JP3197763B2 - Non-aqueous battery - Google Patents

Non-aqueous battery

Info

Publication number
JP3197763B2
JP3197763B2 JP25762394A JP25762394A JP3197763B2 JP 3197763 B2 JP3197763 B2 JP 3197763B2 JP 25762394 A JP25762394 A JP 25762394A JP 25762394 A JP25762394 A JP 25762394A JP 3197763 B2 JP3197763 B2 JP 3197763B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
mol
powder
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25762394A
Other languages
Japanese (ja)
Other versions
JPH07192721A (en
Inventor
真弓 上原
良浩 小路
幹也 山崎
晃治 西尾
俊彦 斎藤
丈志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25762394A priority Critical patent/JP3197763B2/en
Publication of JPH07192721A publication Critical patent/JPH07192721A/en
Application granted granted Critical
Publication of JP3197763B2 publication Critical patent/JP3197763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水系電池に係わり、
詳しくは非水系電池の高温における保存特性を改善する
ことを目的とした、正極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous battery,
More specifically, the present invention relates to improvement of a positive electrode for the purpose of improving storage characteristics of a nonaqueous battery at a high temperature.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
金属リチウム又はリチウムイオンを吸蔵、放出し得る合
金若しくは炭素材料などを負極材料とし、リチウム−遷
移金属複合酸化物を正極材料とする非水系電池が、高エ
ネルギー密度を有する電池として注目されつつある。
2. Description of the Related Art In recent years,
A non-aqueous battery using an alloy or a carbon material capable of occluding and releasing lithium metal or lithium ion as a negative electrode material and a lithium-transition metal composite oxide as a positive electrode material has been attracting attention as a battery having a high energy density.

【0003】上記リチウム−遷移金属複合酸化物として
は、LiMnO2 、LiFeO2 及びLiX Ni1-Y
Y Z (但し、0<X<1.3、0≦Y≦1、1.8
<Z<2.2)などがよく知られているが、なかでも、
LiX Ni1-Y CoY Z は、容量が大きく、最も注目
されている正極活物質の一つである。
The lithium-transition metal composite oxides include LiMnO 2 , LiFeO 2 and Li x Ni 1 -YC
o Y O Z (where 0 <X <1.3, 0 ≦ Y ≦ 1, 1.8
<Z <2.2) and the like are well known.
Li X Ni 1-Y Co Y O Z is large capacity, is one of the positive electrode active material has received the most attention.

【0004】しかしながら、LiX Ni1-Y CoY Z
を正極活物質として用いた非水系電池を長期間高温で保
存したり、特に二次電池の場合において、充電後の状態
(正極活物質からリチウムイオンが放出された状態)で
長期間高温で保存したりすると、電池の内部抵抗が上昇
する。このように内部抵抗が上昇するのは、次の理由に
よると考えられる。
[0004] However, Li X Ni 1-Y Co Y O Z
A non-aqueous battery using as a positive electrode active material can be stored at high temperature for a long time, especially in the case of a secondary battery, in a charged state (with lithium ions released from the positive electrode active material) for a long time at high temperature Doing so increases the internal resistance of the battery. The increase in the internal resistance is considered to be as follows.

【0005】すなわち、充電時には上記正極活物質から
リチウムが放出されて、充電後は活物質中のニッケル又
はコバルトの酸化数が3を超え、また放電時にも活物質
中のニッケル又はコバルトの酸化数が3を超えている。
更に、一次電池においても放電時には活物質中のニッケ
ル又はコバルトの酸化数が3を超えている。このように
ニッケル又はコバルトの酸化数が3を超えると、これら
の正極活物質の触媒作用により電解液が分解してガスが
発生し、この発生したガスにより、正極の極板形状に変
形が起こり、正極活物質層と芯体(集電体)などとの密
着性が低下して内部抵抗が上昇するのである。
That is, lithium is released from the positive electrode active material during charging, the oxidation number of nickel or cobalt in the active material exceeds 3 after charging, and the oxidation number of nickel or cobalt in the active material also during discharging. Exceeds three.
Furthermore, even in the primary battery, the oxidation number of nickel or cobalt in the active material exceeds 3 at the time of discharging. When the oxidation number of nickel or cobalt exceeds 3, the electrolytic solution is decomposed by the catalytic action of these positive electrode active materials and gas is generated, and the generated gas causes deformation of the positive electrode plate shape. In addition, the adhesion between the positive electrode active material layer and the core (current collector) or the like decreases, and the internal resistance increases.

【0006】このように、この種の正極活物質を使用し
た非水系電池には、高温下で長期間放置される自動車電
話などの電源としては不向きであるという問題があった
ため、その改善が要望されていた。
As described above, the non-aqueous battery using such a positive electrode active material has a problem that it is unsuitable as a power source for a mobile phone or the like which is left at a high temperature for a long time. It had been.

【0007】本発明は、かかる要望に応えるべくなされ
たものであって、その目的とするところは、高温保存特
性に優れたLiX Ni1-Y CoY Z を正極活物質とす
る非水系電池を提供するにある。
The present invention has been made to meet such a demand, and an object of the present invention is to provide a non-aqueous system using Li X Ni 1 -Y Co YO Z excellent in high-temperature storage characteristics as a positive electrode active material. To provide batteries.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電池(以下「本発明電池」と称す
る。)は、リチウムを負極活物質とする負極と、式:L
X Ni1-Y Y Z(但し、0<X<1.3、0≦Y
≦1、1.8<Z<2.2であり、且つ、Mはコバルト
又はコバルトを含む2種以上の遷移金属である。)で表
されるリチウム−遷移金属複合酸化物を正極活物質とす
る正極とを備える非水系電池において、前記正極活物質
に対して、ナトリウム、マグネシウム、アルミニウム、
カリウム、カルシウム、スカンジウム、チタン、バナジ
ウム、クロム、マンガン、鉄、コバルト、ニッケル、銅
及び亜鉛よりなる群から選ばれた金属の塩、及び/又
は、マグネシウム、アルミニウム、カルシウム、スカン
ジウム、チタン、バナジウム、クロム、マンガン、鉄、
コバルト、ニッケル、銅及び亜鉛よりなる群から選ばれ
た金属の水酸化物の1種又は2種以上が、総量で0.1
〜20モル%添加されてなる。
In order to achieve the above object, a non-aqueous battery according to the present invention (hereinafter referred to as "battery of the present invention") comprises: a negative electrode having lithium as a negative electrode active material;
i X Ni 1-Y M Y O Z (where 0 <X <1.3, 0 ≦ Y
≦ 1, 1.8 <Z <2.2, and M is cobalt or two or more transition metals containing cobalt. A) a positive electrode comprising a lithium-transition metal composite oxide as a positive electrode active material, wherein sodium, magnesium, aluminum,
A salt of a metal selected from the group consisting of potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper and zinc ; and / or
Is magnesium, aluminum, calcium, scan
Indium, titanium, vanadium, chromium, manganese, iron,
Selected from the group consisting of cobalt, nickel, copper and zinc
One or more of the metal hydroxides is 0.1% in total.
2020 mol% is added.

【0009】本発明における金属塩としては、塩化ナト
リウム、塩化カリウム、塩化マグネシウム、塩化銅等の
ハロゲン化物、シュウ酸ナトリウム、シュウ酸カリウム
等のシュウ酸塩、酢酸ナトリウム、酢酸カリウム等の酢
酸塩、炭酸ナトリウム、炭酸カリウム、炭酸アルミニウ
ム等の炭酸塩、硝酸銅等の硝酸塩、硫酸銅等の硫酸塩が
代表的なものとして例示されるが、なかでもシュウ酸
塩、酢酸塩、炭酸塩などの炭素を含有する塩が好まし
く、それらのなかでも炭酸塩が特に好ましく、炭酸塩の
なかでも炭酸コバルト及び炭酸ニッケルが最も好まし
い。
The metal salt in the present invention includes halides such as sodium chloride, potassium chloride, magnesium chloride and copper chloride; oxalates such as sodium oxalate and potassium oxalate; acetates such as sodium acetate and potassium acetate; Representative examples include carbonates such as sodium carbonate, potassium carbonate, and aluminum carbonate, nitrates such as copper nitrate, and sulfates such as copper sulfate. Among them, carbon such as oxalate, acetate, and carbonate are exemplified. Are preferred, and among them, carbonates are particularly preferred, and among the carbonates, cobalt carbonate and nickel carbonate are most preferred.

【0010】金属塩及び/又は金属水酸化物の添加量
が、正極活物質に対して総量で0.1〜20モル%(正
極活物質100モル部に対して0.1〜20モル部)に
規制されるのは、0.1モル%未満では添加効果(触媒
毒として働き電解液の分解を抑制する効果)が充分に発
現されず、一方20モル%を超えると、これらの金属塩
及び金属水酸化物の導電性が低いことに起因して電池の
内部抵抗が上昇するとともに、充放電時の正極における
リチウムの拡散が悪くなるため充放電効率が低下するか
らである。
The total amount of the metal salt and / or metal hydroxide added is 0.1 to 20 mol% with respect to the positive electrode active material (0.1 to 20 mol parts per 100 mol parts of the positive electrode active material). If the content is less than 0.1 mol%, the effect of addition (the effect of acting as a catalyst poison and suppressing the decomposition of the electrolytic solution) is not sufficiently exhibited, while if it exceeds 20 mol%, these metal salts and This is because the internal resistance of the battery increases due to the low conductivity of the metal hydroxide, and the diffusion of lithium in the positive electrode during charging and discharging deteriorates, thereby lowering the charging and discharging efficiency.

【0011】金属塩又は金属水酸化物は、それぞれ必要
に応じて2種以上添加しても良い。この場合において
も、それらの総量を、正極活物質に対して0.1〜20
モル%に規制する必要がある。
Two or more metal salts or metal hydroxides may be added as necessary. Also in this case, the total amount thereof is 0.1 to 20 with respect to the positive electrode active material.
It is necessary to regulate to mol%.

【0012】本発明におけるリチウムを負極活物質とす
る負極としては、金属リチウム、及び、リチウムイオン
を吸蔵、放出し得る合金又は炭素材料を電極材料として
用いたものが例示される。
Examples of the negative electrode using lithium as the negative electrode active material in the present invention include those using metal lithium and an alloy or carbon material capable of occluding and releasing lithium ions as an electrode material.

【0013】本発明は、LiX Ni1-Y CoY Z を正
極活物質として用いた場合に問題となっていた電解液の
分解を、金属塩及び/又は金属水酸化物を正極活物質に
添加することにより抑制し、もって非水系電池の高温下
での保存特性を改善することに成功したものである。そ
れゆえ、電解液など、電池を構成する他の部材について
は従来非水系電池用として提案され、或いは実用されて
いる種々の材料を特に制限なく用いることが可能であ
る。
The present invention, Li X Ni 1-Y Co Y O Z decomposition of the electrolytic solution, which has been a problem when using as a positive electrode active material, the positive electrode active material a metal salt and / or metal hydroxide To improve the storage characteristics of non-aqueous batteries at high temperatures. Therefore, as for other members constituting the battery, such as an electrolytic solution, it is possible to use various materials which have been conventionally proposed or practically used for non-aqueous batteries without any particular limitation.

【0014】非水電解液としては、エチレンカーボネー
ト、ビニレンカーボネート、プロピレンカーボネートな
どの有機溶媒や、これらとジメチルカーボネート、ジエ
チルカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、エトキシメトキシエタンなどの低
沸点溶媒との混合溶媒に、LiPF6 、LiClO4
LiCF3 SO3 などの溶質を0.7〜1.5M(モル
/リットル)の割合で溶かした溶液が例示される。
Examples of the non-aqueous electrolyte include organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2
- diethoxyethane, in a mixed solvent of low boiling point solvent such as ethoxymethoxy ethane, LiPF 6, LiClO 4,
A solution in which a solute such as LiCF 3 SO 3 is dissolved at a ratio of 0.7 to 1.5 M (mol / liter) is exemplified.

【0015】[0015]

【作用】本発明においては、金属塩及び/又は金属水酸
化物が、電解液の分解反応において触媒毒として働くの
で、長期間保存しても(特に、二次電池にあって充電後
の状態で長期間保存しても)、ガスが発生しにくい。こ
のため、正極の極板形状に変形が起こりにくくなり、電
池の内部抵抗の上昇が抑制される。
In the present invention, since the metal salt and / or metal hydroxide acts as a catalyst poison in the decomposition reaction of the electrolytic solution, the metal salt and / or the metal hydroxide can be stored for a long period of time (especially in a secondary battery after charging. Gas is hardly generated. For this reason, deformation of the electrode plate of the positive electrode is less likely to occur, and an increase in the internal resistance of the battery is suppressed.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0017】(実施例1)扁平型の非水系電池(本発明
電池)を作製した。
Example 1 A flat nonaqueous battery (battery of the present invention) was manufactured.

【0018】〔正極〕LiOHと、Ni(OH)2 と、
Co(OH)2 とをモル比2:1:1で乳鉢にて混合し
た後、この混合物を乾燥空気雰囲気下にて、750°C
で20時間熱処理し、LiNi0.5 Co0.5 2 で示さ
れる正極活物質を得た。次いで、石川式らいかい乳鉢中
で粉砕して、平均粒径が5μmの正極活物質粉末を得た
後、この正極活物質粉末に対して塩化カリウム粉末を
0.1モル%添加混合した。
[Positive electrode] LiOH, Ni (OH) 2 ,
After mixing with Co (OH) 2 at a molar ratio of 2: 1: 1 in a mortar, the mixture was dried at 750 ° C. in a dry air atmosphere.
For 20 hours to obtain a positive electrode active material represented by LiNi 0.5 Co 0.5 O 2 . Next, the mixture was pulverized in an Ishikawa rai mortar to obtain a positive electrode active material powder having an average particle size of 5 μm, and then 0.1 mol% of potassium chloride powder was added to the positive electrode active material powder and mixed.

【0019】次いで、上記塩化カリウム粉末を添加混合
した正極活物質粉末と、導電剤としてのアセチレンブラ
ックと、結着剤としてのポリフッ化ビニリデンとを、重
量比90:6:4で混合して正極合剤を調製し、この正
極合剤を2トン/cm2 の圧力で直径20mmの円板状
に加圧成型した後、250°Cで2時間熱処理して正極
を作製した。
Then, the positive electrode active material powder to which the potassium chloride powder was added and mixed, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 6: 4 to form a positive electrode. A mixture was prepared, and this positive electrode mixture was press-molded into a disc having a diameter of 20 mm at a pressure of 2 ton / cm 2 , and then heat-treated at 250 ° C. for 2 hours to produce a positive electrode.

【0020】〔負極〕所定の厚みを有する金属リチウム
の圧延板を直径20mmの円板状に打ち抜いて負極を作
製した。
[Negative Electrode] A rolled sheet of metallic lithium having a predetermined thickness was punched into a disc having a diameter of 20 mm to produce a negative electrode.

【0021】〔非水電解液〕プロピレンカーボネートと
1,2−ジメトキシエタンとの等体積混合溶媒に、過塩
素酸リチウムを1M(モル/リットル)の割合で溶かし
て非水電解液を調製した。
[Non-Aqueous Electrolyte] A non-aqueous electrolyte was prepared by dissolving lithium perchlorate at a ratio of 1 M (mol / L) in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane.

【0022】〔電池の作製〕以上の正負両極及び非水電
解液を用いて扁平型の本発明電池BA1を作製した(電
池寸法:直径24.0mm、厚さ3.0mm)。なお、
セパレータとしては、ポリプロピレン製の微多孔膜(ヘ
キストセラニーズ社製、商品名「セルガード」)を使用
し、これに先の非水電解液を含浸させた。
[Preparation of Battery] A flat type battery BA1 of the present invention was prepared using the above positive and negative electrodes and a non-aqueous electrolyte (battery dimensions: diameter: 24.0 mm, thickness: 3.0 mm). In addition,
As the separator, a microporous polypropylene film (manufactured by Hoechst Celanese Co., Ltd., trade name "Celgard") was used, and this was impregnated with the above nonaqueous electrolyte.

【0023】図1は、作製した本発明電池BA1を模式
的に示す断面図であり、同図に示す本発明電池BA1
は、正極1、負極2、これら両電極1,2を互いに離間
するセパレータ3、正極缶4、負極缶5、正極集電体
6、負極集電体7及びポリプロピレン製の絶縁パッキン
グ8などからなる。
FIG. 1 is a cross-sectional view schematically showing a battery BA1 of the present invention produced, and the battery BA1 of the present invention shown in FIG.
Is composed of a positive electrode 1, a negative electrode 2, a separator 3 separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like. .

【0024】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed with positive and negative bipolar cans 4 and 5 facing each other via a separator 3 impregnated with a non-aqueous electrolyte. 6, the negative electrode 2 is connected to the positive electrode can 4
Is connected to the negative electrode can 5 so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0025】(実施例2〜5)正極活物質粉末に対する
塩化カリウム粉末の添加量を、それぞれ5モル%、10
モル%、15モル%、20モル%としたこと以外は上記
実施例1と同様にして、正極を作製した。次いで、これ
らの正極を用いたこと以外は実施例1と同様にして、順
に本発明電池BA2(塩化カリウム粉末の添加量:5モ
ル%)、BA3(塩化カリウム粉末の添加量:10モル
%)、BA4(塩化カリウム粉末の添加量:15モル
%)、BA5(塩化カリウム粉末の添加量:20モル
%)を作製した。
Examples 2 to 5 The amounts of potassium chloride powder added to the positive electrode active material powder were 5 mol%, 10
A positive electrode was produced in the same manner as in Example 1 except that the mol%, 15 mol%, and 20 mol% were used. Then, in the same manner as in Example 1, except that these positive electrodes were used, the battery BA2 of the present invention (addition amount of potassium chloride powder: 5 mol%) and BA3 (addition amount of potassium chloride powder: 10 mol%) were sequentially obtained. And BA4 (addition amount of potassium chloride powder: 15 mol%) and BA5 (addition amount of potassium chloride powder: 20 mol%) were prepared.

【0026】(実施例6〜10)塩化カリウム粉末に代
えてシュウ酸カリウム粉末を用いたこと以外は実施例1
〜5と同様にして、正極を作製した。次いで、これらの
正極を用いたこと以外は実施例1と同様にして、順に本
発明電池BA6(シュウ酸カリウム粉末の添加量:0.
1モル%)、BA7(シュウ酸カリウム粉末の添加量:
5モル%)、BA8(シュウ酸カリウム粉末の添加量:
10モル%)、BA9(シュウ酸カリウム粉末の添加
量:15モル%)、BA10(シュウ酸カリウム粉末の
添加量:20モル%)を作製した。
Examples 6 to 10 Example 1 except that potassium oxalate powder was used instead of potassium chloride powder.
In the same manner as in Examples 5 to 5, a positive electrode was produced. Then, in the same manner as in Example 1, except that these positive electrodes were used, the battery BA6 of the present invention (addition amount of the potassium oxalate powder: 0.1.
1 mol%), BA7 (addition amount of potassium oxalate powder:
5 mol%), BA8 (addition amount of potassium oxalate powder:
10 mol%), BA9 (addition amount of potassium oxalate powder: 15 mol%), and BA10 (addition amount of potassium oxalate powder: 20 mol%) were prepared.

【0027】(実施例11〜15)塩化カリウム粉末に
代えて酢酸カリウム粉末を用いたこと以外は実施例1〜
5と同様にして、正極を作製した。次いで、これらの正
極を用いたこと以外は実施例1と同様にして、順に本発
明電池BA11(酢酸カリウム粉末の添加量:0.1モ
ル%)、BA12(酢酸カリウム粉末の添加量:5モル
%)、BA13(酢酸カリウム粉末の添加量:10モル
%)、BA14(酢酸カリウム粉末の添加量:15モル
%)、BA15(酢酸カリウム粉末の添加量:20モル
%)を作製した。
Examples 11 to 15 Except that potassium acetate powder was used instead of potassium chloride powder,
In the same manner as in 5, a positive electrode was produced. Next, in the same manner as in Example 1 except that these positive electrodes were used, the battery BA11 of the present invention (addition amount of potassium acetate powder: 0.1 mol%) and BA12 (addition amount of potassium acetate powder: 5 mol) were sequentially used. %), BA13 (addition amount of potassium acetate powder: 10 mol%), BA14 (addition amount of potassium acetate powder: 15 mol%), and BA15 (addition amount of potassium acetate powder: 20 mol%).

【0028】(実施例16〜20)塩化カリウム粉末に
代えて炭酸カリウム粉末を用いたこと以外は実施例1〜
5と同様にして、正極を作製した。次いで、これらの正
極を用いたこと以外は実施例1と同様にして、順に本発
明電池BA16(炭酸カリウム粉末の添加量:0.1モ
ル%)、BA17(炭酸カリウム粉末の添加量:5モル
%)、BA18(炭酸カリウム粉末の添加量:10モル
%)、BA19(炭酸カリウム粉末の添加量:15モル
%)、BA20(炭酸カリウム粉末の添加量:20モル
%)を作製した。
Examples 16-20 Examples 1-20 except that potassium carbonate powder was used instead of potassium chloride powder.
In the same manner as in 5, a positive electrode was produced. Then, in the same manner as in Example 1 except that these positive electrodes were used, the battery BA16 of the present invention (addition amount of potassium carbonate powder: 0.1 mol%) and BA17 (addition amount of potassium carbonate powder: 5 mol) %), BA18 (addition amount of potassium carbonate powder: 10 mol%), BA19 (addition amount of potassium carbonate powder: 15 mol%), and BA20 (addition amount of potassium carbonate powder: 20 mol%).

【0029】(比較例1)正極活物質粉末に塩化カリウ
ム粉末を添加混合しなかったこと以外は実施例1と同様
にして、正極を作製した。次いで、この正極を用いたこ
と以外は実施例1と同様にして、比較電池BC1を作製
した。
Comparative Example 1 A positive electrode was manufactured in the same manner as in Example 1 except that potassium chloride powder was not added to and mixed with the positive electrode active material powder. Next, a comparative battery BC1 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0030】(比較例2)正極活物質粉末に対する塩化
カリウム粉末の添加量を25モル%としたこと以外は実
施例1と同様にして、正極を作製した。次いで、この正
極を用いたこと以外は実施例1と同様にして、比較電池
BC2を作製した。
Comparative Example 2 A positive electrode was prepared in the same manner as in Example 1 except that the amount of the potassium chloride powder was 25 mol% relative to the positive electrode active material powder. Next, a comparative battery BC2 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0031】(比較例3)正極活物質粉末に対するシュ
ウ酸カリウム粉末の添加量を25モル%としたこと以外
は実施例6と同様にして、正極を作製した。次いで、こ
の正極を用いたこと以外は実施例1と同様にして、比較
電池BC3を作製した。
Comparative Example 3 A positive electrode was prepared in the same manner as in Example 6, except that the amount of the potassium oxalate powder added to the positive electrode active material powder was 25 mol%. Next, a comparative battery BC3 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0032】(比較例4)正極活物質粉末に対する酢酸
カリウム粉末の添加量を25モル%としたこと以外は実
施例11と同様にして、正極を作製した。次いで、この
正極を用いたこと以外は実施例1と同様にして、比較電
池BC4を作製した。
Comparative Example 4 A positive electrode was produced in the same manner as in Example 11 except that the amount of the potassium acetate powder added to the positive electrode active material powder was 25 mol%. Next, a comparative battery BC4 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0033】(比較例5)正極活物質粉末に対する炭酸
カリウム粉末の添加量を25モル%としたこと以外は実
施例16と同様にして、正極を作製した。次いで、この
正極を用いたこと以外は実施例1と同様にして、比較電
池BC5を作製した。
Comparative Example 5 A positive electrode was produced in the same manner as in Example 16 except that the amount of the potassium carbonate powder added to the positive electrode active material powder was 25 mol%. Next, a comparative battery BC5 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0034】(比較例6〜11)塩化カリウム粉末に代
えて炭酸リチウム粉末を用いたこと以外は実施例1〜5
及び比較例2と同様にして、正極を作製した。次いで、
これらの正極を用いたこと以外は実施例1と同様にし
て、順に比較電池BC6(炭酸リチウム粉末の添加量:
0.1モル%)、BC7(炭酸リチウム粉末の添加量:
5モル%)、BC8(炭酸リチウム粉末の添加量:10
モル%)、BC9(炭酸リチウム粉末の添加量:15モ
ル%)、BC10(炭酸リチウム粉末の添加量:20モ
ル%)、BC11(炭酸リチウム粉末の添加量:25モ
ル%)を作製した。
Comparative Examples 6 to 11 Examples 1 to 5 were repeated except that lithium carbonate powder was used instead of potassium chloride powder.
In the same manner as in Comparative Example 2, a positive electrode was produced. Then
Except that these positive electrodes were used, a comparative battery BC6 (addition amount of lithium carbonate powder:
0.1 mol%), BC7 (addition amount of lithium carbonate powder:
5 mol%), BC8 (addition amount of lithium carbonate powder: 10)
Mol%), BC9 (addition amount of lithium carbonate powder: 15 mol%), BC10 (addition amount of lithium carbonate powder: 20 mol%), and BC11 (addition amount of lithium carbonate powder: 25 mol%).

【0035】本発明電池BA1〜BA15及び比較電池
BC1〜BC4の各正極の作製において正極活物質粉末
に添加した金属塩粉末の種類及び添加量を、次の表1に
まとめて示し、本発明電池BA16〜BA20及び比較
電池BC5〜BC11の各正極の作製において正極活物
質粉末に添加した金属塩粉末の種類及び添加量(モル
%)を、次の表2にまとめて示す。
The types and amounts of the metal salt powders added to the positive electrode active material powder in the preparation of the respective positive electrodes of the batteries BA1 to BA15 of the present invention and the comparative batteries BC1 to BC4 are shown in Table 1 below. Table 2 below summarizes the types and amounts (mol%) of the metal salt powder added to the positive electrode active material powder in the production of each of the positive electrodes of BA16 to BA20 and comparative batteries BC5 to BC11.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】〔保存特性〕本発明電池BA1〜BA20
及び比較電池BC1〜BC11を充電した後、80°C
で30日間保存し、各電池の保存特性を調べた。結果を
図2に示す。保存特性は電池の内部抵抗の上昇率(%)
で評価した。電池の内部抵抗を1kHzで測定し、内部
抵抗の上昇率を下式により算出した。
[Storage characteristics] Batteries BA1 to BA20 of the present invention
And 80 ° C after charging the comparative batteries BC1 to BC11.
For 30 days, and the storage characteristics of each battery were examined. The results are shown in FIG. The storage characteristics are the rate of increase (%) of the internal resistance
Was evaluated. The internal resistance of the battery was measured at 1 kHz, and the rate of increase of the internal resistance was calculated by the following equation.

【0039】電池の内部抵抗の上昇率(%)=(保存後
の内部抵抗−保存前の内部抵抗)×100/保存前の内
部抵抗
Increase rate (%) of internal resistance of battery = (internal resistance after storage−internal resistance before storage) × 100 / internal resistance before storage

【0040】図2は、各電池の保存特性を、縦軸に電池
の内部抵抗の上昇率(%)を、また横軸に金属塩の添加
量(モル%)をとって示したグラフであり、同図に示す
ように本発明電池BA1〜BA20では電池の内部抵抗
の上昇率が50%以下と低いのに対して、比較電池BC
1〜BC11では電池の内部抵抗の上昇率が100%以
上と高い。このことから、高温で保存したときの電池の
内部抵抗の上昇が、カリウム塩を正極活物質に対して
0.1〜20モル%添加することにより抑制されること
が分かる。特に、シュウ酸カリウム、酢酸カリウム又は
炭酸カリウムを添加した本発明電池BA6〜BA20で
は電池の内部抵抗の上昇率が40%以下と低く、そのな
かでも炭酸カリウムを添加した本発明電池BA16〜B
A20では電池の内部抵抗の上昇率が数%と極めて低
い。したがって、シュウ酸塩、酢酸塩、炭酸塩などの炭
素を含む塩が好ましく、なかでも炭酸塩が特に好ましい
ことが分かる。また、図2より、炭酸リチウム(リチウ
ム塩)を正極活物質に添加した場合(比較電池BC6〜
BC11)、電池の内部抵抗の上昇を抑制できないどこ
ろか、むしろ無添加(比較電池BC1)のときよりも電
池の内部抵抗の上昇が大きくなり、却って保存特性が悪
くなることが分かる。
FIG. 2 is a graph showing the storage characteristics of each battery, the vertical axis represents the rate of increase in the internal resistance of the battery (%), and the horizontal axis represents the amount of metal salt added (mol%). As shown in the figure, in the batteries BA1 to BA20 of the present invention, the increase rate of the internal resistance of the batteries was as low as 50% or less, while the comparative battery BC
1 to BC11, the increase rate of the internal resistance of the battery is as high as 100% or more. This indicates that an increase in the internal resistance of the battery when stored at a high temperature is suppressed by adding 0.1 to 20 mol% of the potassium salt to the positive electrode active material. In particular, in the batteries BA6 to BA20 of the present invention to which potassium oxalate, potassium acetate or potassium carbonate was added, the rate of increase in the internal resistance of the batteries was as low as 40% or less, and among the batteries BA16 to B of the present invention to which potassium carbonate was added.
In A20, the rate of increase in the internal resistance of the battery is extremely low at several percent. Therefore, it is understood that salts containing carbon such as oxalates, acetates, and carbonates are preferable, and carbonates are particularly preferable. FIG. 2 shows that lithium carbonate (lithium salt) was added to the positive electrode active material (comparative batteries BC6 to BC6).
BC11), the increase in the internal resistance of the battery cannot be suppressed, but rather, the increase in the internal resistance of the battery becomes larger than in the case of no addition (comparative battery BC1), and the storage characteristics deteriorate rather.

【0041】(実施例21〜25)塩化カリウム粉末に
代えて塩化ナトリウム粉末を用いたこと以外は実施例1
〜5と同様にして、正極を作製した。次いで、これらの
正極を用いたこと以外は実施例1と同様にして、順に本
発明電池BA21(塩化ナトリウム粉末の添加量:0.
1モル%)、BA22(塩化ナトリウム粉末の添加量:
5モル%)、BA23(塩化ナトリウム粉末の添加量:
10モル%)、BA24(塩化ナトリウム粉末の添加
量:15モル%)、BA25(塩化ナトリウム粉末の添
加量:20モル%)を作製した。
Examples 21 to 25 Example 1 was repeated except that sodium chloride powder was used instead of potassium chloride powder.
In the same manner as in Examples 5 to 5, a positive electrode was produced. Next, in the same manner as in Example 1 except that these positive electrodes were used, the battery BA21 of the present invention (addition amount of sodium chloride powder: 0.1%) was sequentially used.
1 mol%), BA22 (addition amount of sodium chloride powder:
5 mol%), BA23 (addition amount of sodium chloride powder:
10 mol%), BA24 (addition amount of sodium chloride powder: 15 mol%), and BA25 (addition amount of sodium chloride powder: 20 mol%) were prepared.

【0042】(実施例26〜30)塩化カリウム粉末に
代えて塩化マグネシウム粉末を用いたこと以外は実施例
1〜5と同様にして、正極を作製した。次いで、これら
の正極を用いたこと以外は実施例1と同様にして、順に
本発明電池BA26(塩化マグネシウム粉末の添加量:
0.1モル%)、BA27(塩化マグネシウム粉末の添
加量:5モル%)、BA28(塩化マグネシウム粉末の
添加量:10モル%)、BA29(塩化マグネシウム粉
末の添加量:15モル%)、BA30(塩化マグネシウ
ム粉末の添加量:20モル%)を作製した。
Examples 26 to 30 Positive electrodes were produced in the same manner as in Examples 1 to 5, except that magnesium chloride powder was used instead of potassium chloride powder. Next, in the same manner as in Example 1 except that these positive electrodes were used, the battery BA26 of the present invention (addition amount of magnesium chloride powder:
0.1 mol%), BA27 (addition amount of magnesium chloride powder: 5 mol%), BA28 (addition amount of magnesium chloride powder: 10 mol%), BA29 (addition amount of magnesium chloride powder: 15 mol%), BA30 (Amount of magnesium chloride powder added: 20 mol%).

【0043】(実施例31〜35)塩化カリウム粉末に
代えて塩化銅粉末を用いたこと以外は実施例1〜5と同
様にして、正極を作製した。次いで、これらの正極を用
いたこと以外は実施例1と同様にして、順に本発明電池
BA31(塩化銅粉末の添加量:0.1モル%)、BA
32(塩化銅粉末の添加量:5モル%)、BA33(塩
化銅粉末の添加量:10モル%)、BA34(塩化銅粉
末の添加量:15モル%)、BA35(塩化銅粉末の添
加量:20モル%)を作製した。
(Examples 31 to 35) Positive electrodes were prepared in the same manner as in Examples 1 to 5, except that copper chloride powder was used instead of potassium chloride powder. Then, in the same manner as in Example 1 except that these positive electrodes were used, the battery BA31 of the present invention (addition amount of copper chloride powder: 0.1 mol%), BA
32 (addition amount of copper chloride powder: 5 mol%), BA33 (addition amount of copper chloride powder: 10 mol%), BA34 (addition amount of copper chloride powder: 15 mol%), BA35 (addition amount of copper chloride powder) : 20 mol%).

【0044】(比較例12)正極活物質粉末に対する塩
化ナトリウム粉末の添加量を25モル%としたこと以外
は実施例21と同様にして、正極を作製した。次いで、
この正極を用いたこと以外は実施例1と同様にして、比
較電池BC12を作製した。
Comparative Example 12 A positive electrode was produced in the same manner as in Example 21 except that the amount of the sodium chloride powder relative to the positive electrode active material powder was 25 mol%. Then
A comparative battery BC12 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0045】(比較例13)正極活物質粉末に対する塩
化マグネシウム粉末の添加量を25モル%としたこと以
外は実施例26と同様にして、正極を作製した。次い
で、この正極を用いたこと以外は実施例1と同様にし
て、比較電池BC13を作製した。
Comparative Example 13 A positive electrode was produced in the same manner as in Example 26 except that the amount of the magnesium chloride powder added to the positive electrode active material powder was 25 mol%. Next, a comparative battery BC13 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0046】(比較例14)正極活物質粉末に対する塩
化銅粉末の添加量を25モル%としたこと以外は実施例
31と同様にして、正極を作製した。次いで、この正極
を用いたこと以外は実施例1と同様にして、比較電池B
C14を作製した。
Comparative Example 14 A positive electrode was prepared in the same manner as in Example 31 except that the amount of the copper chloride powder added to the positive electrode active material powder was 25 mol%. Next, a comparative battery B was prepared in the same manner as in Example 1 except that this positive electrode was used.
C14 was produced.

【0047】本発明電池BA21〜BA35及び比較電
池BC12〜BC14の各正極の作製において正極活物
質粉末に添加した金属塩粉末の種類及び添加量(モル
%)を、次の表3にまとめて示す。
The types and amounts (mol%) of the metal salt powder added to the positive electrode active material powder in the production of each positive electrode of the batteries BA21 to BA35 of the present invention and the comparative batteries BC12 to BC14 are shown in Table 3 below. .

【0048】[0048]

【表3】 [Table 3]

【0049】〔保存特性〕先と同様にして、本発明電池
BA21〜BA35及び比較電池BC12〜BC14の
保存特性(80°Cで30日間保存)を調べた。結果を
図3に示す。なお、図3中には、比較の便宜のために、
比較電池BC1の結果(図2より転記)も示してある。
[Storage Characteristics] In the same manner as above, the storage characteristics of the batteries BA21 to BA35 of the present invention and the comparative batteries BC12 to BC14 (storage at 80 ° C. for 30 days) were examined. The results are shown in FIG. In FIG. 3, for convenience of comparison,
The result (transferred from FIG. 2) of the comparative battery BC1 is also shown.

【0050】図3は、各電池の保存特性を、縦軸に電池
の内部抵抗の上昇率(%)を、また横軸に金属塩の添加
量(モル%)をとって示したグラフであり、同図に示す
ように本発明電池BA21〜BA35では電池の内部抵
抗の上昇率が50%以下と低いのに対して、比較電池B
C12〜BC14では電池の内部抵抗の上昇率が100
%以上と高い。このことから、高温で保存したときの電
池の内部抵抗の上昇が、塩化ナトリウム等の金属塩を正
極活物質粉末に対して0.1〜20モル%添加すること
により顕著に抑制されることが分かる。
FIG. 3 is a graph showing the storage characteristics of each battery, the vertical axis representing the increase rate (%) of the internal resistance of the battery, and the horizontal axis representing the addition amount (mol%) of the metal salt. As shown in the figure, in the batteries BA21 to BA35 of the present invention, the rate of increase in the internal resistance of the batteries was as low as 50% or less, whereas the batteries of Comparative Battery B
In C12 to BC14, the rate of increase of the internal resistance of the battery is 100
% And higher. This indicates that the increase in the internal resistance of the battery when stored at a high temperature is significantly suppressed by adding 0.1 to 20 mol% of a metal salt such as sodium chloride to the positive electrode active material powder. I understand.

【0051】(実施例36〜47) 塩化カリウム粉末に代えて、アルミニウム、カルシウ
ム、スカンジウム、チタン、バナジウム、クロム、マン
ガン、鉄、コバルト、ニッケル、銅及び亜鉛の各水酸化
物粉末を用い、且つ各水酸化物粉末の添加量を5モル%
としたこと以外は実施例1と同様にして、正極を作製し
た。次いで、これらの正極を用いたこと以外は実施例1
と同様にして、順に本発明電池BA36(水酸化アルミ
ニウム添加)、BA38(水酸化カルシウム添加)、B
A39(水酸化スカンジウム添加)、BA40(水酸化
チタン添加)、BA41(水酸化バナジウム添加)、B
A42(水酸化クロム添加)、BA43(水酸化マンガ
ン添加)、BA44(水酸化鉄添加)、BA45(水酸
化コバルト添加)、BA46(水酸化ニッケル添加)、
BA47(水酸化銅添加)、BA48(水酸化亜鉛添
加)を作製した。
[0051] Instead of (Example 36-47) potassium chloride powder, aluminum, mosquito Rushiu <br/> arm, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, each hydroxide of copper and zinc Powder and the amount of each hydroxide powder added was 5 mol%
A positive electrode was produced in the same manner as in Example 1 except that Next, Example 1 was performed except that these positive electrodes were used.
In the same manner as in the above, battery BA36 (with aluminum hydroxide added) , BA 38 (with calcium hydroxide added), B
A39 (addition of scandium hydroxide), BA40 (addition of titanium hydroxide), BA41 (addition of vanadium hydroxide), B
A42 (chromium hydroxide added), BA43 (manganese hydroxide added), BA44 (iron hydroxide added), BA45 (cobalt hydroxide added), BA46 (nickel hydroxide added),
BA47 (adding copper hydroxide) and BA48 (adding zinc hydroxide) were produced.

【0052】〔保存特性〕 先と同様にして、本発明電池BA36、BA38〜BA
48の保存特性(80°Cで30日間保存)を調べた。
結果を図4に示す。
[Storage Characteristics] In the same manner as above, the batteries of the present invention BA36 , BA38-BA
Forty-eight storage characteristics (preserved at 80 ° C. for 30 days) were examined.
FIG. 4 shows the results.

【0053】図4は、各電池の保存特性を、縦軸に電池
の内部抵抗の上昇率(%)を、また横軸に水酸化物中の
金属元素をとって示したグラフであり、同図に示すよう
に、本発明電池BA36、BA38〜BA48の内部抵
抗の上昇率は10%程度と低い。このことから、高温で
保存したときの電池の内部抵抗の上昇が、水酸化アルミ
ニウム等の金属水酸化物を正極活物質粉末に添加するこ
とにより顕著に抑制されることが分かる。
FIG. 4 is a graph showing the storage characteristics of each battery, the vertical axis represents the increase rate (%) of the internal resistance of the battery, and the horizontal axis represents the metal element in the hydroxide. as shown, the rate of increase in the internal resistance of the present battery BA36, B A38~BA48 about 10 percent lower. Therefore, the increase in internal resistance of the battery when stored at high temperature, aluminum hydroxide
It is seen to be remarkably inhibited by adding a metal hydroxide iodonium such as the positive electrode active material powder.

【0054】(実施例48〜52) 塩化カリウム粉末に代えて、炭酸コバルト粉末を用いた
こと以外は実施例1〜5と同様にして、正極を作製し
た。次いで、これらの正極を用いたこと以外は実施例1
と同様にして、順に本発明電池BA49(炭酸コバルト
の添加量:0.1モル%)、BA50(炭酸コバルトの
添加量:5モル%)、BA51(炭酸コバルトの添加
量:10モル%)、BA52(炭酸コバルトの添加量:
15モル%)、BA53(炭酸コバルトの添加量:20
モル%)を作製した。
(Examples 48 to 52 ) Positive electrodes were produced in the same manner as in Examples 1 to 5 except that cobalt carbonate powder was used instead of potassium chloride powder. Next, Example 1 was performed except that these positive electrodes were used.
In the same manner as described above, the battery BA49 (addition amount of cobalt carbonate: 0.1 mol%), BA50 (addition amount of cobalt carbonate: 5 mol%), BA51 (addition amount of cobalt carbonate: 10 mol%), BA52 (addition amount of cobalt carbonate:
15 mol%), BA53 (addition amount of cobalt carbonate: 20)
Mol%).

【0055】(実施例53〜57) 塩化カリウム粉末に代えて、炭酸ニッケル粉末を用いた
こと以外は実施例1〜5と同様にして、正極を作製し
た。次いで、これらの正極を用いたこと以外は実施例1
と同様にして、順に本発明電池BA54(炭酸ニッケル
の添加量:0.1モル%)、BA55(炭酸ニッケルの
添加量:5モル%)、BA56(炭酸ニッケルの添加
量:10モル%)、BA57(炭酸ニッケルの添加量:
15モル%)、BA58(炭酸ニッケルの添加量:20
モル%)を作製した。
Examples 53 to 57 Positive electrodes were produced in the same manner as in Examples 1 to 5, except that nickel carbonate powder was used instead of potassium chloride powder. Next, Example 1 was performed except that these positive electrodes were used.
In the same manner as in the above, battery BA54 of the present invention (addition amount of nickel carbonate: 0.1 mol%), BA55 (addition amount of nickel carbonate: 5 mol%), BA56 (addition amount of nickel carbonate: 10 mol%), BA57 (addition amount of nickel carbonate:
15 mol%), BA58 (addition amount of nickel carbonate: 20)
Mol%).

【0056】(実施例58〜62) 塩化カリウム粉末に代えて、炭酸ナトリウム粉末を用い
たこと以外は実施例1〜5と同様にして、正極を作製し
た。次いで、これらの正極を用いたこと以外は実施例1
と同様にして、順に本発明電池BA59(炭酸ナトリウ
ムの添加量:0.1モル%)、BA60(炭酸ナトリウ
ムの添加量:5モル%)、BA61(炭酸ナトリウムの
添加量:10モル%)、BA62(炭酸ナトリウムの添
加量:15モル%)、BA63(炭酸ナトリウムの添加
量:20モル%)を作製した。
Examples 58 to 62 Positive electrodes were produced in the same manner as in Examples 1 to 5, except that sodium carbonate powder was used instead of potassium chloride powder. Next, Example 1 was performed except that these positive electrodes were used.
In the same manner as described above, the battery BA59 of the present invention (addition amount of sodium carbonate: 0.1 mol%), BA60 (addition amount of sodium carbonate: 5 mol%), BA61 (addition amount of sodium carbonate: 10 mol%), BA62 (addition amount of sodium carbonate: 15 mol%) and BA63 (addition amount of sodium carbonate: 20 mol%) were produced.

【0057】(比較例15) 正極活物質粉末に対する炭酸コバルト粉末の添加量を2
5モル%としたこと以外は実施例48と同様にして、正
極を作製した。次いで、この正極を用いたこと以外は実
施例1と同様にして、比較電池BC15を作製した。
Comparative Example 15 The amount of the cobalt carbonate powder added to the positive electrode active material powder was 2
A positive electrode was produced in the same manner as in Example 48 except that the content was 5 mol%. Next, a comparative battery BC15 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0058】(比較例16) 正極活物質粉末に対する炭酸ニッケル粉末の添加量を2
5モル%としたこと以外は実施例53と同様にして、正
極を作製した。次いで、この正極を用いたこと以外は実
施例1と同様にして、比較電池BC16を作製した。
Comparative Example 16 The addition amount of the nickel carbonate powder to the positive electrode active material powder was 2
A positive electrode was produced in the same manner as in Example 53 except that the content was 5 mol%. Next, a comparative battery BC16 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0059】(比較例17) 正極活物質粉末に対する炭酸ナトリウム粉末の添加量を
25モル%としたこと以外は実施例58と同様にして、
正極を作製した。次いで、この正極を用いたこと以外は
実施例1と同様にして、比較電池BC17を作製した。
Comparative Example 17 The procedure of Example 58 was repeated, except that the amount of the sodium carbonate powder to the positive electrode active material powder was 25 mol%.
A positive electrode was produced. Next, a comparative battery BC17 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0060】本発明電池BA49〜BA63及び比較電
池BC15〜BC17の各正極の作製において正極活物
質粉末に添加した金属塩粉末の種類及び添加量(モル
%)を、次の表4にまとめて示す。
The types and amounts (mol%) of the metal salt powder added to the positive electrode active material powder in the production of each positive electrode of the batteries BA49 to BA63 of the present invention and the comparative batteries BC15 to BC17 are summarized in Table 4 below. .

【0061】[0061]

【表4】 [Table 4]

【0062】〔保存特性〕先と同様にして、本発明電池
BA49〜BA63及び比較電池BC15〜BC17の
保存特性(80°Cで30日間保存)を調べた。結果を
図5に示す。なお、図5中には、比較の便宜のために、
比較電池BC1、BC5及び本発明電池BA16〜BA
20の結果(図2より転記)も示してある。
[Storage Characteristics] In the same manner as above, the storage characteristics of the batteries BA49 to BA63 of the present invention and the comparative batteries BC15 to BC17 (storage at 80 ° C. for 30 days) were examined. The results are shown in FIG. In FIG. 5, for convenience of comparison,
Comparative batteries BC1, BC5 and batteries BA16 to BA of the present invention
20 (transferred from FIG. 2) is also shown.

【0063】図5は、このときの各電池の保存特性を図
2及び図3と同じ座標系のグラフに示したものであり、
同図に示すように本発明電池BA16〜BA20及びB
A49〜BA63では電池の内部抵抗の上昇率が数%と
極めて低いのに対して、比較電池BC1,BC5,BC
15〜BC17では電池の内部抵抗の上昇率が100%
以上と高い。このことから、高温で保存したときの電池
の内部抵抗の上昇が、炭酸塩を正極活物質粉末に対して
0.1〜20モル%添加することにより顕著に抑制され
ることが分かる。
FIG. 5 is a graph showing the storage characteristics of each battery at this time in the same coordinate system graph as in FIGS.
As shown in FIG.
In A49-BA63, the rate of increase in the internal resistance of the battery was as extremely low as several percent, whereas the comparative batteries BC1, BC5, and BC
15 to BC17, the increase rate of the internal resistance of the battery is 100%
Above and high. This indicates that the increase in the internal resistance of the battery when stored at a high temperature is significantly suppressed by adding 0.1 to 20 mol% of the carbonate to the positive electrode active material powder.

【0064】次に、本発明電池BA16〜BA20及び
BA49〜BA63及び比較電池BC1,BC5,BC
15〜17を充電した後、80°Cで60日間保存し、
各電池の保存特性を調べた。結果を図6に示す。
Next, the batteries BA16 to BA20 and BA49 to BA63 of the present invention and the comparative batteries BC1, BC5 and BC
After charging 15-17, store at 80 ° C for 60 days,
The storage characteristics of each battery were examined. FIG. 6 shows the results.

【0065】図6は、このときの各電池の保存特性を図
2及び図3と同じ座標系のグラフに示したものであり、
同図に示すように本発明電池BA16〜BA20及びB
A49〜BA63では電池の内部抵抗の上昇率が50%
以下と低いのに対して、比較電池BC1,BC5,BC
15〜BC17では電池の内部抵抗の上昇率が100%
以上と高い。このことから、高温で長期間保存したとき
の電池の内部抵抗の上昇が、炭酸塩を正極活物質粉末に
対して0.1〜20モル%添加することにより顕著に抑
制されることが分かる。特に炭酸コバルト又は炭酸ニッ
ケルを添加した本発明電池BA49〜BA58では電池
の内部抵抗の上昇率が10%以下と極めて低い。炭酸塩
の中でも、炭酸コバルト又は炭酸ニッケルが特に好まし
いことが分かる。
FIG. 6 shows the storage characteristics of each battery at this time in a graph in the same coordinate system as in FIGS. 2 and 3.
As shown in FIG.
For A49-BA63, the rate of increase of the internal resistance of the battery is 50%
Comparative batteries BC1, BC5, BC
15 to BC17, the increase rate of the internal resistance of the battery is 100%
Above and high. This indicates that the increase in the internal resistance of the battery when stored at a high temperature for a long period of time is significantly suppressed by adding 0.1 to 20 mol% of the carbonate to the positive electrode active material powder. In particular, in the batteries BA49 to BA58 of the present invention to which cobalt carbonate or nickel carbonate is added, the rate of increase in the internal resistance of the battery is extremely low at 10% or less. It can be seen that among carbonates, cobalt carbonate or nickel carbonate is particularly preferred.

【0066】叙上の実施例では、本発明を扁平型電池に
適用する場合を例に挙げて説明したが、本発明は電池形
状に特に制限はなく、円筒型、角型など、他の種々の形
状の非水系一次電池又は非水系二次電池に適用し得るも
のである。
In the above embodiment, the case where the present invention is applied to a flat type battery has been described as an example. However, the present invention is not particularly limited in the shape of the battery, and various other shapes such as a cylindrical type and a square type are available. The present invention can be applied to a non-aqueous primary battery or a non-aqueous secondary battery having the following shape.

【0067】また、実施例では金属塩として、コバルト
塩、ニッケル塩、カリウム塩、ナトリウム塩、マグネシ
ウム塩及び銅塩を用いたが、アルミニウム塩、カルシウ
ム塩、スカンジウム塩、チタン塩、バナジウム塩、クロ
ム塩、マンガン塩、鉄塩及び亜鉛塩を用いても高温保存
特性に優れた非水系電池が得られ、また金属水酸化物と
して、水酸化マグネシウムを用いても高温保存特性に優
れた非水系電池が得られる。
In the examples, cobalt salts, nickel salts, potassium salts, sodium salts, magnesium salts and copper salts were used as metal salts, but aluminum salts, calcium salts, scandium salts, titanium salts, vanadium salts, chromium salts salt, manganese salt, be used iron salt and zinc salt obtained non-aqueous battery having excellent high-temperature storage characteristics, and as the metal hydroxide, a non-aqueous battery is also excellent in high-temperature storage characteristics with water magnesium oxide Is obtained.

【0068】さらに、実施例では正極活物質としてLi
Ni0.5 Co0.5 2 を用いたが、本発明で規制する他
のリチウム−遷移金属複合酸化物を用いた場合において
も、上記実施例と同様の優れた効果が得られる。
Further, in the examples, Li was used as the positive electrode active material.
Although Ni 0.5 Co 0.5 O 2 is used, the same excellent effects as in the above embodiment can be obtained also when another lithium-transition metal composite oxide regulated by the present invention is used.

【0069】なお、本発明者らは電池系内のガスの発生
は主に非水電解液の分解によるものと考えたが、結着剤
の分解によるガスの発生も考えられる。本発明による保
存特性の向上が、後者のガスの発生をも抑制したことに
よるものであるとすれば、本発明は液体電解質電池に限
らず固体電解質電池にも適用可能と考えられる。
Although the present inventors have considered that the generation of gas in the battery system is mainly due to the decomposition of the non-aqueous electrolyte, the generation of gas due to the decomposition of the binder may also be considered. If the improvement in storage characteristics according to the present invention is due to the suppression of the latter gas generation, the present invention is considered to be applicable not only to liquid electrolyte batteries but also to solid electrolyte batteries.

【0070】[0070]

【発明の効果】正極活物質に特定の金属塩及び/又は金
属水酸化物が添加されているので、高温保存時に電解液
の分解が起こりにくい。このため、電池の内部抵抗の上
昇が小さく、保存特性に優れる。
According to the present invention, since a specific metal salt and / or metal hydroxide is added to the positive electrode active material, decomposition of the electrolytic solution hardly occurs during high-temperature storage. Therefore, the increase in the internal resistance of the battery is small, and the battery has excellent storage characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】扁平型の本発明電池の断面図である。FIG. 1 is a sectional view of a flat type battery of the present invention.

【図2】本発明電池及び比較電池の保存特性(80°C
で30日間保存)を示すグラフである。
FIG. 2 shows the storage characteristics (80 ° C.) of a battery of the present invention and a comparative battery.
Is stored for 30 days.

【図3】本発明電池及び比較電池の保存特性(80°C
で30日間保存)を示すグラフである。
FIG. 3 shows the storage characteristics (80 ° C.) of the battery of the present invention and a comparative battery.
Is stored for 30 days.

【図4】本発明電池の保存特性(80°Cで30日間保
存)を示すグラフである。
FIG. 4 is a graph showing the storage characteristics (storage at 80 ° C. for 30 days) of the battery of the present invention.

【図5】本発明電池及び比較電池の保存特性(80°C
で30日間保存)を示すグラフである。
FIG. 5 shows the storage characteristics (80 ° C.) of the battery of the present invention and a comparative battery.
Is stored for 30 days.

【図6】本発明電池及び比較電池の保存特性(80°C
で60日間保存)を示すグラフである。
FIG. 6 shows the storage characteristics (80 ° C.) of the battery of the present invention and a comparative battery.
Is stored for 60 days).

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Battery of the present invention 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 前田 丈志 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平5−290890(JP,A) 特開 平4−169076(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Nishio, Inventor 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-2, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Takeshi Maeda 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP 5-290890 (JP, A) JP Hei 4-169076 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/36-4/62 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムを負極活物質とする負極と、式:
LiX Ni1-Y Y Z (但し、0<X<1.3、0≦
Y≦1、1.8<Z<2.2であり、且つ、Mはコバル
ト又はコバルトを含む2種以上の遷移金属である。)で
表されるリチウム−遷移金属複合酸化物を正極活物質と
する正極とを備える非水系電池において、前記正極活物
質に対して、ナトリウム、マグネシウム、アルミニウ
ム、カリウム、カルシウム、スカンジウム、チタン、バ
ナジウム、クロム、マンガン、鉄、コバルト、ニッケ
ル、銅及び亜鉛よりなる群から選ばれた金属の塩、及び
/又は、マグネシウム、アルミニウム、カルシウム、ス
カンジウム、チタン、バナジウム、クロム、マンガン、
鉄、コバルト、ニッケル、銅及び亜鉛よりなる群から選
ばれた金属の水酸化物の1種又は2種以上が、総量で
0.1〜20モル%添加されていることを特徴とする非
水系電池。
A negative electrode comprising lithium as a negative electrode active material;
Li X Ni 1-Y M Y O Z (where 0 <X <1.3, 0 ≦
Y ≦ 1, 1.8 <Z <2.2, and M is cobalt or two or more transition metals containing cobalt. A) a positive electrode comprising a lithium-transition metal composite oxide as a positive electrode active material, wherein sodium, magnesium, aluminum, potassium, calcium, scandium, titanium, and vanadium are used with respect to the positive electrode active material. A salt of a metal selected from the group consisting of, chromium, manganese, iron, cobalt, nickel, copper and zinc ; and
/ Or magnesium, aluminum, calcium, sulfur
Candium, titanium, vanadium, chromium, manganese,
Select from the group consisting of iron, cobalt, nickel, copper and zinc
A non-aqueous battery, characterized in that one or more of the metal hydroxides are added in a total amount of 0.1 to 20 mol%.
【請求項2】前記塩が炭素を含有する金属塩である請求
項1記載の非水系電池。
2. The non-aqueous battery according to claim 1, wherein the salt is a metal salt containing carbon.
【請求項3】前記炭素を含有する金属塩が炭酸塩である
請求項2記載の非水系電池。
3. The non-aqueous battery according to claim 2, wherein the metal salt containing carbon is a carbonate.
【請求項4】前記炭酸塩が炭酸コバルト及び/又は炭酸
ニッケルである請求項3記載の非水系電池。
4. The non-aqueous battery according to claim 3, wherein the carbonate is cobalt carbonate and / or nickel carbonate.
JP25762394A 1993-11-18 1994-09-26 Non-aqueous battery Expired - Fee Related JP3197763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25762394A JP3197763B2 (en) 1993-11-18 1994-09-26 Non-aqueous battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-314533 1993-11-18
JP31453393 1993-11-18
JP25762394A JP3197763B2 (en) 1993-11-18 1994-09-26 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JPH07192721A JPH07192721A (en) 1995-07-28
JP3197763B2 true JP3197763B2 (en) 2001-08-13

Family

ID=26543298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25762394A Expired - Fee Related JP3197763B2 (en) 1993-11-18 1994-09-26 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP3197763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8609283B2 (en) 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158017A (en) * 1996-11-29 1998-06-16 Sharp Corp Lithium-nickel-multiple oxide, its production and its use
JP3390327B2 (en) * 1996-12-20 2003-03-24 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
CA2199446A1 (en) * 1997-03-07 1998-09-07 Yves Choquette Polymer electrolyte batteries containing a potassium salt to stabilize performance and operating life
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
JP4326041B2 (en) 1997-05-15 2009-09-02 エフエムシー・コーポレイション Doped intercalation compound and method for producing the same
US6207325B1 (en) * 1997-05-19 2001-03-27 Showa Denko K.K. Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells
JPH11204145A (en) * 1998-01-20 1999-07-30 Yuasa Corp Lithium secondary battery
ATE238241T1 (en) 1998-11-13 2003-05-15 Fmc Corp LITHIUM-CONTAINING METAL OXIDES HAVING A LAYER GRID STRUCTURE WHICH ARE FREE OF LOCAL CUBIC SPINEL-LIKE PHASES AND THE PRODUCTION OF THE SAME
TW438721B (en) 1998-11-20 2001-06-07 Fmc Corp Multiple doped lithium manganese oxide compounds and methods of preparing same
JP3617447B2 (en) 1999-12-01 2005-02-02 松下電器産業株式会社 Lithium secondary battery
CN1243664C (en) 1999-12-10 2006-03-01 Fmc公司 Lithium cobalt oxides and methods of making same
EP1225650A3 (en) * 2001-01-23 2003-08-27 Kabushiki Kaisha Toshiba Positive electrode active material and lithium ion secondary battery
US6878490B2 (en) 2001-08-20 2005-04-12 Fmc Corporation Positive electrode active materials for secondary batteries and methods of preparing same
JP4061648B2 (en) 2003-04-11 2008-03-19 ソニー株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
BRPI0411394B8 (en) * 2003-07-30 2023-01-17 Lg Chemical Ltd LITHIUM ION BATTERY WITH IMPROVED HIGH TEMPERATURE STORAGE PROPERTIES
WO2005076391A1 (en) 2004-02-07 2005-08-18 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP4237074B2 (en) 2004-02-16 2009-03-11 ソニー株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4989683B2 (en) * 2008-07-09 2012-08-01 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP4989670B2 (en) * 2008-09-30 2012-08-01 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP4989682B2 (en) * 2008-12-03 2012-08-01 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP5526636B2 (en) 2009-07-24 2014-06-18 ソニー株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP2011124125A (en) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5675113B2 (en) 2010-01-06 2015-02-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP6117553B2 (en) * 2011-01-24 2017-04-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode, method for producing the positive electrode, and non-aqueous electrolyte secondary battery using the positive electrode
JP5764804B2 (en) * 2011-09-27 2015-08-19 東洋インキScホールディングス株式会社 Compound paste for positive electrode of lithium ion secondary battery
JP2013084547A (en) * 2011-09-28 2013-05-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2013146054A1 (en) * 2012-03-29 2013-10-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8609283B2 (en) 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US8808920B2 (en) 2009-09-09 2014-08-19 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material

Also Published As

Publication number Publication date
JPH07192721A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
JP3197763B2 (en) Non-aqueous battery
JP3172388B2 (en) Lithium secondary battery
JP4949018B2 (en) Lithium secondary battery
JPH08250120A (en) Lithium secondary battery
WO2005099022A1 (en) Nonaqueous electrolyte secondary battery
JPH08236155A (en) Lithium secondary battery
JPH06243871A (en) Nonaqueous secondary battery
JP3876673B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH08279357A (en) Lithium secondary battery and its manufacture
JP3717544B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP4753655B2 (en) Lithium secondary battery
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP3208243B2 (en) Non-aqueous battery
JP3182271B2 (en) Non-aqueous battery
JPH06338325A (en) Nonaqueous electrolytic secondary battery
JPH07142056A (en) Nonaqueous type battery
JPH08171936A (en) Lithium secondary battery
JP3182296B2 (en) Non-aqueous electrolyte secondary battery
JPH1154120A (en) Lithium ion secondary battery
JP2003157896A (en) Nonaqueous electrolyte secondary battery
WO1998008263A1 (en) Lithium ion secondary cell and its cathode
JPH06243869A (en) Nonaqueous secondary battery
JP2000058068A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees