US20050217613A1 - Method for reducing emission of pollutants from an internal combusion engine, and fuel emulsion comprising water and a liquid hydrocarbon - Google Patents
Method for reducing emission of pollutants from an internal combusion engine, and fuel emulsion comprising water and a liquid hydrocarbon Download PDFInfo
- Publication number
- US20050217613A1 US20050217613A1 US10/509,044 US50904402A US2005217613A1 US 20050217613 A1 US20050217613 A1 US 20050217613A1 US 50904402 A US50904402 A US 50904402A US 2005217613 A1 US2005217613 A1 US 2005217613A1
- Authority
- US
- United States
- Prior art keywords
- oxygen
- soluble organic
- water soluble
- weight
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 111
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 239000000839 emulsion Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 39
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 33
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 33
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 28
- 239000007788 liquid Substances 0.000 title claims abstract description 18
- 239000003344 environmental pollutant Substances 0.000 title claims abstract description 17
- 231100000719 pollutant Toxicity 0.000 title claims abstract description 17
- 238000002485 combustion reaction Methods 0.000 claims abstract description 68
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 54
- 239000001301 oxygen Substances 0.000 claims abstract description 54
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 37
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 17
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 239000008346 aqueous phase Substances 0.000 claims description 10
- 239000012071 phase Substances 0.000 claims description 10
- 150000001298 alcohols Chemical class 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 5
- 150000002334 glycols Chemical class 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 125000004185 ester group Chemical group 0.000 claims description 3
- 125000001033 ether group Chemical group 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 3
- 125000000468 ketone group Chemical group 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 125000000864 peroxy group Chemical group O(O*)* 0.000 claims description 3
- 229920005862 polyol Polymers 0.000 claims description 3
- 150000003077 polyols Chemical class 0.000 claims description 3
- 230000003134 recirculating effect Effects 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 9
- 230000002829 reductive effect Effects 0.000 abstract description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 8
- -1 fatty acid esters Chemical class 0.000 description 8
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000002283 diesel fuel Substances 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 230000001804 emulsifying effect Effects 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 150000002194 fatty esters Chemical class 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- UEFCKYIRXORTFI-UHFFFAOYSA-N 1,2-thiazolidin-3-one Chemical class O=C1CCSN1 UEFCKYIRXORTFI-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- NKRVGWFEFKCZAP-UHFFFAOYSA-N 2-ethylhexyl nitrate Chemical compound CCCCC(CC)CO[N+]([O-])=O NKRVGWFEFKCZAP-UHFFFAOYSA-N 0.000 description 2
- HDKKRASBPHFULQ-UHFFFAOYSA-N 3-Hydroxy-2-pentanone Chemical compound CCC(O)C(C)=O HDKKRASBPHFULQ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 2
- HYTRYEXINDDXJK-UHFFFAOYSA-N Ethyl isopropyl ketone Chemical compound CCC(=O)C(C)C HYTRYEXINDDXJK-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 239000007798 antifreeze agent Substances 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- NMJJFJNHVMGPGM-UHFFFAOYSA-N butyl formate Chemical compound CCCCOC=O NMJJFJNHVMGPGM-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- QCIYAEYRVFUFAP-UHFFFAOYSA-N hexane-2,3-diol Chemical compound CCCC(O)C(C)O QCIYAEYRVFUFAP-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- CAYMIAFKNJGSOR-UHFFFAOYSA-N 1,2,3-trimethoxypropane Chemical compound COCC(OC)COC CAYMIAFKNJGSOR-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- OLQJQHSAWMFDJE-UHFFFAOYSA-N 2-(hydroxymethyl)-2-nitropropane-1,3-diol Chemical compound OCC(CO)(CO)[N+]([O-])=O OLQJQHSAWMFDJE-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- MUHFRORXWCGZGE-KTKRTIGZSA-N 2-hydroxyethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCO MUHFRORXWCGZGE-KTKRTIGZSA-N 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- RKOGJKGQMPZCGG-UHFFFAOYSA-N 2-methoxypropane-1,3-diol Chemical compound COC(CO)CO RKOGJKGQMPZCGG-UHFFFAOYSA-N 0.000 description 1
- XNCKCDBPEMSUFA-UHFFFAOYSA-N 2-methylbutyl nitrite;3-methylbutyl nitrite Chemical class CCC(C)CON=O.CC(C)CCON=O XNCKCDBPEMSUFA-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 1
- PCYZZYAEGNVNMH-UHFFFAOYSA-N 4-hydroxypentan-2-one Chemical compound CC(O)CC(C)=O PCYZZYAEGNVNMH-UHFFFAOYSA-N 0.000 description 1
- JSHPTIGHEWEXRW-UHFFFAOYSA-N 5-hydroxypentan-2-one Chemical compound CC(=O)CCCO JSHPTIGHEWEXRW-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RMOUBSOVHSONPZ-UHFFFAOYSA-N Isopropyl formate Chemical compound CC(C)OC=O RMOUBSOVHSONPZ-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- DDQAGDLHARKUFX-UHFFFAOYSA-N acetic acid;methanamine Chemical compound [NH3+]C.CC([O-])=O DDQAGDLHARKUFX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000004064 cosurfactant Substances 0.000 description 1
- HLYOOCIMLHNMOG-UHFFFAOYSA-N cyclohexyl nitrate Chemical compound [O-][N+](=O)OC1CCCCC1 HLYOOCIMLHNMOG-UHFFFAOYSA-N 0.000 description 1
- UEFBRXQBUTYIJI-UHFFFAOYSA-N decyl nitrate Chemical compound CCCCCCCCCCO[N+]([O-])=O UEFBRXQBUTYIJI-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- DXVYLFHTJZWTRF-UHFFFAOYSA-N ethyl iso-butyl ketone Natural products CCC(=O)CC(C)C DXVYLFHTJZWTRF-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- IDNUEBSJWINEMI-UHFFFAOYSA-N ethyl nitrate Chemical compound CCO[N+]([O-])=O IDNUEBSJWINEMI-UHFFFAOYSA-N 0.000 description 1
- IFQUWYZCAGRUJN-UHFFFAOYSA-N ethylenediaminediacetic acid Chemical compound OC(=O)CNCCNCC(O)=O IFQUWYZCAGRUJN-UHFFFAOYSA-N 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- AGDYNDJUZRMYRG-UHFFFAOYSA-N hexyl nitrate Chemical compound CCCCCCO[N+]([O-])=O AGDYNDJUZRMYRG-UHFFFAOYSA-N 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QHDUJTCUPWHNPK-UHFFFAOYSA-N methyl 7-methoxy-2h-indazole-3-carboxylate Chemical compound COC1=CC=CC2=C(C(=O)OC)NN=C21 QHDUJTCUPWHNPK-UHFFFAOYSA-N 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- BEXCCJSZWRGBEN-UHFFFAOYSA-N nitric acid;urea Chemical compound NC(N)=O.O[N+]([O-])=O.O[N+]([O-])=O BEXCCJSZWRGBEN-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229940082615 organic nitrates used in cardiac disease Drugs 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 1
- 229950005308 oxymethurea Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229940083254 peripheral vasodilators imidazoline derivative Drugs 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Chemical group 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- KIWATKANDHUUOB-UHFFFAOYSA-N propan-2-yl 2-hydroxypropanoate Chemical compound CC(C)OC(=O)C(C)O KIWATKANDHUUOB-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 229950004959 sorbitan oleate Drugs 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/32—Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
- C10L1/328—Oil emulsions containing water or any other hydrophilic phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/04—Cleaning of, preventing corrosion or erosion in, or preventing unwanted deposits in, combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
Definitions
- the present invention relates to a method for reducing emission of pollutants from an internal combustion engine, particularly from a diesel engine, and to a fuel emulsion comprising water and a liquid hydrocarbon.
- European Patent Application EP-A-475,620 describes microemulsions of a diesel fuel with water, which contain a cetane improver and an emulsifying system comprising a hydrophilic surfactant and a lipophilic surfactant.
- These surfactants are selected from ethoxylated C 12 -C 18 alkylammonium salts of a C 9 -C 24 carboxylic or sulphonic acid: the hydrophilic surfactant contains at least six ethylene oxide units, while the lipophilic surfactant contains less than six ethylene oxide units.
- European Patent Application EP-A-630,398 describes a fuel in the form of an emulsion consisting of a hydrocarbon fuel, from 3 to 35% by weight of water and at least 0.1% by weight of an emulsifying system consisting of a sorbitan oleate, a polyalkylene glycol and an ethoxylated alkylphenol.
- a process for producing a stabilized emulsion of a liquid fuel and water is described in European Patent Application EP-A-812,615. This process involves preparing a first emulsion by mixing the fuel, the water and a surfactant, and subsequently mixing the emulsion thus obtained with more water to give the final emulsion.
- the emulsion is stabilized using a hydrophilic surfactant or a lipophilic surfactant, or a mixture thereof.
- Lipophilic surfactants which can be used are fatty acid esters of sorbitol, for example sorbitan monooleate, while hydrophilic surfactants which are suitable for this purpose are fatty acid esters of sorbitol containing a polyoxyalkylene chain, for example polyoxyethylene sorbitan trioleate. Further stabilization of the emulsion can be obtained by adding ethylene glycol or a polyethylene glycol.
- International Patent Application WO 92/19701 describes a process for reducing the emission of NOx from a gas turbine, in which an emulsion of water with a diesel fuel is used.
- the emulsion is stabilized by adding an emulsifier selected from: alkanolamides obtained by condensing an alkylamine or hydroxyalkylamine with a fatty acid; and ethoxylated alkylphenols.
- the emulsifier preferably has a HLB value of less than or equal to 8.
- Physical stabilizers such as waxes, cellulose derivatives or resins can be added to improve the stability.
- the above emulsion can be further stabilized by adding a difunctional block polymer with a primary hydroxyl end group, in particular a copolymer containing propylene oxide/ethylene oxide blocks.
- the acylating agent (C) (I) includes carboxylic acids and their reactive equivalents such as acid halides, anhydrides, and esters, including partial esters and triglycerides.
- the fuel may also comprise other components such as: cosurfactants selected from ionic or non-ionic compounds having a HLB of from 2 to 10, preferably of from 4 to 8; organic cetane improvers, including nitrate esters of substituted or unsubstituted aliphatic or cycloaliphatic alcohols; antifreeze agents, usually an alcohol such as ethylene glycol, propylene glycol, methanol, ethanol, and mixtures thereof, in a an amount of from 0.1% to 10%, preferably from 0.1 to 5%, by weight of the fuel composition.
- cosurfactants selected from ionic or non-ionic compounds having a HLB of from 2 to 10, preferably of from 4 to 8
- organic cetane improvers including nitrate esters of substituted or unsubstituted
- the fuel may also comprise an alcohol as antifreeze agent, such as methanol, ethanol, isopropanol, or a glycol, in an amount generally from 0.5 to 8% by weight, preferably from 1 to 4% by weight, with respect to the total weight of the fuel.
- an alcohol as antifreeze agent such as methanol, ethanol, isopropanol, or a glycol
- a reduction of NOx exhaust emissions from a diesel engine can also be obtained by controlling the functioning of the engine so as to obtain a reduction of the peak combustion temperature.
- Such a reduction may be obtained for instance by recirculation of a portion of the exhaust gases into the engine intake manifold where it mixes with the incoming air/fuel charge. By diluting the air/fuel mixture under these conditions, peak combustion temperatures are reduced, resulting in an overall reduction of NOx output.
- EGR Exhaust Gas Recirculation
- the first EGR systems were introduced in the early '70s as on/off devices. However, continuous recirculation of the exhaust gases resulted in unstable engine operation, decreased power output and oil contamination due to the presence of particulates in the recirculated gases.
- EGR systems Upon introduction of close loop computer controls for engines, the EGR systems were remarkably improved by controlling the rate or amount of recirculated exhaust gases in a manner responsive to operating conditions of the engine, particularly-during acceleration.
- EGR systems see for instance “Emission Controls: Part II: GM Exhaust Gas Recirculation Systems” by M. Schultz, published in Motor, Vol. 159 (February 1983), pages 15 ff, and also U.S. Pat. No. 3,796,049 and U.S. Pat. No. 4,454,854.
- Another system for reducing the peak p combustion temperature, and thus the NOx emissions, by controlling the functioning of the engine is based on an electronic control of the injection timing in the combustion chamber.
- delayed injection reduces NOx emissions, while excessive delay results in higher fuel consumption and HC emissions. Therefore, a precise injection timing is necessary, which is guaranteed by an electronic diesel-control system (EDC).
- EDC electronic diesel-control system
- a crankshaft reference point provides the basis for regulating the timing device setting. Extremely high precision can be achieved by monitoring the start of injection directly at the injection nozzle by employing a needle-motion sensor to monitor the needle-valve movement (control of start of injection) (see for instance U.S. Pat. No. 5,445,128).
- U.S. Pat. No. 4,479,473 a system for controlling emissions from a diesel engine is disclosed by controlling the recirculation of engine exhaust gases into the intake manifold and by modulating the injection timing schedule of the engine fuel injection pump.
- U.S. Pat. No. 5,271,370 discloses an emulsion fuel engine having at least one cylinder with an injection nozzle for injecting an emulsion fuel, which has been formed by mixing a first fuel with a second fuel, into the cylinder.
- the engine comprises exhaust gas recirculation means for returning a portion of exhaust gas to an intake passage to recirculate the exhaust gas; and exhaust gas recirculation control means for controlling the amount of the exhaust gas to be recirculated. Therefore, water and diesel fuel are mixed for the first time when the engine is operated by the emulsion fuel.
- an emulsion fuel prepared in advance by mixing diesel fuel and water and stored in an emulsion fuel tank can be delivered to the injection nozzle and then injected into the cylinder.
- the Applicant has felt the need of combining techniques for controlling the peak combustion temperature such as those described above with the use of a fuel emulsion which can be fed to the combustion chamber without introducing further modifications to the engine.
- the Applicant has perceived the importance of providing a fuel emulsion containing a reduced amount of water without decreasing the capability of the fuel emulsion to reduce pollutants emission, particularly particulate emission.
- the Applicant has now found that the above goal and other remarkable improvements may be achieved by fueling an internal combustion engine whose functioning is controlled so as to obtain a reduction of the peak combustion temperature with a fuel emulsion comprising a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound.
- a fuel emulsion comprising a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound.
- the use of this fuel emulsion allows to obtain a considerable reduction of particulate emissions while maintaining or even further reducing the NOx level which is already reduced by the engine itself.
- a reduced amount of water in the fuel emulsion is of great importance, since it allows not to substantially affect the power output of the engine, thus allowing the use of the fuel emulsion also in applications where the power loss is a constraint, such as heavy load trucks and passenger cars.
- a low level of particulate emission allows to reduce oil contamination.
- the present invention relates to a method for reducing emission of pollutants from an internal combustion engine including at least one combustion chamber, comprising:
- operating the internal combustion engine so as to reduce peak combustion temperature in the at least one combustion chamber comprises recirculating a portion of exhaust gases produced during ignition into the at least one combustion chamber.
- operating the internal combustion engine so as to reduce peak combustion temperature in the at least one combustion chamber comprises controlling injection timing of the fuel emulsion in the combustion chamber.
- operating the internal combustion engine so as to reduce peak combustion temperature in the at least one combustion chamber comprises compressing and cooling intake air before entering the combustion chamber.
- the amount of water in the fuel emulsion is not greater than 15% by weight, preferably from 2 to 12% by weight, more preferably from 2.5 to 10% by weight, even more preferably from 3 to 8% by weight.
- the amount of oxygen-containing water soluble organic compound is predetermined so as to obtain an amount of water soluble organic oxygen of from 0.1 to 5% by weight, preferably from 0.3 to 4% by weight, more preferably from 0.5 to 2.5% by weight, even more preferably from 0.8 to 2% by weight.
- the present invention relates to a fuel emulsion comprising a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound as additive for reducing emission of pollutants, especially of particulate, wherein the amount of water in the fuel emulsion is not greater than 15% by weight, preferably from 2 to 12% by weight, more preferably from 2.5 to 10% by weight, even more preferably from 3 to 8% by weight, and the amount of oxygen-containing water soluble organic compound is predetermined so as to obtain an amount of water soluble organic oxygen of from 0.1 to 5% by weight, preferably from 0.3 to 4% by weight, more preferably from 0.5 to 2.5% by weight, even more preferably from 0.8 to 2% by weight.
- the present invention relates to a method for reducing emission of pollutants, especially of particulate, from an internal combustion engine fuelled by a fuel emulsion comprising a hydrocarbon phase and an aqueous phase dispersed in the hydrocarbon phase, the method comprising adding to the fuel emulsion at least one oxygen-containing water soluble organic compound so as to obtain a predetermined amount of water soluble organic oxygen in the aqueous phase.
- the present invention relates to the use of an oxygen-containing water soluble organic compound to reduce emission of pollutants, particularly of particulate, from an internal combustion engine fuelled by a fuel emulsion.
- the Applicant wishes to point out that the fuel emulsions according to the present invention are particularly suitable for use in fuel distribution networks dedicated to fuelling of heavy load trucks and/or passenger cars, where the need of a fuel which is able to reduce pollutant emissions, especially particulate, without substantially affecting the power output of the engine is requested.
- the present invention relates to the use a fuel emulsion comprising a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound as fuel in a distribution network for fuelling heavy load trucks and/or passenger cars.
- the amount of water soluble organic oxygen is the amount of oxygen linked to the oxygen-containing water soluble organic compound dissolved in the aqueous phase of the fuel emulsion. It can be determined on the basis of the number of oxygen atoms contained in the water soluble compound, assuming that the overall amount of that compound added to the fuel emulsion is dissolved in the aqueous phase.
- the water soluble compound according to the present invention is a non-ionic organic compound having at least one oxygen-containing group, soluble in water at 20° C., usually not containing other heteroatoms such as sulfur, nitrogen, phosphorus, halogens.
- oxygen-containing group may be selected from: hydroxyl group, ether group, ester group, ketone group, peroxy group, and combinations thereof.
- the water soluble compound has a solubility in water at 20° C. of at least 5% by weight, more preferably of at least 8% by weight.
- the oxygen-containing water soluble organic compound according to the present invention may be selected from:
- the fuel emulsions according to the present invention comprises at least one emulsifier.
- the emulsifier, or the combination of emulsifiers has a hydrophilic-lipophilic balance (HLB) of from 2 to 10, preferably from 3 to 8.
- HLB hydrophilic-lipophilic balance
- the emulsifier is generally soluble in the hydrocarbon fuel and may be selected from one of the following classes of products:
- emulsifiers my be selected from: alkanolamides, alkylarylsulfonates, amine oxides, poly(oxyalkylene)compounds (including ethyleneoxide-propyleneoxide block copolymers), carboxylated alcohol ethoxylates, ethoxylated alcohols, ethoxylated alkyl phenols, ethoxylated amines and amides, ethoxylated fatty acids, ethoxylated fatty esters and oils, fatty esters, glycerol esters, glycol esters, imidazoline derivatives, lecithin and derivatives, lignin and derivatives, monoglycerides and derivatives, olefin sulfonates, phosphate esters and derivatives, propoxylated and ethoxylated fatty acids or alcohols or alkylphenols, sorbitan derivatives, sucrose esters and derivatives, sulfates or alcohols or eth
- the amount of the at least one emulsifier to be used in the fuel emulsion according to the present invention is predetermined mainly as a function of the amount of water to be emulsified and of the type of liquid hydrocarbon fuel.
- the at least one emulsifier is used in an amount of from 0.1 to 10% by weight, preferably from 0.5 to 5% by weight.
- the fuel emulsion according to the present invention is generally of the water-in-oil type, wherein the water droplets are dispersed in the continuous hydrocarbon phase.
- the fuel according to the present invention includes a liquid hydrocarbon fuel, generally deriving from the distillation of petroleum and consisting essentially of mixtures of aliphatic, naphthenic, olefinic and/or aromatic hydrocarbons.
- the liquid hydrocarbon generally has a viscosity at 40° C. of from 1 to 53 cSt, and a density at 15° C. of from 0.75 to 1.1 kg/dm 3 , and can be selected, for example, from: gas oils for use as automotive fuels or for production of heat, fuel oils, kerosenes, aviation fuels (Jet Fuels).
- the water to be used in the fuel emulsion can be of any type, for example industrial or domestic mains water. However, it is preferred to use demineralized or deionized water, in order to avoid the formation of mineral deposits on the internal surface of the combustion chamber and/or on the injectors.
- the fuel emulsion according to the present invention may contain other additives, such as: cetane improvers, corrosion inhibitors, lubricants, biocides, antifoaming agents, and mixtures thereof.
- the cetane improvers are products which improve the detonating properties of the fuel, and are generally selected from nitrates, nitrites and peroxides of the organic or inorganic type, which are soluble in the aqueous phase or, preferably, soluble in the hydrocarbon phase, such as organic nitrates (see for example patents: EP-475,620 and U.S. Pat. No. 5,669,938).
- alkyl or cycloalkyl nitrates containing up to 10 carbon atoms such as: ethyl nitrate, amyl nitrates, n-hexyl nitrate, 2-ethylhexyl nitrate, n-decyl nitrate, cyclohexyl nitrate and the like, or mixtures thereof.
- biocides can be selected from those known in the art, such as morpholine derivatives, isothiazolin-3-one derivatives, tris(hydroxymethyl)nitromethane, formaldehyde, oxazolidines, bronopol (2-bromo-2-nitro-1,3propandiol), 2-phenoxyethanol, dimethylolurea, or mixtures thereof.
- the oxygen-containing water soluble organic compound which is added to the fuel emulsion according to the present invention may act also as antifreeze. However, for some applications it could be advisable to add to the fuel emulsion also an antifreeze selected from those available in the art.
- the fuel emulsions according to the present invention may also include at least one water soluble amine or ammonia salt, such as ammonium nitrate, ammonium acetate, methyalmmonium nitrate, methylammonium acetate, ethylene diamine diacetate, urea nitrate, urea dinitrate, or mixtures thereof, in ana mount of from 0.001% to 15% by weight (see WO 00/15740).
- water soluble amine or ammonia salt such as ammonium nitrate, ammonium acetate, methyalmmonium nitrate, methylammonium acetate, ethylene diamine diacetate, urea nitrate, urea dinitrate, or mixtures thereof, in ana mount of from 0.001% to 15% by weight (see WO 00/15740).
- the fuel emulsion according to the present invention is generally prepared by mixing the components using an emulsifying device, in which the formation of the emulsion can result from a mechanical-type action exerted by moving parts, or from passing the components to be emulsified into mixing devices of static type, or alternatively from a combined mechanical and static action.
- the emulsion is formed by feeding the aqueous phase and the hydrocarbon phase, optionally premixed, into the emulsifying device.
- the emulsifier and the other additives which may be present can be introduced separately or, preferably, premixed either in the aqueous phase or in the hydrocarbon phase depending on their solubility properties.
- the oxygen-containing water soluble organic compound is premixed in the aqueous phase, while the emulsifier is premixed in the hydrocarbon phase.
- the fuels having the compositions reported in Table 1 were tested on a diesel engine used on cars Volkswagen Passat 1.9 TDI 130 cv, having an EGR system and a fuel injection unit pump.
- the engine was tested on a chassis rolls dynamometer according to the European standard ECE R15+EUDC.
- the measurement cycle reproduced a urban driving cycle (ECE) combined with an extra-urban driving (EUDC) segment to account for more aggressive, high speed driving modes.
- ECE urban driving cycle
- EUDC extra-urban driving
- Emulsifier obtained by reacting a polyoxyethylene-fatty acid monoester with a polyisobutene functionalized with maleic anhydride (according to Example 1 of WO 01/51593); MEG: monoethyleneglycol; Cetane improver: 2-ethylhexyl nitrate; Bactericide: isothiazolin-3-one derivative. (*) corresponding to 1.55% by weight of water soluble organic oxygen; (**) corresponding to 1.03% by weight of water soluble organic oxygen.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
- The present invention relates to a method for reducing emission of pollutants from an internal combustion engine, particularly from a diesel engine, and to a fuel emulsion comprising water and a liquid hydrocarbon.
- It is known that the combustion of liquid hydrocarbons in an internal combustion engine (e.g. a diesel engine) leads to the formation of numerous pollutants, in particular soot, particulates, carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and non-combusted hydrocarbons (HC), which cause a remarkable atmospheric pollution.
- It is also known that the addition of controlled amounts of water to a fuel can significantly reduce the production of pollutants. It is believed that this effect is the result of various phenomena arising from the presence of water in the combustion zone. For example, the lowering of the peak combustion temperature by water reduces the emission of nitrogen oxides (NOx), the formation of which is promoted by high temperatures. In addition, the instantaneous vaporization of the water droplets promotes better dispersion of the fuel in the combustion chamber, thereby significantly reducing the formation of soot, particulates and CO. These phenomena take place without adversely affecting the yield for the combustion process.
- Several solution have been proposed to add water to liquid fuel at the time of use, i.e. just before the fuel is injected into the combustion chamber, or directly into the chamber itself. However, these solutions require modifications to be made to the structure of the engine and are not capable of achieving optimum dispersion of the water in the fuel, which is an essential requisite for obtaining a significant reduction in pollutants without compromising the calorific yield for the process.
- Thus, the most promising and numerous efforts made hitherto were directed towards the formulation of emulsions between liquid hydrocarbons and water in the presence of emulsifiers (surfactants) for the purpose of uniformly dispersing the water in the hydrocarbon phase in the form of droplets of the smallest possible size.
- For example, European Patent Application EP-A-475,620 describes microemulsions of a diesel fuel with water, which contain a cetane improver and an emulsifying system comprising a hydrophilic surfactant and a lipophilic surfactant. These surfactants are selected from ethoxylated C12-C18 alkylammonium salts of a C9-C24 carboxylic or sulphonic acid: the hydrophilic surfactant contains at least six ethylene oxide units, while the lipophilic surfactant contains less than six ethylene oxide units.
- European Patent Application EP-A-630,398 describes a fuel in the form of an emulsion consisting of a hydrocarbon fuel, from 3 to 35% by weight of water and at least 0.1% by weight of an emulsifying system consisting of a sorbitan oleate, a polyalkylene glycol and an ethoxylated alkylphenol.
- International Patent Application WO 97/34969 describes an emulsion between water and a hydrocarbon, for example a diesel fuel. This emulsion is stabilized by adding an emulsifier consisting of a sorbitan sesquioleate, a polyethylene glycol monooleate and an ethoxylated nonylphenol. This emulsifier has an overall HLB (hydrophilic-lipophilic balance) value of from 6 to 8.
- A process for producing a stabilized emulsion of a liquid fuel and water is described in European Patent Application EP-A-812,615. This process involves preparing a first emulsion by mixing the fuel, the water and a surfactant, and subsequently mixing the emulsion thus obtained with more water to give the final emulsion. The emulsion is stabilized using a hydrophilic surfactant or a lipophilic surfactant, or a mixture thereof. Lipophilic surfactants which can be used are fatty acid esters of sorbitol, for example sorbitan monooleate, while hydrophilic surfactants which are suitable for this purpose are fatty acid esters of sorbitol containing a polyoxyalkylene chain, for example polyoxyethylene sorbitan trioleate. Further stabilization of the emulsion can be obtained by adding ethylene glycol or a polyethylene glycol.
- International Patent Application WO 92/19701 describes a process for reducing the emission of NOx from a gas turbine, in which an emulsion of water with a diesel fuel is used. The emulsion is stabilized by adding an emulsifier selected from: alkanolamides obtained by condensing an alkylamine or hydroxyalkylamine with a fatty acid; and ethoxylated alkylphenols. The emulsifier preferably has a HLB value of less than or equal to 8. Physical stabilizers such as waxes, cellulose derivatives or resins can be added to improve the stability. As described in patent application WO 93/07238, the above emulsion can be further stabilized by adding a difunctional block polymer with a primary hydroxyl end group, in particular a copolymer containing propylene oxide/ethylene oxide blocks.
- International Patent Application WO 00/15740 describes an emulsified water-blended fuel composition comprising: (A) a hydrocarbon boiling in the gasoline or diesel range; (B) water; (C) a minor emulsifying amount of at least one fuel-soluble salt made by reacting (C) (I) at least one acylating agent having about 16 to 500 carbon atoms with (C) (II) ammonia and/or at least one amine; and (D) about 0.001 to about 15% by weight of the water-blended fuel composition of a water soluble, ashless, halogen-, boron-, and phosphorus-free, amine salt, distinct from component (C). The acylating agent (C) (I) includes carboxylic acids and their reactive equivalents such as acid halides, anhydrides, and esters, including partial esters and triglycerides. The fuel may also comprise other components such as: cosurfactants selected from ionic or non-ionic compounds having a HLB of from 2 to 10, preferably of from 4 to 8; organic cetane improvers, including nitrate esters of substituted or unsubstituted aliphatic or cycloaliphatic alcohols; antifreeze agents, usually an alcohol such as ethylene glycol, propylene glycol, methanol, ethanol, and mixtures thereof, in a an amount of from 0.1% to 10%, preferably from 0.1 to 5%, by weight of the fuel composition.
- International Patent Application WO 01/51593 describes a fuel comprising an emulsion between water and a liquid hydrocarbon, and further comprising as emulsifier a polymeric surfactant obtainable by reaction between: (i) a polyolefin oligomer functionalized with at least one group deriving from a dicarboxylic acid, or a derivative thereof; and (ii) a polyoxyalkylene comprising linear oxyalkylene units, said polyoxyalkylene being linked to a long-chain alkyl group optionally containing one or more ethylenic unsaturations. The fuel may also comprise an alcohol as antifreeze agent, such as methanol, ethanol, isopropanol, or a glycol, in an amount generally from 0.5 to 8% by weight, preferably from 1 to 4% by weight, with respect to the total weight of the fuel.
- A reduction of NOx exhaust emissions from a diesel engine can also be obtained by controlling the functioning of the engine so as to obtain a reduction of the peak combustion temperature.
- Such a reduction may be obtained for instance by recirculation of a portion of the exhaust gases into the engine intake manifold where it mixes with the incoming air/fuel charge. By diluting the air/fuel mixture under these conditions, peak combustion temperatures are reduced, resulting in an overall reduction of NOx output. Such systems are commonly known as Exhaust Gas Recirculation (EGR) systems. The first EGR systems were introduced in the early '70s as on/off devices. However, continuous recirculation of the exhaust gases resulted in unstable engine operation, decreased power output and oil contamination due to the presence of particulates in the recirculated gases. Upon introduction of close loop computer controls for engines, the EGR systems were remarkably improved by controlling the rate or amount of recirculated exhaust gases in a manner responsive to operating conditions of the engine, particularly-during acceleration. For a general review on EGR systems see for instance “Emission Controls: Part II: GM Exhaust Gas Recirculation Systems” by M. Schultz, published in Motor, Vol. 159 (February 1983), pages 15 ff, and also U.S. Pat. No. 3,796,049 and U.S. Pat. No. 4,454,854.
- Another system for reducing the peak p combustion temperature, and thus the NOx emissions, by controlling the functioning of the engine is based on an electronic control of the injection timing in the combustion chamber. Particularly, delayed injection reduces NOx emissions, while excessive delay results in higher fuel consumption and HC emissions. Therefore, a precise injection timing is necessary, which is guaranteed by an electronic diesel-control system (EDC). A crankshaft reference point provides the basis for regulating the timing device setting. Extremely high precision can be achieved by monitoring the start of injection directly at the injection nozzle by employing a needle-motion sensor to monitor the needle-valve movement (control of start of injection) (see for instance U.S. Pat. No. 5,445,128).
- Another known method to reduce NOx in exhaust gases is based on cooling compressed intake air in turbocharged engines, so as to reduce combustion temperatures in the engine, with a consequent decrease of NOx emissions. A method of this kind is disclosed for instance in U.S. Pat. No. 6,145,498.
- For a general review on engine measures to reduce exhaust emissions from diesel engines see for instance “Bosch Automotive Handbook”, 4th Edition, October 1996 (pages 530-535).
- In order to meet the requirements of increasingly more stringent emission standards, some attempts have been made to combine different technologies of emission reduction.
- For instance, U.S. Pat. No. 4,479,473 a system for controlling emissions from a diesel engine is disclosed by controlling the recirculation of engine exhaust gases into the intake manifold and by modulating the injection timing schedule of the engine fuel injection pump.
- U.S. Pat. No. 5,271,370 discloses an emulsion fuel engine having at least one cylinder with an injection nozzle for injecting an emulsion fuel, which has been formed by mixing a first fuel with a second fuel, into the cylinder. The engine comprises exhaust gas recirculation means for returning a portion of exhaust gas to an intake passage to recirculate the exhaust gas; and exhaust gas recirculation control means for controlling the amount of the exhaust gas to be recirculated. Therefore, water and diesel fuel are mixed for the first time when the engine is operated by the emulsion fuel. Alternatively, an emulsion fuel prepared in advance by mixing diesel fuel and water and stored in an emulsion fuel tank can be delivered to the injection nozzle and then injected into the cylinder.
- The Applicant has felt the need of combining techniques for controlling the peak combustion temperature such as those described above with the use of a fuel emulsion which can be fed to the combustion chamber without introducing further modifications to the engine.
- Moreover, the Applicant has perceived the importance of providing a fuel emulsion containing a reduced amount of water without decreasing the capability of the fuel emulsion to reduce pollutants emission, particularly particulate emission.
- The Applicant has now found that the above goal and other remarkable improvements may be achieved by fueling an internal combustion engine whose functioning is controlled so as to obtain a reduction of the peak combustion temperature with a fuel emulsion comprising a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound. The use of this fuel emulsion allows to obtain a considerable reduction of particulate emissions while maintaining or even further reducing the NOx level which is already reduced by the engine itself. A reduced amount of water in the fuel emulsion is of great importance, since it allows not to substantially affect the power output of the engine, thus allowing the use of the fuel emulsion also in applications where the power loss is a constraint, such as heavy load trucks and passenger cars. Moreover, in the case of EGR systems, a low level of particulate emission allows to reduce oil contamination.
- Therefore, in a first aspect the present invention relates to a method for reducing emission of pollutants from an internal combustion engine including at least one combustion chamber, comprising:
- injecting a fuel emulsion into the at least one combustion chamber;
- igniting the fuel emulsion in the at least one combustion chamber in the presence of air;
- operating the internal combustion engine so as to reduce peak combustion temperature in the at least one combustion chamber;
- wherein the fuel emulsion comprises a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound.
- According to a preferred embodiment, operating the internal combustion engine so as to reduce peak combustion temperature in the at least one combustion chamber comprises recirculating a portion of exhaust gases produced during ignition into the at least one combustion chamber.
- According to another preferred embodiment, operating the internal combustion engine so as to reduce peak combustion temperature in the at least one combustion chamber comprises controlling injection timing of the fuel emulsion in the combustion chamber.
- According to another preferred embodiment, operating the internal combustion engine so as to reduce peak combustion temperature in the at least one combustion chamber comprises compressing and cooling intake air before entering the combustion chamber.
- According to a preferred embodiment, in the method according to the present invention the amount of water in the fuel emulsion is not greater than 15% by weight, preferably from 2 to 12% by weight, more preferably from 2.5 to 10% by weight, even more preferably from 3 to 8% by weight.
- According to another preferred embodiment, in the method according to the present invention the amount of oxygen-containing water soluble organic compound is predetermined so as to obtain an amount of water soluble organic oxygen of from 0.1 to 5% by weight, preferably from 0.3 to 4% by weight, more preferably from 0.5 to 2.5% by weight, even more preferably from 0.8 to 2% by weight.
- Unless otherwise specified, in the present description and claims the amounts are expressed as % by weight with respect to the total weight of the fuel emulsion.
- In another aspect, the present invention relates to a fuel emulsion comprising a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound as additive for reducing emission of pollutants, especially of particulate, wherein the amount of water in the fuel emulsion is not greater than 15% by weight, preferably from 2 to 12% by weight, more preferably from 2.5 to 10% by weight, even more preferably from 3 to 8% by weight, and the amount of oxygen-containing water soluble organic compound is predetermined so as to obtain an amount of water soluble organic oxygen of from 0.1 to 5% by weight, preferably from 0.3 to 4% by weight, more preferably from 0.5 to 2.5% by weight, even more preferably from 0.8 to 2% by weight.
- In another aspect, the present invention relates to a method for reducing emission of pollutants, especially of particulate, from an internal combustion engine fuelled by a fuel emulsion comprising a hydrocarbon phase and an aqueous phase dispersed in the hydrocarbon phase, the method comprising adding to the fuel emulsion at least one oxygen-containing water soluble organic compound so as to obtain a predetermined amount of water soluble organic oxygen in the aqueous phase.
- In another aspect, the present invention relates to the use of an oxygen-containing water soluble organic compound to reduce emission of pollutants, particularly of particulate, from an internal combustion engine fuelled by a fuel emulsion.
- The Applicant wishes to point out that the fuel emulsions according to the present invention are particularly suitable for use in fuel distribution networks dedicated to fuelling of heavy load trucks and/or passenger cars, where the need of a fuel which is able to reduce pollutant emissions, especially particulate, without substantially affecting the power output of the engine is requested.
- Therefore, according to another aspect, the present invention relates to the use a fuel emulsion comprising a liquid hydrocarbon fuel, water, at least one emulsifier and at least one oxygen-containing water soluble organic compound as fuel in a distribution network for fuelling heavy load trucks and/or passenger cars.
- The amount of water soluble organic oxygen is the amount of oxygen linked to the oxygen-containing water soluble organic compound dissolved in the aqueous phase of the fuel emulsion. It can be determined on the basis of the number of oxygen atoms contained in the water soluble compound, assuming that the overall amount of that compound added to the fuel emulsion is dissolved in the aqueous phase.
- The water soluble compound according to the present invention (for the sake of conciseness identified herein also as “water soluble compound”) is a non-ionic organic compound having at least one oxygen-containing group, soluble in water at 20° C., usually not containing other heteroatoms such as sulfur, nitrogen, phosphorus, halogens. Preferably the oxygen-containing group may be selected from: hydroxyl group, ether group, ester group, ketone group, peroxy group, and combinations thereof.
- Preferably, the water soluble compound has a solubility in water at 20° C. of at least 5% by weight, more preferably of at least 8% by weight.
- The oxygen-containing water soluble organic compound according to the present invention may be selected from:
-
- (i) alcohols, such as; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, diacetone alcohol, furfuryl alcohol;
- (ii) glycols such as: ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,3-hexanediol, 1,3-propanediol, 2,3-hexandiol, polyethylene glycol;
- (iii) polyols such as: glycerol, diglycerol, sorbitol, glycerol 2-methylether, glycerol trimethylether, glycerol monoacetate, fructose, galactose, sucrose, pentaerythritol, dipentaerythritol, tripentaerythritol;
- (iv) esters such as: ethyl acetate, methyl acetate, butyl acetate, ethyl acetoacetate, ethylene glycol acetate, ethylene glycol diacetate, methyl lactate, ethyl lactate, glycerolmonoacetate, isopropyllactate, methylformate, ethylformate, butylformate, isopropylformate;
- (v) ethers, such as: ethylene glycol diethylether, ethylene glycol monoethylether, ethylene glycol monoisopropylether, ethylene glycol monobutylether, diethylene glycol dimethylether, diethylene glycol monoethylether, ethylene glycol dimethylether, ethylene glycol monobutylether, triethylene glycol monoethylether, triethylene glycol dimethylether, tetraethylene glycol dimethylether, polyethylene glycol dimethylether;
- (vi) ketones, such as: 2-propanone, 2-pentanone, 3-pentanone, 2-methyl-3-pentanone, 3-hydroxy-2-pentanone, 4-hydroxy-2-pentanone, 5-hydroxy-2-pentanone;
or mixtures thereof.
- The fuel emulsions according to the present invention comprises at least one emulsifier. The emulsifier, or the combination of emulsifiers, has a hydrophilic-lipophilic balance (HLB) of from 2 to 10, preferably from 3 to 8.
- The emulsifier is generally soluble in the hydrocarbon fuel and may be selected from one of the following classes of products:
-
- (a) a product obtained by reacting (a1) a polyolefin oligomer functionalized with at least one group deriving from a dicarboxylic acid, or a derivative thereof, with (a2) a polyoxyalkylene comprising linear oxyalkylene units, said polyoxyalkylene being linked to a long-chain alkyl group optionally containing one or more ethylenic unsaturation;
- (b) a product obtained by reacting (b1) a hydrocarbyl substituted carboxylic acid acylating agent with (b2) ammonia or an amine, the hydrocarbyl substituent of said acylating agent having from 50 to 500 carbon atoms.
- Other emulsifiers my be selected from: alkanolamides, alkylarylsulfonates, amine oxides, poly(oxyalkylene)compounds (including ethyleneoxide-propyleneoxide block copolymers), carboxylated alcohol ethoxylates, ethoxylated alcohols, ethoxylated alkyl phenols, ethoxylated amines and amides, ethoxylated fatty acids, ethoxylated fatty esters and oils, fatty esters, glycerol esters, glycol esters, imidazoline derivatives, lecithin and derivatives, lignin and derivatives, monoglycerides and derivatives, olefin sulfonates, phosphate esters and derivatives, propoxylated and ethoxylated fatty acids or alcohols or alkylphenols, sorbitan derivatives, sucrose esters and derivatives, sulfates or alcohols or ethoxylated alcohols or fatty esters, and mixtures thereof.
- More details on emulsifiers that can be used in the present invention can be found in EP-A-475,620, EP-A-630,398, WO 97/34969, EP-A-812,615, WO 92/19701, WO 93/07238, WO 00/15740 and WO 01/51593, which are herein incorporated by reference.
- The amount of the at least one emulsifier to be used in the fuel emulsion according to the present invention is predetermined mainly as a function of the amount of water to be emulsified and of the type of liquid hydrocarbon fuel. Preferably, the at least one emulsifier is used in an amount of from 0.1 to 10% by weight, preferably from 0.5 to 5% by weight.
- The fuel emulsion according to the present invention is generally of the water-in-oil type, wherein the water droplets are dispersed in the continuous hydrocarbon phase.
- The fuel according to the present invention includes a liquid hydrocarbon fuel, generally deriving from the distillation of petroleum and consisting essentially of mixtures of aliphatic, naphthenic, olefinic and/or aromatic hydrocarbons. The liquid hydrocarbon generally has a viscosity at 40° C. of from 1 to 53 cSt, and a density at 15° C. of from 0.75 to 1.1 kg/dm3, and can be selected, for example, from: gas oils for use as automotive fuels or for production of heat, fuel oils, kerosenes, aviation fuels (Jet Fuels).
- The water to be used in the fuel emulsion can be of any type, for example industrial or domestic mains water. However, it is preferred to use demineralized or deionized water, in order to avoid the formation of mineral deposits on the internal surface of the combustion chamber and/or on the injectors.
- The fuel emulsion according to the present invention may contain other additives, such as: cetane improvers, corrosion inhibitors, lubricants, biocides, antifoaming agents, and mixtures thereof.
- In particular, the cetane improvers are products which improve the detonating properties of the fuel, and are generally selected from nitrates, nitrites and peroxides of the organic or inorganic type, which are soluble in the aqueous phase or, preferably, soluble in the hydrocarbon phase, such as organic nitrates (see for example patents: EP-475,620 and U.S. Pat. No. 5,669,938). Of preferred use are alkyl or cycloalkyl nitrates containing up to 10 carbon atoms, such as: ethyl nitrate, amyl nitrates, n-hexyl nitrate, 2-ethylhexyl nitrate, n-decyl nitrate, cyclohexyl nitrate and the like, or mixtures thereof.
- The biocides can be selected from those known in the art, such as morpholine derivatives, isothiazolin-3-one derivatives, tris(hydroxymethyl)nitromethane, formaldehyde, oxazolidines, bronopol (2-bromo-2-nitro-1,3propandiol), 2-phenoxyethanol, dimethylolurea, or mixtures thereof.
- The oxygen-containing water soluble organic compound which is added to the fuel emulsion according to the present invention may act also as antifreeze. However, for some applications it could be advisable to add to the fuel emulsion also an antifreeze selected from those available in the art.
- The fuel emulsions according to the present invention may also include at least one water soluble amine or ammonia salt, such as ammonium nitrate, ammonium acetate, methyalmmonium nitrate, methylammonium acetate, ethylene diamine diacetate, urea nitrate, urea dinitrate, or mixtures thereof, in ana mount of from 0.001% to 15% by weight (see WO 00/15740).
- The fuel emulsion according to the present invention is generally prepared by mixing the components using an emulsifying device, in which the formation of the emulsion can result from a mechanical-type action exerted by moving parts, or from passing the components to be emulsified into mixing devices of static type, or alternatively from a combined mechanical and static action. The emulsion is formed by feeding the aqueous phase and the hydrocarbon phase, optionally premixed, into the emulsifying device. The emulsifier and the other additives which may be present can be introduced separately or, preferably, premixed either in the aqueous phase or in the hydrocarbon phase depending on their solubility properties. Preferably, the oxygen-containing water soluble organic compound is premixed in the aqueous phase, while the emulsifier is premixed in the hydrocarbon phase.
- The present invention will now be further illustrated by means of some working examples.
- The fuels having the compositions reported in Table 1 were tested on a diesel engine used on cars Volkswagen Passat 1.9 TDI 130 cv, having an EGR system and a fuel injection unit pump. The engine was tested on a chassis rolls dynamometer according to the European standard ECE R15+EUDC. The measurement cycle reproduced a urban driving cycle (ECE) combined with an extra-urban driving (EUDC) segment to account for more aggressive, high speed driving modes. The emissions were measured according to that standard and expressed as grams of pollutant per km of route.
- The results are reported in Table 2.
TABLE 1 FUEL 1 2 3 4 5 Diesel Fuel 100 86.22 90.22 87.22 92.22 EN590 Water — 12.00 8.00 8.00 4.00 Emulsifier — 1.60 1.60 1.60 1.60 MEG — — — 3.00 2.00 (*) (**) Cetane — 0.15 0.15 0.15 0.15 Improver Bactericide — 0.03 0.03 0.03 0.03 TABLE 2 FUEL 1 2 3 4 5 NOx 0.448 0.404 0.345 0.375 0.362 (g/km) Particulate 0.035 0.020 0.020 0.010 0.013 (g/km) CO 0.276 0.422 0.356 0.400 0.201 (g/km)
The compositions are expressed as % by weight.
Emulsifier: obtained by reacting a polyoxyethylene-fatty acid monoester with a polyisobutene functionalized with maleic anhydride (according to Example 1 of WO 01/51593);
MEG: monoethyleneglycol;
Cetane improver: 2-ethylhexyl nitrate;
Bactericide: isothiazolin-3-one derivative.
(*) corresponding to 1.55% by weight of water soluble organic oxygen;
(**) corresponding to 1.03% by weight of water soluble organic oxygen.
Claims (39)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2002/003534 WO2003083018A1 (en) | 2002-03-28 | 2002-03-28 | Method for reducing emission of pollutants from an internal combustion engine, and fuel emulsion comprising water and a liquid hydrocarbon |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050217613A1 true US20050217613A1 (en) | 2005-10-06 |
US8511259B2 US8511259B2 (en) | 2013-08-20 |
Family
ID=28459433
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/509,044 Expired - Fee Related US8511259B2 (en) | 2002-03-28 | 2002-03-28 | Method for reducing emission of pollutants from an internal combusion engine, and fuel emulsion comprising water and a liquid hydrocarbon |
US13/944,230 Abandoned US20130298449A1 (en) | 2002-03-28 | 2013-07-17 | Method for reducing emission of pollutants from an internal combustion engine, and fuel emulsion comprising water and a liquid hydrocarbon |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/944,230 Abandoned US20130298449A1 (en) | 2002-03-28 | 2013-07-17 | Method for reducing emission of pollutants from an internal combustion engine, and fuel emulsion comprising water and a liquid hydrocarbon |
Country Status (8)
Country | Link |
---|---|
US (2) | US8511259B2 (en) |
EP (1) | EP1490458B1 (en) |
CN (2) | CN1622988A (en) |
AR (1) | AR039159A1 (en) |
AU (1) | AU2002302481A1 (en) |
MY (1) | MY152170A (en) |
TW (1) | TWI313296B (en) |
WO (1) | WO2003083018A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100037513A1 (en) * | 2006-04-27 | 2010-02-18 | New Generation Biofuels, Inc. | Biofuel Composition and Method of Producing a Biofuel |
WO2011148164A1 (en) * | 2010-05-24 | 2011-12-01 | Aquafuel Research Ltd | Engine cleaning method |
ITMI20102000A1 (en) * | 2010-10-27 | 2012-04-28 | Eni Spa | COMPOSITION OF DIESEL INCLUDING GLYCERINE ETHERS CONTAINING LINEAR ALCYLIC CHAINS OR THEIR MIXES |
US20130276359A1 (en) * | 2012-04-20 | 2013-10-24 | Broadleaf Energy, LLC | Renewable biofuel |
WO2014135146A1 (en) * | 2013-03-05 | 2014-09-12 | MTR Energy AG | Additive, method for the production thereof, and method for operating an internal combustion engine, a turbine, or a jet engine |
US8997725B2 (en) * | 2008-01-07 | 2015-04-07 | Mcallister Technologies, Llc | Methods and systems for reducing the formation of oxides of nitrogen during combustion of engines |
US20210254564A1 (en) * | 2016-11-01 | 2021-08-19 | Yaw Obeng | System and Method for Operating an Engine with Reduced NOx Emissions |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8044232B2 (en) | 2005-11-29 | 2011-10-25 | Akzo Nobel N.V. | Surface-active polymer and its use in a water-in-oil emulsion |
US8635985B2 (en) | 2008-01-07 | 2014-01-28 | Mcalister Technologies, Llc | Integrated fuel injectors and igniters and associated methods of use and manufacture |
US7628137B1 (en) | 2008-01-07 | 2009-12-08 | Mcalister Roy E | Multifuel storage, metering and ignition system |
WO2011071607A2 (en) | 2009-12-07 | 2011-06-16 | Mcalister Roy E | Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture |
WO2013025626A1 (en) | 2011-08-12 | 2013-02-21 | Mcalister Technologies, Llc | Acoustically actuated flow valve assembly including a plurality of reed valves |
US8746197B2 (en) | 2012-11-02 | 2014-06-10 | Mcalister Technologies, Llc | Fuel injection systems with enhanced corona burst |
US9169821B2 (en) | 2012-11-02 | 2015-10-27 | Mcalister Technologies, Llc | Fuel injection systems with enhanced corona burst |
US9169814B2 (en) | 2012-11-02 | 2015-10-27 | Mcalister Technologies, Llc | Systems, methods, and devices with enhanced lorentz thrust |
US9200561B2 (en) | 2012-11-12 | 2015-12-01 | Mcalister Technologies, Llc | Chemical fuel conditioning and activation |
US9194337B2 (en) | 2013-03-14 | 2015-11-24 | Advanced Green Innovations, LLC | High pressure direct injected gaseous fuel system and retrofit kit incorporating the same |
CN105733708A (en) * | 2016-03-10 | 2016-07-06 | 安徽辉源机电有限公司 | Anti-wear lubricant for low-sulfur and energy-saving diesel and preparation method of anti-wear lubricant |
GB2565050B (en) * | 2017-07-27 | 2020-06-17 | Dolphin N2 Ltd | Split cycle engine with peak combustion temperature control |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3501914A (en) * | 1967-07-14 | 1970-03-24 | Exxon Research Engineering Co | Hydrocarbon fuel powered vehicle employing emulsified fuel |
US3732084A (en) * | 1969-06-16 | 1973-05-08 | Exxon Research Engineering Co | Emulsified carbon fuel |
US3756794A (en) * | 1968-07-22 | 1973-09-04 | Shell Oil Co | Emulsified hydrocarbon fuels |
US3796049A (en) * | 1971-12-25 | 1974-03-12 | Nissan Motor | Exhaust gas recirculation system for an internal combustion engine |
US4031118A (en) * | 1973-09-17 | 1977-06-21 | The Lubrizol Corporation | Ester-containing process and compositions |
US4454854A (en) * | 1982-06-18 | 1984-06-19 | Honda Motor Co., Ltd. | Exhaust gas recirculation control method for internal combustion engines for vehicles |
US4479473A (en) * | 1983-01-10 | 1984-10-30 | Ford Motor Company | Diesel engine emission control system |
US5004479A (en) * | 1986-06-09 | 1991-04-02 | Arco Chemical Technology, Inc. | Methanol as cosurfactant for microemulsions |
US5271370A (en) * | 1991-07-31 | 1993-12-21 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Emulsion fuel engine |
US5445128A (en) * | 1993-08-27 | 1995-08-29 | Detroit Diesel Corporation | Method for engine control |
US5669938A (en) * | 1995-12-21 | 1997-09-23 | Ethyl Corporation | Emulsion diesel fuel composition with reduced emissions |
US5820640A (en) * | 1997-07-09 | 1998-10-13 | Natural Resources Canada | Pyrolysis liquid-in-diesel oil microemulsions |
US6145498A (en) * | 1997-02-10 | 2000-11-14 | Industrial Power Generating Corporation | Nitrogen oxides reducing aftercooler for turbocharged engines |
US20030024852A1 (en) * | 2000-01-25 | 2003-02-06 | Stephan Huffer | Fuel-water emulsions containing polybutene-based emulsifying agents |
US20030084658A1 (en) * | 2000-06-20 | 2003-05-08 | Brown Kevin F | Process for reducing pollutants from the exhaust of a diesel engine using a water diesel fuel in combination with exhaust after-treatments |
US6598584B2 (en) * | 2001-02-23 | 2003-07-29 | Clean Air Partners, Inc. | Gas-fueled, compression ignition engine with maximized pilot ignition intensity |
US6606856B1 (en) * | 2000-03-03 | 2003-08-19 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
US20040092412A1 (en) * | 2001-03-01 | 2004-05-13 | Stephan Hueffer | Emulsifiers, especially based on polyisobutylenamines |
US6742335B2 (en) * | 2002-07-11 | 2004-06-01 | Clean Air Power, Inc. | EGR control system and method for an internal combustion engine |
US20040111955A1 (en) * | 2002-12-13 | 2004-06-17 | Mullay John J. | Emulsified water blended fuels produced by using a low energy process and novel surfuctant |
US20040154216A1 (en) * | 2001-05-22 | 2004-08-12 | Stephan Huffer | Low-molecular and high-molecular weight emulsifiers, particularly based on polyisobutylene, and mixtures thereof |
US20050092286A1 (en) * | 2003-11-04 | 2005-05-05 | Denso Corporation | Compression ignition internal combustion engine |
US20050120619A1 (en) * | 2001-06-29 | 2005-06-09 | Frederick W Koch | Emulsified fuel compositions prepared employing emulsifier derived from high polydispersity olefin polymers |
US7018433B2 (en) * | 2000-01-12 | 2006-03-28 | Cam Tecnologie S.P.A.. | Fuel comprising an emulsion between water and a liquid hydrocarbon |
US7041145B2 (en) * | 2001-07-09 | 2006-05-09 | Cam Technologie S.P.A. | Fuel comprising an emulsion between water and a liquid hydrocarbon |
US20060218854A1 (en) * | 2001-02-14 | 2006-10-05 | Barbour Robert H | Fuel Additive Composition and Fuel Composition and Method Thereof |
US20060247137A1 (en) * | 2005-04-28 | 2006-11-02 | Chevron Oronite Company, Llc | Method and system for screening lubricating oil compositions |
US20070203372A1 (en) * | 2005-12-22 | 2007-08-30 | Ramakers Bernardus Franciscus | Process for the preparation of an alkylene glycol |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1229787B (en) | 1989-05-26 | 1991-09-11 | Eniricerche Spa | HYBRID COMPOSITION OF DIESEL FUEL. |
IT1238004B (en) | 1990-02-02 | 1993-06-21 | Eniricerche Spa | HYBRID COMPOSITION OF LIQUID FUEL IN WATER MICROEMULSION |
CA2048906C (en) | 1990-09-07 | 2002-12-10 | Jan Bock | Microemulsion diesel fuel compositions and method of use |
CA2109096A1 (en) | 1991-04-25 | 1992-10-26 | Alexander S. Dainoff | Process for reducing nitrogen oxides emissions and improving the combustion efficiency of a turbine |
WO1993007238A1 (en) | 1991-10-01 | 1993-04-15 | Nalco Fuel Tech | Emulsification system for light fuel oil emulsions |
WO1993018117A1 (en) | 1992-03-09 | 1993-09-16 | Ecotec (Sarl) | Emulsified fuels |
FR2746106B1 (en) | 1996-03-15 | 1998-08-28 | EMULSIFIED FUEL AND ONE OF ITS PROCESSES | |
CA2207339A1 (en) | 1996-06-12 | 1997-12-12 | Goro Ishida | Emulsion fuel production method and apparatus, emulsion fuel combustion apparatus, and emulsion fuel production supply apparatus |
US6648929B1 (en) | 1998-09-14 | 2003-11-18 | The Lubrizol Corporation | Emulsified water-blended fuel compositions |
GB2352246A (en) * | 1999-07-17 | 2001-01-24 | Abu Jawdeh Pauline | An emulsifier composition for a water in fuel emulsion |
-
2002
- 2002-03-28 WO PCT/EP2002/003534 patent/WO2003083018A1/en not_active Application Discontinuation
- 2002-03-28 CN CN02828659.6A patent/CN1622988A/en active Pending
- 2002-03-28 EP EP02730080.5A patent/EP1490458B1/en not_active Expired - Lifetime
- 2002-03-28 CN CN200910127650.1A patent/CN101545405A/en active Pending
- 2002-03-28 AU AU2002302481A patent/AU2002302481A1/en not_active Abandoned
- 2002-03-28 US US10/509,044 patent/US8511259B2/en not_active Expired - Fee Related
-
2003
- 2003-03-12 MY MYPI20030856 patent/MY152170A/en unknown
- 2003-03-12 TW TW092105391A patent/TWI313296B/en not_active IP Right Cessation
- 2003-03-27 AR ARP030101067A patent/AR039159A1/en active IP Right Grant
-
2013
- 2013-07-17 US US13/944,230 patent/US20130298449A1/en not_active Abandoned
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3501914A (en) * | 1967-07-14 | 1970-03-24 | Exxon Research Engineering Co | Hydrocarbon fuel powered vehicle employing emulsified fuel |
US3756794A (en) * | 1968-07-22 | 1973-09-04 | Shell Oil Co | Emulsified hydrocarbon fuels |
US3732084A (en) * | 1969-06-16 | 1973-05-08 | Exxon Research Engineering Co | Emulsified carbon fuel |
US3796049A (en) * | 1971-12-25 | 1974-03-12 | Nissan Motor | Exhaust gas recirculation system for an internal combustion engine |
US4031118A (en) * | 1973-09-17 | 1977-06-21 | The Lubrizol Corporation | Ester-containing process and compositions |
US4454854A (en) * | 1982-06-18 | 1984-06-19 | Honda Motor Co., Ltd. | Exhaust gas recirculation control method for internal combustion engines for vehicles |
US4479473A (en) * | 1983-01-10 | 1984-10-30 | Ford Motor Company | Diesel engine emission control system |
US5004479A (en) * | 1986-06-09 | 1991-04-02 | Arco Chemical Technology, Inc. | Methanol as cosurfactant for microemulsions |
US5271370A (en) * | 1991-07-31 | 1993-12-21 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Emulsion fuel engine |
US5445128A (en) * | 1993-08-27 | 1995-08-29 | Detroit Diesel Corporation | Method for engine control |
US5669938A (en) * | 1995-12-21 | 1997-09-23 | Ethyl Corporation | Emulsion diesel fuel composition with reduced emissions |
US6145498A (en) * | 1997-02-10 | 2000-11-14 | Industrial Power Generating Corporation | Nitrogen oxides reducing aftercooler for turbocharged engines |
US5820640A (en) * | 1997-07-09 | 1998-10-13 | Natural Resources Canada | Pyrolysis liquid-in-diesel oil microemulsions |
US7018433B2 (en) * | 2000-01-12 | 2006-03-28 | Cam Tecnologie S.P.A.. | Fuel comprising an emulsion between water and a liquid hydrocarbon |
US20030024852A1 (en) * | 2000-01-25 | 2003-02-06 | Stephan Huffer | Fuel-water emulsions containing polybutene-based emulsifying agents |
US6606856B1 (en) * | 2000-03-03 | 2003-08-19 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
US20030084658A1 (en) * | 2000-06-20 | 2003-05-08 | Brown Kevin F | Process for reducing pollutants from the exhaust of a diesel engine using a water diesel fuel in combination with exhaust after-treatments |
US20060218854A1 (en) * | 2001-02-14 | 2006-10-05 | Barbour Robert H | Fuel Additive Composition and Fuel Composition and Method Thereof |
US6598584B2 (en) * | 2001-02-23 | 2003-07-29 | Clean Air Partners, Inc. | Gas-fueled, compression ignition engine with maximized pilot ignition intensity |
US20040092412A1 (en) * | 2001-03-01 | 2004-05-13 | Stephan Hueffer | Emulsifiers, especially based on polyisobutylenamines |
US20040154216A1 (en) * | 2001-05-22 | 2004-08-12 | Stephan Huffer | Low-molecular and high-molecular weight emulsifiers, particularly based on polyisobutylene, and mixtures thereof |
US20050120619A1 (en) * | 2001-06-29 | 2005-06-09 | Frederick W Koch | Emulsified fuel compositions prepared employing emulsifier derived from high polydispersity olefin polymers |
US7041145B2 (en) * | 2001-07-09 | 2006-05-09 | Cam Technologie S.P.A. | Fuel comprising an emulsion between water and a liquid hydrocarbon |
US6742335B2 (en) * | 2002-07-11 | 2004-06-01 | Clean Air Power, Inc. | EGR control system and method for an internal combustion engine |
US20040111955A1 (en) * | 2002-12-13 | 2004-06-17 | Mullay John J. | Emulsified water blended fuels produced by using a low energy process and novel surfuctant |
US20050092286A1 (en) * | 2003-11-04 | 2005-05-05 | Denso Corporation | Compression ignition internal combustion engine |
US20060247137A1 (en) * | 2005-04-28 | 2006-11-02 | Chevron Oronite Company, Llc | Method and system for screening lubricating oil compositions |
US20070203372A1 (en) * | 2005-12-22 | 2007-08-30 | Ramakers Bernardus Franciscus | Process for the preparation of an alkylene glycol |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100037513A1 (en) * | 2006-04-27 | 2010-02-18 | New Generation Biofuels, Inc. | Biofuel Composition and Method of Producing a Biofuel |
US8997725B2 (en) * | 2008-01-07 | 2015-04-07 | Mcallister Technologies, Llc | Methods and systems for reducing the formation of oxides of nitrogen during combustion of engines |
WO2011148164A1 (en) * | 2010-05-24 | 2011-12-01 | Aquafuel Research Ltd | Engine cleaning method |
ITMI20102000A1 (en) * | 2010-10-27 | 2012-04-28 | Eni Spa | COMPOSITION OF DIESEL INCLUDING GLYCERINE ETHERS CONTAINING LINEAR ALCYLIC CHAINS OR THEIR MIXES |
US20130276359A1 (en) * | 2012-04-20 | 2013-10-24 | Broadleaf Energy, LLC | Renewable biofuel |
US9109179B2 (en) * | 2012-04-20 | 2015-08-18 | Broadleaf Energy, LLC | Renewable biofuel |
WO2014135146A1 (en) * | 2013-03-05 | 2014-09-12 | MTR Energy AG | Additive, method for the production thereof, and method for operating an internal combustion engine, a turbine, or a jet engine |
US20210254564A1 (en) * | 2016-11-01 | 2021-08-19 | Yaw Obeng | System and Method for Operating an Engine with Reduced NOx Emissions |
US11519344B2 (en) * | 2016-11-01 | 2022-12-06 | Yaw Obeng | System and method for operating an engine with reduced NOx emissions |
Also Published As
Publication number | Publication date |
---|---|
CN101545405A (en) | 2009-09-30 |
EP1490458A1 (en) | 2004-12-29 |
MY152170A (en) | 2014-08-15 |
EP1490458B1 (en) | 2015-06-10 |
TW200305641A (en) | 2003-11-01 |
US8511259B2 (en) | 2013-08-20 |
AR039159A1 (en) | 2005-02-09 |
AU2002302481A1 (en) | 2003-10-13 |
CN1622988A (en) | 2005-06-01 |
WO2003083018A1 (en) | 2003-10-09 |
US20130298449A1 (en) | 2013-11-14 |
TWI313296B (en) | 2009-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130298449A1 (en) | Method for reducing emission of pollutants from an internal combustion engine, and fuel emulsion comprising water and a liquid hydrocarbon | |
US7722688B2 (en) | Fuel composition having a normally liquid hydrocarbon fuel, water, a high molecular weight emulsifier, and a nitrogen-free surfactant including a hydrocarbyl substituted carboxylic acid or a reaction product of the hydrocarbyl substituted carboxylic acid or reactive equivalent of such acid with an alcohol | |
US8875666B2 (en) | Method for the in situ production of fuel/water mixtures in combustion engines | |
Amid et al. | Effects of waste-derived ethylene glycol diacetate as a novel oxygenated additive on performance and emission characteristics of a diesel engine fueled with diesel/biodiesel blends | |
Subramanian et al. | Use of diethyl ether along with water-diesel emulsion in a DI diesel engine | |
US20020088167A1 (en) | Emulsified water-blended fuel compositions | |
CN102562328A (en) | Diesel engine system capable of being powered by mixed DME (dimethyl ether) gas and control method | |
CA2040818A1 (en) | Fuel compositions with enhanced combustion characteristics | |
WO2002092731A1 (en) | Compositions for non-polluting fuels, preparation processes and use thereof | |
US20170260466A1 (en) | Enhanced fuel and method of producing enhanced fuel for operating internal combustion engine | |
Kajiwara et al. | Performance and emissions characteristics of an LPG direct injection diesel engine | |
WO1994004636B1 (en) | Unleaded mmt fuel composition | |
KR20030004373A (en) | Liquefied gas fuel for compression ignition engines | |
JP2007269865A (en) | Fuel oil for diesel engine having multi-stage injection mechanism, combustion method and diesel engine | |
Vojtisek-Lom et al. | Investigation of combustion rates and injection and ignition onset of heated rapeseed oil in direct-injection turbodiesel engines | |
EP0537931A1 (en) | Fuel compositions | |
US20040237385A1 (en) | Lubricity improver for diesel oil | |
WO1999063025A1 (en) | Stabile fuel emulsions and method of making | |
KR102517046B1 (en) | Fuel additive for combustion promotion of liquid fuel and manufacturing process thereof | |
US20240132793A1 (en) | Engine fuel based on a mixture of alcohol and water and containing a combustion improver additive | |
KR102560066B1 (en) | Manufacturing process of fuel additive for combustion promotion of liquid fuel | |
Vasiliev et al. | The Use of an Alternative Fuel in an Internal Combustion Engine with the Effect of Auto-Ignition | |
Patel et al. | Diesel Engine Fueled by Ethanol-Diesel Blend with Additive-A Review | |
US20060123695A1 (en) | Fuel for motor vehicles | |
WO1999063026A1 (en) | High stability fuel compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CAM TECHNOLOGIE S.P.A., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMBROSINI, TIZIANO;DE AMICIS, ALBERTO;RIVOLTA, GUIDO;AND OTHERS;REEL/FRAME:016535/0920 Effective date: 20050406 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20170820 |