US20050191500A1 - Fade protector - Google Patents

Fade protector Download PDF

Info

Publication number
US20050191500A1
US20050191500A1 US11/121,542 US12154205A US2005191500A1 US 20050191500 A1 US20050191500 A1 US 20050191500A1 US 12154205 A US12154205 A US 12154205A US 2005191500 A1 US2005191500 A1 US 2005191500A1
Authority
US
United States
Prior art keywords
coating
canceled
compatible
film
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/121,542
Inventor
James Enniss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPFilms Inc
Original Assignee
CPFilms Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPFilms Inc filed Critical CPFilms Inc
Priority to US11/121,542 priority Critical patent/US20050191500A1/en
Publication of US20050191500A1 publication Critical patent/US20050191500A1/en
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. ABL PATENT SECURITY AGREEMENT Assignors: CPFILMS INC., FLEXSYS AMERICA L.P., SOLUTIA INC.
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. TERM LOAN PATENT SECURITY AGREEMENT Assignors: CPFILMS INC., FLEXSYS AMERICA L.P., SOLUTIA INC.
Assigned to SOLUTIA INC., CPFILMS INC., FLEXSYS AMERICA L.P. reassignment SOLUTIA INC. RELEASE OF ABL SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0495 Assignors: CITIBANK, N.A.
Assigned to CPFILMS INC., SOLUTIA INC., FLEXSYS AMERICA L.P. reassignment CPFILMS INC. RELEASE OF TERM LOAN SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0697 Assignors: CITIBANK, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G1/00Mirrors; Picture frames or the like, e.g. provided with heating, lighting or ventilating means
    • A47G1/06Picture frames
    • A47G1/0605Picture frames made from extruded or moulded profiles, e.g. of plastic or metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/02Mountings for pictures; Mountings of horns on plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G1/00Mirrors; Picture frames or the like, e.g. provided with heating, lighting or ventilating means
    • A47G1/06Picture frames
    • A47G2001/0677Picture frames having means for fixing the picture or backing to the frame, e.g. clips, nails or the like
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31794Of cross-linked polyester

Definitions

  • This invention relates to a fade protector which is for use in a glazed frame to protect documents of pictures displayed in the frame from fading caused by exposure to light, and to an anti-glare coating which is particularly useful for a fade protector.
  • the protection of framed documents or pictures from the ravages of light typically involves the use of conservation glass which is expensive. More recently the present assignee has introduced a Do-it-yourself (DIY) framing film that blocks out harmful UV radiation. Such films reduce fading and control glare when applied to the glass in picture frames.
  • the film comprises a TJV absorbing PET (polyethylene terephthalate) layer about 4 mil (0.1 mm) thick having an antiglare hard coal on one side and a low tack adhesive covered with a release liner on the other side.
  • the glass is removed from the frame and the front of the glass is sprayed with water, the release liner is removed from the film, and the adhesive layer is also sprayed with water and the wet film is applied to the glass.
  • the water is squeezed away by means of a sponge or paper towel wiped gently over the film and the whole dried.
  • a fade protector for incorporation into a glazed frame, the protector comprising a transparent LW absorbing polymeric film layer having a thickness such that the film in use remains substantially flat against the glazing when clamped between the frame and glazing, the film layer being coated on one side with a transparent anti-glare hard coating.
  • the polymeric film may comprise one of polycarbonate, acrylic, polypropylene and PET the preferred film being PET.
  • Glazing includes any suitable transparent sheet material for insertion into a surrounding frame for covering a document, picture etc. and examples of which include glass, acrylic sheet, polyester sheet, polycarbonate sheet.
  • the UV absorbing PET film is as disclosed in U.S. Pat. No. 6,221,112 and blocks up to 99% of UV-A (320-0.400 nm) and UV-B (280-320 nm) rays.
  • the thickness of the PET film increase with the size of the frame.
  • the thickness T of the film is related to the diagonal dimension D of the frame such that D/T lies between 2 ⁇ 1 ⁇ 10 so that 3 for example:
  • the anti glare hard coating is preferably a UV cured acrylate resin coating having a nanoparticle dispersion therein which has a 60 degree gloss of 80-100 gloss units and preferably 85-95 gloss units, a haze of less than 12% and preferably 9-11% and scratch resistance to 0000 steel wool.
  • the anti glare coating has a surface structure that scatters light so as to reduce unwanted reflection but the bulk of the coating is clear with low or no haze so that the image of the picture or document does not suffer from excessive “greying out” or loss of contrast.
  • the coating is about 4 microns in thickness.
  • the other surface of the polymeric film (away from the anti-glare hard coat) may be masked by a release liner which protects the film against scratching or marking prior to use and is-also low tack and easily peelable from the film. If the removal of the film causes a build up in static electricity on the film which attracts dirt, dust etc. then the tacky liner may be used as a cleaner to remove the dirt particles from the newly exposed surface on the film and/or the glazing surface.
  • the release liner preferably comprises a polyethylene coated paper.
  • a glazed frame for mounting a picture, document etc and which comprises a frame, a sheet of glazing mounted in the frame, a backing board holding the glass and picture in the frame, and a fade protector clamped between a portion of the frame and the exposed surface of the glass, the fade protector comprising a transparent UV absorbing polymeric film layer having a thickness such that the protector in use remains substantially flat against the glazing when clamped between the frame and glazing,
  • the frame may be provided with a resilient foam layer for biasing the glazing towards the protector.
  • Another aspect of the invention provides a method of protecting a glazed frame mounted document from the ravages of light using a fade protector comprising a transparent UV absorbing polymeric film layer having a thickness such that the film in use remains substantially flat against the glazing when clamped between a portion of the frame and glazing, the film layer being coated on its exposed side in use with a transparent anti-glare hard coating, wherein in said method the glazing is removed from the glazed frame, the fade protector is placed against a surface of the glazing which is then re-assembled in the frame with the fade protector clamped adjacent the external surface of the glazing with the anti-glare coating facing outwardly.
  • Yet still another invention provides a method of protecting a glazed frame mounted document from the ravages of light using a fade protector comprising a transparent UV absorbing polymeric film layer having a thickness such that the film in use remains substantially flat against the gluing when clamped between the frame and glazing, the polymeric film being coated on its exposed side in use with a transparent anti-glare hard coating and its other side is masked by a release liner which is low tack and easily peelable from the film, wherein in said method the glazing is removed from the glazed frame, the mask is removed from the film and its tacky surface is used to clean the surface(s) of either the glazing or film, the glazing then being re-assembled in the frame with the fade protector clamped adjacent the external surface of the glazing with the anti-glare coating facing outwardly.
  • a fade protector comprising a transparent UV absorbing polymeric film layer having a thickness such that the film in use remains substantially flat against the gluing when clamped between the frame and glazing, the polymeric film being coated on its
  • a light curable anti glare coating composition for coating onto a transparent substrate comprising a dispersion of nanoparticles of a mineral oxide suspended in a mixture of at least one acrylate-functional resin that provides the desired coating hardness and that may or may not be compatible with the nanoparticle dispersion (compatible here means that the resin or other components can be added to the dispersion or vice versa without causing the nanoparticles to aggregate or flocculate), at least one compatible solvent, at least one incompatible solvent that has a lower volatility than the compatible solvent, and a surfactant that has poor or limited compatibility with the dispersion.
  • a sufficiently high proportion of compatible solvents must be used to maintain the stability of the dispersion.
  • the mineral oxide is preferably a silica that has a polar surface and which is compatible with polar solvents such as alcohols eg IPA and acids eg acrylic acid, and incompatible with non-polar aromatic solvents such as toluene and xylene, and not very compatible with fluorinated surfactants.
  • polar solvents such as alcohols eg IPA and acids eg acrylic acid
  • non-polar aromatic solvents such as toluene and xylene
  • coatings that are stable solutions/dispersions prior to application but that undergo a limited and controlled destabilization of the nanoparticle dispersion at the surface of the coating together with a concentrating of the surfactant during oven drying and/or UV curing such that a structure and roughness is produced in the surface region of the coating that scatters light while the bulk of the coating forms a film in which the dispersion remains stable and so remains clear, transparent and with low or no haze.
  • This scattering results in lower specular reflection and higher diffuse reflection and so reduces measured gloss and reduces unwanted glare and reflection.
  • the structure also scatters light in transmission and so measured haze is lower than for a film without the surface structure because the scattering effect is confined to the surface the net haze increase is less than for a conventional anti-glare coating in which the particles are dispersed evenly throughout the coating.
  • An anti-glare coating according to the present invention may be tailored to achieve varying level of gloss and haze by concentration of nanoparticles and by choice of resins, solvents, and surfactant in such a way that the roughness and thickness of the surface layer changes but the haze and scatter still remain a surface effect.
  • Yet another aspect of the present invention provides a transparent composite having a transparent substrate coated with an anti-glare layer comprising a dispersion of nanoparticlea in a cured acrylate-based resin, the coating a having a desired haze value and a desired 60 degree gloss value such that:
  • the haze ⁇ 12% and the Gloss value lies between 85-95 gloss units.
  • nanoparticles that have been surface treated so that the particles are compatible with non polar solvents and incompatible with polar solvents.
  • FIG. 1 is a cross-section through a UV protector according to the present invention
  • FIG. 2 is a cross-section through a picture frame showing the UV protector in use
  • a fade protector 10 comprising a suitable transparent polymeric film layer 11 including a TJV absorber.
  • a suitable transparent film is a polyester film, preferably a polyethyleneterephtbalate (PET) film treated with a UV absorber as described in U.S. Pat. No. 6,221,128 so as to absorb up to 99% of UV radiation.
  • a suitable PET film is DuPont Teijin Films' Melinex 454 or LIX 112.
  • the PET film layer is provided with an anti glare coating 12 on one side thereof and with a paper based mask 13 on the other side thereof
  • the mask 13 is preferably release liner having a low tack adhesive on one side which in use adheres to the back surface of the PET layer to protect the film from scratching or marking prior to use.
  • a suitable release liner is a polyethylene coated paper with a low tack adhesive thereon and a suitable product is available from Felix Schoeller Inc. of Pulaski, N.Y. under the designation 861b HDPE release liner,
  • the anti-glare coating may also serve as a hard coat or scratch resistant layer and comprises a dispersions of nanoparticles in a UV-cured polymeric resin coating having a thickness of about 4 microns and having the following typical physical properties:
  • the Gloss was measured using a Byk Gardner Glossmeter
  • the haze was measured using a Hunter Laboratories Ultrascan XE and calculated according to (Diffuse Transmittance/Total Transmittance) ⁇ 100 over a light range of 380-780 nm.
  • the abrasion test is a subjective test in which the coating is rubbed with steel wool and viewed for haze.
  • a glazed frame 23 for mounting a picture 21 , document, photograph etc. which requires protection from light.
  • the glazing 22 which covers the picture 21 within the frame in this example is a sheet of glass and has a fade protector 10 placed over the glass.
  • the fade protector 10 is clamped between the edge of the frame and the glass 22 and is held in location by a back board 25 .
  • the thickness of the PET should be sufficient to hold the PET film against the glass across substantially the whole area of the film.
  • the thickness of the PET layer 11 will vary according to the size of the frame 23 .
  • the PET film is produced in standard thicknesses of 4, 7 & 10 mil (100, 175, 250 microns) and the thickness T of the film used is a compromise of what would be an ideal thickness for a particular diagonal dimension D of a frame and what standard materials are available.
  • the film thickness is given by the formula D/T lies in range 2 ⁇ 10 3 .
  • the fade protector 10 is placed over the glazing 22 with the anti-glare coating 12 facing outwards.
  • the fade protector as well as protecting the picture 21 from LW radiation will physically protect the glazing and (if the glazing is glass) should the glass crack or shatter will help hold the glass safely in the frame until a repair can be carried out.
  • a glazed frame 23 is dismantled to remove the glass prior to the application of the fade protector 10 .
  • the release liner 13 is removed from the PET layer 11 . If the PET liner has built up a static charge and attracts dirt the tacky side of the release liner 13 may then be used to remove dirt, particles etc from either or both the PET and the glass surface before assembly.
  • the fade protector is then laid over the glass and the glass reassembled in the frame. The picture is then held in place by a backing board 25 and clips 26 .
  • a thin layer of resilient foam material may be placed at the back of the frame to bias the glass towards the fade protector.
  • the anti glare coating is formed from a UV cured acrylate based resin which contains a dispersion of nanoparticles of mineral oxide, for a transparent and colorless coating silica is preferred but other metal oxides may be used for tinted coatings (see for example the use of metal oxides disclosed in the applicants U.S. Pat. No. 6,440,551).
  • the particle size should be less than 0.1 microns.
  • the coating is formed from a liquid composition which is applied to the surface of the PET film by a reverse gravure process.
  • the coating composition comprises: Silica 15-22% Acrylic resin 43-57% Compatible solvent 16-24% Incompatible solvent 6-12% Surfacant 0.05-0.2%
  • the percentabes of weight percentages of the coating mixture are The percentabes of weight percentages of the coating mixture.
  • a suitable silica dispersion is Highlink 502-31 available from Clariant
  • the acrylate resin is preferably a mixture of 0-7% hexanedioldiacrylate and 40-50% of a penta aerythritol tetraacrylate and triacrylate mixture. The percentages are based on the total composition Suitable materials are respectively Sartomer SR-238 and Sartomer SR-295 available from Sartomer (Total).
  • the compatible solvents are preferably isopropyl alcohol and/or acrylic acid in the ratios 0:1 to 1:0.
  • the incompatible solvents are less volatile than the compatible solvents and preferably comprise Xylene and/or Toluene in the ratios 0.1 to 10
  • a suitable surfactant is Fluorad FC 430 available from 3M Corporation
  • the ingredients for the coating are mixed together with the incompatible solvents being added next to last to the mix with the surfactant being added last.
  • the incompatible solvents and surfactant are added last so that the polar dispersion is not thrown out of the suspension.
  • the final composition is mixed for about 5 minutes and is then stable for storage and use.
  • the clear stable coating composition coats evenly and levels smoothly having no large particles in suspension which may cause streaks and haze bands. After application to the PET film the coating remains stable until the drying and curing stages.
  • the compatible solvents being more volatile migrate to the surface and evaporate faster than the lessvolatile nonpolar solvents.
  • the incompatible surfuctant also migrates to the surface.
  • the action of these migrations causes some of the dispersion to migrate to the surface layer of the coating hence the top surface of the coating becomes increasingly rich in incompatible components and in concentration of nanoparticles
  • the high concentration of nanoparticles in the midst of incompatible solvent and incompatible surfactant causes the nanoparticles to agglomerate and flocculate together at the surface layer of the coating.
  • the surface layer becomes structured and rough on a scale that scatters visible light.
  • the structure at the air/coating interface at the surface of the coating causes scattering of light but the particles remaining in the bulk of the coating remain stably dispersed and do not scatter light.
  • the final cured coating thickness is about 4 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

A light curable anti-glare coating liquid composition for coating onto a transparent substrate, the composition comprising a dispersion of nanoparticles of a mineral oxide suspended in a mixture of an acrylate-functional resin that is compatible with the nanoparticle dispersion, compatible solvent, incompatible solvent that has a lower volatility than the compatible solvent, and a surfactant that has poor or limited compatibility with the dispersion.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a division of my copending U.S. patent applicaion Ser. No. 10/389,083 filed Mar. 15, 2003 for which benefit is claimed under 35 U.S.C. §120.
  • FIELD OF THE INVENTION
  • This invention relates to a fade protector which is for use in a glazed frame to protect documents of pictures displayed in the frame from fading caused by exposure to light, and to an anti-glare coating which is particularly useful for a fade protector.
  • BACKGROUND OF THE INVENTION
  • The protection of framed documents or pictures from the ravages of light typically involves the use of conservation glass which is expensive. More recently the present assignee has introduced a Do-it-yourself (DIY) framing film that blocks out harmful UV radiation. Such films reduce fading and control glare when applied to the glass in picture frames. The film comprises a TJV absorbing PET (polyethylene terephthalate) layer about 4 mil (0.1 mm) thick having an antiglare hard coal on one side and a low tack adhesive covered with a release liner on the other side. The glass is removed from the frame and the front of the glass is sprayed with water, the release liner is removed from the film, and the adhesive layer is also sprayed with water and the wet film is applied to the glass. The water is squeezed away by means of a sponge or paper towel wiped gently over the film and the whole dried.
  • The above system while providing an inexpensive protection from light for the DIY framing market is inconvenient to apply and the present invention seeks to provide a film that is more convenient to apply.
  • STATEMENTS OF THE INVENTION
  • According to-the present invention there is provided a fade protector for incorporation into a glazed frame, the protector comprising a transparent LW absorbing polymeric film layer having a thickness such that the film in use remains substantially flat against the glazing when clamped between the frame and glazing, the film layer being coated on one side with a transparent anti-glare hard coating.
  • The polymeric film may comprise one of polycarbonate, acrylic, polypropylene and PET the preferred film being PET.
  • Glazing includes any suitable transparent sheet material for insertion into a surrounding frame for covering a document, picture etc. and examples of which include glass, acrylic sheet, polyester sheet, polycarbonate sheet.
  • The UV absorbing PET film is as disclosed in U.S. Pat. No. 6,221,112 and blocks up to 99% of UV-A (320-0.400 nm) and UV-B (280-320 nm) rays.
  • The thickness of the PET film increase with the size of the frame. The thickness T of the film is related to the diagonal dimension D of the frame such that D/T lies between 2±1×10 so that3 for example:
      • a) frames<4″×6″ (100 mm×150 mm) use 4 mil thick film (0.10 mm)
      • b) frames from 5″×7″ (125 mm×175 mm) to 11″×14″ (225 mm×350 mm) use 7 mil (0.175 mm) thick film, and
      • c) frames>11″×14″ use 10 mm (0.25 mm) thick film for example 16″×20″.
  • The anti glare hard coating is preferably a UV cured acrylate resin coating having a nanoparticle dispersion therein which has a 60 degree gloss of 80-100 gloss units and preferably 85-95 gloss units, a haze of less than 12% and preferably 9-11% and scratch resistance to 0000 steel wool. The anti glare coating has a surface structure that scatters light so as to reduce unwanted reflection but the bulk of the coating is clear with low or no haze so that the image of the picture or document does not suffer from excessive “greying out” or loss of contrast. The coating is about 4 microns in thickness.
  • The other surface of the polymeric film (away from the anti-glare hard coat) may be masked by a release liner which protects the film against scratching or marking prior to use and is-also low tack and easily peelable from the film. If the removal of the film causes a build up in static electricity on the film which attracts dirt, dust etc. then the tacky liner may be used as a cleaner to remove the dirt particles from the newly exposed surface on the film and/or the glazing surface. The release liner preferably comprises a polyethylene coated paper.
  • According to another aspect of the invention there is provided a glazed frame for mounting a picture, document etc and which comprises a frame, a sheet of glazing mounted in the frame, a backing board holding the glass and picture in the frame, and a fade protector clamped between a portion of the frame and the exposed surface of the glass, the fade protector comprising a transparent UV absorbing polymeric film layer having a thickness such that the protector in use remains substantially flat against the glazing when clamped between the frame and glazing,
  • The frame may be provided with a resilient foam layer for biasing the glazing towards the protector.
  • Another aspect of the invention provides a method of protecting a glazed frame mounted document from the ravages of light using a fade protector comprising a transparent UV absorbing polymeric film layer having a thickness such that the film in use remains substantially flat against the glazing when clamped between a portion of the frame and glazing, the film layer being coated on its exposed side in use with a transparent anti-glare hard coating, wherein in said method the glazing is removed from the glazed frame, the fade protector is placed against a surface of the glazing which is then re-assembled in the frame with the fade protector clamped adjacent the external surface of the glazing with the anti-glare coating facing outwardly.
  • Yet still another invention provides a method of protecting a glazed frame mounted document from the ravages of light using a fade protector comprising a transparent UV absorbing polymeric film layer having a thickness such that the film in use remains substantially flat against the gluing when clamped between the frame and glazing, the polymeric film being coated on its exposed side in use with a transparent anti-glare hard coating and its other side is masked by a release liner which is low tack and easily peelable from the film, wherein in said method the glazing is removed from the glazed frame, the mask is removed from the film and its tacky surface is used to clean the surface(s) of either the glazing or film, the glazing then being re-assembled in the frame with the fade protector clamped adjacent the external surface of the glazing with the anti-glare coating facing outwardly.
  • According to another aspect of the present invention there is provide a light curable anti glare coating composition for coating onto a transparent substrate comprising a dispersion of nanoparticles of a mineral oxide suspended in a mixture of at least one acrylate-functional resin that provides the desired coating hardness and that may or may not be compatible with the nanoparticle dispersion (compatible here means that the resin or other components can be added to the dispersion or vice versa without causing the nanoparticles to aggregate or flocculate), at least one compatible solvent, at least one incompatible solvent that has a lower volatility than the compatible solvent, and a surfactant that has poor or limited compatibility with the dispersion. Where an incompatible acrylate-functional resin is used a sufficiently high proportion of compatible solvents must be used to maintain the stability of the dispersion.
  • The mineral oxide is preferably a silica that has a polar surface and which is compatible with polar solvents such as alcohols eg IPA and acids eg acrylic acid, and incompatible with non-polar aromatic solvents such as toluene and xylene, and not very compatible with fluorinated surfactants.
  • By suitable choice of compatible and incompatible solvents and their relative volatility and-suitable method of preparation it is possible to prepare coatings that are stable solutions/dispersions prior to application but that undergo a limited and controlled destabilization of the nanoparticle dispersion at the surface of the coating together with a concentrating of the surfactant during oven drying and/or UV curing such that a structure and roughness is produced in the surface region of the coating that scatters light while the bulk of the coating forms a film in which the dispersion remains stable and so remains clear, transparent and with low or no haze. This scattering results in lower specular reflection and higher diffuse reflection and so reduces measured gloss and reduces unwanted glare and reflection. The structure also scatters light in transmission and so measured haze is lower than for a film without the surface structure because the scattering effect is confined to the surface the net haze increase is less than for a conventional anti-glare coating in which the particles are dispersed evenly throughout the coating.
  • An anti-glare coating according to the present invention may be tailored to achieve varying level of gloss and haze by concentration of nanoparticles and by choice of resins, solvents, and surfactant in such a way that the roughness and thickness of the surface layer changes but the haze and scatter still remain a surface effect.
  • Yet another aspect of the present invention provides a transparent composite having a transparent substrate coated with an anti-glare layer comprising a dispersion of nanoparticlea in a cured acrylate-based resin, the coating a having a desired haze value and a desired 60 degree gloss value such that:
    • Gloss=113 (2.32× Haze) where the gloss value lies between 20-90 gloss units
  • Preferably the haze <12% and the Gloss value lies between 85-95 gloss units.
  • It would be possible to use nanoparticles that have been surface treated so that the particles are compatible with non polar solvents and incompatible with polar solvents.
  • Again by suitable choice of resins that are compatible with the nanoparticte dispersions (and surfactants that are not very compatible with the dispersion) and by choice of solvents and their volatility such that the incompatible solvent(s) were less volatile than the compatible solvents, it would be possible to generate similar films with surface structures that scatter light.
  • Other suitable nanoparticles are described in U.S. Pat. No. 6,440,551 may also be used
  • Also according to yet another the invention there is provided a polymeric film coated with the anti-glare coating according as is disclosed herein.
  • DESCRIPTION OF THE DRAWINGS
  • The invention will be described by way of example and with reference to the accompanying drawings in which:
  • FIG. 1 is a cross-section through a UV protector according to the present invention,
  • FIG. 2 is a cross-section through a picture frame showing the UV protector in use
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to FIG. 1 there is shown a fade protector 10 comprising a suitable transparent polymeric film layer 11 including a TJV absorber. A suitable transparent film is a polyester film, preferably a polyethyleneterephtbalate (PET) film treated with a UV absorber as described in U.S. Pat. No. 6,221,128 so as to absorb up to 99% of UV radiation. A suitable PET film is DuPont Teijin Films' Melinex 454 or LIX 112. The PET film layer is provided with an anti glare coating 12 on one side thereof and with a paper based mask 13 on the other side thereof
  • The mask 13 is preferably release liner having a low tack adhesive on one side which in use adheres to the back surface of the PET layer to protect the film from scratching or marking prior to use. A suitable release liner is a polyethylene coated paper with a low tack adhesive thereon and a suitable product is available from Felix Schoeller Inc. of Pulaski, N.Y. under the designation 861b HDPE release liner,
  • The anti-glare coating may also serve as a hard coat or scratch resistant layer and comprises a dispersions of nanoparticles in a UV-cured polymeric resin coating having a thickness of about 4 microns and having the following typical physical properties:
    • Haze <12%; more preferably 9-11%
    • Gloss 60 degree gloss 80-100 gloss units, more preferably 85-95 gloss units Scratch resistant to 0000 Steel Wool.
  • The Gloss was measured using a Byk Gardner Glossmeter The haze was measured using a Hunter Laboratories Ultrascan XE and calculated according to (Diffuse Transmittance/Total Transmittance)×100 over a light range of 380-780 nm.
  • The abrasion test is a subjective test in which the coating is rubbed with steel wool and viewed for haze.
  • With reference to FIG. 2. there is shown a glazed frame 23 for mounting a picture 21, document, photograph etc. which requires protection from light. The glazing 22 which covers the picture 21 within the frame in this example is a sheet of glass and has a fade protector 10 placed over the glass. The fade protector 10 is clamped between the edge of the frame and the glass 22 and is held in location by a back board 25. The thickness of the PET should be sufficient to hold the PET film against the glass across substantially the whole area of the film.
  • The thickness of the PET layer 11 will vary according to the size of the frame 23. The PET film is produced in standard thicknesses of 4, 7 & 10 mil (100, 175, 250 microns) and the thickness T of the film used is a compromise of what would be an ideal thickness for a particular diagonal dimension D of a frame and what standard materials are available. The film thickness is given by the formula D/T lies in range 2±×103.
  • For example for standard frame sizes of:
      • a) frames<4″×6″ (100 mm×150 mm) use 4 mil thick Film (0.10 mm)
      • b) frames from 5″×7″ (125 mm×175 mm) to 11″×14″ (225 mm×350 mm) use 7 mil (0.175 mm) thick film, and
      • c) frames >11″×14″ use 10 mil (0.25 mm) thick film for example 16″×20″.
  • The fade protector 10 is placed over the glazing 22 with the anti-glare coating 12 facing outwards. The fade protector as well as protecting the picture 21 from LW radiation will physically protect the glazing and (if the glazing is glass) should the glass crack or shatter will help hold the glass safely in the frame until a repair can be carried out.
  • A glazed frame 23 is dismantled to remove the glass prior to the application of the fade protector 10. The release liner 13 is removed from the PET layer 11. If the PET liner has built up a static charge and attracts dirt the tacky side of the release liner 13 may then be used to remove dirt, particles etc from either or both the PET and the glass surface before assembly. The fade protector is then laid over the glass and the glass reassembled in the frame. The picture is then held in place by a backing board 25 and clips 26. A thin layer of resilient foam material may be placed at the back of the frame to bias the glass towards the fade protector.
  • The anti glare coating is formed from a UV cured acrylate based resin which contains a dispersion of nanoparticles of mineral oxide, for a transparent and colorless coating silica is preferred but other metal oxides may be used for tinted coatings (see for example the use of metal oxides disclosed in the applicants U.S. Pat. No. 6,440,551). The particle size should be less than 0.1 microns.
  • The coating is formed from a liquid composition which is applied to the surface of the PET film by a reverse gravure process. The coating composition comprises:
    Silica 15-22%
    Acrylic resin 43-57%
    Compatible solvent 16-24%
    Incompatible solvent  6-12%
    Surfacant  0.05-0.2%   
  • The percentabes of weight percentages of the coating mixture.
  • A suitable silica dispersion is Highlink 502-31 available from Clariant The acrylate resin is preferably a mixture of 0-7% hexanedioldiacrylate and 40-50% of a penta aerythritol tetraacrylate and triacrylate mixture. The percentages are based on the total composition Suitable materials are respectively Sartomer SR-238 and Sartomer SR-295 available from Sartomer (Total).
  • The compatible solvents are preferably isopropyl alcohol and/or acrylic acid in the ratios 0:1 to 1:0.
  • The incompatible solvents are less volatile than the compatible solvents and preferably comprise Xylene and/or Toluene in the ratios 0.1 to 10
  • A suitable surfactant is Fluorad FC 430 available from 3M Corporation
  • The ingredients for the coating are mixed together with the incompatible solvents being added next to last to the mix with the surfactant being added last. The incompatible solvents and surfactant are added last so that the polar dispersion is not thrown out of the suspension. The final composition is mixed for about 5 minutes and is then stable for storage and use.
  • The clear stable coating composition coats evenly and levels smoothly having no large particles in suspension which may cause streaks and haze bands. After application to the PET film the coating remains stable until the drying and curing stages.
  • As the coating dries and then cures under UV light, the compatible solvents being more volatile migrate to the surface and evaporate faster than the lessvolatile nonpolar solvents. The incompatible surfuctant also migrates to the surface. The action of these migrations causes some of the dispersion to migrate to the surface layer of the coating hence the top surface of the coating becomes increasingly rich in incompatible components and in concentration of nanoparticles The high concentration of nanoparticles in the midst of incompatible solvent and incompatible surfactant causes the nanoparticles to agglomerate and flocculate together at the surface layer of the coating. The surface layer becomes structured and rough on a scale that scatters visible light. The structure at the air/coating interface at the surface of the coating causes scattering of light but the particles remaining in the bulk of the coating remain stably dispersed and do not scatter light. The surface scatters reflected light and reduces gloss, apparent reflection and bright glare.
  • The final cured coating thickness is about 4 microns.

Claims (20)

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. A light curable anti-glare coating liquid composition for coating onto a transparent substrate comprising a dispersion of nanoparticles of a mineral oxide suspended in a mixture of at least one acrylate-functional resin that is compatible with the nanoparticle dispersion, at least one compatible solvent, at least one incompatible solvent that has a lower volatility than the compatible solvent, and a surfactant that has poor or limited compatibility with the dispersion.
12. A composition as claimed in claim 11 wherein the mineral oxide is silica
13. A composition as claimed in claim 11 wherein the compatible solvents comprise at least isopropyl alcohol and/or acrylic acid in a ratio between 1:0 and 0:1.
14. A composition as claimed in claim 11 wherein the incompatible solvents comprise xylene and/or toluene in a ratio between 1:0 and 0:1
15. A composition as claimed in claim 11 and comprising
Silica 15-22% Acrylate resin 43-57% Compatible solvent 16-24% incompatible Solvent  6-12% Photointiator 2.4-2.8%   Surfactant  0.05-0.2%   
16. A transparent polymeric film coated with the anti-glare coating as claimed in claim 11.
17. A transparent substrate coated with the antiglare coating as claimed in claim 15.
18. A transparent composite having a transparent substrate coated with an anti-glare layer comprising a coating as claimed in claim 11, the coating being cured and having a desired haze value and a desired 60 degree gloss value such that:
Gloss=113−(2.32× Haze) where the gloss value lies between 20-90 gloss units.
19. A composite as claimed in claim 18 wherein the haze <12% and the Gloss value lies between 85-95 gloss units.
20. A transparent composite as claimed in claim 18 wherein the substrate is a polymeric film substrate.
US11/121,542 2003-03-15 2005-05-04 Fade protector Abandoned US20050191500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/121,542 US20050191500A1 (en) 2003-03-15 2005-05-04 Fade protector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/389,083 US6905770B2 (en) 2003-03-15 2003-03-15 Fade protector
US11/121,542 US20050191500A1 (en) 2003-03-15 2005-05-04 Fade protector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/389,083 Division US6905770B2 (en) 2003-03-15 2003-03-15 Fade protector

Publications (1)

Publication Number Publication Date
US20050191500A1 true US20050191500A1 (en) 2005-09-01

Family

ID=32824829

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/389,083 Expired - Fee Related US6905770B2 (en) 2003-03-15 2003-03-15 Fade protector
US11/121,542 Abandoned US20050191500A1 (en) 2003-03-15 2005-05-04 Fade protector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/389,083 Expired - Fee Related US6905770B2 (en) 2003-03-15 2003-03-15 Fade protector

Country Status (2)

Country Link
US (2) US6905770B2 (en)
EP (1) EP1460045A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739159A (en) * 2017-09-28 2018-02-27 深圳航天科技创新研究院 A kind of haze low-luster anti-dazzling film and preparation method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922930B1 (en) * 2003-08-08 2005-08-02 Thomas Grayson Document displaying system
BRPI0516059A (en) * 2004-10-12 2008-08-19 3M Innovative Properties Co floor protection film, method for applying a film to the floor, and
EP1809697A1 (en) * 2004-10-12 2007-07-25 3M Innovative Properties Company Protective film wear layer
ES1059830Y (en) * 2005-03-03 2005-10-01 Molero Angel Caro FRAMED PANEL PROTECTOR PANEL.
US20090109366A1 (en) * 2007-10-29 2009-04-30 Barret Lippey Liquid Crystal Display Without Bezel
FR2943949B1 (en) * 2009-04-07 2011-06-03 Laury Heldt ARRANGEMENT OF A SUPPORT INCORPORATING A PATTERN, FLASHED ON ONE SIDE AND VISIBLE ON BOTH SIDES.
US20110072694A1 (en) * 2009-09-30 2011-03-31 PenPals, LLC Autographable card-type memorabilia
JP6757314B2 (en) * 2014-05-09 2020-09-16 スリーエム イノベイティブ プロパティズ カンパニー Articles with a hard coat and methods for manufacturing the articles
US9380892B2 (en) * 2014-07-07 2016-07-05 James R. KALLINGER System to preserve and display postage stamps
CN104774556B (en) * 2015-04-15 2016-09-14 苏州创佳电子材料有限公司 Screen protector anti-glazing photo-hardening coating and its preparation method and application
JP6977642B2 (en) * 2018-03-23 2021-12-08 Agc株式会社 Glass goods
JP6778716B2 (en) * 2018-07-05 2020-11-04 ソマール株式会社 Hard coat film
JP2020024240A (en) * 2018-08-06 2020-02-13 日東電工株式会社 Method for manufacturing polarizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949284B2 (en) * 2001-01-15 2005-09-27 Dai Nippon Printing Co., Ltd. Coating composition, it's coating layer, antireflection coating, antireflection film, image display and intermediate product

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1223293A (en) * 1968-05-14 1971-02-24 Wolfen Filmfab Veb Protecting photographic colour images from ultra-violet radiation
CA1109589A (en) * 1977-03-28 1981-09-22 Larry A. Lien Ultraviolet radiation protective, abrasion resistant, bloom resistant coatings
US4145829A (en) * 1977-09-14 1979-03-27 Peltier Gene J Protective stamp mount
WO1983000072A1 (en) * 1981-06-24 1983-01-06 Segel, Joseph, M. Protective capsule for airtight preservation of photographs or documents
US4822828A (en) * 1987-11-23 1989-04-18 Hoechst Celanese Corporation Radiation curable coating composition based on a silica/vinyl-functional silanol dispersion
AU4123993A (en) * 1992-06-25 1994-01-06 General Electric Company Radiation curable hardcoat compositions
GB9215003D0 (en) * 1992-07-15 1992-08-26 Courtaulds Plc Coloured film
JPH0822586B2 (en) * 1992-08-27 1996-03-06 理研ビニル工業株式会社 Decorative sheet having a feeling of painting and method for producing the same
JPH10180950A (en) * 1996-12-25 1998-07-07 Lintec Corp Antidazzle hard coating film and its manufacture
US5787625A (en) * 1997-03-14 1998-08-04 Yesbick; Jonathan D. Air-chambered, weatherproof picture frame
JP2967474B2 (en) * 1997-03-27 1999-10-25 株式会社巴川製紙所 Anti-glare material and polarizing film using the same
JP3507719B2 (en) * 1998-02-17 2004-03-15 大日本印刷株式会社 Anti-glare film, polarizing element and display device
US6376060B1 (en) * 1998-09-25 2002-04-23 Dai Nippon Printing Co., Ltd. Hardcoat film
JP3515401B2 (en) * 1998-12-18 2004-04-05 大日本印刷株式会社 Anti-glare film, polarizing plate and transmission type display device
JP3515426B2 (en) * 1999-05-28 2004-04-05 大日本印刷株式会社 Anti-glare film and method for producing the same
US6650478B1 (en) * 1999-08-20 2003-11-18 Cpfilms Inc. Optical filter for a window
KR100467822B1 (en) * 2002-02-15 2005-01-24 주식회사 엘지화학 Coating composition for protecting dazzling effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949284B2 (en) * 2001-01-15 2005-09-27 Dai Nippon Printing Co., Ltd. Coating composition, it's coating layer, antireflection coating, antireflection film, image display and intermediate product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739159A (en) * 2017-09-28 2018-02-27 深圳航天科技创新研究院 A kind of haze low-luster anti-dazzling film and preparation method thereof

Also Published As

Publication number Publication date
US6905770B2 (en) 2005-06-14
EP1460045A2 (en) 2004-09-22
EP1460045A3 (en) 2006-01-25
US20040180215A1 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US20050191500A1 (en) Fade protector
KR100467822B1 (en) Coating composition for protecting dazzling effect
CN106338783B (en) A kind of anti-dazzle antireflective optical film and its preparation method and application
US6663957B1 (en) Adhesive transparent resin and a composite including the same
JP2009526727A (en) Anti-reflection coated glass plate
TWI828895B (en) Transfer sheet and its manufacturing method, manufacturing method and molded body using the transfer sheet, and panel and image display device before using the molded body
WO2018088847A1 (en) Coating composition for forming beam projector screen and beam projector screen
CN102834742A (en) Light-diffusing film for led lamp
CN109504298A (en) The preparation method of anti-scratching wearproof silica gel screen protecting film
US20070285788A1 (en) Anti-Glare Device and Method for Making the Same
JP2007011317A (en) Light diffusion film
CN114591673A (en) Double-sided antistatic LR film, assembly and display device
JP2002348534A (en) Hard-coating composition and hard-coated product
KR20190079775A (en) Paint composition for preparing beam projector screen and beam projector screen
US20040213990A1 (en) Protective film for glazing
JP4215288B2 (en) High haze coating and method for forming the same
KR100603535B1 (en) Lens sheet and rear projection screen including the same
JP7087459B2 (en) Releasable laminate, transfer sheet, process sheet and article using it
JP2006126822A (en) Light diffusion film
JP6288666B2 (en) Hard coat transfer medium
JPH10231444A (en) Ultraviolet-curing antistatic hard-coating resin composition
JPH10128899A (en) Film for preventing glass scattering having light diffusing function
JP2007245622A (en) Composition for hard coat layer, and laminated body
JP7329903B2 (en) OPTICAL MEMBER, DISPLAY DEVICE, AND OPTICAL MEMBER SELECTION METHOD
KR102398916B1 (en) Coating liquid composition for image formation and screen for image formation

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CITIBANK, N.A., DELAWARE

Free format text: ABL PATENT SECURITY AGREEMENT;ASSIGNORS:SOLUTIA INC.;CPFILMS INC.;FLEXSYS AMERICA L.P.;REEL/FRAME:022610/0495

Effective date: 20080228

Owner name: CITIBANK, N.A., DELAWARE

Free format text: TERM LOAN PATENT SECURITY AGREEMENT;ASSIGNORS:SOLUTIA INC.;CPFILMS INC.;FLEXSYS AMERICA L.P.;REEL/FRAME:022610/0697

Effective date: 20080228

Owner name: CITIBANK, N.A.,DELAWARE

Free format text: ABL PATENT SECURITY AGREEMENT;ASSIGNORS:SOLUTIA INC.;CPFILMS INC.;FLEXSYS AMERICA L.P.;REEL/FRAME:022610/0495

Effective date: 20080228

Owner name: CITIBANK, N.A.,DELAWARE

Free format text: TERM LOAN PATENT SECURITY AGREEMENT;ASSIGNORS:SOLUTIA INC.;CPFILMS INC.;FLEXSYS AMERICA L.P.;REEL/FRAME:022610/0697

Effective date: 20080228

AS Assignment

Owner name: SOLUTIA INC.,MISSOURI

Free format text: RELEASE OF ABL SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0495;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0469

Effective date: 20100317

Owner name: CPFILMS INC.,VIRGINIA

Free format text: RELEASE OF ABL SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0495;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0469

Effective date: 20100317

Owner name: FLEXSYS AMERICA L.P.,OHIO

Free format text: RELEASE OF ABL SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0495;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0469

Effective date: 20100317

Owner name: SOLUTIA INC.,MISSOURI

Free format text: RELEASE OF TERM LOAN SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0697;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0513

Effective date: 20100317

Owner name: CPFILMS INC.,VIRGINIA

Free format text: RELEASE OF TERM LOAN SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0697;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0513

Effective date: 20100317

Owner name: FLEXSYS AMERICA L.P.,OHIO

Free format text: RELEASE OF TERM LOAN SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0697;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0513

Effective date: 20100317

Owner name: SOLUTIA INC., MISSOURI

Free format text: RELEASE OF ABL SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0495;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0469

Effective date: 20100317

Owner name: CPFILMS INC., VIRGINIA

Free format text: RELEASE OF ABL SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0495;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0469

Effective date: 20100317

Owner name: FLEXSYS AMERICA L.P., OHIO

Free format text: RELEASE OF ABL SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0495;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0469

Effective date: 20100317

Owner name: SOLUTIA INC., MISSOURI

Free format text: RELEASE OF TERM LOAN SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0697;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0513

Effective date: 20100317

Owner name: CPFILMS INC., VIRGINIA

Free format text: RELEASE OF TERM LOAN SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0697;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0513

Effective date: 20100317

Owner name: FLEXSYS AMERICA L.P., OHIO

Free format text: RELEASE OF TERM LOAN SECURITY INTEREST IN PATENTS - REEL/FRAME 022610/0697;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:024151/0513

Effective date: 20100317