US20050208380A1 - Electrode additives coated with electro conductive material and lithium secondary comprising the same - Google Patents
Electrode additives coated with electro conductive material and lithium secondary comprising the same Download PDFInfo
- Publication number
- US20050208380A1 US20050208380A1 US11/050,973 US5097305A US2005208380A1 US 20050208380 A1 US20050208380 A1 US 20050208380A1 US 5097305 A US5097305 A US 5097305A US 2005208380 A1 US2005208380 A1 US 2005208380A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- battery
- electro
- electrode additive
- coating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000654 additive Substances 0.000 title claims abstract description 71
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000004020 conductor Substances 0.000 title claims abstract description 16
- 230000000996 additive effect Effects 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 59
- 239000011248 coating agent Substances 0.000 claims abstract description 49
- 238000000576 coating method Methods 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 21
- 238000003860 storage Methods 0.000 claims abstract description 13
- 239000007771 core particle Substances 0.000 claims description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 27
- 239000006230 acetylene black Substances 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000007772 electrode material Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 229920001940 conductive polymer Polymers 0.000 claims description 6
- 239000011267 electrode slurry Substances 0.000 claims description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 6
- 229910010272 inorganic material Inorganic materials 0.000 claims description 5
- 239000011147 inorganic material Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229920000128 polypyrrole Polymers 0.000 claims description 4
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 3
- 239000006245 Carbon black Super-P Substances 0.000 claims description 3
- 229910033181 TiB2 Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229920000767 polyaniline Polymers 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 abstract description 10
- 150000004692 metal hydroxides Chemical class 0.000 abstract description 10
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 8
- 150000004706 metal oxides Chemical class 0.000 abstract description 8
- 150000004649 carbonic acid derivatives Chemical class 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 25
- 239000006182 cathode active material Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000347 magnesium hydroxide Substances 0.000 description 10
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 10
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000006183 anode active material Substances 0.000 description 7
- 229910032387 LiCoO2 Inorganic materials 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 239000002000 Electrolyte additive Substances 0.000 description 3
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 lithium metals Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004170 Li(NiaCObMnc)O2 Inorganic materials 0.000 description 1
- 229910004176 Li(NiaCObMnc)O4 Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910012711 LiCo1-yMnyO2 Inorganic materials 0.000 description 1
- 229910012955 LiCo1−yMnyO2 Inorganic materials 0.000 description 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910014376 LiMn2-zCozO4 Inorganic materials 0.000 description 1
- 229910014370 LiMn2-zNizO4 Inorganic materials 0.000 description 1
- 229910014554 LiMn2−zCozO4 Inorganic materials 0.000 description 1
- 229910014552 LiMn2−zNizO4 Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910014167 LiNi1-YCOYO2 Inorganic materials 0.000 description 1
- 229910014380 LiNi1-yMnyO2 Inorganic materials 0.000 description 1
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 description 1
- 229910014940 LiNi1−yCoyO2 Inorganic materials 0.000 description 1
- 229910014946 LiNi1−yMnyO2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910009454 Y(OH)3 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/20—Mops
- A47L13/22—Mops with liquid-feeding devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/20—Mops
- A47L13/24—Frames for mops; Mop heads
- A47L13/254—Plate frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode additive that is capable of improving battery performance and high temperature storage characteristics when it is added to an electrode of a lithium secondary battery, and an electrode and lithium secondary battery comprising the same.
- lithium secondary batteries are increasingly in demand.
- environmental conditions to which batteries are applied become more severe such that maintenance of initial performance without degradation in battery performance even when being maintained at higher temperatures of more than 80° C. for a prolonged period of time is required.
- reaction between electrolyte and electrode surface leads to poor high-temperature characteristics, such as swelling and bulking in storage at a higher temperature of more than 80° C.
- charge/discharge cycles are repeatedly performed at the higher temperature, the electrochemical reaction continuously occurring at a cathode or anode surface contributes to production of decomposed by-products of the electrolyte and gas in the battery, thereby severely swelling the battery.
- Korean Patent Laid-open Publication No. 2003-0057321 discloses a technique of forming a protective coating film using electrolyte additives such as vinylene carbonate, alkenylethylene carbonate and the like, wherein the electrolyte additives are used to inhibit electrolyte decomposition reaction of the cathode at higher temperatures, such that these additives are first decomposed at cathode potential, thereby forming the protective film.
- electrolyte additives such as vinylene carbonate, alkenylethylene carbonate and the like
- the electrolyte additives are used to inhibit electrolyte decomposition reaction of the cathode at higher temperatures, such that these additives are first decomposed at cathode potential, thereby forming the protective film.
- electrolyte additives such as vinylene carbonate, alkenylethylene carbonate and the like
- Korean Patent Laid-open Publication No. 2001-35700 and Japanese Patent Laid-Open Publication No. 1998-255389 disclose techniques of improving battery life characteristics and high temperature storage characteristics by addition of metal oxides or metal hydroxides to an electrode (cathode).
- metal oxides or metal hydroxides are electrically non-conductive and thus, when they are used as additives, interfere with electrical flow in the electrodes, thereby resulting in decreased high rate discharge characteristics of the battery, as well as increased resistance thereof leading to lowering of battery life characteristics.
- Japanese Patent Laid-Open Publication Nos. 2003-86174 and 1997-22733 disclose a method of coating the cathode active material with an electro-conductive material such as conductive material using a mechanofusion apparatus and a binder.
- an electro-conductive material such as conductive material
- the present invention has been made to solve the above problems, and other technical problems that have yet to be resolved.
- the present inventors have surprisingly found that battery performance and high temperature storage characteristics can be improved by preparing an electrode additive having core particles such as metal hydroxides, metal oxides or metal carbonates coated with electro-conductive material and adding the electrode additive to a cathode and/or anode of a lithium secondary battery.
- an object of the present invention to provide an electrode additive that is capable of improving battery performance and high temperature storage characteristics, and an electrode for a lithium secondary battery and lithium secondary battery comprising the same.
- an electrode additive for a secondary battery electrode in which electro-conductive material is coated on the surface of a material that is added to the electrode material so as to improve battery characteristics.
- electrode additive refers to materials that are added to electrodes for various purposes such as improving high temperature characteristics and charge/discharge cycle characteristics of the battery. Since, among those materials, there are various kinds of low conductivity materials, as described above, such materials generally interfere with electron migration due to their high resistivity, when added to electrodes, and thereby lower battery performance.
- an electrode additive that can exert original effects without causing deterioration of battery performance, by coating the surface of the electrode additive with electro-conductive materials.
- additive material which is coated with electro-conductive materials, is added to electrodes for improvement of high temperature storage characteristics, and is exemplified as compounds represented by Formula 1 below: M x A y Formula 1 wherein, M is a metal, A is selected from the group consisting of OH, O and CO 3 , and x represents the valence of M and y represents the oxidation number of A.
- Metal hydroxides, metal oxides, and metal carbonates of Formula 1 may be used alone or in any combination thereof.
- Electro-conductive materials which are coated on core particles, are not particularly limited, so long as they exhibit excellent conductivity without causing chemical changes in the battery of interest.
- coating materials there may be preferably used at least one selected from the group consisting of carbon that has been used as conductive material for a conventional lithium secondary battery, electro-conductive materials, electro-conductive metals, electro-conductive inorganic materials and electro-conductive polymers.
- an electrode fabricated by preparing an electrode slurry using electrode material containing the electrode additive and electrode active material and then applying the thus-prepared electrode slurry to a current collector, and a lithium secondary battery comprising the same.
- FIG. 1 schematically shows a cross-sectional view of an electrode additive in accordance with the present invention
- FIG. 2 is a micrograph showing carbon-coated Mg(OH) 2 particles in accordance with the present invention.
- FIG. 3 graphically shows battery life characteristics, i.e. changes in cell capacity with respect to charge/discharge cycles, for bicells in which the electrode additive of the present invention is added to cathodes thereof (Examples) and bicells in which the electrode additive of the present invention is not added to cathodes thereof (Comparative Examples); and
- FIG. 4 graphically shows battery life characteristics, i.e. changes in cell capacity with respect to charge/discharge cycles, for bicells in which the electrode additive of the present invention is added to anodes thereof (Examples) and bicells in which the electrode additive of the present invention is not added to anodes thereof (Comparative Examples).
- an electrode additive to a cathode and/or anode of a battery, it is possible to inhibit battery swelling due to formation of decomposition by-products or gas production even when the battery is stored at high temperatures for a prolonged period of time, and also to improve battery performance such as life characteristics and charge/discharge rate at room temperature.
- materials such as metal hydroxides, metal oxides and metal carbonate were used per se as cathode additives, but these materials are coated on the surface of the cathode active material and then impede migration of cathode active material and electrons, thereby deteriorating high rate discharge characteristics of the battery.
- core particles such as metal hydroxides, metal oxides or metal carbonates
- the coating material preferably has high electronic conductivity and small particle size to the maximum extent possible. Where electronic conductivity is lower, this may disadvantageously result in increase of electrode resistance thereby degrading battery performance. In addition, where the particle size of the coating material is too large, it may be difficult to coat the surface of core particles. On the other hand, the smaller the particle size of the coating material the denser and more uniform the coating on the core particles.
- electrical conductivity of the coating material is preferably more than 2.0 ⁇ 10 2 /cm ⁇ and the particle size thereof is preferably within the range of 10 to 1000 nm.
- Electro-conductive metals may be selected from the group consisting of Cu, Ag, Pt and Ni.
- Electro-conductive inorganic materials may be selected from the group consisting of indium tin oxide (In 2 O 3 SnO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), ruthenium oxide (RuO 2 ) and TiB 2 .
- Electro-conductive polymers may be selected from the group consisting of polypyrrole and polyaniline.
- acetylene black preferably has a particle size of 100 nm and electrical conductivity of more than 6.1 ⁇ 10 2 /cm ⁇ .
- Ni preferably has a particle size of 1000 nm and electrical conductivity of more than 9.17 ⁇ 10 4 /cm ⁇ .
- Polypyrrole preferably has a particle size of 200 nm and electrical conductivity of more than 2.0 ⁇ 10 2 /cm ⁇ .
- metal elements which are contained in metal hydroxides, metal oxides or metal carbonates, those being described as preferred examples of the core particles.
- metals may be preferably selected from the group consisting of Al, B, Mg, K, Be, Ca, Sr, Ba, Na, Cr, Sn, Ga, Bi, Ni, Co, Fe, Cr, Y and Zr. More preferably, metals may be selected from the group consisting of Al, B, Mg, Ba, Y and Zr.
- a process for preparing an electrode additive in accordance with the present invention will be exemplified as follows.
- Core particles to be coated are mixed with the coating material to prepare a mixture.
- the amount of the coating material is preferably within the range of 0.01 to 20% by weight, relative to that of the core particles. Where the amount of the coating material exceeds the above-mentioned range, the resulting coating layer is too thick. On the other hand, where the amount of the coating material is less than the above range, core particles may be incompletely and partially coated.
- the mixture thus obtained was fused using a mechanofusion apparatus, for example, so as to coat core particles with the coating material.
- a mechanofusion apparatus for example, so as to coat core particles with the coating material.
- rotation speed and treatment time of the mechanofusion apparatus can be controlled as desired.
- the rotation speed of the mechanofusion apparatus is between 1500 and 3000 rpm, and treatment time is in the range of 0.1 to 10 hours.
- FIG. 1 schematically shows a coating material-coated core particle.
- FIG. 2 is a micrograph showing carbon-coated Mg(OH) 2 particles. As can be seen from FIG. 2 , carbon, which is coating material, uniformly surrounded core particles.
- an electrode fabricated by adding the thus-prepared electrode additive of the present invention to an electrode material including electrode active material so as to prepare an electrode slurry and coating a current collector with the thus-prepared electrode slurry.
- an electrode material including electrode active material so as to prepare an electrode slurry and coating a current collector with the thus-prepared electrode slurry.
- the electrode additive may be included in the range of 0.05 to 10% by weight in the electrode, relative to the electrode active material.
- a lithium secondary battery comprising the above-prepared electrode.
- the lithium secondary battery of the present invention may be prepared by conventional methods known in the art, for example disposing a porous separator between the cathode and anode, followed by introduction of a non-aqueous electrolyte.
- LiCoO 2 LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 .
- anode active materials that can be used in fabricating the electrode of the present invention, mention may be made of graphite, carbon, lithium metals, alloys and complexes thereof, which are capable of occluding and releasing lithium ions.
- the porous separator may be preferably used as the separator.
- the separator may include, but is not limited to, polypropylene-based, polyethylene-based, and other polyolefin-based porous separators.
- the non-aqueous electrolyte of the lithium secondary battery that can be utilized in the present invention may contain cyclic carbonates and linear carbonates.
- the cyclic carbonates include, for example ethylene carbonate (EC), propylene carbonate (PC) and gamma-butyro lactone (GBL).
- the linear carbonate may be at least one selected from the group consisting of diethylcarbonate (DEC), dimethylcarbonate (DMC), ethylmethylcarbonate (EMC) and methylpropylcarbonate (MPC).
- the non-aqueous electrolyte of the lithium secondary battery in accordance with the present invention may contain lithium salts, in addition to carbonate compounds.
- lithium salts may be selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 and LiN(CF 3 SO 2 ) 2 .
- Acetylene black which is a carbon material, as a coating material and Mg(OH) 2 , which is a metal hydroxide, as a core particle, were used to prepare an electrode additive.
- the content of acetylene black was 5% by weight, relative to that of the core particle, Mg(OH) 2 .
- a mixture of acetylene black and Mg(OH) 2 was loaded on a mechanofusion apparatus, and subjected to low speed rotation at 250 rpm for 3 min and subsequently to high speed rotation at 1400 rpm for 20 min so as to coat carbon on the surface of the metal hydroxide, thereby preparing the electrode additive (C 0.05 Mg(OH) 2 ).
- LiCoO 2 was used as a cathode active material, and 0.5% by weight of the above-prepared electrode additive (C 0.05 Mg(OH) 2 ) was added thereto, relative to the cathode active material. Then, together with 2.5% Super-P(conductive material) and 2.5% polyvinylidene difluoride (PVdF) as a binding agent, a cathode active material powder (LiCoO 2 ) and the electrode additive were dispersed in an n-methylpyrolidone (NMP) solvent to obtain a slurry. The slurry thus obtained was coated on aluminum foil and heated to evaporate the NMP solvent to dryness, followed by compression at a pressure of about 500 kg/cm 2 to prepare a cathode.
- NMP n-methylpyrolidone
- a conventional pouch-type bicell was prepared using the above-prepared cathode and anode, and as an electrolyte, a solution in which 1M LiPF 6 was dissolved in a 1:2 (v/v) mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC).
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that, relative to an anode active material, there was added 1.0% by weight of an electrode additive, which was prepared in a manner that an electrode additive was not added to a cathode and 10% by weight of acetylene black as a coating material was added to an anode, relative to core particles (Mg(OH) 2 ).
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and LiMn 2 O 4 powder was used as a cathode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder was used as a cathode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and BaCO 3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and MgO was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and Al 2 O 3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and Y(OH) 3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and Al(OH) 3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that Ag metal powder was used as a coating material and 10% by weight of the coating material was added, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that Al metal powder was used as a coating material and the coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that TiB 2 powder was used as a coating material and the coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that a conductive polymer, polypyrrole powder was used as a coating material and the coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that a coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive, and an electrode additive was added in an amount of 10% by weight, relative to a cathode active material, when preparing an electrode.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that a coating material was added in an amount of 10% by weight, relative to core particles, and an electrode additive was added to a cathode and anode, in amounts of 1% by weight and 2% by weight, respectively, relative to a cathode active material and an anode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 3, except that metal Si was used as an anode active material.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 3, except that Al metal powder was used as a coating material, the coating material was added in an amount of 10% by weight, relative to core particles and metal Si was used as an anode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that an electrode additive was not used
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that pure Mg(OH) 2 was added as a cathode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 3, except that pure Mg(OH) 2 was added as an anode additive.
- batteries prepared in Examples 1, 2 and 4 through 16 exhibited less changes in thickness under high temperature storage, compared to batteries prepared in Comparative Examples 1 and 2.
- TABLE 2 Changes in thickness of bicell, with or without addition of electrode additive to anode, and with time Comp. Comp. Ex. 1 Ex. 3 Ex. 3 Ex. 16 Ex. 17 Ex. 18 1 day 3.08 3.09 3.10 3.10 3.11 3.10 3 days 3.20 3.26 3.12 3.14 3.19 3.18 5 days 3.42 3.41 3.16 3.19 3.21 3.32 7 days 3.91 3.87 3.38 3.37 3.45 3.50 9 days 4.43 4.11 3.42 3.42 3.55 3.56 11 days 4.87 4.22 3.57 3.64 3.66 3.2
- batteries prepared in Examples 1 through 18, to which the electrode additive in accordance with the present invention was added exhibited relatively little drop in high rate discharge, compared to batteries of Comparative Examples 1 through 3.
- batteries prepared in Examples 1 through 18 exhibited relatively less changes in battery capacity with respect to charge/discharge cycles, compared to batteries prepared in Comparative Examples 1 through 3.
- the electrode additive in accordance with the present invention when introduced to a cathode and/or anode of a lithium secondary battery, can exert characteristics intrinsic to the additive such as improvement of high temperature storage characteristics, without deteriorating battery performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Provided are an electrode additive coated with a coating material made of electrically conductive materials such as metal hydroxides, metal oxides or metal carbonates, and an electrode and a lithium secondary battery comprising the same. The electrode additive in accordance with the present invention can improve high temperature storage characteristics of the battery, without deterioration of performance thereof.
Description
- The present invention relates to an electrode additive that is capable of improving battery performance and high temperature storage characteristics when it is added to an electrode of a lithium secondary battery, and an electrode and lithium secondary battery comprising the same.
- In order to keep pace with the continuing trend towards portabilization, miniaturization, and higher functionalization of a variety of electronic devices and instruments with development of the Information-Electronic Industry, higher capacity, smaller and lighter lithium secondary batteries are increasingly in demand. Recently, with diversification of functions of the electronic devices and instruments, there is also a strong need for realization of higher capacity, functionality, and performance of lithium secondary batteries, as a main power source. In addition, as the temperature range of lithium secondary batteries in use is also further extended, environmental conditions to which batteries are applied become more severe such that maintenance of initial performance without degradation in battery performance even when being maintained at higher temperatures of more than 80° C. for a prolonged period of time is required.
- However, when material such as LiCoO2, LiMn2O4 or the like is used as a cathode active material for the lithium secondary battery, reaction between electrolyte and electrode surface leads to poor high-temperature characteristics, such as swelling and bulking in storage at a higher temperature of more than 80° C. Additionally, when charge/discharge cycles are repeatedly performed at the higher temperature, the electrochemical reaction continuously occurring at a cathode or anode surface contributes to production of decomposed by-products of the electrolyte and gas in the battery, thereby severely swelling the battery.
- A variety of study and research has been made to solve those problems. Korean Patent Laid-open Publication No. 2003-0057321 discloses a technique of forming a protective coating film using electrolyte additives such as vinylene carbonate, alkenylethylene carbonate and the like, wherein the electrolyte additives are used to inhibit electrolyte decomposition reaction of the cathode at higher temperatures, such that these additives are first decomposed at cathode potential, thereby forming the protective film. However, although such additives may effectively inhibit battery swelling at higher temperatures, the additives may result in reduction of battery capacity or deterioration of battery life characteristics. For these reasons, various kinds of additives should be utilized to improve one functionality of the battery, when such electrolyte additives are used.
- In addition, Korean Patent Laid-open Publication No. 2001-35700 and Japanese Patent Laid-Open Publication No. 1998-255389 disclose techniques of improving battery life characteristics and high temperature storage characteristics by addition of metal oxides or metal hydroxides to an electrode (cathode). However, metal oxides or metal hydroxides are electrically non-conductive and thus, when they are used as additives, interfere with electrical flow in the electrodes, thereby resulting in decreased high rate discharge characteristics of the battery, as well as increased resistance thereof leading to lowering of battery life characteristics.
- Japanese Patent Laid-Open Publication Nos. 2003-86174 and 1997-22733 disclose a method of coating the cathode active material with an electro-conductive material such as conductive material using a mechanofusion apparatus and a binder. However, due to integration between the cathode active material and the conductive material in this method, it may be possible to improve battery capacity or diminish electrical resistance, thereby improving high rate discharge characteristics, but the conductive material coated on the surface of the cathode active material rather hampers migration of lithium ions, resulting in deterioration of battery performance.
- Therefore, there is a strong need for an electrode additive that facilitates excellent high temperature storage performance of the lithium secondary battery and simultaneously does not inhibit high rate discharge and other battery performance characteristics.
- Therefore, the present invention has been made to solve the above problems, and other technical problems that have yet to be resolved.
- The present inventors have surprisingly found that battery performance and high temperature storage characteristics can be improved by preparing an electrode additive having core particles such as metal hydroxides, metal oxides or metal carbonates coated with electro-conductive material and adding the electrode additive to a cathode and/or anode of a lithium secondary battery.
- On the basis of this finding, it is an object of the present invention to provide an electrode additive that is capable of improving battery performance and high temperature storage characteristics, and an electrode for a lithium secondary battery and lithium secondary battery comprising the same.
- In accordance with an aspect of the present invention, the above and other objects can be accomplished by the provision of an electrode additive for a secondary battery electrode in which electro-conductive material is coated on the surface of a material that is added to the electrode material so as to improve battery characteristics.
- As used herein, the term “electrode additive” refers to materials that are added to electrodes for various purposes such as improving high temperature characteristics and charge/discharge cycle characteristics of the battery. Since, among those materials, there are various kinds of low conductivity materials, as described above, such materials generally interfere with electron migration due to their high resistivity, when added to electrodes, and thereby lower battery performance. In accordance with the present invention, there is provided an electrode additive that can exert original effects without causing deterioration of battery performance, by coating the surface of the electrode additive with electro-conductive materials.
- In accordance with the present invention, additive material (hereinafter, referred to as “core particle”), which is coated with electro-conductive materials, is added to electrodes for improvement of high temperature storage characteristics, and is exemplified as compounds represented by Formula 1 below:
MxAyFormula 1
wherein, M is a metal, A is selected from the group consisting of OH, O and CO3, and x represents the valence of M and y represents the oxidation number of A. - Metal hydroxides, metal oxides, and metal carbonates of Formula 1 may be used alone or in any combination thereof.
- Electro-conductive materials (hereinafter, referred to as “coating materials”), which are coated on core particles, are not particularly limited, so long as they exhibit excellent conductivity without causing chemical changes in the battery of interest. For example, there may be preferably used at least one selected from the group consisting of carbon that has been used as conductive material for a conventional lithium secondary battery, electro-conductive materials, electro-conductive metals, electro-conductive inorganic materials and electro-conductive polymers.
- In accordance with another aspect of the present invention, there are provided an electrode fabricated by preparing an electrode slurry using electrode material containing the electrode additive and electrode active material and then applying the thus-prepared electrode slurry to a current collector, and a lithium secondary battery comprising the same.
- The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
-
FIG. 1 schematically shows a cross-sectional view of an electrode additive in accordance with the present invention; -
FIG. 2 is a micrograph showing carbon-coated Mg(OH)2 particles in accordance with the present invention; -
FIG. 3 graphically shows battery life characteristics, i.e. changes in cell capacity with respect to charge/discharge cycles, for bicells in which the electrode additive of the present invention is added to cathodes thereof (Examples) and bicells in which the electrode additive of the present invention is not added to cathodes thereof (Comparative Examples); and -
FIG. 4 graphically shows battery life characteristics, i.e. changes in cell capacity with respect to charge/discharge cycles, for bicells in which the electrode additive of the present invention is added to anodes thereof (Examples) and bicells in which the electrode additive of the present invention is not added to anodes thereof (Comparative Examples). - Now, the present invention will be described in more detail.
- In accordance with the present invention, by addition of an electrode additive to a cathode and/or anode of a battery, it is possible to inhibit battery swelling due to formation of decomposition by-products or gas production even when the battery is stored at high temperatures for a prolonged period of time, and also to improve battery performance such as life characteristics and charge/discharge rate at room temperature.
- Conventionally, materials such as metal hydroxides, metal oxides and metal carbonate were used per se as cathode additives, but these materials are coated on the surface of the cathode active material and then impede migration of cathode active material and electrons, thereby deteriorating high rate discharge characteristics of the battery. In the present invention, via use of core particles, such as metal hydroxides, metal oxides or metal carbonates, coated with the coating material, it was possible to solve the problem associated with lowering of high rate discharge characteristics.
- In accordance with the present invention, the coating material preferably has high electronic conductivity and small particle size to the maximum extent possible. Where electronic conductivity is lower, this may disadvantageously result in increase of electrode resistance thereby degrading battery performance. In addition, where the particle size of the coating material is too large, it may be difficult to coat the surface of core particles. On the other hand, the smaller the particle size of the coating material the denser and more uniform the coating on the core particles.
- In the present invention, electrical conductivity of the coating material is preferably more than 2.0×102/cmΩ and the particle size thereof is preferably within the range of 10 to 1000 nm.
- There is no particular limit to kinds of carbon, electro-conductive metals, electro-conductive inorganic materials and electro-conductive polymers, as described above as being preferred examples of the coat materials. Preferably, for example, carbon may be selected from the group consisting of carbon black, acetylene black and Super-P. Electro-conductive metals may be selected from the group consisting of Cu, Ag, Pt and Ni. Electro-conductive inorganic materials may be selected from the group consisting of indium tin oxide (In2O3SnO2), tin oxide (SnO2), zinc oxide (ZnO), ruthenium oxide (RuO2) and TiB2. Electro-conductive polymers may be selected from the group consisting of polypyrrole and polyaniline. Among the above-mentioned coating materials, acetylene black preferably has a particle size of 100 nm and electrical conductivity of more than 6.1×102/cmΩ. Ni preferably has a particle size of 1000 nm and electrical conductivity of more than 9.17×104/cmΩ. Polypyrrole preferably has a particle size of 200 nm and electrical conductivity of more than 2.0×102/cmΩ.
- There is no particular limit to kinds of metal elements (M), which are contained in metal hydroxides, metal oxides or metal carbonates, those being described as preferred examples of the core particles. For example, metals may be preferably selected from the group consisting of Al, B, Mg, K, Be, Ca, Sr, Ba, Na, Cr, Sn, Ga, Bi, Ni, Co, Fe, Cr, Y and Zr. More preferably, metals may be selected from the group consisting of Al, B, Mg, Ba, Y and Zr.
- A process for preparing an electrode additive in accordance with the present invention will be exemplified as follows.
- Core particles to be coated are mixed with the coating material to prepare a mixture. In preparing the mixture, the amount of the coating material is preferably within the range of 0.01 to 20% by weight, relative to that of the core particles. Where the amount of the coating material exceeds the above-mentioned range, the resulting coating layer is too thick. On the other hand, where the amount of the coating material is less than the above range, core particles may be incompletely and partially coated.
- Next, the mixture thus obtained was fused using a mechanofusion apparatus, for example, so as to coat core particles with the coating material. During such a fusion process, rotation speed and treatment time of the mechanofusion apparatus can be controlled as desired. Preferably, the rotation speed of the mechanofusion apparatus is between 1500 and 3000 rpm, and treatment time is in the range of 0.1 to 10 hours.
- The extent that core particles are coated by the coating material may vary depending on the amount of the coating material added. Core particles need not necessarily be completely coated by the coating material to effect desired effects of the present invention.
FIG. 1 schematically shows a coating material-coated core particle.FIG. 2 is a micrograph showing carbon-coated Mg(OH)2 particles. As can be seen fromFIG. 2 , carbon, which is coating material, uniformly surrounded core particles. - In accordance with the present invention, there is provided an electrode fabricated by adding the thus-prepared electrode additive of the present invention to an electrode material including electrode active material so as to prepare an electrode slurry and coating a current collector with the thus-prepared electrode slurry. There is no limit to a method for fabricating an electrode, and well-known conventional methods in the art may be employed.
- Preferably, the electrode additive may be included in the range of 0.05 to 10% by weight in the electrode, relative to the electrode active material.
- Further, in accordance with the present invention, there is provided a lithium secondary battery comprising the above-prepared electrode. The lithium secondary battery of the present invention may be prepared by conventional methods known in the art, for example disposing a porous separator between the cathode and anode, followed by introduction of a non-aqueous electrolyte.
- There is no limit to shapes of the lithium secondary battery in accordance with the present invention, and for example, mention may be made of can-shaped cylinders, squares or pouches.
- As cathode active materials that can be used in fabricating the electrode of the present invention, lithium-containing transition metal oxides may be preferably used. For example, the cathode active material may be at least one selected from the group consisting of LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2 (0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (0≦Y<1), Li(NiaCobMnc)O4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2, LiMn2-zNizO4, LiMn2-zCozO4 (0<Z<2), LiCoPO4 and LiFePO4. Among those materials, more preferred is LiCoO2.
- As anode active materials that can be used in fabricating the electrode of the present invention, mention may be made of graphite, carbon, lithium metals, alloys and complexes thereof, which are capable of occluding and releasing lithium ions.
- In addition, in preparing the battery in accordance with the present invention, the porous separator may be preferably used as the separator. For example, the separator may include, but is not limited to, polypropylene-based, polyethylene-based, and other polyolefin-based porous separators.
- The non-aqueous electrolyte of the lithium secondary battery that can be utilized in the present invention may contain cyclic carbonates and linear carbonates. The cyclic carbonates include, for example ethylene carbonate (EC), propylene carbonate (PC) and gamma-butyro lactone (GBL). The linear carbonate may be at least one selected from the group consisting of diethylcarbonate (DEC), dimethylcarbonate (DMC), ethylmethylcarbonate (EMC) and methylpropylcarbonate (MPC). Further, the non-aqueous electrolyte of the lithium secondary battery in accordance with the present invention may contain lithium salts, in addition to carbonate compounds. As specific examples, preferably, lithium salts may be selected from the group consisting of LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6 and LiN(CF3SO2)2.
- Now, the present invention will be described in more detail with reference to the following Examples and Comparative Examples. These examples are provided only for illustrating the present invention and should not be construed as limiting the scope and spirit of the present invention.
- 1.1. Preparation of Electrode Additive
- Acetylene black, which is a carbon material, as a coating material and Mg(OH)2, which is a metal hydroxide, as a core particle, were used to prepare an electrode additive. The content of acetylene black was 5% by weight, relative to that of the core particle, Mg(OH)2. A mixture of acetylene black and Mg(OH)2 was loaded on a mechanofusion apparatus, and subjected to low speed rotation at 250 rpm for 3 min and subsequently to high speed rotation at 1400 rpm for 20 min so as to coat carbon on the surface of the metal hydroxide, thereby preparing the electrode additive (C0.05Mg(OH)2).
- 1.2. Preparation of Cathode
- LiCoO2 was used as a cathode active material, and 0.5% by weight of the above-prepared electrode additive (C0.05Mg(OH)2) was added thereto, relative to the cathode active material. Then, together with 2.5% Super-P(conductive material) and 2.5% polyvinylidene difluoride (PVdF) as a binding agent, a cathode active material powder (LiCoO2) and the electrode additive were dispersed in an n-methylpyrolidone (NMP) solvent to obtain a slurry. The slurry thus obtained was coated on aluminum foil and heated to evaporate the NMP solvent to dryness, followed by compression at a pressure of about 500 kg/cm2 to prepare a cathode.
- 1.3. Preparation of Anode
- Artificial graphite was used as an anode active material, and was dispersed, together with 0.8% acetylene black (conductive material), 3.9% PVdF as a binding agent and 0.2% oxalic acid, relative to the anode active material, in an NMP solvent to obtain slurry. The slurry thus obtained was coated on copper foil and heated to evaporate the NMP solvent to dryness, followed by compression at a pressure of about 500 kg/cm2 to prepare an anode.
- 1.4. Battery Preparation and Evaluation
- A conventional pouch-type bicell was prepared using the above-prepared cathode and anode, and as an electrolyte, a solution in which 1M LiPF6 was dissolved in a 1:2 (v/v) mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC).
- For the above-prepared battery, voltage of charge and discharge was established in the range of 3.0 to 4.2 V. Evaluation of battery life characteristics was made by 1 C/1 C charge/discharge. Evaluation of high rate discharge characteristics was carried out by charging the battery to 0.5 C, followed by measurement of capacity of 0.2 C, 0.5 C, 1 C, 1.5 C and 2 C and calculation of percentage of respective capacity thus measured, relative to capacity of 0.2 C. In addition, in order to evaluate high temperature storage characteristics, the battery was charged/discharged to 0.5 C/0.5 C two times and then charged to 0.2 C. This was followed by placement of the battery in an oven at 80° C. and determination of thickness changes with respect to the passage of time.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that, relative to an anode active material, there was added 1.0% by weight of an electrode additive, which was prepared in a manner that an electrode additive was not added to a cathode and 10% by weight of acetylene black as a coating material was added to an anode, relative to core particles (Mg(OH)2).
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and LiMn2O4 powder was used as a cathode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and LiNi1/3Mn1/3Co1/3O2 powder was used as a cathode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and BaCO3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and MgO was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and Al2O3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and Y(OH)3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that 10% by weight of acetylene black as a coating material was added, relative to core particles and Al(OH)3 was used as core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that Ag metal powder was used as a coating material and 10% by weight of the coating material was added, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that Al metal powder was used as a coating material and the coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that TiB2 powder was used as a coating material and the coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that a conductive polymer, polypyrrole powder was used as a coating material and the coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that a coating material was added in an amount of 10% by weight, relative to core particles, when preparing an electrode additive, and an electrode additive was added in an amount of 10% by weight, relative to a cathode active material, when preparing an electrode.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that a coating material was added in an amount of 10% by weight, relative to core particles, and an electrode additive was added to a cathode and anode, in amounts of 1% by weight and 2% by weight, respectively, relative to a cathode active material and an anode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 3, except that metal Si was used as an anode active material.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 3, except that Al metal powder was used as a coating material, the coating material was added in an amount of 10% by weight, relative to core particles and metal Si was used as an anode active material, when preparing an electrode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that an electrode additive was not used
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 1, except that pure Mg(OH)2 was added as a cathode additive.
- An electrode and a battery were prepared and evaluated using the same procedure as in Example 3, except that pure Mg(OH)2 was added as an anode additive.
- Evaluation results of batteries prepared in Examples 1 through 18 and Comparative Examples 1 through 3 are shown in
FIGS. 3 and 4 , and Tables 1 through 3.TABLE 1 Changes in thickness of bicell, with or without addition of electrode additive to cathode, and with time Comp. Comp. Ex. 1 Ex. 2 Ex. 1 Ex. 2 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 1 day 3.08 3.09 3.10 3.08 3.09 3.08 3.10 3.09 3.08 3 days 3.20 3.24 3.11 3.08 3.10 3.11 3.13 3.12 3.09 5 days 3.42 3.42 3.15 3.15 3.16 3.17 3.19 3.18 3.11 7 days 3.91 3.62 3.31 3.31 3.37 3.35 3.33 3.37 3.35 9 days 4.43 3.97 3.48 3.44 3.43 3.46 3.49 3.48 3.45 11 days 4.87 4.31 3.57 3.52 3.61 3.57 3.58 3.60 3.56 Ex. 9 Ex. 10 Ex. 11 Ex. 12 Ex. 13 Ex. 14 Ex. 15 Ex. 16 1 day 3.09 3.10 3.10 3.09 3.09 3.09 3.10 3.10 3 days 3.11 3.10 3.12 3.11 3.12 3.13 3.13 3.14 5 days 3.15 3.17 3.30 3.31 3.18 3.20 3.17 3.19 7 days 3.32 3.35 3.39 3.38 3.39 3.38 3.32 3.37 9 days 3.44 3.49 3.49 3.48 3.51 3.52 3.50 3.42 11 days 3.59 3.55 3.54 3.59 3.58 3.59 3.59 3.64 - As can be seen from Table 1, batteries prepared in Examples 1, 2 and 4 through 16 exhibited less changes in thickness under high temperature storage, compared to batteries prepared in Comparative Examples 1 and 2.
TABLE 2 Changes in thickness of bicell, with or without addition of electrode additive to anode, and with time Comp. Comp. Ex. 1 Ex. 3 Ex. 3 Ex. 16 Ex. 17 Ex. 18 1 day 3.08 3.09 3.10 3.10 3.11 3.10 3 days 3.20 3.26 3.12 3.14 3.19 3.18 5 days 3.42 3.41 3.16 3.19 3.21 3.32 7 days 3.91 3.87 3.38 3.37 3.45 3.50 9 days 4.43 4.11 3.42 3.42 3.55 3.56 11 days 4.87 4.22 3.57 3.64 3.66 3.2 - As can be seen from Table 2, batteries prepared in Examples 3, 16, 17 and 18 exhibited less changes in thickness under high temperature storage, compared to batteries prepared in Comparative Examples 1 and 3.
TABLE 3 Changes in battery capacity with respect to discharge rate Discharge Comp. Comp. Comp. rate (C) Ex. 1 Ex. 2 Ex. 3 Ex. 1 Ex. 2 Ex. 3 Ex. 4 0.2 100 100 100 100 100 100 100 0.5 99.61 99.61 99.45 99.64 99.51 99.88 99.78 1 99.36 99.38 99.29 99.52 99.40 99.62 99.63 1.5 99.86 99.85 99.75 99.89 94.92 99.61 99.67 2 99.56 99.78 99.58 99.87 99.06 99.41 99.78 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 11 0.2 100 100 100 100 100 100 100 0.5 99.51 99.71 99.44 99.58 99.51 99.47 99.46 1 99.42 99.48 99.35 99.32 99.34 99.35 99.31 1.5 99.66 99.55 99.54 99.77 99.76 99.71 99.75 2 99.56 99.48 99.52 99.59 99.54 99.50 99.56 Ex. 12 Ex. 13 Ex. 14 Ex. 15 Ex. 16 Ex. 17 Ex. 18 0.2 100 100 100 100 100 100 100 0.5 99.54 99.53 99.88 99.81 99.53 99.71 99.49 1 99.50 99.47 99.65 99.73 99.52 99.58 99.32 1.5 99.81 94.82 99.71 99.70 99.65 99.65 99.69 2 99.86 99.36 99.49 99.78 99.66 99.58 99.48 - As can be seen from Table 3, batteries prepared in Examples 1 through 18, to which the electrode additive in accordance with the present invention was added, exhibited relatively little drop in high rate discharge, compared to batteries of Comparative Examples 1 through 3.
- Further, as shown in
FIGS. 3 and 4 , batteries prepared in Examples 1 through 18 exhibited relatively less changes in battery capacity with respect to charge/discharge cycles, compared to batteries prepared in Comparative Examples 1 through 3. - As described above, the electrode additive in accordance with the present invention, when introduced to a cathode and/or anode of a lithium secondary battery, can exert characteristics intrinsic to the additive such as improvement of high temperature storage characteristics, without deteriorating battery performance.
- Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Claims (11)
1. An electrode additive for a secondary battery electrode in which electro-conductive material (“coating material”) is coated on the surface of material (“core particle”) that is added to electrode material so as to improve battery characteristics.
2. The electrode additive according to claim 1 , wherein the core particle is a material of Formula 1 that is added to battery electrodes for improving high temperature storage characteristics:
MxAy (1)
wherein, M is a metal, A is selected from the group consisting of OH, O and CO3, and x represents the valence of M and y represents the oxidation number of A.
3. The electrode additive according to claim 1 , wherein the coating material is composed of one or more materials selected from the group consisting of carbon, an electro-conductive metal, an electro-conductive inorganic material and an electro-conductive polymer.
4. The electrode additive according to claim 3 , wherein the carbon is selected from the group consisting of carbon black, acetylene black and Super-P, the electro-conductive metal is selected from the group consisting of Cu, Ag, Pt and Ni, the electro-conductive inorganic material is selected from the group consisting of indium tin oxide (In2O3SnO2), tin oxide (SnO2), zinc oxide (ZnO), ruthenium oxide (RuO2) and TiB2, and the electro-conductive polymer is selected from the group consisting of polypyrrole and polyaniline.
5. The electrode additive according to claim 1 , wherein the coating material has an electrical conductivity of more than 2.0×102/cmΩ.
6. The electrode additive according to claim 1 , wherein the coating material has a particle size of 10 nm to 1000 nm.
7. The electrode additive according to claim 2 , wherein M in Formula 1 is one or more elements selected from the group consisting of Al, B, Mg, K, Be, Ca, Sr, Ba, Na, Cr, Sn, Ga, Bi, Ni, Co, Fe, Cr, Y and Zr.
8. The electrode additive according to claim 1 , wherein the amount of the coating material is within the range of 0.01 to 20% by weight, relative to the core particle.
9. An electrode fabricated by preparing an electrode slurry using electrode material containing the electrode additive according to claims 1 and electrode active material and applying the thus-prepared electrode slurry to a current collector.
10. The electrode according to claim 9 , wherein the electrode additive is included in the range of 0.05 to 10% by weight, relative to the electrode active material.
11. A lithium secondary battery comprising the electrode of claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/473,415 US9252429B2 (en) | 2004-02-07 | 2012-05-16 | Electrode additives coated with electro conductive material and lithium secondary comprising the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2004-0008135 | 2004-02-07 | ||
KR20040008135 | 2004-02-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/473,415 Continuation US9252429B2 (en) | 2004-02-07 | 2012-05-16 | Electrode additives coated with electro conductive material and lithium secondary comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050208380A1 true US20050208380A1 (en) | 2005-09-22 |
Family
ID=36968329
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/050,973 Abandoned US20050208380A1 (en) | 2004-02-07 | 2005-02-04 | Electrode additives coated with electro conductive material and lithium secondary comprising the same |
US13/473,415 Expired - Lifetime US9252429B2 (en) | 2004-02-07 | 2012-05-16 | Electrode additives coated with electro conductive material and lithium secondary comprising the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/473,415 Expired - Lifetime US9252429B2 (en) | 2004-02-07 | 2012-05-16 | Electrode additives coated with electro conductive material and lithium secondary comprising the same |
Country Status (7)
Country | Link |
---|---|
US (2) | US20050208380A1 (en) |
EP (1) | EP1711971B1 (en) |
JP (1) | JP5132941B2 (en) |
KR (1) | KR100674011B1 (en) |
CN (1) | CN1918731B (en) |
TW (1) | TWI269477B (en) |
WO (1) | WO2005076391A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060024582A1 (en) * | 2004-03-16 | 2006-02-02 | Wen Li | Battery and method of manufacturing the same |
US20070112243A1 (en) * | 2005-08-11 | 2007-05-17 | United States Of America As Represented By The Administrator Of The National Aeronautics And Spac | Bimetallic Treatment System and its Application for Removal and Remediation of Polychlorinated Biphenyls (PCBs) |
US20070287628A1 (en) * | 2006-05-19 | 2007-12-13 | Usa As Represented By The Administrator Of The National Aeronautics And Space Adm | Mechanical Alloying of a Hydrogenation Catalyst Used for the Remediation of Contaminated Compounds |
US20080070122A1 (en) * | 2006-09-20 | 2008-03-20 | Park Kyu-Sung | Cathode active material and lithium battery employing the same |
US20090155694A1 (en) * | 2007-12-18 | 2009-06-18 | Samsung Sdi Co., Ltd. | Cathode and lithium battery using the same |
US20100217063A1 (en) * | 2005-08-11 | 2010-08-26 | Usa As Represented By The Administrator Of The National Aeronautics And Space Administration | Zero-Valent Metallic Treatment System and its Application for Removal and Remediation of Polychlorinated Biphenyls (PCBs) |
US20110133131A1 (en) * | 2008-08-06 | 2011-06-09 | Haoshen Zhou | Method of Producing Electrode Material Precursor and Electrode Material Using the Electrode Material Precursor |
US20110159172A1 (en) * | 2009-12-25 | 2011-06-30 | Sanyo Electric Co., Ltd. | Method for manufacturing positive electrode of nonaqueous electrolyte secondary battery |
CN102237509A (en) * | 2010-05-06 | 2011-11-09 | 三星Sdi株式会社 | Negative electrode for energy storage device and energy storage device |
US8854012B2 (en) | 2011-08-25 | 2014-10-07 | Apple Inc. | Management of high-voltage lithium-polymer batteries in portable electronic devices |
US20150064556A1 (en) * | 2013-09-03 | 2015-03-05 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
US9054376B2 (en) | 2010-12-20 | 2015-06-09 | Industrial Technology Research Institute | Cathode material structure and method for preparing the same |
US9318745B2 (en) | 2010-11-30 | 2016-04-19 | Sanyo Electric Co., Ltd. | Conductive agent for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
US9406980B2 (en) | 2013-09-24 | 2016-08-02 | Blackberry Limited | System and method of mitigating high-temperature, high-charge gas swelling of battery of portable electronic device |
US9525175B2 (en) | 2010-05-25 | 2016-12-20 | Samsung Sdi Co., Ltd. | Negative electrode for secondary lithium battery, and secondary lithium battery |
JP2017079206A (en) * | 2015-10-21 | 2017-04-27 | 日亜化学工業株式会社 | Non-aqueous secondary battery positive electrode composition and method for producing the same |
US9972841B2 (en) | 2014-09-30 | 2018-05-15 | Lg Chem, Ltd. | Positive electrode active material and preparation method thereof |
CN110034292A (en) * | 2019-04-30 | 2019-07-19 | 河北工业大学 | A kind of 3-D ordered multiporous polypyrrole/zinc oxide lithium ion battery negative material and preparation method |
WO2020086310A1 (en) * | 2018-10-22 | 2020-04-30 | A123 Systems Llc | Electrode with flame retardant additives and method and systems for preparation and use |
US10749209B2 (en) | 2015-02-27 | 2020-08-18 | Murata Manufacturing Co., Ltd. | Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system |
US11031600B2 (en) | 2014-12-17 | 2021-06-08 | Lg Energy Solution, Ltd. | Lithium ion secondary battery including aluminum silicate |
US20220359864A1 (en) * | 2021-05-10 | 2022-11-10 | Sk On Co., Ltd. | Anode active material for secondary battery, method of preparing the same and secondary battery including the same |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008053220A (en) * | 2006-07-25 | 2008-03-06 | Gs Yuasa Corporation:Kk | Non-aqueous electrolyte battery and its manufacturing method |
EP1972267A1 (en) | 2007-03-20 | 2008-09-24 | Roche Diagnostics GmbH | System for in vivo measurement of an analyte concentration |
JP5374851B2 (en) | 2007-10-15 | 2013-12-25 | ソニー株式会社 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
JP5407471B2 (en) * | 2009-03-25 | 2014-02-05 | Tdk株式会社 | Lithium ion secondary battery |
CN102568840B (en) * | 2011-12-23 | 2014-02-12 | 彩虹集团公司 | Preparation method of counter electrode of dye sensitization battery |
CN102623697A (en) * | 2012-03-30 | 2012-08-01 | 天津巴莫科技股份有限公司 | Lithium iron phosphate/titanium diboride composite cathode material for lithium ion battery and preparation method of lithium iron phosphate/titanium diboride composite cathode material |
JP6315258B2 (en) * | 2014-06-04 | 2018-04-25 | 日立化成株式会社 | Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery |
JP2015230793A (en) * | 2014-06-04 | 2015-12-21 | 日立化成株式会社 | Electrically conductive material |
JP2015230794A (en) * | 2014-06-04 | 2015-12-21 | 日立化成株式会社 | Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP6379694B2 (en) * | 2014-06-04 | 2018-08-29 | 日立化成株式会社 | Magnesium aluminum oxide composite |
CN104124452B (en) * | 2014-07-24 | 2016-05-18 | 四川大学 | A kind of coated lithium iron phosphate positive material of titanium compound and preparation method thereof that conducts electricity |
CN104218217A (en) * | 2014-07-29 | 2014-12-17 | 江西世纪长河新电源有限公司 | Power battery lithium ion secondary battery pole piece |
CN104201326A (en) * | 2014-07-29 | 2014-12-10 | 江西世纪长河新电源有限公司 | Pole piece of lithium ion secondary battery |
JP6597167B2 (en) * | 2015-10-21 | 2019-10-30 | 日亜化学工業株式会社 | Positive electrode composition for non-aqueous secondary battery |
CN106299514B (en) * | 2016-08-31 | 2019-04-26 | 浙江超威创元实业有限公司 | A kind of compound method for lithium ion battery |
CN106299494B (en) * | 2016-08-31 | 2018-12-14 | 浙江超威创元实业有限公司 | A kind of water base lithium ion secondary battery |
JP2018060604A (en) * | 2016-09-30 | 2018-04-12 | 日立オートモティブシステムズ株式会社 | Lithium ion secondary battery |
JP6778385B2 (en) * | 2019-02-05 | 2020-11-04 | 昭和電工マテリアルズ株式会社 | Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Next battery |
WO2021055939A1 (en) * | 2019-09-19 | 2021-03-25 | Ohio State Innovation Foundation | Nanofiber- and nanowhisker-based transfection platforms |
CN111900377A (en) * | 2020-08-04 | 2020-11-06 | 中国科学院物理研究所 | A kind of magnesium compound material and its preparation method and application |
CN116891643A (en) * | 2022-03-30 | 2023-10-17 | 三星Sdi株式会社 | Endothermic Particles and Nonaqueous Electrolytes Rechargeable Batteries |
EP4276932A1 (en) * | 2022-03-30 | 2023-11-15 | Samsung SDI Co., Ltd. | Endothermic particles for non-aqueous electrolyte rechargeable battery and non-aqueous electrolyte rechargeable battery |
US20230352659A1 (en) * | 2022-03-31 | 2023-11-02 | Samsung Sdi Co., Ltd. | Composite particles for non-aqueous electrolyte rechargeable battery, producing method, positive and negative electrodes, and non-aqueous electrolyte rechargeable battery |
JP7644731B2 (en) * | 2022-03-31 | 2025-03-12 | 三星エスディアイ株式会社 | Composite particles for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020168574A1 (en) * | 1997-06-27 | 2002-11-14 | Soon-Ho Ahn | Lithium ion secondary battery and manufacturing method of the same |
US20030129494A1 (en) * | 1999-02-23 | 2003-07-10 | Junya Kaneda | Lithium secondary battery having oxide particles embedded in particles of carbonaceous material as a negative electrode-active material |
US20030162100A1 (en) * | 2002-02-26 | 2003-08-28 | Yasufumi Takahashi | Lithium secondary battery for mounting on substrate |
US20040029014A1 (en) * | 2002-08-07 | 2004-02-12 | Samsung Sdi Co., Ltd. | Positive electrode for lithium-sulfur battery, method of producing same, and lithium-sulfur battery |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56130080A (en) * | 1980-03-18 | 1981-10-12 | Matsushita Electric Ind Co Ltd | Alkaline manganese battery |
US4450214A (en) * | 1982-06-14 | 1984-05-22 | Union Carbide Corporation | Lithium halide additives for nonaqueous cell systems |
EP0110344A1 (en) * | 1982-12-06 | 1984-06-13 | Eveready Battery Company, Inc. | Nonaqueous cells |
JP3291803B2 (en) * | 1992-11-06 | 2002-06-17 | ダイキン工業株式会社 | Carbon fluoride particles and their production and use |
JP3197763B2 (en) * | 1993-11-18 | 2001-08-13 | 三洋電機株式会社 | Non-aqueous battery |
JP3396696B2 (en) * | 1993-11-26 | 2003-04-14 | エヌイーシートーキン栃木株式会社 | Rechargeable battery |
US5721065A (en) * | 1995-05-05 | 1998-02-24 | Rayovac Corporation | Low mercury, high discharge rate electrochemical cell |
JPH0922733A (en) | 1995-07-06 | 1997-01-21 | Toshiba Battery Co Ltd | Polymer electrolyte secondary battery |
US5707460A (en) * | 1995-07-11 | 1998-01-13 | Porter-Cable Corporation | Method of producing parts having improved wear, fatigue and corrosion resistance from medium alloy, low carbon steel and parts obtained therefrom |
JP3702318B2 (en) * | 1996-02-09 | 2005-10-05 | 日本電池株式会社 | Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode |
US6514640B1 (en) | 1996-04-23 | 2003-02-04 | Board Of Regents, The University Of Texas System | Cathode materials for secondary (rechargeable) lithium batteries |
JP3772442B2 (en) | 1997-03-11 | 2006-05-10 | 松下電器産業株式会社 | Disk rotating apparatus and disk recording apparatus provided with the same |
JPH10255839A (en) * | 1997-03-12 | 1998-09-25 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
CA2215756C (en) * | 1997-09-18 | 2006-04-04 | Moli Energy (1990) Limited | Additives for improving cycle life of non-aqueous rechargeable lithium batteries |
JP3525710B2 (en) | 1997-11-19 | 2004-05-10 | 株式会社デンソー | Secondary battery and its positive electrode active material |
JP3244227B2 (en) * | 1999-04-26 | 2002-01-07 | 日本電気株式会社 | Non-aqueous electrolyte secondary battery |
KR100346546B1 (en) | 1999-10-01 | 2002-07-26 | 삼성에스디아이 주식회사 | A positive electrode plate for a lithium secondary battery |
JP2001110454A (en) * | 1999-10-08 | 2001-04-20 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
JP4649691B2 (en) | 1999-10-20 | 2011-03-16 | 株式会社豊田中央研究所 | Positive electrode for lithium secondary battery |
KR100347882B1 (en) | 2000-07-11 | 2002-08-10 | 학교법인 서강대학교 | Conducting Polymer/Manganese Oxide Composite Cathode Material for Lithium Secondary Batteries and Method for Making Same |
JP4581196B2 (en) * | 2000-08-03 | 2010-11-17 | 株式会社豊田中央研究所 | Positive electrode for lithium secondary battery |
US6753112B2 (en) * | 2000-12-27 | 2004-06-22 | Kabushiki Kaisha Toshiba | Positive electrode active material and non-aqueous secondary battery using the same |
JP4055368B2 (en) * | 2001-02-27 | 2008-03-05 | 日本電気株式会社 | Secondary battery |
US6821677B2 (en) * | 2001-03-29 | 2004-11-23 | Kabushiki Kaisha Toshiba | Negative electrode active material and nonaqueous electrolyte battery |
JP2003086174A (en) | 2001-06-25 | 2003-03-20 | Hosokawa Micron Corp | Composite particle material for electrode, electrode plate and method for producing them |
KR100509968B1 (en) | 2001-12-28 | 2005-08-24 | 미쓰이 가가쿠 가부시키가이샤 | Non-aqueous electrolytic solutions and lithium secondary battery containing the same |
JP4761239B2 (en) | 2003-10-31 | 2011-08-31 | 日立マクセルエナジー株式会社 | Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same |
-
2005
- 2005-02-01 KR KR1020050009226A patent/KR100674011B1/en not_active Expired - Lifetime
- 2005-02-01 EP EP05726355.0A patent/EP1711971B1/en not_active Expired - Lifetime
- 2005-02-01 CN CN2005800041015A patent/CN1918731B/en not_active Expired - Lifetime
- 2005-02-01 JP JP2006552043A patent/JP5132941B2/en not_active Expired - Lifetime
- 2005-02-01 WO PCT/KR2005/000298 patent/WO2005076391A1/en not_active Application Discontinuation
- 2005-02-04 US US11/050,973 patent/US20050208380A1/en not_active Abandoned
- 2005-02-05 TW TW094103906A patent/TWI269477B/en not_active IP Right Cessation
-
2012
- 2012-05-16 US US13/473,415 patent/US9252429B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020168574A1 (en) * | 1997-06-27 | 2002-11-14 | Soon-Ho Ahn | Lithium ion secondary battery and manufacturing method of the same |
US20030129494A1 (en) * | 1999-02-23 | 2003-07-10 | Junya Kaneda | Lithium secondary battery having oxide particles embedded in particles of carbonaceous material as a negative electrode-active material |
US20030162100A1 (en) * | 2002-02-26 | 2003-08-28 | Yasufumi Takahashi | Lithium secondary battery for mounting on substrate |
US20040029014A1 (en) * | 2002-08-07 | 2004-02-12 | Samsung Sdi Co., Ltd. | Positive electrode for lithium-sulfur battery, method of producing same, and lithium-sulfur battery |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7468224B2 (en) * | 2004-03-16 | 2008-12-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Battery having improved positive electrode and method of manufacturing the same |
US20060024582A1 (en) * | 2004-03-16 | 2006-02-02 | Wen Li | Battery and method of manufacturing the same |
US20070112243A1 (en) * | 2005-08-11 | 2007-05-17 | United States Of America As Represented By The Administrator Of The National Aeronautics And Spac | Bimetallic Treatment System and its Application for Removal and Remediation of Polychlorinated Biphenyls (PCBs) |
US8163972B2 (en) | 2005-08-11 | 2012-04-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Zero-valent metallic treatment system and its application for removal and remediation of polychlorinated biphenyls (PCBs) |
US20100217063A1 (en) * | 2005-08-11 | 2010-08-26 | Usa As Represented By The Administrator Of The National Aeronautics And Space Administration | Zero-Valent Metallic Treatment System and its Application for Removal and Remediation of Polychlorinated Biphenyls (PCBs) |
US7842639B2 (en) | 2006-05-19 | 2010-11-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds |
US20110172082A1 (en) * | 2006-05-19 | 2011-07-14 | United States of America as represented by the Administrator of the National Aeronautics and | Mechanical Alloying of a Hydrogenation Catalyst Used for the Remediation of Contaminated Compounds |
WO2007136757A3 (en) * | 2006-05-19 | 2008-01-10 | Usa As Represented By The Admi | Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds |
US20070287628A1 (en) * | 2006-05-19 | 2007-12-13 | Usa As Represented By The Administrator Of The National Aeronautics And Space Adm | Mechanical Alloying of a Hydrogenation Catalyst Used for the Remediation of Contaminated Compounds |
US8288307B2 (en) | 2006-05-19 | 2012-10-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds |
US20080070122A1 (en) * | 2006-09-20 | 2008-03-20 | Park Kyu-Sung | Cathode active material and lithium battery employing the same |
US20090155694A1 (en) * | 2007-12-18 | 2009-06-18 | Samsung Sdi Co., Ltd. | Cathode and lithium battery using the same |
US8568617B2 (en) | 2008-08-06 | 2013-10-29 | National Institute Of Advanced Industrial Science And Technology | Method of producing electrode material precursor and electrode material using the electrode material precursor |
US20110133131A1 (en) * | 2008-08-06 | 2011-06-09 | Haoshen Zhou | Method of Producing Electrode Material Precursor and Electrode Material Using the Electrode Material Precursor |
US20110159172A1 (en) * | 2009-12-25 | 2011-06-30 | Sanyo Electric Co., Ltd. | Method for manufacturing positive electrode of nonaqueous electrolyte secondary battery |
US8313796B2 (en) * | 2009-12-25 | 2012-11-20 | Sanyo Electric Co., Ltd. | Method for manufacturing positive electrode of nonaqueous electrolyte secondary battery |
EP2385573A3 (en) * | 2010-05-06 | 2014-04-09 | Samsung SDI Co., Ltd. | Negative electrode for energy storage device and energy storage device including same |
CN102237509A (en) * | 2010-05-06 | 2011-11-09 | 三星Sdi株式会社 | Negative electrode for energy storage device and energy storage device |
US8592086B2 (en) | 2010-05-06 | 2013-11-26 | Samsung Sdi Co., Ltd. | Negative electrode comprising an additive with a ceramic core and carbon disposed on the core for energy storage device and energy storage device including same |
US9525175B2 (en) | 2010-05-25 | 2016-12-20 | Samsung Sdi Co., Ltd. | Negative electrode for secondary lithium battery, and secondary lithium battery |
US9318745B2 (en) | 2010-11-30 | 2016-04-19 | Sanyo Electric Co., Ltd. | Conductive agent for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
US9054376B2 (en) | 2010-12-20 | 2015-06-09 | Industrial Technology Research Institute | Cathode material structure and method for preparing the same |
US10468900B2 (en) | 2011-08-25 | 2019-11-05 | Apple Inc. | Management of high-voltage lithium-polymer batteries in portable electronic devices |
US9450443B2 (en) | 2011-08-25 | 2016-09-20 | Apple Inc. | Management of high-voltage lithium-polymer batteries in portable electronic devices |
US8854012B2 (en) | 2011-08-25 | 2014-10-07 | Apple Inc. | Management of high-voltage lithium-polymer batteries in portable electronic devices |
US9912186B2 (en) | 2011-08-25 | 2018-03-06 | Apple Inc. | Management of high-voltage lithium-polymer batteries in portable electronic devices |
US20150064556A1 (en) * | 2013-09-03 | 2015-03-05 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
US9905854B2 (en) * | 2013-09-03 | 2018-02-27 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
US9406980B2 (en) | 2013-09-24 | 2016-08-02 | Blackberry Limited | System and method of mitigating high-temperature, high-charge gas swelling of battery of portable electronic device |
US9972841B2 (en) | 2014-09-30 | 2018-05-15 | Lg Chem, Ltd. | Positive electrode active material and preparation method thereof |
TWI630750B (en) * | 2014-09-30 | 2018-07-21 | Lg化學股份有限公司 | Positive electrode active material and preparation method thereof |
US11031600B2 (en) | 2014-12-17 | 2021-06-08 | Lg Energy Solution, Ltd. | Lithium ion secondary battery including aluminum silicate |
US10749209B2 (en) | 2015-02-27 | 2020-08-18 | Murata Manufacturing Co., Ltd. | Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system |
JP2017079206A (en) * | 2015-10-21 | 2017-04-27 | 日亜化学工業株式会社 | Non-aqueous secondary battery positive electrode composition and method for producing the same |
WO2020086310A1 (en) * | 2018-10-22 | 2020-04-30 | A123 Systems Llc | Electrode with flame retardant additives and method and systems for preparation and use |
CN110034292A (en) * | 2019-04-30 | 2019-07-19 | 河北工业大学 | A kind of 3-D ordered multiporous polypyrrole/zinc oxide lithium ion battery negative material and preparation method |
US20220359864A1 (en) * | 2021-05-10 | 2022-11-10 | Sk On Co., Ltd. | Anode active material for secondary battery, method of preparing the same and secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
CN1918731A (en) | 2007-02-21 |
KR20050079899A (en) | 2005-08-11 |
EP1711971A1 (en) | 2006-10-18 |
KR100674011B1 (en) | 2007-01-24 |
US9252429B2 (en) | 2016-02-02 |
EP1711971B1 (en) | 2017-04-19 |
JP2007522619A (en) | 2007-08-09 |
TW200532974A (en) | 2005-10-01 |
JP5132941B2 (en) | 2013-01-30 |
US20120288761A1 (en) | 2012-11-15 |
WO2005076391A1 (en) | 2005-08-18 |
TWI269477B (en) | 2006-12-21 |
EP1711971A4 (en) | 2010-03-10 |
CN1918731B (en) | 2011-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9252429B2 (en) | Electrode additives coated with electro conductive material and lithium secondary comprising the same | |
KR102633527B1 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
CN110998959B (en) | Lithium secondary battery having improved high-temperature storage characteristics | |
KR102258082B1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
JP4629027B2 (en) | High capacity anode material for lithium secondary battery | |
EP2158635B1 (en) | Non-aqueous electrolyte and secondary battery comprising the same | |
CN111052488B (en) | Lithium secondary battery with improved high-temperature storage characteristics | |
KR20190008100A (en) | Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery | |
US10862108B2 (en) | Positive electrode for a lithium electrochemical cell | |
KR102231209B1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
JP7301449B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
KR102631720B1 (en) | Manufacturing method of lithium secondary battery | |
US12155029B2 (en) | Material, negative electrode comprising same and methods for manufacturing same | |
KR20140032229A (en) | Positive active material composition for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including the same | |
KR20200080170A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
KR20220009894A (en) | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same | |
KR20190123137A (en) | Lithium rechargeable battery | |
US20190260080A1 (en) | Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same | |
KR100873578B1 (en) | High Capacity Cathode Active Materials for Secondary Batteries | |
KR102777175B1 (en) | Electrolyte additives for secondary battery, non-aqueous electrolyte for secondary battery comprising the same and secondary battery | |
KR102735774B1 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
KR100614368B1 (en) | Lithium secondary battery | |
KR102210219B1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
JP2001202999A (en) | Charge / discharge method for non-aqueous electrolyte secondary battery | |
EP3982460A1 (en) | Manufacturing method of lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, HONG-KYU;KIM, KWANG HOON;KIM, SUN KYU;AND OTHERS;REEL/FRAME:016285/0316 Effective date: 20050411 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |