2004-09-27 | 2013-01-23 | エヴァルヴ インコーポレイテッド | 組織の把持および評価のための方法および装置 |
US8162905B2 (en) | 2004-12-17 | 2012-04-24 | W. L. Gore & Associates, Inc. | Delivery system |
US20060136035A1 (en) | 2004-12-20 | 2006-06-22 | Vascular Architects, Inc. A Delaware Corporation | Coiled endoluminal prosthesis system and delivery catheter |
US7470237B2 (en) | 2005-01-10 | 2008-12-30 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with improved needle penetration |
US20060235449A1 (en) * | 2005-04-19 | 2006-10-19 | Vascular Architects, Inc., A Delaware Corporation | Vascular intimal lining removal assembly |
US20060259017A1 (en) | 2005-04-27 | 2006-11-16 | Cardiac Pacemakers, Inc. | Adhesive elements and methods for accessing the pericardial space |
CN101217916B (zh) | 2005-05-12 | 2013-04-10 | 阿尔斯塔西斯公司 | 穿刺和闭合装置以及方法 |
US8038687B2 (en) | 2005-05-17 | 2011-10-18 | St. Jude Medical Puerto Rico Llc | Suture loop closure device |
US20090105744A1 (en) | 2007-10-17 | 2009-04-23 | Modesitt D Bruce | Methods for forming tracts in tissue |
EP2315548A4 (en) | 2008-07-21 | 2015-05-27 | Arstasis Inc | DEVICES AND METHODS FOR FORMING CONDUITS IN FABRICS |
CN102159126A (zh) | 2008-07-21 | 2011-08-17 | 阿尔斯塔西斯公司 | 在组织中形成管道的装置、方法和成套用具 |
JP5206218B2 (ja) * | 2008-08-20 | 2013-06-12 | 富士通株式会社 | 指紋画像取得装置、指紋認証装置、指紋画像取得方法及び指紋認証方法 |
-
2004
- 2004-05-12 US US10/844,247 patent/US20050267520A1/en not_active Abandoned
-
2005
- 2005-05-12 EP EP05747814A patent/EP1748735A4/en not_active Withdrawn
- 2005-05-12 EP EP14196344.7A patent/EP2913008A1/en not_active Withdrawn
- 2005-05-12 CN CN201410385081.1A patent/CN104257410A/zh active Pending
- 2005-05-12 AU AU2005244834A patent/AU2005244834A1/en not_active Abandoned
- 2005-05-12 CN CN200580023327.XA patent/CN101431948B/zh not_active Expired - Fee Related
- 2005-05-12 JP JP2007513356A patent/JP4871268B2/ja not_active Expired - Fee Related
- 2005-05-12 CA CA002566743A patent/CA2566743A1/en not_active Abandoned
- 2005-05-12 EP EP20080011884 patent/EP1972282A3/en not_active Withdrawn
- 2005-05-12 WO PCT/US2005/016623 patent/WO2005112791A2/en active Application Filing
- 2005-05-12 EP EP12156932A patent/EP2499976A3/en not_active Withdrawn
-
2006
- 2006-10-06 US US11/544,196 patent/US8002791B2/en not_active Expired - Fee Related
- 2006-10-06 US US11/544,177 patent/US7998169B2/en not_active Expired - Fee Related
- 2006-10-06 US US11/545,272 patent/US8002793B2/en not_active Expired - Fee Related
- 2006-10-06 US US11/544,365 patent/US8002792B2/en not_active Expired - Fee Related
- 2006-10-06 US US11/544,149 patent/US8012168B2/en not_active Expired - Fee Related
- 2006-11-09 IL IL179173A patent/IL179173A/en not_active IP Right Cessation
-
2008
- 2008-05-09 JP JP2008123950A patent/JP2008253791A/ja not_active Withdrawn
-
2010
- 2010-08-16 JP JP2010181964A patent/JP2011005270A/ja active Pending
-
2011
- 2011-12-21 US US13/332,899 patent/US20120089166A1/en not_active Abandoned
-
2012
- 2012-03-19 JP JP2012061872A patent/JP2012130766A/ja active Pending
-
2013
- 2013-08-20 JP JP2013170128A patent/JP2013255826A/ja active Pending
-
2014
- 2014-04-28 IL IL232275A patent/IL232275A0/en unknown
-
2015
- 2015-12-10 US US14/965,673 patent/US20160095621A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727614A (en) * | 1971-05-13 | 1973-04-17 | Merck & Co Inc | Multiple dosage inoculator |
US4006747A (en) * | 1975-04-23 | 1977-02-08 | Ethicon, Inc. | Surgical method |
US4890611A (en) * | 1988-04-05 | 1990-01-02 | Thomas J. Fogarty | Endarterectomy apparatus and method |
US5620461A (en) * | 1989-05-29 | 1997-04-15 | Muijs Van De Moer; Wouter M. | Sealing device |
US5622188A (en) * | 1989-08-18 | 1997-04-22 | Endovascular Instruments, Inc. | Method of restoring reduced or absent blood flow capacity in an artery |
