US20050131227A1 - Synthesis of temozolomide and analogs - Google Patents

Synthesis of temozolomide and analogs Download PDF

Info

Publication number
US20050131227A1
US20050131227A1 US11/040,784 US4078405A US2005131227A1 US 20050131227 A1 US20050131227 A1 US 20050131227A1 US 4078405 A US4078405 A US 4078405A US 2005131227 A1 US2005131227 A1 US 2005131227A1
Authority
US
United States
Prior art keywords
formula
compound
group
acid
hydrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/040,784
Inventor
Shen-Chun Kuo
Janet Mas
Donald Hou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme Corp
Original Assignee
Schering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Corp filed Critical Schering Corp
Priority to US11/040,784 priority Critical patent/US20050131227A1/en
Publication of US20050131227A1 publication Critical patent/US20050131227A1/en
Priority to US11/453,125 priority patent/US7446209B2/en
Priority to US12/239,123 priority patent/US7737284B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/28Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups, amino groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to a novel process for the synthesis of Temozolomide, an antitumor compound, and analogs, and to intermediates useful in this novel process.
  • Temozolomide 3-methyl-8-aminocarbonyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one, is a known antitumor drug; see for example Stevens et al., J. Med. Chem. 1984, 27,196-201, and Wang et al., J. Chem. Soc., Chem. Commun., 1994, 1687-1688. It has the formula:
  • methylisocyanate is a difficult reagent to handle and ship, especially on the industrial scale, and indeed is better avoided in industrial manufacture. Furthermore, the cycloaddition of methylisocyanate requires a very long reaction time: Table I in J. Med. Chem. 1984, 27, 196-201, suggests 20 days.
  • the present invention provides, as one embodiment, a process for the preparation of Temozolomide and lower alkyl analogs thereof having the formula:
  • R is an alkyl group having from 1 to 6 carbon atoms, which comprises:
  • R is as defined above;
  • Pg′′ is a divalent protecting group that is readily removable by hydrolysis or hydrogenolysis; or two monovalent protecting groups Pg that are readily removable by hydrolysis or hydrogenolysis; or a bulky monovalent protecting group Pg that is readily removable by hydrolysis or hydrogenolysis, together with a hydrogen atom;
  • Step (a) is preferably carried out in an aqueous-organic solution with a source of nitrous acid, in particular in solution in an aqueous organic acid such as a lower alkanoic acid, especially acetic acid.
  • a source of nitrous acid in particular in solution in an aqueous organic acid such as a lower alkanoic acid, especially acetic acid.
  • Water-miscible solvents such as lower alkanols, THF and DMF can be present.
  • the source of nitrous acid is preferably inorganic, e.g., an alkali metal salt of nitrous acid, most preferably sodium nitrite.
  • the reaction is preferably carried out in the presence of a reagent that promotes the correct direction of cyclization, e.g., LiCl.
  • Step (b) is preferably carried out by hydrolysis with a strong mineral acid such as concentrated HCl or HBr, or HClO 4 , CF 3 SO 3 H, or MeSO 3 H, or especially concentrated sulfuric acid, at a moderate temperature such as ⁇ 20 to 50° C.
  • a strong mineral acid such as concentrated HCl or HBr, or HClO 4 , CF 3 SO 3 H, or MeSO 3 H, or especially concentrated sulfuric acid
  • a moderate temperature such as ⁇ 20 to 50° C.
  • the readily-removable protecting group is a 1,1-dimethylethyl group (a t-butyl group), together with a hydrogen atom. Its bulk also helps to promote the correct direction of cyclization.
  • the invention also provides novel intermediates useful in the preparation of Temozolomide, in particular the compounds of the formulae II, IV, IV V, and VI, and the salts thereof: wherein Pg′′ is a protecting group as defined above, especially such compounds wherein Pg′′ is a 1,1-dimethylethyl group together with a hydrogen atom, Ar is an arylmethylene group, and R is a lower alkyl group as hereinbefore defined, especially a methyl group.
  • An especially preferred arylmethylene group is the diphenylmethylene group; preferred compounds of the formulae II and III include the compounds of the formulae:
  • the 1,1-dimethylethyl group was formerly known as t-butyl, sometimes abbreviated to t-Bu, and this old form of the name is still used herein (for convenience and especially brevity) in some of the formulae herein and in the semi-trivial names in the reaction schemes and in the Examples.
  • the alkyl group R is preferably an unbranched alkyl group, in particular one with 1 to 4 carbon atoms, preferably 1-butyl, 1-propyl, ethyl or especially methyl.
  • R is methyl
  • the product of the formula I is Temozolomide itself.
  • [(diphenylmethylene)amino]acetonitrile 3 is allowed to react with an isocyanate PgNCO where Pg is a monovalent protecting group as defined above, to yield an acetamide 4.
  • This reaction is conveniently effected in the presence of a base and of an inert organic solvent, under an inert atmosphere, e.g., nitrogen, and at a ambient temperature or reduced temperature, e.g., ambient temperature to ⁇ 100° C., preferably ambient temperature to ⁇ 10° C.
  • the base is preferably one having the formula PgOM, where M is an alkali metal; other bases that can be used include tertiary amines such as triethylamine and ethyldiisopropylamine, alkali metal hydrides such as sodium and potassium hydride, and alkali metal carbonates such as sodium and potassium carbonate.
  • the organic solvent is preferably methylene chloride; however, other solvents that can be used include ethers such as methyl-t-butylether, diethylether, THF and dioxane, methylcyanide, ethylacetate, and hydrocarbons such as toluene, hexane and heptane.
  • the protecting group Pg is preferably a bulky alkyl group, e.g., one that is strongly branched at the carbon atom having the free valency, especially a 1,1-dimethylethyl group.
  • Other possible monovalent protecting groups include benzyl (or phenylmethyl), especially two benzyl groups, trityl (or triphenylmethyl), benzyloxycarbonyl, and 9-fluorenyl.
  • Divalent protecting groups that may be used include benzylidene (or phenylmethylene) and 9-fluorenylidene. Further examples of suitable amino-protecting groups, and their use and removal, are given in “Protective Groups in Organic Synthesis”, Theodora Greene and Peter Wuts, John Wiley & Sons, New York, N.Y., second edition (1991).
  • a divalent protecting group Pg′′ or two monovalent protecting groups Pg 2 can be introduced by an analogous reaction in which the t-BuNCO is replaced by a compound of the formula Pg′′:N.CO.Cl, wherein Pg′′ is a divalent protecting group or two monovalent protecting groups Pg′′; this reaction is also effected in the presence of a base and an inert organic solvent substantially as described above.
  • the compound of the formula Pg′′:N.CO.Cl can be prepared by reaction of an imine or amine of the formula Pg′′:NH with phosgene.
  • the acetamide 4 is subjected to hydrolysis to remove the diphenylmethylene group (an example of the group Ar) on the imino nitrogen, preferably with mild acid in an aqueous or aqueous-organic system, especially a mild inorganic acid (such as dilute mineral acid, e.g. 1 N hydrochloric acid, hydrobromic acid or sulfuric acid) in an inert organic solvent such as ethyl acetate; the product is the acetamide 5, as an acid addition salt such as the hydrochloride, hydrobromide or sulfate.
  • the hydrolysis is conveniently effected at 0° C. to moderately elevated temperature, e.g., 100° C., especially ambient temperature up to 70° C.
  • a salt, e.g., the hydrochloride, of the acetamide 5 is condensed with a urea derivative 7 or with analogs thereof on which each methyl group has been replaced with a group R, wherein the two groups R are identical and each group R is as defined above.
  • the urea derivative can be replaced with precursors thereof, e.g., the N-R-urea wherein R is as defined above (especially N-methylurea), together with an orthoformate, e.g. ethyl orthoformate, to provide the imidazole 6.
  • This reaction can be carried out at about ambient temperature in the presence of an inert organic solvent and a mild acidic catalyst.
  • the catalyst can be an organic acid, preferably a weak acid such as a carboxylic acid, especially a lower alkanoic acid such as acetic acid; the solvent is for example t-BuOMe or preferably methylene chloride.
  • the organic solvent is preferably methylene chloride; however, other solvents that can be used include ethers such as methyl-t-butylether, diethylether, THF and dioxane, methylcyanide, ethylacetate, DMF, DMSO, and hydrocarbons such as toluene, hexane and heptane.
  • the reaction is preferably carried out at about ambient temperature or somewhat lower or higher, e.g., ⁇ 25 to 50° C., preferably 0 to 35° C.
  • Urea derivatives necessary for the fourth step can be prepared by condensation of the N-R-urea wherein R is as defined above, especially N-methylurea with an orthoester, especially an orthoformate; thus methyl[[[(methylamino)carbonyl]amino]methylene]urea 7 can be prepared by condensation of N-methylurea with ethyl orthoformate at elevated temperature and under an inert atmosphere; see Whitehead, C. W.; J. Am. Chem. Soc., 1953, 75, 671.
  • the imidazo[5,1-d]-1,2,3,5-tetrazine nucleus of Temozolomide is assembled by diazotization of the imidazole 6 or N-R analog thereof, wherein R is as defined above; preferred conditions have been described above.
  • the reaction can also be effected in an organic solvent with an organic source of nitrous acid, e.g., t-butyl or isopentyl nitrite with a carboxylic acid such as a lower alkanoic acid, e.g., acetic acid, and in an organic solvent such as a lower alkanol, DMF, THF, ethyl acetate, or a hydrocarbon such as toluene, hexane or heptane.
  • an organic source of nitrous acid e.g., t-butyl or isopentyl nitrite with a carboxylic acid such as a lower alkanoic acid, e.g., acetic acid
  • an organic solvent such as a lower alkanol, DMF, THF, ethyl acetate, or a hydrocarbon such as toluene, hexane or heptane.
  • Temozolomide or N-alkyl analog thereof (wherein the alkyl group has 1 to 6 carbon atoms) is produced by hydrolysis of the protected-Temozolomide 8 or protected-N-alkyl analog thereof; again, the conditions have been described above.
  • the protected-Temozolomide 8 or protected-N-alkyl analog thereof is an example of a compound of the formula III.
  • hydrolysis to remove a protecting group is preferably carried out under an inert atmosphere and at a moderate temperature, e.g., at about 0° C. to 50° C., preferably about ambient temperature, in an aqueous acid.
  • the hydrolysis can be carried out in an inert organic solvent in which the reagents (the acid and the compound 8) are at least partly soluble, for example, methylene chloride.
  • Hydrogenolysis to remove a protecting group is preferably carried out under an inert atmosphere and at a moderate temperature, e.g., at about ambient temperature to about 60° C., in an inert organic solvent with hydrogen and a hydrogenation catalyst such as Pd/C or Raney Ni.
  • the compound of the formula 3 is known and can be prepared by the following known process: (See, for example, O'Donnell, M. J.; Polt, R. L; J. Org. Chem., 1982, 47, 2663; and O'Donnell, M. J.; Eckrich, T. M.; Tetrahedron Lett. 1978, 47, 4625.)
  • Aminoacetonitrile 1 preferably as an acid addition salt, e.g., the hydrochloride
  • imine 2 is condensed with imine 2 in the presence of an anhydrous, inert organic solvent and under an inert atmosphere.
  • the imine provides a protecting group for the amino group of the aminoacetonitrile, a group that is stable to alkali but can be readily removed with mild acid when no longer needed.
  • the organic solvent is conveniently methylene chloride.
  • the amino-protecting group (Ph) 2 C: can be replaced with another appropriate protecting group of the formula Ar, where Ar is as hereinbefore defined.
  • the 1,1-dimethylethylamino group can be replaced with another appropriate protected amino group Pg 2 N— or Pg′′:N—, where Pg and Pg′′ are as hereinbefore defined.
  • the compound of the formula 5 can be prepared also by the following novel method:
  • 2-Cyano-N-(1,1-dimethylethyl)acetamide 11 (Bhawal, B. M.; Khanapure, S. P.; Biehl, E. R.; Syn. Commun., 1990, 20, 3235) is allowed to react with nitrosyl chloride in an inert organic solvent such as CH 2 Cl 2 or CHCl 3 at moderate temperature (e.g., ambient temperature to ⁇ 25° C., preferably about 0° C.).
  • an inert organic solvent such as CH 2 Cl 2 or CHCl 3
  • the resulting 2-cyano-N-(1,1-dimethylethyl)-2-(hydroxyimino)acetamide 13 is isolated and reduced, for example with sodium dithionite in an aqueous organic solvent, but preferably with aluminum amalgam in water at moderate temperature (e.g., ambient temperature to about 0° C., preferably about 0° C.).
  • the compound of the formula 13 is a novel intermediate and is a feature of the invention.
  • the compound of the formula 13 forms salts with strong bases, e.g., with alkali metals such as sodium, and these salts are also a feature of the invention.
  • Further features of the invention include compounds analogous to 13 wherein the 1,1-dimethylethylamino group is replaced by a protected amino group Pg′′N, where Pg′′ is as hereinbefore defined.
  • Such compounds can be prepared analogously from the compound of the formula 10 and a compound of the formula HN:Pg′′, wherein Pg′′ is as defined above, especially a divalent group such as benzylidene or 9-fluorenylidene, or two monovalent groups Pg such as two benzyl groups, or a monovalent group such as benzyl, trityl, benzyloxycarbonyl, or 9-fluorenyl, together with a hydrogen atom.
  • Pg′′ is as defined above, especially a divalent group such as benzylidene or 9-fluorenylidene, or two monovalent groups Pg such as two benzyl groups, or a monovalent group such as benzyl, trityl, benzyloxycarbonyl, or 9-fluorenyl, together with a hydrogen atom.
  • purified aminocyanoacetamide 14 (obtained for example by recrystallization, e.g., from acetone) is condensed with a urea derivative 7 or with analogs thereof in which each methyl group has been replaced with a group R, wherein the two groups R are identical and each group R is as defined above.
  • the urea derivative can be replaced with precursors thereof, e.g., the N-R-urea wherein R is as defined above (especially N-methylurea), together with an orthoformate, e.g. ethyl orthoformate, to provide the imidazole 15.
  • This reaction can be carried out as described above for the reaction of 5 with 7 or with precursors of 7.
  • Imidazole 15 (or an analog thereof in which the methyl group has been replaced with a group R, wherein R is as defined above), can then be hydrolyzed with mild base, e.g., a tertiary organic base such as triethylamine or ethyldiisopropylamine in an inert organic solvent such as a lower alkanol, e.g., methanol, and the product 16 can then be converted into its acid addition salt by reaction with the appropriate acid, e.g., the hydrochloride of 16 (or other salt as described in the next paragraph) by reaction with hydrochloric acid, preferably in an inert organic solvent such as a lower alkanol, e.g., methanol or ethanol, an ether such as methyl-t-butylether, diethylether, THF or dioxane, methylcyanide, ethylacetate, or a hydrocarbon such as toluene, hexane or
  • imidazole 6 (or an analog thereof in which the methyl group has been replaced with a group R, wherein R is as defined above) can be converted into another imidazole derivative 17 by hydrolysis with a mild base as described above for the first step of the conversion of imidazole 15 into 16•HCl; and the free base can then be subjected to removal of the protecting 1,1-dimethylethylamino group, and converted in the same step into an acid addition salt, e.g., 16•HCl, preferably under conditions as described above for the second step of the conversion of imidazole 15 into 16•HCl.
  • an acid addition salt e.g., 16•HCl
  • the acid used in this step is preferably a strong acid, e.g., a mineral acid such as HCl (to provide 16•HCl), or HBr, H 2 SO 4 , HClO 4 or HNO 3 , or a strong organic acid such as CF 3 SO 3 H or CH 3 SO 3 H.
  • the solvent may be aqueous or, especially when the acid is CF 3 SO 3 H or CH 3 SO 3 H, organic.
  • the compound of the formula 6 is named as a starting material in the novel process according to the invention, but can also be used as a novel starting material for the intermediates in the known process for the preparation of Temozolomide. Further compounds that can be used in both these aspects include compounds analogous to the compound of the formula 6 and having the formula II, and higher alkyl analogs of the compound of the formula 6.
  • Preferred intermediates of the formulae VI and V include: wherein Ar is as hereinbefore defined but is preferably a diphenylmethylene group.
  • the 1,1-dimethylethylamino group can be replaced with a protected amino group PgNH, Pg 2 N, or Pg′′N, where Pg and Pg′′ are as hereinbefore defined.
  • the invention also provides a process for the preparation of a compound of the formula IV, which comprises:
  • nitrosylation of the reactive methylene group e.g., with an alkali metal nitrite, e.g., sodium nitrite, and a weak acid such as an organic acid, especially acetic acid, but preferably with nitrosyl chloride in an inert organic solvent such as methylene chloride.
  • an alkali metal nitrite e.g., sodium nitrite
  • a weak acid such as an organic acid, especially acetic acid
  • nitrosyl chloride in an inert organic solvent such as methylene chloride.
  • the resulting compound has the formula Pg′′N.CO.C(:NOH).CN wherein Pg′′ is a protecting group, especially a 1,1-dimethylethyl group together with a hydrogen atom.
  • Pg′′ is a protecting group, especially a 1,1-dimethylethyl group together with a hydrogen atom.
  • Compounds of this formula and the intermediates of the formulae Pg′′N.CO.CH 2 .CN and Pg′′N.CO.CH(N:Ar).CN are also features of the invention, especially those wherein Pg′′ is a 1,1-dimethylethyl group, together with a hydrogen atom.
  • the invention also provides a process for the preparation of the above-mentioned compound of the formula 8, which comprises diazotizing a compound of the formula II wherein Pg′′N is a 1,1-dimethylethylamino group together with a hydrogen atom.
  • This reaction can be effected under the reaction conditions set out under paragraph (a) at the start of the section Summary of the Invention.
  • Compounds of the formulae II, III, V and VI can exist in the form of their salts, for example with mineral acids, especially with hydrochloric acid and sulfuric acid.
  • a particularly preferred salt of this type is compound 5•HCl.
  • Compounds of the formulae IV can exist in the form of their salts with bases, for example with alkali metals such as sodium.
  • the invention is not restricted to the specific embodiments of the processes shown in the foregoing Schemes III to VI and the specific intermediates used therein, but further comprises analogous processes which are carried out under different but substantially equivalent conditions, and also analogous processes and intermediates wherein different but broadly equivalent protecting groups Pg′′ and Ar are used, and especially those wherein the methyl group (the precursor of the 3-methyl group in Temozolomide) is replaced with a larger alkyl group R, wherein R is as hereinabove defined.
  • intermediates 4, 5, 6, 8, 13, and 17, which are novel, can also be modified to include different but broadly equivalent protecting groups Pg or Pg′′ and Ar, and intermediates 6 and 8 can be modified to include a larger alkyl group R (wherein Pg, Pg′′, Ar and R are as hereinabove defined). All these embodiments are features of the present invention.
  • unfused imidazole nucleus can generally exist in two tautomeric forms (whose interconversion is catalyzed by acids), as illustrated in the following scheme for the compound of formula (A) above:
  • alkyl represents a saturated hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4, which may be straight or branched but is preferably unbranched, e.g., 1-butyl, 1-propyl, ethyl, or especially methyl;
  • arylmethylene represents a methylene group in which at least one aryl group as defined below is substituted for at least one of the methylene hydrogen atoms.
  • the methylene carbon atom of the arylmethylene group is doubly bonded to the adjacent nitrogen atom.
  • Representative arylmethylene groups include diphenylmethylene, phenylmethylene, and 9-fluorenylidene;
  • aryl (including the aryl portion of arylmethylene)—represents a carbocyclic group having from 6 to 14 carbon atoms and having at least one fused benzenoid ring, with all available substitutable carbon atoms of the carbocyclic group being intended as possible points of attachment, said carbocyclic group being optionally substituted with 1 to 3 Y groups, where each group Y is independently selected from halo, alkyl, nitro, alkoxy and dialkylamino groups.
  • Preferred aryl groups are phenyl, substituted phenyl, 1-naphthyl, 2-naphthyl and indanyl.
  • Step A Preparation of 2-cvano-N-(1,1-dimethylethyl)-2-[(diphenylmethylene)amino]-acetamide
  • the imine 3 (700 g, 3.178 mol) and CH 2 Cl 2 (7 L) were placed into a 22 L three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, mechanical stirrer, and maintained under a positive pressure of nitrogen.
  • 1,1-Dimethylethyl-isocyanate (442 mL, 3.870 mol) was added to this stirred mixture at 0° C., and after stirring for 10 min a solution of potassium t-butoxide in THF (1.0 M in THF, 3.88 L, 3.88 mol) (as supplied by Aldrich) was added slowly (1 hour). The solution was stirred at 0° C.
  • t-Butyl-Temozolomide 8 (4.01 g, 16.023 mmol) and conc. H 2 SO 4 (8 mL) (Fisher Scientific) were placed into a 50 mL flask equipped with a stirrer bar. The mixture was stirred for 2 hours at room temperature and then slowly poured into ice-cold EtOH (160 mL). A white precipitate formed, which was collected by vacuum filtration and washed with ice-cold EtOH (10 mL). The solid was dried under vacuum (20 mm Hg, room temperature, 72 hours) to yield 2.63 g of 9 (13.546 mmol, 98.4% pure against a standard sample by HPLC analysis)
  • the mother liquors contained an additional 9.7% of 9 (HPLC assay).
  • Oxime 13 (2.5 g, 14.78 mmol), Al amalgam (0.81 g) and distilled H 2 O (100 mL) were placed into a 250 mL round-bottom flask equipped with a stirring bar, nitrogen inlet, a gas outlet tube, and maintained under positive pressure of nitrogen.
  • the reaction mixture was stirred at 2-10° C. (ice bath) for 2.5 hours, filtered, the filtrate extracted with CH 2 Cl 2 (2 ⁇ 60 mL), and the combined organic layers were concentrated under reduced pressure to afford the product as an oil (1.62 g, 10.44 mmol). Concentration of the aqueous layer under reduced pressure afforded additional product 5 (0.41 g, 2.64 mmol).
  • the Al amalgam used in this Step was prepared as follows: HgCl 2 (1.6 g, 5.89 mmol) was dissolved in 160 mL distilled H 2 O in a 250 mL round-bottom flask equipped with a stirring bar. The solution was cooled to 0-50° C. (ice bath), aluminum foil (4.0 g, 148.3 mmol), cut into small squares ( ⁇ 0.5 to 1.0 cm 2 ), was added, and the mixture was stirred for 1.5 min. It was then filtered, and the solids were washed with MeOH (2 ⁇ 60 mL) and then t-BuOMe (60 mL), dried under vacuum (20 mm Hg, 3 hours) and stored under N 2 . Part C: Purification of Aminocyanoacetamide 14
  • Aminocyanoacetamide 14 (80 g, 0.807 mol), urea 7 (139 g, 0.879 mol), and glacial acetic acid (0.96 L, 16.77 mol) (Fisher Scientific) were placed into a 2 L, three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, mechanical stirrer, and maintained under a positive pressure of nitrogen. The mixture was stirred vigorously at room temperature for 2 hours and then concentrated under reduced pressure. After removal of most of the acetic acid, 200 mL of t-BuOMe was added and the mixture was concentrated under reduced pressure.
  • 5-Amino-N-(1,1-dimethylethyl)-1H-imidazole-4-carboxamide 17 (8.9 g, theoretical amount is 7.37 g, 0.041 mol) and conc. HCl (20 mL) were placed into a 100 mL, three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, magnetic stirrer bar, and maintained under a positive pressure of nitrogen. The mixture was heated at 80° C. (oil bath) for 1 hour with vigorous stirring, gradually cooled to 0° C., yielding a precipitate, and then slowly added to 2-PrOH (30 mL).
  • Temozolomide for example the 3-ethyl, 3-(1-propyl), 3-(1-butyl), and 3-(1-hexyl) analogs, can be prepared by similar methods.

Abstract

This invention relates to a novel process for the synthesis of Temozolomide, an antitumor compound, and analogs, and to intermediates useful in this novel process.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Ser. No. 10/050,488 filed on Jan. 16, 2002, which claims the benefit of U.S. Provisional Application Ser. No. 60/262,465 filed Jan. 18, 2001.
  • FIELD OF THE INVENTION
  • This invention relates to a novel process for the synthesis of Temozolomide, an antitumor compound, and analogs, and to intermediates useful in this novel process.
  • BACKGROUND OF THE INVENTION
  • Temozolomide, 3-methyl-8-aminocarbonyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one, is a known antitumor drug; see for example Stevens et al., J. Med. Chem. 1984, 27,196-201, and Wang et al., J. Chem. Soc., Chem. Commun., 1994, 1687-1688. It has the formula:
    Figure US20050131227A1-20050616-C00001
  • It is described in U.S. Pat. No. 5,260,291 (Lunt et al.) together with compounds of broadly similar activity such as higher alkyl analogs at the 3-position.
  • The synthesis of I by the process described in J. Med. Chem. 1984, 27,196-201 can be simply depicted as follows, even though the authors mention that the cycloaddition of the methylisocyanate to the compound of the formula (B) can proceed through two different intermediates:
    Figure US20050131227A1-20050616-C00002

    In this process, 5-amino-1H-imidazole-4-carboxamide (A) is converted into 5-diazo-1H-imidazole-4-carboxamide (B), which is then cyclized with methylisocyanate in dichloromethane to provide a high yield of clinical-grade Temozolomide. However, this process requires isolation of the unstable and potentially dangerous 5-diazo-1H-imidazole-4-carboxamide (B). Moreover, methylisocyanate is a difficult reagent to handle and ship, especially on the industrial scale, and indeed is better avoided in industrial manufacture. Furthermore, the cycloaddition of methylisocyanate requires a very long reaction time: Table I in J. Med. Chem. 1984, 27, 196-201, suggests 20 days.
  • The production of I by the two processes described in J. Chem. Soc., Chem. Commun., 1994, 1687-1688 provides a low overall yield from 5-amino-1H-imidazole-4-carboxamide (A): less than 20% (unoptimized—about 17% through 5-diazo-1H-imidazole-4-carboxamide (B) and about 15% through 5-amino-N1-(ethoxycarbonylmethyl)-1H-imidazole-1,4-dicarboxamide (C)):
    Figure US20050131227A1-20050616-C00003

    Moreover, the unstable 5-diazo-1H-imidazole-4-carboxamide (B) still has to be isolated in the branch of this process that uses it as an intermediate.
  • Clearly, therefore, there is a need for synthetic methods that are more convenient, especially on an industrial scale, and provide good yields of clinical-grade Temozolomide, or improve the preparation or use of intermediates for the aforementioned processes.
  • SUMMARY OF THE INVENTION
  • The present invention provides, as one embodiment, a process for the preparation of Temozolomide and lower alkyl analogs thereof having the formula:
    Figure US20050131227A1-20050616-C00004
  • wherein R is an alkyl group having from 1 to 6 carbon atoms, which comprises:
  • (a) Diazotizing a Compound of the Formula:
    Figure US20050131227A1-20050616-C00005
  • wherein R is as defined above;
  • and Pg″ is a divalent protecting group that is readily removable by hydrolysis or hydrogenolysis; or two monovalent protecting groups Pg that are readily removable by hydrolysis or hydrogenolysis; or a bulky monovalent protecting group Pg that is readily removable by hydrolysis or hydrogenolysis, together with a hydrogen atom;
  • and thereafter
  • (b) Subjecting the Resulting Compound of the Formula:
    Figure US20050131227A1-20050616-C00006

    wherein Pg″ is as defined above, to hydrolysis or hydrogenolysis.
  • Step (a) is preferably carried out in an aqueous-organic solution with a source of nitrous acid, in particular in solution in an aqueous organic acid such as a lower alkanoic acid, especially acetic acid. Water-miscible solvents such as lower alkanols, THF and DMF can be present. The source of nitrous acid is preferably inorganic, e.g., an alkali metal salt of nitrous acid, most preferably sodium nitrite. The reaction is preferably carried out in the presence of a reagent that promotes the correct direction of cyclization, e.g., LiCl.
  • Step (b) is preferably carried out by hydrolysis with a strong mineral acid such as concentrated HCl or HBr, or HClO4, CF3SO3H, or MeSO3H, or especially concentrated sulfuric acid, at a moderate temperature such as −20 to 50° C. In a particularly preferred embodiment, the readily-removable protecting group is a 1,1-dimethylethyl group (a t-butyl group), together with a hydrogen atom. Its bulk also helps to promote the correct direction of cyclization.
  • The invention also provides novel intermediates useful in the preparation of Temozolomide, in particular the compounds of the formulae II, IV, IV V, and VI, and the salts thereof:
    Figure US20050131227A1-20050616-C00007

    wherein Pg″ is a protecting group as defined above, especially such compounds wherein Pg″ is a 1,1-dimethylethyl group together with a hydrogen atom, Ar is an arylmethylene group, and R is a lower alkyl group as hereinbefore defined, especially a methyl group. An especially preferred arylmethylene group is the diphenylmethylene group; preferred compounds of the formulae II and III include the compounds of the formulae:
    Figure US20050131227A1-20050616-C00008
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • It should be noted that the cyclization of the compound of the formula II above, wherein Pg″ is a monovalent protecting group Pg together with a hydrogen atom, could in theory also proceed to the nitrogen atom of the carbamoyl group, and yield an undesired aza-hypoxanthine derivative. The presence of a bulky protecting group Pg promotes the desired cyclization to the imidazo[5,1-d]-1,2,3,5-tetrazine nucleus of Temozolomide. The presence of LiCl in the reaction medium also has a beneficial effect in promoting the desired cyclization. The complete blocking of the nitrogen atom by the use of a divalent protecting group or two monovalent protecting groups also ensures that the cyclization proceeds in the desired direction.
  • The 1,1-dimethylethyl group was formerly known as t-butyl, sometimes abbreviated to t-Bu, and this old form of the name is still used herein (for convenience and especially brevity) in some of the formulae herein and in the semi-trivial names in the reaction schemes and in the Examples.
  • The alkyl group R is preferably an unbranched alkyl group, in particular one with 1 to 4 carbon atoms, preferably 1-butyl, 1-propyl, ethyl or especially methyl. When R is methyl, the product of the formula I is Temozolomide itself.
  • A particularly preferred embodiment of the process according to the invention is shown in the following scheme, and a more general version of this scheme is described thereafter:
    Figure US20050131227A1-20050616-C00009
  • In the first step of this process, [(diphenylmethylene)amino]acetonitrile 3 is allowed to react with an isocyanate PgNCO where Pg is a monovalent protecting group as defined above, to yield an acetamide 4. This reaction is conveniently effected in the presence of a base and of an inert organic solvent, under an inert atmosphere, e.g., nitrogen, and at a ambient temperature or reduced temperature, e.g., ambient temperature to −100° C., preferably ambient temperature to −10° C. The base is preferably one having the formula PgOM, where M is an alkali metal; other bases that can be used include tertiary amines such as triethylamine and ethyldiisopropylamine, alkali metal hydrides such as sodium and potassium hydride, and alkali metal carbonates such as sodium and potassium carbonate. The organic solvent is preferably methylene chloride; however, other solvents that can be used include ethers such as methyl-t-butylether, diethylether, THF and dioxane, methylcyanide, ethylacetate, and hydrocarbons such as toluene, hexane and heptane.
  • The protecting group Pg is preferably a bulky alkyl group, e.g., one that is strongly branched at the carbon atom having the free valency, especially a 1,1-dimethylethyl group. Other possible monovalent protecting groups, some of which can be removed by hydrolysis, whereas others can be removed by hydrogenation, include benzyl (or phenylmethyl), especially two benzyl groups, trityl (or triphenylmethyl), benzyloxycarbonyl, and 9-fluorenyl. Divalent protecting groups that may be used include benzylidene (or phenylmethylene) and 9-fluorenylidene. Further examples of suitable amino-protecting groups, and their use and removal, are given in “Protective Groups in Organic Synthesis”, Theodora Greene and Peter Wuts, John Wiley & Sons, New York, N.Y., second edition (1991).
  • A divalent protecting group Pg″ or two monovalent protecting groups Pg2 can be introduced by an analogous reaction in which the t-BuNCO is replaced by a compound of the formula Pg″:N.CO.Cl, wherein Pg″ is a divalent protecting group or two monovalent protecting groups Pg″; this reaction is also effected in the presence of a base and an inert organic solvent substantially as described above. The compound of the formula Pg″:N.CO.Cl can be prepared by reaction of an imine or amine of the formula Pg″:NH with phosgene.
  • In the second step of this process, the acetamide 4 is subjected to hydrolysis to remove the diphenylmethylene group (an example of the group Ar) on the imino nitrogen, preferably with mild acid in an aqueous or aqueous-organic system, especially a mild inorganic acid (such as dilute mineral acid, e.g. 1 N hydrochloric acid, hydrobromic acid or sulfuric acid) in an inert organic solvent such as ethyl acetate; the product is the acetamide 5, as an acid addition salt such as the hydrochloride, hydrobromide or sulfate. The hydrolysis is conveniently effected at 0° C. to moderately elevated temperature, e.g., 100° C., especially ambient temperature up to 70° C.
  • In the third step of this process, a salt, e.g., the hydrochloride, of the acetamide 5 is condensed with a urea derivative 7 or with analogs thereof on which each methyl group has been replaced with a group R, wherein the two groups R are identical and each group R is as defined above. The urea derivative can be replaced with precursors thereof, e.g., the N-R-urea wherein R is as defined above (especially N-methylurea), together with an orthoformate, e.g. ethyl orthoformate, to provide the imidazole 6. This reaction can be carried out at about ambient temperature in the presence of an inert organic solvent and a mild acidic catalyst. The catalyst can be an organic acid, preferably a weak acid such as a carboxylic acid, especially a lower alkanoic acid such as acetic acid; the solvent is for example t-BuOMe or preferably methylene chloride. The organic solvent is preferably methylene chloride; however, other solvents that can be used include ethers such as methyl-t-butylether, diethylether, THF and dioxane, methylcyanide, ethylacetate, DMF, DMSO, and hydrocarbons such as toluene, hexane and heptane. The reaction is preferably carried out at about ambient temperature or somewhat lower or higher, e.g., −25 to 50° C., preferably 0 to 35° C.
  • Urea derivatives necessary for the fourth step can be prepared by condensation of the N-R-urea wherein R is as defined above, especially N-methylurea with an orthoester, especially an orthoformate; thus methyl[[[(methylamino)carbonyl]amino]methylene]urea 7 can be prepared by condensation of N-methylurea with ethyl orthoformate at elevated temperature and under an inert atmosphere; see Whitehead, C. W.; J. Am. Chem. Soc., 1953, 75, 671.
  • In the fourth step of this process, the imidazo[5,1-d]-1,2,3,5-tetrazine nucleus of Temozolomide is assembled by diazotization of the imidazole 6 or N-R analog thereof, wherein R is as defined above; preferred conditions have been described above.
  • The reaction can also be effected in an organic solvent with an organic source of nitrous acid, e.g., t-butyl or isopentyl nitrite with a carboxylic acid such as a lower alkanoic acid, e.g., acetic acid, and in an organic solvent such as a lower alkanol, DMF, THF, ethyl acetate, or a hydrocarbon such as toluene, hexane or heptane.
  • The reaction presumably proceeds through a diazonium salt, which spontaneously cyclizes to the compound of the formula III.
  • In the fifth step of this process, Temozolomide or N-alkyl analog thereof (wherein the alkyl group has 1 to 6 carbon atoms) is produced by hydrolysis of the protected-Temozolomide 8 or protected-N-alkyl analog thereof; again, the conditions have been described above.
  • The protected-Temozolomide 8 or protected-N-alkyl analog thereof (wherein the alkyl group has 1 to 6 carbon atoms) is an example of a compound of the formula III. In general, hydrolysis to remove a protecting group is preferably carried out under an inert atmosphere and at a moderate temperature, e.g., at about 0° C. to 50° C., preferably about ambient temperature, in an aqueous acid. Alternatively, the hydrolysis can be carried out in an inert organic solvent in which the reagents (the acid and the compound 8) are at least partly soluble, for example, methylene chloride. Hydrogenolysis to remove a protecting group is preferably carried out under an inert atmosphere and at a moderate temperature, e.g., at about ambient temperature to about 60° C., in an inert organic solvent with hydrogen and a hydrogenation catalyst such as Pd/C or Raney Ni.
  • The compound of the formula 3 is known and can be prepared by the following known process:
    Figure US20050131227A1-20050616-C00010

    (See, for example, O'Donnell, M. J.; Polt, R. L; J. Org. Chem., 1982, 47, 2663; and O'Donnell, M. J.; Eckrich, T. M.; Tetrahedron Lett. 1978, 47, 4625.) Aminoacetonitrile 1 (preferably as an acid addition salt, e.g., the hydrochloride) is condensed with imine 2 in the presence of an anhydrous, inert organic solvent and under an inert atmosphere. The imine provides a protecting group for the amino group of the aminoacetonitrile, a group that is stable to alkali but can be readily removed with mild acid when no longer needed. An aralkylidene-imine, especially a diphenylmethylidene-imine, is convenient. The organic solvent is conveniently methylene chloride.
  • In the compounds of the formula 3 and 4, the amino-protecting group (Ph)2C: can be replaced with another appropriate protecting group of the formula Ar, where Ar is as hereinbefore defined. In the compounds of the formulae 4, 5, 6, and 8, the 1,1-dimethylethylamino group can be replaced with another appropriate protected amino group Pg2N— or Pg″:N—, where Pg and Pg″ are as hereinbefore defined.
  • The compound of the formula 5 can be prepared also by the following novel method:
    Figure US20050131227A1-20050616-C00011
  • 2-Cyano-N-(1,1-dimethylethyl)acetamide 11 (Bhawal, B. M.; Khanapure, S. P.; Biehl, E. R.; Syn. Commun., 1990, 20, 3235) is allowed to react with nitrosyl chloride in an inert organic solvent such as CH2Cl2 or CHCl3 at moderate temperature (e.g., ambient temperature to −25° C., preferably about 0° C.). The resulting 2-cyano-N-(1,1-dimethylethyl)-2-(hydroxyimino)acetamide 13 is isolated and reduced, for example with sodium dithionite in an aqueous organic solvent, but preferably with aluminum amalgam in water at moderate temperature (e.g., ambient temperature to about 0° C., preferably about 0° C.).
  • The compound of the formula 13 is a novel intermediate and is a feature of the invention. The compound of the formula 13 forms salts with strong bases, e.g., with alkali metals such as sodium, and these salts are also a feature of the invention. Further features of the invention include compounds analogous to 13 wherein the 1,1-dimethylethylamino group is replaced by a protected amino group Pg″N, where Pg″ is as hereinbefore defined. Such compounds can be prepared analogously from the compound of the formula 10 and a compound of the formula HN:Pg″, wherein Pg″ is as defined above, especially a divalent group such as benzylidene or 9-fluorenylidene, or two monovalent groups Pg such as two benzyl groups, or a monovalent group such as benzyl, trityl, benzyloxycarbonyl, or 9-fluorenyl, together with a hydrogen atom.
  • 5-Amino-1H-imidazole-4-carboxamide, the intermediate of the formula (A) described in the ‘Background of the Invention’, can be advantageously prepared (e.g., as its hydrochloride 16•HCl) by the two routes shown in Scheme VI, wherein 17 is a novel intermediate, 14 is commercially available and a method for its preparation is given in U.S. Pat. No. 5,003,099, and the preparation of 6 has been described above. These present an improvement also in the preparation of Temozolomide, since the starting material of the formula (A) (for the diazotization in both Schemes I and II above) is made more readily and/or more cheaply available. Again, if desired, the N-methyl groups in the compounds of the formulae 6, 7 and 15 can be replaced with larger groups R, wherein R is as defined above.
    Figure US20050131227A1-20050616-C00012
  • In route (a), purified aminocyanoacetamide 14 (obtained for example by recrystallization, e.g., from acetone) is condensed with a urea derivative 7 or with analogs thereof in which each methyl group has been replaced with a group R, wherein the two groups R are identical and each group R is as defined above. The urea derivative can be replaced with precursors thereof, e.g., the N-R-urea wherein R is as defined above (especially N-methylurea), together with an orthoformate, e.g. ethyl orthoformate, to provide the imidazole 15. This reaction can be carried out as described above for the reaction of 5 with 7 or with precursors of 7. Imidazole 15 (or an analog thereof in which the methyl group has been replaced with a group R, wherein R is as defined above), can then be hydrolyzed with mild base, e.g., a tertiary organic base such as triethylamine or ethyldiisopropylamine in an inert organic solvent such as a lower alkanol, e.g., methanol, and the product 16 can then be converted into its acid addition salt by reaction with the appropriate acid, e.g., the hydrochloride of 16 (or other salt as described in the next paragraph) by reaction with hydrochloric acid, preferably in an inert organic solvent such as a lower alkanol, e.g., methanol or ethanol, an ether such as methyl-t-butylether, diethylether, THF or dioxane, methylcyanide, ethylacetate, or a hydrocarbon such as toluene, hexane or heptane.
  • In route (b), imidazole 6 (or an analog thereof in which the methyl group has been replaced with a group R, wherein R is as defined above) can be converted into another imidazole derivative 17 by hydrolysis with a mild base as described above for the first step of the conversion of imidazole 15 into 16•HCl; and the free base can then be subjected to removal of the protecting 1,1-dimethylethylamino group, and converted in the same step into an acid addition salt, e.g., 16•HCl, preferably under conditions as described above for the second step of the conversion of imidazole 15 into 16•HCl. The acid used in this step is preferably a strong acid, e.g., a mineral acid such as HCl (to provide 16•HCl), or HBr, H2SO4, HClO4 or HNO3, or a strong organic acid such as CF3SO3H or CH3SO3H. The solvent may be aqueous or, especially when the acid is CF3SO3H or CH3SO3H, organic.
  • The compound of the formula 6 is named as a starting material in the novel process according to the invention, but can also be used as a novel starting material for the intermediates in the known process for the preparation of Temozolomide. Further compounds that can be used in both these aspects include compounds analogous to the compound of the formula 6 and having the formula II, and higher alkyl analogs of the compound of the formula 6.
  • Preferred intermediates of the formulae VI and V include:
    Figure US20050131227A1-20050616-C00013

    wherein Ar is as hereinbefore defined but is preferably a diphenylmethylene group.
  • In the compounds of the formulae 4, 5, 6, 8, 11, 13 and 17, and also the compound of the formula t-Bu.NH.CO.C(N:Ar).CN, the 1,1-dimethylethylamino group can be replaced with a protected amino group PgNH, Pg2N, or Pg″N, where Pg and Pg″ are as hereinbefore defined.
  • The invention also provides a process for the preparation of a compound of the formula IV, which comprises:
  • 1. amidation of the ester group with a protecting amine, preferably 1,1-dimethylethylamine and especially in the presence of a basic catalyst and an inert organic solvent;
  • 2. nitrosylation of the reactive methylene group, e.g., with an alkali metal nitrite, e.g., sodium nitrite, and a weak acid such as an organic acid, especially acetic acid, but preferably with nitrosyl chloride in an inert organic solvent such as methylene chloride.
  • The resulting compound has the formula Pg″N.CO.C(:NOH).CN wherein Pg″ is a protecting group, especially a 1,1-dimethylethyl group together with a hydrogen atom. Compounds of this formula and the intermediates of the formulae Pg″N.CO.CH2.CN and Pg″N.CO.CH(N:Ar).CN are also features of the invention, especially those wherein Pg″ is a 1,1-dimethylethyl group, together with a hydrogen atom.
  • The invention also provides a process for the preparation of the above-mentioned compound of the formula 8, which comprises diazotizing a compound of the formula II wherein Pg″N is a 1,1-dimethylethylamino group together with a hydrogen atom. This reaction can be effected under the reaction conditions set out under paragraph (a) at the start of the section Summary of the Invention.
  • Compounds of the formulae II, III, V and VI can exist in the form of their salts, for example with mineral acids, especially with hydrochloric acid and sulfuric acid. A particularly preferred salt of this type is compound 5•HCl.
  • Compounds of the formulae IV can exist in the form of their salts with bases, for example with alkali metals such as sodium.
  • The invention is not restricted to the specific embodiments of the processes shown in the foregoing Schemes III to VI and the specific intermediates used therein, but further comprises analogous processes which are carried out under different but substantially equivalent conditions, and also analogous processes and intermediates wherein different but broadly equivalent protecting groups Pg″ and Ar are used, and especially those wherein the methyl group (the precursor of the 3-methyl group in Temozolomide) is replaced with a larger alkyl group R, wherein R is as hereinabove defined. Furthermore, the intermediates 4, 5, 6, 8, 13, and 17, which are novel, can also be modified to include different but broadly equivalent protecting groups Pg or Pg″ and Ar, and intermediates 6 and 8 can be modified to include a larger alkyl group R (wherein Pg, Pg″, Ar and R are as hereinabove defined). All these embodiments are features of the present invention.
  • It should be noted that the unfused imidazole nucleus can generally exist in two tautomeric forms (whose interconversion is catalyzed by acids), as illustrated in the following scheme for the compound of formula (A) above:
    Figure US20050131227A1-20050616-C00014
  • Although one such form may predominate, both formulae of such compounds are generally covered in the description and claims of this specification, even where the name or formula specifically identifies only one.
  • When used herein, the following terms have the indicated meanings:
  • alkyl—represents a saturated hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4, which may be straight or branched but is preferably unbranched, e.g., 1-butyl, 1-propyl, ethyl, or especially methyl;
  • arylmethylene—represents a methylene group in which at least one aryl group as defined below is substituted for at least one of the methylene hydrogen atoms. In compounds such as that of formula V, the methylene carbon atom of the arylmethylene group is doubly bonded to the adjacent nitrogen atom. Representative arylmethylene groups include diphenylmethylene, phenylmethylene, and 9-fluorenylidene;
  • aryl (including the aryl portion of arylmethylene)—represents a carbocyclic group having from 6 to 14 carbon atoms and having at least one fused benzenoid ring, with all available substitutable carbon atoms of the carbocyclic group being intended as possible points of attachment, said carbocyclic group being optionally substituted with 1 to 3 Y groups, where each group Y is independently selected from halo, alkyl, nitro, alkoxy and dialkylamino groups. Preferred aryl groups are phenyl, substituted phenyl, 1-naphthyl, 2-naphthyl and indanyl.
  • EXAMPLES
  • The following Examples illustrate but do not in any way limit the present invention:
  • Example 1 3-Methyl-8-aminocarbonvl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (Temozolomide)
  • Step A: Preparation of 2-cvano-N-(1,1-dimethylethyl)-2-[(diphenylmethylene)amino]-acetamide
    Figure US20050131227A1-20050616-C00015
  • The imine 3 (700 g, 3.178 mol) and CH2Cl2 (7 L) were placed into a 22 L three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, mechanical stirrer, and maintained under a positive pressure of nitrogen. 1,1-Dimethylethyl-isocyanate (442 mL, 3.870 mol) was added to this stirred mixture at 0° C., and after stirring for 10 min a solution of potassium t-butoxide in THF (1.0 M in THF, 3.88 L, 3.88 mol) (as supplied by Aldrich) was added slowly (1 hour). The solution was stirred at 0° C. for 4 hours, when the reaction mixture had become a very thick paste with a deep brown color, and thin layer chromatography (EtOAc/hexanes=¼) indicated that no more starting material was present. The resulting mixture was quenched with saturated NH4Cl solution (5 L), and the organic layer was separated and washed sequentially with saturated NH4Cl solution (5 L), and brine (5 L). The combined aqueous solution was extracted with CH2Cl2 (1 L). The combined CH2Cl2 solutions were dried over MgSO4 and concentrated under reduced pressure to yield a brown solid. The resulting crude N-(1,1-dimethylethyl)-acetamide derivative was purified by slurrying in hexane (2.5 L) at a concentration of 1-5% at room temperature. The slurry was filtered and the filter cake dried in a vacuum oven (20 mm Hg, 20° C., 18 hours) to yield 0.914 kg (2.862 mol, 90%) N-(1,1-dimethylethyl)-acetamide derivative 4 as a brownish solid.
  • 1H NMR (400 MHz, CDCl3, δ): 7.62 (d, 2H), 7.53 (m, 4H), 7.41 (m, 2H), 7.22 (m, 2H), 4.62 (s, 1H), 1.41 (s, 9H); mp: 107-108° C.
    Step B: Preparation of 2-amino-2-cyano-N-(1,1-dimethylethyl)-acetamide hydrochloride, 5•HCl
    Figure US20050131227A1-20050616-C00016
  • 2-Cyano-N-(1,1-dimethylethyl)-2-[(diphenylmethylene)amino]acetamide 4 (900 g, 2.818 mol), ethyl acetate (4.5 L) and aqueous HCl (1 N, 4.5 L) were placed into a 12 L three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, mechanical stirrer, and maintained under a positive pressure of nitrogen. The mixture was heated on an oil bath at 60° C. for 4 hours with vigorous stirring, gradually cooled to room temperature, and then slowly diluted with CH2Cl2 (4 L). (Thin layer chromatography (EtOAc/hexanes=¼) indicated no more starting material was present.) The resulting layers were separated and the aqueous phase was extracted with CH2Cl2 (4 L). The combined organic solutions were extracted with aqueous HCl (1N, 2×0.5 L). The aqueous extracts were combined and concentrated under reduced pressure to yield 490 g (2.557 mol) of 2-amino-2-cyano-N-(1,1-dimethylethyl)-acetamide hydrochloride 5•HCl.
  • 1H NMR (400 MHz, DMSO, δ): 9.38 (bs, 2H), 8.92 (s, 1H), 5.28 (s, 1H), 1.30 (s, 9H); mp: 211° C. (dec.)
    Step G: Preparation of 5-Amino-N4-(1,1-dimethylethyl)-N1-methyl-1H-imidazole-1,4-dicarboxamide 6
    Figure US20050131227A1-20050616-C00017
  • 2-Amino-2-cyano-N-(1,1-dimethylethyl)-acetamide hydrochloride 5•HCl (414 g, 2.160 mol), urea 7 (414 g, 2.617 mol) (Whitehead, C. W.; J. Am. Chem. Soc., 1953, 75, 671), CH2Cl2 (4 L) and acetic acid (20 mL) were placed into a 10 L, three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, mechanical stirrer, and maintained under a positive pressure of nitrogen. The mixture was stirred vigorously at room temperature for 18 hours and then concentrated under reduced pressure. The residue was treated with H2O(3 L) and stirred for 30 min, and the solids were collected by vacuum filtration. The solid was dried in an oven (20 mm Hg, 20° C., 18 hours) to yield 240 g of a grayish solid (0.943 mol, 94% pure, HPLC analysis). A standard sample of 5-amino-N4-(1,1-dimethylethyl)-N1-methyl-1H-imidazole-1,4-dicarboxamide 6 was prepared by recrystallization from EtOAc; mp: 145-147° C.
  • The aqueous solution was extracted with CH2Cl2 (2 L), the organic extract concentrated under reduced pressure, and the residue was washed sequentially with H2O(200 mL) and EtOAc/hexanes (1/9, 500 mL) to yield 130 g of additional grayish product (0.505 mol, 93% pure, HPLC assay).
  • 1H NMR (400 MHz, CDCl3, δ): 7.45 (s, 1H), 6.98 (bs, 1H), 6.50 (s, 1H), 5.92 (bs, 2H), 2.92 (d, 3H), 1.40 (s, 9H).
  • Although it was observed that smaller-scale reactions (using 1-15 g of 5) gave higher percentage yields of relatively purer product (e.g., 90-95% yield, 93-98% pure), such small-scale reactions are less practical for the preparation of a commercial product.
  • Purification of 5-Amino-N4-(1,1-dimethylethyl)-N1-methyl-1H-imidazole-1,4-dicarboxamide 6
  • 5-Amino-N4-(1,1-dimethylethyl)-N1-methyl-1H-imidazole-1,4-dicarboxamide 6 (313 g, 93% pure by HPLC analysis) was suspended in EtOAc (4 L) and refluxed for 10 min. The solution was filtered while hot to remove solid residue, and was then cooled slowly to room temperature. The resulting solid product was collected by vacuum filtration. The filtrate was concentrated under reduced pressure to a thick paste and then filtered to afford an additional solid product. The combined solids were purified by slurrying in t-BuOMe/2-PrOH (1.5 L, 9/1) at room temperature for 1 hour. The solid product 6 was collected by filtration and was dried in a vacuum oven (20 mm Hg, room temperature, 48 hours) to yield 252 g of a tan-colored solid (98% pure against a standard sample by HPLC analysis). A satisfactory 1H NMR spectrum was obtained.
    Step D: 3,4-Dihydro-N-(1.1-dimethylethyl)-3-methyl-imidazo[5.1-d]-1.2,3,5-tetrazine-8-carboxamide 8 (t-butyl-Temozolomide)
    Figure US20050131227A1-20050616-C00018
  • LiCl (45 g, 1.066 mol) (Aldrich), distilled H2O(100 mL) and glacial acetic acid (2.5 mL, 43.9 mmol) were placed into a 500 ml three-necked flask equipped with an overhead mechanical stirrer and thermometer. The warm solution was stirred for 30 min in an ice bath until cooled to room temperature. 5-Amino-N4-(1,1-dimethylethyl)-N1-methyl-1H-imidazole-1,4-dicarboxamide 6 (5.0 g, 20.9 mmol, 98% pure) was then added, the mixture was stirred for 30 min, and then NaNO2 (1.9 g, 23 mmol) (Fischer) was added. The reaction mixture was stirred at 0° C. for one hour and then at room temperature for 5 hours (when HPLC indicated that no more starting material was present), and then diluted with CH2Cl2 (100 mL). The resulting layers were separated and the aqueous phase was extracted with CH2Cl2 (100 mL). The combined organic solutions were washed with aqueous Na2S2O4 (10 g/100 ml) and then with aqueous NaHCO3 (saturated, 100 mL). The organic solution was concentrated under reduced pressure to afford 2 as a yellow-brown solid (4.56 g, 88% pure, HPLC assay). A standard sample was prepared by flash chromatography (6:4, EtOAc:hexane) twice. Satisfactory 1H and 13C NMR spectra and elemental analyses were obtained; mp: 135-136° C.
  • 1H NMR (400 MHz, CDCl3, δ): 8.38 (s, 1H), 7.20 (bs, 1H), 4.04 (s, 3H), 1.52 (s, 9H).
    Step E: 3-Methyl-8-aminocarbonyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one 9 (Temozolomide)
    Figure US20050131227A1-20050616-C00019
  • t-Butyl-Temozolomide 8 (4.01 g, 16.023 mmol) and conc. H2SO4 (8 mL) (Fisher Scientific) were placed into a 50 mL flask equipped with a stirrer bar. The mixture was stirred for 2 hours at room temperature and then slowly poured into ice-cold EtOH (160 mL). A white precipitate formed, which was collected by vacuum filtration and washed with ice-cold EtOH (10 mL). The solid was dried under vacuum (20 mm Hg, room temperature, 72 hours) to yield 2.63 g of 9 (13.546 mmol, 98.4% pure against a standard sample by HPLC analysis)
  • The mother liquors contained an additional 9.7% of 9 (HPLC assay).
  • Example 2 Preparation of Intermediates and Reagents
  • Part A: 2-Cyano-N(1,1-dimethylethyl)-2-(hydroxyimino)acetamide 13
    Figure US20050131227A1-20050616-C00020
  • Amide 11 (3.11 g, 22.18 mmol) (Bhawal, B. M.; Khanapure, S. P.; Biehl, E. R.; Syn. Commun., 1990, 20, 3235) dissolved in CH2Cl2 (100 mL) was placed into a 500 mL 3-necked round-bottom flask equipped with a stirring bar. The solution was cooled to 0° C. (ice bath) and NOCl (Fluka) was bubbled through until the reaction mixture turned a brick-red color. The reaction mixture was stirred at 0° C. for 30 min and then at room temperature for 18 hours. The precipitate was collected and washed with CH2Cl2 (25 mL) to afford the product as a white solid (2.88 g, 17.0 mmol).
  • 1H NMR (400 MHz, DMSO-d6, δ): 7.70 (s, 1H), 3.32 (s, 1H), 1.32 (s, 9H); mp: 218-219° C.
    Part B: 2-Amino-2-cyano-N-(1,1-dimethylethyl)acetamide 13
    Figure US20050131227A1-20050616-C00021
  • Oxime 13 (2.5 g, 14.78 mmol), Al amalgam (0.81 g) and distilled H2O (100 mL) were placed into a 250 mL round-bottom flask equipped with a stirring bar, nitrogen inlet, a gas outlet tube, and maintained under positive pressure of nitrogen. The reaction mixture was stirred at 2-10° C. (ice bath) for 2.5 hours, filtered, the filtrate extracted with CH2Cl2 (2×60 mL), and the combined organic layers were concentrated under reduced pressure to afford the product as an oil (1.62 g, 10.44 mmol). Concentration of the aqueous layer under reduced pressure afforded additional product 5 (0.41 g, 2.64 mmol).
  • 1H NMR (400 MHz, DMSO, δ): 7.68 (s, 1H), 4.34 (s, 1H), 2.78 (bs, 2H), 1.32 (s, 9H).
  • The Al amalgam used in this Step was prepared as follows: HgCl2 (1.6 g, 5.89 mmol) was dissolved in 160 mL distilled H2O in a 250 mL round-bottom flask equipped with a stirring bar. The solution was cooled to 0-50° C. (ice bath), aluminum foil (4.0 g, 148.3 mmol), cut into small squares (≈0.5 to 1.0 cm2), was added, and the mixture was stirred for 1.5 min. It was then filtered, and the solids were washed with MeOH (2×60 mL) and then t-BuOMe (60 mL), dried under vacuum (20 mm Hg, 3 hours) and stored under N2.
    Part C: Purification of Aminocyanoacetamide 14
    Figure US20050131227A1-20050616-C00022
  • Aminocyanoacetamide 14 (60.0 g, 0.606 mol) (Aldrich, black solid) and acetone (2 L) were placed into a 5 L, three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, mechanical stirrer, and maintained under a positive pressure of nitrogen. The mixture was heated to reflux for 10 min with vigorous stirring, gradually cooled to room temperature, and then filtered. The organic solution was concentrated under reduced pressure to yield 55.2 g (0.557 mol) of 14. The product was dried in a vacuum oven (20 mm Hg, 20° C., 18 hours) and is a tan solid.
    Part D: Preparation of 5-Amino-N1-methyl-1H-imidazole-1,4dicarboxamide 15
    Figure US20050131227A1-20050616-C00023
  • Aminocyanoacetamide 14 (80 g, 0.807 mol), urea 7 (139 g, 0.879 mol), and glacial acetic acid (0.96 L, 16.77 mol) (Fisher Scientific) were placed into a 2 L, three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, mechanical stirrer, and maintained under a positive pressure of nitrogen. The mixture was stirred vigorously at room temperature for 2 hours and then concentrated under reduced pressure. After removal of most of the acetic acid, 200 mL of t-BuOMe was added and the mixture was concentrated under reduced pressure. The residue (a viscous oil) was treated with MeOH/t-BuOMe (1:20, 2.5 L), and precipitation was induced by scratching the glass surface. The mixture was stirred for 30 min and the precipitate was collected by vacuum filtration. The solid was dried in an oven (20 mm Hg, 20° C., 18 hours) to yield 135 g of a grayish solid. The crude product was purified by slurrying in H2O (0.7 L) at room temperature for 1 hour. The solid product 15 was collected by filtration and was oven dried (20 mm Hg, 20° C., 18 hours) to yield 129 g of a grayish solid (0.680 mol, 97% pure against a standard sample by HPLC analysis). A standard sample of 5-amino-N1-methyl-1H-imidazole-1,4-dicarboxamide 15 was prepared by recrystallization from CH3CN/H2O (1:6); mp: 165-169° C.
  • 1H NMR (400 MHz, DMSO-d6, δ): 8.50 (q, 1H), 7.67 (s, 1H), 6.9 (bd, 2H), 2.83 (d, 3H).
    Part E: Preparation of 5-Amino-1H-imidazole-4-carboxamide hydrochloride 16•HCl from 5-Amino-N1-methyl-1H-imidazole-1,4-dicarboxamide 15
    Figure US20050131227A1-20050616-C00024
  • 5-Amino-N1-methyl-1H-imidazole-1,4-dicarboxamide 15 (10.72 g, 0.057 mol, 97% pure against a standard sample by HPLC analysis), Et3N (5 mL) and MeOH (100 mL) were placed into a 250 mL round-bottom flask equipped with a magnetic stir bar. The heterogeneous reaction mixture was heated at 80° C. (oil bath) for 4 hour with vigorous stirring, gradually cooled to room temperature (the reaction mixture is a dark homogeneous solution), and concentrated under reduced pressure. The residue (a viscous oil) was treated with t-BuOMe/acetone/MeOH (50 mL/20 mL/5 mL) and stirred for 2 hour. Precipitation was induced by scratching the glass surface. The precipitate was collected by vacuum filtration to yield 7.21 g of 5-amino-1H-imidazole4-carboxamide (as free base). The free base was converted into 5-amino-1H-imidazole-4-carboxamide hydrochloride 16•HCl by slurrying in HCl/MeOH (2.6 M, 40 mL, 0.104 mol, prepared by bubbling HCl gas into MeOH). The solid product 16•HCl was collected by filtration and air dried (2 hour) to yield 8.5 g of product (0.051 mmol, 97% pure against an Aldrich sample by HPLC analysis).
  • 1H NMR (400 MHz, D2O, δ): 8.21 (s, 1H).
    Part F: Preparation of 5-Amino-N-(1,1-dimethylethyl)-1H-imidazole-4-carboxamide 17
    Figure US20050131227A1-20050616-C00025
  • 5-Amino-N4-(1,1-dimethylethyl)-N1-methyl-1H-imidazole-1,4-dicarboxamide 6 (10.4 g, 0.041 mol, 93% pure), MeOH (100 mL) and Et3N (5 mL) were placed into a 250 mL, three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, magnetic stirrer bar, and maintained under a positive pressure of nitrogen. The mixture was heated at 80° C. (oil bath) for 3 hour with vigorous stirring (when HPLC analysis indicated that no more starting material was present), gradually cooled to room temperature, and concentrated under reduced pressure. The gummy residue was treated with a solution of t-BuOMe (10 mL), n-heptane (100 mL) and acetone (2 mL), and stirred at room temperature for 1 hour. The resulting precipitate was collected by vacuum filtration and dried (20 mm Hg, 20° C., 18 hours) to yield 8.9 g (theoretical yield is 7.37 g) of 5-amino-N-(1,1-dimethyl-ethyl)-1H-imidazole-4-carboxamide 17 as a tan solid.
  • 1H NMR (400 MHz, CDCl3, δ) 7.10 (s, 1H), 6.80 (s, 1H), 2.92 (d, 3H), 1.42 (s, 9H); mp: 186° C. (dec.)
  • Part G: Preparation of 5-Amino-1H-imidazole-4-carboxamide hydrochloride 16
    Figure US20050131227A1-20050616-C00026
  • 5-Amino-N-(1,1-dimethylethyl)-1H-imidazole-4-carboxamide 17 (8.9 g, theoretical amount is 7.37 g, 0.041 mol) and conc. HCl (20 mL) were placed into a 100 mL, three-necked flask equipped with a nitrogen inlet, a gas outlet tube, reflux condenser, thermometer, magnetic stirrer bar, and maintained under a positive pressure of nitrogen. The mixture was heated at 80° C. (oil bath) for 1 hour with vigorous stirring, gradually cooled to 0° C., yielding a precipitate, and then slowly added to 2-PrOH (30 mL). The solids were collected by vacuum filtration and washed with 2-PrOH (15 mL) to yield 4.97 g of product (0.030 mol, 97.5% pure against an Aldrich sample by HPLC analysis). The filtrate was concentrated under reduced pressure to give a gummy residue. The gummy residue was treated with MeOH (20 mL) and stirred for 20 min. The solids were collected by vacuum filtration and washed with MeOH (10 mL) to yield an additional 0.65 g of product (0.004 mol, 95% pure against an Aldrich sample by HPLC analysis). The combined amount of 5-amino-1H-imidazole-4-carboxamide hydrochloride 16•HCl was 5.62 g (0.034 mol, 97% pure against an Aldrich sample by HPLC analysis).
  • 1H NMR (400 MHz, D2O, δ): 8.21 (s, 1H).
  • Analogs of Temozolomide, for example the 3-ethyl, 3-(1-propyl), 3-(1-butyl), and 3-(1-hexyl) analogs, can be prepared by similar methods.
  • All publications and patents cited herein are incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
  • Whereas a number of embodiments of this invention are described herein, it is apparent that these embodiments can be altered to provide other embodiments that utilize the compositions and processes of this invention. Therefore, it will be understood that the scope of this invention includes alternative embodiments and variations which are defined in the foregoing specification and by the claims appended hereto; and the invention is not to be limited to the specific embodiments presented herein by way of example.

Claims (30)

1. A process for the preparation of a compound of the formula:
Figure US20050131227A1-20050616-C00027
wherein R is an alkyl group having from 1 to 6 carbon atoms, which comprises:
(a) diazotizing a compound of the formula:
Figure US20050131227A1-20050616-C00028
 wherein R is as defined above;
 and Pg″ is a divalent protecting group that is readily removable by hydrolysis or hydrogenolysis; or two monovalent protecting groups Pg that are readily removable by hydrolysis or hydrogenolysis; or a bulky monovalent protecting group Pg that is readily removable by hydrolysis or hydrogenolysis, together with a hydrogen atom;
 and thereafter
(b) hydrolyzing the resulting compound of the formula:
Figure US20050131227A1-20050616-C00029
2. A process as claimed in claim 1 wherein R is a straight-chain alkyl group having from 1 to 4 carbon atoms.
3. A process as claimed in claim 1 wherein R is a methyl group.
4. A process as claimed in claim 3 wherein Pg″ is a monovalent protecting group together with a hydrogen atom.
5. A process as claimed in claim 4 wherein the monovalent protecting group is a 1,1-dimethylethyl group.
6. A process as claimed in claim 5 wherein step (a) is carried out in solution in an aqueous organic acid with a source of nitrous acid.
7. A process as claimed in claim 6 wherein the organic acid is acetic acid and the source of nitrous acid is inorganic.
8. A process as claimed in claim 7 wherein the source of nitrous acid is sodium nitrite.
9. A process as claimed in claim 8 wherein the reaction is carried out in the presence of LiCl.
10. A process as claimed in claim 5 wherein step (b) is carried out by hydrolysis with a mineral acid.
11. A process as claimed in claim 10 wherein the mineral acid is concentrated sulfuric acid.
12. A process as claimed in claim 1 for the preparation of Temozolomide having the formula:
Figure US20050131227A1-20050616-C00030
which comprises
(a) diazotizing a compound of the formula:
Figure US20050131227A1-20050616-C00031
 wherein Pg″ is a divalent protecting group that is readily removable by hydrolysis or hydrogenolysis; or two monovalent protecting groups Pg that are readily removable by hydrolysis or hydrogenolysis; or a bulky monovalent protecting group Pg that is readily removable by hydrolysis or hydrogenolysis, together with a hydrogen atom;
 and thereafter
(b) subjecting the resulting compound of the formula:
Figure US20050131227A1-20050616-C00032
 wherein Pg″ is as defined above, to hydrolysis or hydrogenolysis.
13. A process as claimed in claim 12 wherein the protecting group Pg″ is a 1,1-dimethylethyl group together with a hydrogen atom, the diazotization is effected in solution in acetic acid with sodium nitrite and in the presence of LiCl;
and step (b) is carried out by hydrolysis with concentrated sulfuric acid.
14. A process as claimed in claim 1 wherein the compound of the formula II is prepared by reaction of a compound of the formula Pg″N.CO.CH(NH2).CN (V) (wherein Pg″ is a protecting group as defined in claim 1) with methyl[[[(methyl-amino)carbonyl]amino]methylene]urea or with N-methylurea and an orthoformate in an inert organic solvent.
15. A process as claimed in claim 14 wherein the compound of the formula V is prepared by hydrolysis of a compound of the formula Pg″N.CO.CH(N:Ar).CN (VI) (wherein Pg is as defined in claim 14 and Ar is an arylmethylene group) with mild acid.
16. A process as claimed in claim 15 wherein Pg is a 1,1-dimethylethyl group together with a hydrogen atom, and Ar is a diphenylmethylene group.
17. A process as claimed in claim 15 wherein the compound of the formula VI wherein Pg is a 1,1-dimethylethyl group together with a hydrogen atom and Ar is a diphenylmethylene group is prepared by condensation of [(diphenylmethylene)amino]acetonitrile with 1,1-dimethylethylisocyanate.
18. A compound of the formula:
Figure US20050131227A1-20050616-C00033
wherein Pg″ is a protecting group that is readily removable by hydrolysis as defined in claim 1, Ar is an arylmethylene group, and R is an alkyl group having from 1 to 6 carbon atoms;
together with the salts thereof.
19. A compound as claimed in claim 18 wherein Pg is a 1,1-dimethylethyl group together with a hydrogen atom, Ar is a diphenylmethylene group, and R is an alkyl group having from 1 to 4 carbon atoms.
20. A compound as claimed in claim 18 having the formula:
Figure US20050131227A1-20050616-C00034
21. A process for the preparation of a compound having the formula III set forth in claim 1, which comprises diazotizing a compound of the formula II set forth in claim 1.
22. A process for the preparation of a compound having the formula II set forth in claim 1, which comprises reacting a compound of the formula Pg″N.CO.CH(NH2).CN (V) with a compound of the formula R.NH.CO.NH.CH:N.CO.NH.R or with an N-R-urea and an orthoformate in an inert organic solvent (wherein Pg″ is a protecting group as defined in claim 1 and R is as defined in claim 1).
23. A process as claimed in claim 22, which comprises reacting a compound of the formula t-BuNH.CO.CH(NH2).CN with methyl[[[(methylamino)carbonyl]-amino]methylene]urea or with N-methylurea and an orthoformate in an inert organic solvent.
24. A process for the preparation of a compound having the formula Pg″N.CO.CH(NH2).CN (V), which comprises hydrolyzing a compound of the formula Pg″N.CO.CH(N:Ar).CN (VI) (wherein Pg″ is a protecting group that is readily removable by hydrolysis as defined in claim 1, and Ar is an arylmethylene group) with mild acid.
25. A process for the preparation of a compound having the formula VI set forth in claim 18 wherein Pg is a 1,1-dimethylethyl group and Ar is a diphenylmethylene group, which comprises the condensation of [(diphenylmethylene)amino]acetonitrile with 1,1-dimethylethylisocyanate.
26. The acid addition salts of the compounds of the formulae 4, 5, 6, 8, and 17 defined in claim 20.
27. The salts with bases of the compound of the formula 13 defined in claim 20.
28. A process for the preparation of the compound of the formula
Figure US20050131227A1-20050616-C00035
or an acid addition salt thereof,
 which comprises hydrolyzing, or hydrogenolyzing and hydrolyzing, a compound of the formula
Figure US20050131227A1-20050616-C00036
 (wherein Pg″ and R are as defined in claim 1), and isolating the resulting compound of the formula
Figure US20050131227A1-20050616-C00037
 or an acid addition salt thereof.
29. A process for the preparation of a compound of the formula
Figure US20050131227A1-20050616-C00038
or an acid addition salt thereof,
 which comprises condensing a compound of the formula H2N.CO.CH(NH2).CN with a compound of the formula R.NH.CO.NH.CH:N.CO.NH.R or with an N-R-urea and an orthoformate in an inert organic solvent (wherein R is as defined in claim 1), hydrolyzing the resulting compound of the formula
Figure US20050131227A1-20050616-C00039
 (wherein R is as defined in claim 1), and isolating the resulting compound of the formula
Figure US20050131227A1-20050616-C00040
 or an acid addition salt thereof.
30. A process for the preparation of a compound of the formula
Figure US20050131227A1-20050616-C00041
wherein R is as defined in claim 1,
 which comprises condensing a compound of the formula H2N.CO.CH(NH2).CN with a compound of the formula R.NH.CO.NH.CH:N.CO.NH.R or with an N-R-urea and an orthoformate in an inert organic solvent (wherein R is as defined in claim 1).
US11/040,784 2001-01-18 2005-01-21 Synthesis of temozolomide and analogs Abandoned US20050131227A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/040,784 US20050131227A1 (en) 2001-01-18 2005-01-21 Synthesis of temozolomide and analogs
US11/453,125 US7446209B2 (en) 2001-01-18 2006-06-14 Synthesis of temozolomide and analogs
US12/239,123 US7737284B2 (en) 2001-01-18 2008-09-26 Synthesis of temozolomide and analogs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26246501P 2001-01-18 2001-01-18
US10/050,488 US7087751B2 (en) 2001-01-18 2002-01-16 Synthesis of temozolomide and analogs
US11/040,784 US20050131227A1 (en) 2001-01-18 2005-01-21 Synthesis of temozolomide and analogs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/050,488 Division US7087751B2 (en) 2001-01-18 2002-01-16 Synthesis of temozolomide and analogs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/453,125 Division US7446209B2 (en) 2001-01-18 2006-06-14 Synthesis of temozolomide and analogs

Publications (1)

Publication Number Publication Date
US20050131227A1 true US20050131227A1 (en) 2005-06-16

Family

ID=22997631

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/050,488 Expired - Fee Related US7087751B2 (en) 2001-01-18 2002-01-16 Synthesis of temozolomide and analogs
US11/040,784 Abandoned US20050131227A1 (en) 2001-01-18 2005-01-21 Synthesis of temozolomide and analogs
US11/453,125 Expired - Fee Related US7446209B2 (en) 2001-01-18 2006-06-14 Synthesis of temozolomide and analogs
US12/239,123 Expired - Fee Related US7737284B2 (en) 2001-01-18 2008-09-26 Synthesis of temozolomide and analogs

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/050,488 Expired - Fee Related US7087751B2 (en) 2001-01-18 2002-01-16 Synthesis of temozolomide and analogs

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/453,125 Expired - Fee Related US7446209B2 (en) 2001-01-18 2006-06-14 Synthesis of temozolomide and analogs
US12/239,123 Expired - Fee Related US7737284B2 (en) 2001-01-18 2008-09-26 Synthesis of temozolomide and analogs

Country Status (9)

Country Link
US (4) US7087751B2 (en)
EP (1) EP1353924A1 (en)
JP (2) JP4358510B2 (en)
CN (4) CN101220033A (en)
AR (1) AR035419A1 (en)
CA (1) CA2434308C (en)
MX (1) MXPA03006403A (en)
SG (1) SG144736A1 (en)
WO (1) WO2002057269A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038031A1 (en) * 2006-09-29 2008-04-03 Cipla Limited An improved process for the preparation of temozolomide and analogs
WO2020194168A1 (en) * 2019-03-25 2020-10-01 Shivalik Rasayan Limited Process for preparing highly pure temozolomide

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615632B2 (en) 2003-12-30 2009-11-10 Chemagis Ltd. Crystalline forms of temozolomide
US7612202B2 (en) * 2005-02-17 2009-11-03 Chemagis, Ltd. Process for preparing temozolomide
CN1300143C (en) * 2005-04-08 2007-02-14 江苏天士力帝益药业有限公司 Temozolomide refining process
US20060222792A1 (en) * 2006-04-21 2006-10-05 Chemagis Ltd. Temozolomide storage system
PE20091101A1 (en) 2007-12-18 2009-07-26 Pharminox Ltd 3-SUBSTITUTED-4-OXO-3,4-DIHYDRO-IMIDAZO [5,1-d] [1,2,3,5-TETRACINE-8-CARBOXYL ACID AMIDES AND ITS USE
EP2151442A3 (en) 2008-08-07 2011-04-06 Chemi SPA Process for preparing temozolomide
WO2010091198A1 (en) 2009-02-06 2010-08-12 University Of Southern California Therapeutic compositions comprising monoterpenes
WO2010140168A1 (en) * 2009-06-03 2010-12-09 Ind-Swift Laboratories Limited Improved process for preparing temozolomide
JP2012530775A (en) 2009-06-23 2012-12-06 ファーミノックス リミテッド 3-substituted-8-substituted-3H-imidazo [5,1-d] [1,2,3,5-tetrazin-4-one compounds and uses thereof
WO2011036676A2 (en) 2009-09-23 2011-03-31 Ashwini Nangia Stable cocrystals of temozolomide
WO2011107726A1 (en) 2010-03-01 2011-09-09 Pharminox Ltd Methods and intermediates for the synthesis of 4-oxo-3,4-dihydro-imidazo[5,1-d][1,2,3,5]tetrazines
CN102070639B (en) * 2010-12-21 2012-10-10 中南大学 Method for synthesizing temozolomide
CN102659789B (en) * 2011-04-27 2014-10-15 四川科瑞德凯华制药有限公司 Method preparing temozolomide in one-pot mode and refining method of temozolomide
CA3041049A1 (en) 2016-10-27 2018-05-03 Celgene Quanticel Research, Inc. Bromodomain and extra-terminal protein inhibitor combination therapy
CN111233871B (en) * 2020-03-17 2021-11-12 江苏美迪克化学品有限公司 Preparation method of temozolomide
US11597731B2 (en) 2021-07-17 2023-03-07 Shivalik Rasayan Limited Process for preparing highly pure temozolomide
JP2023043987A (en) 2021-09-17 2023-03-30 キオクシア株式会社 Substrate processing apparatus and substrate processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260291A (en) * 1981-08-24 1993-11-09 Cancer Research Campaign Technology Limited Tetrazine derivatives

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941768A (en) 1968-05-30 1976-03-02 Ciba-Geigy Ag One step diazotization coupling process
JPS5318521A (en) 1976-08-04 1978-02-20 Nippon Kayaku Co Ltd Preparation of 3,5-dichloronitrogenzene
JPS5334745A (en) 1976-09-11 1978-03-31 Kyowa Hakko Kogyo Co Ltd Preparation of 2-(4-alkylphenyl)propionic acids
JPS582229B2 (en) 1977-04-11 1983-01-14 住友化学工業株式会社 Manufacturing method of glycine ester
JPS5920665B2 (en) 1977-07-06 1984-05-15 住友化学工業株式会社 Purification method of phenylhydrazine
JPS5441830A (en) 1977-09-07 1979-04-03 Seitetsu Kagaku Co Ltd Production of p-hydroxybenzaldehyde
JPS5459283A (en) 1977-10-18 1979-05-12 Ishihara Sangyo Kaisha Ltd Preparation of 2,3,5-trichloropyridine
JPS609702B2 (en) 1977-11-14 1985-03-12 田辺製薬株式会社 Method for producing optically active benzyl alcohol derivatives
JPS609703B2 (en) 1977-11-14 1985-03-12 田辺製薬株式会社 Method for producing optically active benzyl alcohol derivatives
JPS6058221B2 (en) 1977-11-15 1985-12-19 日産化学工業株式会社 Substituted diphenylamine and method for producing the same
JPS54102127A (en) 1978-01-27 1979-08-11 Mitsubishi Electric Corp Recording method for card surface
JPS54130598A (en) 1978-03-31 1979-10-09 Mitsui Toatsu Chem Inc Preparation of 1,2-dihydro-3h-pyrrolo3,2-eindole derivative
JPS5821937B2 (en) 1978-07-05 1983-05-04 住友化学工業株式会社 Manufacturing method of azo lake pigment
JPS5517349A (en) 1978-07-24 1980-02-06 Rikagaku Kenkyusho Production of diterpene derivative
GB2125402B (en) * 1982-08-17 1985-11-13 May & Baker Ltd New tetrazine derivatives
ATE25521T1 (en) * 1982-12-20 1987-03-15 Merck & Co Inc 5-(AMINO OR SUBSTITUTED AMINO)-IMIDAZOLES.
GB8616125D0 (en) * 1986-07-02 1986-08-06 May & Baker Ltd Compositions of matter
FI89906C (en) 1988-05-17 1993-12-10 Lonza Ag Process for Preparation of Aminocyanacetamide
US5942247A (en) 1996-07-31 1999-08-24 Schering Corporation Method for treating pediatric high grade astrocytoma including brain stem glioma
US5824346A (en) 1996-08-22 1998-10-20 Schering Corporation Combination therapy for advanced cancer
US5939098A (en) 1996-09-19 1999-08-17 Schering Corporation Cancer treatment with temozolomide
US6096757A (en) 1998-12-21 2000-08-01 Schering Corporation Method for treating proliferative diseases
US6251886B1 (en) 1998-12-07 2001-06-26 Schering Corporation Methods of using temozolomide in the treatment of cancers
US6346524B1 (en) 1999-03-30 2002-02-12 Schering Corporation Cancer treatment with temozolomide
US6316462B1 (en) 1999-04-09 2001-11-13 Schering Corporation Methods of inducing cancer cell death and tumor regression
JP4105821B2 (en) 1999-05-17 2008-06-25 富士フイルム株式会社 Diazo compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260291A (en) * 1981-08-24 1993-11-09 Cancer Research Campaign Technology Limited Tetrazine derivatives

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038031A1 (en) * 2006-09-29 2008-04-03 Cipla Limited An improved process for the preparation of temozolomide and analogs
US20090326028A1 (en) * 2006-09-29 2009-12-31 Cipla Limited Process for the preparation of temozolomide and analogs
EP2374807A2 (en) 2006-09-29 2011-10-12 Cipla Limited An improved process for the isolation of temozolomide
US8258294B2 (en) 2006-09-29 2012-09-04 Cipla Limited Process for the preparation of temozolomide and analogs
EP2066672B1 (en) 2006-09-29 2015-06-24 Cipla Limited An improved process for the preparation of temozolomide and analogs
WO2020194168A1 (en) * 2019-03-25 2020-10-01 Shivalik Rasayan Limited Process for preparing highly pure temozolomide

Also Published As

Publication number Publication date
CN101195589A (en) 2008-06-11
JP2004518673A (en) 2004-06-24
CA2434308C (en) 2010-09-21
CN1800184A (en) 2006-07-12
US7737284B2 (en) 2010-06-15
US20090023919A1 (en) 2009-01-22
US7446209B2 (en) 2008-11-04
AR035419A1 (en) 2004-05-26
CN1269819C (en) 2006-08-16
EP1353924A1 (en) 2003-10-22
US7087751B2 (en) 2006-08-08
MXPA03006403A (en) 2003-10-15
US20060229456A1 (en) 2006-10-12
US20020095036A1 (en) 2002-07-18
CA2434308A1 (en) 2002-07-25
CN1487941A (en) 2004-04-07
CN101220033A (en) 2008-07-16
JP2009024025A (en) 2009-02-05
JP4358510B2 (en) 2009-11-04
SG144736A1 (en) 2008-08-28
CN100372852C (en) 2008-03-05
WO2002057269A1 (en) 2002-07-25

Similar Documents

Publication Publication Date Title
US7737284B2 (en) Synthesis of temozolomide and analogs
US9181175B2 (en) Process for manufacture and resolution of 2-acylamino-3-diphenylpropanoic acid
US9670160B2 (en) Process for the preparation of tofacitinib and intermediates thereof
US8058432B2 (en) Method for preparing phenylalanine derivatives having quinazoline-dione skeleton and intermediates for use in the preparation of derivatives
US20090143615A1 (en) Process for the Preparation of (S)(+)-3-(Aminomethyl)-5-Methylhexanoic Acid
US20130172572A1 (en) Process for Manufacture of N-acylbiphenyl alanine
US20090043111A1 (en) Novel process for ropinirole preparation
US20070185332A1 (en) Process for the synthesis of imidazoles
US8957252B2 (en) Process for preparation of lacosamide and some N-benzyl-propanamide intermediate derivatives
US6806380B2 (en) Modified safe and efficient process for the environmentally friendly synthesis of imidoesters
US20130211082A1 (en) Synthesis of Cyclopentaquinazolines
US8877961B2 (en) Bridged monobactam intermediates
Dufresne et al. The synthesis of phenylhydrazines from bis (2, 2, 2-Trichloroethyl) azodicarboxylates and electron-rich arenes
US20200140391A1 (en) Processes for the Synthesis of Substituted Urea Compounds
US11524957B2 (en) Process for the synthesis of 2-[(2S)-1-azabicyclo[2.2.2]oct-2-yl]-6-(3-methyl-1H-pyrazol-4-yl)thieno[3,2-d]pyrimidin-4(3H)-one
US6313315B1 (en) Methods for producing N-protected-azetidine-2-carboxylic acids
US8598343B2 (en) Process for preparing a 2-alkynyl substituted 5-amino-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine
US7880017B2 (en) Process for the synthesis of imidazoles
JPH10513483A (en) Chiral derivatives of hydroxyphenylglycine and their use in the synthesis of pharmaceutically active ingredients
Ghassemi et al. Microwave-Assisted Sulfamide Synthesis
Mistry et al. Synthesis of novel thiazolidinone and acetidinone derivatives and their anti microbial activity

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION