US20050238549A1 - Electronic controls for pollutant removal - Google Patents

Electronic controls for pollutant removal Download PDF

Info

Publication number
US20050238549A1
US20050238549A1 US11/133,560 US13356005A US2005238549A1 US 20050238549 A1 US20050238549 A1 US 20050238549A1 US 13356005 A US13356005 A US 13356005A US 2005238549 A1 US2005238549 A1 US 2005238549A1
Authority
US
United States
Prior art keywords
reaction zone
sorbent
differential pressure
target pollutant
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/133,560
Other versions
US7396514B2 (en
Inventor
Charles Hammel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enviroscrub Technologies Corp
Original Assignee
Enviroscrub Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enviroscrub Technologies Corp filed Critical Enviroscrub Technologies Corp
Priority to US11/133,560 priority Critical patent/US7396514B2/en
Publication of US20050238549A1 publication Critical patent/US20050238549A1/en
Application granted granted Critical
Publication of US7396514B2 publication Critical patent/US7396514B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • B01D53/12Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents according to the "fluidised technique"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8665Removing heavy metals or compounds thereof, e.g. mercury
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/028Controlling a pressure difference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/41Further details for adsorption processes and devices using plural beds of the same adsorbent in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B43/00Obtaining mercury
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/101Baghouse type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/146Perfluorocarbons [PFC]; Hydrofluorocarbons [HFC]; Sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/05Automatic, including computer, control

Definitions

  • the invention relates to the systems and processes for removal of pollutants, such as oxides of sulfur, oxides of nitrogen, fly ash, mercury compounds, and elemental mercury from gases generated from the burning of fossil fuels and other process gases with electronic control of operational parameters such as, differential pressure across the system, gas temperature, and removal efficiency.
  • pollutants such as oxides of sulfur, oxides of nitrogen, fly ash, mercury compounds, and elemental mercury from gases generated from the burning of fossil fuels and other process gases with electronic control of operational parameters such as, differential pressure across the system, gas temperature, and removal efficiency.
  • the systems and processes of the invention employ oxides of manganese as the primary sorbent to effect removal of pollutants, such as oxides of sulfur and/or oxides of nitrogen, and may further employ other sorbent materials and chemical additives separately and in conjunction with oxides of manganese to effect the removal of other target pollutants, e.g., using alumina to remove mercury.
  • oxides of sulfur such as sulfur dioxide (SO 2 ), and sulfur trioxide (SO 3 ) are produced as a result of oxidation of the sulfur.
  • Some fuels may contain nitrogen compounds that contribute to the formation of oxides of nitrogen (NO X ), which are primarily formed at high temperatures by the reaction of nitrogen and oxygen from the air used for the reaction with the fuel.
  • NO X oxides of nitrogen
  • SO X and NO X are reported to form acids that may contribute to “acid rain.”
  • Federal and state regulations dictate the amount of these and other pollutants, which may be emitted.
  • the regulations are becoming more stringent and plant operators are facing greater difficulties in meeting the regulatory requirements.
  • Many technologies have been developed for reduction of SO X and NO X , but few can remove both types of pollutants simultaneously in a dry process or reliably achieve cost effective levels of reduction.
  • coal-burning power plants have often employed a scrubbing process, which commonly uses calcium compounds to react with SO X to form gypsum.
  • This waste product is normally discarded as a voluminous liquid slurry in an impoundment and ultimately is capped with a clay barrier, which is then covered with topsoil once the slurry is de-watered over time.
  • some power-plant operators have chosen to burn coal that contains much lower amounts of sulfur to reduce the quantities of SO X emitted to the atmosphere.
  • NO X operators often choose to decrease the temperature at which the coal is burned. This in turn decreases the amount of NO X produced and therefore emitted; however, low temperature combustion does not utilize the full heating value of the coal, resulting in loss of efficiency.
  • Turbine plants normally use natural gas, which contains little or no sulfur compounds, to power the turbines, and therefore virtually no SO X is emitted. On the other hand at the temperature that the turbines are commonly operated, substantial NO X is produced.
  • SCR Selective Catalytic Reduction
  • some operators choose to reduce the temperature at which the turbines are operated and thereby reduce the amount of NO X emitted. With lower temperatures the full combustion/heating value of natural gas is not realized, resulting in loss of efficiency.
  • newer environmental regulation will require even greater reduction of SO X and NO X emissions necessitating newer or more effective removal technologies and/or further reductions in efficiency.
  • the nitrogen oxides which are pollutants, are nitric oxide (NO) and nitrogen dioxide (NO 2 ) or its dimer (N 2 O 4 ).
  • NO nitric oxide
  • NO 2 nitrogen dioxide
  • N 2 O 4 dimer
  • the relatively inert nitric oxide is often only removed with great difficulty relative to NO 2 .
  • the lower oxide of nitrogen, nitrous oxide (N 2 O) is not considered a pollutant at the levels usually found in ambient air, or as usually discharged from air emission sources.
  • Nitric oxide (NO) does however; oxidize in the atmosphere to produce nitrogen dioxide (NO 2 ).
  • the sulfur oxides considered being pollutants are sulfur dioxide (SO 2 ) and sulfur trioxide (SO 3 ).
  • Typical sources of nitrogen and sulfur oxide pollutants are power plant stack gases, automobile exhaust gases, heating-plant stack gases, and emissions from various industrial process, such as smelting operations and nitric and sulfuric acid plants.
  • Power plant emissions represent an especially daunting source of nitrogen oxides and sulfur oxides, by virtue of the very large tonnage of these pollutants and such emissions discharged into the atmosphere annually.
  • the low concentration of the pollutants in such emissions typically 500 ppm or less for nitrogen oxides and 3,000 ppm or less for sulfur dioxide, their removal is difficult because very large volumes of gas must be treated.
  • sulfur scavengers are utilized, usually in fluidized bed burners, to act as scavengers for the sulfur and convert the same to solid compounds which are removed with the ash.
  • the usual scavengers in this type of operation include limestone (calcium carbonate) and dolomite (magnesium-calcium carbonate) because of availability and cost.
  • the burning techniques are complex and expensive to operate and control; and the burner equipment is comparatively expensive.
  • Dissolving coal or like material in a molten salt compound is described in U.S. Pat. No. 4,033,113.
  • U.S. Pat. No. 4,843,980 teaches using alkali metal salt during the combustion of coal or other carbonaceous material with further efficiency by adding a metal oxide.
  • a sulfur scavenger added upstream to a combustion zone is described in U.S. Pat. No. 4,500,281.
  • the combustion gas stream from a coal-burning power plant is also a major source of airborne acid gases, fly ash, mercury compounds, and elemental mercury in vapor form.
  • Coal contains various sulfides, including mercury sulfide.
  • Mercury sulfide reacts to form elemental mercury and SO X in the combustion boiler.
  • other sulfides are oxidized to SO X and the nitrogen in the combustion air is oxidized to NO X .
  • Many power plants emit daily amounts of up to a pound of mercury, as elemental mercury and mercury compounds.
  • the concentration of mercury in the stream of combustion gas is about 4.7 parts per billion (ppb) or 0.0047 parts per million (ppm).
  • Past efforts to remove mercury from the stream of combustion gas, before it leaves the stack of a power plant include: (a) injection, into the combustion gas stream, of activated carbon particles or particulate sodium sulfide or activated alumina without sulfur; and (b) flowing the combustion gas stream through a bed of activated particles.
  • activated carbon particle injection is employed, the mercuric chloride in the gas stream is removed from the gas stream in a bag house and collected as part of a powder containing other pollutants in particulate form.
  • Mercuric chloride and other particulate mercury compounds that may be in the gas stream can be more readily removed from the gas stream at a bag house than can elemental mercury.
  • Activated carbon injection for mercury removal along with an activated particle bed is described in U.S. Pat. No. 5,672,323.
  • HgS mercuric sulfide
  • mercury compounds in the gas stream can be adsorbed and retained on the surface of activated particles, but much of the elemental mercury will not be so affected.
  • elemental mercury in the combustion gas stream is oxidized to form mercury compounds (e.g. mercuric chloride), and catalysts are employed to promote the oxidation process.
  • mercury compounds e.g. mercuric chloride
  • catalysts are employed to promote the oxidation process.
  • such processes do not capture SO X and NO X .
  • Oxides of manganese are known to form sulfates of manganese from SO X and nitrates of manganese from NO X when contacted with a gas containing these pollutants.
  • U.S. Pat. No. 1,851,312 describes an early use of oxides of manganese to remove sulfur compounds from a combustible gas stream.
  • U.S. Pat. No. 3,150,923 describes a dry bed of oxides of manganese to remove SO X .
  • a wet method to remove SO X with oxides of manganese is described in U.S. Pat. No. 2,984,545.
  • Bag houses have traditionally been used as filters to remove particulates from high volume gas streams.
  • U.S. Pat. No. 4,954,324 describes a bag house used as a collector of products generated through the use of ammonia and sodium bicarbonate to remove SO X and NO X from a gas stream.
  • U.S. Pat. No. 4,925,633 describes a bag house as a site of reaction for SO X and NO X with the reagents, ammonia and alkali.
  • U.S. Pat. No. 4,581,219 describes a bag house as a reactor for highly efficient removal of SO X only with a calcium-based reagent and alkaline metal salt.
  • the calcium compounds utilized in SO X wet scrubbing methods form gypsum in the process. They are purchased and consumed in significant quantities and once gypsum is formed the calcium compounds cannot be recovered, at least not cost-effectively.
  • a removal method employing a sorbent that not only can remove pollutants from a gas stream but that can be regenerated, recovered, and then recycled or reused for removal of additional pollutants from a gas stream.
  • Embodiments of the invention are directed to electronic controllers or control systems and subsystems incorporating sensors and control sub-elements for monitoring, adjusting and/or regulating operating parameters of gaseous pollutant removal systems, including those disclosed and described herein, and to methods employing the same.
  • an electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent.
  • the system may include a pollutant concentration sensor that measures the concentration of a target pollutant in a gas exiting a reaction zone and generates a concentration output.
  • the system may further include a differential pressure sensor that measures the differential pressure across the reaction zone and generates a differential pressure output and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone.
  • a controller in communication with the pollutant concentration and differential pressure sensors and the sorbent feed rate control sub-element may receive the concentration output and the differential pressure output and provide one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level.
  • an electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent.
  • the system may include a pollutant concentration sensor that measures the concentration of a target pollutant in a gas exiting a reaction zone and generates a concentration output.
  • the system may further include a differential pressure sensor that measures the differential pressure across the reaction zone and generates a differential pressure output and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone.
  • a controller in communication with the pollutant concentration and differential pressure sensors and the sorbent feed rate control sub-element may receive the concentration output and the differential pressure output and provide one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level.
  • the electronic control system of this embodiment may further include a temperature sensor and a temperature control sub-element in communication with the controller so that the temperature control sub-element controls the temperature of the gas entering the reaction zone at an adjustable temperature.
  • an electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent.
  • the system may include a pollutant concentration sensor that measures the concentration of a target pollutant in a gas exiting a reaction zone and generates a concentration output.
  • the system may further include a differential pressure sensor that measures the differential pressure across the reaction zone and generates a differential pressure output and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone.
  • a controller in communication with the pollutant concentration and differential pressure sensors and the sorbent feed rate control sub-element may receive the concentration output and the differential pressure output and provide one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level.
  • the electronic control system of this embodiment may also include a gas flow control sub-element in communication with the controller so that the gas flow control sub-element controls gas flow to the reaction zone at an adjustable rate, wherein the gas flow rate may be adjusted by the one or more outputs of the controller.
  • an electronic control system for regulating operational parameters in a pollution removal system having a bag house containing filter bags that is connected to a source of gas and having a sorbent feeder containing a supply of sorbent includes a pair of pollutant concentration sensors that measures the concentration of a target pollutant in a gas entering and exiting a reaction zone.
  • the system may also include a differential pressure sensor that measures the differential pressure across the reaction zone and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone.
  • a filter bag control sub-element that controls removal of sorbent from the filter bags at an adjustable rate may also be included.
  • a controller in communication with the pair of pollutant concentration sensors, the differential pressure sensor, the sorbent feed rate control sub-element, and the filter bag control sub-element receives the outputs from the pair of pollutant concentration sensors and the differential pressure sensor and provides one or more outputs that adjust operational parameters selected from a group consisting of sorbent feeder rate, sorbent removal rate, or any combination of these operational parameters, to ensure that the target pollutant is removed at targeted capture rate set point and that differential pressure across the reaction zone is no greater than a predetermined level.
  • the system provides an electronic control system for dry removal of at least one target pollutant from gases that includes a monitor component operative to monitor system operational parameters selected from the group consisting of a first target pollutant capture rate, gas inlet temperature, sorbent feed rate, and differential pressure, and any combination thereof; and an adjustment component operative to adjust system operational parameters selected from the group consisting of the first target pollutant capture rate, gas inlet temperature, sorbent feed rate and any combination thereof so that differential pressure across the system is no greater than a predetermined level and the first target pollutant is removed at a desired capture rate set point.
  • a monitor component operative to monitor system operational parameters selected from the group consisting of a first target pollutant capture rate, gas inlet temperature, sorbent feed rate, and differential pressure, and any combination thereof
  • an adjustment component operative to adjust system operational parameters selected from the group consisting of the first target pollutant capture rate, gas inlet temperature, sorbent feed rate and any combination thereof so that differential pressure across the system is no greater than a predetermined level and the
  • a method for removing target pollutants from gases includes the steps of measuring a target pollutant concentration at an output of a reaction zone of a pollutant removal system that uses sorbent for dry removal of target pollutants from gases and analyzing the measured target pollutant concentration to determine if it is within an acceptable range.
  • the method of this embodiment may also include adjusting at least one operational parameter capable of affecting pollutant removal in the system if the measured target pollutant concentration is not within an acceptable range.
  • a method for removing target pollutants from gases includes the steps of measuring a target pollutant concentration at an output of a reaction zone of a pollutant removal system that uses sorbent for dry removal of target pollutants from gases and analyzing the measured target pollutant concentration to determine if it is within an acceptable range.
  • the method of this embodiment may also include adjusting at least one operational parameter capable of affecting pollutant removal in the system if the measured target pollutant concentration is not within an acceptable range.
  • the removal system may include a sorbent feeder and the step of adjusting at least one operational parameter may include increasing the feeder rate of the sorbent feeder if the measured target pollutant concentration is greater that the set point thereby decreasing the target pollutant concentration in the reaction zone and decreasing the feeder rate of the sorbent feeder if the measured target pollutant concentration is less than the set point thereby increasing the target pollutant concentration in the reaction zone.
  • Another embodiment of the invention includes a method for removing target pollutants from gases including the steps of measuring the temperature of a gas entering a reaction zone of a pollutant removal system the uses sorbent for dry removal of target pollutants from gases and analyzing the measured temperature to determine if it is within an acceptable range.
  • the method of this embodiment may also include adjusting the temperature of the gas entering the reaction zone if the measured temperature is not within an acceptable range.
  • a computer system having a graphical user interface including a display and a selection device utilizes a method of providing and selecting from a menu on the display.
  • the method may include the steps of receiving a menu entry selection signal indicative of a control operation of a portion of a pollutant removal system from a plurality of control operations including bag house control, emissions control and temperature control of the pollutant removal system and in response to the menu entry selection, retrieving a graphical representation of the selected control operation, the graphical representation having real time data fields that are populated with real time data as well as user adjustable variables.
  • the method may further include the steps of displaying the graphical representation with the populated real time data fields on a display, receiving a signal indicative of a particular user adjustable variable and, in response to the signal, updating the graphical representation of the selected control operation to reflect the particular user adjustable variable.
  • the invention includes an electronic control system for controlling an operation of a pollutant removal system, the electronic control system having a controller operatively coupled to a first reaction zone in which at least a first target pollutant is removed from gases, the controller being configured to receive a first input from a sensor measuring at least a first target pollutant concentration at an output of the first reaction zone and determining if the measured first target pollutant concentration is within an acceptable range.
  • the controller may be operatively coupled to a second reaction zone in which at least a second target pollutant is removed from the gases, the controller being configured to receive a second input from a sensor measuring at least a second target pollutant concentration at an output of the second reaction zone and determining if the measure second target pollutant concentration is within an acceptable range.
  • FIG. 1 is a schematic block diagram showing a system according to the invention.
  • FIG. 2 is a schematic block diagram showing a system according to the invention.
  • FIG. 3 is a schematic block diagram showing a system according to the invention.
  • FIG. 4 is a block diagram showing a system according to the invention.
  • FIG. 5 is a block diagram showing a system according to the invention.
  • FIG. 6 is a perspective view of a commercially available bag house.
  • FIG. 7 is an end elevation view of a commercially available bag house.
  • FIG. 8 is a top plan view of a commercially available bag house.
  • FIG. 9 is a side elevation view of a commercially available bag house.
  • FIG. 10 is a sectional view of an inverted bag house according to the invention.
  • FIG. 11 is a top plan view of an inverted bag house according to the invention.
  • FIG. 12 is a flow diagram of a bag house reactor according to the invention.
  • FIG. 13 is a block diagram of a system according to the invention.
  • FIG. 14 is a block diagram of a system according to the invention.
  • FIG. 15 is a block diagram of a system according to the invention.
  • FIG. 16 is a flow diagram an electronic control system useful in the invention.
  • FIG. 17 is electronic control panel display.
  • FIG. 18 is electronic control panel display.
  • FIG. 19 is electronic control panel display.
  • FIG. 20 is a block diagram of a control sub-element according to the invention for regulating differential pressure.
  • FIG. 21 is a control sub-element according to the invention for control of SO X or NO X capture rate or sorbent feed rate.
  • FIG. 22 is a control sub-element according to the invention for control of bag house gas inlet temperature.
  • FIG. 23 is a control sub-element according to the invention for control of variable venturi position(s).
  • FIG. 24 is a control sub-element according to the invention for control of SO X or NO X capture rate, differential pressure, and sorbent feed rate.
  • FIG. 25 is a control sub-element according to the invention for control of SO X or NO X capture rate, differential pressure, sorbent feed rate, and variable venturi position.
  • FIG. 26 is a block diagram of a system and process according to the invention.
  • FIG. 27 is a block diagram of a system and process according to the invention.
  • FIG. 28 is a block diagram of system according to the invention.
  • FIG. 29 is a graph plotting NO X values over time.
  • FIG. 30 is a graph plotting SO X values over time.
  • the invention relates to systems and processes for removal of SO X and/or NO X as well as other pollutants, from a gas stream.
  • gas containing SO X and/or NO X is introduced into a first reaction zone where the gas is contacted with a sorbent of regenerable oxides of manganese and/or regenerated oxides of manganese.
  • the sorbent may interact with the pollutants in a gas stream as a catalyst, a reactant, an absorbent or an adsorbent.
  • the oxides of manganese react with the SO X and the NO X to form, respectively, sulfates of manganese and nitrates of manganese.
  • Nirates of manganese is used herein to refer to and include the various forms of manganese nitrate, regardless of chemical formula, that may be formed through the chemical reaction between NO X and the sorbent and includes hydrated forms as well.
  • sulfates of manganese is used herein to refer to and include the various forms of manganese sulfate, regardless of chemical formula that may be formed through the chemical reaction between SO X and the sorbent and includes hydrated forms as well.
  • Target pollutant(s) means the pollutant or pollutants that are targeted for removal in the system.
  • Substantially stripped means that a pollutant has been removed from a gas at about a targeted capture rate whether by interaction with a sorbent or physical removal in a solid-gas separator. With respect to pollutants removed by interaction with a sorbent, it further contemplates that removal up to a targeted capture rate for that pollutant may be commenced in a first reaction zone and completed in a subsequent reaction.
  • Reacted sorbent means sorbent that has interacted with one or more pollutants in a gas whether by chemical reaction, adsorption or absorption. The term does not mean that all reactive or active sites on the sorbent have been utilized since all such sites may not actually be utilized.
  • Unreacted sorbent means virgin sorbent that has not intereacted with pollutants in a gas.
  • reaction zones may also serve as solid-gas separators rendering the gas free of solids and particulates, such as sorbent, whether reacted or unreacted, fly ash, and mercury compounds, so as to allow the gas that is substantially stripped of SO X and/or NO X or other pollutants to be vented from the reaction zone and passed to another reaction zone or routed up a stack to be vented into the atmosphere.
  • solids and particulates which include the reacted and unreacted sorbent, fly ash, and the like, are retained within reaction zones that are solid-gas separators and may be subsequently removed for further processing.
  • Reaction zones may be multi-stage removal systems which would incorporate additional reaction zones.
  • the reaction zones utilized in single stage, dual stage, or multi-stage removal may be a fluidized bed, a pseudo-fluidized bed, a reaction column, a fixed bed, a pipe/duct reactor, a moving bed, a bag house, an inverted bag house, bag house reactor, serpentine reactor, and a cyclone/multiclone.
  • the gases that may be processed in the invention are most gases containing SO X and/or NO X .
  • gases may be generated by the combustion of fossil fuels in power plants, heating plants and various industrial processes, such as the production of taconite pellets by taconite plants, refineries and oil production facilities, gas turbines, and paper mills. Combustion for heating and other process steps at such facilities generate waste or flue gases that contain SO X and NO X in various concentrations, typically but not limited to 500 ppm or less for NO X and 3000 ppm or less for SO X .
  • the gases may contain other removable pollutants, such as fly ash, and mercury (Hg), as elemental Hg in vapor form or mercury compounds in particulate form, in small concentration, e.g., 0.0047 ppm (4.7 ppb).
  • the gases may further contain hydrogen sulfide and other totally reduced sulfides (TRS) and other pollutants.
  • TRS totally reduced sulfides
  • These gases may typically have temperatures typically ranging from ambient temperature to below the thermal decomposition temperature(s) of nitrates of manganese and to below the thermal decomposition temperature(s) of sulfates of manganese. Gases generally within this temperature range can be processed in the system of the invention.
  • the primary sorbent useful in the invention are oxides of manganese, which may be found in manganese ore deposits or derived synthetically.
  • Manganese compounds of interest occur in three different oxidation states of +2, +3, and +4; this gives rise to a range of multivalent phases, which provide oxides of manganese with a great diversity of atomic structures and thus mineral forms.
  • mineral forms include, but are not limited to, pyrolusite (MnO 2 ), ramsdellite (MnO 2 ), manganite (MnOOH or Mn 2 O 3 .H 2 O), groutite (MnOOH), and vemadite (MnO 2 .nH 2 O) to name a few. This is reported by Jerry E.
  • oxides of manganese is manganese dioxide, MnO 2 .
  • the pyrolusite form of this mineral is often the primary mineral form in manganese deposits. Pyrolusite is composed predominantly of the compound MnO 2 .
  • This oxide of manganese exhibits at least two crystalline forms. One is the gamma form, which is nearly amorphous. The other is a beta form that exhibits pronounced crystalline structure.
  • the term “oxides of manganese” as used herein is intended to refer and include the various forms of manganese oxide, their hydrated forms, and crystalline forms, as well as manganese hydroxide (e.g. Mn(OH) 2 ), etc.
  • the relative capture or removal efficiencies of oxides of manganese may be understood by the below calculation(s) of loading rates.
  • gas removal efficiency based upon test results may be calculated by dividing weight of gas removed by weight of sorbent. This provides an approximate picture of system operations, but does not account for stoichiometry of the reactions or interference between reactive gases in a multiple-gas system. The stoichiometric gas capture ratio is described below.
  • Oxides of manganese once reacted with SO X and NO X to form sulfates of manganese and nitrates of manganese respectively, can be regenerated. There are essentially two general methods of regeneration, thermal decomposition and chemical decomposition.
  • the sulfates of manganese and/or nitrates of manganese are heated in an oxidizing atmosphere whereupon manganese oxide is formed and nitrogen dioxide and/or sulfur dioxide are desorbed and captured.
  • the captured nitrogen dioxide or sulfur dioxide can be reacted with other chemicals to produce marketable products.
  • the sulfates of manganese and/or nitrates of manganese are dissolved from the used sorbent in a dilute acidic aqueous slurry to which, after separation and recovery of the washed sorbent, other compounds such as alkali or hydroxides or carbonates may be added and manganese oxide is precipitated out of solution and removed.
  • the solution, now free of oxides of manganese can be routed on for further processing or production of marketable products such as alkali or ammonium sulfates and nitrates.
  • the regeneration of manganese oxide and production of useful or marketable products through thermal or chemical decomposition is further discussed below.
  • the regenerated oxides of manganese are in particle form and are defined by the chemical formula MnO X , where X is about 1.5 to 2.0.
  • the regeneration process may be engineered to yield oxides of manganese having a particle size ranging from 0.1 to 500 microns. Oxides of manganese in this range are useful in the invention. Preferably, the oxides of manganese will have a particle size of less than 300 microns, and more preferably of less than 100 microns.
  • the regenerable oxides of manganese and/or regenerated oxides of manganese are typically fine, powdery, particulate compounds.
  • Reactivity of dry sorbents may generally be related to its particle surface area. Particles or particulates all have weight, size, and shape, and in most cases they are of inconsistent and irregular shape. In the case of fine powders it is often desirable to know how much surface area a given quantity of powder exhibits, especially for particles that are chemically reactive on particle surfaces, or are used as sorbents, thickeners or fillers. (Usually measurements of surface area properties are done to compare several powders for performance reasons.) Particles may also have microscopic pores, cracks and other features that contribute to surface area.
  • the BET (Brunauer-Emmett-Teller) method is a widely accepted means for measuring the surface area of powders.
  • a powder sample is exposed to an inert test gas, such as nitrogen, at given temperature and pressures, and because the size of the gas molecules are known at those conditions, the BET method determines how much test gas covers all of the exterior surfaces, exposed pores and cracks with essentially one layer of gas molecules over all of the particles in the powder sample.
  • the analyst can use other test gases such as helium, argon or krypton; and can vary from 1 to 3 relative test pressures, or more, for better accuracy. From this, a measure of total surface area is calculated and usually reported in units of square meters of particle surface area per gram of powder sample (m 2 /g).
  • coarse and smooth powders often range in magnitude from 0.001 to 0.1 m 2 /g of surface area, and fine and irregular powders range from 1 to 1000 m 2 /g. Since the interactions between a sorbent and the pollutant occurs primarily at the surface of sorbent particle, surface area correlates with removal efficiency.
  • the oxides of manganese useful in the invention are fine and irregular powders and thus may have a surface area ranging from 1 to 1000 m 2 /g.
  • the sorbent will have a surface area of greater than 15 m 2 /g, and more preferably of greater than 20 m 2 /g.
  • the system 10 may be seen as comprised of a feeder 20 and a first reaction zone 30 and a second reaction zone 38 .
  • the feeder 20 would contain a supply of sorbent of regenerable oxides of manganese and/or regenerated oxides of manganese.
  • the feeder 20 is configured to handle and feed oxides of manganese, which, upon regeneration, are in particle form and defined by the chemical formula MnO X where X is about 1.5 to 2.0.
  • the first reaction zone 30 is configured for introduction of the sorbent in a gas containing SO X and NO X .
  • the first reaction zone 30 may be a section of pipe/duct, possibly configured as a fluidized bed, a pseudo-fluidized bed, a reaction column, a fixed bed, a pipe/duct reactor, a moving bed, a bag house, an inverted bag house, bag house reactor, serpentine reactor, and a cyclone/multiclone.
  • the second reaction zone 38 a fluidized bed, a pseudo-fluidized bed, a reaction column, a fixed bed, a pipe/duct reactor, a moving bed, a bag house, an inverted bag house, bag house reactor, serpentine reactor, and a cyclone/multiclone.
  • the second reaction zone is a bag house, such as commercially available bag house, an inverted bag house according to the invention, or a bag house reactor according to the invention.
  • the gas is introduced into the first reaction zone 30 and is contacted with sorbent introduced into the first reaction zone 30 from the feeder 20 and is contacted with the sorbent for a time sufficient to primarily effect SO X capture at a targeted SO X capture rate.
  • oxides of manganese can more readily capture SO 2 in a gas stream absent of NO, and also can more readily capture NO in a gas stream absent of SO 2 , than when the gas stream contains both SO 2 and NO.
  • SO X capture tends to proceed at a much faster rate than NO X capture when the two pollutants are present in a gas stream.
  • the gas and sorbent may be introduced separately or commingled before introduction into a reaction zone. Once the gas and sorbent have been contacted for sufficient time, the SO X is captured by reacting with the sorbent to form sulfates of manganese to substantially strip the gas of SO X .
  • the gas substantially stripped of SO X passes from the first reaction zone 30 into the second reaction zone 38 .
  • the second reaction zone 38 is configured for introduction of sorbent and the gas substantially stripped of SO X .
  • the gas is further contacted with sorbent for a time sufficient to primarily effect NO X capture at a targeted NO X capture rate.
  • the NO X is captured by reacting with the sorbent to form nitrates of manganese to substantially strip the gas of NO X .
  • the second reaction zone 38 is further configured so that the gas which has been substantially stripped of both SO X and NO X is rendered free of reacted and unreacted sorbent. The gas may then be vented from the second reaction zone 38 to a stack 40 where the gas is released to the atmosphere.
  • Differential pressure across the reactor system is regulated by a control sub-element (not shown in FIG. 1 ) so that any differential pressure across the system is no greater than a predetermined level.
  • the control sub-element may control other system parameters such as feeder rate, SO X and/or NO X capture rate, and the inlet gas temperature into the reaction zones.
  • the system of the invention is highly adaptable and, in another embodiment, is generally comprised of a feeder 20 , a first reaction zone 30 , a second reaction zone 38 , and at least one control sub-element for regulating process parameters.
  • the system is comprised of a feeder 20 as previously described and a modular reaction unit 60 comprised of at least three interconnected reaction zones.
  • the reaction zones are three interconnected bag houses 62 , 64 , 66
  • the modular reaction unit may be understood.
  • the bag houses 62 , 64 , 66 are connected so that a gas containing SO X and/or NO X can be routed through any one of the bag houses, any of the two bag houses in series, or all of the at least three bag houses in series or in parallel or any combination of series or parallel.
  • Each bag house is separately connected to the feeder 20 and to the external gas source 15 .
  • sorbent and gas can be introduced into each bag house where SO X and NO X capture can occur when the gas is contacted with sorbent for a time sufficient to allow formation of sulfates of manganese, nitrates of manganese, or both.
  • the system in this embodiment may also include control sub-elements 50 (not shown) for regulating various process parameters.
  • the reaction zones of the modular unit 60 are not limited to bag houses and may be any combination of reaction zones useful in the inventory.
  • the section of pipe or duct (pipe/duct) preceding the bag house and that which is connected to an inlet of each bag house conveys gas into each bag house and is also configured as a first reaction zone 30 , a pipe/duct reactor, into which gas containing SO X and NO X flows along with the sorbent.
  • the gas is mixed with the sorbent in the pipe/duct reactor for a sufficient time to achieve SO X capture at a targeted capture rate.
  • the system operates as illustrated in FIG. 1 with each bag house 62 , 64 , 66 being a second reaction zone 38 into which the gas that has been substantially stripped of SO X passes from the first reaction zone 30 , pipe/duct reactor.
  • the system 10 is comprised of a feeder 20 , and three bag houses 70 , 76 , and 78 , a common conduit 73 and a diverter valve 74 .
  • Gas and sorbent are introduced into the first bag house 70 which serves as a first reaction zone of a two-staged SO X /NO X removal system where primarily SO X capture occurs.
  • the gas substantially stripped of SO X then passes from the first bag house 70 into the common conduit 73 .
  • the common conduit 73 is Y-shaped, but may be of any shape that allows gas to flow from the first bag house 70 and to be directed to the second and third bag houses 76 , 78 which each function as the second reaction zone of a two-staged SOX/NO X removal system.
  • a diverter valve 74 illustrated as a dotted line at the fork of the “Y”.
  • the diverter valve 74 is positioned in the common conduit 73 so as to direct the flow of gas from the first bag house 70 to the second bag house 76 and/or the third bag house 78 .
  • the diverter valve 74 has variable positions, in the first position gas from the first bag house 70 is directed to the second bag house 76 , in the second (variable) position gas from the first bag house 70 is directed to both the second and third bag houses 76 , 78 , and in the third position, as illustrated in FIG. 3 , the gas from the first bag house 70 is directed to the third bag house 78 .
  • Gas exiting the second and third bag houses 76 and 78 may be vented and directed for further processing or handling (e.g. directed to stack 40 or directed to a subsequent reactor for Hg removal).
  • the system of this embodiment may incorporate any combination of the reaction zones useful in the invention and is not intended to be limited to bag houses.
  • the system illustrated in FIG. 3 may further comprise an off-line loading circuit 42 .
  • the off-line loading circuit 42 is brought into use after the filter bags have been pulsed to clean them of filter cake so reacted sorbent can be removed for recycling or regeneration.
  • There may be more than one off-line loading circuit 42 as shown in FIG. 3 , each separately connected to a bag house 76 and 78 .
  • the off-line loading circuit is connected to a sorbent feeder and a bag house via an off-line loading circuit conduit 44 and incorporates a fan 46 for blowing air commingled with sorbent into the bag houses 76 and 78 in order to pre-load the fabric filter bags in the bag houses by building a filter cake thereon.
  • the off-line loading circuit can be closed or switched off and the diverter valve 74 moved to a position to permit the flow of process gas through the bag house that is being brought back on line.
  • the sorbent When NO X is captured by the sorbent, the sorbent may not be completely loaded or spent thus having remaining reactive sites. Even though it may no longer be effective as an efficient sorbent for NO X at this point, the sorbent may have reactive sites that could be utilized efficiently for SO X capture.
  • the partially loaded reacted sorbent or NO X -reacted sorbent in a second reaction zone of a two-stage SO X /NO X removal system could be removed from the second reaction zone and fed into the first reaction zone to allow additional SO X capture with, or loading onto, the sorbent. This would decrease the frequency at which sorbent regeneration is needed and reduce the amount of virgin or unreacted sorbent that would need to be introduced into the first reaction zone.
  • the system 10 is comprised of a first reaction zone 30 , a second reaction zone 38 , a feeder 20 containing virgin or unreacted sorbent, and a NO X -reacted sorbent feeder 21 .
  • the first reaction zone 30 of system 10 is connected to external gas source 15 and gas flows from the external gas source 15 to the first reaction zone 30 , from the first reaction zone 30 to the second reaction zone 38 , and from the second reaction zone 38 is either vented to stack 40 or directed on to another system unit such as a mercury-sorbent reactor (not shown).
  • the feeder 20 can feed virgin or unreacted sorbent into the first reaction zone 30 and the second reaction zone 38 .
  • NO X -reacted sorbent is removed from the second reaction zone and is conveyed from the second reaction zone to the first reaction zone via NO X -reacted sorbent feeder 21 where the NO X -reacted sorbent with available reaction sites is further contacted with a gas containing both SO X and NO X to remove and capture SO X .
  • reacted sorbent feeders allows sorbent to be recycled to a reaction zone where unreacted sites on the surface of the sorbent can be utilized.
  • a sorbent may be recycled this way several times before regeneration is necessary due to the reduction in available reaction sites on the surface of sorbent particles. This represents significant cost savings and more economical and complete use of the sorbent.
  • the surfaces of sorbent particles may become obstructed, for example, by compaction or agglomeration.
  • the physical manipulation and handling of the reacted sorbent re-orients the particles making unexposed surfaces available to capture targeted pollutants.
  • the recycling of reacted sorbent in this way may proceed as shown in FIG. 4 in a counter-flow manner as discussed above. Recycling may also proceed by removing reacted sorbent from a reaction zone conveying it to a reacted sorbent feeder and introducing or re-introducing the reacted sorbent into the same reaction zone. This is shown in FIG. 28 , where reacted sorbent feeder 21 A receives reacted sorbent conveyed from the first reaction zone 30 and reacted sorbent from reacted sorbent feeder 21 A is re-introduced into the first reaction zone 30 .
  • reacted sorbent from second reaction zone 38 is conveyed to reacted sorbent feeder 21 B and re-introduced into the second reaction zone 38 .
  • This may be desirable where a first targeted pollutant is being captured in the first reaction zone and a second targeted pollutant is being captured in the second reaction zone. If, for example, SO X is being captured in the first reaction zone 30 , the SO X reacted sorbent when it is spent or ceases to be effective for SO X removal can then be routed for regeneration and recovery of sulfates as alkali or ammonium sulfate, useful commercial product.
  • the NO X reacted sorbent can be removed when it ceases to be effective for NO X removal and directed for regeneration and recovery to produce alkali or ammonium nitrates, again, useful commercial by-products.
  • Capture rates may be affected by the gas inlet temperature as it enters a reaction zone and may need to be adjusted, cooled or heated to achieve a desired capture rate for SO X and/or NO X . This can be accomplished with a heat exchanger.
  • the system may further include a heat exchanger preceding each reaction zone of a system of the invention.
  • the system of the invention as illustrated is substantially the same as the illustration of FIG. 1 , depicting first and second reaction zones 30 and 38 , feeder 20 , external gas source 15 , and stack 40 .
  • heat exchangers 72 A, 72 B have been introduced into the system before each reaction zone.
  • the heat exchangers 72 A, 72 B may be utilized to heat or cool the gas stream prior to entry into each reaction zone. As the gas enters into the system, if the gas temperature is above the thermal decomposition temperature(s) of either sulfates of manganese or nitrates of manganese, the heat exchangers 72 A, 72 B will operate to cool the gas to a desired temperature based upon whether SO X capture or NO X capture is the primary pollutant captured in the reaction zone. Similarly, if the gas were below a desired temperature set point, the heat exchangers 72 A, 72 B will operate to heat the gas to the desired temperature.
  • the heat exchangers 72 A, 72 B may be a gas-to-gas cooler or a heater unit, or other suitable means for accomplishing heating and cooling of gases to assure that the gas inlet temperature at a targeted temperature or within an acceptable range.
  • the gases entering the system from external gas source 15 may be any of a variety of process or industrial gases. These gases when generated encompass a range of temperatures. Due to simple economics and the design of various plants and facilities for efficient use of waste heat which is captured or transferred to provide heat for various processes at a facility, these process gases will typically have a temperature ranging from 250° F. to 350° F. or 120° C. to 180° C. In less typical situations, these gases may have temperatures upwards of 1000° F., or 540° C. Gases at these temperatures are readily processed in the systems of the invention and the heat exchangers 72 A, 72 B can be utilized to maintain the gas within these temperature ranges if desired. The system can also process gases at much higher temperatures such as 1000° F.
  • the gas temperature should not exceed, respectively, the thermal decomposition temperature(s) of sulfates of manganese and nitrates of manganese.
  • the thermal decomposition temperature would depend upon the species formed during capture. It has been reported that that sulfates of manganese may thermally decompose at temperatures approximating 950° C. Similarly, nitrates of manganese are believed to thermally decompose at temperatures ranging up to 260° C.
  • the system of the invention can process gases approaching these thermal decomposition temperatures. But, more typically, the system in practice will be operated in temperature ranges approximating those of process gases from industrial sources.
  • Heat or waste heat from the process gases of a facility may be utilized in the regeneration and recovery processes discussed herein below. Further, the waste heat may be utilized for purposes of sorbent preheating which serves to “activate” sorbent prior to introduction into a reaction zone. Although the exact mechanism of activation is not known, it is generally known that oxides of manganese can be “activated” with heat. Thus, as can be seen in FIG. 28 , a system according to the invention may further include a sorbent preheater 22 which may actually be part of or separate from sorbent feeder 20 .
  • the source of heat for the sorbent preheater may be any heat source, but waste heat from facility processes can be economically efficiently utilized for this purpose.
  • the SO X and/or NO X capture rate may be regulated by the amount of sorbent fed into the reaction zones.
  • gas measuring devices such as continuous emission monitors (CEMS) are utilized to measure the composition of the gas at the inlet to the reaction zone and at the outlet of the reaction zone.
  • CEMS continuous emission monitors
  • the gas flows from the external gas source 15 and past CEMS 80 A where the gas composition is measured prior to entry into first reaction zone 30 .
  • Another CEMS 80 B is provided after the first reaction zone 30 to measure the concentration of the gas substantially stripped of SO X and/or NO X as it passes from the first reaction zone 30 .
  • the gas may be vented to a stack 40 , passed to a second reaction zone 38 , or another system unit for further processing.
  • FIGS. 6 through 9 A conventional, commercially available bag house 82 is depicted in FIGS. 6 through 9 .
  • FIG. 6 is a perspective view of a bag house 82 .
  • FIG. 7 is an end elevation view showing a bag house 82 .
  • FIG. 8 is a top plan view of a bag house 82 .
  • FIG. 9 is a side elevation view of a bag house 82 .
  • Within the bag house 82 are a plurality of bags 88 also referred to as filter fabric bags shown in FIGS. 7 through 9 . As can be seen in FIGS.
  • the bag house 82 has a plurality of filter fabric bags 88 suspended therein. Typically, they are suspended from a frame or support structure at the top of the bag house 82 .
  • the filter bags 88 may be of various shapes, e.g., conical or pyramidal, and include an internal frame and suitable fabric filter. Those skilled in the art would be able to select suitable filter fabric materials from those commercially available.
  • Gas and entrained sorbent enters the bag house 82 through the bag house inlet 92 , shown in FIGS. 7 through 9 , and by virtue of an applied differential pressure, gases are forced through the fabric of the bags 88 and the entrained sorbents are separated from the gas by forming a filter cake on the surface of the bags 88 .
  • the filter cake thus formed is a reaction medium where pollutants are contacted with and removed by the sorbent.
  • the commingled gases and sorbents move vertically upward and contact the fabric and/or the filter cake formed thereon.
  • the bags 88 are configured to permit the gases to be directed from the outside to the inside of the bags to a conduit at the top of the bag house 82 and then to the bag house outlet 98 , shown in FIGS. 6 through 9 .
  • the filter bags 88 may be periodically pulsed or otherwise agitated in order to adjust differential pressure across the bag house 82 , which frees some or all of the filter cake and allows gas to flow more freely through the filter cake and the fabric filter bags. If the filter cake is allowed to get too thick, excess differential differential pressure across the bag house or the system of the invention may result. Thus, the pulse intensity or frequency can be utilized to regulate or adjust differential pressure.
  • the bags 88 may be pulsed to free the bags 88 of virtually all reacted and unreacted sorbent not otherwise removed during normal operations.
  • the reacted and unreacted sorbent or filter cake fall from the bags 88 by gravity into a hopper 112 (seen in FIGS. 7 and 9 ) at the bottom of the bag house 82 for subsequent removal from the bag house hopper 112 . Removal from the hopper 112 may be accomplished with a screw conveyor or by other appropriate means, even manually.
  • a thicker filter cake will lead to increased removal efficiency, but at the price of extra power required to force the external gas source through the reaction zone.
  • more power is required for an induction fan to pull exhaust gases through the bag house when the filter cake thickness is greater.
  • the differential pressure may thus be maintained at an optimal level, trading off increased power requirements against the increased pollutant removal.
  • the thicker the filter cake the longer the residence time of the sorbent material in the system. Longer residence time of the gas in the filter cake results in better removal efficiencies. Higher sorbent loading rates results in less material that will have to be regenerated. This may also be taken into consideration in setting the differential pressure set point.
  • the plurality of filter bags is shown in position within the bag house.
  • a pulse valve 124 utilized to pulse the fabric bags 88 in order to reduce filter cake thickness or to free the filter cake from the bags 88 .
  • the bag house may be provided with a number of pulse valves 124 . During operation, these pulse valves 124 may be activated sequentially or randomly in order to pulse the bags 88 in order to regulate and control differential pressure across the bag house 82 or the system as a whole. When the bag house is taken off-line, the bags may be pulsed to free the bags of virtually all filter cake so that reacted and unreacted sorbent may be removed.
  • the bag house illustrated in FIG. 6 through 9 is of a conventional design.
  • a novel bag house according to the invention is illustrated.
  • This bag house which can be utilized in the system of the invention, is referred to as an inverted bag house 140 .
  • the inverted bag house 140 eliminates the need for high can velocities, and permits downward, vertical flow of gases and reacted and unreacted sorbent.
  • the inverted bag house 140 is comprised of a bag house housing 142 , at least one inlet 145 , a plurality of fabric filter bags 88 , a support structure 149 for the filter bags, a hopper 152 to receive and collect reacted and unreacted sorbent, an outlet 154 , and a conduit 158 .
  • the bag house housing permits the introduction of gases and reacted and unreacted sorbent entrained in the gases, has a top and a bottom and is configured for gases to flow vertically downward from the top to the bottom of the bag house.
  • the inlet 145 is located near the top of the bag house housing and is configured for the introduction of gases and reacted and unreacted sorbent entrained in the gases into the bag house.
  • the plurality of fabric filter bags 88 are configured to allow gas to flow from the outside of the bags 88 to the inside of the bags 88 under an applied differential pressure and to prevent the passage of reacted and unreacted sorbent from the outside to the inside of the bags 88 , thereby separating reacted and unreacted sorbent from the gas and forming a filter cake on the bags 88 .
  • the support structure 149 is configured to receive and support the fabric filter bags 88 and to provide openings through which reacted and unreacted sorbent may be freely passed downward into the hopper 152 by gravity.
  • the hopper 152 is configured to receive the reacted and unreacted sorbent and to permit the removal of the reacted and unreacted sorbent.
  • the inverted bag house 140 also has an outlet 154 located near the bottom of the housing 142 below the bags 88 and above the hopper 152 .
  • the outlet 154 is connected to a conduit 158 located below the fabric filter bags 88 and positioned to receive gas passing through the fabric filter bags.
  • Conduit 158 conveys gas to the outlet so that the gas may be vented or passed from the inverted bag house 140 .
  • a bag house reactor 150 of the invention is illustrated.
  • This bag house reactor 150 can also be utilized in the system in place of a conventional bag house.
  • the bag house reactor 150 has interior surface 154 and exterior surface 152 . It may be viewed as having an upper section 156 , central section 157 and lower section 158 . Generally located in the central and/or lower sections 157 , 158 is a variable venturi 160 .
  • the purpose of the variable venturi 160 is to adjust the velocity of gas flowing through the venturi opening within the bag house reactor 150 .
  • the variable venturi 160 is configured to adjust the position of the variable venturi by varying the space or distance between the variable venturi 160 and the interior surface 154 of the bag house reactor 150 .
  • variable venturi position detector 367 shown in FIG. 23 for determining the position of the variable venturi 160 and a variable venturi positioner 368 (shown in FIG. 23 ) for adjusting the position of the variable venturi 160 are provided.
  • variable venturi 160 With the variable venturi 160 contacting the interior surface 154 of the bag house reactor 150 , gas cannot flow from the lower section 158 to the central and upper sections 156 , 157 of the bag house. By opening the space between the variable venturi 160 and the interior surface 154 , gas is allowed to flow through the reactor 150 . Gas introduced through gas distribution conduit 164 and the gas distribution port 162 flows from the lower section 158 to above the variable venturi 160 and into the central and upper sections 156 , 157 , and to the filter bags 88 . When the space between the variable venturi 160 and the interior surface 154 is wide, the gas flows at lower velocities which allows some of the sorbent suspended above the variable venturi 160 to fall into the hopper 112 .
  • sorbent distribution port 166 connected to a sorbent feed conduit 168 .
  • the sorbent distribution port 166 is positioned above the variable venturi 160 to allow the introduction of sorbent into the upper section 156 of the bag house reactor 150 .
  • the sorbent distribution port 166 is configured to allow introduction of sorbent into the bag house.
  • Port 162 is configured to allow introduction of gas into the bag house reactor.
  • the bag house reactor 150 has a plurality of fabric filter bags 88 secured therein.
  • the fabric filter bags are mounted in the upper section 156 of the bag house reactor 150 and extend downward into the central section 157 .
  • a sorbent hopper 112 At the bottom of the bag house reactor in the lower section 158 , is a sorbent hopper 112 where reacted and unreacted sorbent is collected.
  • the sorbent hopper is connected to outlet 172 .
  • Outlet 172 has an outlet valve 176 , which in the open position allows for the removal of sorbent from the hopper 112 .
  • a vent 180 is located in the top section 156 of the bag house reactor 150 . Gases flowing through the bag house reactor 150 pass from the bag house reactor 150 through the vent 180 and may be directed on for further processing or venting to the atmosphere.
  • Sorbent entrained in gases containing pollutants such as SO X and NO X can begin reacting with the sorbent during transport in the sorbent feeder conduit 168 . Since SO X is more reactive than NO X , the more reactive SO X is primarily captured while it is being transported to the bag house reactor 150 in the first sorbent feeder conduit 164 . At lower gas velocities the larger solids will abrade into finer solids and re-fluidize. The finer solids will travel upward through the opening between the variable venturi 160 and the interior surface 154 where the sorbent is suspended to create a pseudo fluidized-bed above the variable venturi 160 and the finest particles will travel upwards to form a filter cake on the surface of the fabric filter bags 88 .
  • variable venturi 160 By adjusting the position of the variable venturi 160 increasing or decreasing the space between the variable venturi 160 and the interior surface 154 of the bag house reactor 150 gas velocity is correspondingly decreased or increased.
  • the variable venturi may be positioned to achieve a gas velocity sufficient to suspend a selected coarse fraction sorbent just above the orifice to create a pseudo-fluidized bed which may primarily or preferentially capture SO X , since SO X is more reactive than NO X .
  • Partially stripped gas flows upward from the pseudo-fluidized bed carrying the finer fraction sorbent onto the filter bags.
  • the resulting filter cake provides a reaction medium where “slower” reactions, such as NO X removal may occur.
  • variable venturi 160 position may be adjusted to achieve the desired thickness of filter cake on the fabric bags 88 thereby increasing or decreasing the differential pressure across the system also to balance overall differential pressure by changing the venturi restriction.
  • the fabric filter bags 88 may also be pulsed to partially remove filter cake and thus regulate differential pressure.
  • the gas flow rate entering port 162 can be adjusted to regulate upward gas velocity so that the bags 88 may be pulsed to allow some of the loaded sorbent to fall into the hopper 112 without being reentrained in the gas or redeposited on the bags 88 .
  • variable venturi 160 one can operate the system so that sorbent suspended above the venturi, loaded with the faster reacting gases, can primarily be captured by falling to the hopper before being carried up to the filter bags 88 .
  • the fraction of sorbent loaded with faster reacting gases can then be removed from the hopper 112 by opening the outlet valve 176 so that that fraction may be removed from the hopper 112 through the outlet 172 .
  • the fabric filter bags 88 can be pulsed to release the sorbent loaded with slower reacting gases which would then fall through the variable venturi 160 into the hopper 112 .
  • the sorbent loaded with slower reacting gases could then be removed from the hopper through loaded sorbent outlet 172 after the outlet valve 176 has been opened. This could allow for the separate processing of the different loaded sorbent fractions to regenerate the sorbent and produce useful by-products.
  • Differential pressure which represents sorbent filter cake thickness
  • NO X and SO X removal efficiency may be regulated by various processes, including sorbent feeder rate and temperature control at the inlet to the reaction zones of the system. These controls are achieved by the control sub-elements or electronics, which include hardware and software and also are referred to herein below as control loops.
  • a differential pressure control loop 300 is illustrated. External gas source 15 is illustrated feeding first reaction zone 30 , which in turn feeds generally an output gas stream 316 , which can feed either stack 40 or second reaction zone 38 .
  • the differential pressure across first reaction zone 30 may be measured as illustrated as difference in pressure between the inlet pressure 306 and the outlet pressure 304 .
  • inlet pressure 306 and outlet pressure 304 feed a differential pressure cell 308 , which sends a differential pressure signal 310 to a differential pressure controller 302 .
  • Differential pressure controller 302 can be any appropriate controller, including a proportional integral derivative (PID) controller. As used herein, PID controllers may be understood to operate using any combination of the proportional, integral, and derivative components.
  • Differential pressure controller 302 can accept a set point 312 , indicating the desired differential pressure across first reaction zone 30 . Set point 312 can be human or computer generated.
  • differential pressure controller 302 and other controllers, may be implemented as a stand-alone controller, distributed control system, as a PID block in a programmable logic controller (PLC), or as a set of discrete calculations within a PLC.
  • PLC programmable logic controller
  • Differential pressure controller 302 generates an output signal or output 314 to control the differential pressure across first reaction zone 30 .
  • differential pressure controller 302 output signal 314 may control the shaking, pulsing, or other removal of sorbent which has formed a filter cake on the filter medium.
  • first reaction zone 30 includes numerous filter bags which can have an exterior containing sorbent material and an interior having a lower pressure, acting to pull the sorbent material against the bag filter media.
  • a compressed air jet, pulse valve 124 is periodically discharged within the interior of the filter.
  • the compressed air pulse is sufficiently strong to dislodge a portion of caked sorbent material from the filter material even during normal operation of the bag house, not requiring the shut down of the bag house.
  • the individual bags are sequentially pulsed to dislodge a portion of caked sorbent material. The frequency of the pulsing may be increased in order to maintain a thinner filter cake thickness.
  • output 314 from differential pressure controller 302 includes a frequency for pulsing filters within a bag house reaction zone. Differential pressure controller 302 , in response to a higher differential pressure than set point, may increase the frequency of filter pulsing through output 314 . Conversely, in response to a lower differential pressure than set point, differential pressure controller 302 may decrease the frequency of filter pulsing through output 314 .
  • the individual filter bags are formed of cylindrical filter media disposed about a rigid cylindrical cage, with the compressed air jet, pulse valve 124 , disposed within the cylindrical rigid cage.
  • the sorbent material filter cake builds up on the outside of the filter media, forming a thick filter cake.
  • the pulsed air jet can force the filter media momentarily away from the cylindrical rigid cage, thereby cracking the caked sorbent material and dislodging it, thereby allowing the sorbent material to fall under gravity to be collected and removed from the reaction zone.
  • a thicker filter cake can lead to increased pollutant removal efficiency, but at the price of extra power required to force the external gas source through the reaction zone.
  • more power is required for an induction fan to pull exhaust gases through the bag house when the filter cake thickness is greater.
  • the differential pressure may thus be maintained at an optimal level, trading off increased power requirements against the increased pollutant removal.
  • the contact or residence time of the gas with sorbent material in the system increases, resulting in more complete reaction. Therefore less material will have to be regenerated. This may also be taken into consideration in defining the differential pressure set point.
  • a gas stream may be seen to flow from gas source 15 , through a first continuous emission monitor system (CEM) 80 A, then to first reaction zone 30 , then to a second CEM 80 B.
  • CEM continuous emission monitor system
  • a sorbent feeder 20 may be seen to feed material to first reaction zone 30 .
  • Feeder 20 may be a screw feeder having a variable speed screw, auger, pneumatic conveyor, or other method to move sorbent, within.
  • CEM 80 A and CEM 80 B can represent a NO X analyzer and/or a SO X analyzer.
  • CEM 80 A is a chemiluminescent monitor, for example, Thermo Electron model 42 H.
  • CEM 80 A includes a SO X monitor such as Bovar Western Research model 921NMP, utilizing a spectrophotometric method.
  • CEM 80 A and CEM 80 B include both NO X and SO X analyzers.
  • a feed controller 322 may be seen to accept a first input 328 from an outlet CEM signal 325 . Controller input 328 may be used as a feedback signal to control the feeder rate.
  • a feeder controller 322 also has a second input 330 accepting an inlet measurement signal 324 , also including pollutant concentration data. Second input 330 may be used to display the incoming gas concentrations and/or to calculate percentage removal set points in the system. Feeder controller 322 also accepts a set point signal 326 , indicating the desired feed rate and/or the desired NO X or SO X concentration exiting first reaction zone 30 . Feeder controller output 332 can be a variable frequency drive signal, among other available signals, to control the speed of feeder 20 .
  • Feeder controller 322 may be any suitable controller, including a PID controller utilizing any combination of its individual modes.
  • set point 326 is set at a desired concentration for either NO X or SO X , depending on the embodiment.
  • the gas concentration signal 325 from CEM 80 B can be used by feeder controller 322 to calculate output signal 332 .
  • output 332 can be increased to increase the speed of feeder 20 , which will put more sorbent into first reaction zone 30 , thereby dropping the pollutant concentration.
  • feeder controller output 332 can be decreased to decrease the rate of sorbent addition from feeder 20 into first reaction zone 30 .
  • the gas to be cleaned may be seen to flow from external gas source 15 , through a first heat exchanger 72 A, through first reaction zone 30 , through second heat exchanger 72 B, through a second reaction zone 38 , and to stack 40 .
  • FIG. 15 illustrates a system having two reaction zones and two heat exchangers.
  • the temperature to the first reaction zone 30 may be seen to be controlled by a first temperature controller 340 , which accepts a set point 344 and a temperature input 342 , and generates an output 346 to first heat exchanger 72 A.
  • the maximum desired temperature in the reaction zone may depend on the thermal decomposition temperature(s) of the sulfates of manganese or nitrates of manganese, depending on whether NO X and/or SO X are being removed. Lower temperature set points will be above the dew point of the system and adjusted automatically or manually as needed.
  • the temperature to be controlled is measured at the reaction zone itself, rather than at the outlet from the heat exchanger, in order to more directly measure the temperature in the reaction zone.
  • temperature controller 340 output 346 may be a variable analog signal or other variable signals used to control a variable speed blower to control the outlet temperature from heat exchanger 72 A. Temperature controller 340 may increase/decrease the cooling air passing through heat exchanger 72 A when the temperature in first reaction zone 30 is greater/less than set point 344 .
  • a second temperature controller 350 may be seen to accept a temperature input 352 from second reaction zone 38 and a set point 354 , and to generate an output 356 for heat exchanger 72 B.
  • Second temperature controller 350 may be similar to first temperature controller 340 .
  • heat exchanger 72 B is used to cool the incoming gas, using ambient air as the cooling medium.
  • second temperature controller 350 may increase/decrease the output to a variable speed drive coupled to a blower when the temperature of second reaction zone 38 is greater/less than set point 354 .
  • FIG. 15 also illustrates how a first feeder 20 A may feed material to first reaction zone 30 .
  • a second feeder 20 B may be used to feed sorbent material to second reaction zone 38 .
  • First feeder 20 A and second feeder 20 B may be controlled as previously described with respect to feeder 20 in FIG. 14 .
  • System 400 may be seen to include generally a programmable logic controller (PLC) 402 and a local on-site computer 440 . Both PLC 402 and local computer 440 may be coupled to the World Wide Web 424 . PLC 402 and local computer 440 may be accessed over World Wide Web 424 by a user PC 428 , a hand-held computer such as a Palm PilotTM 430 , and other devices 426 which can access World Wide Web 424 .
  • PLC programmable logic controller
  • local computer 440 may be coupled to the World Wide Web 424 .
  • PLC 402 and local computer 440 may be accessed over World Wide Web 424 by a user PC 428 , a hand-held computer such as a Palm PilotTM 430 , and other devices 426 which can access World Wide Web 424 .
  • PLC 402 may be seen to include a PLC rack 403 .
  • PLC 402 is an Allen-BradleyTM PLC.
  • the Allen-BradleyTM PLC is a PLC 5 .
  • PLC rack 403 may be seen to include a PLC processor module 408 , and Ethernet module 410 , and a DC power supply 412 .
  • PLC 402 may be seen to include an input/output bus 406 , for example a ControlnetTM bus 406 , and input/output bus 414 , shown as Data Highway PluSTM 414 , which is connected to local programming computer 416 .
  • Bus 406 in the present example, may be seen to be coupled to numerous input/output cards 404 .
  • Input/output cards 404 may be seen to include a discrete I/O cards 404 A, mixed discrete and analog I/O cards 404 B, discrete I/O cards 404 C, discrete and analog I/O cards 404 D, more discrete and analog cards I/O 404 E, a variable frequency drive card 404 F, and a second variable frequency drive card 404 G.
  • the discrete I/O may be commonly used to accept inputs from discrete switches such as limit switches, and the output used to open and shut valves and to start and stop motors.
  • the analog I/O may be used to accept input analog measurements from sensors and to control variable position output devices.
  • the variable frequency drive outputs may be used to control variable speed motors, for example, variable speed motors used to control airflow pass the heat exchangers.
  • PLC 402 may be seen to be coupled to an Ethernet hub 420 via an Ethernet cable 418 .
  • a DSL modem 422 enables Ethernet hub 420 to be accessed from World Wide Web 424 .
  • Local computer 440 may also be seen to be coupled to Ethernet hub 420 via an Ethernet cable 444 .
  • Ethernet cable 444 can be coupled to an Ethernet card 446 .
  • local computer phone line 442 may be coupled to a PC modem card 450 .
  • the PC modem card can provide access to World Wide Web 424 when a DSL modem line is not available or is not functioning.
  • Local computer 440 may be seen to include software or software component 448 which can include, for example, Microsoft Windows 2000TM as an operating system that is providing both server and terminal functionality.
  • Software component 448 can include an Allen-BradleyTM OLE Process Control (OPC) module 452 , as well as an Intellutiomm OPC server component 454 .
  • OPC OLE Process Control
  • An Intellutionm process database component 456 may also be included.
  • Allen-BradleyTM OPC server 452 can provide communication between local on-site computer and Allen-BradleyTM PLC 402 .
  • IntellutionTM OPC server 454 can provide communication between the Allen-BradleyTM inputs and outputs and the Intellutiomm process monitoring and control system residing within local computer 440 .
  • IntellutionTM process database 456 may be used to monitor and control the entire process.
  • IntellutionTM Work Space 458 may be used to allow access to monitor, display, and change current data, and a historical data area 460 may be used to trend historical process data.
  • An AccessTM/OracleTM RDB component 462 may also be included to provide database reporting.
  • a report module for example, a Microsoft ExcelTM or CrystalTM report component 464 may also be provided.
  • an IntellutionTM web server component 466 is provided, as is a MicrosoftTM Internet Information Server (IIS) module 468 .
  • local on-site computer 440 has a local terminal or CRT as well to display, monitor, and change data residing in the IntellutionTM Work Space 458 .
  • IIS Internet Information Server
  • control system 400 In some embodiments, most or all of the controls discussed below in the present application are implemented within control system 400 . In one embodiment, most or all controls are implemented within Allen-BradleyTM PLC 402 .
  • PID control blocks can be implemented using provided Allen-BradleyTM PID blocks, or the blocks can be created from primitive mathematical operations using ladder logic. Control blocks such as the table blocks and selector blocks of FIGS. 24 and 25 may be implemented within Allen-BradleyTM PLC 402 using standard blocks.
  • Local on-site computer 440 may be used to store and output values such as PID set points and selector switch values from local computer 440 to registers or control blocks within PLC 402 .
  • the set points to heat exchanger, differential pressure, and feed rate control blocks may reside within local computer 440 and be downloaded to PLC 402 .
  • the set points may be obtained by local computer 440 from a local terminal and/or from World Wide Web 424 from devices 426 , 428 , and/or 430 , protected by appropriate security.
  • Local computer 440 can be used to provide historical trending, operator interface, alarming, and reporting.
  • Process graphic 450 as displayed on a human-machine interface is displayed.
  • Process graphic 450 may be displayed, for example, on an IntellutionTM IFIX system.
  • Process graphic 450 can be updated in real time and can reside on a personal computer, for example.
  • Process graphic 450 includes a manual switch 458 and an automatic switch 459 for controlling the control mode of the differential pressure across the bag house.
  • Process graphic 450 also includes a table of values 460 including the differential pressure set point, the actual differential pressure and the inlet temperature to the bag house.
  • An output table 462 is also illustrated, including the bag house outlet temperature, the flue gas flow rate, the inlet pressure to the bag house and the outlet pressure from the bag house.
  • a bag house 452 is shown diagrammatically including an inlet 454 and an outlet 456 .
  • An outlet emission table 464 is also illustrated, including the SO 2 , the NO X level, and the O 2 level.
  • Process graphic 450 may be used to monitor and control the bag house differential pressure, as previously discussed.
  • a process graphic 470 is illustrated as may be displayed on an IntellutionTM IFIX process graphic.
  • Process graphic 470 can monitor and control the absorbent feeder speed, including an increase button 471 and a decrease button 472 .
  • the actual feeder speed in pounds of sorbent per hour is illustrated at feeder speed 483 .
  • a scrubber inlet table 473 is illustrated, including a SO 2 level, a NO level, a NO 2 level, a NO X level, a CO level, and an O 2 level.
  • a scrubber outlet table 474 includes the same levels as the inlet, but at the scrubber outlet.
  • a NO X control section 475 on the process graphic includes a manual button 476 and an auto button 477 , as well as a set point 478 .
  • set point 478 may be used to control the feeder speed using the NO X set point.
  • an SO 2 control section 479 includes a manual control button 480 and an auto control button 481 , as well as a set point 482 .
  • set point 479 may be used to control the feeder speed using the SO 2 set point.
  • a process graphic 490 is illustrated, as may be found on a process control and monitoring station.
  • a cooler 491 is illustrated, having an inlet 492 and an outlet 493 , with the inlet and outlet temperatures being displayed in real time. Cooler 491 may be a heat exchanger as previously discussed.
  • Process graphic 490 includes a manual button 494 and an auto button 495 .
  • the bag house inlet temperature is displayed at 498 as is the cooler set point 497 .
  • the fan speed may be controlled by a PID controller using set point 497 .
  • Process graphic 490 also includes an outlet emission table 496 , including the SO 2 level, the NO X level, and the O 2 level.
  • differential pressure control loop 300 is illustrated in block diagram form.
  • Differential pressure controller 302 may be seen to accept set point 312 and actual differential pressure 310 , and to generate output signal 314 to control the differential pressure across bag house 30 .
  • differential pressure set point 312 may be set taking into account the desired pollutant removal target of the system, the power required to force gas through the filters, and the desired rate of sorbent replenishment.
  • feeder control loop 320 can include a reaction zone CEM unit 80 B that generates an output signal from the NO X and/or SO X emission analyzers.
  • Emissions/Feeder controller 322 can accept the NO X or SO X measured emission level through controller input 328 , and accepts a set point 326 indicating the desired NO X and/or SO X concentration. Controller 322 may also send a controller output 332 to sorbent feeder 20 .
  • sorbent feeder 20 may be a variable speed screw feeder, accepting a variable analog drive signal among others as its input from feeder controller 322 . The process trade-offs in setting set point 326 are as previously described.
  • FIG. 22 illustrates a control loop 341 for controlling the temperature of bag house 82 .
  • Temperature controller 340 is as previously described with respect to FIG. 15 .
  • Temperature controller 340 accepts a bag house temperature input 342 and desired bag house input temperature set point 344 , generating controller output 346 which can be fed as a fan speed control to heat exchanger 72 A.
  • the control scheme rationale is as previously described with respect to FIG. 15 .
  • FIG. 23 illustrates a venturi position controller 360 , which accepts a venturi position set point 362 and an actual venturi position input 364 , generating a controller output 366 which can be accepted by a variable venturi positioner at 368 .
  • the actual position of the variable venturi position may be measured by a position detector 367 .
  • the variable venturi position may be measured in units of 0 to 100%.
  • Venturi set point 362 may be set as a function of one of several desired process parameters.
  • the variable venturi position may be set to control the space between the variable venturi 160 and interior surface 154 , the cross-sectional flow area, available for the bag house inlet gas to flow around the flow occluding devise, variable venturi 160 , thereby controlling the fluidization velocity of the gas.
  • the flow cross-sectional area is decreased, the gas flow velocity increases, which can be used to support a deeper fluidized bed depth of sorbent material. If the gas flow velocity is made very high, only the densest sorbent particles will be able to descend against the swiftly rising gas and be collected from the system. If the fluid velocity is set very low, even the lightest particles will be able to settle out of the system quickly, thereby increasing the need for regeneration or recycling of material back to the reaction zone for more loading.
  • variable venturi controller 360 may be any suitable controller, including a PID controller, utilizing any combination of its modes.
  • a control scheme 370 is illustrated for controlling sorbent feeder 20 using one set of inputs selected from the group including NO X concentration, SO X concentration, and reactor zone differential pressure.
  • the control of sorbent feeder 20 may be accomplished by selecting one of the aforementioned control inputs, where the selection may be based on the greatest deviation from set point or error.
  • An error generator 373 may be seen to accept several actual measurement signals 384 , as well as several set points 385 .
  • the actual signals and set points may be used to generate corresponding errors, for example, using subtraction.
  • Error generator 373 may be seen in this example to output a NO X error 373 A, a SO X error 373 B, and a differential pressure error 373 C.
  • the outputs from error generator 373 may be accepted by an error selector gate 374 , with one of the input errors selected and output as the error to a controller error input 382 .
  • Error selector gate 374 may be operated manually to accept one of the several input errors in some embodiments.
  • error selector gate 374 may automatically select the largest error or deviation, to control based on the process variable or parameter most requiring attention.
  • sorbent feeder 20 may be controlled based upon the NO X concentration, the SO X concentration, or the differential pressure across the reaction zone.
  • Error selector gate 374 may select the highest deviation, or the highest percent of deviation, of these three error inputs. Error selector gate 374 can generate a selector output 386 which can be used to select which of the inputs a gain selector 372 is to select. Similarly, error selector gate 374 may output a selector output 383 which can be accepted by a set point selector gate 376 to select from various set points provided to the selector gate.
  • a gain table 371 may be implemented as a table in a fixed database, for example, a series of registers in a PLC.
  • Gain table 371 may be seen to include a NO X gain 371 A, a SO X gain 371 B, and a differential pressure gain 371 C.
  • the gains from gain table 371 may be seen to feed gain selector block 372 .
  • a gain selector output 377 may be sent to a controller gain input 379 .
  • a set point table 375 may be seen to include a NO X set point 375 A, a SO X set point 375 B, and a differential pressure set point 375 C.
  • the set points may be used as inputs to selector gate 376 , with selector output 383 being used to select one of the input set points.
  • Selector gate 376 may be seen to output one of the selected set points to controller set point input 380 .
  • Control scheme 370 thus provides a system and method for controlling the sorbent feeder rate based upon any one of the NO X concentrations, the SO X concentration or the differential pressure across the reaction zone. This can be accomplished using the selector blocks previously discussed while only requiring a single controller. Controller 378 can be, for example, a PID controller, using any combination of its individual modes.
  • Control scheme 390 includes similar control blocks, tables, and outputs as previously described in FIG. 24 .
  • Control scheme 390 further includes the variable venturi control as one of the possible sets of inputs, gains, and set points to be used to control sorbent feeder 20 .
  • Gain table 371 may be seen to include a variable venturi gain 371 D.
  • Error generator 373 may be seen to generate a variable venturi error 373 D.
  • Set point table 375 may be seen to include a variable venturi set point 375 D.
  • Control scheme 390 may thus operate in a manner similar to control scheme 370 of FIG. 24 , but allowing for control based on the venturi position.
  • reaction zones and other units of the system of the invention may be connected by pipes, ducts, and lines, etc. which allow gas and/or sorbent to flow through and within the system and that reaction zones are in flow through communication in dual and multi stage embodiments of the invention.
  • the system may further include various hoppers, conveyors, separators, recirculation equipment, horizontal and vertical conveyors, eductors. Further, there may be modulating diverter valves, vibrators associated with feeders, compressors to provide instrument air to pulse filter fabric bags, as well as various meters and sampling ports.
  • the system and processes of the invention can be utilized to remove mercury (Hg) and fly ash.
  • Gases emanating from combustion of fuels, which contain mercury and sulfides, include mercury compounds, mercury vapor, ash, SO X and NO X . These gases and solids are commingled with oxides of manganese and are transported at a sufficient velocity as a gas-solids mixture to a reactor, which may be a bag house or other reactor/separating device. During transport and during residence in the reactor, oxidation-reduction reactions occur. These reactions cause the conversion of mercury vapor to mercury compound(s), and sorbent and/or alumina adsorb the mercury compound(s).
  • SO X and NO X are removed through reaction with oxides of manganese to form sulfate and nitrate compounds of manganese.
  • reaction products, unreacted sorbent (if any) alumina, adsorbed mercury, and ash are trapped and collected in the bag house and clean, substantially stripped gases are vented to the stack.
  • mercury and mercury compounds may also be removed.
  • the reacted and unreacted sorbent when removed from the reaction zones of the system may be further processed to generate useful products and to regenerate the sorbent as described herein below.
  • the system of the invention in its various embodiments may be utilized in a process for removal of oxides of sulfur and/or oxides of nitrogen, mercury (compounds and vapor), and other pollutants from a gas stream.
  • the processes generally involve providing a system according to the invention, whether single stage, dual-stage, or multi-stage. Gas and sorbent are introduced into a reaction zone and contacted for a time sufficient to effect capture of the targeted pollutant(s) thereby substantially stripping the gas of the targeted pollutant(s).
  • reaction zone In a single-stage removal process, the reaction zone would need to be a solid-gas separator operating as a reaction zone or else followed by a solid-gas separator in order to render the gas that has been substantially stripped of a target pollutant free of solids so that the gas may either be vented or directed for further processing.
  • the second reaction In a dual-stage removal process, the second reaction would preferably be a solid-gas separator operating as a reaction zone.
  • the last reaction zone in the series of reaction zones through which the process gas is directed would need to be a solid-gas separator operating as a reaction zone or else followed by a solid-gas separator in order to render the gas that has been substantially stripped of a target pollutant free of solids so that the gas may either be vented or directed for further processing.
  • Removal of SO X and/or NO X can be accomplished in a single single-stage removal system.
  • Sorbent and gas containing SO X and/or NO X are introduced into a reaction zone 30 where the gas and sorbent are contacted for a time sufficient to substantially strip the gas of SO X and/or NO X .
  • SO X is the primary target pollutant
  • the gas may be introduced at temperatures typically ranging from about ambient temperature to below the thermal decomposition temperature(s) of sulfates of manganese.
  • NO X is the primary target pollutant
  • the gas would be introduced at temperatures typically ranging from about ambient temperature to below the thermal decomposition temperature(s) of nitrates of manganese.
  • NO X will not be captured if the temperature of the gas is above the thermal decomposition temperature of nitrates of manganese.
  • the gas In the reaction zone, the gas would be contacted with the sorbent for a time sufficient to effect capture of the pollutant at a targeted capture rate.
  • the capture rate for the primary targeted pollutant would control or utilize a control sub-element, such as control loop 320 of FIG. 14 or control loop 390 of FIG. 25 .
  • the capture rate for the targeted pollutants can be monitored and adjusted.
  • the reaction zone would preferably be a solid-gas separator that renders the gas free of solids, such as reacted and unreacted sorbent and any other particulate matter in the gas so that the gas may be vented from the reaction zone or directed for further processing, after contacting the gas with sorbent for a sufficient time.
  • a system of the invention having at least two reaction zones, first and second reaction zone 30 , 38 as in FIG. 1 .
  • the system could be a system of the invention such as the modular reaction units illustrated in FIGS. 2 and 3 .
  • any of the bag houses 62 , 64 , 66 could serve as first and second reaction zones 30 , 38 depending upon how the gas is directed through the system.
  • the first bag house 70 would correspond to first reaction zone 30 and either or both of the second and third bag houses 76 , 78 would correspond to second reaction zone 38 .
  • other reaction zones may be substituted for the bag houses of FIGS. 2 and 3 and the process as described could be carried out.
  • gas and sorbent are introduced into first reaction zone 30 .
  • the gas is contacted with the sorbent for sufficient time to primarily effect SO X capture at a targeted capture rate.
  • the gas is rendered free of solids and then vented from the first reaction zone 30 .
  • Sorbent and the gas that has been substantially stripped of SO X are then introduced into second reaction zone 38 .
  • the gas is contacted with the sorbent for a sufficient time to primarily effect NO X capture at a targeted capture rate.
  • the gas is rendered free of solids and then vented from the second reaction zone 38 .
  • the vented gas may be directed to stack 40 to be vented or emitted into the atmosphere or directed on for further processing.
  • mercury compounds may be removed from gases by adsorption on fly ash and/or alumina.
  • alumina may be introduced with the sorbent in a reaction zone for purposes of removing mercury compounds and elemental mercury that has be oxidized to form oxides of mercury.
  • elemental mercury that is not oxidized and therefore not captured by the sorbent in a first or second reaction zone may be captured in a third reaction zone, which may be referred to as a mercury-alumina reactor or an alumina reactor.
  • the mercury compounds may be removed in a reaction zone by contacting the gas with sorbent for a time sufficient for the mercury compounds to adsorb on to the sorbent, and alumina if mixed with the sorbent to thereby substantially strip the gas of mercury.
  • the reaction zone is a solid-gas separator
  • mercury compounds adsorbed to fly ash would also be removed, thereby substantially striping the gas of mercury compounds.
  • the mercury compounds would similarly be removed, but depending upon which reaction zone is also a solid gas separator.
  • system and process of the invention are readily understood to include and contemplate the removal of not only SO X and/or NO X but other pollutants, mercury compounds, elemental mercury, TRS, and H 2 S.
  • the system and process of the invention has been tested at several power plants utilizing a SO X and/or NO X removal demonstration unit embodying a system according to the invention.
  • the demonstration unit utilized a bag house as the second reaction zone and a pipe/duct as a first reaction zone in a dual stage removal system.
  • the test runs and results are summarized in the following examples.
  • NO X concentrations were determined using EPA method 7E, chemiluminesent analysis method, and analyzed with a model 42H chemiluminescent instrument manufactured by Thermo Electron Inc. Sulfur dioxide (SO 2 ) concentrations were measured utilizing, a spectrophotometric analysis method employing a Bovar Western Research Spectrophotometric model 921NMP instrument. In order to obtain accurate and reliable emission concentrations, sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C. Gas flow rates in standard cubic feet per minute (scfm) were measured using AGA method #3, utilizing a standard orifice plate meter run.
  • the demonstration was conducted utilizing a series of test runs on live gas streams from a power plant. Said power plant operates steam boilers which are fired on high sulfur coal. During test runs, NO X and SO 2 concentration readings were taken continuously alternating from the inlet and the outlet of the demonstration unit. Gas flow rates were measured continuously.
  • the demonstration tests were performed utilizing two different forms of sorbent. The tests conducted utilized various forms of oxides of manganese as sorbent. The tests were performed with and without bag house filter pulsing.
  • Synthetic NO X gas was made on site by use of high-concentration bottle gas which was diluted into the inlet gas stream and processed by the demonstration unit.
  • the bag house was pre-loaded with oxides of manganese prior to introduction of test gas by operating the demonstration unit's blower at high speed (typically about 1200 scfm), and feeding the oxides of manganese into the gas stream at a high rate (between 40% and 90% of feeder capacity) in order to form a suitable filter cake on the fabric bags in the bag house.
  • Gas from cylinders containing NO X , 20% NO, and 20% NO 2 , (20,000 ppm) was metered into the bag house inlet through a rotameter-type flow gage.
  • NO X concentrations were measured at the bag house inlet and outlet on an alternating basis throughout the testing with the demonstration unit's continuous emissions monitoring system (CEMS), utilizing a Thermo Electron model 42H Chemiluminescent instrument.
  • CEMS continuous emissions monitoring system
  • sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C.
  • Tests were performed at varying levels of bag house differential pressure (measured in inches of water column) and flow rates (measured in scfm).
  • the NO X inlet concentrations ranged from 18.3-376.5 ppm with flow rates ranging from 260-1000. It has been determined that varying levels of filter cake thickness affect the NO X and SO 2 removal. A thicker filter cake increases the quantity of sorbent exposed to the gas, thus increasing the micro-reaction zone within the filter cake.
  • ⁇ P the differential pressure across the bag house
  • NO X concentrations were recorded once the system was in steady state and the readings were stable for up to 20 minutes.
  • the following table illustrates the level of NO X removal achieved as a function of inlet concentration, gas flow rate, and bag house differential pressure: Inlet Outlet Flow Run NO X NO X ⁇ P Rate No. (ppm) (ppm) % Reduction (in.
  • the boiler was operating on high sulfur coal of approximately 4-6% sulfur, resulting in emission concentrations of SO 2 in the range of 1200-2000 ppm and NO X concentrations in the range of 280-320 ppm.
  • a slipstream averaging 1000 scfm was diverted from the main stack exhaust and routed to the demonstration unit for reaction and sorption by the sorbent oxides of manganese.
  • SO 2 and NO X concentrations were measured at the scrubber inlet and outlet of the bag house on an alternating basis throughout the testing with the demonstration unit's continuous emissions monitoring system (CEMS).
  • CEMS continuous emissions monitoring system
  • SO 2 removal efficiencies of 99.8% and NO X removal efficiencies of 75.3% were achieved while processing on average 1000 scfm of exhaust gas at temperatures typically ranging from 150° F. to 250° F.
  • Test runs were conducted with varying levels of bag house differential pressures ranging from 0.5′′ to 8.6′′ of WC, which represents various levels of filter cake thickness.
  • Tests were also conducted with different rates of bag house filter bag pulsing and varying levels of oxides of manganese feed rates. Oxides of manganese powders that were used during this test described generally by 60% of particles less than 45 microns in size and having a BET surface area of approximately 30 m 2 /g.
  • SO 2 and NO X concentrations were measured at the bag house inlet and outlet on an alternating basis throughout the test with the demonstration unit's continuous emissions monitoring system (CEMS).
  • SO 2 concentrations were measured utilizing a Bovar Western Research model 921NMP spectrophotometric instrument and NO X concentrations were measured utilizing a Thermo Electron model 42H chemiluminescent instrument.
  • sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C.
  • SO 2 and NO X reduction efficiencies were measured at 99.9% and 91.6% respectively. Testing was conducted with varying degrees of differential pressure ( ⁇ P) across the bag house to affect the residence time of the targeted pollutants. Reaction chamber temperatures ranged from 150° F. to 280° F. It was determined that longer residence times resulted in improved capture rates for NO X . However, the fact that the SO 2 reaction occurs so rapidly and completely, the SO 2 reduction efficiency remains nearly complete (99.9%) at even the lowest of residence times. While operating the scrubber at 0 . 5 ′′-1.0′′ of WC across the bag house, a pollutant concentration reduction efficiency of 99.8% for SO 2 and 40.0% for NO X was achieved.
  • the reactor was designed to mimic the gas-solid interactions known to be present in the aforementioned demonstration unit.
  • the glass reactor had a diameter of 2 inches with a length of approximately 24 inches. 50.0 grams of oxides of manganese were suspended in the reactor using a fritted glass filter allowing for flow of the gas stream, while keeping the oxides of manganese suspended. Approximately 3 inches above the fluidized bed of oxides of manganese, a sintered stainless steel filter was arranged to simulate a bag house filter bag. The reactor was heated during the testing to 250° F. and the gas flow rate was metered at a constant 6 liters per minute (1 pm).
  • the simulated flue gas stream passed through the fluidized bed of oxides of manganese, where the flow carried a portion of the sorbent up onto the filter, thus creating a filter cake, which mimics a bag house reactor chamber.
  • SO 2 and NO X concentrations were measured continuously from the reactor outlet utilizing a continuous emissions monitoring system (CEMS).
  • SO 2 concentrations were measured utilizing a Bovar Western Research model 921NMP spectrophotometric instrument and NO X concentrations were measured utilizing a Thermo Electron model 42H chemiluminescent instrument.
  • sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C. Removal efficiencies of 99.9% for SO 2 as well as 99.9% for NO X were measured and duplicated for several test runs.
  • Inlet temperature was 250° F., with a differential pressure of 2.00′′ of WC.
  • FIGS. 29 and 30 are, respectively, graphs plotting NO X and SO X concentrations at the outlet of the glass reactor versus time.
  • the three different oxides of manganese are represented by the symbols “ ⁇ ” for type A sorbent, “ ⁇ ” for type B sorbent, and “ ⁇ ” for type C sorbent in FIGS. 29 and 30 .
  • Type A sorbent is an oxide of manganese powder generally at 60 % of particles less than 45 microns in size and having a BET surface area of approximately 30 m 2 /g.
  • Type B sorbent is an oxide of manganese powder generally at 100% of particles less than 45 microns in size and having a BET surface area of approximately 200 m 2 /g.
  • Type C sorbent is an oxide of manganese powder generally at 80 % of particles less than 45 microns in size and having a BET surface area of approximately 90 m 2 /g.
  • the graph of FIG. 30 confirms the above statements regarding near immediate and complete SO X capture upon contact with the sorbent.
  • the graph of FIG. 29 shows a range of capture efficiency over time for NO X and that different forms of oxide manganese may be able to provide more efficient capture of NO X .
  • the type B sorbent performed the best before break-through, followed by type C.
  • the reacted or loaded sorbent can be recycled and/or regenerated after being removed from a reaction zone.
  • the reacted sorbent may simply be reintroduced into another reaction zone.
  • the system has first and second reaction zones 30 , 38 which are connected to feeder 20 which contains unreacted or virgin sorbent.
  • Gas from external gas source 15 is introduced into first reaction zone 30 along with sorbent fed from feeder 20 .
  • the gas is contacted with sorbent for a time sufficient to remove a target pollutant, such as SO X , and after being rendered free of solids is vented from the first reaction zone 30 .
  • the gas is then introduced in the second reaction zone 38 along with sorbent from feeder 20 .
  • the gas is contacted with gas for a time sufficient to remove another target pollutant, here NO X .
  • NO X another target pollutant
  • the level of NO X loading on the reacted sorbent in second reaction zone 38 reaches the point where the sorbent no longer efficiently removes NO X .
  • the NO X . reacted sorbent is removed from the second reaction zone 38 and conveyed or transported to NO X reacted sorbent feeder 21 .
  • the NO X reacted sorbent which has unused reactive sites available for further SO X capture, is fed or introduced into the first reaction zone 30 for additional loading or reaction with SO X in the gas introduced from external gas source 15 .
  • the recycled NO X reacted sorbent reaches the point where SO X capture can no longer be achieved at a targeted rate of removal
  • the now NO X and SO X reacted (or loaded) sorbent is removed from the first reaction zone and routed for regeneration. In this way, the amount of virgin or unreacted sorbent that is utilized in the first reaction zone can be reduced and the additional load or reactive sites available on the NO X reacted sorbent can be utilized.
  • a wet regeneration process the reacted surfaces of the sorbent may be removed and the remaining sorbent may be refreshed.
  • FIG. 26 reacted sorbent is removed from a reaction zone, a reaction chamber in FIG. 26 , and washed in an aqueous dilute acid rinse. Since the interaction between pollutants and the sorbent is believed to be a surface-controlled phenomenon, only a small fraction of the oxides of manganese is reacted with the pollutant. It is this small fraction of the sorbent that can be removed by washing or rinsing which thereby “activates” the sorbent by making unreacted surface area available.
  • the solubility in water of nitrates of manganese is greater than the solubility of sulfates of manganese by at least an order of magnitude in cold water and by at least several orders of magnitude in warm to hot water. This differential in solubility can be advantageously utilized in the regeneration process.
  • the sulfates and nitrates of manganese on the surface of the sorbent particles dissolve off into solution in the dilute acid bath, leaving clean sorbent that can be readily separated from the rinse or bath by known means, such as settling and decanting, filtering, centrifuging or other suitable techniques.
  • the clear filtrate or solution containing dissolved sulfates and/or nitrates of manganese are directed to a regeneration vessel for regeneration of sorbent and production of useful by-products.
  • the clean sorbent is then dried in, for example, a kiln to remove excess moisture.
  • the heat for this drying step may be waste heat generated by combustion which is transferred or exchanged from combustion or process gases at an industrial or utility plant.
  • the clean sorbent may be pulverized as necessary to reduce the clean sorbent to particle sizes useful in the system of the invention.
  • the cleaned or “activated” sorbent is then conveyed or otherwise transported to the unreacted sorbent feeder(s) and thus, recycled.
  • the regeneration of sorbent and production of useful by-products can be understood.
  • the solution or filtrate containing the dissolved sulfates and nitrates of manganese is passed from the acidic bath to a regeneration vessel to which alkali hydroxides such as potassium hydroxide (KOH) or sodium hydroxide (NaOH), or ammonium hydroxide (NH 4 OH) is added.
  • alkali hydroxides such as potassium hydroxide (KOH) or sodium hydroxide (NaOH), or ammonium hydroxide (NH 4 OH) is added.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • NH 4 OH ammonium hydroxide
  • These solutions can be made into fertilizer products or other products such as explosives.
  • Air or oxygen is bubbled into or otherwise introduced into the reaction vessel to complete the regeneration, forming oxides of manganese, MnO X where X is between about 1.5 to 2.0.
  • the oxides of manganese are separated from the solution, much as the cleaned or reactivated sorbent after the acid wash step, and are then dried and pulverized before being conveyed to a virgin or unreacted sorbent feeder.
  • the filtrate from the separation containing useful sulfates and nitrates that can then be further processed into marketable products.
  • Oxides of manganese may also be regenerated in a dry or thermal regeneration process, taking advantage of the thermal decomposition temperature(s) of nitrates of manganese.
  • This regeneration process may be understood with reference to FIG. 27 .
  • the process illustrated and discussed herein is based upon a removal process where NO X is the target pollutant with nitrates of manganese being formed in the removal step in the reaction zone, a reaction chamber in FIG. 27 .
  • the NO X reacted sorbent is removed from the reaction chamber and conveyed to a first kiln.
  • the reacted sorbent is heated to a temperature at or above the thermal decomposition temperature(s) of nitrates of manganese and NO 2 desorbs or is otherwise driven off.
  • Oxides of manganese, MnO X where X ranges from about 1.5 to 2.0 are formed in the first kiln which may be heated with waste process heat from the local plant.
  • the regenerated oxides of manganese from the first kiln may be conveyed to a second kiln heated with waste process heat. Air or oxygen are introduced into the second kiln to more completely oxidize the regenerated sorbent so that the X of MnO X ranges from about 1.5 to 2.0.
  • the thermal regeneration would proceed much as described for NO X , except the first kiln would be heated to a temperature at or above the thermal decomposition temperature of sulfates of manganese and SO 2 would desorb or otherwise driven off.
  • nitrates of manganese thermally decompose at temperatures between about 130° C. to about 260° C., while sulfates of manganese tend to liquefy at the temperatures over which nitrates of manganese thermally decompose.
  • sulfates of manganese heated to these temperatures in the presence of a reducing agent e.g., CO, H 2 , etc.
  • a reducing agent e.g., CO, H 2 , etc.
  • NO 2 could be driven off first by heating reacted sorbent in a kiln to a first temperature at which nitrates of manganese thermally decompose so that NO 2 can be generated and directed for further processing.
  • a reducing agent could then be introduced and the reacted sorbent further heated to desorb SO 2 .
  • the reacted sorbent could be heated to a second temperature, the thermal decomposition temperature of sulfates of manganese with SO 2 being desorbed and directed for further processing.
  • the desorbed SO 2 can be directed to a wet scrubber containing water and an optional oxidant to form sulfuric acid.
  • This acid liquor can then be marketed as is or further processed.
  • This further processing would involve the addition of an ammonium or alkali hydroxide solution to form useful sulfates.
  • the regenerated sorbent is further heated in an oxidizing atmosphere to more completely oxidize the regenerated sorbent so that the X of MnO X ranges from about 1.5 to 2.0.
  • the desorbed NO 2 can be directed to a wet scrubber containing water and an oxidant to form nitric acid.
  • This acid liquor can then be marketed as is or further processed.
  • This further processing would involve the addition of an ammonium or alkali hydroxide solution to form useful nitrates, such as KOH as illustrated in FIG. 27 .
  • elemental mercury can be recovered for NO X
  • SO X reacted sorbent that further has mercury compounds adsorbed thereon can be processed to generate and recover elemental mercury.
  • the reacted sorbent is removed from a reaction zone of a system according to the invention and conveyed to a first kiln, the reacted sorbent is heated to a first temperature to desorb NO 2 which is routed for further processing into marketable products.
  • the reacted sorbent is then heated a second temperature to desorb elemental mercury which is routed to a condenser for recovery as a marketable product.
  • the sorbent is then rinsed to wash away any ash and to dissolve sulfates of manganese into solution to form a liquor. Any ash in the liquor is separated out and the ash routed for further handling. Alkali or ammonium hydroxide is added to the liquor to form an unreacted sorbent precipitate of oxides of manganese and a liquor containing alkali or ammonium sulfates.
  • the liquor contains rinsed sorbent.
  • the rinsed sorbent and unreacted sorbent precipitate and are separated from the liquor and the liquor is routed for further processing into marketable products or for distribution and/or sale as a useful by-product.
  • the rinsed sorbent and sorbent precipitate are dried to form unreacted sorbent which can then be pulverized to de-agglomerate the unreacted sorbent.
  • Liquid mercury can also be recovered from mercury adsorbed to alumina in an alumina reactor.
  • the mercury-reacted alumina from the reactor is heated to drive off or desorb mercury.
  • the mercury vapor is then directed to a condenser where it is condensed to form liquid mercury which is a marketable product.
  • regeneration processes are provided by way of example and are not intended to limit the processes, both known and unknown, for regeneration of oxides of manganese and for recovery of useful and marketable by-products that may be incorporated into the processes of the invention.
  • Some of the economics involved in the wet scrubbing process involve high-energy consumption; on the average 4-5% of a plant gross power generation is consumed in the process. For example: (1) high differential pressure of a venturi/absorber tower requires 30′′ of WC or a bag house and scrubber combination requires even higher static pressures. (2) Large volumes of high pressure scrubbing liquor injected through nozzles into the scrubbing apparatus. (3) Slurry tanks requiring continual vigorous agitation. (4) High horsepower required to force water-saturated non-buoyant flue gas up the stack.
  • the dry scrubbing process described in this patent is effective in removing nearly all NO X and SO X .
  • Differential pressure requirements through the scrubber should typically not exceed 10 inches of water column and residence times within the sorbent cake are typically less than 1 second.
  • Volumes of sorbent used in this invention in comparison to the wet slurry volumes are miniscule and recharging of reaction zones are done periodically. While stack gases remain dry and hot, some waste heat will be used in the drying of washed and re-generated sorbent. Operational costs of the reaction zone(s) are similar to operating an ash bag house; also capital expenditures are estimated to be reasonable requiring standard off-the-shelf equipment and instrumentation.
  • the equipment is used in the dry scrubbing process is much less complex than the wet scrubber process thus requiring lower operational maintenance costs and a reduced operating staff.
  • Chemical and raw material costs are expected to be similar with less waste effluent produced.
  • the major cost savings will be in the reduced power consumption expected to be significantly less than that of a wet scrubbing system, with fan horsepower reduction making up the majority of the savings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

An electronic control system for regulating operational parameters in a pollution removal system. The pollution removal system may contain at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent. The system may include a pollutant concentration sensor that measures the concentration of at least one target pollutant in a gas exiting a reaction zone, a differential pressure sensor that measures the differential pressure across a reaction zone, a sorbent feed rate controller that regulates sorbent feed rate to the reaction zone, and a controller in communication with these elements. The controller may use the measured values to adjust sorbent feeder rate to ensure that the target pollutant concentration in a gas exiting the reaction zone is within an acceptable range and that differential pressure across the reaction zone is no greater than a predetermined level.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. Utility application Ser. No. 10/382,348 filed Mar. 4, 2003, which was a continuation of U.S. Utility application Ser. No. 09/919,600, filed Jul. 31, 2001, now issued as U.S. Pat. No. 6,610,263. This application claims priority to the following US Provisional Applications: No. 60/222,236, filed Aug. 1, 2000; Nos. 60/232,049; 60/232,097, both filed Sep. 12, 2000; No. 60/238,105, filed Oct. 4, 2000; Nos. 60/239,422; 60/239,435, both filed Oct. 10, 2000; No. 60/242,830, filed Oct. 23, 2000; No. 60/243,090, filed Oct. 24, 2000; No. 60/244,948, filed Nov. 1, 2000; Nos. 60/288,166; 60/288,165; 60/288,237; 60/288,245; 60/288,243; 60/288,242; 60/288,168; 60/288,167, all filed May 2, 2001; Nos. 60/295,930; 60/296,006; 60/296,005; 60/296,004; 60/296,007; 60/296,003; all filed Jun. 5, 2001; and Nos. 60/299,362; 60/299,363, both filed Jun. 19, 2001, all of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to the systems and processes for removal of pollutants, such as oxides of sulfur, oxides of nitrogen, fly ash, mercury compounds, and elemental mercury from gases generated from the burning of fossil fuels and other process gases with electronic control of operational parameters such as, differential pressure across the system, gas temperature, and removal efficiency. The systems and processes of the invention employ oxides of manganese as the primary sorbent to effect removal of pollutants, such as oxides of sulfur and/or oxides of nitrogen, and may further employ other sorbent materials and chemical additives separately and in conjunction with oxides of manganese to effect the removal of other target pollutants, e.g., using alumina to remove mercury.
  • BACKGROUND OF THE INVENTION
  • During combustion of fuels that contain sulfur compounds, oxides of sulfur (SOX), such as sulfur dioxide (SO2), and sulfur trioxide (SO3) are produced as a result of oxidation of the sulfur. Some fuels may contain nitrogen compounds that contribute to the formation of oxides of nitrogen (NOX), which are primarily formed at high temperatures by the reaction of nitrogen and oxygen from the air used for the reaction with the fuel. These reaction compounds, SOX and NOX, are reported to form acids that may contribute to “acid rain.” Federal and state regulations dictate the amount of these and other pollutants, which may be emitted. The regulations are becoming more stringent and plant operators are facing greater difficulties in meeting the regulatory requirements. Many technologies have been developed for reduction of SOX and NOX, but few can remove both types of pollutants simultaneously in a dry process or reliably achieve cost effective levels of reduction.
  • In the past to meet the regulatory requirements, coal-burning power plants have often employed a scrubbing process, which commonly uses calcium compounds to react with SOX to form gypsum. This waste product is normally discarded as a voluminous liquid slurry in an impoundment and ultimately is capped with a clay barrier, which is then covered with topsoil once the slurry is de-watered over time. Alternatively, some power-plant operators have chosen to burn coal that contains much lower amounts of sulfur to reduce the quantities of SOX emitted to the atmosphere. In the case of NOX, operators often choose to decrease the temperature at which the coal is burned. This in turn decreases the amount of NOX produced and therefore emitted; however, low temperature combustion does not utilize the full heating value of the coal, resulting in loss of efficiency.
  • Turbine plants normally use natural gas, which contains little or no sulfur compounds, to power the turbines, and therefore virtually no SOX is emitted. On the other hand at the temperature that the turbines are commonly operated, substantial NOX is produced. In addition to Selective Catalytic Reduction (SCR) processes for conversion of NOX to nitrogen, water vapor, and oxygen, which can be safely discharged, some operators choose to reduce the temperature at which the turbines are operated and thereby reduce the amount of NOX emitted. With lower temperatures the full combustion/heating value of natural gas is not realized, resulting in loss of efficiency. Unfortunately for these operators, newer environmental regulation will require even greater reduction of SOX and NOX emissions necessitating newer or more effective removal technologies and/or further reductions in efficiency.
  • Operators of older coal-burning power plants are often running out of space to dispose of solid wastes associated with use of scrubbers that use calcium compounds to form gypsum. Operators of newer plants would choose to eliminate the problem from the outset if the technology were available. Additionally, all power plants, new and old, are faced with upcoming technology requirements of further reducing emissions of NOX and will have to address this issue in the near future. Thus, plants that currently meet the requirements for SOX emissions are facing stricter requirements for reduction of NOX for which there has been little or no economically feasible technology available.
  • The nitrogen oxides, which are pollutants, are nitric oxide (NO) and nitrogen dioxide (NO2) or its dimer (N2O4). The relatively inert nitric oxide is often only removed with great difficulty relative to NO2. The lower oxide of nitrogen, nitrous oxide (N2O), is not considered a pollutant at the levels usually found in ambient air, or as usually discharged from air emission sources. Nitric oxide (NO) does however; oxidize in the atmosphere to produce nitrogen dioxide (NO2). The sulfur oxides considered being pollutants are sulfur dioxide (SO2) and sulfur trioxide (SO3).
  • Typical sources of nitrogen and sulfur oxide pollutants are power plant stack gases, automobile exhaust gases, heating-plant stack gases, and emissions from various industrial process, such as smelting operations and nitric and sulfuric acid plants. Power plant emissions represent an especially formidable source of nitrogen oxides and sulfur oxides, by virtue of the very large tonnage of these pollutants and such emissions discharged into the atmosphere annually. Moreover, because of the low concentration of the pollutants in such emissions, typically 500 ppm or less for nitrogen oxides and 3,000 ppm or less for sulfur dioxide, their removal is difficult because very large volumes of gas must be treated.
  • Of the few practical systems, which have hitherto been proposed for the removal of nitrogen oxides from power plant flue gases, all have certain disadvantages. Various methods have been proposed for the removal of sulfur dioxide from power plant flue gases, but they too have disadvantages. For example, wet scrubbing systems based on aqueous alkaline materials, such as solutions of sodium carbonate or sodium sulfite, or slurries of magnesia, lime or limestone, usually necessitate cooling the flue gas to about 55° C. in order to establish a water phase. At these temperatures, the treated gas requires reheating in order to develop enough buoyancy to obtain an adequate plume rise from the stack. U.S. Pat. No. 4,369,167 teaches removing pollutant gases and trace metals with a lime slurry. A wet scrubbing method using a limestone solution is described in U.S. Pat. No. 5,199,263.
  • Considerable work has also been done in an attempt to reduce NOX pollutants by the addition of combustion catalysts, usually organo-metallic compounds, to the fuel during combustion. However, the results of such attempts have been less successful than staged combustion. NOX oxidation to N2 is facilitated by ammonia, methane, et al. which is not effected by SOX is described in U.S. Pat. No. 4,112,053. U.S. Pat. No. 4,500,281 teaches the limitations of organo-metallic catalysts for NOX removal versus staged combustion. Heavy metal sulfide with ammonia is described for reducing NOX in stack gases in U.S. Pat. No. 3,981,971.
  • Many fuels, and particularly those normally solid fuels such as coal, lignite, etc., also contain substantial amounts of bound or fuel sulfur with the result that conventional combustion produces substantial amounts of SOX pollutants which are also subject to pollution control. It has generally been the opinion of workers in the art that those conditions employed in staged combustion, particularly two-stage rich-lean combustion for NOX reduction, will likewise lower the level of SOX emissions. However, it has been found that little or no reduction in SOX emissions can be obtained in a two-stage, rich-lean combustion process. Indeed, it has been found that the presence of substantial amounts of sulfur in a fuel also has a detrimental effect on NOX reduction in a two-stage, rich-lean process.
  • Considerable effort has been expended to remove sulfur from normally solid fuels, such as coal, lignite, etc. Such processes include wet scrubbing of stack gases from coal-fired burners. However, such systems are capital intensive and the disposal of wet sulfite sludge, which is produced as a result of such scrubbing techniques, is also a problem. Cost inefficiencies result from the often-large differential pressures across a wet scrubber removal system; differential pressures in excess of 30 inches of water column (WC) are not unusual. Also, the flue gases must be reheated after scrubbing in order to send them up the stack, thus reducing the efficiency of the system. Both U.S. Pat. Nos. 4,102,982 and 5,366,710 describe the wet scrubbing of SOX and NOX.
  • In accordance with other techniques, sulfur scavengers are utilized, usually in fluidized bed burners, to act as scavengers for the sulfur and convert the same to solid compounds which are removed with the ash. The usual scavengers in this type of operation include limestone (calcium carbonate) and dolomite (magnesium-calcium carbonate) because of availability and cost. However, the burning techniques are complex and expensive to operate and control; and the burner equipment is comparatively expensive. Dissolving coal or like material in a molten salt compound is described in U.S. Pat. No. 4,033,113. U.S. Pat. No. 4,843,980 teaches using alkali metal salt during the combustion of coal or other carbonaceous material with further efficiency by adding a metal oxide. A sulfur scavenger added upstream to a combustion zone is described in U.S. Pat. No. 4,500,281.
  • The combustion gas stream from a coal-burning power plant is also a major source of airborne acid gases, fly ash, mercury compounds, and elemental mercury in vapor form. Coal contains various sulfides, including mercury sulfide. Mercury sulfide reacts to form elemental mercury and SOX in the combustion boiler. At the same time other sulfides are oxidized to SOX and the nitrogen in the combustion air is oxidized to NOX. Downstream of the boiler, in the ducts and stack of the combustion system, and then in the atmosphere, part of the elemental mercury is re-oxidized, primarily to mercuric chloride (HgCl2). This occurs by reactions with chloride ions or the like normally present in combustion reaction gases flowing through the combustion system of a coal-burning power plant.
  • Many power plants emit daily amounts of up to a pound of mercury, as elemental mercury and mercury compounds. The concentration of mercury in the stream of combustion gas is about 4.7 parts per billion (ppb) or 0.0047 parts per million (ppm). Past efforts to remove mercury from the stream of combustion gas, before it leaves the stack of a power plant, include: (a) injection, into the combustion gas stream, of activated carbon particles or particulate sodium sulfide or activated alumina without sulfur; and (b) flowing the combustion gas stream through a bed of activated particles. When activated carbon particle injection is employed, the mercuric chloride in the gas stream is removed from the gas stream in a bag house and collected as part of a powder containing other pollutants in particulate form. Mercuric chloride and other particulate mercury compounds that may be in the gas stream can be more readily removed from the gas stream at a bag house than can elemental mercury. Activated carbon injection for mercury removal along with an activated particle bed is described in U.S. Pat. No. 5,672,323.
  • When the gas stream flows through a bed of activated carbon particles, mercury compounds are adsorbed on the surface of the activated carbon particles and remain there. Elemental mercury, usually present in vapor form in combustion gases, is not adsorbed on the activated carbon to any substantial extent without first being oxidized into a compound of mercury. U.S. Pat. No. 5,607,496 teaches the oxidation of mercury and subsequent absorption to particles and utilization of alumina are described therein.
  • Sodium sulfide particle injection can be utilized to form mercuric sulfide (HgS), which is more readily removable from the gas stream at a bag house than is elemental mercury. The conversion of mercury to a sulfide compound with subsequent capture in a dust separator is detailed in U.S. Pat. No. 6,214,304.
  • Essentially, all of the above techniques create solid waste disposal problems. The solids or particulates, including fly ash, collected at the bag house and the spent activated carbon removed from the bed of activated carbon, all contain mercury compounds and thus pose special problems with respect to burial at landfills where strictly localized containment of the mercury compounds is imperative. The concentration of mercury compounds in particulates or solids collected from a bag house is relatively minute; therefore, a very small quantity of mercury would be dispersed throughout relatively massive volumes of a landfill, wherever the bag house solids or particulates are dumped. Moreover, with respect to activated carbon, that material is relatively expensive, and once spent activated carbon particles are removed from an adsorbent bed, they cannot be easily regenerated and used again.
  • In the activated alumina process, mercury compounds in the gas stream can be adsorbed and retained on the surface of activated particles, but much of the elemental mercury will not be so affected. Thus elemental mercury in the combustion gas stream is oxidized to form mercury compounds (e.g. mercuric chloride), and catalysts are employed to promote the oxidation process. However, such processes do not capture SOX and NOX.
  • The use of oxides of manganese to remove sulfur compounds from gas streams is known in the art. Oxides of manganese are known to form sulfates of manganese from SOX and nitrates of manganese from NOX when contacted with a gas containing these pollutants. U.S. Pat. No. 1,851,312 describes an early use of oxides of manganese to remove sulfur compounds from a combustible gas stream. U.S. Pat. No. 3,150,923 describes a dry bed of oxides of manganese to remove SOX. A wet method to remove SOX with oxides of manganese is described in U.S. Pat. No. 2,984,545. A special filter impregnated with manganese oxide to remove totally reduced sulfur compounds is described in U.S. Pat. No. 5,112,796. Another method in U.S. Pat. No. 4,164,545 describes using an ion exchange resin to trap the products of manganese oxide and SOX and NOX. The use of certain types of oxides of manganese to remove SOX is disclosed U.S. Pat. Nos. 3,723,598 and 3,898,320. Some of the known methods of bringing oxides of manganese in contact with a gas stream, i.e., sprayed slurries, beds of manganese ore or special filters, have been cumbersome. Although the prior art teaches the use of oxides of manganese to remove SOX and/or NOX, they do not teach an adaptable system or process that can capture SOX and/or NOX and other pollutants with oxides of manganese and monitor and adjust system operational parameters, such as differential pressure, to provide real-time system control.
  • Bag houses have traditionally been used as filters to remove particulates from high volume gas streams. U.S. Pat. No. 4,954,324 describes a bag house used as a collector of products generated through the use of ammonia and sodium bicarbonate to remove SOX and NOX from a gas stream. U.S. Pat. No. 4,925,633 describes a bag house as a site of reaction for SOX and NOX with the reagents, ammonia and alkali. U.S. Pat. No. 4,581,219 describes a bag house as a reactor for highly efficient removal of SOX only with a calcium-based reagent and alkaline metal salt. Although these prior art discloses and teach the use of bag houses for removal of particulates and as a reaction chamber, they do not teach the use of bag houses in an adaptable system capable of monitoring and adjusting system operational parameters, such as differential pressure, to capture SOX and/or NOX and other pollutants with oxides of manganese.
  • In view of the aforementioned problems of known processes for removal of SOX, NOX, mercury compounds, and elemental mercury as well as other pollutants from combustion gases, process gases, and other industrial waste gases, it would be desirable to provide a dry process for removal of SOX and NOX as well as other pollutants from a gas stream. It is further desirable to have a dry removal process that eliminates the environmental impacts of the disposal of large volumes of mercury containing solids and particulates and significant amounts of gypsum generated during SOX wet removal processes.
  • Wet removal processes can result in significant differential pressures across a removal system. Differential pressures above 30 inches of water column have been observed in wet removal processes. Such large differential pressures are costly because significant energy must be expended to counter the differential pressure and provide a waste gas stream with sufficient energy to flow up and out of a stack. A system and process that can accomplish pollutant removal with minimal or controlled differential pressure across the system therefore would be desirable and cost effective for most industry sectors processing or emitting significant amounts of combustion gases, process gases, and other industrial gases.
  • The calcium compounds utilized in SOX wet scrubbing methods form gypsum in the process. They are purchased and consumed in significant quantities and once gypsum is formed the calcium compounds cannot be recovered, at least not cost-effectively. Thus, it would be desirable to have a removal method employing a sorbent that not only can remove pollutants from a gas stream but that can be regenerated, recovered, and then recycled or reused for removal of additional pollutants from a gas stream.
  • To realize such a system and process, it would need to incorporate process controls and software that can monitor and adjust operational parameters from computer stations onsite or at remote locations through interface with a sophisticated electronics network incorporating an industrial processor. This would allow a technician to monitor and adjust operational parameters in real-time providing controls of such operational parameters as system differential pressure and pollutant capture rates or removal efficiencies. Such a network would be desirable for its real-time control and off-site accessibility.
  • In light of increased energy demand and recent energy shortages, it would be desirable to be able to return to operational utility idled power plants that have been decommissioned because their gypsum impoundments have reached capacity. This could be accomplished with retrofits of a system employing a regenerable sorbent in a dry removal process that does not require the use of calcium compounds. Such a system would also be readily adapted and incorporated into new power plants that may be coming on line. Utility plants and independent power plants currently in operation could readily be retrofitted with such a system. Further, such a system could be of significant value in enabling emissions sources to comply with emission standards or air quality permit conditions. With the reductions in emissions of pollutants such as NOX and SOX, marketable emissions trading credits could be made available or non-attainment areas for state or national ambient air quality standards may be able to achieve attainment status. Such scenarios would allow for development in areas where regulatory requirements previously prohibited industrial development or expansion.
  • The systems and processes of the present invention in their various embodiments can achieve and realize the aforementioned advantages, objectives, and desirable benefits.
  • SUMMARY OF THE INVENTION
  • Embodiments of the invention are directed to electronic controllers or control systems and subsystems incorporating sensors and control sub-elements for monitoring, adjusting and/or regulating operating parameters of gaseous pollutant removal systems, including those disclosed and described herein, and to methods employing the same.
  • In one embodiment, an electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent is disclosed. The system may include a pollutant concentration sensor that measures the concentration of a target pollutant in a gas exiting a reaction zone and generates a concentration output. The system may further include a differential pressure sensor that measures the differential pressure across the reaction zone and generates a differential pressure output and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone. A controller in communication with the pollutant concentration and differential pressure sensors and the sorbent feed rate control sub-element may receive the concentration output and the differential pressure output and provide one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level.
  • In another embodiment, an electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent is disclosed. The system may include a pollutant concentration sensor that measures the concentration of a target pollutant in a gas exiting a reaction zone and generates a concentration output. The system may further include a differential pressure sensor that measures the differential pressure across the reaction zone and generates a differential pressure output and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone. A controller in communication with the pollutant concentration and differential pressure sensors and the sorbent feed rate control sub-element may receive the concentration output and the differential pressure output and provide one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level. The electronic control system of this embodiment may further include a temperature sensor and a temperature control sub-element in communication with the controller so that the temperature control sub-element controls the temperature of the gas entering the reaction zone at an adjustable temperature.
  • In yet another embodiment, an electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent is disclosed. The system may include a pollutant concentration sensor that measures the concentration of a target pollutant in a gas exiting a reaction zone and generates a concentration output. The system may further include a differential pressure sensor that measures the differential pressure across the reaction zone and generates a differential pressure output and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone. A controller in communication with the pollutant concentration and differential pressure sensors and the sorbent feed rate control sub-element may receive the concentration output and the differential pressure output and provide one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level. The electronic control system of this embodiment may also include a gas flow control sub-element in communication with the controller so that the gas flow control sub-element controls gas flow to the reaction zone at an adjustable rate, wherein the gas flow rate may be adjusted by the one or more outputs of the controller.
  • In another embodiment of the invention, an electronic control system for regulating operational parameters in a pollution removal system having a bag house containing filter bags that is connected to a source of gas and having a sorbent feeder containing a supply of sorbent includes a pair of pollutant concentration sensors that measures the concentration of a target pollutant in a gas entering and exiting a reaction zone. The system may also include a differential pressure sensor that measures the differential pressure across the reaction zone and a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone. A filter bag control sub-element that controls removal of sorbent from the filter bags at an adjustable rate may also be included. A controller in communication with the pair of pollutant concentration sensors, the differential pressure sensor, the sorbent feed rate control sub-element, and the filter bag control sub-element receives the outputs from the pair of pollutant concentration sensors and the differential pressure sensor and provides one or more outputs that adjust operational parameters selected from a group consisting of sorbent feeder rate, sorbent removal rate, or any combination of these operational parameters, to ensure that the target pollutant is removed at targeted capture rate set point and that differential pressure across the reaction zone is no greater than a predetermined level.
  • In yet another embodiment, the system provides an electronic control system for dry removal of at least one target pollutant from gases that includes a monitor component operative to monitor system operational parameters selected from the group consisting of a first target pollutant capture rate, gas inlet temperature, sorbent feed rate, and differential pressure, and any combination thereof; and an adjustment component operative to adjust system operational parameters selected from the group consisting of the first target pollutant capture rate, gas inlet temperature, sorbent feed rate and any combination thereof so that differential pressure across the system is no greater than a predetermined level and the first target pollutant is removed at a desired capture rate set point.
  • In yet another embodiment of the invention a method for removing target pollutants from gases includes the steps of measuring a target pollutant concentration at an output of a reaction zone of a pollutant removal system that uses sorbent for dry removal of target pollutants from gases and analyzing the measured target pollutant concentration to determine if it is within an acceptable range. The method of this embodiment may also include adjusting at least one operational parameter capable of affecting pollutant removal in the system if the measured target pollutant concentration is not within an acceptable range.
  • In yet another embodiment of the invention a method for removing target pollutants from gases includes the steps of measuring a target pollutant concentration at an output of a reaction zone of a pollutant removal system that uses sorbent for dry removal of target pollutants from gases and analyzing the measured target pollutant concentration to determine if it is within an acceptable range. The method of this embodiment may also include adjusting at least one operational parameter capable of affecting pollutant removal in the system if the measured target pollutant concentration is not within an acceptable range. In this embodiment the removal system may include a sorbent feeder and the step of adjusting at least one operational parameter may include increasing the feeder rate of the sorbent feeder if the measured target pollutant concentration is greater that the set point thereby decreasing the target pollutant concentration in the reaction zone and decreasing the feeder rate of the sorbent feeder if the measured target pollutant concentration is less than the set point thereby increasing the target pollutant concentration in the reaction zone.
  • Another embodiment of the invention includes a method for removing target pollutants from gases including the steps of measuring the temperature of a gas entering a reaction zone of a pollutant removal system the uses sorbent for dry removal of target pollutants from gases and analyzing the measured temperature to determine if it is within an acceptable range. The method of this embodiment may also include adjusting the temperature of the gas entering the reaction zone if the measured temperature is not within an acceptable range.
  • In another embodiment a computer system having a graphical user interface including a display and a selection device utilizes a method of providing and selecting from a menu on the display. The method may include the steps of receiving a menu entry selection signal indicative of a control operation of a portion of a pollutant removal system from a plurality of control operations including bag house control, emissions control and temperature control of the pollutant removal system and in response to the menu entry selection, retrieving a graphical representation of the selected control operation, the graphical representation having real time data fields that are populated with real time data as well as user adjustable variables. The method may further include the steps of displaying the graphical representation with the populated real time data fields on a display, receiving a signal indicative of a particular user adjustable variable and, in response to the signal, updating the graphical representation of the selected control operation to reflect the particular user adjustable variable.
  • In yet another embodiment, the invention includes an electronic control system for controlling an operation of a pollutant removal system, the electronic control system having a controller operatively coupled to a first reaction zone in which at least a first target pollutant is removed from gases, the controller being configured to receive a first input from a sensor measuring at least a first target pollutant concentration at an output of the first reaction zone and determining if the measured first target pollutant concentration is within an acceptable range. The controller may be operatively coupled to a second reaction zone in which at least a second target pollutant is removed from the gases, the controller being configured to receive a second input from a sensor measuring at least a second target pollutant concentration at an output of the second reaction zone and determining if the measure second target pollutant concentration is within an acceptable range.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic block diagram showing a system according to the invention.
  • FIG. 2 is a schematic block diagram showing a system according to the invention.
  • FIG. 3 is a schematic block diagram showing a system according to the invention.
  • FIG. 4 is a block diagram showing a system according to the invention.
  • FIG. 5 is a block diagram showing a system according to the invention.
  • FIG. 6 is a perspective view of a commercially available bag house.
  • FIG. 7 is an end elevation view of a commercially available bag house.
  • FIG. 8 is a top plan view of a commercially available bag house.
  • FIG. 9 is a side elevation view of a commercially available bag house.
  • FIG. 10 is a sectional view of an inverted bag house according to the invention.
  • FIG. 11 is a top plan view of an inverted bag house according to the invention.
  • FIG. 12 is a flow diagram of a bag house reactor according to the invention.
  • FIG. 13 is a block diagram of a system according to the invention.
  • FIG. 14 is a block diagram of a system according to the invention.
  • FIG. 15 is a block diagram of a system according to the invention.
  • FIG. 16 is a flow diagram an electronic control system useful in the invention.
  • FIG. 17 is electronic control panel display.
  • FIG. 18 is electronic control panel display.
  • FIG. 19 is electronic control panel display.
  • FIG. 20 is a block diagram of a control sub-element according to the invention for regulating differential pressure.
  • FIG. 21 is a control sub-element according to the invention for control of SOX or NOX capture rate or sorbent feed rate.
  • FIG. 22 is a control sub-element according to the invention for control of bag house gas inlet temperature.
  • FIG. 23 is a control sub-element according to the invention for control of variable venturi position(s).
  • FIG. 24 is a control sub-element according to the invention for control of SOX or NOX capture rate, differential pressure, and sorbent feed rate.
  • FIG. 25 is a control sub-element according to the invention for control of SOX or NOX capture rate, differential pressure, sorbent feed rate, and variable venturi position.
  • FIG. 26 is a block diagram of a system and process according to the invention.
  • FIG. 27 is a block diagram of a system and process according to the invention.
  • FIG. 28 is a block diagram of system according to the invention.
  • FIG. 29 is a graph plotting NOX values over time.
  • FIG. 30 is a graph plotting SOX values over time.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention relates to systems and processes for removal of SOX and/or NOX as well as other pollutants, from a gas stream. In the invention, gas containing SOX and/or NOX is introduced into a first reaction zone where the gas is contacted with a sorbent of regenerable oxides of manganese and/or regenerated oxides of manganese. The sorbent may interact with the pollutants in a gas stream as a catalyst, a reactant, an absorbent or an adsorbent. The oxides of manganese react with the SOX and the NOX to form, respectively, sulfates of manganese and nitrates of manganese.
  • “Nitrates of manganese” is used herein to refer to and include the various forms of manganese nitrate, regardless of chemical formula, that may be formed through the chemical reaction between NOX and the sorbent and includes hydrated forms as well.
  • Similarly, “sulfates of manganese” is used herein to refer to and include the various forms of manganese sulfate, regardless of chemical formula that may be formed through the chemical reaction between SOX and the sorbent and includes hydrated forms as well.
  • “Target pollutant(s)” means the pollutant or pollutants that are targeted for removal in the system.
  • “Substantially stripped” means that a pollutant has been removed from a gas at about a targeted capture rate whether by interaction with a sorbent or physical removal in a solid-gas separator. With respect to pollutants removed by interaction with a sorbent, it further contemplates that removal up to a targeted capture rate for that pollutant may be commenced in a first reaction zone and completed in a subsequent reaction.
  • “Reacted sorbent” means sorbent that has interacted with one or more pollutants in a gas whether by chemical reaction, adsorption or absorption. The term does not mean that all reactive or active sites on the sorbent have been utilized since all such sites may not actually be utilized.
  • “Unreacted sorbent” means virgin sorbent that has not intereacted with pollutants in a gas.
  • Some of the reaction zones may also serve as solid-gas separators rendering the gas free of solids and particulates, such as sorbent, whether reacted or unreacted, fly ash, and mercury compounds, so as to allow the gas that is substantially stripped of SOX and/or NOX or other pollutants to be vented from the reaction zone and passed to another reaction zone or routed up a stack to be vented into the atmosphere. The solids and particulates which include the reacted and unreacted sorbent, fly ash, and the like, are retained within reaction zones that are solid-gas separators and may be subsequently removed for further processing.
  • Reaction zones may be multi-stage removal systems which would incorporate additional reaction zones. The reaction zones utilized in single stage, dual stage, or multi-stage removal may be a fluidized bed, a pseudo-fluidized bed, a reaction column, a fixed bed, a pipe/duct reactor, a moving bed, a bag house, an inverted bag house, bag house reactor, serpentine reactor, and a cyclone/multiclone.
  • The gases that may be processed in the invention are most gases containing SOX and/or NOX. Such gases may be generated by the combustion of fossil fuels in power plants, heating plants and various industrial processes, such as the production of taconite pellets by taconite plants, refineries and oil production facilities, gas turbines, and paper mills. Combustion for heating and other process steps at such facilities generate waste or flue gases that contain SOX and NOX in various concentrations, typically but not limited to 500 ppm or less for NOX and 3000 ppm or less for SOX. Further, the gases may contain other removable pollutants, such as fly ash, and mercury (Hg), as elemental Hg in vapor form or mercury compounds in particulate form, in small concentration, e.g., 0.0047 ppm (4.7 ppb). The gases may further contain hydrogen sulfide and other totally reduced sulfides (TRS) and other pollutants. These gases may typically have temperatures typically ranging from ambient temperature to below the thermal decomposition temperature(s) of nitrates of manganese and to below the thermal decomposition temperature(s) of sulfates of manganese. Gases generally within this temperature range can be processed in the system of the invention.
  • The primary sorbent useful in the invention are oxides of manganese, which may be found in manganese ore deposits or derived synthetically. Manganese compounds of interest occur in three different oxidation states of +2, +3, and +4; this gives rise to a range of multivalent phases, which provide oxides of manganese with a great diversity of atomic structures and thus mineral forms. Examples of these mineral forms include, but are not limited to, pyrolusite (MnO2), ramsdellite (MnO2), manganite (MnOOH or Mn2O3.H2O), groutite (MnOOH), and vemadite (MnO2.nH2O) to name a few. This is reported by Jerry E. Post in his article “Manganese Oxide Minerals: Crystal structures and economic and environmental significance,” Proc. Nat'l. Acad. Sci, U.S.A., Vol. 96, pp. 3447-3454, March 1999, the disclosure of which is incorporated herein by this reference.
  • One of the most common of the various forms of oxides of manganese is manganese dioxide, MnO2. The pyrolusite form of this mineral is often the primary mineral form in manganese deposits. Pyrolusite is composed predominantly of the compound MnO2. This oxide of manganese exhibits at least two crystalline forms. One is the gamma form, which is nearly amorphous. The other is a beta form that exhibits pronounced crystalline structure. The term “oxides of manganese” as used herein is intended to refer and include the various forms of manganese oxide, their hydrated forms, and crystalline forms, as well as manganese hydroxide (e.g. Mn(OH)2), etc.
  • With reference to the removal of SOX and/or NOX, the relative capture or removal efficiencies of oxides of manganese may be understood by the below calculation(s) of loading rates. In order to assess the economics of the system and processes of the invention, it is necessary to determine the gas removal efficiencies of the sorbent. Gas capture efficiency based upon test results may be calculated by dividing weight of gas removed by weight of sorbent. This provides an approximate picture of system operations, but does not account for stoichiometry of the reactions or interference between reactive gases in a multiple-gas system. The stoichiometric gas capture ratio is described below.
  • For the purpose of this assessment the overall reactions believed to occur between the sorbent, oxides of manganese, and sulfur dioxide (SO2) and nitric oxide (NO) are shown below, with molecular weights shown above each species. Mn O 87 2 ( solid ) + SO 2 ( gas ) 64 => MnSO 4 ( solid ) 151 ( 1 mole MnO 2 captures 1 mole SO 2 ) Mn O 87 2 ( solid ) + 2 N O 60 ( gas ) + O 32 2 ( gas ) => Mn ( NO 3 ) 2 ( solid ) 179 ( 1 mole MnO 2 captures 2 moles NO )
  • These reactions may occur in multiple steps. Molecular weights are shown above each species. Based on these reactions, the theoretical maximum stoichiometric gas capture by weight of MnO2 sorbent is the ratio of the molecular weights of the products versus the reactants which is 73% for SO2 or 69% for NO, for systems containing only one reactive gas. For a system containing two reactive gases, depending on reaction characteristics, the maximum stoichiometric gas capture will be lower for both gases. If reaction speeds are assumed to be equal for both reactive gases, maximum stoichiometric gas capture for each gas should be proportional to the percentage of each gas present.
  • For example, during a 48-hour test, two reactive gases, SO2 and NO were present at approximately 430 ppm and 300 ppm, respectively. Total weights of reactive inlet gases treated were: SO 2 = 98.45 lb . NO = 47.02 lb . total = 145.47 lb .
    Therefore, SO2 and NO represented 67.7% and 32.3% respectively, of reactive gases present. If the theoretical maximum stoichiometric gas capture for a single-gas system is corrected to these reactive gas weight proportions, the theoretical maximum percentage capture for each gas by MnO2 weight is:
    SO2: (0.73 single-gas)×(0.67 for the 48-hr. test)=0.489=48.9%
    NO: (0.69 single-gas)×(0.323 for the 48-hr. test)=0.223=22.3%
    Therefore, the theoretical maximum weights of gases captured by 289 lb., for example, of sorbent for the 48-hour test would be:
    SO2: (289 lb. Sorbent)×(0.489)=141.4 lb. SO2
    NO: (289 lb. Sorbent)×(0.323)=98.35 lb. NO
    Actual gas capture experienced in the 48-hour test was 23.94 lb. of SO2 and 4.31 lb. of NO. For the 2-gas system, stoichiometric gas capture was:
    SO2: (23.94 lb. captured)/(141.4 lb. SO2 possible)=16.9% (of theoretical maximum)
    NO: (4.31 lb. captured)/(64.41 lb. possible)=6.69% (of theoretical maximum)
  • Oxides of manganese, once reacted with SOX and NOX to form sulfates of manganese and nitrates of manganese respectively, can be regenerated. There are essentially two general methods of regeneration, thermal decomposition and chemical decomposition.
  • In thermal decomposition, the sulfates of manganese and/or nitrates of manganese are heated in an oxidizing atmosphere whereupon manganese oxide is formed and nitrogen dioxide and/or sulfur dioxide are desorbed and captured. The captured nitrogen dioxide or sulfur dioxide can be reacted with other chemicals to produce marketable products.
  • In the chemical decomposition or regeneration of manganese oxide, the sulfates of manganese and/or nitrates of manganese are dissolved from the used sorbent in a dilute acidic aqueous slurry to which, after separation and recovery of the washed sorbent, other compounds such as alkali or hydroxides or carbonates may be added and manganese oxide is precipitated out of solution and removed. The solution, now free of oxides of manganese, can be routed on for further processing or production of marketable products such as alkali or ammonium sulfates and nitrates. The regeneration of manganese oxide and production of useful or marketable products through thermal or chemical decomposition is further discussed below.
  • In the process of regeneration, the regenerated oxides of manganese are in particle form and are defined by the chemical formula MnOX, where X is about 1.5 to 2.0. The regeneration process may be engineered to yield oxides of manganese having a particle size ranging from 0.1 to 500 microns. Oxides of manganese in this range are useful in the invention. Preferably, the oxides of manganese will have a particle size of less than 300 microns, and more preferably of less than 100 microns. The regenerable oxides of manganese and/or regenerated oxides of manganese are typically fine, powdery, particulate compounds.
  • Reactivity of dry sorbents may generally be related to its particle surface area. Particles or particulates all have weight, size, and shape, and in most cases they are of inconsistent and irregular shape. In the case of fine powders it is often desirable to know how much surface area a given quantity of powder exhibits, especially for particles that are chemically reactive on particle surfaces, or are used as sorbents, thickeners or fillers. (Usually measurements of surface area properties are done to compare several powders for performance reasons.) Particles may also have microscopic pores, cracks and other features that contribute to surface area.
  • The BET (Brunauer-Emmett-Teller) method is a widely accepted means for measuring the surface area of powders. A powder sample is exposed to an inert test gas, such as nitrogen, at given temperature and pressures, and because the size of the gas molecules are known at those conditions, the BET method determines how much test gas covers all of the exterior surfaces, exposed pores and cracks with essentially one layer of gas molecules over all of the particles in the powder sample. Optionally, the analyst can use other test gases such as helium, argon or krypton; and can vary from 1 to 3 relative test pressures, or more, for better accuracy. From this, a measure of total surface area is calculated and usually reported in units of square meters of particle surface area per gram of powder sample (m2/g). Generally, coarse and smooth powders often range in magnitude from 0.001 to 0.1 m2/g of surface area, and fine and irregular powders range from 1 to 1000 m2/g. Since the interactions between a sorbent and the pollutant occurs primarily at the surface of sorbent particle, surface area correlates with removal efficiency. The oxides of manganese useful in the invention are fine and irregular powders and thus may have a surface area ranging from 1 to 1000 m2/g. Preferably the sorbent will have a surface area of greater than 15 m2/g, and more preferably of greater than 20 m2/g.
  • With reference to FIG. 1, a system according to the invention is illustrated in block diagram form. The system 10 may be seen as comprised of a feeder 20 and a first reaction zone 30 and a second reaction zone 38. The feeder 20 would contain a supply of sorbent of regenerable oxides of manganese and/or regenerated oxides of manganese. The feeder 20 is configured to handle and feed oxides of manganese, which, upon regeneration, are in particle form and defined by the chemical formula MnOX where X is about 1.5 to 2.0. The first reaction zone 30 is configured for introduction of the sorbent in a gas containing SOX and NOX. In one embodiment, the first reaction zone 30 may be a section of pipe/duct, possibly configured as a fluidized bed, a pseudo-fluidized bed, a reaction column, a fixed bed, a pipe/duct reactor, a moving bed, a bag house, an inverted bag house, bag house reactor, serpentine reactor, and a cyclone/multiclone. The second reaction zone 38 a fluidized bed, a pseudo-fluidized bed, a reaction column, a fixed bed, a pipe/duct reactor, a moving bed, a bag house, an inverted bag house, bag house reactor, serpentine reactor, and a cyclone/multiclone. Preferably, the second reaction zone is a bag house, such as commercially available bag house, an inverted bag house according to the invention, or a bag house reactor according to the invention.
  • The gas containing SOX and NOX, or other pollutants, comes from a gas source 15 external to the system. The gas is introduced into the first reaction zone 30 and is contacted with sorbent introduced into the first reaction zone 30 from the feeder 20 and is contacted with the sorbent for a time sufficient to primarily effect SOX capture at a targeted SOX capture rate. For purpose of discussion, and not wishing to be held to a strict interpretation, with respect to effecting a certain capture, it has been observed that oxides of manganese can more readily capture SO2 in a gas stream absent of NO, and also can more readily capture NO in a gas stream absent of SO2, than when the gas stream contains both SO2 and NO. SOX capture tends to proceed at a much faster rate than NOX capture when the two pollutants are present in a gas stream.
  • The gas and sorbent may be introduced separately or commingled before introduction into a reaction zone. Once the gas and sorbent have been contacted for sufficient time, the SOX is captured by reacting with the sorbent to form sulfates of manganese to substantially strip the gas of SOX. The gas substantially stripped of SOX passes from the first reaction zone 30 into the second reaction zone 38. The second reaction zone 38 is configured for introduction of sorbent and the gas substantially stripped of SOX. In the second reaction zone 38, the gas is further contacted with sorbent for a time sufficient to primarily effect NOX capture at a targeted NOX capture rate. The NOX is captured by reacting with the sorbent to form nitrates of manganese to substantially strip the gas of NOX. The second reaction zone 38 is further configured so that the gas which has been substantially stripped of both SOX and NOX is rendered free of reacted and unreacted sorbent. The gas may then be vented from the second reaction zone 38 to a stack 40 where the gas is released to the atmosphere.
  • Differential pressure across the reactor system is regulated by a control sub-element (not shown in FIG. 1) so that any differential pressure across the system is no greater than a predetermined level. As is later described, the control sub-element may control other system parameters such as feeder rate, SOX and/or NOX capture rate, and the inlet gas temperature into the reaction zones. Thus, the system of the invention is highly adaptable and, in another embodiment, is generally comprised of a feeder 20, a first reaction zone 30, a second reaction zone 38, and at least one control sub-element for regulating process parameters.
  • In another embodiment of the invention, the system is comprised of a feeder 20 as previously described and a modular reaction unit 60 comprised of at least three interconnected reaction zones. With reference to FIG. 2, where the reaction zones are three interconnected bag houses 62, 64, 66, the modular reaction unit may be understood. The bag houses 62, 64, 66 are connected so that a gas containing SOX and/or NOX can be routed through any one of the bag houses, any of the two bag houses in series, or all of the at least three bag houses in series or in parallel or any combination of series or parallel. Each bag house is separately connected to the feeder 20 and to the external gas source 15. Through these connections, sorbent and gas can be introduced into each bag house where SOX and NOX capture can occur when the gas is contacted with sorbent for a time sufficient to allow formation of sulfates of manganese, nitrates of manganese, or both. The system in this embodiment may also include control sub-elements 50 (not shown) for regulating various process parameters. The reaction zones of the modular unit 60 are not limited to bag houses and may be any combination of reaction zones useful in the inventory. If the bag houses are operated independently of each other, then the section of pipe or duct (pipe/duct) preceding the bag house and that which is connected to an inlet of each bag house conveys gas into each bag house and is also configured as a first reaction zone 30, a pipe/duct reactor, into which gas containing SOX and NOX flows along with the sorbent. The gas is mixed with the sorbent in the pipe/duct reactor for a sufficient time to achieve SOX capture at a targeted capture rate. In this mode, the system operates as illustrated in FIG. 1 with each bag house 62, 64, 66 being a second reaction zone 38 into which the gas that has been substantially stripped of SOX passes from the first reaction zone 30, pipe/duct reactor.
  • With reference to FIG. 3, another embodiment of the invention is shown. In this embodiment, the system 10 is comprised of a feeder 20, and three bag houses 70, 76, and 78, a common conduit 73 and a diverter valve 74. Gas and sorbent are introduced into the first bag house 70 which serves as a first reaction zone of a two-staged SOX/NOX removal system where primarily SOX capture occurs. The gas substantially stripped of SOX then passes from the first bag house 70 into the common conduit 73. As shown in FIG. 3, the common conduit 73 is Y-shaped, but may be of any shape that allows gas to flow from the first bag house 70 and to be directed to the second and third bag houses 76, 78 which each function as the second reaction zone of a two-staged SOX/NOX removal system.
  • In the Y-shaped common conduit 73 can be seen a diverter valve 74 illustrated as a dotted line at the fork of the “Y”. The diverter valve 74 is positioned in the common conduit 73 so as to direct the flow of gas from the first bag house 70 to the second bag house 76 and/or the third bag house 78. The diverter valve 74 has variable positions, in the first position gas from the first bag house 70 is directed to the second bag house 76, in the second (variable) position gas from the first bag house 70 is directed to both the second and third bag houses 76, 78, and in the third position, as illustrated in FIG. 3, the gas from the first bag house 70 is directed to the third bag house 78. Gas exiting the second and third bag houses 76 and 78 may be vented and directed for further processing or handling (e.g. directed to stack 40 or directed to a subsequent reactor for Hg removal). The system of this embodiment may incorporate any combination of the reaction zones useful in the invention and is not intended to be limited to bag houses.
  • However, when the reaction zones are bag houses, the system illustrated in FIG. 3 may further comprise an off-line loading circuit 42. The off-line loading circuit 42 is brought into use after the filter bags have been pulsed to clean them of filter cake so reacted sorbent can be removed for recycling or regeneration. There may be more than one off-line loading circuit 42, as shown in FIG. 3, each separately connected to a bag house 76 and 78. The off-line loading circuit is connected to a sorbent feeder and a bag house via an off-line loading circuit conduit 44 and incorporates a fan 46 for blowing air commingled with sorbent into the bag houses 76 and 78 in order to pre-load the fabric filter bags in the bag houses by building a filter cake thereon. The air passing through the bags and cake thereon is vented from the bag house. When the bag house is ready to come back on line, the off-line loading circuit can be closed or switched off and the diverter valve 74 moved to a position to permit the flow of process gas through the bag house that is being brought back on line.
  • When NOX is captured by the sorbent, the sorbent may not be completely loaded or spent thus having remaining reactive sites. Even though it may no longer be effective as an efficient sorbent for NOX at this point, the sorbent may have reactive sites that could be utilized efficiently for SOX capture. Thus, the partially loaded reacted sorbent or NOX-reacted sorbent in a second reaction zone of a two-stage SOX/NOX removal system could be removed from the second reaction zone and fed into the first reaction zone to allow additional SOX capture with, or loading onto, the sorbent. This would decrease the frequency at which sorbent regeneration is needed and reduce the amount of virgin or unreacted sorbent that would need to be introduced into the first reaction zone.
  • With reference to FIG. 4 a system according to the invention utilizing counter-flow feed of NOX-reacted sorbent is illustrated in a block flow diagram. The system 10 is comprised of a first reaction zone 30, a second reaction zone 38, a feeder 20 containing virgin or unreacted sorbent, and a NOX-reacted sorbent feeder 21. The first reaction zone 30 of system 10 is connected to external gas source 15 and gas flows from the external gas source 15 to the first reaction zone 30, from the first reaction zone 30 to the second reaction zone 38, and from the second reaction zone 38 is either vented to stack 40 or directed on to another system unit such as a mercury-sorbent reactor (not shown). The feeder 20 can feed virgin or unreacted sorbent into the first reaction zone 30 and the second reaction zone 38. NOX-reacted sorbent is removed from the second reaction zone and is conveyed from the second reaction zone to the first reaction zone via NOX-reacted sorbent feeder 21 where the NOX-reacted sorbent with available reaction sites is further contacted with a gas containing both SOX and NOX to remove and capture SOX.
  • Using reacted sorbent feeders allows sorbent to be recycled to a reaction zone where unreacted sites on the surface of the sorbent can be utilized. Through the mechanical operations of removing reacted sorbent from a reaction zone and returning it to the same or another reaction zone, the amount of virgin or unreacted sorbent that has to be introduced into the system is reduced. A sorbent may be recycled this way several times before regeneration is necessary due to the reduction in available reaction sites on the surface of sorbent particles. This represents significant cost savings and more economical and complete use of the sorbent.
  • During operation, the surfaces of sorbent particles may become obstructed, for example, by compaction or agglomeration. The physical manipulation and handling of the reacted sorbent re-orients the particles making unexposed surfaces available to capture targeted pollutants.
  • The recycling of reacted sorbent in this way may proceed as shown in FIG. 4 in a counter-flow manner as discussed above. Recycling may also proceed by removing reacted sorbent from a reaction zone conveying it to a reacted sorbent feeder and introducing or re-introducing the reacted sorbent into the same reaction zone. This is shown in FIG. 28, where reacted sorbent feeder 21A receives reacted sorbent conveyed from the first reaction zone 30 and reacted sorbent from reacted sorbent feeder 21A is re-introduced into the first reaction zone 30. Further, reacted sorbent from second reaction zone 38 is conveyed to reacted sorbent feeder 21B and re-introduced into the second reaction zone 38. This may be desirable where a first targeted pollutant is being captured in the first reaction zone and a second targeted pollutant is being captured in the second reaction zone. If, for example, SOX is being captured in the first reaction zone 30, the SOX reacted sorbent when it is spent or ceases to be effective for SOX removal can then be routed for regeneration and recovery of sulfates as alkali or ammonium sulfate, useful commercial product. Similarly, if NOX is the pollutant being captured in the second reaction zone 38, the NOX reacted sorbent can be removed when it ceases to be effective for NOX removal and directed for regeneration and recovery to produce alkali or ammonium nitrates, again, useful commercial by-products.
  • Capture rates may be affected by the gas inlet temperature as it enters a reaction zone and may need to be adjusted, cooled or heated to achieve a desired capture rate for SOX and/or NOX. This can be accomplished with a heat exchanger. As is illustrated in FIG. 5, the system may further include a heat exchanger preceding each reaction zone of a system of the invention. In FIG. 5, the system of the invention as illustrated is substantially the same as the illustration of FIG. 1, depicting first and second reaction zones 30 and 38, feeder 20, external gas source 15, and stack 40. In FIG. 5, heat exchangers 72A, 72B have been introduced into the system before each reaction zone. The heat exchangers 72A, 72B may be utilized to heat or cool the gas stream prior to entry into each reaction zone. As the gas enters into the system, if the gas temperature is above the thermal decomposition temperature(s) of either sulfates of manganese or nitrates of manganese, the heat exchangers 72A, 72B will operate to cool the gas to a desired temperature based upon whether SOX capture or NOX capture is the primary pollutant captured in the reaction zone. Similarly, if the gas were below a desired temperature set point, the heat exchangers 72A, 72B will operate to heat the gas to the desired temperature. The heat exchangers 72A, 72B may be a gas-to-gas cooler or a heater unit, or other suitable means for accomplishing heating and cooling of gases to assure that the gas inlet temperature at a targeted temperature or within an acceptable range.
  • As previously mentioned above, the gases entering the system from external gas source 15 may be any of a variety of process or industrial gases. These gases when generated encompass a range of temperatures. Due to simple economics and the design of various plants and facilities for efficient use of waste heat which is captured or transferred to provide heat for various processes at a facility, these process gases will typically have a temperature ranging from 250° F. to 350° F. or 120° C. to 180° C. In less typical situations, these gases may have temperatures upwards of 1000° F., or 540° C. Gases at these temperatures are readily processed in the systems of the invention and the heat exchangers 72A, 72B can be utilized to maintain the gas within these temperature ranges if desired. The system can also process gases at much higher temperatures such as 1000° F. For purposes of SOX and NOX capture, the gas temperature should not exceed, respectively, the thermal decomposition temperature(s) of sulfates of manganese and nitrates of manganese. Given that different forms or species of these sulfates and nitrates, the thermal decomposition temperature would depend upon the species formed during capture. It has been reported that that sulfates of manganese may thermally decompose at temperatures approximating 950° C. Similarly, nitrates of manganese are believed to thermally decompose at temperatures ranging up to 260° C. The system of the invention can process gases approaching these thermal decomposition temperatures. But, more typically, the system in practice will be operated in temperature ranges approximating those of process gases from industrial sources.
  • Heat or waste heat from the process gases of a facility may be utilized in the regeneration and recovery processes discussed herein below. Further, the waste heat may be utilized for purposes of sorbent preheating which serves to “activate” sorbent prior to introduction into a reaction zone. Although the exact mechanism of activation is not known, it is generally known that oxides of manganese can be “activated” with heat. Thus, as can be seen in FIG. 28, a system according to the invention may further include a sorbent preheater 22 which may actually be part of or separate from sorbent feeder 20. The source of heat for the sorbent preheater may be any heat source, but waste heat from facility processes can be economically efficiently utilized for this purpose.
  • The SOX and/or NOX capture rate may be regulated by the amount of sorbent fed into the reaction zones. In order to regulate capture rate, gas measuring devices, such as continuous emission monitors (CEMS), are utilized to measure the composition of the gas at the inlet to the reaction zone and at the outlet of the reaction zone. With reference to FIG. 14, the gas flows from the external gas source 15 and past CEMS 80A where the gas composition is measured prior to entry into first reaction zone 30. Another CEMS 80B is provided after the first reaction zone 30 to measure the concentration of the gas substantially stripped of SOX and/or NOX as it passes from the first reaction zone 30. As in FIG. 1, the gas may be vented to a stack 40, passed to a second reaction zone 38, or another system unit for further processing.
  • In the system of the invention, a bag house may serve as a reaction zone and/or as a solid gas separator, since bag houses are solid-gas separators. A conventional, commercially available bag house 82 is depicted in FIGS. 6 through 9. FIG. 6 is a perspective view of a bag house 82. FIG. 7 is an end elevation view showing a bag house 82. FIG. 8 is a top plan view of a bag house 82. FIG. 9 is a side elevation view of a bag house 82. Within the bag house 82 are a plurality of bags 88 also referred to as filter fabric bags shown in FIGS. 7 through 9. As can be seen in FIGS. 7 through 9, the bag house 82 has a plurality of filter fabric bags 88 suspended therein. Typically, they are suspended from a frame or support structure at the top of the bag house 82. The filter bags 88 may be of various shapes, e.g., conical or pyramidal, and include an internal frame and suitable fabric filter. Those skilled in the art would be able to select suitable filter fabric materials from those commercially available. Gas and entrained sorbent enters the bag house 82 through the bag house inlet 92, shown in FIGS. 7 through 9, and by virtue of an applied differential pressure, gases are forced through the fabric of the bags 88 and the entrained sorbents are separated from the gas by forming a filter cake on the surface of the bags 88. The filter cake thus formed is a reaction medium where pollutants are contacted with and removed by the sorbent. The commingled gases and sorbents move vertically upward and contact the fabric and/or the filter cake formed thereon. The bags 88 are configured to permit the gases to be directed from the outside to the inside of the bags to a conduit at the top of the bag house 82 and then to the bag house outlet 98, shown in FIGS. 6 through 9.
  • While the bag house 82 is in operation, the filter bags 88 may be periodically pulsed or otherwise agitated in order to adjust differential pressure across the bag house 82, which frees some or all of the filter cake and allows gas to flow more freely through the filter cake and the fabric filter bags. If the filter cake is allowed to get too thick, excess differential differential pressure across the bag house or the system of the invention may result. Thus, the pulse intensity or frequency can be utilized to regulate or adjust differential pressure. When the bag house 82 is taken off line, the bags 88 may be pulsed to free the bags 88 of virtually all reacted and unreacted sorbent not otherwise removed during normal operations. The reacted and unreacted sorbent or filter cake fall from the bags 88 by gravity into a hopper 112 (seen in FIGS. 7 and 9) at the bottom of the bag house 82 for subsequent removal from the bag house hopper 112. Removal from the hopper 112 may be accomplished with a screw conveyor or by other appropriate means, even manually.
  • A thicker filter cake will lead to increased removal efficiency, but at the price of extra power required to force the external gas source through the reaction zone. In one example, more power is required for an induction fan to pull exhaust gases through the bag house when the filter cake thickness is greater. The differential pressure may thus be maintained at an optimal level, trading off increased power requirements against the increased pollutant removal. In addition, the thicker the filter cake the longer the residence time of the sorbent material in the system. Longer residence time of the gas in the filter cake results in better removal efficiencies. Higher sorbent loading rates results in less material that will have to be regenerated. This may also be taken into consideration in setting the differential pressure set point.
  • In FIGS. 7 and 9, the plurality of filter bags is shown in position within the bag house. Also shown near the top of the bag house 82 is a pulse valve 124 utilized to pulse the fabric bags 88 in order to reduce filter cake thickness or to free the filter cake from the bags 88. The bag house may be provided with a number of pulse valves 124. During operation, these pulse valves 124 may be activated sequentially or randomly in order to pulse the bags 88 in order to regulate and control differential pressure across the bag house 82 or the system as a whole. When the bag house is taken off-line, the bags may be pulsed to free the bags of virtually all filter cake so that reacted and unreacted sorbent may be removed.
  • The bag house illustrated in FIG. 6 through 9 is of a conventional design. In FIGS. 10 and 11, a novel bag house according to the invention is illustrated. This bag house, which can be utilized in the system of the invention, is referred to as an inverted bag house 140. The inverted bag house 140 eliminates the need for high can velocities, and permits downward, vertical flow of gases and reacted and unreacted sorbent. The inverted bag house 140 is comprised of a bag house housing 142, at least one inlet 145, a plurality of fabric filter bags 88, a support structure 149 for the filter bags, a hopper 152 to receive and collect reacted and unreacted sorbent, an outlet 154, and a conduit 158. The bag house housing permits the introduction of gases and reacted and unreacted sorbent entrained in the gases, has a top and a bottom and is configured for gases to flow vertically downward from the top to the bottom of the bag house. The inlet 145 is located near the top of the bag house housing and is configured for the introduction of gases and reacted and unreacted sorbent entrained in the gases into the bag house. The plurality of fabric filter bags 88 are configured to allow gas to flow from the outside of the bags 88 to the inside of the bags 88 under an applied differential pressure and to prevent the passage of reacted and unreacted sorbent from the outside to the inside of the bags 88, thereby separating reacted and unreacted sorbent from the gas and forming a filter cake on the bags 88. The support structure 149 is configured to receive and support the fabric filter bags 88 and to provide openings through which reacted and unreacted sorbent may be freely passed downward into the hopper 152 by gravity. The hopper 152 is configured to receive the reacted and unreacted sorbent and to permit the removal of the reacted and unreacted sorbent. The inverted bag house 140 also has an outlet 154 located near the bottom of the housing 142 below the bags 88 and above the hopper 152. The outlet 154 is connected to a conduit 158 located below the fabric filter bags 88 and positioned to receive gas passing through the fabric filter bags. Conduit 158 conveys gas to the outlet so that the gas may be vented or passed from the inverted bag house 140.
  • In FIG. 12, a bag house reactor 150 of the invention is illustrated. This bag house reactor 150 can also be utilized in the system in place of a conventional bag house. The bag house reactor 150 has interior surface 154 and exterior surface 152. It may be viewed as having an upper section 156, central section 157 and lower section 158. Generally located in the central and/or lower sections 157, 158 is a variable venturi 160. The purpose of the variable venturi 160 is to adjust the velocity of gas flowing through the venturi opening within the bag house reactor 150. The variable venturi 160 is configured to adjust the position of the variable venturi by varying the space or distance between the variable venturi 160 and the interior surface 154 of the bag house reactor 150. In order to vary position a variable venturi position detector 367 shown in FIG. 23) for determining the position of the variable venturi 160 and a variable venturi positioner 368 (shown in FIG. 23) for adjusting the position of the variable venturi 160 are provided.
  • With the variable venturi 160 contacting the interior surface 154 of the bag house reactor 150, gas cannot flow from the lower section 158 to the central and upper sections 156, 157 of the bag house. By opening the space between the variable venturi 160 and the interior surface 154, gas is allowed to flow through the reactor 150. Gas introduced through gas distribution conduit 164 and the gas distribution port 162 flows from the lower section 158 to above the variable venturi 160 and into the central and upper sections 156, 157, and to the filter bags 88. When the space between the variable venturi 160 and the interior surface 154 is wide, the gas flows at lower velocities which allows some of the sorbent suspended above the variable venturi 160 to fall into the hopper 112.
  • There is also a sorbent distribution port 166 connected to a sorbent feed conduit 168. The sorbent distribution port 166 is positioned above the variable venturi 160 to allow the introduction of sorbent into the upper section 156 of the bag house reactor 150. The sorbent distribution port 166 is configured to allow introduction of sorbent into the bag house. Port 162 is configured to allow introduction of gas into the bag house reactor.
  • The bag house reactor 150 has a plurality of fabric filter bags 88 secured therein. The fabric filter bags are mounted in the upper section 156 of the bag house reactor 150 and extend downward into the central section 157. At the bottom of the bag house reactor in the lower section 158, is a sorbent hopper 112 where reacted and unreacted sorbent is collected. The sorbent hopper is connected to outlet 172. Outlet 172 has an outlet valve 176, which in the open position allows for the removal of sorbent from the hopper 112. A vent 180 is located in the top section 156 of the bag house reactor 150. Gases flowing through the bag house reactor 150 pass from the bag house reactor 150 through the vent 180 and may be directed on for further processing or venting to the atmosphere.
  • Sorbent entrained in gases containing pollutants such as SOX and NOX can begin reacting with the sorbent during transport in the sorbent feeder conduit 168. Since SOX is more reactive than NOX, the more reactive SOX is primarily captured while it is being transported to the bag house reactor 150 in the first sorbent feeder conduit 164. At lower gas velocities the larger solids will abrade into finer solids and re-fluidize. The finer solids will travel upward through the opening between the variable venturi 160 and the interior surface 154 where the sorbent is suspended to create a pseudo fluidized-bed above the variable venturi 160 and the finest particles will travel upwards to form a filter cake on the surface of the fabric filter bags 88. By adjusting the position of the variable venturi 160 increasing or decreasing the space between the variable venturi 160 and the interior surface 154 of the bag house reactor 150 gas velocity is correspondingly decreased or increased. In operation, the variable venturi may be positioned to achieve a gas velocity sufficient to suspend a selected coarse fraction sorbent just above the orifice to create a pseudo-fluidized bed which may primarily or preferentially capture SOX, since SOX is more reactive than NOX. Partially stripped gas flows upward from the pseudo-fluidized bed carrying the finer fraction sorbent onto the filter bags. The resulting filter cake provides a reaction medium where “slower” reactions, such as NOX removal may occur. The variable venturi 160 position may be adjusted to achieve the desired thickness of filter cake on the fabric bags 88 thereby increasing or decreasing the differential pressure across the system also to balance overall differential pressure by changing the venturi restriction. The fabric filter bags 88 may also be pulsed to partially remove filter cake and thus regulate differential pressure. The gas flow rate entering port 162 can be adjusted to regulate upward gas velocity so that the bags 88 may be pulsed to allow some of the loaded sorbent to fall into the hopper 112 without being reentrained in the gas or redeposited on the bags 88.
  • Using the variable venturi 160, one can operate the system so that sorbent suspended above the venturi, loaded with the faster reacting gases, can primarily be captured by falling to the hopper before being carried up to the filter bags 88. The fraction of sorbent loaded with faster reacting gases can then be removed from the hopper 112 by opening the outlet valve 176 so that that fraction may be removed from the hopper 112 through the outlet 172. Later the fabric filter bags 88 can be pulsed to release the sorbent loaded with slower reacting gases which would then fall through the variable venturi 160 into the hopper 112. The sorbent loaded with slower reacting gases could then be removed from the hopper through loaded sorbent outlet 172 after the outlet valve 176 has been opened. This could allow for the separate processing of the different loaded sorbent fractions to regenerate the sorbent and produce useful by-products.
  • Differential pressure, which represents sorbent filter cake thickness, is only one of several process parameters that can be controlled in the system in order to achieve desired levels of SOX and NOX removal efficiencies and cost advantages of the system. NOX and SOX removal efficiency may be regulated by various processes, including sorbent feeder rate and temperature control at the inlet to the reaction zones of the system. These controls are achieved by the control sub-elements or electronics, which include hardware and software and also are referred to herein below as control loops.
  • Referring now to FIG. 13, a differential pressure control loop 300 is illustrated. External gas source 15 is illustrated feeding first reaction zone 30, which in turn feeds generally an output gas stream 316, which can feed either stack 40 or second reaction zone 38. The differential pressure across first reaction zone 30 may be measured as illustrated as difference in pressure between the inlet pressure 306 and the outlet pressure 304. In the example illustrated, inlet pressure 306 and outlet pressure 304 feed a differential pressure cell 308, which sends a differential pressure signal 310 to a differential pressure controller 302.
  • Differential pressure controller 302 can be any appropriate controller, including a proportional integral derivative (PID) controller. As used herein, PID controllers may be understood to operate using any combination of the proportional, integral, and derivative components. Differential pressure controller 302 can accept a set point 312, indicating the desired differential pressure across first reaction zone 30. Set point 312 can be human or computer generated. As discussed below, differential pressure controller 302, and other controllers, may be implemented as a stand-alone controller, distributed control system, as a PID block in a programmable logic controller (PLC), or as a set of discrete calculations within a PLC. Differential pressure controller 302 generates an output signal or output 314 to control the differential pressure across first reaction zone 30. In embodiments where first reaction zone 30 includes a bag house or uses solids-filtering media, differential pressure controller 302 output signal 314 may control the shaking, pulsing, or other removal of sorbent which has formed a filter cake on the filter medium.
  • In one embodiment, first reaction zone 30 includes numerous filter bags which can have an exterior containing sorbent material and an interior having a lower pressure, acting to pull the sorbent material against the bag filter media. In one example of the invention, a compressed air jet, pulse valve 124, is periodically discharged within the interior of the filter. In one embodiment, the compressed air pulse is sufficiently strong to dislodge a portion of caked sorbent material from the filter material even during normal operation of the bag house, not requiring the shut down of the bag house. In one embodiment, the individual bags are sequentially pulsed to dislodge a portion of caked sorbent material. The frequency of the pulsing may be increased in order to maintain a thinner filter cake thickness. Thus, increasing the frequency of the periodic pulsing of each filter bag will maintain a smaller filter cake thickness, and thus result in a smaller differential pressure across the bag house as a whole. In one embodiment, filter bags are grouped by row, with each row periodically pulsed at the same instant. In some embodiments, output 314 from differential pressure controller 302 includes a frequency for pulsing filters within a bag house reaction zone. Differential pressure controller 302, in response to a higher differential pressure than set point, may increase the frequency of filter pulsing through output 314. Conversely, in response to a lower differential pressure than set point, differential pressure controller 302 may decrease the frequency of filter pulsing through output 314.
  • In one embodiment, the individual filter bags are formed of cylindrical filter media disposed about a rigid cylindrical cage, with the compressed air jet, pulse valve 124, disposed within the cylindrical rigid cage. After a period of time, the sorbent material filter cake builds up on the outside of the filter media, forming a thick filter cake. The pulsed air jet can force the filter media momentarily away from the cylindrical rigid cage, thereby cracking the caked sorbent material and dislodging it, thereby allowing the sorbent material to fall under gravity to be collected and removed from the reaction zone.
  • A thicker filter cake can lead to increased pollutant removal efficiency, but at the price of extra power required to force the external gas source through the reaction zone. In one example, more power is required for an induction fan to pull exhaust gases through the bag house when the filter cake thickness is greater. The differential pressure may thus be maintained at an optimal level, trading off increased power requirements against the increased pollutant removal. In addition, as the filter cake thickness increases the contact or residence time of the gas with sorbent material in the system increases, resulting in more complete reaction. Therefore less material will have to be regenerated. This may also be taken into consideration in defining the differential pressure set point.
  • Referring now to FIG. 14, an emissions control loop 320 is illustrated. A gas stream may be seen to flow from gas source 15, through a first continuous emission monitor system (CEM) 80A, then to first reaction zone 30, then to a second CEM 80B. A sorbent feeder 20 may be seen to feed material to first reaction zone 30. Feeder 20 may be a screw feeder having a variable speed screw, auger, pneumatic conveyor, or other method to move sorbent, within.
  • CEM 80A and CEM 80B can represent a NOX analyzer and/or a SOX analyzer. In one embodiment, CEM 80A is a chemiluminescent monitor, for example, Thermo Electron model 42H. In one embodiment, CEM 80A includes a SOX monitor such as Bovar Western Research model 921NMP, utilizing a spectrophotometric method. In some embodiments, CEM 80A and CEM 80B include both NOX and SOX analyzers. A feed controller 322 may be seen to accept a first input 328 from an outlet CEM signal 325. Controller input 328 may be used as a feedback signal to control the feeder rate. In some embodiments, a feeder controller 322 also has a second input 330 accepting an inlet measurement signal 324, also including pollutant concentration data. Second input 330 may be used to display the incoming gas concentrations and/or to calculate percentage removal set points in the system. Feeder controller 322 also accepts a set point signal 326, indicating the desired feed rate and/or the desired NOX or SOX concentration exiting first reaction zone 30. Feeder controller output 332 can be a variable frequency drive signal, among other available signals, to control the speed of feeder 20.
  • Feeder controller 322 may be any suitable controller, including a PID controller utilizing any combination of its individual modes. In one embodiment, set point 326 is set at a desired concentration for either NOX or SOX, depending on the embodiment. The gas concentration signal 325 from CEM 80B can be used by feeder controller 322 to calculate output signal 332. When the gas concentration is higher than indicated as desirable by set point 326, output 332 can be increased to increase the speed of feeder 20, which will put more sorbent into first reaction zone 30, thereby dropping the pollutant concentration. Conversely, when pollutant gas concentration 325 is lower than required, feeder controller output 332 can be decreased to decrease the rate of sorbent addition from feeder 20 into first reaction zone 30.
  • Referring now to FIG. 15, the gas to be cleaned may be seen to flow from external gas source 15, through a first heat exchanger 72A, through first reaction zone 30, through second heat exchanger 72B, through a second reaction zone 38, and to stack 40. FIG. 15 illustrates a system having two reaction zones and two heat exchangers. The temperature to the first reaction zone 30 may be seen to be controlled by a first temperature controller 340, which accepts a set point 344 and a temperature input 342, and generates an output 346 to first heat exchanger 72A. As previously discussed, the maximum desired temperature in the reaction zone may depend on the thermal decomposition temperature(s) of the sulfates of manganese or nitrates of manganese, depending on whether NOX and/or SOX are being removed. Lower temperature set points will be above the dew point of the system and adjusted automatically or manually as needed. In one embodiment, the temperature to be controlled is measured at the reaction zone itself, rather than at the outlet from the heat exchanger, in order to more directly measure the temperature in the reaction zone. In one embodiment, temperature controller 340 output 346 may be a variable analog signal or other variable signals used to control a variable speed blower to control the outlet temperature from heat exchanger 72A. Temperature controller 340 may increase/decrease the cooling air passing through heat exchanger 72A when the temperature in first reaction zone 30 is greater/less than set point 344.
  • A second temperature controller 350 may be seen to accept a temperature input 352 from second reaction zone 38 and a set point 354, and to generate an output 356 for heat exchanger 72B. Second temperature controller 350 may be similar to first temperature controller 340. In one embodiment, heat exchanger 72B is used to cool the incoming gas, using ambient air as the cooling medium. As discussed previously with respect to temperature controller 340, second temperature controller 350 may increase/decrease the output to a variable speed drive coupled to a blower when the temperature of second reaction zone 38 is greater/less than set point 354.
  • FIG. 15 also illustrates how a first feeder 20A may feed material to first reaction zone 30. A second feeder 20B may be used to feed sorbent material to second reaction zone 38. First feeder 20A and second feeder 20B may be controlled as previously described with respect to feeder 20 in FIG. 14.
  • Referring now to FIG. 16, a control and data acquisition system 400 for controlling and monitoring the previously described processes is illustrated. System 400 may be seen to include generally a programmable logic controller (PLC) 402 and a local on-site computer 440. Both PLC 402 and local computer 440 may be coupled to the World Wide Web 424. PLC 402 and local computer 440 may be accessed over World Wide Web 424 by a user PC 428, a hand-held computer such as a Palm Pilot™ 430, and other devices 426 which can access World Wide Web 424.
  • PLC 402 may be seen to include a PLC rack 403. In one example, PLC 402 is an Allen-Bradley™ PLC. In one example, the Allen-Bradley™ PLC is a PLC 5. PLC rack 403 may be seen to include a PLC processor module 408, and Ethernet module 410, and a DC power supply 412. PLC 402 may be seen to include an input/output bus 406, for example a Controlnet™ bus 406, and input/output bus 414, shown as Data Highway PluS™ 414, which is connected to local programming computer 416. Bus 406, in the present example, may be seen to be coupled to numerous input/output cards 404. Input/output cards 404 may be seen to include a discrete I/O cards 404A, mixed discrete and analog I/O cards 404B, discrete I/O cards 404C, discrete and analog I/O cards 404D, more discrete and analog cards I/O 404E, a variable frequency drive card 404F, and a second variable frequency drive card 404G. The discrete I/O may be commonly used to accept inputs from discrete switches such as limit switches, and the output used to open and shut valves and to start and stop motors. The analog I/O may be used to accept input analog measurements from sensors and to control variable position output devices. The variable frequency drive outputs may be used to control variable speed motors, for example, variable speed motors used to control airflow pass the heat exchangers.
  • PLC 402 may be seen to be coupled to an Ethernet hub 420 via an Ethernet cable 418. In one embodiment, a DSL modem 422 enables Ethernet hub 420 to be accessed from World Wide Web 424. Local computer 440 may also be seen to be coupled to Ethernet hub 420 via an Ethernet cable 444. Ethernet cable 444 can be coupled to an Ethernet card 446. Similarly, local computer phone line 442 may be coupled to a PC modem card 450. The PC modem card can provide access to World Wide Web 424 when a DSL modem line is not available or is not functioning. Local computer 440 may be seen to include software or software component 448 which can include, for example, Microsoft Windows 2000™ as an operating system that is providing both server and terminal functionality. Software component 448 can include an Allen-Bradley™ OLE Process Control (OPC) module 452, as well as an Intellutiomm OPC server component 454. The IFIX process monitoring and control package by Intellution™ is used in one embodiment. An Intellutionm process database component 456 may also be included. Allen-Bradley™ OPC server 452 can provide communication between local on-site computer and Allen-Bradley™ PLC 402.
  • Intellution™ OPC server 454 can provide communication between the Allen-Bradley™ inputs and outputs and the Intellutiomm process monitoring and control system residing within local computer 440. Intellution™ process database 456 may be used to monitor and control the entire process. Intellution™ Work Space 458 may be used to allow access to monitor, display, and change current data, and a historical data area 460 may be used to trend historical process data. An Access™/Oracle™ RDB component 462 may also be included to provide database reporting. In one embodiment, a report module, for example, a Microsoft Excel™ or Crystal™ report component 464 may also be provided. In some embodiments, an Intellution™ web server component 466 is provided, as is a Microsoft™ Internet Information Server (IIS) module 468. In some embodiments, local on-site computer 440 has a local terminal or CRT as well to display, monitor, and change data residing in the Intellution™ Work Space 458.
  • In some embodiments, most or all of the controls discussed below in the present application are implemented within control system 400. In one embodiment, most or all controls are implemented within Allen-Bradley™ PLC 402. For example, PID control blocks can be implemented using provided Allen-Bradley™ PID blocks, or the blocks can be created from primitive mathematical operations using ladder logic. Control blocks such as the table blocks and selector blocks of FIGS. 24 and 25 may be implemented within Allen-Bradley™ PLC 402 using standard blocks. Local on-site computer 440 may be used to store and output values such as PID set points and selector switch values from local computer 440 to registers or control blocks within PLC 402. For example, the set points to heat exchanger, differential pressure, and feed rate control blocks may reside within local computer 440 and be downloaded to PLC 402. The set points may be obtained by local computer 440 from a local terminal and/or from World Wide Web 424 from devices 426, 428, and/or 430, protected by appropriate security. Local computer 440 can be used to provide historical trending, operator interface, alarming, and reporting.
  • Referring now to FIG. 17, a process graphic 450, as displayed on a human-machine interface is displayed. Process graphic 450 may be displayed, for example, on an Intellution™ IFIX system. Process graphic 450 can be updated in real time and can reside on a personal computer, for example. Process graphic 450 includes a manual switch 458 and an automatic switch 459 for controlling the control mode of the differential pressure across the bag house. Process graphic 450 also includes a table of values 460 including the differential pressure set point, the actual differential pressure and the inlet temperature to the bag house. An output table 462 is also illustrated, including the bag house outlet temperature, the flue gas flow rate, the inlet pressure to the bag house and the outlet pressure from the bag house. A bag house 452 is shown diagrammatically including an inlet 454 and an outlet 456. An outlet emission table 464 is also illustrated, including the SO2, the NOX level, and the O2 level. Process graphic 450 may be used to monitor and control the bag house differential pressure, as previously discussed.
  • Referring now to FIG. 18, a process graphic 470 is illustrated as may be displayed on an Intellution™ IFIX process graphic. Process graphic 470 can monitor and control the absorbent feeder speed, including an increase button 471 and a decrease button 472. The actual feeder speed in pounds of sorbent per hour is illustrated at feeder speed 483. A scrubber inlet table 473 is illustrated, including a SO2 level, a NO level, a NO2 level, a NOX level, a CO level, and an O2 level. A scrubber outlet table 474 includes the same levels as the inlet, but at the scrubber outlet. A NOX control section 475 on the process graphic includes a manual button 476 and an auto button 477, as well as a set point 478. In automatic mode, set point 478 may be used to control the feeder speed using the NOX set point. Similarly, an SO2 control section 479 includes a manual control button 480 and an auto control button 481, as well as a set point 482. In automatic mode, set point 479 may be used to control the feeder speed using the SO2 set point.
  • Referring now to FIG. 19, a process graphic 490 is illustrated, as may be found on a process control and monitoring station. A cooler 491 is illustrated, having an inlet 492 and an outlet 493, with the inlet and outlet temperatures being displayed in real time. Cooler 491 may be a heat exchanger as previously discussed. Process graphic 490 includes a manual button 494 and an auto button 495. The bag house inlet temperature is displayed at 498 as is the cooler set point 497. When in the automatic mode, the fan speed may be controlled by a PID controller using set point 497. Process graphic 490 also includes an outlet emission table 496, including the SO2 level, the NOX level, and the O2 level.
  • Referring now to FIG. 20, differential pressure control loop 300 is illustrated in block diagram form. Differential pressure controller 302 may be seen to accept set point 312 and actual differential pressure 310, and to generate output signal 314 to control the differential pressure across bag house 30. As previously discussed, differential pressure set point 312 may be set taking into account the desired pollutant removal target of the system, the power required to force gas through the filters, and the desired rate of sorbent replenishment.
  • Referring now to FIG. 21, sorbent feeder control loop 320 is illustrated in block diagram form. As previously discussed, feeder control loop 320 can include a reaction zone CEM unit 80B that generates an output signal from the NOX and/or SOX emission analyzers. Emissions/Feeder controller 322 can accept the NOX or SOX measured emission level through controller input 328, and accepts a set point 326 indicating the desired NOX and/or SOX concentration. Controller 322 may also send a controller output 332 to sorbent feeder 20. As previously discussed, sorbent feeder 20 may be a variable speed screw feeder, accepting a variable analog drive signal among others as its input from feeder controller 322. The process trade-offs in setting set point 326 are as previously described.
  • FIG. 22 illustrates a control loop 341 for controlling the temperature of bag house 82. Temperature controller 340 is as previously described with respect to FIG. 15. Temperature controller 340 accepts a bag house temperature input 342 and desired bag house input temperature set point 344, generating controller output 346 which can be fed as a fan speed control to heat exchanger 72A. The control scheme rationale is as previously described with respect to FIG. 15.
  • Referring now to FIG. 23, a variable venturi control loop 361 is illustrated. FIG. 23 illustrates a venturi position controller 360, which accepts a venturi position set point 362 and an actual venturi position input 364, generating a controller output 366 which can be accepted by a variable venturi positioner at 368. The actual position of the variable venturi position may be measured by a position detector 367. In one embodiment, the variable venturi position may be measured in units of 0 to 100%. Venturi set point 362 may be set as a function of one of several desired process parameters.
  • The variable venturi position may be set to control the space between the variable venturi 160 and interior surface 154, the cross-sectional flow area, available for the bag house inlet gas to flow around the flow occluding devise, variable venturi 160, thereby controlling the fluidization velocity of the gas. When the flow cross-sectional area is decreased, the gas flow velocity increases, which can be used to support a deeper fluidized bed depth of sorbent material. If the gas flow velocity is made very high, only the densest sorbent particles will be able to descend against the swiftly rising gas and be collected from the system. If the fluid velocity is set very low, even the lightest particles will be able to settle out of the system quickly, thereby increasing the need for regeneration or recycling of material back to the reaction zone for more loading. A higher gas flow velocity will, in effect, create a fluidized bed reactor, having a fluidized bed of sorbent material held in place by the upwardly rising gas stream. A rapidly moving gas stream will also carry more sorbent particles to the fabric bags 88 filter to form a filter cake. Conversely, a slowly moving gas flow around the variable venturi 160 will allow many sorbent particles to fall and be collected prior to becoming caked upon the bags 88. A deeper fluidized bed will create higher differential pressures and a shallow fluidized bed will create lower differential pressures. Removal efficiencies may be taken into consideration when setting SOX and/or NOX fluidized bed depth. Variable venturi controller 360 may be any suitable controller, including a PID controller, utilizing any combination of its modes.
  • Referring now to FIG. 24, a control scheme 370 is illustrated for controlling sorbent feeder 20 using one set of inputs selected from the group including NOX concentration, SOX concentration, and reactor zone differential pressure. The control of sorbent feeder 20 may be accomplished by selecting one of the aforementioned control inputs, where the selection may be based on the greatest deviation from set point or error.
  • An error generator 373 may be seen to accept several actual measurement signals 384, as well as several set points 385. The actual signals and set points may be used to generate corresponding errors, for example, using subtraction. Error generator 373 may be seen in this example to output a NOX error 373A, a SOX error 373B, and a differential pressure error 373C. The outputs from error generator 373 may be accepted by an error selector gate 374, with one of the input errors selected and output as the error to a controller error input 382. Error selector gate 374 may be operated manually to accept one of the several input errors in some embodiments. In other embodiments, error selector gate 374 may automatically select the largest error or deviation, to control based on the process variable or parameter most requiring attention. For example, sorbent feeder 20 may be controlled based upon the NOX concentration, the SOX concentration, or the differential pressure across the reaction zone.
  • Error selector gate 374 may select the highest deviation, or the highest percent of deviation, of these three error inputs. Error selector gate 374 can generate a selector output 386 which can be used to select which of the inputs a gain selector 372 is to select. Similarly, error selector gate 374 may output a selector output 383 which can be accepted by a set point selector gate 376 to select from various set points provided to the selector gate.
  • A gain table 371 may be implemented as a table in a fixed database, for example, a series of registers in a PLC. Gain table 371 may be seen to include a NOX gain 371A, a SOX gain 371B, and a differential pressure gain 371C. The gains from gain table 371 may be seen to feed gain selector block 372. A gain selector output 377 may be sent to a controller gain input 379.
  • A set point table 375 may be seen to include a NOX set point 375A, a SOX set point 375B, and a differential pressure set point 375C. The set points may be used as inputs to selector gate 376, with selector output 383 being used to select one of the input set points. Selector gate 376 may be seen to output one of the selected set points to controller set point input 380.
  • Control scheme 370 thus provides a system and method for controlling the sorbent feeder rate based upon any one of the NOX concentrations, the SOX concentration or the differential pressure across the reaction zone. This can be accomplished using the selector blocks previously discussed while only requiring a single controller. Controller 378 can be, for example, a PID controller, using any combination of its individual modes.
  • Referring now to FIG. 25, a control scheme 390 is illustrated, similar in some respects to control scheme 370 of FIG. 24. Control scheme 390 includes similar control blocks, tables, and outputs as previously described in FIG. 24. Control scheme 390 further includes the variable venturi control as one of the possible sets of inputs, gains, and set points to be used to control sorbent feeder 20. Gain table 371 may be seen to include a variable venturi gain 371D. Error generator 373 may be seen to generate a variable venturi error 373D. Set point table 375 may be seen to include a variable venturi set point 375D. Control scheme 390 may thus operate in a manner similar to control scheme 370 of FIG. 24, but allowing for control based on the venturi position.
  • Various components of the system of the invention have been discussed above. Many of the components of the system are commercially available from various original equipment manufacturers and are known to those of ordinary skill in the art. Further, one skilled in the art will recognize and understand that the reaction zones and other units of the system of the invention may be connected by pipes, ducts, and lines, etc. which allow gas and/or sorbent to flow through and within the system and that reaction zones are in flow through communication in dual and multi stage embodiments of the invention. In addition to the aforementioned system components, the system may further include various hoppers, conveyors, separators, recirculation equipment, horizontal and vertical conveyors, eductors. Further, there may be modulating diverter valves, vibrators associated with feeders, compressors to provide instrument air to pulse filter fabric bags, as well as various meters and sampling ports.
  • In addition to removing SOX and NOX, the system and processes of the invention can be utilized to remove mercury (Hg) and fly ash. Gases emanating from combustion of fuels, which contain mercury and sulfides, include mercury compounds, mercury vapor, ash, SOX and NOX. These gases and solids are commingled with oxides of manganese and are transported at a sufficient velocity as a gas-solids mixture to a reactor, which may be a bag house or other reactor/separating device. During transport and during residence in the reactor, oxidation-reduction reactions occur. These reactions cause the conversion of mercury vapor to mercury compound(s), and sorbent and/or alumina adsorb the mercury compound(s). As disclosed above, SOX and NOX are removed through reaction with oxides of manganese to form sulfate and nitrate compounds of manganese. These reaction products, unreacted sorbent (if any) alumina, adsorbed mercury, and ash are trapped and collected in the bag house and clean, substantially stripped gases are vented to the stack. Thus, during the processing of gases with the system of the invention, mercury and mercury compounds may also be removed. The reacted and unreacted sorbent when removed from the reaction zones of the system may be further processed to generate useful products and to regenerate the sorbent as described herein below.
  • The system of the invention in its various embodiments may be utilized in a process for removal of oxides of sulfur and/or oxides of nitrogen, mercury (compounds and vapor), and other pollutants from a gas stream. The processes generally involve providing a system according to the invention, whether single stage, dual-stage, or multi-stage. Gas and sorbent are introduced into a reaction zone and contacted for a time sufficient to effect capture of the targeted pollutant(s) thereby substantially stripping the gas of the targeted pollutant(s). In a single-stage removal process, the reaction zone would need to be a solid-gas separator operating as a reaction zone or else followed by a solid-gas separator in order to render the gas that has been substantially stripped of a target pollutant free of solids so that the gas may either be vented or directed for further processing. In a dual-stage removal process, the second reaction would preferably be a solid-gas separator operating as a reaction zone. And, in a multi-stage removal process the last reaction zone in the series of reaction zones through which the process gas is directed would need to be a solid-gas separator operating as a reaction zone or else followed by a solid-gas separator in order to render the gas that has been substantially stripped of a target pollutant free of solids so that the gas may either be vented or directed for further processing.
  • Generally, configuring the systems and processes of the invention to incorporate a solid-gas separator as the last reaction zone in a sequence of removal steps would be most economical and efficient.
  • A process according to the invention is described below using single-stage and dual-stage systems of the invention for purposes of illustration. It should be readily understood by those skilled in the art that the processes as described can be adapted to multi-stage removals and to removal of various targeted pollutants with or without the addition of other sorbent materials or chemical additives, as appropriate.
  • Removal of SOX and/or NOX can be accomplished in a single single-stage removal system. Sorbent and gas containing SOX and/or NOX are introduced into a reaction zone 30 where the gas and sorbent are contacted for a time sufficient to substantially strip the gas of SOX and/or NOX. If SOX is the primary target pollutant, the gas may be introduced at temperatures typically ranging from about ambient temperature to below the thermal decomposition temperature(s) of sulfates of manganese. If NOX is the primary target pollutant, the gas would be introduced at temperatures typically ranging from about ambient temperature to below the thermal decomposition temperature(s) of nitrates of manganese. If both pollutants are present, NOX will not be captured if the temperature of the gas is above the thermal decomposition temperature of nitrates of manganese. In the reaction zone, the gas would be contacted with the sorbent for a time sufficient to effect capture of the pollutant at a targeted capture rate. If both pollutants are to be captured, the capture rate for the primary targeted pollutant would control or utilize a control sub-element, such as control loop 320 of FIG. 14 or control loop 390 of FIG. 25. The capture rate for the targeted pollutants can be monitored and adjusted. The reaction zone would preferably be a solid-gas separator that renders the gas free of solids, such as reacted and unreacted sorbent and any other particulate matter in the gas so that the gas may be vented from the reaction zone or directed for further processing, after contacting the gas with sorbent for a sufficient time.
  • In a dual-stage removal process, a system of the invention having at least two reaction zones, first and second reaction zone 30, 38 as in FIG. 1, is provided. It should be understood that the system could be a system of the invention such as the modular reaction units illustrated in FIGS. 2 and 3. With reference to FIG. 2, any of the bag houses 62, 64, 66 could serve as first and second reaction zones 30, 38 depending upon how the gas is directed through the system. Further, with reference to FIG. 3, the first bag house 70 would correspond to first reaction zone 30 and either or both of the second and third bag houses 76, 78 would correspond to second reaction zone 38. Additionally, it is understood that other reaction zones may be substituted for the bag houses of FIGS. 2 and 3 and the process as described could be carried out.
  • However, for purposes of illustration, the dual-stage removal process is discussed with reference to FIG. 1. In this process of the invention, gas and sorbent are introduced into first reaction zone 30. The gas is contacted with the sorbent for sufficient time to primarily effect SOX capture at a targeted capture rate. The gas is rendered free of solids and then vented from the first reaction zone 30. Sorbent and the gas that has been substantially stripped of SOX are then introduced into second reaction zone 38. In the second reaction zone, the gas is contacted with the sorbent for a sufficient time to primarily effect NOX capture at a targeted capture rate. The gas is rendered free of solids and then vented from the second reaction zone 38. The vented gas may be directed to stack 40 to be vented or emitted into the atmosphere or directed on for further processing.
  • With the processes of the invention, other pollutants that can be captured with oxides of manganese can be removed. For example, without being limited or bound by theory, Applicants believe that mercury compounds adsorb onto oxides of manganese. Applicants further believe that, in the system and processes of the invention, elemental mercury is oxidized to form oxides of mercury which also adsorb onto oxides of manganese. Additionally, hydrogen sulfide (H2S) and other totally reduced sulfides (TRS) can be removed utilizing oxides of manganese. More specifically, Applicants postulate that the sulfur in TRS may be oxidized to form SO2 which is known to react with oxides of manganese to form sulfates of manganese. It is known that mercury compounds may be removed from gases by adsorption on fly ash and/or alumina. Thus, alumina may be introduced with the sorbent in a reaction zone for purposes of removing mercury compounds and elemental mercury that has be oxidized to form oxides of mercury. Thus, elemental mercury that is not oxidized and therefore not captured by the sorbent in a first or second reaction zone may be captured in a third reaction zone, which may be referred to as a mercury-alumina reactor or an alumina reactor. With respect to single-stage removal, the mercury compounds may be removed in a reaction zone by contacting the gas with sorbent for a time sufficient for the mercury compounds to adsorb on to the sorbent, and alumina if mixed with the sorbent to thereby substantially strip the gas of mercury. Further, if the reaction zone is a solid-gas separator, mercury compounds adsorbed to fly ash would also be removed, thereby substantially striping the gas of mercury compounds. In a dual-stage, the mercury compounds would similarly be removed, but depending upon which reaction zone is also a solid gas separator.
  • Thus, the system and process of the invention are readily understood to include and contemplate the removal of not only SOX and/or NOX but other pollutants, mercury compounds, elemental mercury, TRS, and H2S.
  • The system and process of the invention has been tested at several power plants utilizing a SOX and/or NOX removal demonstration unit embodying a system according to the invention. The demonstration unit utilized a bag house as the second reaction zone and a pipe/duct as a first reaction zone in a dual stage removal system. The test runs and results are summarized in the following examples.
  • EXAMPLE 1
  • NOX concentrations were determined using EPA method 7E, chemiluminesent analysis method, and analyzed with a model 42H chemiluminescent instrument manufactured by Thermo Electron Inc. Sulfur dioxide (SO2) concentrations were measured utilizing, a spectrophotometric analysis method employing a Bovar Western Research Spectrophotometric model 921NMP instrument. In order to obtain accurate and reliable emission concentrations, sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C. Gas flow rates in standard cubic feet per minute (scfm) were measured using AGA method #3, utilizing a standard orifice plate meter run. The demonstration was conducted utilizing a series of test runs on live gas streams from a power plant. Said power plant operates steam boilers which are fired on high sulfur coal. During test runs, NOX and SO2 concentration readings were taken continuously alternating from the inlet and the outlet of the demonstration unit. Gas flow rates were measured continuously. The demonstration tests were performed utilizing two different forms of sorbent. The tests conducted utilized various forms of oxides of manganese as sorbent. The tests were performed with and without bag house filter pulsing. The following table summarizes the results and operational parameters:
    Range of Operation Parameters
    Range of NOX Concentrations Processed by 14.14 to 320 ppm
    the Demonstration Unit
    Range of SO2 Concentrations Processed by 300 to 1800 ppm
    the Demonstration Unit
    Range of Gas Flow through the Demonstration Unit 250 to 2000 scfm
    Range of Pressure Across the Bag House 0.5″ to 10.0″ of H 20
    Range of Bag House Temperatures 60° F. to 246° F.
    Maximum NOX steady state Removal Rate 96.0%
    Maximum SO2 steady state Removal Rate 99.8%
  • EXAMPLE 2
  • A test using the demonstration unit according to the invention, utilizing oxides of manganese as the sorbent was conducted on a simulated gas stream containing varying levels of NOX. Oxides of manganese powders that were used during this test described generally by 60% of particles less than 45 microns in size and having a BET surface area of approximately 30 m2/g. Knowing that there is a competition for reaction sites between SO2 and NOX, a series of tests was conducted to gather data on the efficiency of NOX capture in the absence of SO2. Synthetic NOX gas was made on site by use of high-concentration bottle gas which was diluted into the inlet gas stream and processed by the demonstration unit. The bag house was pre-loaded with oxides of manganese prior to introduction of test gas by operating the demonstration unit's blower at high speed (typically about 1200 scfm), and feeding the oxides of manganese into the gas stream at a high rate (between 40% and 90% of feeder capacity) in order to form a suitable filter cake on the fabric bags in the bag house. Gas from cylinders containing NOX, 20% NO, and 20% NO2, (20,000 ppm) was metered into the bag house inlet through a rotameter-type flow gage. NOX concentrations were measured at the bag house inlet and outlet on an alternating basis throughout the testing with the demonstration unit's continuous emissions monitoring system (CEMS), utilizing a Thermo Electron model 42H Chemiluminescent instrument. In order to obtain accurate and reliable emission concentrations, sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C.
  • Tests were performed at varying levels of bag house differential pressure (measured in inches of water column) and flow rates (measured in scfm). The NOX inlet concentrations ranged from 18.3-376.5 ppm with flow rates ranging from 260-1000. It has been determined that varying levels of filter cake thickness affect the NOX and SO2 removal. A thicker filter cake increases the quantity of sorbent exposed to the gas, thus increasing the micro-reaction zone within the filter cake. As a representation of the sorbent filter cake depth, the differential pressure across the bag house (referred to as ΔP) was measured between 2.00″-9.67″ of WC (expressed in inches of water column). NOX concentrations were recorded once the system was in steady state and the readings were stable for up to 20 minutes. The following table illustrates the level of NOX removal achieved as a function of inlet concentration, gas flow rate, and bag house differential pressure:
    Inlet Outlet Flow
    Run NOX NOX ΔP Rate
    No. (ppm) (ppm) % Reduction (in. H2O) (scfm)
    1 25.5 3.3 87.1 2.00 260
    2 140.1 8.5 94.0 3.86 500
    3 102.0 10.5 89.7 7.71 1000
    4 324.9 17.4 94.7 7.78 1000
    5 195.0 15.1 92.3 7.85 1000
    6 46.7 8.4 81.9 7.85 1000
    7 200.3 32.5 83.8 3.0 to 4.0 1000
    8 28.2 6.2 78.0 7.80 500
    9 57.8 11.4 80.3 2.10 500
    10 84.9 8.9 89.5 3.80 500
    11 86.0 8.9 89.7 3.80 500
    12 194.5 11.5 94.1 3.80 500
    13 317.5 12.7 96.0 3.80 500
    14 376.5 26.7 92.9 2.10 500
    15 376.5 26.7 92.9 2.10 500
    16 18.3 4.0 78.1 4.45 509
    17 83.5 8.7 89.6 4.45 509
    18 40.1 5.9 85.3 4.45 509
    19 83.5 8.7 89.6 4.45 509
    20 21.5 4.5 79.2 4.74 500
    21 45.7 6.5 85.8 4.75 500
    22 92.1 8.6 90.7 4.75 500
    23 201.1 11.5 94.3 4.76 500
    24 317.5 14.0 95.6 4.79 500
    25 52.1 10.0 80.9 9.67 1000
    26 82.4 12.0 85.5 9.67 1000
    27 105.4 13.2 87.5 9.65 1000
    28 224.0 18.5 91.8 9.67 1000
    29 328.4 23.1 93.0 9.67 1000
    30 100.2 15.0 85.0 9.67 1000
  • EXAMPLE 3
  • A further test of the demonstration unit according to the invention utilizing oxides of manganese as the sorbent, was conducted on a live exhaust gas slipstream from a 170 MW coal fired boiler. The boiler was operating on high sulfur coal of approximately 4-6% sulfur, resulting in emission concentrations of SO2 in the range of 1200-2000 ppm and NOX concentrations in the range of 280-320 ppm. A slipstream averaging 1000 scfm was diverted from the main stack exhaust and routed to the demonstration unit for reaction and sorption by the sorbent oxides of manganese. SO2 and NOX concentrations were measured at the scrubber inlet and outlet of the bag house on an alternating basis throughout the testing with the demonstration unit's continuous emissions monitoring system (CEMS). SO2 concentrations were measured utilizing a Bovar Western Research model 921NMP spectrophotometric analyzer and NOX concentrations were measured utilizing a Thermo Electron model 42H chemiluminescent instrument. In order to obtain accurate and reliable emission concentrations, sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C.
  • SO2 removal efficiencies of 99.8% and NOX removal efficiencies of 75.3% were achieved while processing on average 1000 scfm of exhaust gas at temperatures typically ranging from 150° F. to 250° F. Test runs were conducted with varying levels of bag house differential pressures ranging from 0.5″ to 8.6″ of WC, which represents various levels of filter cake thickness. Tests were also conducted with different rates of bag house filter bag pulsing and varying levels of oxides of manganese feed rates. Oxides of manganese powders that were used during this test described generally by 60% of particles less than 45 microns in size and having a BET surface area of approximately 30 m2/g. The following table gives an example of SO2 and NOX data collected during a test in which 1000 scfm was processed by the dry scrubber at an inlet temperature of 250° F., and a differential pressure of 5.75″ of WC. Data was collected once the demonstration unit was in a steady state of NOX and SO2 removal for a period of 30 minutes. The results are summarized in the below table:
    Pollutant Inlet ppm Outlet ppm ppm % Removal
    Oxides of Nitrogen (NOx) 285.9 70.5 75.3%
    Sulfur Dioxide (SO2) 1703 3.9 99.8%
  • EXAMPLE 4
  • An additional series of demonstration tests of the demonstration unit, utilizing oxides of manganese as the sorbent, was conducted on a live exhaust gas slipstream from a 75 MW coal fired boiler. This boiler was operating on Powder River Basin (PRB) coal, resulting in emission concentrations of SO2 in the range of 340-500 ppm with NOX concentrations in the range of 250-330 ppm. A slipstream ranging from 500-1000 scfm was diverted from the main stack exhaust and routed to the demonstration unit for reaction and sorption by the oxides of manganese. Oxides of manganese powder that were used during this test described generally by 60% of particles less than 45 microns in size and having a BET surface area of approximately 30 m2/g. SO2 and NOX concentrations were measured at the bag house inlet and outlet on an alternating basis throughout the test with the demonstration unit's continuous emissions monitoring system (CEMS). SO2 concentrations were measured utilizing a Bovar Western Research model 921NMP spectrophotometric instrument and NOX concentrations were measured utilizing a Thermo Electron model 42H chemiluminescent instrument. In order to obtain accurate and reliable emission concentrations, sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C.
  • SO2 and NOX reduction efficiencies were measured at 99.9% and 91.6% respectively. Testing was conducted with varying degrees of differential pressure (ΔP) across the bag house to affect the residence time of the targeted pollutants. Reaction chamber temperatures ranged from 150° F. to 280° F. It was determined that longer residence times resulted in improved capture rates for NOX. However, the fact that the SO2 reaction occurs so rapidly and completely, the SO2 reduction efficiency remains nearly complete (99.9%) at even the lowest of residence times. While operating the scrubber at 0.5″-1.0″ of WC across the bag house, a pollutant concentration reduction efficiency of 99.8% for SO2 and 40.0% for NOX was achieved. It is from these results that the concept for a two stage reaction chamber system develops, whereby the first reaction chamber captures the majority of SO2 and a small fraction of NOX, while the second “polishing” stage completes the NOX removal to desired levels of efficiency, predetermined and controlled by the system operator. Data was collected once the dry scrubber was in a steady state of NOX and SO2 removal for a period of 30 minutes. The following table gives an example of SO2 and NOX data collected during a testing in which 500 scfm was processed by the demonstration unit at an inlet temperature of 250° F., and a differential pressure of 8.7″ of WC:
    Pollutant Inlet ppm Outlet ppm ppm % Removal
    Oxides of Nitrogen (NOx) 268.1 22.4 91.6%
    Sulfur Dioxide (SO2) 434.3 0.5 99.9%
  • EXAMPLE 5
  • In an attempt to determine the effectiveness of SO2 and NOX removal, a series of lab-scale tests were conducted utilizing a glass reactor. The reactor was designed to mimic the gas-solid interactions known to be present in the aforementioned demonstration unit. The glass reactor had a diameter of 2 inches with a length of approximately 24 inches. 50.0 grams of oxides of manganese were suspended in the reactor using a fritted glass filter allowing for flow of the gas stream, while keeping the oxides of manganese suspended. Approximately 3 inches above the fluidized bed of oxides of manganese, a sintered stainless steel filter was arranged to simulate a bag house filter bag. The reactor was heated during the testing to 250° F. and the gas flow rate was metered at a constant 6 liters per minute (1 pm). Simulated exhaust gas was produced by use of a calibration gas standard having the following composition: CO2=17.35%, NOX=391 ppm, SO2=407 ppm, CO=395 ppm, and balance N2. The simulated flue gas stream passed through the fluidized bed of oxides of manganese, where the flow carried a portion of the sorbent up onto the filter, thus creating a filter cake, which mimics a bag house reactor chamber.
  • SO2 and NOX concentrations were measured continuously from the reactor outlet utilizing a continuous emissions monitoring system (CEMS). SO2 concentrations were measured utilizing a Bovar Western Research model 921NMP spectrophotometric instrument and NOX concentrations were measured utilizing a Thermo Electron model 42H chemiluminescent instrument. In order to obtain accurate and reliable emission concentrations, sampling and reporting was conducted in accordance with US EPA Reference CFR 40, Part 60, Appendix A, Method 6C. Removal efficiencies of 99.9% for SO2 as well as 99.9% for NOX were measured and duplicated for several test runs. Inlet temperature was 250° F., with a differential pressure of 2.00″ of WC. The following table gives an example of SO2 and NOX data collected during testing in which 6 lpm of gas was processed by a glass reactor:
    Inlet Outlet Sorbent Flow rate ΔP Temp. Time with >94%
    Pollutant (ppm) (ppm) Weight (g) % Removal (1 pm) (in H2O) (° F.) Removal
    Oxides of Manganese Type A
    NOX 391 17.21 50 95.6% 6 2.00 250   29 min
    SO2 407 0.1 50 99.9% 6 2.00 250 >54 min
    Oxides of Manganese Type B
    NOX 391 0.1 50 99.9% 6 2.00 250   60 min
    SO2 407 0.1 50 99.9% 6 2.00 250 >90
    Oxides on Manganese Type C
    NOX 391 0.2 50 99.9% 6 2.00 250   34 min
    SO2 407 0.1 50 99.9% 6 2.00 250 >68 min
  • The tests of this Example 5 were conducted with three different lots of manganese oxide sorbent. FIGS. 29 and 30 are, respectively, graphs plotting NOX and SOX concentrations at the outlet of the glass reactor versus time. The three different oxides of manganese are represented by the symbols “⋄” for type A sorbent, “Δ” for type B sorbent, and “□” for type C sorbent in FIGS. 29 and 30. Type A sorbent is an oxide of manganese powder generally at 60% of particles less than 45 microns in size and having a BET surface area of approximately 30 m2/g. Type B sorbent is an oxide of manganese powder generally at 100% of particles less than 45 microns in size and having a BET surface area of approximately 200 m2/g. Type C sorbent is an oxide of manganese powder generally at 80% of particles less than 45 microns in size and having a BET surface area of approximately 90 m2/g. The graph of FIG. 30, confirms the above statements regarding near immediate and complete SOX capture upon contact with the sorbent. The graph of FIG. 29 shows a range of capture efficiency over time for NOX and that different forms of oxide manganese may be able to provide more efficient capture of NOX. The type B sorbent performed the best before break-through, followed by type C. Useful captures were observed for all three types. With the process controls of the invention a wide variety of oxides of manganese can be utilized to effect removal at targeted capture rates. Further, the graphs of FIGS. 29 and 30 show that high removal or capture rates can be achieved and sustained over time. The operational parameters of the systems of the invention can be monitored and adjusted to attain and maintain removal or capture rates at these high levels.
  • As mentioned above, the reacted or loaded sorbent can be recycled and/or regenerated after being removed from a reaction zone. For recycling purposes the reacted sorbent may simply be reintroduced into another reaction zone. For example with reference to FIG. 4, the system has first and second reaction zones 30, 38 which are connected to feeder 20 which contains unreacted or virgin sorbent. Gas from external gas source 15 is introduced into first reaction zone 30 along with sorbent fed from feeder 20. The gas is contacted with sorbent for a time sufficient to remove a target pollutant, such as SOX, and after being rendered free of solids is vented from the first reaction zone 30. The gas is then introduced in the second reaction zone 38 along with sorbent from feeder 20. In the second reaction zone 38, the gas is contacted with gas for a time sufficient to remove another target pollutant, here NOX. During operation, the level of NOX loading on the reacted sorbent in second reaction zone 38 reaches the point where the sorbent no longer efficiently removes NOX. When the point is reached, the NOX. reacted sorbent is removed from the second reaction zone 38 and conveyed or transported to NOX reacted sorbent feeder 21. The NOX reacted sorbent, which has unused reactive sites available for further SOX capture, is fed or introduced into the first reaction zone 30 for additional loading or reaction with SOX in the gas introduced from external gas source 15. When the recycled NOX reacted sorbent reaches the point where SOX capture can no longer be achieved at a targeted rate of removal, the now NOX and SOX reacted (or loaded) sorbent is removed from the first reaction zone and routed for regeneration. In this way, the amount of virgin or unreacted sorbent that is utilized in the first reaction zone can be reduced and the additional load or reactive sites available on the NOX reacted sorbent can be utilized.
  • During a wet regeneration process the reacted surfaces of the sorbent may be removed and the remaining sorbent may be refreshed. This will be understood with reference to FIG. 26. In a wet regeneration, reacted sorbent is removed from a reaction zone, a reaction chamber in FIG. 26, and washed in an aqueous dilute acid rinse. Since the interaction between pollutants and the sorbent is believed to be a surface-controlled phenomenon, only a small fraction of the oxides of manganese is reacted with the pollutant. It is this small fraction of the sorbent that can be removed by washing or rinsing which thereby “activates” the sorbent by making unreacted surface area available. The solubility in water of nitrates of manganese is greater than the solubility of sulfates of manganese by at least an order of magnitude in cold water and by at least several orders of magnitude in warm to hot water. This differential in solubility can be advantageously utilized in the regeneration process.
  • The sulfates and nitrates of manganese on the surface of the sorbent particles dissolve off into solution in the dilute acid bath, leaving clean sorbent that can be readily separated from the rinse or bath by known means, such as settling and decanting, filtering, centrifuging or other suitable techniques. As is further discussed below, the clear filtrate or solution containing dissolved sulfates and/or nitrates of manganese are directed to a regeneration vessel for regeneration of sorbent and production of useful by-products. The clean sorbent is then dried in, for example, a kiln to remove excess moisture. The heat for this drying step may be waste heat generated by combustion which is transferred or exchanged from combustion or process gases at an industrial or utility plant. After drying, the clean sorbent may be pulverized as necessary to reduce the clean sorbent to particle sizes useful in the system of the invention. The cleaned or “activated” sorbent is then conveyed or otherwise transported to the unreacted sorbent feeder(s) and thus, recycled.
  • Again with reference to FIG. 26, the regeneration of sorbent and production of useful by-products can be understood. The solution or filtrate containing the dissolved sulfates and nitrates of manganese is passed from the acidic bath to a regeneration vessel to which alkali hydroxides such as potassium hydroxide (KOH) or sodium hydroxide (NaOH), or ammonium hydroxide (NH4OH) is added. The addition of these hydroxides, yield respectively, a solution containing nitrates and/or sulfates of potassium, sodium, or ammonium. These solutions can be made into fertilizer products or other products such as explosives. Air or oxygen is bubbled into or otherwise introduced into the reaction vessel to complete the regeneration, forming oxides of manganese, MnOX where X is between about 1.5 to 2.0.
  • The oxides of manganese are separated from the solution, much as the cleaned or reactivated sorbent after the acid wash step, and are then dried and pulverized before being conveyed to a virgin or unreacted sorbent feeder. The filtrate from the separation containing useful sulfates and nitrates that can then be further processed into marketable products.
  • Oxides of manganese may also be regenerated in a dry or thermal regeneration process, taking advantage of the thermal decomposition temperature(s) of nitrates of manganese. This regeneration process may be understood with reference to FIG. 27. The process illustrated and discussed herein is based upon a removal process where NOX is the target pollutant with nitrates of manganese being formed in the removal step in the reaction zone, a reaction chamber in FIG. 27. The NOX reacted sorbent is removed from the reaction chamber and conveyed to a first kiln. In the first kiln, the reacted sorbent is heated to a temperature at or above the thermal decomposition temperature(s) of nitrates of manganese and NO2 desorbs or is otherwise driven off. Oxides of manganese, MnOX where X ranges from about 1.5 to 2.0 are formed in the first kiln which may be heated with waste process heat from the local plant. The regenerated oxides of manganese from the first kiln may be conveyed to a second kiln heated with waste process heat. Air or oxygen are introduced into the second kiln to more completely oxidize the regenerated sorbent so that the X of MnOX ranges from about 1.5 to 2.0.
  • If the sorbent was SOX-reacted the thermal regeneration would proceed much as described for NOX, except the first kiln would be heated to a temperature at or above the thermal decomposition temperature of sulfates of manganese and SO2 would desorb or otherwise driven off. With out being bound by theory, Applicants believe that nitrates of manganese thermally decompose at temperatures between about 130° C. to about 260° C., while sulfates of manganese tend to liquefy at the temperatures over which nitrates of manganese thermally decompose. Applicants further believe that sulfates of manganese heated to these temperatures in the presence of a reducing agent, e.g., CO, H2, etc., will decompose to SO2 and MnO. Thus, if the sorbent were reacted with both SOX and NOX, NO2 could be driven off first by heating reacted sorbent in a kiln to a first temperature at which nitrates of manganese thermally decompose so that NO2 can be generated and directed for further processing. A reducing agent could then be introduced and the reacted sorbent further heated to desorb SO2. Alternatively, the reacted sorbent could be heated to a second temperature, the thermal decomposition temperature of sulfates of manganese with SO2 being desorbed and directed for further processing. The desorbed SO2 can be directed to a wet scrubber containing water and an optional oxidant to form sulfuric acid. This acid liquor can then be marketed as is or further processed. This further processing would involve the addition of an ammonium or alkali hydroxide solution to form useful sulfates. In either case, the regenerated sorbent is further heated in an oxidizing atmosphere to more completely oxidize the regenerated sorbent so that the X of MnOX ranges from about 1.5 to 2.0.
  • Referring back to FIG. 27, the desorbed NO2 can be directed to a wet scrubber containing water and an oxidant to form nitric acid. This acid liquor can then be marketed as is or further processed. This further processing would involve the addition of an ammonium or alkali hydroxide solution to form useful nitrates, such as KOH as illustrated in FIG. 27.
  • In addition to regeneration of sorbent and production of useful by-products from the sulfates and nitrates of manganese, elemental mercury can be recovered for NOX, SOX reacted sorbent that further has mercury compounds adsorbed thereon can be processed to generate and recover elemental mercury. The reacted sorbent is removed from a reaction zone of a system according to the invention and conveyed to a first kiln, the reacted sorbent is heated to a first temperature to desorb NO2 which is routed for further processing into marketable products. The reacted sorbent is then heated a second temperature to desorb elemental mercury which is routed to a condenser for recovery as a marketable product. The sorbent is then rinsed to wash away any ash and to dissolve sulfates of manganese into solution to form a liquor. Any ash in the liquor is separated out and the ash routed for further handling. Alkali or ammonium hydroxide is added to the liquor to form an unreacted sorbent precipitate of oxides of manganese and a liquor containing alkali or ammonium sulfates. The liquor contains rinsed sorbent. The rinsed sorbent and unreacted sorbent precipitate and are separated from the liquor and the liquor is routed for further processing into marketable products or for distribution and/or sale as a useful by-product. The rinsed sorbent and sorbent precipitate are dried to form unreacted sorbent which can then be pulverized to de-agglomerate the unreacted sorbent.
  • Liquid mercury can also be recovered from mercury adsorbed to alumina in an alumina reactor. The mercury-reacted alumina from the reactor is heated to drive off or desorb mercury. The mercury vapor is then directed to a condenser where it is condensed to form liquid mercury which is a marketable product.
  • The above examples of regeneration processes are provided by way of example and are not intended to limit the processes, both known and unknown, for regeneration of oxides of manganese and for recovery of useful and marketable by-products that may be incorporated into the processes of the invention.
  • The combustion of fossil fuels (e.g., coal, oil, and natural gas) liberates three major air pollutants: (1) particulates (2) sulfur dioxide (SO2) and (3) oxides of nitrogen (NOX). Wet scrubbing, electrostatic precipitators and bag houses can remove particulates such as fly ash. Using mechanical filters or electrostatic precipitators does not remove SO2, SO3, NO2, N2O4, NO, or N2O3. Prior technologies have used wet scrubbing for the process as a means of sorbing SOX and NOX. Water is effective as a scrubbing medium for the removal of SO2; removal efficiencies can be improved by the addition of chemical absorbents such as calcium, magnesium and sodium. However, nitrogen oxide (NO) is essentially insoluble in water, even with the use of sorbtion chemicals. Residence times required and liquid-to-gas surface areas have proven to be impractical where high gas flow rates are encountered such as boiler flue gas.
  • Some of the economics involved in the wet scrubbing process involve high-energy consumption; on the average 4-5% of a plant gross power generation is consumed in the process. For example: (1) high differential pressure of a venturi/absorber tower requires 30″ of WC or a bag house and scrubber combination requires even higher static pressures. (2) Large volumes of high pressure scrubbing liquor injected through nozzles into the scrubbing apparatus. (3) Slurry tanks requiring continual vigorous agitation. (4) High horsepower required to force water-saturated non-buoyant flue gas up the stack.
  • Environmental drawbacks of existing systems include large quantities of minerals used as sorbents and the insoluble sulfites or sulfate formed from the scrubbing reaction. The precipitate is then taken to landfills or holding ponds. Some other disadvantages of existing systems are fouling of the internal scrubber components with hard scale, increasing operational labor and maintenance costs. Some complex regenerative systems use large quantities of chemicals required to react with the millions of gallons of slurry used every day.
  • The dry scrubbing process described in this patent is effective in removing nearly all NOX and SOX. Differential pressure requirements through the scrubber should typically not exceed 10 inches of water column and residence times within the sorbent cake are typically less than 1 second. Volumes of sorbent used in this invention in comparison to the wet slurry volumes are miniscule and recharging of reaction zones are done periodically. While stack gases remain dry and hot, some waste heat will be used in the drying of washed and re-generated sorbent. Operational costs of the reaction zone(s) are similar to operating an ash bag house; also capital expenditures are estimated to be reasonable requiring standard off-the-shelf equipment and instrumentation.
  • As a summary, the equipment is used in the dry scrubbing process is much less complex than the wet scrubber process thus requiring lower operational maintenance costs and a reduced operating staff. Chemical and raw material costs are expected to be similar with less waste effluent produced. The major cost savings will be in the reduced power consumption expected to be significantly less than that of a wet scrubbing system, with fan horsepower reduction making up the majority of the savings.
  • While exemplary embodiments of this invention and methods of practicing the same have been illustrated and described, it should be understood that various changes, adaptations, and modifications might be made therein without departing from the spirit of the invention and the scope of the appended claims.

Claims (81)

1. An electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent, the system comprising:
at least one pollutant concentration sensor that measures the concentration of at least one target pollutant in a gas exiting at least one reaction zone and generates a concentration output;
a differential pressure sensor that measures the differential pressure across the at least one reaction zone and generates a differential pressure output;
a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the at least one reaction zone; and
a controller in communication with the at least one pollutant concentration and differential pressure sensors and the sorbent feed rate control sub-element, wherein the controller receives the concentration output and the differential pressure output and provides one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level.
2. The electronic control system according to claim 1 further comprising a temperature sensor and a temperature control sub-element in communication with the controller so that the temperature control sub-element controls the temperature of the gas entering the at least one reaction zone at an adjustable temperature.
3. The electronic control system according to claim 1 further comprising a gas flow control sub-element in communication with the controller so that the gas flow control sub-element controls gas flow to the at least one reaction zone at an adjustable rate, wherein the gas flow rate may be adjusted by the one or more outputs of the controller.
4. An electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone, the reaction zone being a bag house containing filter bags and connected to a source of gas and a sorbent feeder containing a supply of sorbent, the system comprising:
at least one pair of pollutant concentration sensors that measures the concentration of at least one target pollutant in a gas entering and exiting a reaction zone and generates an entering concentration output and an exiting concentration output;
a differential pressure sensor that measures the differential pressure across the reaction zone and generates a differential pressure output;
a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone;
a filter bag control sub-element that controls removal of sorbent from the filter bags at an adjustable rate; and
a controller in communication with the at least one pair of pollutant concentration sensors, the differential pressure sensor, the sorbent feed rate control sub-element, and the filter bag control sub-element, wherein the controller receives the outputs from the at least one pair of pollutant concentration sensors and the differential pressure output and provides one or more outputs that adjust operational parameters selected from a group consisting of sorbent feeder rate, sorbent removal rate, or any combination of these operational parameters, to ensure that the target pollutant is removed at targeted capture rate set point and that differential pressure across the reaction zone is no greater than a predetermined level.
5. The electronic control system according to claim 4 further comprising a gas flow control sub-element in communication with the controller that controls gas flow to the reaction zone at an adjustable rate.
6. The electronic control system according to claim 4 further comprising a temperature control sub-element in communication with the controller that controls the temperature of the gas entering the reaction zone at an adjustable temperature.
7. The electronic control system according to claim 4 wherein the filter bag control sub-element comprises a compressed gas pulser.
8. The electronic control system according to claim 7 wherein the controller compares the differential pressure output against an adjustable set point value representing a target differential pressure across the bag house.
9. The electronic control system according to claim 8 wherein if the measured differential pressure is greater than the desired differential pressure, the output increases the frequency or intensity of filter bag pulsing and if the measured differential pressure is less than the desired differential pressure, the output decreases the frequency or intensity of filter bag pulsing.
10. The electronic control system according to claim 4 wherein the filter bag control sub-element comprises a mechanical bag shaker.
11. The electronic control system according to claim 10 wherein the controller compares the differential pressure output against an adjustable set point value representing a target differential pressure across the bag house.
12. The electronic control system according to claim 11 wherein if the measured differential pressure is greater than the desired differential pressure, the output increases the frequency or rate of bag shaking and if the measured differential pressure is less than the desired differential pressure, the output decreases the frequency or intensity of bag shaking.
13. The electronic control system according to any one of claims 1 or 4 wherein the controller compares received outputs against at least one adjustable set point value that is computer generated.
14. The electronic control system according to any one of claims 1 or 4 wherein the controller compares received outputs against at least one adjustable set point value that is user entered.
15. The electronic control system according to claim 1 wherein if the measured target pollutant concentration is greater than an adjustable set point value, the output provided by the controller increases the feed rate of the feeder to increase the amount of sorbent in the at least one reaction zone thereby decreasing the target pollutant concentration in the gases exiting the at least one reaction zone, and, if the measured target pollutant concentration is less than the adjustable set point value, the output provided by the controller decreases the feed rate of the feeder to decrease the amount of sorbent in the at least one reaction zone thereby increasing the target pollutant concentration in the gases exiting the at least one reaction zone.
16. The electronic control system according to claim 4 wherein if the measured target pollutant capture rate is lower than an adjustable set point value, the output provided by the controller increases the feed rate of the feeder to increase the amount of sorbent in the at least one reaction zone thereby increasing the target pollutant capture rate, and, if the measured target pollutant capture rate is higher than the adjustable set point value, the output provided by the controller decreases the feed rate of the feeder to decrease the amount of sorbent in the at least one reaction zone thereby decreasing the target pollutant capture rate.
17. The electronic control system according to claim 1 wherein the at least one reaction zone includes a solids filtering media and the output of the controller is provided to the solids filtering media to adjust the removal of sorbent which has formed as a filter cake on the filter media.
18. The electronic control system according to claim 17 wherein the output of the controller is provided to a shaker that shakes the filter media and the output adjusts rate or frequency of the shaking rate of the filter media in the at least one reaction zone.
19. The electronic control system according to claim 17 wherein the output of the controller is provided to a pulser that pulses the filter media and the output adjusts the intensity or frequency of the pulser.
20. The electronic control system according to claim 1 wherein the controller receives an input from a second pollutant concentration sensor measuring the target pollutant concentration at an input of the at least one reaction zone.
21. The electronic control system according to claim 20 wherein the controller compares the target pollutant concentration at the input of the at least one reaction zone to the target pollutant concentration in the gas exiting the at least one reaction zone to calculate a target pollutant capture rate.
22. The electronic control system according to claim 21 wherein the controller compares the calculated target pollutant capture rate against an adjustable set point value and provides outputs to the one or more control sub-elements to adjust one or more of the operational parameters to control the target pollutant concentration in the gases exiting the at least one reaction zone if the measured target pollutant capture rate is different than the set point.
23. The electronic control system according to claim 1 wherein the gas contains more than one target pollutant and the system further includes a pollutant concentration sensor for each of the more than one target pollutants at the output of the at least one reaction zone for measuring the target pollutant concentration of each target pollutant in the gas exiting the at least one reaction zone.
24. The electronic control system according to claim 4 wherein the gas contains more than one target pollutant and the system further includes a pair of pollutant concentration sensors for each of the more than one target pollutants for measuring the target pollutant concentration of each target pollutant in the gas entering and exiting the at least one reaction zone.
25. The electronic control system according to claim 1 wherein the at least one pollutant concentration sensor is a NOX analyzer, SOX analyzer or both.
26. The electronic control system according to claim 4 wherein the at least one pair of pollutant concentration sensors is a NOX analyzer, SOX analyzer or both.
27. The electronic control system according to claim 1 wherein the at least one pollutant concentration sensor is a hydrogen sulfide (H2S) analyzer, a total reduced sulfur analyzer or a total mercury analyzer which measures elemental and oxidized mercury.
28. The electronic control system according to claim 4 wherein the at least one pair of pollutant concentration sensors is a hydrogen sulfide (H2S) analyzer, a total reduced sulfur analyzer or a total mercury analyzer which measures elemental and oxidized mercury.
29. The electronic control system according to claim 1 wherein the at least one pollutant concentration sensor is a chemiluminescent monitor.
30. The electronic control system according to claim 4 wherein the at least one pair of pollutant concentration sensors is a chemiluminescent monitor.
31. The electronic control system according to any one of claims 1 or 4 wherein at least one target pollutant is NOX.
32. The electronic control system according to any one of claims 1 or 4 wherein at least one target pollutant is SOX.
33. The electronic control system according to claim 4 wherein the at least one target pollutant is NOX or SOX and the adjustable set point value represents a desired target pollutant capture rate in the bag house.
34. The electronic control system of claim 33 wherein the desired target pollutant capture rate is between at least 60.0% to at least 90.0% and the target pollutant is removed at a steady state removal rate of between at least 60.0% to at least 90.0%.
35. The electronic control system of claim 33 wherein target pollutant is NOX the desired NOX capture rate is at least 96.0% and NOX is removed at a steady state removal rate of at least 96.0%.
36. The electronic control system of claim 33 wherein target pollutant is SOX and the desired SOX capture rate is at least 99.0% and SOX is removed at a steady state removal rate of at least 99.0%.
37. The electronic control system according to claim 22 wherein the output of the controller is provided to a sorbent feeder to adjust the feed rate of the sorbent feeder.
38. The electronic control system according to claim 22 wherein if the measured target pollutant capture rate is lower than the an adjustable set point value, the output provided by the controller increases the feed rate of the feeder to increase the amount of sorbent in the at least one reaction zone thereby increasing the target pollutant capture rate in the at least one reaction zone, and, if the measured target pollutant capture rate is greater than the adjustable set point value, the output provided by the controller decreases the feed rate of the feeder to decrease the amount of sorbent in the at least one reaction zone thereby decreasing the target pollutant capture rate in the at least one reaction zone.
39. The electronic control system according to claim 22 wherein the at least one reaction zone includes a solids filtering media and the output provided by the controller is operatively coupled to the solids filtering media to control the removal of sorbent which has formed as a filter cake on the filter media.
40. The electronic control system according to claim 39 wherein if the measured target pollutant capture rate is lower than an adjustable set point value, the output provided by the controller decreases the removal of the filter cake from the filter media to increase the amount of sorbent in the at least one reaction zone thereby increasing the target pollutant capture rate in the at least one reaction zone, and, if the measured target pollutant capture rate is higher than the adjustable set point value, the output provided by the controller increases the removal of the filter cake from the filter media to decrease the amount of sorbent in the at least one reaction zone thereby decreasing the target pollutant capture rate in the at least one reaction zone.
41. The electronic control system according to claim 22 wherein the at least one target pollutant is NOX or SOX and the adjustable set point value represents a desired target pollutant capture rate in the at least one reaction zone.
42. The electronic control system of claim 41 wherein the desired target pollutant capture rate is between at least 60.0% to at least 90.0% and the target pollutant is removed at a steady state removal rate of between at least 60.0% to at least 90.0%.
43. The electronic control system of claim 41 wherein the target pollutant is NOX and the desired NOX capture rate is at least 96.0% and NOX is removed at a steady state removal rate of at least 96.0%.
44. The electronic control system of claim 41 wherein the target pollutant is SOX and the desired SOX capture rate is at least 99.0% and SOX is removed at a steady state removal rate of at least 99.0%.
45. An electronic control system for dry removal of at least one target pollutant from gases comprising:
a monitor component operative to monitor system operational parameters selected from the group consisting of a first target pollutant capture rate, gas inlet temperature, sorbent feed rate, and differential pressure, and any combination thereof; and
an adjustment component operative to adjust system operational parameters selected from the group consisting of the first target pollutant capture rate, gas inlet temperature, sorbent feed rate and any combination thereof so that differential pressure across the system is no greater than a predetermined level and the first target pollutant is removed at a desired capture rate set point.
46. An electronic control system according to claim 45 wherein the monitor component is operative to monitor a second target pollutant; and
the adjustment component operative to adjust system operational parameters selected from the group including a second pollutant capture rate, so that differential pressure across the system is no greater than a predetermined level and the second target pollutant is removed at a targeted second pollutant capture rate set point.
47. An electronic control system for dry removal of at least a first and a second target pollutant from gases comprising:
a monitor component operative to monitor system operational parameters selected from the group consisting of a first target pollutant capture rate, a second target pollutant capture rate, gas inlet temperature, sorbent feed rate and differential pressure, and any combination thereof; and
an adjustment component operative to adjust system operational parameters selected from the group consisting of a first target pollutant capture rate, a second target pollutant capture rate, gas inlet temperature, sorbent feed rate and any combination thereof so that differential pressure across the system is no greater than a predetermined level and the first target pollutant is removed at a targeted first target pollutant capture rate set point and the second target pollutant is removed at a targeted second target pollutant capture rate set point.
48. An electronic control system for dry removal of multiple target pollutants from gases comprising:
a monitor component operative to monitor system operational parameters selected from the group consisting of a capture rate for each of the multiple target pollutants, gas inlet temperature, sorbent feed rate and differential pressure, and any combination thereof; and
an adjustment component operative to adjust system operational parameters selected from the group consisting of the capture rate of at least one of the multiple target pollutants, gas inlet temperature, sorbent feed rate and any combination thereof so that the differential pressure across the system is no greater than a predetermined level and at least one of the multiple target pollutants is removed at a targeted capture rate set point for that at least one multiple target pollutant.
49. A method for removing target pollutants from gases, the method comprising the steps of:
measuring a target pollutant concentration at an output of a reaction zone of a pollutant removal system that uses sorbent for dry removal of target pollutants from gases;
analyzing the measured target pollutant concentration to determine if it is within an acceptable range; and
adjusting at least one operational parameter capable of affecting pollutant removal in the system if the measured target pollutant concentration is not within an acceptable range.
50. The method according to claim 49 wherein the removal system includes a sorbent feeder and the step of adjusting at least one operational parameter comprises increasing the feeder rate of the sorbent feeder if the measured target pollutant concentration is greater that the set point thereby decreasing the target pollutant concentration in the reaction zone and decreasing the feeder rate of the sorbent feeder if the measured target pollutant concentration is less than the set point thereby increasing the target pollutant concentration in the reaction zone.
51. A computer system programmed with instructions for performing the method of claim 49.
52. A computer-readable medium comprising instructions for performing the method of claim 49.
53. A method according to claim 49 further comprising the steps of:
measuring differential pressure across the reaction zone;
analyzing the measured differential pressure to determine if it is within an acceptable range; and
adjusting at least one operational parameter capable of affecting the differential pressure across the reaction zone if the measured differential pressure is not within an acceptable range.
54. The method according to claim 53 wherein the reaction zone includes a solids filtering media which is operatively coupled to a pulser and the step of adjusting the differential pressure comprises increasing the frequency of filter pulsing if the measured differential pressure is greater that the set point and decreasing the frequency of filter pulsing if the measured differential pressure is less than the set point.
55. A computer-readable system programmed with instruction for performing the method of claim 53.
56. A computer-readable medium comprising instructions for performing the method of claim 53.
57. A method for removing target pollutants from gases, the method comprising the steps of:
measuring temperature of a gas entering a reaction zone of a pollutant removal system the uses sorbent for dry removal of target pollutants from gases;
analyzing the measured temperature to determine if it is within an acceptable range; and
adjusting the temperature of the gas entering the reaction zone if the measured temperature is not within an acceptable range.
58. The method according to claim 57 wherein the removal system includes a heat exchanger at the input of the reaction zone and the method further comprises the step of adjusting the temperature by increasing the amount of cooling fluid circulating in the heat exchanger if the measured temperature is greater that the acceptable range and decreasing the amount of cooling fluid circulating in the heat exchanger if the measured temperature is less than the acceptable range.
59. A computer-readable system programmed with instructions for performing the method of claim 57.
60. A computer-readable medium comprising the instructions for performing the method of claim 57.
61. In a computer system having a graphical user interface including a display and a selection device, a method of providing and selecting from a menu on the display, the method comprising the steps of:
receiving a menu entry selection signal indicative of a control operation of a portion of a pollutant removal system from a plurality of control operations including bag house control, emissions control and temperature control of the pollutant removal system;
in response to the menu entry selection, retrieving a graphical representation of the selected control operation, the graphical representation having real time data fields that are populated with real time data as well as user adjustable variables;
displaying the graphical representation with the populated real time data fields on a display;
receiving a signal indicative of a particular user adjustable variable; and
in response to the signal, updating the graphical representation of the selected control operation to reflect the particular user adjustable variable.
62. In a computer system according to claim 61 wherein a user adjustable variable is a set point.
63. In a computer system according to claim 61 wherein if the baghouse control is selected, the user selectable variable is a differential pressure set point.
64. In a computer system according to claim 61 wherein if the emissions control is selected, the user selectable variable is at least one target pollutant concentration.
65. In a computer system according to claim 61 wherein if the emissions control is selected, the user selectable variable is at least one target pollutant capture rate.
66. In a computer system according to claim 64 wherein the at least one target pollutant is selected from the group consisting of NOX, SOX, H2S, TRS, elemental mercury, oxidized mercury, total mercury, or a combination thereof.
67. In a computer system according to claim 65 wherein the at least one target pollutant is selected from the group consisting of NOX, SOX, H2S, TRS, elemental mercury, oxidized mercury, total mercury, or a combination thereof.
68. In a computer system according to claim 61 wherein if the temperature control is selected, the user selectable variable is a temperature set point.
69. In a computer system according to claim 61 wherein the selection device is a cursor.
70. A electronic control system for dry removal of pollutants from gases in a pollutant removal system including a bag house reaction zone comprising:
a gain selector receiving a plurality of inputs from a database representing a first target pollutant gain, a second target pollutant gain and bag house differential pressure;
an error generator generating a plurality of error signals representing a first target pollutant error, a second target pollutant error and bag house differential pressure error;
a PID loop receiving one of the plurality of inputs from the gain selector and one of the plurality of inputs from the error generator as well as one of a plurality of set points, wherein the PID loop uses these inputs to provide a control signal which is output to control an operation of the pollutant removal system.
71. The electronic control system according to claim 70 further comprising a selector for selecting which gain error signal and set point are sent to the PID loop.
72. The electronic control system according to claim 70 wherein the control signal provided by the PID loop is output to a sorbent feeder drive to control its feed rate to the reaction zone.
73. The electronic control system according to claim 70 wherein the PID loop comprises a PID block in a programmable logic controller.
74. The electronic control system according to claim 70 wherein the PID loop comprises discrete calculations in a programmable logic controller.
75. The electronic control system according to claim 70 wherein the first target pollutant is NOx.
76. The electronic control system according to claim 70 wherein the first target pollutant is SOX.
77. The electronic control system according to claim 75 wherein the second target pollutant is SOx.
78. The electronic control system according to claim 70 wherein the first and second target pollutants are selected from the group consisting of NOx, SOx, hydrogen sulfide, total reduced sulfur, elemental mercury, oxidized mercury, and total mercury.
79. A electronic control system for controlling an operation of a pollutant removal system, the electronic control system comprising:
a controller operatively coupled to a first reaction zone in which at least a first target pollutant is removed from gases, the controller being configured to receive a first input from a sensor measuring at least a first target pollutant concentration at an output of the first reaction zone and determining if the measured first target pollutant concentration is within an acceptable range, the controller operatively coupled to a second reaction zone in which at least a second target pollutant is removed from the gases, the controller being configured to receive a second input from a sensor measuring at least a second target pollutant concentration at an output of the second reaction zone and determining if the measure second target pollutant concentration is within an acceptable range.
80. An electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone connected to a source of gas and a sorbent feeder containing a supply of sorbent, the system comprising:
a controller in electronic communication with one or more sensors and one or more operational parameter control sub-elements that receives inputs from one or more sensors and one or more operational parameter control sub-elements, compares the inputs to adjustable operational parameter set point values, and provides outputs to one or more control sub-elements to adjust one or more operational parameters;
at least one pollutant concentration sensor that measures the concentration of at least one target pollutant in a gas exiting at least one reaction zone;
a differential pressure sensor that measures the differential pressure across the at least one reaction zone;
a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the at least one reaction zone;
wherein the controller receives the inputs from the at least one pollutant concentration sensor and the differential pressure sensor and provides one or more outputs that adjust sorbent feeder rate to ensure that the target pollutant concentration in the gas exiting the at least one reaction zone is within an acceptable range and that differential pressure across the at least one reaction zone is no greater than a predetermined level.
81. An electronic control system for regulating operational parameters in a pollution removal system, the pollution removal system containing at least one reaction zone, the reaction zone being a bag house containing filter bags and connected to a source of gas and a sorbent feeder containing a supply of sorbent, the system comprising:
a controller in electronic communication with one or more sensors and one or more operational parameter control sub-elements that receives inputs from one or more sensors and one or more operational parameter control sub-elements, compares the inputs to adjustable operational parameter set point values, and provides outputs to one or more control sub-elements to adjust one or more operational parameters;
at least one pair of pollutant concentration sensors that measures the concentration of at least one target pollutant in a gas entering and exiting a reaction zone;
a differential pressure sensor that measures the differential pressure across the reaction zone;
a sorbent feed rate control sub-element that adjusts or regulates sorbent feed rate to the reaction zone;
a filter bag control sub-element that controls removal of sorbent from the filter bags at an adjustable rate;
wherein the controller receives the inputs from the at least one pair of pollutant concentration sensors and the differential pressure sensor and provides one or more outputs that adjust operational parameters selected from a group consisting of sorbent feeder rate, sorbent removal rate, or any combination of these control elements, to ensure that the target pollutant is removed at targeted capture rate set point and that differential pressure across the reaction zone is no greater than a predetermined level.
US11/133,560 2000-08-01 2005-05-20 Electronic controls for pollutant removal Expired - Fee Related US7396514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/133,560 US7396514B2 (en) 2000-08-01 2005-05-20 Electronic controls for pollutant removal

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
US22223600P 2000-08-01 2000-08-01
US23204900P 2000-09-12 2000-09-12
US23209700P 2000-09-12 2000-09-12
US23810500P 2000-10-04 2000-10-04
US23943500P 2000-10-10 2000-10-10
US23942200P 2000-10-10 2000-10-10
US24283000P 2000-10-23 2000-10-23
US24309000P 2000-10-24 2000-10-24
US24494800P 2000-11-01 2000-11-01
US28816701P 2001-05-02 2001-05-02
US28824301P 2001-05-02 2001-05-02
US28816501P 2001-05-02 2001-05-02
US28824201P 2001-05-02 2001-05-02
US28816801P 2001-05-02 2001-05-02
US28823701P 2001-05-02 2001-05-02
US28824501P 2001-05-02 2001-05-02
US28816601P 2001-05-02 2001-05-02
US29600301P 2001-06-05 2001-06-05
US29600501P 2001-06-05 2001-06-05
US29593001P 2001-06-05 2001-06-05
US29600601P 2001-06-05 2001-06-05
US29600701P 2001-06-05 2001-06-05
US29600401P 2001-06-05 2001-06-05
US29936301P 2001-06-19 2001-06-19
US29936201P 2001-06-19 2001-06-19
US09/919,600 US6610263B2 (en) 2000-08-01 2001-07-31 System and process for removal of pollutants from a gas stream
US10/382,348 US6974565B2 (en) 2000-08-01 2003-03-04 System and process for removal of pollutants from a gas stream
US11/133,560 US7396514B2 (en) 2000-08-01 2005-05-20 Electronic controls for pollutant removal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/382,348 Continuation US6974565B2 (en) 2000-08-01 2003-03-04 System and process for removal of pollutants from a gas stream

Publications (2)

Publication Number Publication Date
US20050238549A1 true US20050238549A1 (en) 2005-10-27
US7396514B2 US7396514B2 (en) 2008-07-08

Family

ID=27586778

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/919,600 Expired - Fee Related US6610263B2 (en) 2000-08-01 2001-07-31 System and process for removal of pollutants from a gas stream
US10/044,089 Expired - Fee Related US6579507B2 (en) 2000-08-01 2002-01-11 System and process for removal of pollutants from a gas stream
US10/252,270 Expired - Fee Related US7033548B2 (en) 2000-08-01 2002-09-23 System and process for removal of pollutants from a gas stream
US10/382,348 Expired - Fee Related US6974565B2 (en) 2000-08-01 2003-03-04 System and process for removal of pollutants from a gas stream
US11/133,560 Expired - Fee Related US7396514B2 (en) 2000-08-01 2005-05-20 Electronic controls for pollutant removal

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/919,600 Expired - Fee Related US6610263B2 (en) 2000-08-01 2001-07-31 System and process for removal of pollutants from a gas stream
US10/044,089 Expired - Fee Related US6579507B2 (en) 2000-08-01 2002-01-11 System and process for removal of pollutants from a gas stream
US10/252,270 Expired - Fee Related US7033548B2 (en) 2000-08-01 2002-09-23 System and process for removal of pollutants from a gas stream
US10/382,348 Expired - Fee Related US6974565B2 (en) 2000-08-01 2003-03-04 System and process for removal of pollutants from a gas stream

Country Status (7)

Country Link
US (5) US6610263B2 (en)
EP (1) EP1315546A2 (en)
AU (1) AU2001296221A1 (en)
CA (1) CA2456272A1 (en)
EA (1) EA005827B1 (en)
MX (1) MXPA03001028A (en)
WO (1) WO2002009852A2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109081A2 (en) 2006-03-16 2007-09-27 Applied Materials, Inc. Method and apparatus for improved operation of an abatement system
US20080210085A1 (en) * 2007-03-02 2008-09-04 Philipp Oliver Morf Method for purifying exhaust gases from a waste incineration plant
US20080223098A1 (en) * 2007-03-14 2008-09-18 Taulbee Darrell N Reducing explosive potential of ammonium nitrate
US20090175771A1 (en) * 2006-03-16 2009-07-09 Applied Materials, Inc. Abatement of effluent gas
US20090234936A1 (en) * 2008-03-14 2009-09-17 International Business Machines Corporation Dual-Band Communication Of Management Traffic In A Blade Server System
EP2127728A1 (en) * 2006-12-27 2009-12-02 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
US20100254874A1 (en) * 2007-06-21 2010-10-07 Solios Environnement Method of optimizing the control of a fume treatment centre for a carbon block baking ring furnace
US7895769B2 (en) * 2003-05-26 2011-03-01 Khd Humboldt Wedag Gmbh Method and a plant for thermally drying wet ground raw meal
US20110076216A1 (en) * 2009-09-30 2011-03-31 Hitachi, Ltd. Carbon Dioxide Capture Power Generation System
US20110250110A1 (en) * 2010-04-08 2011-10-13 Keiser Bruce A Gas stream treatment process
CN102614729A (en) * 2011-01-26 2012-08-01 中国化学工程第六建设有限公司 Method for eliminating industrial exhaust gas white smoke pollution
US20120205219A1 (en) * 2011-02-11 2012-08-16 Robert Nickerson Screw-type heat-exchanger system with variable-clocking screw conveyors
CN103111149A (en) * 2013-01-25 2013-05-22 广东电网公司电力科学研究院 Electric bag composite dust removal grading efficiency test device and method
US8894744B2 (en) 2012-03-29 2014-11-25 Alstom Technology Ltd System and method of cleaning particulate collection devices used in a flue gas processing system
US20150073572A1 (en) * 2013-09-10 2015-03-12 Alstom Technology Ltd Automatic tuning control system for air pollution control systems
US20160328133A1 (en) * 2015-05-08 2016-11-10 General Electric Company Systems and Methods for Controlling Power Generation Plant Operations via a Human-Machine Interface
US9682383B2 (en) 2010-04-08 2017-06-20 Nalco Company Gas stream treatment process
US20180119544A1 (en) * 2016-10-27 2018-05-03 Steve Smith Systems and methods for monitoring and managing wellhead emissions
US20180319256A1 (en) * 2017-05-05 2018-11-08 Carl Freudenberg Kg Ventilation system in a mobile structure and method for operating a ventilation system in a mobile structure
KR20190090569A (en) * 2018-01-25 2019-08-02 두산중공업 주식회사 Wet flue gas desulfurization apparatus
DE102018128739A1 (en) * 2018-11-15 2020-05-20 Dürr Systems Ag Emission control system and method and data processing system for monitoring at least one emission control system
US11110391B2 (en) 2018-01-25 2021-09-07 Doosan Heavy Industries & Construction Co., Ltd. System for simultaneously removing nitrogen oxides (NOx) and sulfur oxides (SOx) from exhaust gas
US11406933B1 (en) * 2019-06-03 2022-08-09 Henry Krigmont Flue gas conditioning system controller

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124036B1 (en) 2005-10-27 2012-02-28 ADA-ES, Inc. Additives for mercury oxidation in coal-fired power plants
US7247279B2 (en) 2000-08-01 2007-07-24 Enviroscrub Technologies Corporation System for removal of pollutants from a gas stream
EP1381762A2 (en) * 2001-02-19 2004-01-21 Rosemount Analytical Inc. Improved generator monitoring, control and efficiency
WO2004037369A2 (en) * 2001-07-31 2004-05-06 Enviroscrub Technologies Corporation System and process for removal of pollutants from a gas stream
KR20040090962A (en) * 2001-12-21 2004-10-27 엔바이로스크럽 테크놀러지스 코퍼레이션 Pretreatment and regeneration of oxides of manganese
CN1681585A (en) * 2002-03-06 2005-10-12 环境清洁技术公司 Regeneration, pretreatment and precipitation of oxides of manganese
US7060233B1 (en) 2002-03-25 2006-06-13 Tda Research, Inc. Process for the simultaneous removal of sulfur and mercury
WO2003082455A2 (en) * 2002-03-25 2003-10-09 Tda Research, Inc. Catalysts and process for oxidizing hydrogen sulfide to sulfur dioxide and sulfur
EP1581322A4 (en) * 2002-06-07 2006-10-18 Enviroscrub Technologies Corp System and process for removal of pollutants from a gas stream
US7352465B2 (en) * 2002-07-23 2008-04-01 Aperon Biosystems Corp. Sample conditioning and environmental control techniques for gas sensor
US6584920B1 (en) * 2002-09-17 2003-07-01 Bourgault Industries Ltd. System and method for adjusting air flow in air seeding applications
US7628967B2 (en) 2002-10-01 2009-12-08 Airborne Industrial Minerals, Inc. Removal of Hg, NOx, and SOx with using oxidants and staged gas/liquid contact
US7574968B2 (en) * 2002-10-08 2009-08-18 Energy & Environmental Research Center Method and apparatus for capturing gas phase pollutants such as sulfur trioxide
DE602004018748D1 (en) * 2003-01-28 2009-02-12 Enviroscrub Technologies Corp MANGANOIDS TREATED IN FLOW REACTORS
US7361209B1 (en) * 2003-04-03 2008-04-22 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
US7435286B2 (en) 2004-08-30 2008-10-14 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
CN1826175B (en) * 2003-04-23 2015-07-01 能源及环境研究中心基金会 Process for regenerating a spent sorbent
US8652235B2 (en) 2004-08-30 2014-02-18 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US8069797B2 (en) * 2003-06-03 2011-12-06 Alstom Technology Ltd. Control of mercury emissions from solid fuel combustion
US9321002B2 (en) 2003-06-03 2016-04-26 Alstom Technology Ltd Removal of mercury emissions
US7056487B2 (en) * 2003-06-06 2006-06-06 Siemens Power Generation, Inc. Gas cleaning system and method
US20050011413A1 (en) * 2003-07-18 2005-01-20 Roos Joseph W. Lowering the amount of carbon in fly ash from burning coal by a manganese additive to the coal
WO2005011847A1 (en) * 2003-07-31 2005-02-10 Enviroscrub Technologies Corporation Metal oxide processing methods and systems
US20050077658A1 (en) * 2003-10-10 2005-04-14 Glen Zdolshek Fume treatment system and method
WO2005042130A1 (en) * 2003-10-31 2005-05-12 Metal Alloy Reclaimers, Inc Ii Process for reduction of inorganic contaminants from waste streams
US7153345B2 (en) * 2004-02-04 2006-12-26 Battelle Memorial Institute Sulfur oxide adsorbents and emissions control
CA2553891A1 (en) * 2004-02-04 2005-08-25 Battelle Memorial Institute Sulfur oxide adsorbents and emissions control
US7517728B2 (en) * 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US8574324B2 (en) 2004-06-28 2013-11-05 Nox Ii, Ltd. Reducing sulfur gas emissions resulting from the burning of carbonaceous fuels
US7137249B2 (en) 2004-08-12 2006-11-21 Ford Global Technologies, Llc Thermally stable lean nox trap
US7749474B2 (en) 2004-08-12 2010-07-06 Ford Global Technologies, Llc Catalyst composition for use in a lean NOx trap and method of using
US7622095B2 (en) 2004-08-12 2009-11-24 Ford Global Technologies, Llc Catalyst composition for use in a lean NOx trap and method of using
US7811961B2 (en) 2004-08-12 2010-10-12 Ford Global Technologies, Llc Methods and formulations for enhancing NH3 adsorption capacity of selective catalytic reduction catalysts
US10343114B2 (en) 2004-08-30 2019-07-09 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
JP4363289B2 (en) * 2004-09-21 2009-11-11 株式会社デンソー Exhaust gas purification device for internal combustion engine
US7286960B2 (en) * 2004-09-30 2007-10-23 General Electric Company Systems and methods for monitoring fouling and slagging in heat transfer devices in coal fired power plants
US8062410B2 (en) * 2004-10-12 2011-11-22 Great River Energy Apparatus and method of enhancing the quality of high-moisture materials and separating and concentrating organic and/or non-organic material contained therein
US7987613B2 (en) 2004-10-12 2011-08-02 Great River Energy Control system for particulate material drying apparatus and process
US8579999B2 (en) 2004-10-12 2013-11-12 Great River Energy Method of enhancing the quality of high-moisture materials using system heat sources
US8523963B2 (en) 2004-10-12 2013-09-03 Great River Energy Apparatus for heat treatment of particulate materials
US7275644B2 (en) 2004-10-12 2007-10-02 Great River Energy Apparatus and method of separating and concentrating organic and/or non-organic material
US7464012B2 (en) * 2004-12-10 2008-12-09 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Simplified process simulator
EP1846330A4 (en) * 2005-01-10 2009-12-23 Univ North Dakota Mercury oxidation of flue gas using catalytic barrier filters
US20080154671A1 (en) * 2005-03-15 2008-06-26 Delk Louis D Emissions Tracking, Such as Vehicle Emissions Tracking, and Associated Systems and Methods
CA2601325C (en) 2005-03-17 2014-06-17 Douglas C. Comrie Reducing mercury emissions from the burning of coal
RU2494793C2 (en) 2005-03-17 2013-10-10 НОКС II ИНТЕНЭШНЛ, эЛТиДи. Method of combusting mercury-bearing fuel (versions), method of reducing mercury emission, method of combusting coal with reduced emission of harmful elements and method of decreasing mercury content in flue gas
JP4275650B2 (en) * 2005-05-13 2009-06-10 シャープ株式会社 Optical integrated unit and optical pickup device including the same
US8507404B2 (en) 2005-07-12 2013-08-13 Exxonmobil Research And Engineering Company Regenerable sulfur traps for on-board vehicle applications
EP1922132A4 (en) * 2005-07-26 2009-09-02 Exxonmobil Upstream Res Co Method of purifying hydrocarbons and regeneration of adsorbents used therein
US20070092418A1 (en) * 2005-10-17 2007-04-26 Chemical Products Corporation Sorbents for Removal of Mercury from Flue Gas
US20070092962A1 (en) * 2005-10-20 2007-04-26 Saudi Arabian Oil Company Carbon Neutralization System (CNS) for CO2 sequestering
US8974964B2 (en) * 2005-11-14 2015-03-10 Spectrum Brands, Inc. Metal air cathode: manganese oxide contained in octahedral molecular sieve
US9136540B2 (en) * 2005-11-14 2015-09-15 Spectrum Brands, Inc. Metal air cathode manganese oxide contained in octahedral molecular sieve
EP2248587A1 (en) * 2005-12-16 2010-11-10 Evonik Energy Services GmbH Process for the treatment of catalyst for the purification of flue gas
US7468170B2 (en) * 2005-12-21 2008-12-23 Douglas C Comrie Nitrogenous sorbent for coal combustion
US20070154373A1 (en) * 2006-01-05 2007-07-05 Envirosolv Energy Llc Methods for regenerating oxidants used for removing pollutants from a gas stream
US8150776B2 (en) 2006-01-18 2012-04-03 Nox Ii, Ltd. Methods of operating a coal burning facility
US20070212271A1 (en) * 2006-02-17 2007-09-13 Kennedy Paul E Process air desulfurization for syngas production
EP2001577B1 (en) * 2006-03-10 2013-09-25 C-Quest Technologies International LLC Carbon dioxide sequestration process
US8021612B2 (en) * 2006-03-27 2011-09-20 Jamie Tooley System and methods for assisting businesses in compliance with gas emissions requirements
US7722705B2 (en) * 2006-05-11 2010-05-25 Corning Incorporated Activated carbon honeycomb catalyst beds and methods for the use thereof
US20070265161A1 (en) * 2006-05-11 2007-11-15 Gadkaree Kishor P Activated carbon honeycomb catalyst beds and methods for the manufacture of same
US20080050298A1 (en) * 2006-08-24 2008-02-28 Meyden Hendrik J Van Der Method For Improving the HF Capture Efficiency of Dry Scrubbers
US7767174B2 (en) * 2006-09-18 2010-08-03 General Electric Company Method and systems for removing mercury from combustion exhaust gas
WO2008064539A1 (en) * 2006-11-30 2008-06-05 Jiangang Yao A real-time and concentrating control of generating set for the grid energy saving and reduction of so2 discharge
MX2009008117A (en) * 2007-01-29 2009-11-26 Univ Nottingham A sorbent composition.
US20080207443A1 (en) * 2007-02-28 2008-08-28 Kishor Purushottam Gadkaree Sorbent comprising activated carbon, process for making same and use thereof
DE102007020855A1 (en) 2007-05-02 2008-11-06 Evonik Energy Services Gmbh Process for purifying flue gases from incineration plants
US8741243B2 (en) * 2007-05-14 2014-06-03 Corning Incorporated Sorbent bodies comprising activated carbon, processes for making them, and their use
US7998898B2 (en) * 2007-10-26 2011-08-16 Corning Incorporated Sorbent comprising activated carbon, process for making same and use thereof
US7776293B2 (en) * 2007-08-02 2010-08-17 Babcock & Wilcox Power Generation Group, Inc. Low-temperature, moving bed catalytic reactor for control of NOx emissions from combustion
EP2205338A2 (en) * 2007-08-29 2010-07-14 Corning Incorporated Process for removing toxic metals from a fluid stream
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
CN101422689B (en) * 2007-11-02 2011-04-06 中国科学院过程工程研究所 Flue gas denitration method and device by storing and reducing nitrogen oxides in circulating fluid bed
US7758829B2 (en) * 2007-12-05 2010-07-20 Alstom Technology Ltd Process for promoting mercury retention in wet flue gas desulfurization systems
DE102007061604A1 (en) * 2007-12-20 2009-06-25 Alstom Technology Ltd. Optimization of the operation of a power plant
US7766997B2 (en) * 2007-12-21 2010-08-03 Alstom Technology Ltd Method of reducing an amount of mercury in a flue gas
DE102008010195A1 (en) * 2008-02-20 2009-09-03 Him Gmbh Method for continuous determination of mercury load of exhaust stream of refuse incinerator, involves supplying diluted measuring gas stream to measuring device through supply lines to determine mercury concentration
CA2721458A1 (en) * 2008-04-15 2009-10-22 Albemarle Corporation Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases
DE102009010418B4 (en) * 2008-05-29 2021-07-29 A. Kayser Automotive Systems Gmbh Activated carbon filter unit for a tank system
KR20100011877A (en) * 2008-07-25 2010-02-03 김종인 Device for removing air pollution
US7947110B2 (en) * 2008-07-31 2011-05-24 General Electric Company Methods for operating a filtration system
US20100056841A1 (en) * 2008-08-27 2010-03-04 Corning Incorporated Methods Of Disposing Of Sorbent Bodies
US20100050869A1 (en) * 2008-08-28 2010-03-04 Kishor Purushottam Gadkaree Plate System For Contaminant Removal
US8216344B2 (en) * 2008-09-26 2012-07-10 Praxair Technology, Inc. Purifying carbon dioxide using activated carbon
CA2658469C (en) 2008-10-03 2012-08-14 Rajender P. Gupta Bromination process
EP2358639A4 (en) * 2008-10-21 2013-09-11 Bethlehem Apparatus Company Inc A method and apparatus for generating mercury (ii) sulfide from elemental mercury
US7691361B1 (en) 2008-10-21 2010-04-06 Bethlehem Apparatus Company, Inc. Method and apparatus for generating mercury (II) sulfide from elemental mercury
EP2181753B1 (en) * 2008-10-28 2011-12-21 Alstom Technology Ltd A method and a device for verifying and controlling the removal of hydrogen fluoride from a process gas
US8598073B2 (en) 2009-04-20 2013-12-03 Corning Incorporated Methods of making and using activated carbon-containing coated substrates and the products made therefrom
AU2010270695B2 (en) * 2009-07-06 2016-02-25 Cruickshank, Cecilia A. Media for removal of contaminants from fluid streams and method of making and using same
JP5558042B2 (en) * 2009-08-05 2014-07-23 三菱重工業株式会社 Exhaust gas treatment device and mercury removal method of exhaust gas
US9598742B2 (en) * 2009-09-25 2017-03-21 Arvos Inc. Exhaust processing and heat recovery system
JP5459319B2 (en) * 2009-12-17 2014-04-02 トヨタ自動車株式会社 Vehicle system and hydrogen sulfide detection method
US11298657B2 (en) 2010-10-25 2022-04-12 ADA-ES, Inc. Hot-side method and system
EP2531276A4 (en) 2010-02-04 2014-07-02 Ada Es Inc Method and system for controlling mercury emissions from coal-fired thermal processes
US8496894B2 (en) 2010-02-04 2013-07-30 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8524179B2 (en) 2010-10-25 2013-09-03 ADA-ES, Inc. Hot-side method and system
US8951487B2 (en) 2010-10-25 2015-02-10 ADA-ES, Inc. Hot-side method and system
WO2011112854A1 (en) 2010-03-10 2011-09-15 Ada Environmental Solutions, Llc Process for dilute phase injection or dry alkaline materials
US8784757B2 (en) 2010-03-10 2014-07-22 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
US8710106B2 (en) * 2010-07-29 2014-04-29 Precision Combustion, Inc. Sabatier process and apparatus for controlling exothermic reaction
CA2815090A1 (en) 2010-11-22 2012-05-31 Albemarle Corporation Brominated inorganic sorbents for reduction of mercury emissions
US20120160098A1 (en) * 2010-12-22 2012-06-28 Hamilton Sundstrand Corporation Method and system for carbon dioxide removal
US9429274B2 (en) 2010-12-22 2016-08-30 Alstom Technology Ltd Slurry control system
US8562724B2 (en) 2011-03-01 2013-10-22 General Electric Company Methods and systems for removing pollutants from fluid stream
CA2832887A1 (en) 2011-04-11 2012-10-18 ADA-ES, Inc. Fluidized bed method and system for gas component capture
US8147587B2 (en) * 2011-04-15 2012-04-03 Bha Group, Inc. Enhanced mercury capture from coal-fired power plants in the filtration baghouse using flue gas temperature as process control knob
US8845986B2 (en) 2011-05-13 2014-09-30 ADA-ES, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
US8828340B2 (en) * 2011-09-29 2014-09-09 Babcock & Wilcox Power Generation Group, Inc. Dry sorbent injection during steady-state conditions in dry scrubber
US9017452B2 (en) 2011-11-14 2015-04-28 ADA-ES, Inc. System and method for dense phase sorbent injection
US9802154B2 (en) 2012-03-30 2017-10-31 Fuel Tech, Inc. Process for sulfur dioxide, hydrochloric acid and mercury mediation
US8992868B2 (en) 2012-05-01 2015-03-31 Fuel Tech, Inc. Dry processes, apparatus compositions and systems for reducing mercury, sulfur oxides and HCl
US8883099B2 (en) 2012-04-11 2014-11-11 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US9011805B2 (en) 2012-04-23 2015-04-21 Energy & Environmental Research Center Foundation Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream
US8974756B2 (en) 2012-07-25 2015-03-10 ADA-ES, Inc. Process to enhance mixing of dry sorbents and flue gas for air pollution control
US9957454B2 (en) 2012-08-10 2018-05-01 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
WO2014036253A2 (en) 2012-08-30 2014-03-06 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
WO2014039758A2 (en) 2012-09-07 2014-03-13 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
CN104812467B (en) * 2012-09-20 2017-05-17 Ada-Es股份有限公司 Method and system to reclaim functional sites on sorbent contaminated by heat stable salts
WO2014063046A1 (en) * 2012-10-19 2014-04-24 ADA-ES, Inc. Method and system to thermally regenerate a sorbent
US9289721B2 (en) 2013-02-27 2016-03-22 Fuel Tech, Inc. Process and apparatus for improving the operation of wet scrubbers
MX2015011065A (en) 2013-02-27 2016-02-11 Fuel Tech Inc Processes, apparatus, compositions and systems for reducing emissions of hci and/or sulfur oxides.
US10130930B2 (en) 2013-03-06 2018-11-20 Midwest Energy Emissions Corp Sorbent comprising carbon and nitrogen and methods of using the same
CN105188910B (en) 2013-03-06 2018-10-19 能源及环境研究中心基金会 Nitrogenous acticarbon and use its method
US9295984B2 (en) 2013-03-15 2016-03-29 Tda Research, Inc. Mercury removal sorbents
US9399597B2 (en) 2013-04-01 2016-07-26 Fuel Tech, Inc. Ash compositions recovered from coal combustion gases having reduced emissions of HCI and/or mercury
US9718025B2 (en) 2013-04-01 2017-08-01 Fuel Tech, Inc. Reducing hydrochloric acid in cement kilns
US9120682B2 (en) 2013-06-25 2015-09-01 Bethlehem Apparatus Company, Inc. Method and apparatus for generating mercury (II) sulfide from elemental mercury
US9656205B2 (en) * 2013-06-28 2017-05-23 General Electric Company System and method for treatment of a medium
WO2015006267A2 (en) * 2013-07-08 2015-01-15 Exxonmobil Research And Engineering Company Simulated moving bed system for co2 separation, and method of same
US8828341B1 (en) 2013-07-18 2014-09-09 Alstom Technology Ltd Sulfite control to reduce mercury re-emission
US9889451B2 (en) 2013-08-16 2018-02-13 ADA-ES, Inc. Method to reduce mercury, acid gas, and particulate emissions
CN103446873B (en) * 2013-09-13 2016-05-25 鞍钢集团工程技术有限公司 A kind of high concentration SO2The desulfurizing and purifying method and apparatus of sinter fume
US9192890B2 (en) * 2013-11-15 2015-11-24 The Babcock & Wilcox Company Integrated sorbent injection and flue gas desulfurization system
CN103657316B (en) * 2013-11-26 2016-03-30 清华大学 A kind of Electrostatically-enelectric-bag electric-bag compound dust remover
US20150157972A1 (en) * 2013-12-09 2015-06-11 Keith Bratten Demister Apparatus and Method
US9120055B2 (en) 2014-01-27 2015-09-01 Alstom Technology Ltd Mercury re-emission control
US10022666B2 (en) * 2014-02-06 2018-07-17 GCC of America, Inc. Kiln baghouse with dynamically selectable and reconfigurable polishing and non-polishing operations
WO2015193814A1 (en) * 2014-06-17 2015-12-23 Tm.E. S.P.A. Termomeccanica Ecologia System for treating fumes generated by waste disposal plants
CN104069713B (en) * 2014-07-06 2016-02-03 盐城工学院 A kind of electricity-bag dust collecting process strengthening coalescence
CN104190190A (en) * 2014-08-14 2014-12-10 浙江润洁环境科技有限公司 Dedusting and desulfurization integrated machine
US10350545B2 (en) 2014-11-25 2019-07-16 ADA-ES, Inc. Low pressure drop static mixing system
CN104404257B (en) * 2014-12-15 2017-06-16 湖南省加嘉锑业科技有限公司 One heavy metal species process control method and system
WO2016190942A1 (en) * 2015-05-27 2016-12-01 3 D Clean Coal Emissions Stack, Llc Clean coal stack
US10858268B2 (en) * 2015-07-29 2020-12-08 Semb-Eco R&D Pte Ltd Method and system for applying superimposed time-varying frequency electromagnetic wave to target object or target region
CA2994821A1 (en) 2015-08-06 2017-02-09 3M Innovative Properties Company Filter media for respiratory protection
CN105107369B (en) * 2015-09-11 2018-02-06 合肥工业大学 A kind of purifier and purification method for discharging waste gas middle strong acidity component
WO2017053499A1 (en) * 2015-09-25 2017-03-30 Fuel Tech, Inc. Process and apparatus for reducing plume
CN105251306A (en) * 2015-11-04 2016-01-20 安徽理工大学 Intelligent tail gas recovering device
CN105797499B (en) * 2016-03-23 2018-06-05 佛山市佛丹职业安全卫生设备有限公司 Air filtering apparatus and its method of work
CN108686489B (en) * 2017-04-12 2021-01-01 北京华石联合能源科技发展有限公司 Suspension bed wet desulphurization process
US10794167B2 (en) * 2018-12-04 2020-10-06 Schlumberger Technology Corporation Method and system for removing contaminants from a gas stream using a liquid absorbent
CN109603371B (en) * 2019-01-09 2020-12-25 郑州工业应用技术学院 Dust collector for construction
CN110152467B (en) * 2019-06-18 2021-09-21 合肥工业大学 Flue gas advanced treatment method for synchronous desulfurization and denitrification by absorption method
US20220274138A1 (en) * 2019-08-01 2022-09-01 Drexel University Apparatus for separation and conveying of clumped particles, such as carbon fibers
CN112915695A (en) * 2019-12-05 2021-06-08 山东泰开环保科技有限公司 High-temperature high-humidity flue gas desulfurization, dust removal and denitration flue gas purification process
IT202000002701A1 (en) * 2020-02-11 2020-05-11 Fond Cooperative Di Modena Soc Coop Plant and procedure for the abatement of pollutants on a gaseous flow
CN111375306A (en) * 2020-03-16 2020-07-07 航天凯天环保科技股份有限公司 Ultra-low emission integrated treatment system for industrial kiln flue gas
CN111729504A (en) * 2020-06-10 2020-10-02 上海交通大学 Fluidized bed and moving bed coupled composite adsorption reaction device and application
CN111573998B (en) * 2020-06-12 2023-07-11 浙江大学 High-efficient anaerobic water-out degasification removes calcium system of waste paper papermaking waste water
CN112459871B (en) * 2020-11-18 2022-07-19 潍柴动力股份有限公司 Method for calculating reaction rate and method for controlling urea introduction amount of engine
WO2023033682A1 (en) * 2021-09-05 2023-03-09 Александр Олегович МАЙБОРОДА Method of concentrating carbon dioxide gas and device for carrying out same
CN117643793B (en) * 2023-09-28 2024-07-02 浙江新澄宇环境科技有限公司 Dust removal denitrification facility

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1178927A (en) * 1913-08-14 1916-04-11 Beacon Miniature Electric Co Inc Galvanic cell.
US1275666A (en) * 1916-12-06 1918-08-13 Nat Carbon Co Inc Preparation of higher oxid-of-manganese depolarizing material.
US1293461A (en) * 1917-05-11 1919-02-04 Morduch L Kaplan Process of preparing manganese peroxid.
US1851312A (en) * 1929-05-24 1932-03-29 Wilbert J Huff Process of purifying gas
US2123250A (en) * 1934-12-24 1938-07-12 Ig Farbenindustrie Ag Process for the production of depolarizing compositions from native manganese dioxide, e.g., pyrolusite
US2608466A (en) * 1948-12-15 1952-08-26 Reginald S Dean Process for preparing active from of manganese dioxide
US2956860A (en) * 1957-04-11 1960-10-18 Manganese Chemicals Corp Process for producing manganese dioxide
US2984545A (en) * 1958-02-27 1961-05-16 Tennessee Valley Authority Manganese oxide process for the recovery of sulfur dioxide from waste gases
US3150923A (en) * 1962-01-18 1964-09-29 Bienstock Daniel Process for removing sulfur dioxide from gases
US3251649A (en) * 1962-02-28 1966-05-17 Mitsubishi Shipbuilding & Eng Process of producing sulfuric acid
US3330096A (en) * 1965-02-19 1967-07-11 Kennecott Copper Corp Use of deep-sea nodules for removing sulfur compounds from gases
US3427128A (en) * 1962-10-27 1969-02-11 Varta Petrix Union Gmbh Process of producing ramsdellit,a type of manganese dioxide
US3723598A (en) * 1970-11-05 1973-03-27 Kennecott Copper Corp Dry cyclic process utilizing a manganous oxide absorbent for removal of dilute sulfur values from gas streams
US3798310A (en) * 1965-03-24 1974-03-19 M Atsukawa Method of removing sulfur oxide from gases
US3898320A (en) * 1965-03-24 1975-08-05 Mitsubishi Heavy Ind Ltd Dry absorbent composition and process for making the same
US3933128A (en) * 1974-10-07 1976-01-20 Clean Energy Corporation Steam generation with coal
US3951765A (en) * 1973-12-20 1976-04-20 Peter Kenneth Everett Production of electrolytic battery active manganese dioxide
US3956189A (en) * 1972-02-14 1976-05-11 Chemical Construction Corporation Catalyst for treating combustion exhaust gas
US3957949A (en) * 1973-04-10 1976-05-18 Fuji Kasui Engineering Co., Ltd. Process for removing nitrogen oxides from gas
US3981971A (en) * 1973-09-13 1976-09-21 Kurashiki Boseki Kabushiki Kaisha Process for reducing nitrogen oxides
US4006217A (en) * 1974-04-23 1977-02-01 Rheinisch-Westfallisches Elektrizitatswerk Aktiengesellschaft Process for making manganese dioxide
US4008169A (en) * 1973-10-05 1977-02-15 Mcgauley Patrick John Preparation of iron oxide sorbent for sulfur oxides
US4011298A (en) * 1973-12-18 1977-03-08 Chiyoda Chemical Engineering & Construction Co. Ltd. Method for simultaneous removal of SOx and NOx
US4012487A (en) * 1973-04-02 1977-03-15 Merkl George Process for the removal of SO2 from a stack gas
US4014982A (en) * 1975-06-30 1977-03-29 Texaco Development Corporation Combined process for upgrading spent alkylation acid and reducing noxious gas content of waste gaseous streams
US4017586A (en) * 1975-08-06 1977-04-12 Reeves Adam A Stack gas treatment
US4029752A (en) * 1973-05-29 1977-06-14 Exxon Research And Engineering Company Method of producing sulfur from sulfur dioxide
US4033113A (en) * 1974-10-07 1977-07-05 Clean Energy Corporation Steam generation with coal
US4070441A (en) * 1975-01-31 1978-01-24 American Electronic Laboratories, Inc. Method of removing sulfur dioxide from flue gases
US4081509A (en) * 1975-03-31 1978-03-28 Hitachi, Ltd. Method for removing nitrogen oxides from flue gas by absorption
US4087372A (en) * 1973-10-31 1978-05-02 Kureha Kagaku Kogyo Kabushiki Kaisha An absorbing solution for the removal of nitrogen oxide form a gas containing same
US4102982A (en) * 1972-03-24 1978-07-25 Weir Jr Alexander Process for treating stack gases
US4108969A (en) * 1975-07-22 1978-08-22 Merkl George Process for the removal of SO2 from a stack gas, absorptive medium for use in process and process for preparing the absorptive medium
US4112053A (en) * 1977-01-04 1978-09-05 Kureha Kagaku Kogyo Kabushiki Kaisha Dry method for the denitrification of exhaust gas containing nitrogen oxides
US4153429A (en) * 1975-05-21 1979-05-08 Union Carbide Corporation Selective adsorption of NOx from gas streams
US4162207A (en) * 1978-09-05 1979-07-24 Boyer Stephen K Process for the conversion of sulfur dioxide
US4164545A (en) * 1978-10-03 1979-08-14 Phillips Petroleum Company Use of manganese dioxide absorbent in treating waste gases
US4250149A (en) * 1979-05-15 1981-02-10 Chemetals Corporation Manganese nitrate decomposition
US4276268A (en) * 1979-10-09 1981-06-30 Chemetals Corporation Process for preparing manganese nitrate solution
US4277255A (en) * 1979-03-01 1981-07-07 Aktiebolaget Svenska Flaktfabriken Cleaning process control method for textile barrier filter material
US4277360A (en) * 1979-03-28 1981-07-07 Union Carbide Corporation Manganese dioxide
US4309392A (en) * 1980-08-05 1982-01-05 Standard Oil Company Process for removing nitrogen oxides from a gas stream
US4309386A (en) * 1979-04-30 1982-01-05 The Babcock & Wilcox Company Filter house having catalytic filter bags for simultaneously removing NOx and particulate matter from a gas stream
US4310494A (en) * 1979-05-15 1982-01-12 Chemetals Corporation Manganese nitrate spray decomposition
US4369167A (en) * 1972-03-24 1983-01-18 Weir Jr Alexander Process for treating stack gases
US4369130A (en) * 1979-04-11 1983-01-18 Standard Oil Company Composition for removing sulfur oxides from a gas
US4369108A (en) * 1979-04-11 1983-01-18 Standard Oil Company (Indiana) Process for removing sulfur oxides from a gas
US4376103A (en) * 1981-10-26 1983-03-08 Standard Oil Company (Indiana) Removing sulfur oxides from a gas
US4381991A (en) * 1979-04-11 1983-05-03 Standard Oil Company (Indiana) Process for removing sulfur oxides from a gas
US4400362A (en) * 1981-11-04 1983-08-23 Lerner Bernard J Removal of nitrogen oxides from gas
US4402931A (en) * 1979-10-04 1983-09-06 Isao Tanabe Process for producing manganese dioxide
US4448760A (en) * 1982-09-30 1984-05-15 Chemetals Incorporated Continuous process for the preparation of manganite, MnOOH
US4450148A (en) * 1982-09-30 1984-05-22 Chemetals Incorporated Preparation of manganite, MnOOH
US4497902A (en) * 1979-04-11 1985-02-05 Standard Oil Company (Indiana) Composition for removing sulfur oxides from a gas
US4500281A (en) * 1982-08-02 1985-02-19 Phillips Petroleum Company Burning of fuels
US4542116A (en) * 1982-03-29 1985-09-17 The Standard Oil Company Catalyst for removing sulfur oxides from a gas
US4581219A (en) * 1983-06-22 1986-04-08 Mitsui Mining & Smelting Co., Ltd. Method of making macroporous manganese dioxide
US4581210A (en) * 1984-11-09 1986-04-08 Teller Environmental Systems, Inc. Method for the removal of sulphur oxides from a flue gas with a baghouse used as a secondary reactor
US4719791A (en) * 1986-12-05 1988-01-19 Ets, Inc. Individual filter bag monitoring system for baghouses
US4755499A (en) * 1984-10-12 1988-07-05 Noxso Corporation Sorbent for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4798711A (en) * 1984-10-12 1989-01-17 Noxso Corporation Processes for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4836993A (en) * 1983-09-27 1989-06-06 Amoco Corporation Process for removing sulfur oxides from a gas
US4843980A (en) * 1988-04-26 1989-07-04 Lucille Markham Composition for use in reducing air contaminants from combustion effluents
US4908194A (en) * 1988-03-29 1990-03-13 Natec Mines Ltd. Method for baghouse brown plume pollution control
US4915922A (en) * 1987-05-15 1990-04-10 Kernforschungsanlage Julich Gesellschaft Mit Baschrankter Haftung Process for preparation of oxidazable oxides of nitrogen from waste gas streams
US4921689A (en) * 1988-06-24 1990-05-01 Duracell Inc. Process for producing beta manganese dioxide
US4923688A (en) * 1985-11-19 1990-05-08 Joseph Iannicelli Wet scrubber process for removing total reduced sulfur compounds from industrial gases
US4925633A (en) * 1988-07-25 1990-05-15 The Babcock & Wilcox Company Combined catalytic baghouse and heat pipe air heater
US4940569A (en) * 1984-10-12 1990-07-10 Noxso Corporation Sorbent and processes for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4944878A (en) * 1989-11-16 1990-07-31 Iowa State University Research Foundation, Inc. Decontamination of water using nitrate selective ion exchange resin
US4954324A (en) * 1988-03-29 1990-09-04 Natec Resources, Inc. Method of baghouse brown plume pollution control
US5000930A (en) * 1983-04-11 1991-03-19 Zbigniew Boguslawski Method and installation for the purification of combustion gas from domestic heatings, combustion engines or similar heatings
US5009872A (en) * 1986-05-12 1991-04-23 Atomic Energy Of Canada Ltd. Method of oxidizing gaseous substances
US5023063A (en) * 1990-03-26 1991-06-11 The University Of Delaware Acid rain abatement
US5112796A (en) * 1984-02-26 1992-05-12 Aquafine Corporation Manganese dioxide impregnated filter
US5176888A (en) * 1990-03-26 1993-01-05 University Of Delaware Acid rain abatement
US5192515A (en) * 1990-09-20 1993-03-09 Molecular Technology Corporation Reduction of nitrogen oxide and carbon monoxide in effluent gases
US5199263A (en) * 1991-08-12 1993-04-06 Texas Utilities Electric Co. Combustion system with reduced sulfur oxide emissions
US5200160A (en) * 1991-08-29 1993-04-06 Dravo Lime Company Process for removing sulfur dioxide and nitrogen oxides from flue gases
US5246554A (en) * 1991-03-18 1993-09-21 Cha Chang Y Process for selected gas oxide removal by radiofrequency catalysts
US5277890A (en) * 1992-09-28 1994-01-11 Duracell Inc. Process for producing manganese dioxide
US5384301A (en) * 1991-11-12 1995-01-24 Massachusetts Institute Of Technology Catalyst for elemental sulfur recovery process
US5391218A (en) * 1993-09-08 1995-02-21 Donaldson Company, Inc. Diagnostic and control system for dust collector
US5439658A (en) * 1993-09-03 1995-08-08 The Babcock & Wilcox Company Regenerable magnesium dry scrubbing
US5505766A (en) * 1994-07-12 1996-04-09 Electric Power Research, Inc. Method for removing pollutants from a combustor flue gas and system for same
US5607496A (en) * 1994-06-01 1997-03-04 Brooks Rand, Ltd. Removal of mercury from a combustion gas stream and apparatus
US5658544A (en) * 1990-08-03 1997-08-19 Comalco Aluminium Limited Gas-solid contacting method
US5672323A (en) * 1995-01-26 1997-09-30 The Babcock & Wilcox Company Activated carbon flue gas desulfurization systems for mercury removal
US5711785A (en) * 1995-10-26 1998-01-27 Ormet Corporation Method and apparatus for controlling the cleaning cycle of air filter elements and for predicting the useful life thereof
US5780000A (en) * 1996-09-09 1998-07-14 Gas Research Institute Use of Z-Sorb process as catalytic incinerator for tail gas from sulfur plants
US5798088A (en) * 1993-03-30 1998-08-25 Research Triangle Institute Method for producing elemental sulfur from sulfur-containing gases
US5888926A (en) * 1995-08-28 1999-03-30 University Of Cincinnati Process for forming a sorbent-metal complex by employing a sorbent precursor
US6010666A (en) * 1995-03-23 2000-01-04 Toto, Ltd. Deodorizing method, deodorizer, method of manufacturing deodorizer, and deodorizing apparatus
US6039783A (en) * 1996-12-03 2000-03-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process and equipment for nitrogen oxide waste conversion to fertilizer
US6066590A (en) * 1995-09-26 2000-05-23 Sued-Chemie Nissan Catalysts Inc. Harmful gas removing agent
US6214304B1 (en) * 1996-12-02 2001-04-10 L & C STEINMüLLER GMBH Method of removing mercury from a mercury-containing flue gas

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486530A (en) 1942-07-03 1949-11-01 Linde Air Prod Co Manganate type contact mass and production thereof
US3011867A (en) 1956-07-09 1961-12-05 Manganese Chemicals Corp Precipitation of manganese carbonate
US3226192A (en) 1962-02-28 1965-12-28 Mitsubishi Shipbuilding & Eng Process of treating waste gas containing sulfur oxide
US3780158A (en) 1972-06-23 1973-12-18 Diamond Shamrock Corp Process for recovering high purity free flowing crystalline manganese dioxide from impure manganese nitrate solutions
US4009169A (en) 1972-10-21 1977-02-22 John Wyeth & Brother Limited 8-Carboxylester, and 8-carbamyl derivitives of 5,6,7,8-tetrahydroquinoline
US4123507A (en) 1976-11-02 1978-10-31 Union Oil Company Of California Process for removing sulfur and NOx components from a gas stream
US4123499A (en) 1977-05-20 1978-10-31 Chemetals Corporation Recovering metal values from marine manganese nodules
US4423019A (en) 1979-04-11 1983-12-27 Standard Oil Company (Indiana) Process for removing sulfur oxides from a gas
US4233188A (en) 1979-08-06 1980-11-11 Ford Motor Company Catalyst for treating exhaust gas from an internal combustion engine
US4411878A (en) 1982-09-30 1983-10-25 Chemetals Incorporated Preparation of Mn3 O4
US4550098A (en) 1982-11-12 1985-10-29 The Boc Group, Inc. Methods for the removal of gaseous impurities from mixed gas streams
US4476104A (en) 1982-12-21 1984-10-09 Union Carbide Corporation Manganese dioxide and process for the production thereof
US4552735A (en) 1983-04-20 1985-11-12 Aquafine Corporation Process for removing total reduced sulfur compounds from industrial gases using manganese dioxide
US4479877A (en) 1983-07-28 1984-10-30 The United States Of America As Represented By The Administrator Environmental Protection Agency Removal of nitrate from water supplies using a tributyl amine strong base anion exchange resin
US4552734A (en) 1983-09-08 1985-11-12 Aquafine Corporation Fluidization process for removing total reduced sulfur compounds from industrial gases
US4713225A (en) 1984-02-26 1987-12-15 Aquafine Corporation Method for removing organic reduced sulfur compounds
DE3634553A1 (en) 1986-10-10 1988-04-21 Didier Werke Ag USE OF MANGANE NUMBERS OR MANGANEOUS DEEP SEA ORES IN CATALYSTS TO REDUCE NITROGEN OXIDES IN EXHAUST GAS
US4872989A (en) 1987-03-16 1989-10-10 Rohm And Haas Company Selective removal of nitrate ions from salt solutions
DE3731889A1 (en) 1987-09-01 1989-06-29 Mototech Motoren Umweltschutz Diesel soot particle filter and process for the production thereof
US4871522A (en) 1988-07-25 1989-10-03 The Babcock & Wilcox Company Combined catalytic baghouse and heat pipe air heater
JP2580346B2 (en) 1989-11-13 1997-02-12 堺化学工業株式会社 Method for producing metal hydroxide sol
US5059406A (en) 1990-04-17 1991-10-22 University Of Tennessee Research Corporation Desulfurization process
DE4012982A1 (en) 1990-04-24 1991-10-31 Ftu Gmbh Removing harmful (in)organic substance from gases - by addn. of finely divided substance with active surface and filtration
DE4029395A1 (en) 1990-09-17 1992-03-19 Walther & Cie Ag Gas-solids fluidised contactor unit - has solids sepn. and controlled solids recycle comprising multiple compartmented bag filter units
US5366710A (en) 1993-05-10 1994-11-22 Shell Oil Company Process for removing nitrogen oxides and sulfur oxides from gaseous stream
US5456892A (en) 1994-04-01 1995-10-10 Yang; Ralph T. Nitrogen oxide decomposition
JPH08266859A (en) * 1995-04-03 1996-10-15 Nippon Steel Corp Method for desulfurizing and denitrating waste gas using manganese ore
US5700439A (en) 1995-06-08 1997-12-23 Chemetals Technology Incorporated Method of removing hydrogen sulfide from hot gas mixtures
US5853684A (en) 1995-11-14 1998-12-29 The Hong Kong University Of Science & Technology Catalytic removal of sulfur dioxide from flue gas
US6132692A (en) 1996-10-09 2000-10-17 Powerspan Corp. Barrier discharge conversion of SO2 and NOx to acids
CA2263233C (en) * 1996-10-09 2002-01-15 Zero Emissions Technology Inc. Barrier discharge conversion of so2 and nox to acids
US5871703A (en) * 1996-10-09 1999-02-16 Zero Emissions Technology Inc. Barrier discharge conversion of SO2 and NOx to acids
US6162530A (en) 1996-11-18 2000-12-19 University Of Connecticut Nanostructured oxides and hydroxides and methods of synthesis therefor
DE19715244A1 (en) 1997-04-12 1998-10-15 Abb Research Ltd Cleaning high temperature propellant for gas turbines
AU2001263103A1 (en) 2000-05-12 2001-11-26 Francis Alix Process for scrubbing flue gas using acids

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1178927A (en) * 1913-08-14 1916-04-11 Beacon Miniature Electric Co Inc Galvanic cell.
US1275666A (en) * 1916-12-06 1918-08-13 Nat Carbon Co Inc Preparation of higher oxid-of-manganese depolarizing material.
US1293461A (en) * 1917-05-11 1919-02-04 Morduch L Kaplan Process of preparing manganese peroxid.
US1851312A (en) * 1929-05-24 1932-03-29 Wilbert J Huff Process of purifying gas
US2123250A (en) * 1934-12-24 1938-07-12 Ig Farbenindustrie Ag Process for the production of depolarizing compositions from native manganese dioxide, e.g., pyrolusite
US2608466A (en) * 1948-12-15 1952-08-26 Reginald S Dean Process for preparing active from of manganese dioxide
US2956860A (en) * 1957-04-11 1960-10-18 Manganese Chemicals Corp Process for producing manganese dioxide
US2984545A (en) * 1958-02-27 1961-05-16 Tennessee Valley Authority Manganese oxide process for the recovery of sulfur dioxide from waste gases
US3150923A (en) * 1962-01-18 1964-09-29 Bienstock Daniel Process for removing sulfur dioxide from gases
US3251649A (en) * 1962-02-28 1966-05-17 Mitsubishi Shipbuilding & Eng Process of producing sulfuric acid
US3427128A (en) * 1962-10-27 1969-02-11 Varta Petrix Union Gmbh Process of producing ramsdellit,a type of manganese dioxide
US3330096A (en) * 1965-02-19 1967-07-11 Kennecott Copper Corp Use of deep-sea nodules for removing sulfur compounds from gases
US3798310A (en) * 1965-03-24 1974-03-19 M Atsukawa Method of removing sulfur oxide from gases
US3898320A (en) * 1965-03-24 1975-08-05 Mitsubishi Heavy Ind Ltd Dry absorbent composition and process for making the same
US3723598A (en) * 1970-11-05 1973-03-27 Kennecott Copper Corp Dry cyclic process utilizing a manganous oxide absorbent for removal of dilute sulfur values from gas streams
US3956189A (en) * 1972-02-14 1976-05-11 Chemical Construction Corporation Catalyst for treating combustion exhaust gas
US4369167A (en) * 1972-03-24 1983-01-18 Weir Jr Alexander Process for treating stack gases
US4102982A (en) * 1972-03-24 1978-07-25 Weir Jr Alexander Process for treating stack gases
US4012487A (en) * 1973-04-02 1977-03-15 Merkl George Process for the removal of SO2 from a stack gas
US3957949A (en) * 1973-04-10 1976-05-18 Fuji Kasui Engineering Co., Ltd. Process for removing nitrogen oxides from gas
US4029752A (en) * 1973-05-29 1977-06-14 Exxon Research And Engineering Company Method of producing sulfur from sulfur dioxide
US3981971A (en) * 1973-09-13 1976-09-21 Kurashiki Boseki Kabushiki Kaisha Process for reducing nitrogen oxides
US4008169A (en) * 1973-10-05 1977-02-15 Mcgauley Patrick John Preparation of iron oxide sorbent for sulfur oxides
US4087372A (en) * 1973-10-31 1978-05-02 Kureha Kagaku Kogyo Kabushiki Kaisha An absorbing solution for the removal of nitrogen oxide form a gas containing same
US4011298A (en) * 1973-12-18 1977-03-08 Chiyoda Chemical Engineering & Construction Co. Ltd. Method for simultaneous removal of SOx and NOx
US3951765A (en) * 1973-12-20 1976-04-20 Peter Kenneth Everett Production of electrolytic battery active manganese dioxide
US4006217A (en) * 1974-04-23 1977-02-01 Rheinisch-Westfallisches Elektrizitatswerk Aktiengesellschaft Process for making manganese dioxide
US3933128A (en) * 1974-10-07 1976-01-20 Clean Energy Corporation Steam generation with coal
US4033113A (en) * 1974-10-07 1977-07-05 Clean Energy Corporation Steam generation with coal
US4070441A (en) * 1975-01-31 1978-01-24 American Electronic Laboratories, Inc. Method of removing sulfur dioxide from flue gases
US4091075A (en) * 1975-01-31 1978-05-23 American Electronic Laboratories, Inc. Method for removing sulfur dioxide from flue gases
US4081509A (en) * 1975-03-31 1978-03-28 Hitachi, Ltd. Method for removing nitrogen oxides from flue gas by absorption
US4153429A (en) * 1975-05-21 1979-05-08 Union Carbide Corporation Selective adsorption of NOx from gas streams
US4014982A (en) * 1975-06-30 1977-03-29 Texaco Development Corporation Combined process for upgrading spent alkylation acid and reducing noxious gas content of waste gaseous streams
US4108969A (en) * 1975-07-22 1978-08-22 Merkl George Process for the removal of SO2 from a stack gas, absorptive medium for use in process and process for preparing the absorptive medium
US4017586A (en) * 1975-08-06 1977-04-12 Reeves Adam A Stack gas treatment
US4112053A (en) * 1977-01-04 1978-09-05 Kureha Kagaku Kogyo Kabushiki Kaisha Dry method for the denitrification of exhaust gas containing nitrogen oxides
US4162207A (en) * 1978-09-05 1979-07-24 Boyer Stephen K Process for the conversion of sulfur dioxide
US4164545A (en) * 1978-10-03 1979-08-14 Phillips Petroleum Company Use of manganese dioxide absorbent in treating waste gases
US4277255A (en) * 1979-03-01 1981-07-07 Aktiebolaget Svenska Flaktfabriken Cleaning process control method for textile barrier filter material
US4277360A (en) * 1979-03-28 1981-07-07 Union Carbide Corporation Manganese dioxide
US4381991A (en) * 1979-04-11 1983-05-03 Standard Oil Company (Indiana) Process for removing sulfur oxides from a gas
US4369130A (en) * 1979-04-11 1983-01-18 Standard Oil Company Composition for removing sulfur oxides from a gas
US4369108A (en) * 1979-04-11 1983-01-18 Standard Oil Company (Indiana) Process for removing sulfur oxides from a gas
US4497902A (en) * 1979-04-11 1985-02-05 Standard Oil Company (Indiana) Composition for removing sulfur oxides from a gas
US4309386A (en) * 1979-04-30 1982-01-05 The Babcock & Wilcox Company Filter house having catalytic filter bags for simultaneously removing NOx and particulate matter from a gas stream
US4310494A (en) * 1979-05-15 1982-01-12 Chemetals Corporation Manganese nitrate spray decomposition
US4250149A (en) * 1979-05-15 1981-02-10 Chemetals Corporation Manganese nitrate decomposition
US4402931A (en) * 1979-10-04 1983-09-06 Isao Tanabe Process for producing manganese dioxide
US4276268A (en) * 1979-10-09 1981-06-30 Chemetals Corporation Process for preparing manganese nitrate solution
US4309392A (en) * 1980-08-05 1982-01-05 Standard Oil Company Process for removing nitrogen oxides from a gas stream
US4376103A (en) * 1981-10-26 1983-03-08 Standard Oil Company (Indiana) Removing sulfur oxides from a gas
US4400362A (en) * 1981-11-04 1983-08-23 Lerner Bernard J Removal of nitrogen oxides from gas
US4542116A (en) * 1982-03-29 1985-09-17 The Standard Oil Company Catalyst for removing sulfur oxides from a gas
US4500281A (en) * 1982-08-02 1985-02-19 Phillips Petroleum Company Burning of fuels
US4450148A (en) * 1982-09-30 1984-05-22 Chemetals Incorporated Preparation of manganite, MnOOH
US4448760A (en) * 1982-09-30 1984-05-15 Chemetals Incorporated Continuous process for the preparation of manganite, MnOOH
US5000930A (en) * 1983-04-11 1991-03-19 Zbigniew Boguslawski Method and installation for the purification of combustion gas from domestic heatings, combustion engines or similar heatings
US4581219A (en) * 1983-06-22 1986-04-08 Mitsui Mining & Smelting Co., Ltd. Method of making macroporous manganese dioxide
US4836993A (en) * 1983-09-27 1989-06-06 Amoco Corporation Process for removing sulfur oxides from a gas
US5112796A (en) * 1984-02-26 1992-05-12 Aquafine Corporation Manganese dioxide impregnated filter
US4755499A (en) * 1984-10-12 1988-07-05 Noxso Corporation Sorbent for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4798711A (en) * 1984-10-12 1989-01-17 Noxso Corporation Processes for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4940569A (en) * 1984-10-12 1990-07-10 Noxso Corporation Sorbent and processes for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4581210A (en) * 1984-11-09 1986-04-08 Teller Environmental Systems, Inc. Method for the removal of sulphur oxides from a flue gas with a baghouse used as a secondary reactor
US4923688A (en) * 1985-11-19 1990-05-08 Joseph Iannicelli Wet scrubber process for removing total reduced sulfur compounds from industrial gases
US5009872A (en) * 1986-05-12 1991-04-23 Atomic Energy Of Canada Ltd. Method of oxidizing gaseous substances
US4719791A (en) * 1986-12-05 1988-01-19 Ets, Inc. Individual filter bag monitoring system for baghouses
US4915922A (en) * 1987-05-15 1990-04-10 Kernforschungsanlage Julich Gesellschaft Mit Baschrankter Haftung Process for preparation of oxidazable oxides of nitrogen from waste gas streams
US4954324A (en) * 1988-03-29 1990-09-04 Natec Resources, Inc. Method of baghouse brown plume pollution control
US4908194A (en) * 1988-03-29 1990-03-13 Natec Mines Ltd. Method for baghouse brown plume pollution control
US4843980A (en) * 1988-04-26 1989-07-04 Lucille Markham Composition for use in reducing air contaminants from combustion effluents
US4921689A (en) * 1988-06-24 1990-05-01 Duracell Inc. Process for producing beta manganese dioxide
US4925633A (en) * 1988-07-25 1990-05-15 The Babcock & Wilcox Company Combined catalytic baghouse and heat pipe air heater
US4944878A (en) * 1989-11-16 1990-07-31 Iowa State University Research Foundation, Inc. Decontamination of water using nitrate selective ion exchange resin
US5176888A (en) * 1990-03-26 1993-01-05 University Of Delaware Acid rain abatement
US5023063A (en) * 1990-03-26 1991-06-11 The University Of Delaware Acid rain abatement
US5658544A (en) * 1990-08-03 1997-08-19 Comalco Aluminium Limited Gas-solid contacting method
US5192515A (en) * 1990-09-20 1993-03-09 Molecular Technology Corporation Reduction of nitrogen oxide and carbon monoxide in effluent gases
US5246554A (en) * 1991-03-18 1993-09-21 Cha Chang Y Process for selected gas oxide removal by radiofrequency catalysts
US5199263A (en) * 1991-08-12 1993-04-06 Texas Utilities Electric Co. Combustion system with reduced sulfur oxide emissions
US5200160A (en) * 1991-08-29 1993-04-06 Dravo Lime Company Process for removing sulfur dioxide and nitrogen oxides from flue gases
US5384301A (en) * 1991-11-12 1995-01-24 Massachusetts Institute Of Technology Catalyst for elemental sulfur recovery process
US5391365A (en) * 1992-09-28 1995-02-21 Duracell Inc. Process for producing manganese dioxide
US5348726A (en) * 1992-09-28 1994-09-20 Duracell Inc. Process for producing manganese dioxide
US5277890A (en) * 1992-09-28 1994-01-11 Duracell Inc. Process for producing manganese dioxide
US5798088A (en) * 1993-03-30 1998-08-25 Research Triangle Institute Method for producing elemental sulfur from sulfur-containing gases
US5439658A (en) * 1993-09-03 1995-08-08 The Babcock & Wilcox Company Regenerable magnesium dry scrubbing
US5391218A (en) * 1993-09-08 1995-02-21 Donaldson Company, Inc. Diagnostic and control system for dust collector
US5607496A (en) * 1994-06-01 1997-03-04 Brooks Rand, Ltd. Removal of mercury from a combustion gas stream and apparatus
US5505766A (en) * 1994-07-12 1996-04-09 Electric Power Research, Inc. Method for removing pollutants from a combustor flue gas and system for same
US5672323A (en) * 1995-01-26 1997-09-30 The Babcock & Wilcox Company Activated carbon flue gas desulfurization systems for mercury removal
US6010666A (en) * 1995-03-23 2000-01-04 Toto, Ltd. Deodorizing method, deodorizer, method of manufacturing deodorizer, and deodorizing apparatus
US5888926A (en) * 1995-08-28 1999-03-30 University Of Cincinnati Process for forming a sorbent-metal complex by employing a sorbent precursor
US6066590A (en) * 1995-09-26 2000-05-23 Sued-Chemie Nissan Catalysts Inc. Harmful gas removing agent
US5711785A (en) * 1995-10-26 1998-01-27 Ormet Corporation Method and apparatus for controlling the cleaning cycle of air filter elements and for predicting the useful life thereof
US5780000A (en) * 1996-09-09 1998-07-14 Gas Research Institute Use of Z-Sorb process as catalytic incinerator for tail gas from sulfur plants
US6214304B1 (en) * 1996-12-02 2001-04-10 L & C STEINMüLLER GMBH Method of removing mercury from a mercury-containing flue gas
US6039783A (en) * 1996-12-03 2000-03-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process and equipment for nitrogen oxide waste conversion to fertilizer

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7895769B2 (en) * 2003-05-26 2011-03-01 Khd Humboldt Wedag Gmbh Method and a plant for thermally drying wet ground raw meal
EP1994457A2 (en) * 2006-03-16 2008-11-26 Applied Materials, Inc. Method and apparatus for improved operation of an abatement system
US20090175771A1 (en) * 2006-03-16 2009-07-09 Applied Materials, Inc. Abatement of effluent gas
WO2007109081A2 (en) 2006-03-16 2007-09-27 Applied Materials, Inc. Method and apparatus for improved operation of an abatement system
EP1994457B1 (en) * 2006-03-16 2012-06-13 Applied Materials, Inc. Method and apparatus for improved operation of an abatement system
EP2127728A4 (en) * 2006-12-27 2011-09-21 Babcock Hitachi Kk Method and apparatus for treating discharge gas
EP2127728A1 (en) * 2006-12-27 2009-12-02 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
US20080210085A1 (en) * 2007-03-02 2008-09-04 Philipp Oliver Morf Method for purifying exhaust gases from a waste incineration plant
US7857889B2 (en) * 2007-03-02 2010-12-28 Von Roll Umwelttechnik Ag Method for purifying exhaust gases from a waste incineration plant
US20080223098A1 (en) * 2007-03-14 2008-09-18 Taulbee Darrell N Reducing explosive potential of ammonium nitrate
US7785553B2 (en) 2007-03-14 2010-08-31 University Of Kentucky Research Foundation Reducing explosive potential of ammonium nitrate
US8679441B2 (en) * 2007-06-21 2014-03-25 Solios Environnement Method of optimizing the control of a fume treatment centre for a carbon block baking ring furnace
US20100254874A1 (en) * 2007-06-21 2010-10-07 Solios Environnement Method of optimizing the control of a fume treatment centre for a carbon block baking ring furnace
US20090234936A1 (en) * 2008-03-14 2009-09-17 International Business Machines Corporation Dual-Band Communication Of Management Traffic In A Blade Server System
US8500881B2 (en) 2009-09-30 2013-08-06 Hitachi, Ltd. Carbon dioxide capture power generation system
EP2305365A3 (en) * 2009-09-30 2011-10-12 Hitachi Ltd. Carbon dioxide capture power generation system
US20110076216A1 (en) * 2009-09-30 2011-03-31 Hitachi, Ltd. Carbon Dioxide Capture Power Generation System
US9555420B2 (en) * 2010-04-08 2017-01-31 Nalco Company Gas stream treatment process
US9682383B2 (en) 2010-04-08 2017-06-20 Nalco Company Gas stream treatment process
US10173225B2 (en) 2010-04-08 2019-01-08 Ecolab Usa Inc. Gas stream treatment process
US20110250110A1 (en) * 2010-04-08 2011-10-13 Keiser Bruce A Gas stream treatment process
CN102614729A (en) * 2011-01-26 2012-08-01 中国化学工程第六建设有限公司 Method for eliminating industrial exhaust gas white smoke pollution
US20120205219A1 (en) * 2011-02-11 2012-08-16 Robert Nickerson Screw-type heat-exchanger system with variable-clocking screw conveyors
US8739963B2 (en) * 2011-02-11 2014-06-03 Therma-Flite, Inc. Screw-type heat-exchanger system with variable-clocking screw conveyors
US9290330B2 (en) 2011-02-11 2016-03-22 Therma-Flite, Inc. Screw conveyer system
US8894744B2 (en) 2012-03-29 2014-11-25 Alstom Technology Ltd System and method of cleaning particulate collection devices used in a flue gas processing system
CN103111149A (en) * 2013-01-25 2013-05-22 广东电网公司电力科学研究院 Electric bag composite dust removal grading efficiency test device and method
US9910413B2 (en) * 2013-09-10 2018-03-06 General Electric Technology Gmbh Automatic tuning control system for air pollution control systems
US20150073572A1 (en) * 2013-09-10 2015-03-12 Alstom Technology Ltd Automatic tuning control system for air pollution control systems
US20160328133A1 (en) * 2015-05-08 2016-11-10 General Electric Company Systems and Methods for Controlling Power Generation Plant Operations via a Human-Machine Interface
US10572130B2 (en) * 2015-05-08 2020-02-25 General Electric Company Systems and methods for controlling power generation plant operations via a human-machine interface
US20180119544A1 (en) * 2016-10-27 2018-05-03 Steve Smith Systems and methods for monitoring and managing wellhead emissions
US10753204B2 (en) * 2016-10-27 2020-08-25 Steve Smith Systems and methods for monitoring and managing wellhead emissions
US20180319256A1 (en) * 2017-05-05 2018-11-08 Carl Freudenberg Kg Ventilation system in a mobile structure and method for operating a ventilation system in a mobile structure
US10981436B2 (en) * 2017-05-05 2021-04-20 Carl Freudenberg Kg Ventilation system in a mobile structure and method for operating a ventilation system in a mobile structure
KR20190090569A (en) * 2018-01-25 2019-08-02 두산중공업 주식회사 Wet flue gas desulfurization apparatus
KR102080570B1 (en) * 2018-01-25 2020-02-24 두산중공업 주식회사 Wet flue gas desulfurization apparatus
US11110391B2 (en) 2018-01-25 2021-09-07 Doosan Heavy Industries & Construction Co., Ltd. System for simultaneously removing nitrogen oxides (NOx) and sulfur oxides (SOx) from exhaust gas
DE102018128739A1 (en) * 2018-11-15 2020-05-20 Dürr Systems Ag Emission control system and method and data processing system for monitoring at least one emission control system
US11406933B1 (en) * 2019-06-03 2022-08-09 Henry Krigmont Flue gas conditioning system controller

Also Published As

Publication number Publication date
US20020168302A1 (en) 2002-11-14
WO2002009852A9 (en) 2003-07-10
US6579507B2 (en) 2003-06-17
WO2002009852A2 (en) 2002-02-07
US7033548B2 (en) 2006-04-25
US7396514B2 (en) 2008-07-08
WO2002009852A3 (en) 2003-02-06
US6610263B2 (en) 2003-08-26
EA005827B1 (en) 2005-06-30
US20030157008A1 (en) 2003-08-21
US6974565B2 (en) 2005-12-13
MXPA03001028A (en) 2004-09-13
AU2001296221A1 (en) 2002-02-13
US20030175194A1 (en) 2003-09-18
US20020150516A1 (en) 2002-10-17
EA200300198A1 (en) 2004-04-29
EP1315546A2 (en) 2003-06-04
CA2456272A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
US7396514B2 (en) Electronic controls for pollutant removal
US7247279B2 (en) System for removal of pollutants from a gas stream
US20030113239A1 (en) Systems and processes for removal of pollutants from a gas stream
Zheng et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants
WO2002028513A2 (en) Systems and processes for removal of pollutants from a gas stream
Zheng et al. Review of technologies for mercury removal from flue gas from cement production processes
Muzio et al. Assessment of dry sorbent emission control technologies Part I. Fundamental processes
WO2009043108A1 (en) Removal of pollutants from a gas flow
CN105396421A (en) Comprehensive adsorption and desulphurization dedusting purification method of baking flue gas
CA2639596A1 (en) Bottom ash injection for enhancing spray dryer absorber performance
WO2017035001A1 (en) Complexation and removal of mercury from flue gas desulfurization systems
Kim et al. HCl removal characteristics of calcium hydroxide at the dry-type sorbent reaction accelerator using municipal waste incinerator flue gas at a real site
WO2001008785A1 (en) Carbonation ash reactivation process and system for combined sox and nox removal
Han et al. Dry scrubbing of gaseous HCl and SO2 with hydrated lime in entrained mixing reactor
JP2007508936A (en) Cleaning system and cleaning method for a combustion unit for coal combustion
US20030007918A1 (en) Carbonation ash reactivation process and system for combined Sox and Nox removal
CA2424120A1 (en) Systems and processes for removal of pollutants from a gas stream
WO2004037369A2 (en) System and process for removal of pollutants from a gas stream
EP1363720A2 (en) Systems and processes for removal of pollutants from a gas stream
Strivastava Control of Mercury Emissions from Coal-fired Electric Utility Boilers: A Update
MXPA03003010A (en) Systems and processes for removal of pollutants from a gas stream.
EP1581322A2 (en) System and process for removal of pollutants from a gas stream
Jahnig et al. A Comparative Assessment of Flue Gas Treatment Processes Part I—Status and Design Basis
Nordstrand et al. Post‐Combustion Emissions Control
Marques et al. Simulation of the FGD in-duct injection process at low temperatures with competitive reactions

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20160708