US5391183A (en) * | 1990-09-21 | 1995-02-21 | Datascope Investment Corp | Device and method sealing puncture wounds |
US5183464A (en) * | 1991-05-17 | 1993-02-02 | Interventional Thermodynamics, Inc. | Radially expandable dilator |
US5882302A (en) * | 1992-02-21 | 1999-03-16 | Ths International, Inc. | Methods and devices for providing acoustic hemostasis |
US5380290A (en) * | 1992-04-16 | 1995-01-10 | Pfizer Hospital Products Group, Inc. | Body access device |
US5507744A (en) * | 1992-04-23 | 1996-04-16 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US5403329A (en) * | 1992-09-23 | 1995-04-04 | United States Surgical Corporation | Instrument for closing trocar puncture wounds |
US5489288A (en) * | 1992-10-09 | 1996-02-06 | Advanced Surgical, Inc. | Device and method for applying large-diameter ligating loop |
US5383897A (en) * | 1992-10-19 | 1995-01-24 | Shadyside Hospital | Method and apparatus for closing blood vessel punctures |
US5304184A (en) * | 1992-10-19 | 1994-04-19 | Indiana University Foundation | Apparatus and method for positive closure of an internal tissue membrane opening |
US5860991A (en) * | 1992-12-10 | 1999-01-19 | Perclose, Inc. | Method for the percutaneous suturing of a vascular puncture site |
US6036699A (en) * | 1992-12-10 | 2000-03-14 | Perclose, Inc. | Device and method for suturing tissue |
US5613974A (en) * | 1992-12-10 | 1997-03-25 | Perclose, Inc. | Apparatus and method for vascular closure |
US5496334A (en) * | 1993-03-31 | 1996-03-05 | J. Stro/ bel & Sohne GmbH & Co. | Suturing apparatus |
US5503634A (en) * | 1993-04-28 | 1996-04-02 | Christy; William J. | Surgical stab wound closure device and method |
US5391182A (en) * | 1993-08-03 | 1995-02-21 | Origin Medsystems, Inc. | Apparatus and method for closing puncture wounds |
US6206893B1 (en) * | 1993-11-08 | 2001-03-27 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
US6517553B2 (en) * | 1993-11-08 | 2003-02-11 | Abbott Laboratories | Device and method for suturing of internal puncture sites |
US20020016614A1 (en) * | 1993-11-08 | 2002-02-07 | Perclose, Inc | Device and method for suturing of internal puncture sites |
US5496332A (en) * | 1994-10-20 | 1996-03-05 | Cordis Corporation | Wound closure apparatus and method for its use |
US6358556B1 (en) * | 1995-04-19 | 2002-03-19 | Boston Scientific Corporation | Drug release stent coating |
US5709224A (en) * | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US5860990A (en) * | 1995-08-24 | 1999-01-19 | Nr Medical, Inc. | Method and apparatus for suturing |
US7175646B2 (en) * | 1995-09-15 | 2007-02-13 | Boston Scientific Scimed, Inc. | Apparatus and method for percutaneous sealing of blood vessel punctures |
US7179270B2 (en) * | 1995-10-13 | 2007-02-20 | Medtronic Vascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
US7648517B2 (en) * | 1995-10-13 | 2010-01-19 | Medtronic Vascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
US6524326B1 (en) * | 1995-12-07 | 2003-02-25 | Loma Linda University Medical Center | Tissue opening locator and everter and method |
US6358244B1 (en) * | 1996-07-12 | 2002-03-19 | Endo Surgical Devices, Inc. | Endarterectomy surgical instrument and procedure |
US6036721A (en) * | 1996-11-16 | 2000-03-14 | Cap Incorporated | Puncture closure |
US6033401A (en) * | 1997-03-12 | 2000-03-07 | Advanced Closure Systems, Inc. | Vascular sealing device with microwave antenna |
US6179832B1 (en) * | 1997-09-11 | 2001-01-30 | Vnus Medical Technologies, Inc. | Expandable catheter having two sets of electrodes |
US5868762A (en) * | 1997-09-25 | 1999-02-09 | Sub-Q, Inc. | Percutaneous hemostatic suturing device and method |
US6010514A (en) * | 1998-03-17 | 2000-01-04 | Burney; Bryan T. | Suturing assembly and method of use |
US6042601A (en) * | 1998-03-18 | 2000-03-28 | United States Surgical Corporation | Apparatus for vascular hole closure |
US6846320B2 (en) * | 1998-05-01 | 2005-01-25 | Sub-Q, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6994686B2 (en) * | 1998-08-26 | 2006-02-07 | Neomend, Inc. | Systems for applying cross-linked mechanical barriers |
US6689152B2 (en) * | 1998-09-09 | 2004-02-10 | Edwards Lifesciences Corp. | Introducer/dilator with balloon protection and methods of use |
US6371975B2 (en) * | 1998-11-06 | 2002-04-16 | Neomend, Inc. | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers |
US6843792B2 (en) * | 1998-11-17 | 2005-01-18 | Scimed Life Systems, Inc. | Device for controlled endoscopic penetration of injection needle |
US20040068242A1 (en) * | 1998-12-09 | 2004-04-08 | Mcguckin James F. | Hollow curved superelastic medical needle and method |
US7001400B1 (en) * | 1999-03-04 | 2006-02-21 | Abbott Laboratories | Articulating suturing device and method |
US20060079914A1 (en) * | 1999-03-04 | 2006-04-13 | Modesitt D B | Articulating suturing device and method |
US20040044350A1 (en) * | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
US6860895B1 (en) * | 1999-06-18 | 2005-03-01 | Radi Medical Systems Ab | Tool, a sealing device, a system and a method for closing a wound |
US20050075653A1 (en) * | 1999-06-25 | 2005-04-07 | Usgi Medical Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US6206895B1 (en) * | 1999-07-13 | 2001-03-27 | Scion Cardio-Vascular, Inc. | Suture with toggle and delivery system |
US6190396B1 (en) * | 1999-09-14 | 2001-02-20 | Perclose, Inc. | Device and method for deploying and organizing sutures for anastomotic and other attachments |
US6171317B1 (en) * | 1999-09-14 | 2001-01-09 | Perclose, Inc. | Knot tying device and method |
US6203554B1 (en) * | 1999-11-23 | 2001-03-20 | William Roberts | Apparatus, kit and methods for puncture site closure |
US6719694B2 (en) * | 1999-12-23 | 2004-04-13 | Therus Corporation | Ultrasound transducers for imaging and therapy |
US6197042B1 (en) * | 2000-01-05 | 2001-03-06 | Medical Technology Group, Inc. | Vascular sheath with puncture site closure apparatus and methods of use |
US6533795B1 (en) * | 2000-04-11 | 2003-03-18 | Opus Medical, Inc | Dual function suturing apparatus and method |
US6846321B2 (en) * | 2000-06-21 | 2005-01-25 | Cardiodex, Ltd. | Mechanical method and apparatus for enhancing hemostatis following arterial catheterization |
US6719750B2 (en) * | 2000-08-30 | 2004-04-13 | The Johns Hopkins University | Devices for intraocular drug delivery |
US6506210B1 (en) * | 2000-09-01 | 2003-01-14 | Angiolink Corporation | Wound site management and wound closure device |
US6840952B2 (en) * | 2000-12-07 | 2005-01-11 | Mark B. Saker | Tissue tract sealing device |
US6846319B2 (en) * | 2000-12-14 | 2005-01-25 | Core Medical, Inc. | Devices for sealing openings through tissue and apparatus and methods for delivering them |
US6524321B2 (en) * | 2001-01-03 | 2003-02-25 | Nozomu Kanesaka | Closure device for puncture in vessel |
US6682489B2 (en) * | 2001-01-12 | 2004-01-27 | Radi Medical Systems Ab | Technique to confirm correct positioning of arterial wall sealing device |
US7025776B1 (en) * | 2001-04-24 | 2006-04-11 | Advanced Catheter Engineering, Inc. | Arteriotomy closure devices and techniques |
US7029489B1 (en) * | 2001-05-18 | 2006-04-18 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site |
US6863680B2 (en) * | 2001-11-08 | 2005-03-08 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7008440B2 (en) * | 2001-11-08 | 2006-03-07 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20050065852A1 (en) * | 2001-11-19 | 2005-03-24 | Wolfgang Bross | Methods, software modules and software application for logging transaction-tax-related transactions |
US6881983B2 (en) * | 2002-02-25 | 2005-04-19 | Kopin Corporation | Efficient light emitting diodes and lasers |
US7494460B2 (en) * | 2002-08-21 | 2009-02-24 | Medtronic, Inc. | Methods and apparatus providing suction-assisted tissue engagement through a minimally invasive incision |
US20060036218A1 (en) * | 2002-09-20 | 2006-02-16 | Flowmedica, Inc. | Method and apparatus for selective material delivery via an intra-renal catheter |
US7662128B2 (en) * | 2002-12-23 | 2010-02-16 | Salcudean Septimiu E | Steerable needle |
US7008442B2 (en) * | 2003-01-20 | 2006-03-07 | Medtronic Vascular, Inc. | Vascular sealant delivery device and sheath introducer and method |
US7867249B2 (en) * | 2003-01-30 | 2011-01-11 | Integrated Vascular Systems, Inc. | Clip applier and methods of use |
US7322976B2 (en) * | 2003-03-04 | 2008-01-29 | Cardiva Medical, Inc. | Apparatus and methods for closing vascular penetrations |
US7186251B2 (en) * | 2003-03-27 | 2007-03-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
US7316704B2 (en) * | 2003-06-04 | 2008-01-08 | Accessclosure, Inc. | Occlusion member and tensioner apparatus and methods of their use for sealing a vascular puncture |
US20050033361A1 (en) * | 2003-06-16 | 2005-02-10 | Galdonik Jason A. | Temporary hemostatic plug apparatus and method of use |
US20050049634A1 (en) * | 2003-08-07 | 2005-03-03 | Scimed Life Systems, Inc. | Medical closure device |
US20050065853A1 (en) * | 2003-09-18 | 2005-03-24 | Philip Ferreira | Reverse auction system and method |
US20060064159A1 (en) * | 2003-10-08 | 2006-03-23 | Porter Christopher H | Device and method for vascular access |
US20050085773A1 (en) * | 2003-10-15 | 2005-04-21 | Forsberg Andrew T. | Method and apparatus for locating vascular punctures |
US20050085856A1 (en) * | 2003-10-17 | 2005-04-21 | Ensure Medical, Inc. | Locator and delivery device and method of use |
US20050090860A1 (en) * | 2003-10-23 | 2005-04-28 | Paprocki Loran J. | Segmented plug for tissue tracts |
US20060064101A1 (en) * | 2004-02-12 | 2006-03-23 | Arthrocare Corporation | Bone access system |
US7361180B2 (en) * | 2004-05-07 | 2008-04-22 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US20070032804A1 (en) * | 2004-05-12 | 2007-02-08 | Modesitt D B | Access and closure device and method |
US20070032803A1 (en) * | 2004-05-12 | 2007-02-08 | Modesitt D B | Access and closure device and method |
US20070032802A1 (en) * | 2004-05-12 | 2007-02-08 | Modesitt D B | Access and closure device and method |
US20070027454A1 (en) * | 2004-05-12 | 2007-02-01 | Modesitt D B | Access and closure device and method |
US20070027455A1 (en) * | 2004-05-12 | 2007-02-01 | Modesitt D B | Access and closure device and method |
US20060009802A1 (en) * | 2004-07-10 | 2006-01-12 | Modesitt D B | Biological tissue closure device and method |
US7678133B2 (en) * | 2004-07-10 | 2010-03-16 | Arstasis, Inc. | Biological tissue closure device and method |
US20060069396A1 (en) * | 2004-09-20 | 2006-03-30 | Suturtek Incorporated | Apparatus and method for minimally invasive suturing |
US7335220B2 (en) * | 2004-11-05 | 2008-02-26 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
US7182763B2 (en) * | 2004-11-23 | 2007-02-27 | Instrasurgical, Llc | Wound closure device |
US7875052B2 (en) * | 2004-12-17 | 2011-01-25 | Terumo Kabushiki Kaisha | Tissue closure and tissue closing device |
US20080097347A1 (en) * | 2006-09-22 | 2008-04-24 | Babak Arvanaghi | Bendable needle assembly |
US20100063375A1 (en) * | 2007-01-22 | 2010-03-11 | Kassab Ghassan S | Devices, systems and methods for epicardial cardiac monitoring system |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140350465A1 (en) * | 2004-04-21 | 2014-11-27 | Acclarent, Inc. | Devices and Methods for Delivering Therapeutic Substances for the Treatment of Sinusitis and Other Disorders |
US7998169B2 (en) | 2004-05-12 | 2011-08-16 | Arstasis, Inc. | Access and closure device and method |
US8012168B2 (en) | 2004-05-12 | 2011-09-06 | Arstasis, Inc. | Access and closure device and method |
US8002792B2 (en) | 2004-05-12 | 2011-08-23 | Arstasis, Inc. | Access and closure device and method |
US8002791B2 (en) | 2004-05-12 | 2011-08-23 | Arstasis, Inc. | Access and closure device and method |
US8002793B2 (en) | 2004-05-12 | 2011-08-23 | Arstasis, Inc. | Access and closure device and method |
US7678133B2 (en) | 2004-07-10 | 2010-03-16 | Arstasis, Inc. | Biological tissue closure device and method |
US20100152772A1 (en) * | 2005-04-29 | 2010-06-17 | Gerard Brett | Interventional medical closure device |
US20100222796A1 (en) * | 2005-04-29 | 2010-09-02 | Vivasure Medical Ltd. | Interventional medical closure device |
US8906050B2 (en) | 2005-04-29 | 2014-12-09 | Vivasure Medical Limited | Interventional medical closure device |
US7753935B2 (en) | 2005-04-29 | 2010-07-13 | Vivasure Medical Limited | Interventional medical closure device |
US8002794B2 (en) | 2005-05-12 | 2011-08-23 | Arstasis, Inc. | Access and closure device and method |
US8241325B2 (en) | 2005-05-12 | 2012-08-14 | Arstasis, Inc. | Access and closure device and method |
US8083767B2 (en) | 2005-05-12 | 2011-12-27 | Arstasis, Inc. | Access and closure device and method |
US7549200B2 (en) | 2005-05-27 | 2009-06-23 | Kimberly-Clark Worldwide, Inc. | Clamp for flexible tube |
US20060270989A1 (en) * | 2005-05-27 | 2006-11-30 | Mcmichael Donald J | Gastric fastening system |
US20060270993A1 (en) * | 2005-05-27 | 2006-11-30 | Mcmichael Donald J | Clamp for flexible tube |
US20080121553A1 (en) * | 2006-08-28 | 2008-05-29 | Fred Gobel | Percutaneous gastrointestinal anchoring kit |
US7582098B2 (en) | 2006-08-28 | 2009-09-01 | Kimberly-Clark Wolrdwide, Inc. | Percutaneous gastrointestinal anchoring kit |
WO2008027366A3 (en) * | 2006-08-28 | 2008-08-07 | Vascular Prec | Devices and methods for creating and closing controlled openings in tissue |
WO2008026121A3 (en) * | 2006-08-28 | 2008-06-26 | Kimberly Clark Co | A tissue to tissue anchoring device and method of using the same |
EP2537470A1 (en) * | 2006-08-28 | 2012-12-26 | Kimberly-Clark Worldwide, Inc. | A tissue to tissue anchoring device and method of using the same |
US9610070B2 (en) | 2007-06-15 | 2017-04-04 | Vivasure Medical Limited | Closure device |
US9259215B2 (en) | 2007-07-18 | 2016-02-16 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US10952882B2 (en) | 2007-07-18 | 2021-03-23 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US8858490B2 (en) | 2007-07-18 | 2014-10-14 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US10085864B2 (en) | 2007-07-18 | 2018-10-02 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US9655755B2 (en) | 2007-07-18 | 2017-05-23 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US12156960B2 (en) | 2007-07-18 | 2024-12-03 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US20120053609A1 (en) * | 2007-10-17 | 2012-03-01 | Arstasis, Inc. | Methods for forming tracts in tissue |
US10376261B2 (en) | 2008-04-01 | 2019-08-13 | Covidien Lp | Anchoring suture |
US10058326B2 (en) | 2008-04-01 | 2018-08-28 | Covidien Lp | Anchoring device |
US9358002B2 (en) | 2008-04-01 | 2016-06-07 | Covidien Lp | Anchoring device |
US9265497B2 (en) | 2008-07-07 | 2016-02-23 | Apica Cardiovascular Ireland Limited | Tissue access site system and method |
US20110118759A1 (en) * | 2008-07-07 | 2011-05-19 | X-Seal Technologies Ltd. | Tissue access site system and method |
US20100016810A1 (en) * | 2008-07-21 | 2010-01-21 | Arstasis. Inc., | Devices and methods for forming tracts in tissue |
CN102159127A (zh) * | 2008-07-21 | 2011-08-17 | 阿尔斯塔西斯公司 | 用于在组织中形成管道的方法 |
US8979882B2 (en) * | 2008-07-21 | 2015-03-17 | Arstasis, Inc. | Devices, methods, and kits for forming tracts in tissue |
WO2010011696A1 (en) | 2008-07-21 | 2010-01-28 | Arstasis, Inc. | Devices and methods for forming tracts in tissue |
US20100016786A1 (en) * | 2008-07-21 | 2010-01-21 | Arstasis, Inc. | Devices, methods, and kits for forming tracts in tissue |
US9179909B2 (en) | 2008-08-13 | 2015-11-10 | Silk Road Medical, Inc. | Suture delivery device |
US11389155B2 (en) | 2008-08-13 | 2022-07-19 | Silk Road Medical, Inc. | Suture delivery device |
US9011467B2 (en) | 2008-08-13 | 2015-04-21 | Silk Road Medical, Inc. | Suture delivery device |
US10357242B2 (en) | 2008-08-13 | 2019-07-23 | Silk Road Medical, Inc. | Suture delivery device |
US8574245B2 (en) | 2008-08-13 | 2013-11-05 | Silk Road Medical, Inc. | Suture delivery device |
US10149677B2 (en) | 2009-03-14 | 2018-12-11 | Vasostitch, Inc. | Vessel access and closure device |
US9078633B2 (en) * | 2009-03-14 | 2015-07-14 | Vasostitch, Inc. | Vessel access and closure device |
EP2405824A4 (en) * | 2009-03-14 | 2013-07-17 | Vasostitch Inc | DEVICE FOR ACCESSING AND CLOSING A VESSEL |
CN102405022A (zh) * | 2009-03-14 | 2012-04-04 | 瓦索斯蒂奇股份有限公司 | 血管进入和闭合装置 |
US20120143226A1 (en) * | 2009-03-14 | 2012-06-07 | Vasostitch, Inc. | Vessel access and closure device |
US20110208215A1 (en) * | 2009-09-22 | 2011-08-25 | Modesitt D Bruce | Devices, methods, and kits for forming tracts in tissue |
WO2011038026A1 (en) * | 2009-09-22 | 2011-03-31 | Arstasis, Inc. | Devices, methods, and kits for forming tracts in tissue |
US11357486B2 (en) | 2009-12-30 | 2022-06-14 | Vivasure Medical Limited | Closure system and uses thereof |
US12274427B2 (en) | 2009-12-30 | 2025-04-15 | Vivasure Medical Limited | Closure system and uses thereof |
WO2011085401A1 (en) | 2010-01-11 | 2011-07-14 | Arstasis, Inc. | Device for forming tracts in tissue |
US9277915B2 (en) | 2010-06-26 | 2016-03-08 | Vasostitch, Inc. | Method and apparatus for transapical access and closure |
US9060751B2 (en) | 2010-12-30 | 2015-06-23 | Vivasure Medical Limited | Surgical closure systems and methods |
US10966698B2 (en) | 2012-02-29 | 2021-04-06 | Vivasure Medical Limited | Implants and methods for percutaneous perforation closure |
US9737286B2 (en) | 2012-02-29 | 2017-08-22 | Vivasure Medical Limited | Implants and methods for percutaneous perforation closure |
US9662099B2 (en) | 2012-02-29 | 2017-05-30 | Vivasure Medical Limited | Percutaneous perforation closure systems, devices, and methods |
US11957328B2 (en) | 2012-02-29 | 2024-04-16 | Vivasure Medical Limited | Implants and methods for percutaneous perforation closure |
US9572558B2 (en) | 2012-02-29 | 2017-02-21 | Vivasure Medical Limited | Devices and methods for delivering implants for percutaneous perforation closure |
US10441753B2 (en) | 2012-05-25 | 2019-10-15 | Arstasis, Inc. | Vascular access configuration |
US10675447B2 (en) | 2012-05-25 | 2020-06-09 | Arstasis, Inc. | Vascular access configuration |
US20180235587A1 (en) * | 2012-08-01 | 2018-08-23 | Arstasis, Inc. | Access closure configuration |
WO2014022509A1 (en) | 2012-08-01 | 2014-02-06 | Arstasis, Inc. | Access closure configuration |
US20140039546A1 (en) * | 2012-08-01 | 2014-02-06 | Arstasis Inc. | Access closure configuration |
EP2879599A4 (en) * | 2012-08-01 | 2016-05-04 | Arstasis Inc | CONFIGURATION OF CLOSURE OF ACCESS |
US20160106457A1 (en) * | 2012-08-01 | 2016-04-21 | Arstasis, Inc. | Access closure configuration |
US20140039545A1 (en) * | 2012-08-01 | 2014-02-06 | Arstasis Inc. | Access closure configuration |
US10159479B2 (en) | 2012-08-09 | 2018-12-25 | Silk Road Medical, Inc. | Suture delivery device |
US10881393B2 (en) | 2012-08-09 | 2021-01-05 | Silk Road Medical, Inc. | Suture delivery device |
US12245763B2 (en) | 2012-08-09 | 2025-03-11 | Silk Road Medical, Inc. | Suture delivery device |
US11839372B2 (en) | 2012-08-09 | 2023-12-12 | Silk Road Medical, Inc. | Suture delivery device |
US9850013B2 (en) | 2013-03-15 | 2017-12-26 | Vivasure Medical Limited | Loading devices and methods for percutaneous perforation closure systems |
US20140364899A1 (en) * | 2013-06-11 | 2014-12-11 | ProMed, Inc. | Systems and methods for improved vessel access closure |
US10973502B2 (en) | 2014-05-16 | 2021-04-13 | Silk Road Medical, Inc. | Vessel access and closure assist system and method |
US12029404B2 (en) | 2014-05-16 | 2024-07-09 | Silk Road Medical, Inc. | Vessel access and closure assist system and method |
US10182801B2 (en) | 2014-05-16 | 2019-01-22 | Silk Road Medical, Inc. | Vessel access and closure assist system and method |
US10433826B2 (en) | 2014-12-15 | 2019-10-08 | Vivasure Medical Limited | Closure apparatus with flexible sealable member and flexible support member |
US11478235B2 (en) | 2014-12-15 | 2022-10-25 | Vivasure Medical Limited | Closure apparatus with flexible sealable member and flexible support member |
US12082798B2 (en) | 2014-12-15 | 2024-09-10 | Vivasure Medical Limited | Closure apparatus with flexible sealable member and flexible support member |
US11141142B2 (en) | 2014-12-15 | 2021-10-12 | Vivasure Medical Limited | Implantable sealable member with mesh layer |
US10206668B2 (en) | 2014-12-15 | 2019-02-19 | Vivasure Medical Limited | Implantable sealable member with mesh layer |
US11992198B2 (en) | 2015-12-15 | 2024-05-28 | Vivasure Medical Limited | Arteriotomy closure apparatus with slotted shoe for advantageous pressure distribution |
US11311280B2 (en) | 2015-12-15 | 2022-04-26 | Vivasure Medical Limited | Arteriotomy closure apparatus with slotted shoe for advantageous pressure distribution |
US12364469B2 (en) | 2015-12-15 | 2025-07-22 | Vivasure Medical Limited | Arteriotomy closure apparatus with slotted shoe for advantageous pressure distribution |
WO2017114837A1 (en) * | 2015-12-28 | 2017-07-06 | Koninklijke Philips N.V. | Elongated interventional device for optical shape sensing |
WO2024035669A1 (en) * | 2022-08-09 | 2024-02-15 | Boston Scientific Scimed, Inc. | Tissue traction devices, systems |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8002791B2 (en) | Access and closure device and method | |
US8241325B2 (en) | Access and closure device and method | |
US7678133B2 (en) | Biological tissue closure device and method | |
KR20080110741A (ko) | 상처폐쇄장치 | |
AU2014208255A1 (en) | Access and closure device and method | |
AU2012200175A1 (en) | Access and closure device and method | |
HK1122204A (en) | Access and closure device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARSTASIS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MODESITT, D. BRUCE;REEL/FRAME:018512/0564 Effective date: 20061106 |
|
AS | Assignment |
Owner name: GREENHEART INVESTMENTS, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:ARSTASIS, INC.;REEL/FRAME:035228/0841 Effective date: 20150312 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |