JP3182271B2 - Non-aqueous battery - Google Patents

Non-aqueous battery

Info

Publication number
JP3182271B2
JP3182271B2 JP30583893A JP30583893A JP3182271B2 JP 3182271 B2 JP3182271 B2 JP 3182271B2 JP 30583893 A JP30583893 A JP 30583893A JP 30583893 A JP30583893 A JP 30583893A JP 3182271 B2 JP3182271 B2 JP 3182271B2
Authority
JP
Japan
Prior art keywords
powder
positive electrode
battery
mol
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30583893A
Other languages
Japanese (ja)
Other versions
JPH07134985A (en
Inventor
幹也 山崎
丈志 前田
良浩 小路
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30583893A priority Critical patent/JP3182271B2/en
Publication of JPH07134985A publication Critical patent/JPH07134985A/en
Application granted granted Critical
Publication of JP3182271B2 publication Critical patent/JP3182271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水系電池に係わり、
詳しくは非水系電池の高温における保存特性を改善する
ことを目的とした、正極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous battery,
More specifically, the present invention relates to improvement of a positive electrode for the purpose of improving storage characteristics of a nonaqueous battery at a high temperature.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
金属リチウム又はリチウムイオンを吸蔵、放出し得る合
金若しくは炭素材料などを負極材料とし、リチウム−遷
移金属複合酸化物を正極材料とする非水系電池が、高エ
ネルギー密度を有する電池として注目されつつある。
2. Description of the Related Art In recent years,
A non-aqueous battery using an alloy or a carbon material capable of occluding and releasing lithium metal or lithium ion as a negative electrode material and a lithium-transition metal composite oxide as a positive electrode material has been attracting attention as a battery having a high energy density.

【0003】上記リチウム−遷移金属複合酸化物として
は、LiMnO2 、LiFeO2 及びLiX Ni1-Y
Y Z (但し、0<X<1.3、0≦Y≦1、1.8
<Z<2.2)などがよく知られているが、なかでも、
LiX Ni1-Y CoY Z は、容量が大きく、最も注目
されている正極活物質の一つである。
The lithium-transition metal composite oxides include LiMnO 2 , LiFeO 2 and Li x Ni 1 -YC
o Y O Z (where 0 <X <1.3, 0 ≦ Y ≦ 1, 1.8
<Z <2.2) and the like are well known.
Li X Ni 1-Y Co Y O Z is large capacity, is one of the positive electrode active material has received the most attention.

【0004】しかしながら、LiX Ni1-Y CoY Z
を正極活物質として用いた非水系電池を長期間高温で保
存したり、特に二次電池の場合において、充電後の状態
(正極活物質からリチウムイオンが放出された状態)で
長期間高温で保存したりすると、電池の内部抵抗が上昇
する。このように内部抵抗が上昇するのは、次の理由に
よると考えられる。
[0004] However, Li X Ni 1-Y Co Y O Z
A non-aqueous battery using as a positive electrode active material can be stored at high temperature for a long time, especially in the case of a secondary battery, in a charged state (with lithium ions released from the positive electrode active material) for a long time at high temperature Doing so increases the internal resistance of the battery. The increase in the internal resistance is considered to be as follows.

【0005】すなわち、充電時には上記正極活物質から
リチウムが放出されて、充電後は活物質中のニッケル又
はコバルトの酸化数が3を超え、また放電時にも活物質
中のニッケル又はコバルトの酸化数が3を超えている。
更に、一次電池においても放電時には活物質中のニッケ
ル又はコバルトの酸化数が3を超えている。このように
ニッケル又はコバルトの酸化数が3を超えると、これら
の正極活物質の触媒作用により電解液が分解してガスが
発生し、この発生したガスにより、正極の極板形状に変
形が起こり、正極活物質層と芯体(集電体)等との密着
性が低下して内部抵抗が上昇するのである。
[0005] Sunawa Chi, during charging and the lithium is released from the positive electrode active material, is greater than the number of oxidation of nickel or cobalt in the active material 3 After charging, also nickel or cobalt in the active material even when the discharge Has an oxidation number of more than 3.
Furthermore, the oxidation number of nickel or cobalt in the active material is greater than 3 even during discharge in primary batteries. When the oxidation number of nickel or cobalt exceeds 3, the electrolytic solution is decomposed by the catalytic action of these positive electrode active materials and gas is generated, and the generated gas causes deformation of the positive electrode plate shape. In addition, the adhesion between the positive electrode active material layer and the core (current collector) or the like decreases, and the internal resistance increases.

【0006】このように、この種の正極活物質を使用し
た非水系電池には、高温下で長期間放置される自動車電
話などの電源としては不向きであるという問題があった
ため、その改善が要望されていた。
As described above, the non-aqueous battery using such a positive electrode active material has a problem that it is unsuitable as a power source for a mobile phone or the like which is left at a high temperature for a long time. It had been.

【0007】本発明は、かかる要望に応えるべくなされ
たものであって、その目的とするところは、高温保存特
性に優れたLiX Ni1-Y CoY Z を正極活物質とす
る非水系電池を提供するにある。
The present invention has been made to meet such a demand, and an object of the present invention is to provide a non-aqueous system using Li X Ni 1 -Y Co YO Z excellent in high-temperature storage characteristics as a positive electrode active material. To provide batteries.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電池(以下「本発明電池」と称す
る。)は、リチウムを負極活物質とする負極と、式:L
X Ni1-Y Y Z(但し、0<X<1.3、0≦Y
≦1、1.8<Z<2.2であり、且つ、Mはコバルト
又はコバルトを含む2種以上の遷移金属である。)で表
されるリチウム−遷移金属複合酸化物を正極活物質とす
る正極とを備える非水系電池において、前記正極活物質
に対して、ニッケルの酸化数が3以下で結晶内にリチウ
ムを含まないニッケル酸化物及び/又はコバルトの酸化
数が3以下で結晶内にリチウムを含まないコバルト酸化
物が0.1〜20モル%添加されて成る。
In order to achieve the above object, a non-aqueous battery according to the present invention (hereinafter referred to as "battery of the present invention") comprises: a negative electrode having lithium as a negative electrode active material;
i X Ni 1-Y M Y O Z (where 0 <X <1.3, 0 ≦ Y
≦ 1, 1.8 <Z <2.2, and M is cobalt or two or more transition metals containing cobalt. A) a positive electrode comprising a lithium-transition metal composite oxide as a positive electrode active material, wherein the oxidation number of nickel with respect to the positive electrode active material is 3 or less and lithium is not contained in the crystal. Nickel oxide and / or cobalt oxide having an oxidation number of 3 or less and containing no lithium in the crystal is added in an amount of 0.1 to 20 mol%.

【0009】本発明におけるニッケル酸化物及びコバル
ト酸化物は、それらの酸化数が3以下のものに限定され
る。これは、酸化数が3を超える、電気化学的に作製さ
れるNiO2 (ニッケルの酸化数:4)、CoO2 (コ
バルトの酸化数:4)などは、電解液の分解を促進する
触媒作用を有しているため、電池の内部抵抗の上昇を有
効に抑制できないからである。
The nickel oxide and the cobalt oxide in the present invention are limited to those having an oxidation number of 3 or less. This is because electrochemically produced NiO 2 (oxidation number of nickel: 4), CoO 2 (oxidation number of cobalt: 4), etc., having an oxidation number of more than 3, have a catalytic action to promote decomposition of the electrolyte. This is because the increase in the internal resistance of the battery cannot be effectively suppressed.

【0010】ニッケル酸化物及びコバルト酸化物が、リ
チウムを含まないものに限定されるのは、リチウムを含
むと、含有せるリチウムが充電により放出されてニッケ
ル及びコバルトの酸化数が3を超えて大きくなるため、
先に述べたと同じ理由から、電池の内部抵抗を無添加の
場合よりも却って上昇させてしまうからである。
The reason why the nickel oxide and the cobalt oxide are not limited to those containing no lithium is that when lithium is contained, the contained lithium is released by charging and the oxidation number of nickel and cobalt exceeds 3 and becomes large. To become
This is because, for the same reason as described above, the internal resistance of the battery is rather increased as compared with the case of no addition.

【0011】ニッケル酸化物及びコバルト酸化物の添加
量が、正極活物質に対して0.1〜20モル%に規制さ
れるのは、0.1モル%未満では添加効果(触媒毒とし
て働き電解液の分解を抑制する効果)が充分に発現され
ず、一方20モル%を超えると、これらの酸化物の導電
性が低いことに起因して電池の内部抵抗が上昇するとと
もに、充放電時の正極におけるリチウムの拡散が悪くな
るため充放電効率が低下するからである。
The addition amount of nickel oxide and cobalt oxide is regulated to 0.1 to 20 mol% with respect to the positive electrode active material. When the content exceeds 20 mol%, the internal resistance of the battery increases due to the low conductivity of these oxides, and at the time of charging and discharging, This is because the diffusion of lithium in the positive electrode becomes worse, and the charge / discharge efficiency decreases.

【0012】ニッケル酸化物とコバルト酸化物とを混合
して添加してもよい。この場合においても、それらの総
量を、正極活物質100モル部に対して0.1〜20モ
ル部(0.1〜20モル%)の範囲内に規制する必要が
ある。
[0012] A mixture of nickel oxide and cobalt oxide may be added. Also in this case, it is necessary to regulate the total amount thereof within the range of 0.1 to 20 mol parts (0.1 to 20 mol%) based on 100 mol parts of the positive electrode active material.

【0013】ニッケル酸化物としては、NiO、Ni2
3 、Ni3 4 が代表的なものとして例示され、また
コバルト酸化物としては、CoO、Co3 4 が代表的
なものとして例示されるが、なかでもNiO、Co3
4 が特に好ましい。
As nickel oxide, NiO, Ni 2
O 3 and Ni 3 O 4 are exemplified as typical ones, and as the cobalt oxide, CoO and Co 3 O 4 are exemplified as typical ones. Among them, NiO and Co 3 O 4 are exemplified.
4 is particularly preferred.

【0014】本発明におけるリチウムを負極活物質とす
る負極としては、金属リチウム、及び、リチウムイオン
を吸蔵、放出し得る合金又は炭素材料を電極材料として
用いたものが例示される。
Examples of the negative electrode using lithium as the negative electrode active material in the present invention include those using metal lithium and an alloy or carbon material capable of occluding and releasing lithium ions as an electrode material.

【0015】本発明は、LiX Ni1-Y CoY Z を正
極活物質として用いた場合に問題となっていた電解液の
分解を、ニッケル酸化物及び/又はコバルト酸化物を正
極活物質に添加することにより抑制し、もって非水系電
池の高温下での保存特性を改善することに成功したもの
である。それゆえ、電解液など、電池を構成する他の部
材については従来非水系電池用として提案され、或いは
実用されている種々の材料を特に制限なく用いることが
可能である。
The present invention, Li X Ni 1-Y Co Y O Z decomposition of the electrolytic solution, which has been a problem when using as a positive electrode active material, the positive electrode active material of nickel oxide and / or cobalt oxide To improve the storage characteristics of non-aqueous batteries at high temperatures. Therefore, as for other members constituting the battery, such as an electrolytic solution, it is possible to use various materials which have been conventionally proposed or practically used for non-aqueous batteries without any particular limitation.

【0016】非水電解液としては、エチレンカーボネー
ト、ビニレンカーボネート、プロピレンカーボネートな
どの有機溶媒や、これらとジメチルカーボネート、ジエ
チルカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、エトキシメトキシエタンなどの低
沸点溶媒との混合溶媒に、LiPF6 、LiClO4
LiCF3 SO3 などの溶質を0.7〜1.5M(モル
/リットル)の割合で溶かした溶液が例示される。
Examples of the non-aqueous electrolyte include organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2
- diethoxyethane, in a mixed solvent of low boiling point solvent such as ethoxymethoxy ethane, LiPF 6, LiClO 4,
A solution in which a solute such as LiCF 3 SO 3 is dissolved at a ratio of 0.7 to 1.5 M (mol / liter) is exemplified.

【0017】[0017]

【作用】本発明においては、ニッケル酸化物及び/又は
コバルト酸化物が、電解液の分解反応において触媒毒と
して働くので、長期間保存しても(特に、二次電池にあ
って充電後の状態で長期間保存しても)、ガスが発生し
にくい。このため、正極の極板形状に変形が起こりにく
くなり、電池の内部抵抗の上昇が抑制される。
In the present invention, nickel oxide and / or cobalt oxide act as a catalyst poison in the decomposition reaction of the electrolytic solution. Gas is hardly generated. For this reason, deformation of the electrode plate of the positive electrode is less likely to occur, and an increase in the internal resistance of the battery is suppressed.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0019】(実施例1)扁平型の非水系電池(本発明
電池)を作製した。
Example 1 A flat nonaqueous battery (battery of the present invention) was manufactured.

【0020】〔正極〕LiOHと、Ni(OH)2 と、
Co(OH)2 とをモル比2:1:1で乳鉢にて混合し
た後、この混合物を乾燥空気雰囲気下にて、750°C
で20時間熱処理し、LiNi0.5 Co0.5 2 で示さ
れる正極活物質を得た。次いで、平均粒径が5μmとな
るように石川式らいかい乳鉢中で粉砕した後、この正極
活物質粉末に対してNi2 3 (ニッケルの酸化数:
3)粉末を0.1モル%添加混合した。
[Positive electrode] LiOH, Ni (OH) 2 ,
After mixing with Co (OH) 2 at a molar ratio of 2: 1: 1 in a mortar, the mixture was dried at 750 ° C. in a dry air atmosphere.
For 20 hours to obtain a positive electrode active material represented by LiNi 0.5 Co 0.5 O 2 . Then, after pulverizing in a mortar of Ishikawa type rai so that the average particle diameter becomes 5 μm, Ni 2 O 3 (oxidation number of nickel:
3) 0.1 mol% of the powder was added and mixed.

【0021】次いで、上記Ni2 3 を添加混合した正
極活物質粉末と、導電剤としてのアセチレンブラック
と、結着剤としてのポリフッ化ビニリデンとを、重量比
90:6:4で混合して正極合剤を調製し、この正極合
剤を2トン/cm2 の圧力で直径20mmの円板状に加
圧成型した後、250°Cで2時間熱処理して正極を作
製した。
Next, the positive electrode active material powder to which Ni 2 O 3 was added and mixed, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 6: 4. A positive electrode mixture was prepared, and the positive electrode mixture was molded into a disc having a diameter of 20 mm under a pressure of 2 ton / cm 2 , and then heat-treated at 250 ° C. for 2 hours to produce a positive electrode.

【0022】〔負極〕所定の厚みを有する金属リチウム
の圧延板を直径20mmの円板状に打ち抜いて負極を作
製した。
[Negative Electrode] A rolled sheet of metallic lithium having a predetermined thickness was punched into a disc having a diameter of 20 mm to produce a negative electrode.

【0023】〔非水電解液〕プロピレンカーボネートと
1,2−ジメトキシエタンとの等体積混合溶媒に、過塩
素酸リチウムを1M(モル/リットル)の割合で溶かし
て非水電解液を調製した。
[Non-Aqueous Electrolyte] A non-aqueous electrolyte was prepared by dissolving lithium perchlorate at a ratio of 1 M (mol / liter) in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in an equal volume.

【0024】〔電池の作製〕以上の正負両極及び非水電
解液を用いて扁平型の本発明電池BA1を作製した(電
池寸法:直径24.0mm、厚さ3.0mm)。なお、
セパレータとしては、ポリプロピレン製の微多孔膜(ヘ
キストセラニーズ社製、商品名「セルガード」)を使用
し、これに先の非水電解液を含浸させた。
[Preparation of Battery] A flat type battery BA1 of the present invention was prepared using the above positive and negative electrodes and a non-aqueous electrolyte (battery dimensions: 24.0 mm in diameter, 3.0 mm in thickness). In addition,
As the separator, a microporous polypropylene film (manufactured by Hoechst Celanese Co., Ltd., trade name "Celgard") was used, and this was impregnated with the above nonaqueous electrolyte.

【0025】図1は、作製した本発明電池BA1を模式
的に示す断面図であり、同図に示す本発明電池BA1
は、正極1、負極2、これら両電極1,2を互いに離間
するセパレータ3、正極缶4、負極缶5、正極集電体
6、負極集電体7及びポリプロピレン製の絶縁パッキン
グ8などからなる。
FIG. 1 is a cross-sectional view schematically showing the fabricated battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
Is composed of a positive electrode 1, a negative electrode 2, a separator 3 separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like. .

【0026】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed with positive and negative bipolar cans 4 and 5 facing each other via a separator 3 impregnated with a non-aqueous electrolyte. The negative electrode 2 is connected to the negative electrode current collector 7 through the positive electrode can 4 through the negative electrode current collector 7.
Is connected to the negative electrode can 5 so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0027】(実施例2〜5)正極活物質粉末に対する
Ni2 3 粉末の添加量を、それぞれ5モル%、10モ
ル%、15モル%、20モル%としたこと以外は上記実
施例1と同様にして、正極を作製した。次いで、この正
極を用いたこと以外は実施例1と同様にして、本発明電
池BA2(Ni2 3 粉末の添加量:5モル%)、BA
3(Ni2 3粉末の添加量:10モル%)、BA4
(Ni2 3 粉末の添加量:15モル%)、BA5(N
2 3 粉末の添加量:20モル%)を作製した。
(Examples 2 to 5) The above Example 1 was conducted except that the addition amount of the Ni 2 O 3 powder to the positive electrode active material powder was 5 mol%, 10 mol%, 15 mol%, and 20 mol%, respectively. In the same manner as in the above, a positive electrode was produced. Next, in the same manner as in Example 1 except that this positive electrode was used, the battery BA2 of the present invention (the amount of Ni 2 O 3 powder added: 5 mol%), BA
3 (addition amount of Ni 2 O 3 powder: 10 mol%), BA4
(Addition amount of Ni 2 O 3 powder: 15 mol%), BA5 (N
i 2 O 3 powder: 20 mol%).

【0028】(実施例6〜10)Ni2 3 粉末に代え
てNi3 4 (ニッケルの酸化数:2.67)粉末を用
いたこと以外は実施例1〜5と同様にして、正極を作製
した。次いで、これらの正極を用いたこと以外は実施例
1と同様にして、本発明電池BA6(Ni3 4粉末の
添加量:0.1モル%)、BA7(Ni3 4 粉末の添
加量:5モル%)、BA8(Ni3 4 粉末の添加量:
10モル%)、BA9(Ni3 4 粉末の添加量:15
モル%)、BA10(Ni3 4 粉末の添加量:20モ
ル%)を作製した。
(Examples 6 to 10) Positive electrodes were prepared in the same manner as in Examples 1 to 5, except that Ni 3 O 4 (nickel oxidation number: 2.67) powder was used instead of Ni 2 O 3 powder. Was prepared. Next, in the same manner as in Example 1 except that these positive electrodes were used, the batteries BA6 of the present invention (addition amount of Ni 3 O 4 powder: 0.1 mol%) and BA7 (addition amount of Ni 3 O 4 powder) were used. : 5 mol%), BA8 (Ni 3 O 4 powder addition amount:
10 mol%), BA9 (added amount of Ni 3 O 4 powder: 15)
Mol%), BA10 (Ni 3 O 4 powder added amount: 20 mol%) was prepared.

【0029】(実施例11〜15)Ni2 3 粉末に代
えてCoO(コバルトの酸化数:2)粉末を用いたこと
以外は実施例1〜5と同様にして、正極を作製した。次
いで、これらの正極を用いたこと以外は実施例1と同様
にして、本発明電池BA11(CoO粉末の添加量:
0.1モル%)、BA12(CoO粉末の添加量:5モ
ル%)、BA13(CoO粉末の添加量:10モル
%)、BA14(CoO粉末の添加量:15モル%)、
BA15(CoO粉末の添加量:20モル%)を作製し
た。
Examples 11 to 15 Positive electrodes were produced in the same manner as in Examples 1 to 5, except that CoO (oxidation number of cobalt: 2) powder was used instead of Ni 2 O 3 powder. Next, in the same manner as in Example 1 except that these positive electrodes were used, the battery BA11 of the present invention (the amount of CoO powder added:
0.1 mol%), BA12 (addition amount of CoO powder: 5 mol%), BA13 (addition amount of CoO powder: 10 mol%), BA14 (addition amount of CoO powder: 15 mol%),
BA15 (the amount of CoO powder added: 20 mol%) was prepared.

【0030】(比較例1)正極活物質粉末にNi2 3
粉末を添加混合しなかったこと以外は実施例1と同様に
して、正極を作製した。次いで、この正極を用いたこと
以外は実施例1と同様にして、比較電池BC1を作製し
た。
Comparative Example 1 Ni 2 O 3 was added to the positive electrode active material powder.
A positive electrode was produced in the same manner as in Example 1 except that the powder was not added and mixed. Next, a comparative battery BC1 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0031】(比較例2)正極活物質粉末に対するNi
2 3 粉末の添加量を25モル%としたこと以外は実施
例1と同様にして、正極を作製した。次いで、この正極
を用いたこと以外は実施例1と同様にして、比較電池B
C2を作製した。
(Comparative Example 2) Ni for cathode active material powder
A positive electrode was produced in the same manner as in Example 1, except that the amount of the added 2 O 3 powder was 25 mol%. Next, a comparative battery B was prepared in the same manner as in Example 1 except that this positive electrode was used.
C2 was produced.

【0032】(比較例3)正極活物質粉末に対するNi
3 4 粉末の添加量を25モル%としたこと以外は実施
例6と同様にして、正極を作製した。次いで、この正極
を用いたこと以外は実施例1と同様にして、比較電池B
C3を作製した。
Comparative Example 3 Ni for Positive Electrode Active Material Powder
A positive electrode was produced in the same manner as in Example 6, except that the amount of 3 O 4 powder added was 25 mol%. Next, a comparative battery B was prepared in the same manner as in Example 1 except that this positive electrode was used.
C3 was produced.

【0033】(比較例4)正極活物質粉末に対するCo
O粉末の添加量を25モル%としたこと以外は実施例1
1と同様にして、正極を作製した。次いで、この正極を
用いたこと以外は実施例1と同様にして、比較電池BC
4を作製した。
(Comparative Example 4) Co against cathode active material powder
Example 1 except that the addition amount of O powder was 25 mol%.
In the same manner as in Example 1, a positive electrode was produced. Next, a comparative battery BC was prepared in the same manner as in Example 1 except that this positive electrode was used.
4 was produced.

【0034】本発明電池BA1〜BA15及び比較電池
BC1〜BC4の各正極の作製において正極活物質粉末
に添加したニッケル酸化物粉末又はコバルト酸化物粉末
の種類及び添加量を、次の表1にまとめて示す。
The types and amounts of nickel oxide powder or cobalt oxide powder added to the positive electrode active material powder in the preparation of each positive electrode of the batteries BA1 to BA15 of the present invention and the comparative batteries BC1 to BC4 are summarized in Table 1 below. Shown.

【0035】[0035]

【表1】 [Table 1]

【0036】〔保存特性〕本発明電池BA1〜BA15
及び比較電池BC1〜BC4を充電した後、80°Cで
30日間保存し、各電池の保存特性を調べた。結果を図
2に示す。保存特性は電池の内部抵抗の上昇率(%)で
評価した。電池の内部抵抗は、下式により算出した。
[Storage characteristics] Batteries BA1 to BA15 of the present invention
After charging the comparative batteries BC1 to BC4, the batteries were stored at 80 ° C. for 30 days, and the storage characteristics of each battery were examined. The results are shown in FIG. The storage characteristics were evaluated by the rate of increase (%) of the internal resistance of the battery. The internal resistance of the battery was calculated by the following equation.

【0037】電池の内部抵抗の上昇率(%)=(保存後
の内部抵抗−保存前の内部抵抗)×100/保存前の内
部抵抗
Increase rate (%) of internal resistance of battery = (internal resistance after storage−internal resistance before storage) × 100 / internal resistance before storage

【0038】図2は、各電池の保存特性を、縦軸に電池
の内部抵抗の上昇率(%)を、また横軸にニッケル酸化
物又はコバルト酸化物の添加量(モル%)をとって示し
たグラフであり、同図に示すように本発明電池BA1〜
BA15では電池の内部抵抗の上昇率が50%以下と低
いのに対して、比較電池BC1〜BC4では電池の内部
抵抗の上昇率が100%以上と高い。このことから、高
温で保存したときの電池の内部抵抗の上昇が、ニッケル
及びコバルトの酸化数が3以下であって、且つ、結晶内
にリチウムを含まないニッケル酸化物又はコバルト酸化
物を正極活物質に対して0.1〜20モル%添加するこ
とにより顕著に抑制されることが分かる。
FIG. 2 shows the storage characteristics of each battery, the vertical axis shows the increase rate (%) of the internal resistance of the battery, and the horizontal axis shows the addition amount (mol%) of nickel oxide or cobalt oxide. It is a graph shown, as shown in FIG.
In BA15, the increase rate of the internal resistance of the battery is as low as 50% or less, whereas in Comparative Battery BC1 to BC4, the increase rate of the internal resistance of the battery is as high as 100% or more. From this, the increase in the internal resistance of the battery when stored at a high temperature indicates that the nickel oxide or cobalt oxide having an oxidation number of nickel and cobalt of 3 or less and containing no lithium in the crystal has a positive electrode activity. It can be seen that the addition is significantly suppressed by adding 0.1 to 20 mol% to the substance.

【0039】(実施例16〜20)Ni2 3 粉末に代
えてNiO(ニッケルの酸化数:2)粉末を用いたこと
以外は実施例1〜5と同様にして、正極を作製した。次
いで、これらの正極を用いたこと以外は実施例1と同様
にして、本発明電池BA16(NiO粉末の添加量:
0.1モル%)、BA17(NiO粉末の添加量:5モ
ル%)、BA18(NiO粉末の添加量:10モル
%)、BA19(NiO粉末の添加量:15モル%)、
BA20(NiO粉末の添加量:20モル%)を作製し
た。
(Examples 16 to 20) Positive electrodes were produced in the same manner as in Examples 1 to 5, except that NiO (nickel oxidation number: 2) powder was used instead of Ni 2 O 3 powder. Next, in the same manner as in Example 1 except that these positive electrodes were used, the battery BA16 of the present invention (the amount of NiO powder added:
0.1 mol%), BA17 (addition amount of NiO powder: 5 mol%), BA18 (addition amount of NiO powder: 10 mol%), BA19 (addition amount of NiO powder: 15 mol%),
BA20 (addition amount of NiO powder: 20 mol%) was prepared.

【0040】(実施例21〜25)Ni2 3 粉末に代
えてNiO粉末とCo3 4 (コバルトの酸化数:2.
67)粉末との等モル混合物を用いたこと以外は実施例
1〜5と同様にして、正極を作製した。次いで、これら
の正極を用いたこと以外は実施例1と同様にして、本発
明電池BA21(NiO粉末とCo3 4 粉末の総添加
量:0.1モル%)、BA22(両粉末の総添加量:5
モル%)、BA23(両粉末の総添加量:10モル
%)、BA24(両粉末の総添加量:15モル%)、B
A25(総添加量:20モル%)を作製した。
(Examples 21 to 25) Instead of Ni 2 O 3 powder, NiO powder and Co 3 O 4 (oxidation number of cobalt: 2.
67) A positive electrode was produced in the same manner as in Examples 1 to 5, except that an equimolar mixture with powder was used. Next, in the same manner as in Example 1 except that these positive electrodes were used, the batteries BA21 of the present invention (total amount of NiO powder and Co 3 O 4 powder: 0.1 mol%) and BA22 (total of both powders) were used. Addition amount: 5
Mol%), BA23 (total addition amount of both powders: 10 mol%), BA24 (total addition amount of both powders: 15 mol%), B
A25 (total addition: 20 mol%) was prepared.

【0041】(実施例26〜30)Ni2 3 粉末に代
えてCo3 4 粉末を用いたこと以外は実施例1〜5と
同様にして、正極を作製した。次いで、これらの正極を
用いたこと以外は実施例1と同様にして、本発明電池B
A26(Co3 4 粉末の添加量:0.1モル%)、B
A27(Co3 4 粉末の添加量:5モル%)、BA2
8(Co3 4 粉末の添加量:10モル%)、BA29
(Co3 4 粉末の添加量:15モル%)、BA30
(Co3 4 粉末の添加量:20モル%)を作製した。
Examples 26 to 30 Positive electrodes were produced in the same manner as in Examples 1 to 5, except that Co 3 O 4 powder was used instead of Ni 2 O 3 powder. Next, the battery B of the present invention was prepared in the same manner as in Example 1 except that these positive electrodes were used.
A26 (Co 3 O 4 powder addition amount: 0.1 mol%), B
A27 (addition amount of Co 3 O 4 powder: 5 mol%), BA2
8 (addition amount of Co 3 O 4 powder: 10 mol%), BA29
(Amount of Co 3 O 4 powder added: 15 mol%), BA30
(Co 3 O 4 powder added: 20 mol%).

【0042】(比較例5)正極活物質粉末に対するNi
O粉末の添加量を25モル%としたこと以外は実施例1
6と同様にして、正極を作製した。次いで、この正極を
用いたこと以外は実施例1と同様にして、比較電池BC
5を作製した。
Comparative Example 5 Ni for Positive Electrode Active Material Powder
Example 1 except that the addition amount of O powder was 25 mol%.
In the same manner as in 6, a positive electrode was produced. Next, a comparative battery BC was prepared in the same manner as in Example 1 except that this positive electrode was used.
5 was produced.

【0043】(比較例6)正極活物質粉末に対するNi
O粉末とCo3 4 粉末の総添加量を25モル%とした
こと以外は実施例21と同様にして、正極を作製した。
次いで、この正極を用いたこと以外は実施例1と同様に
して、比較電池BC6を作製した。
Comparative Example 6 Ni for Positive Electrode Active Material Powder
A positive electrode was produced in the same manner as in Example 21 except that the total amount of the O powder and the Co 3 O 4 powder was 25 mol%.
Next, a comparative battery BC6 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0044】(比較例7)正極活物質粉末に対するCo
3 4 粉末の添加量を25モル%としたこと以外は実施
例26と同様にして、正極を作製した。次いで、この正
極を用いたこと以外は実施例1と同様にして、比較電池
BC7を作製した。
(Comparative Example 7) Co with respect to the positive electrode active material powder
A positive electrode was produced in the same manner as in Example 26 except that the addition amount of the 3 O 4 powder was 25 mol%. Next, a comparative battery BC7 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0045】本発明電池BA16〜BA30及び比較電
池BC5〜BC7の各正極の作製において正極活物質粉
末に添加したニッケル酸化物粉末又はコバルト酸化物粉
末の種類及び添加量を、次の表2にまとめて示す。
The types and amounts of nickel oxide powder or cobalt oxide powder added to the positive electrode active material powder in the preparation of each positive electrode of the batteries BA16 to BA30 of the present invention and the comparative batteries BC5 to BC7 are summarized in Table 2 below. Shown.

【0046】[0046]

【表2】 [Table 2]

【0047】〔保存特性〕先と同様にして、本発明電池
BA16〜BA30及び比較電池BC5〜BC7の保存
特性を調べた。結果を図3に示す。なお、図3中には、
比較の便宜のために、比較電池BC1の結果(図2より
転記)も示してある。
[Storage Characteristics] In the same manner as above, the storage characteristics of the batteries BA16 to BA30 of the present invention and the comparative batteries BC5 to BC7 were examined. The results are shown in FIG. In FIG. 3,
For comparison, the result of the comparative battery BC1 (transferred from FIG. 2) is also shown.

【0048】図3は、各電池の保存特性を、縦軸に電池
の内部抵抗の上昇率(%)を、また横軸にニッケル酸化
物又はコバルト酸化物の添加量(モル%)をとって示し
たグラフである。但し、本発明電池BA21〜25及び
比較電池BC6にあっては、横軸はニッケル酸化物及び
コバルト酸化物の総添加量を示す。図3に示すように本
発明電池BA16〜BA30では電池の内部抵抗の上昇
率が50%以下と低いのに対して、比較電池BC5〜B
C7では電池の内部抵抗の上昇率が100%以上と高
い。このことから、高温で保存した際の電解液の分解に
起因する電池の内部抵抗の上昇が、ニッケル及びコバル
トの酸化数が3以下であって、結晶内にリチウムを含ま
ないニッケル酸化物粉末及び/又はコバルト酸化物粉末
を正極活物質粉末に対して0.1〜20モル%添加する
ことにより顕著に抑制されることが分かる。
FIG. 3 shows the storage characteristics of each battery, the vertical axis shows the rate of increase in the internal resistance of the battery (%), and the horizontal axis shows the amount of nickel oxide or cobalt oxide added (mol%). It is a graph shown. However, in the batteries BA21 to BA25 of the present invention and the comparative battery BC6, the horizontal axis indicates the total amount of nickel oxide and cobalt oxide. As shown in FIG. 3, in the batteries of the present invention BA16 to BA30, the rate of increase in the internal resistance of the batteries was as low as 50% or less, whereas the comparative batteries BC5 to B30
In C7, the increase rate of the internal resistance of the battery is as high as 100% or more. From this, the increase in the internal resistance of the battery due to the decomposition of the electrolyte solution when stored at a high temperature, the oxidation number of nickel and cobalt is 3 or less, nickel oxide powder containing no lithium in the crystal and It can be seen that addition of 0.1 to 20 mol% of the cobalt oxide powder to the positive electrode active material powder significantly suppresses the addition.

【0049】(比較例8〜10)Ni2 3 粉末に代え
てNiO2 (ニッケルの酸化数:4)粉末を用いたこと
以外は実施例1〜3と同様にして、正極を作製した。次
いで、これらの正極を用いたこと以外は実施例1と同様
にして、比較電池BC8(NiO2 粉末の添加量:0.
1モル%)、BC9(NiO2 粉末の添加量:5モル
%)、BC10(NiO2 粉末の添加量:10モル%)
を作製した。
Comparative Examples 8 to 10 Positive electrodes were produced in the same manner as in Examples 1 to 3, except that NiO 2 (nickel oxidation number: 4) powder was used instead of Ni 2 O 3 powder. Then, in the same manner as in Example 1 except that these positive electrodes were used, the comparative battery BC8 (the amount of NiO 2 powder added: 0.
1 mol%), BC9 (NiO 2 powder added amount: 5 mol%), BC10 (NiO 2 powder added amount: 10 mol%)
Was prepared.

【0050】(比較例11〜13)Ni2 3 粉末に代
えてCoO2 (コバルトの酸化数:4)粉末を用いたこ
と以外は実施例1〜3と同様にして、正極を作製した。
次いで、これらの正極を用いたこと以外は実施例1と同
様にして、比較電池BC11(CoO2 粉末の添加量:
0.1モル%)、BC12(CoO2 粉末の添加量:5
モル%)、BC13(CoO2 粉末の添加量:10モル
%)を作製した。
(Comparative Examples 11 to 13) Positive electrodes were prepared in the same manner as in Examples 1 to 3, except that CoO 2 (oxidation number of cobalt: 4) powder was used instead of Ni 2 O 3 powder.
Then, in the same manner as in Example 1 except that these positive electrodes were used, the comparative battery BC11 (the addition amount of the CoO 2 powder:
0.1 mol%), BC12 (CoO 2 powder addition amount: 5)
Mol%) and BC13 (the amount of CoO 2 powder added: 10 mol%).

【0051】〔保存特性〕先と同様にして、比較電池B
C8〜BC13の保存特性を調べた。結果を表3に示
す。
[Storage characteristics] In the same manner as above, the comparative battery B
The storage characteristics of C8 to BC13 were examined. Table 3 shows the results.

【0052】[0052]

【表3】 [Table 3]

【0053】表3に示すように、比較電池BC8〜BC
13の内部抵抗の上昇率は80%以上と高い。このこと
から、ニッケルの酸化数が3を超えるニッケル酸化物又
はコバルトの酸化数が3を超えるコバルト酸化物を正極
活物質に添加しても、電解液の分解を充分には抑制でき
ないことが分かる。
As shown in Table 3, the comparative batteries BC8 to BC8
The increase rate of the internal resistance of No. 13 is as high as 80% or more. This indicates that decomposition of the electrolytic solution cannot be sufficiently suppressed even when a nickel oxide having an oxidation number of nickel exceeding 3 or a cobalt oxide having an oxidation number of cobalt exceeding 3 is added to the positive electrode active material. .

【0054】叙上の実施例では、本発明を扁平型電池に
適用する場合を例に挙げて説明したが、本発明は電池形
状に特に制限はなく、円筒型、角型など、他の種々の形
状の非水系一次電池又は非水系二次電池に適用し得るも
のである。
In the above embodiments, the case where the present invention is applied to a flat type battery has been described as an example. However, the present invention is not particularly limited in the shape of the battery, and various other types such as a cylindrical type and a square type are available. It can be applied to a non-aqueous primary battery or a non-aqueous secondary battery having the shape of

【0055】なお、本発明者らは電池系内のガスの発生
は主に非水電解液の分解によるものと考えたが、結着剤
の分解によるガスの発生も考えられる。本発明による保
存特性の向上が、後者のガスの発生をも抑制したことに
よるものであるとすれば、本発明は液体電解質電池に限
らず固体電解質電池にも適用可能と考えられる。
The present inventors have considered that the generation of gas in the battery system is mainly due to decomposition of the non-aqueous electrolyte, but it is also possible to generate gas due to decomposition of the binder. If the improvement in storage characteristics according to the present invention is due to the suppression of the latter gas generation, the present invention is considered to be applicable not only to liquid electrolyte batteries but also to solid electrolyte batteries.

【0056】[0056]

【発明の効果】高温保存時の電解液の分解が、正極活物
質にニッケル酸化物及び/又はコバルト酸化物を添加す
ることにより抑制されるため、電池の内部抵抗の上昇が
小さく、保存特性に優れる。
The decomposition of the electrolytic solution during high-temperature storage is suppressed by adding nickel oxide and / or cobalt oxide to the positive electrode active material. Excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】扁平型の本発明電池の断面図である。FIG. 1 is a sectional view of a flat type battery of the present invention.

【図2】本発明電池及び比較電池の保存特性を示すグラ
フである。
FIG. 2 is a graph showing storage characteristics of a battery of the present invention and a comparative battery.

【図3】本発明電池及び比較電池の保存特性を示すグラ
フである。
FIG. 3 is a graph showing storage characteristics of a battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Battery of the present invention 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭62−264560(JP,A) 特開 昭63−211565(JP,A) 特開 平2−12768(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 10/40 H01M 4/36 - 4/62 ──────────────────────────────────────────────────の Continuing on the front page (72) Koji Nishio, inventor 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-2, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (56) References JP-A-62-264560 (JP, A) JP-A-63-211565 (JP, A) JP-A-2-12768 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/02 H01M 10/40 H01M 4/36-4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムを負極活物質とする負極と、式:
LiX Ni1-Y Y Z (但し、0<X<1.3、0≦
Y≦1、1.8<Z<2.2であり、且つ、Mはコバル
ト又はコバルトを含む2種以上の遷移金属である。)で
表されるリチウム−遷移金属複合酸化物を正極活物質と
する正極とを備える非水系電池において、前記正極活物
質に対して、ニッケルの酸化数が3以下で結晶内にリチ
ウムを含まないニッケル酸化物及び/又はコバルトの酸
化数が3以下で結晶内にリチウムを含まないコバルト酸
化物が0.1〜20モル%添加されていることを特徴と
する非水系電池。
A negative electrode comprising lithium as a negative electrode active material;
Li X Ni 1-Y M Y O Z (where 0 <X <1.3, 0 ≦
Y ≦ 1, 1.8 <Z <2.2, and M is cobalt or two or more transition metals containing cobalt. A) a positive electrode comprising a lithium-transition metal composite oxide as a positive electrode active material, wherein the oxidation number of nickel with respect to the positive electrode active material is 3 or less and lithium is not contained in the crystal. A non-aqueous battery comprising a nickel oxide and / or cobalt having an oxidation number of 3 or less, and 0.1 to 20 mol% of a cobalt oxide containing no lithium in a crystal.
【請求項2】前記ニッケル酸化物がNiOである請求項
1記載の非水系電池。
2. The non-aqueous battery according to claim 1, wherein said nickel oxide is NiO.
【請求項3】前記コバルト酸化物がCo3 4 である請
求項1記載の非水系電池。
3. The non-aqueous battery according to claim 1, wherein said cobalt oxide is Co 3 O 4 .
JP30583893A 1993-11-11 1993-11-11 Non-aqueous battery Expired - Fee Related JP3182271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30583893A JP3182271B2 (en) 1993-11-11 1993-11-11 Non-aqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30583893A JP3182271B2 (en) 1993-11-11 1993-11-11 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JPH07134985A JPH07134985A (en) 1995-05-23
JP3182271B2 true JP3182271B2 (en) 2001-07-03

Family

ID=17949984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30583893A Expired - Fee Related JP3182271B2 (en) 1993-11-11 1993-11-11 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP3182271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150053A (en) * 1997-06-06 2000-11-21 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US7879494B2 (en) 2005-03-23 2011-02-01 Panasonic Corporation Lithium ion secondary battery and manufacturing method therefor
JP6183472B2 (en) * 2014-01-16 2017-08-23 株式会社カネカ Non-aqueous electrolyte secondary battery and its assembled battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries

Also Published As

Publication number Publication date
JPH07134985A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
JP3197763B2 (en) Non-aqueous battery
JP3172388B2 (en) Lithium secondary battery
JP3238954B2 (en) Non-aqueous secondary battery
JP3157413B2 (en) Lithium secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
JP2000200605A (en) Nonaqueous electrolyte battery and its manufacture
JP2007250198A (en) Nonaqueous electrolyte secondary battery
JPH08236155A (en) Lithium secondary battery
JPH06243871A (en) Nonaqueous secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3258841B2 (en) Lithium secondary battery
CA2334240C (en) Lithium secondary battery using gelled polymeric electrolyte
JPH08279357A (en) Lithium secondary battery and its manufacture
JP3717544B2 (en) Lithium secondary battery
JP3208243B2 (en) Non-aqueous battery
JP3182271B2 (en) Non-aqueous battery
JP3182296B2 (en) Non-aqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH08171936A (en) Lithium secondary battery
JPH07142056A (en) Nonaqueous type battery
JP3054511B2 (en) Non-aqueous secondary battery
JP3066142B2 (en) Lithium secondary battery
WO1998008263A1 (en) Lithium ion secondary cell and its cathode
JPH06243869A (en) Nonaqueous secondary battery
JP2000058068A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees