US20050202397A1 - Method and device for determining the hematocrit and/or blood volume - Google Patents

Method and device for determining the hematocrit and/or blood volume Download PDF

Info

Publication number
US20050202397A1
US20050202397A1 US10/507,033 US50703305A US2005202397A1 US 20050202397 A1 US20050202397 A1 US 20050202397A1 US 50703305 A US50703305 A US 50703305A US 2005202397 A1 US2005202397 A1 US 2005202397A1
Authority
US
United States
Prior art keywords
blood
cannula
pressure
haematocrit
arterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/507,033
Other languages
English (en)
Inventor
Wei Zhang
Helge Brauer
Reiner Spickermann
Carsten Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20050202397A1 publication Critical patent/US20050202397A1/en
Priority to US11/717,812 priority Critical patent/US7780620B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1613Profiling or modelling of patient or predicted treatment evolution or outcome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3659Cannulae pertaining to extracorporeal circulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/207Blood composition characteristics hematocrit

Definitions

  • the invention relates to a method for determining the haematocrit and/or blood volume during an extracorporeal blood treatment with an extracorporeal blood circuit and an apparatus for extracorporeal blood treatment with an extracorporeal blood circuit and a device for determining the haematocrit and/or blood volume.
  • blood pressure monitors which continuously monitor a change in blood pressure and regulate the ultrafiltration depending on the change in blood pressure.
  • blood volume monitors are known which measure the relative blood volume during the dialysis treatment and perform a regulation of the ultrafiltration depending on the relative blood volume.
  • DE-C-197 46 377 describes a device for the measurement of blood pressure, which is based on the detection of the propagation rate of the pulse waves being propagated via the arterial vessel system of the patient, said pulse waves being generated by the patient's heart contractions.
  • the device permits a continuous, non-invasive measurement of blood pressure, but there is the drawback that the pulse-wave running time is dependent on the haematocrit (HKT).
  • DE-A-40 24 434 describes a device for the regulation of ultrafiltration, in which the pressure in the extracorporeal circuit is measured in order to determine the relative blood volume.
  • the measured pressure values are stored in chronological sequence and the change in the blood volume is deduced from the change in the pressure value compared with the value at the start of the treatment.
  • the venous return-flow or arterial suction-pressure sensor can be used as a pressure sensor. It is pointed out in the publication that the drop in pressure on the arterial cannula is a function of the blood flow and the viscosity of the blood as well as a function both of the diameter and length of the cannula. It is further assumed that the relationship between the blood volume and the change in pressure is linear to a good approximation.
  • the problem underlying the invention is to provide a method that permits the haematocrit and/or blood volume to be determined with a particularly high degree of accuracy, but with a relatively low technical outlay. Moreover, it is a problem of the invention to provide an apparatus for extracorporeal blood treatment with a device for determining the haematocrit and/or blood volume, which has a relatively simple construction, but a high degree of accuracy.
  • the known dialysis devices measure and monitor the arterial pressure P art (t) and the venous pressure P ven (t) in the extracorporeal blood circuit. Moreover, the rate BPR(t) of the blood pump is also measured during the blood treatment, i e. it is known as the control value.
  • the method according to the invention and the apparatus according to the invention make use of the pressure measurement that is already available, so that the outlay on equipment is relatively low.
  • the basic idea of monitoring the haematocrit and blood volume through the measurement of pressure is based on the following. If the relative blood volume diminishes during the blood treatment as a result of ultrafiltration, the haematocrit in the blood necessarily increases, since the dialysis membrane is not permeable for the blood cells, namely erythrozytes (7.5 ⁇ m), leucozytes (1.5-20 ⁇ m) and thromborytes (2.5 ⁇ m). Furthermore, the viscosity increases over-proportionately with increasing haematocrit.
  • each increase in the haematocrit caused by the reduction in blood volume signifies an increased load on the blood pump, which leads to the fall in the arterial pressure (negative) and the increase in the venous pressure (positive), insofar as the blood pump is operated at the same rate.
  • the respective relationship between haematocrit or blood volume and pressure is stored for different diameters of the cannula and different values of the blood flow in the case of the method and the apparatus according to the invention.
  • the respective data are thus already available before the dialysis treatment.
  • the respective relationship between haematocrit or blood volume and pressure is then selected and haematocrit and/or blood volume is determined taking account of the selected relationship.
  • the data can for example be stored in the form of groups of curves, which can be described in particular by discrete measurement values.
  • the increased accuracy results from the fact that account is taken not only of the blood flow during the treatment, but also of the cannula used.
  • both absolute values as well as relative values are to be understood, which indicate a relative change in the blood volume in respect of a predetermined initial value, for example the start of the blood treatment.
  • the arterial pressure which is measured in the arterial blood line upstream of the blood pump, correlates with the relative blood volume much better than the venous pressure in the venous blood line. This can be traced back to the fact that the venous pressure is very much more susceptible to interference than the arterial pressure.
  • the venous pressure sensor detects pressure fluctuations which are caused not only by the ultrafiltration, but also by switching balancing chambers.
  • the air volume, or more precisely the reveal in the venous drip chamber also has a strong influence on the characteristic of the venous pressure signal.
  • the arterial pressure is free from such pressure fluctuations. It is true that the arterial pressure signal is influenced by the blood pumping rate, but here it concerns an unequivocal source of interference whose influence on the arterial pressure can be compensated for.
  • the cannula diameter can be determined unequivocally by evaluating the pressure changes in the extracorporeal blood circuit.
  • the change in pressure resulting from a change in the blood flow is determined and the cannula diameter is deduce from the change in pressure.
  • the pressures are preferably measured at least two different values of the blood flow in each case, and the difference between the pressures is calculated.
  • the difference in the pressures is compared with predetermined stored value ranges representative of the individual cannula diameters. The individual value ranges can be assigned unequivocally to the different cannula diameters. The assignment between cannula diameter and value range can in principle be verified again by several measurements.
  • the relationship between haematocrit or blood volume and pressure for different diameters of the cannula and different values of the blood flow can be described to a sufficient approximation by a non-linear function, for example a second-order polynomial. Since the blood flow correlates with the rate of the blood pump, the pumping rate, which is preset by the control of the blood treatment device, is preferably used to determine the blood flow.
  • the blood volume can be calculated.
  • the blood volume is calculated at a specified time in the blood treatment from the product of the haematocrit at a preceding time and the blood volume at a preceding time divided by the haematocrit at the specified time.
  • the device for determining the haematocrit and/or blood volume of the apparatus for extracorporeal blood treatment has a memory and evaluation unit, in which the respective relationships between haematocrit and blood volume for the different cannula diameters and blood flows are stored.
  • a memory and evaluation unit can be part of a computer control, which is already present in the known blood treatment apparatuses.
  • the measurement of the pressure preferably takes place with a pressure sensor which is also already present.
  • the determination of the cannula diameter on the basis of a pressure measurement is of inherent inventive significance.
  • the knowledge of the influence of the cannula can be used in an advantageous way with the method for blood pressure measurement known from DE-C-197 46 377, in that the influence of the blood density on the pulse-wave running time is compensated for or corrected so that the blood pressure measurement takes place with a higher degree of accuracy.
  • FIG. 1 the haematocrit (HKT(%)) as a function of the arterial pressure (P art (mmHg)) for various cannulas of differing diameter and differing length,
  • FIG. 2 the haematocrit (HKT(%)) as a function of the arterial pressure (P art (mmHg)) for various cannulas,
  • FIG. 3 the haematocrit (HKT(%)) as a function of the arterial pressure (P art (mmHg)) for various values of the blood flow with a first cannula
  • FIG. 4 the haematocrit (HKT(%)) as a function of the arterial pressure (P art (mmHg)) for various values of the blood flow with a second cannula,
  • FIG. 5 the haematocrit (HKT(%)) as a function of the arterial pressure (P art (mmHg)) for various values of the blood flow with a third cannula
  • FIG. 6 an example of embodiment of an extracorporeal blood treatment apparatus with a device for determining the haematocrit and/or blood volume in a simplified diagrammatic representation.
  • FIG. 1 shows the relationship between the haematocrit (HKT(%)) of the blood and the pressure in the arterial blood lime of the extracorporeal circuit with a constant blood pumping rate BPR of 250 ml/min. for seven different dialysis cannulas, which differ from one another in diameter and length.
  • the cannula with the designation V-711 has a diameter of 1.5 mm and a length of 15 mm.
  • the other cannulas are correspondingly designated in FIG. 1 . It can be seen in FIG. 1 that the relationship between haematocrit and arterial pressure is not linear. It can however be described to a good approximation by a second-order polynomial.
  • the relationship between haematocrit and pressure depends markedly on the diameter of the cannulas.
  • the influence of the length of the cannulas, on the other hand, is relatively small. This can therefore be neglected to a good approximation.
  • the relationship is grouped unequivocally according to the diameter of the cannulas, i.e. 1.5, 1.6 and 1.8 mm. Due to the marked dependence of the relationship on the diameter of cannulas, the measurement of the pressure for the determination of the haematocrit or blood volume without a knowledge of the cannula diameter leads to inaccurate results.
  • FIG. 2 shows the relationship of haematocrit and arterial pressure of a second measurement series with a blood flow rate BPR of 250 ml/min.
  • BPR blood flow rate
  • FIG. 3 shows the relationship between haematocrit (HKT(%)) and arterial pressure (P art (mmHg)) in the case of a needle with a diameter of 1.8 mm and a length of 20 min for a large number of blood flows BPR between 100 ml/min. and 550 mm/min.
  • the relationship is not linear. It can however again be described to a good approximation by a second-order polynomial.
  • the curves for different blood flows exhibit a similar gradient. Since the dependence of the blood flow, i.e.
  • the blood pumping rate is essentially expressed by the fact that the curves are displaced parallel to the x-axis and that the displacement is dependent on the diameter of the needle, the needle diameter can be determined unequivocally.
  • the diameter of the cannula can be detected without knowledge of the haematocrit. The detection takes place via measurement of the pressure difference with two different blood flows, i.e. blood pumping rates, whereby typical values lie between 130 ml/min. and 310 ml/min.
  • FIGS. 4 and 5 show the groups of curves of a needle with a diameter of 1.6 mm and a length of 20 mm and respectively a needle with a diameter of 1.5 mm and length of 15 mm.
  • the following table shows the pressure difference ⁇ P art (mmHg) for the three cannulas of differing diameter (1.8, 1.6 and 1.5 min) with a haematocrit HKT of 30 and 40%.
  • the measurement magnitudes can be grouped into the value ranges 70-90 mmHg for a cannula diameter of 1.8 mm, 100 to 120 mmHg for a cannula diameter of 1.6 min and 130 to 150 mmHg for a cannula diameter of 1.5 mm.
  • FIG. 6 shows the essential components of an extracorporeal blood treatment apparatus together with a device for determining the haematocrit and/or blood volume in a simplified diagrammatic representation.
  • the dialysis apparatus has a dialyser 1 , which is divided by a semipermeable membrane 2 into a blood chamber 3 and a dialysis-fluid chamber 4 .
  • An arterial blood line 5 leads to the inlet of blood chamber 3 , a peristaltic blood pump 6 being connected into said arterial blood line.
  • a venous blood line 7 leads off from blood chamber 3 , a drip chamber 8 being connected into said venous blood line.
  • cannulas 5 a, 7 a which are jabbed into the patient.
  • the arterial and venous blood line are a component of a flexible-tube line system designed to be disposable.
  • Fresh dialysis fluid is prepared in a dialysis-fluid source 9 .
  • a dialysis-fluid supply line 10 leads from dialysis-fluid source 9 to an inlet of dialysis-fluid chamber 4 of the dialyser, whilst a dialysis-fluid discharge line 11 leads from the outlet of the dialysis-fluid chamber to a drain 12 .
  • the dialysis apparatus also has further components, e.g. a balancing device and an ultrafiltration device etc., which however are not represented for the sake of better clarity.
  • the central control unit which is a component of the dialysis apparatus, is not represented.
  • the arterial pressure in arterial blood line 5 is monitored upstream of blood pump 6 and the venous pressure in the venous blood line is monitored downstream of drip chamber 8 in the dialysis apparatus.
  • an arterial pressure sensor 13 is provided in arterial blood line 5 and a venous pressure sensor 14 is provided in venous blood line 7 .
  • the device for determining the haematocrit and/or blood volume has arterial pressure sensor 13 already available in the dialysis apparatus as well as a memory and evaluation unit 15 .
  • Memory and evaluation unit 15 receives the pressure signal of arterial pressure sensor 13 via a data line 16 .
  • the memory and evaluation unit can receive the pressure signal of a venous pressure sensor 14 via a data line 17 .
  • Data line 17 is shown by a dashed line in FIG.
  • memory and evaluation unit 15 is connected to blood pump 6 via a data line 18 .
  • a blood pump signal proportional to the blood pumping rate is transmitted via data line 18 .
  • the curve groups represented in FIGS. 3-5 which describe the relationship between haematocrit and arterial pressure, are stored in the memory and evaluation unit.
  • the memory and evaluation unit operates as follows.
  • the cannula diameter in which the blood pumping rate is varied, is first determined in an initial measurement during the dialysis treatment, whereby the arterial pressures P art1 and P art2 are measured at two predetermined blood pumping rates BPR of, for example, 310 and 130 mm ( FIG. 3 ).
  • the value ranges from 70 to 90, 100 to 120 and 130 to 150 mmHg characteristic of the cannula diameter, which are described above.
  • the memory and evaluation unit performs an assignment between the measured pressure difference ⁇ P art and the stored value ranges. Since the measured pressure difference ⁇ P art lies here in the value range between 70-90 mmHg, the memory and evaluation unit assumes that the cannula has a diameter of 1.8 mm ( FIG. 3 ).
  • the memory and evaluation unit carries out a selection between the different curve groups ( FIGS. 3-5 ), which respectively describe the relationship of haematocrit and arterial pressure for the respective needle diameter.
  • the memory and evaluation unit selects here the group of curves according to FIG. 3 , which are representative of the present needle diameter of 1.8 mm.
  • the memory and evaluation unit determines from the appropriate curve group, with a high degree of accuracy, the appropriate haematocrit in dependence on the blood pumping rate BPR(t) taking account of the diameter of the employed cannula, without the diameter of the used cannula needing to be inputted manually. If, for example, an arterial pressure of 100 mmHg is measured with the arterial pressure sensor, a haematocrit of approx. 33% results with a blood pumping rate of 310 mm ( FIG. 3 ). With decreasing blood pumping rate, the haematocrit increases according to the curve group.
  • the determination of the blood volume takes place after the haematocrit has been ascertained.
  • the memory and evaluation unit can determine RBV(t) relative to this time.
  • the above equation can also be used for two arbitrary times t 0 and t 0 if to does not coincide with the start of the treatment and RBV (t o ) is thus not necessarily 1. If RBV (t o ) is not known, the memory and evaluation unit can however determine relative changes in RBV according to the above equation compared with a value of RBV (t o ) of 1.
US10/507,033 2002-03-07 2003-01-09 Method and device for determining the hematocrit and/or blood volume Abandoned US20050202397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/717,812 US7780620B2 (en) 2002-03-07 2007-03-13 System and method for determining the hematocrit and/or blood volume

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10210009A DE10210009B3 (de) 2002-03-07 2002-03-07 Verfahren zur Bestimmung des Hämatokrit und/oder Blutvolumens und Vorrichtung zur extrakorporalen Blutbehandlung mit einer Einrichtung zur Bestimmung des Hämatokrit und/oder Blutvolumens
DE10210009.8 2002-03-07
PCT/EP2003/000126 WO2003074109A1 (fr) 2002-03-07 2003-01-09 Procede et dispositif de determination du taux d'hematocrite et/ou du volume sanguin

Publications (1)

Publication Number Publication Date
US20050202397A1 true US20050202397A1 (en) 2005-09-15

Family

ID=27771078

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/507,033 Abandoned US20050202397A1 (en) 2002-03-07 2003-01-09 Method and device for determining the hematocrit and/or blood volume
US11/717,812 Expired - Fee Related US7780620B2 (en) 2002-03-07 2007-03-13 System and method for determining the hematocrit and/or blood volume

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/717,812 Expired - Fee Related US7780620B2 (en) 2002-03-07 2007-03-13 System and method for determining the hematocrit and/or blood volume

Country Status (9)

Country Link
US (2) US20050202397A1 (fr)
EP (1) EP1480695B1 (fr)
JP (1) JP4304080B2 (fr)
CN (1) CN100441244C (fr)
AT (1) ATE387921T1 (fr)
AU (1) AU2003208321A1 (fr)
DE (2) DE10210009B3 (fr)
ES (1) ES2298499T3 (fr)
WO (1) WO2003074109A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070061089A1 (en) * 2005-09-13 2007-03-15 Honeywell International Inc. Multiple wireless sensors for dialysis application
US20100096974A1 (en) * 2008-10-22 2010-04-22 General Electric Company Blue-green and green phosphors for lighting applications
US20130303964A1 (en) * 2012-05-10 2013-11-14 Fresenius Medical Care Deutschland Gmbh Apparatus for extra-corporeal blood treatment and method of determining a blood flow rate for an extra-corporeal blood treatment apparatus
US20140263065A1 (en) * 2013-03-13 2014-09-18 Keith Samolyk Method Of Controlling Blood Reservoir Volume And Flow In An Extracorporeal Blood Circulation System

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321099A1 (de) * 2003-05-09 2004-11-25 Cgs Sensortechnik Gmbh Vorrichtung zur Druckmessung
DE102006032815A1 (de) * 2006-07-14 2008-01-17 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Überwachung eines extrakorporalen Blutkreislaufs
DE102007024463A1 (de) * 2007-05-25 2008-11-27 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Überprüfung der korrekten Ankopplung einer Zugabevorrichtung an ein Therapiegerät
DE102008015832B4 (de) * 2008-03-27 2013-08-22 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Überwachung eines Gefäßzugangs sowie extrakorporale Blutbehandlungsvorrichtung mit einer Vorrichtung zur Überwachung eines Gefäßzugangs
EP3178387A1 (fr) * 2009-06-26 2017-06-14 Gambro Lundia AB Dispositifs, produit-programme informatique et procédé d'extraction de données
JP5548001B2 (ja) * 2010-03-25 2014-07-16 日機装株式会社 血液浄化装置
EP2714130A1 (fr) * 2011-05-31 2014-04-09 Gambro Lundia AB Procédé et dispositif de détection de configurations d'un circuit sanguin extracorporel, appareil comprenant le dispositif de détection, et programme informatique destiné à réaliser le procédé
JP5914491B2 (ja) * 2011-08-22 2016-05-11 日機装株式会社 液体流路の圧力検出装置
WO2013173356A1 (fr) * 2012-05-14 2013-11-21 Gauss Surgical Système et méthodes pour gérer une perte de sang chez un patient
US9707326B2 (en) * 2012-07-25 2017-07-18 3M Innovative Properties Company Mobile system for separating donor blood by means of gravitational force
DE102014018072A1 (de) * 2014-12-08 2016-06-09 Fresenius Medical Care Deutschland Gmbh Dialysemaschine
CN105327411B (zh) * 2015-11-26 2018-07-31 曾宪林 一种便携式微型生命抢救机
CN105326611A (zh) * 2015-11-26 2016-02-17 曾宪林 一种可调压式微型生命抢救机
JP6805637B2 (ja) * 2016-08-26 2020-12-23 コニカミノルタ株式会社 ヘマトクリット値の測定方法、ヘマトクリット値の測定装置、被測定物質の量の測定方法、および被測定物質の量の測定装置
US11204356B2 (en) 2017-01-30 2021-12-21 Daxor Corp. Blood volume analysis with volume-aware blood component measures and treatment
CN112807503A (zh) * 2020-07-28 2021-05-18 高艳云 应用数值分析的透析模式调节系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964847A (en) * 1986-10-17 1990-10-23 Baxter International Inc. Method and apparatus for estimating hematocrit in a blood constituent processing system
US6061590A (en) * 1997-06-03 2000-05-09 Transonic Systems, Inc. Method and apparatus for predicting intradialytic morbid events through the monitoring of a central blood volume
US6217539B1 (en) * 1996-11-30 2001-04-17 Fresenius Medical Care Deutschland Gmbh Method of in-vivo determination of hemodialysis parameters and a device for carrying out the method
US20030083901A1 (en) * 2001-06-22 2003-05-01 Bosch Juan P. Process for providing dialysis and other treatments
US6561997B1 (en) * 1999-04-23 2003-05-13 The Regents Of The University Of Michigan Extracorporeal fluid circuit and related methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469593A (en) * 1982-03-10 1984-09-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Blood purification apparatus
GB8609582D0 (en) * 1986-04-18 1986-05-21 Said Ismail Hakky Blood loss measurement
DE4024434A1 (de) * 1990-08-01 1992-02-13 Fresenius Ag Vorrichtung zur ultrafiltrationskontrolle bzw. ultrafiltrationsregelung bei blutreinigungsverfahren
SE507563C2 (sv) * 1993-11-15 1998-06-22 Swelab Instrument Ab Anordning för bestämning av blodets sänkningsreaktion
JP3287788B2 (ja) * 1996-10-07 2002-06-04 株式会社脳機能研究所 脳波測定用ヘッドギア
DE19746377C1 (de) * 1997-10-21 1999-07-01 Fresenius Medical Care De Gmbh Blutbehandlungsvorrichtung mit einer Einrichtung zur kontinuierlichen Überwachung des Blutdrucks des Patienten
US6193681B1 (en) * 1998-09-14 2001-02-27 American Immuno Tech, Llc. Septicemia prevention and treatment system
US6387324B1 (en) * 1999-09-30 2002-05-14 Therox, Inc. Apparatus and method for blood oxygenation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964847A (en) * 1986-10-17 1990-10-23 Baxter International Inc. Method and apparatus for estimating hematocrit in a blood constituent processing system
US6217539B1 (en) * 1996-11-30 2001-04-17 Fresenius Medical Care Deutschland Gmbh Method of in-vivo determination of hemodialysis parameters and a device for carrying out the method
US6061590A (en) * 1997-06-03 2000-05-09 Transonic Systems, Inc. Method and apparatus for predicting intradialytic morbid events through the monitoring of a central blood volume
US6561997B1 (en) * 1999-04-23 2003-05-13 The Regents Of The University Of Michigan Extracorporeal fluid circuit and related methods
US20030083901A1 (en) * 2001-06-22 2003-05-01 Bosch Juan P. Process for providing dialysis and other treatments

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070061089A1 (en) * 2005-09-13 2007-03-15 Honeywell International Inc. Multiple wireless sensors for dialysis application
US7219021B2 (en) * 2005-09-13 2007-05-15 Honeywell International Inc. Multiple wireless sensors for dialysis application
US20100096974A1 (en) * 2008-10-22 2010-04-22 General Electric Company Blue-green and green phosphors for lighting applications
US20130303964A1 (en) * 2012-05-10 2013-11-14 Fresenius Medical Care Deutschland Gmbh Apparatus for extra-corporeal blood treatment and method of determining a blood flow rate for an extra-corporeal blood treatment apparatus
US10183105B2 (en) * 2012-05-10 2019-01-22 Fresenius Medical Care Deutschland Gmbh Apparatus for extra-corporeal blood treatment and method of determining a blood flow rate for an extra-corporeal blood treatment apparatus
US20140263065A1 (en) * 2013-03-13 2014-09-18 Keith Samolyk Method Of Controlling Blood Reservoir Volume And Flow In An Extracorporeal Blood Circulation System

Also Published As

Publication number Publication date
JP4304080B2 (ja) 2009-07-29
CN100441244C (zh) 2008-12-10
ATE387921T1 (de) 2008-03-15
US7780620B2 (en) 2010-08-24
AU2003208321A1 (en) 2003-09-16
EP1480695A1 (fr) 2004-12-01
DE50309315D1 (de) 2008-04-17
ES2298499T3 (es) 2008-05-16
JP2005518876A (ja) 2005-06-30
US20080015486A1 (en) 2008-01-17
CN1638825A (zh) 2005-07-13
EP1480695B1 (fr) 2008-03-05
WO2003074109A1 (fr) 2003-09-12
DE10210009B3 (de) 2004-01-08

Similar Documents

Publication Publication Date Title
US7780620B2 (en) System and method for determining the hematocrit and/or blood volume
US6533747B1 (en) Extracorporeal circuit for peripheral vein fluid removal
US7341568B2 (en) Method and device for determining blood volume during an extracorporeal blood treatment
US7632411B2 (en) Method for detecting filter clogging by using pressure information, apparatus for monitoring filter clogging and bed-side system
US7131957B2 (en) Safety device for a blood treatment machine and a method of increasing the safety of a blood treatment machine
US8858486B2 (en) Method and arrangement for determining the recirculation in a fistula or the cardiopulmonary recirculation, and a blood treatment device comprising a device for determining the fistula recirculation or the cardiopulmonary recirculation part
US8216478B2 (en) Method and apparatus for monitoring the supply of replacement fluid during an extracorporeal treatment of blood
US6623443B1 (en) Method and device for the detection of stenosis in extra-corporeal blood treatment
US9616164B2 (en) Device and method for detecting the recirculation during an extracorporeal blood treatment
US8574183B2 (en) Method and device for monitoring a blood treatment unit of an extracorporeal blood treatment device
CN108697841B (zh) 具有评估和控制单元的用于体外的血液治疗的仪器
US20120298581A1 (en) Device and method for detecting an operating state of an extracorporeal blood treatment
US9119922B2 (en) Apparatus and method for identifying a tubing system for an extracorporeal blood treatment device
JP2005261558A (ja) 血液透析装置の脱血圧測定システム
US20210162110A1 (en) Systems and methods for oxygenator performance evaluation
JP2006304917A (ja) 実血流量測定システムおよび方法
JP2022502151A (ja) 体外血液処理装置及び体外血液処理装置内の圧力を監視する方法
EP4353275A1 (fr) Appareil de traitement extracorporel du sang
US20230173154A1 (en) Dialysis apparatus having an apparatus for determining at least two hemodialysis parameters
JP2004329746A (ja) 血液透析装置の実血流量測定システム
JP2004329747A (ja) 血液透析装置のシャント再循環率算出システム

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION)