US20050126071A1 - Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties - Google Patents
Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties Download PDFInfo
- Publication number
- US20050126071A1 US20050126071A1 US11/009,870 US987004A US2005126071A1 US 20050126071 A1 US20050126071 A1 US 20050126071A1 US 987004 A US987004 A US 987004A US 2005126071 A1 US2005126071 A1 US 2005126071A1
- Authority
- US
- United States
- Prior art keywords
- monomer
- alkyl radical
- fuel oil
- chain lengths
- individual chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *C(=O)OC([H])([H])C([H])(OC(*)=O)C([H])([H])OC(*)=O Chemical compound *C(=O)OC([H])([H])C([H])(OC(*)=O)C([H])([H])OC(*)=O 0.000 description 3
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/1955—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by an alcohol, ether, aldehyde, ketonic, ketal, acetal radical
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/146—Macromolecular compounds according to different macromolecular groups, mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/196—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
- C10L1/1966—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/197—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
- C10L1/1973—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/224—Amides; Imides carboxylic acid amides, imides
Definitions
- the present invention relates to mineral fuel oils comprising constituents of vegetable or animal origin and having improved cold flow properties, and also to the use of an additive as a cold flow improver for such fuel oils.
- renewable raw materials include in particular natural oils and fats of vegetable or animal origin. These are generally triglycerides of fatty acids having from 10 to 24 carbon atoms and a calorific value comparable to conventional fuels, but are at the same time regarded as being less harmful to the environment.
- Biofuels i.e. fuels derived from animal or vegetable material, are obtained from renewable sources and, when they are combusted, generate only as much CO 2 as had previously been converted to biomass. It has been reported that less carbon dioxide is formed in the course of combustion than by the equivalent amount of crude oil distillate fuel, for example diesel fuel, and that very little sulfur dioxide is formed. In addition, they are biodegradable.
- Oils obtained from animal or vegetable material are mainly metabolism products which include triglycerides of monocarboxylic acids, for example acids having from 10 to 25 carbon atoms, and corresponding to the formula where R is an aliphatic radical which has from 10 to 25 carbon atoms and may be saturated or unsaturated.
- oils contain glycerides from a series of acids whose number and type vary with the source of the oil, and they may additionally contain phosphoglycerides.
- Such oils can be obtained by processes known from the prior art.
- rapeseed oil methyl ester RME
- RME has a Cold Filter Plugging Point (CFPP) of ⁇ 14° C.
- soya oil methyl ester a CFPP of ⁇ 5° C. used fatty acid methyl ester a CFPP of +1° C.
- EP-B-0 665 873 discloses a fuel oil composition which includes a biofuel, a fuel oil based on crude oil and an additive which comprises (a) an oil-soluble ethylene copolymer or (b) a comb polymer or (c) a polar nitrogen compound or (d) a compound in which at least one substantially linear alkyl group having from 10 to 30 carbon atoms is bonded to a nonpolymeric organic radical, in order to provide at least one linear chain of atoms which includes the carbon atoms of the alkyl groups and one or more nonterminal oxygen atoms, or (e) one or more of components (a), (b), (c) and (d).
- EP-B-0 629 231 discloses a composition which comprises a relatively large proportion of oil which consists substantially of alkyl esters of fatty acids which are derived from vegetable or animal oils or both, mixed with a small proportion of mineral oil cold flow improvers which comprises one or more of the following:
- EP-B-0 543 356 discloses a process for preparing compositions having improved low temperature performance for use as fuels or lubricants, starting from the esters of naturally occurring long-chain fatty acids with monohydric C 1 -C 6 -alcohols (FAE), which comprises
- DE-A-40 40 317 discloses mixtures of fatty acid lower alkyl esters having improved cold stability comprising
- EP-B-0 153 176 discloses the use of polymers based on unsaturated dialkyl C 4 -C 8 -dicarboxylates having an average alkyl chain length of from 12 to 14 as cold flow improvers for certain crude oil distillate fuel oils. Mentioned as suitable comonomers are unsaturated esters, in particular vinyl acetate, but also ⁇ -olefins.
- EP-B-0 153 177 discloses an additive concentrate which comprises a combination of
- EP-B-0 746 598 discloses comb polymers as a cold additive in fuel oils which have a cloud point of at most ⁇ 10° C.
- fuel oils composed of middle distillates and oils of vegetable and/or animal origin which include an additive comprising ethylene copolymers and certain comb polymers, exhibit excellent cold properties.
- the invention thus provides a fuel oil composition F) comprising
- the invention further provides the use of the above-defined additive comprising constituents A) and B) for improving the cold properties of fuel oil compositions F) comprising fuel oils of mineral (F1) and animal and/or vegetable (F2) origin.
- the invention further provides a process for producing fuel oil compositions F) comprising fuel oils of mineral (F1) and animal and/or vegetable (F2) origin, having improved cold flow properties, by adding the above-defined additive comprising constituents A) and B) to the mixture of fuel oils of mineral (F1) and animal and/or vegetable (F2) origin.
- Preferred oils of mineral origin are middle distillates.
- the mixing ratio between the fuel oils of animal and/or vegetable origin (which are also referred to hereinbelow as biofuels) and middle distillates is preferably from 88 to 65% by volume of middle distillate and from 12 to 35% by volume of biofuel.
- the inventive additives impart to these mixtures superior cold properties.
- Q assumes values between 22.0 and 27.0, in particular from 23.0 to 26.0 and, for example, 23, 24, 24.5, 25 or 26.
- Side chain length of olefins refers here to the alkyl radical diverging from the polymer backbone, i.e. the chain length of the monomeric olefin minus the two olefinically bonded carbon atoms.
- the total chain length of the olefin minus the double bond merging into the polymer backbone correspondingly has to be taken into account.
- Suitable ethylene copolymers A) are those which contain from 8 to 21 mol % of one or more vinyl and/or (meth)acrylic esters and from 79 to 92 mol % of ethylene. Particular preference is given to ethylene copolymers having from 10 to 18 mol %, and especially from 12 to 16 mol %, of at least one vinyl ester.
- Suitable vinyl esters are derived from fatty acids having linear or branched alkyl groups having from 1 to 30 carbon atoms.
- Examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl laurate and vinyl stearate, and also esters of vinyl alcohol based on branched fatty acids, such as vinyl isobutyrate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl isononanoate, vinyl neononanoate, vinyl neodecanoate and vinyl neoundecanoate.
- esters of acrylic and methacrylic acids having from 1 to 20 carbon atoms in the alkyl radical such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n- and isobutyl (meth)acrylate, and hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl and octadecyl (meth)acrylate, and also mixtures of two, three, four or else more of these comonomers.
- Particularly preferred terpolymers of vinyl 2-ethylhexanoate, of vinyl neononanoate or of vinyl neodecanoate contain, apart from ethylene, preferably from 3.5 to 20 mol %, in particular from 8 to 15 mol %, of vinyl acetate, and from 0.1 to 12 mol %, in particular from 0.2 to 5 mol %, of the particular long-chain vinyl ester, the total comonomer content being between 8 and 21 mol %, preferably between 12 and 18 mol %.
- copolymers In addition to ethylene and from 8 to 18 mol % of vinyl esters, further preferred copolymers additionally contain from 0.5 to 10 mol % of olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and/or norbornene.
- olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and/or norbornene.
- the copolymers A preferably have molecular weights which correspond to melt viscosities at 140° C. of from 20 to 10 000 mPas, in particular from 30 to 5000 mPas, and especially from 50 to 1000 mPas.
- the degrees of branching determined by means of 1 H NMR spectroscopy are preferably between 1 and 9 CH 3 /100 CH 2 groups, in particular between 2 and 6 CH 3 /100 CH 2 groups, for example from 2.5 to 5 CH 3 /100 CH 2 groups, which do not stem from the comonomers.
- the copolymers (A) can be prepared by customary copolymerization processes, for example suspension polymerization, solution polymerization, gas phase polymerization or high pressure bulk polymerization. Preference is given to carrying out the high pressure bulk polymerization at pressures of from 50 to 400 MPa, preferably from 100 to 300 MPa, and temperatures from 100 to 300° C., preferably from 150 to 220° C.
- the polymerization is effected in a multizone reactor in which the temperature difference between the peroxide feeds along the tubular reactor is kept very low, i.e. ⁇ 50° C., preferably ⁇ 30° C., in particular ⁇ 15° C.
- the temperature maxima in the individual reaction zones preferably differ by less than 30° C., more preferably by less than 20° C. and especially by less than 10° C.
- the reaction of the monomers is initiated by free radical-forming initiators (free radical chain initiators).
- This substance class includes, for example, oxygen, hydroperoxides, peroxides and azo compounds, such as cumene hydroperoxide, t-butyl hydroperoxide, dilauroyl peroxide, dibenzoyl peroxide, bis(2-ethylhexyl) peroxydicarbonate, t-butyl perpivalate, t-butyl permaleate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, di(t-butyl) peroxide, 2,2′-azobis(2-methylpropanonitrile), 2,2′-azobis(2-methylbutyronitrile).
- the initiators are used individually or as a mixture of two or more substances in amounts of from 0.01 to 20% by weight, preferably from 0.05 to 10% by weight, based on the monomer mixture.
- the high pressure bulk polymerization is carried out in known high pressure reactors, for example autoclaves or tubular reactors, batchwise or continuously, and tubular reactors have been found to be particularly useful.
- Solvents such as aliphatic and/or aromatic hydrocarbons or hydrocarbon mixtures, benzene or toluene may be present in the reaction mixture. Preference is given to the substantially solvent-free procedure.
- the mixture of the monomers, the initiator and, if used, the moderator are fed to a tubular reactor via the reactor entrance and also via one or more side branches.
- Preferred moderators are, for example, hydrogen, saturated and unsaturated hydrocarbons, for example propane or propene, aldehydes, for example propionaldehyde, n-butyraldehyde or isobutyraldehyde, ketones, for example acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and alcohols, for example butanol.
- the comonomers and also the moderators may be metered into the reactor either together with ethylene or else separately via sidestreams.
- the monomer streams may have different compositions (EP-A-0 271 738 and EP-A-0 922 716).
- Suitable co- or terpolymers include:
- the polymers on which the mixtures are based more preferably differ in at least one characteristic.
- they may contain different comonomers, different comonomer contents, molecular weights and/or degrees of branching.
- the mixing ratio of the different ethylene copolymers is preferably between 20:1 and 1:20, preferably from 10:1 to 1:10, in particular from 5:1 to 1:5.
- the copolymers B are derived preferably from copolymers of ethylenically unsaturated dicarboxylic acids and derivatives thereof, such as lower esters and anhydrides. Preference is given to maleic acid, fumaric acid, itaconic acid and especially maleic anhydride. Particularly suitable comonomers are monoolefins having from 10 to 20, in particular having from 12 to 18, carbon atoms. These are preferably linear and the double bond is preferably terminal, as, for example, in dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene and octadecene. The ratio of maleic anhydride to olefin or olefins in the polymer is preferably in the range from 1:1.5 to 1.5:1, and is especially equimolar.
- Alkyl polyglycol ethers correspond to the general formula
- the inventive copolymers B) are prepared preferably at temperatures between 50 and 220° C., in particular from 100 to 190° C., especially from 130 to 170° C.
- the preferred preparation process is solvent-free bulk polymerization, but it is also possible to carry out the polymerization in the presence of aprotic solvents such as benzene, toluene, xylene or of higher-boiling aromatic, aliphatic or isoaliphatic solvents or solvent mixtures such as kerosene or Solvent Naphtha.
- aprotic solvents such as benzene, toluene, xylene or of higher-boiling aromatic, aliphatic or isoaliphatic solvents or solvent mixtures such as kerosene or Solvent Naphtha.
- Particular preference is given to polymerizing in a small amount of moderating, aliphatic or isoaliphatic solvents.
- the proportion of solvent in the polymerization mixture is generally between
- the average molecular mass of the inventive copolymers B is generally between 1200 and 200 000 g/mol, in particular between 2000 and 100 000 g/mol, measured by means of gel permeation chromatography (GPC) against polystyrene standards in THF.
- Inventive copolymers B have to be oil-soluble in dosages relevant in practice, i.e. they have to dissolve without residue at 50° C. in the oil to be additized.
- the reaction of the monomers is initiated by free radical-forming initiators (free-radical chain starters).
- This substance class includes, for example, oxygen, hydroperoxides and peroxides, for example cumene hydroperoxide, t-butyl hydroperoxide, dilauryl peroxide, dibenzoyl peroxide, bis(2-ethylhexyl) peroxodicarbonate, t-butyl perpivalate, t-butyl permaleate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, di(t-butyl) peroxide, and also azo compounds, for example 2,2′-azobis(2-methylpropanonitrile) or 2,2′-azobis(2-methylbutyronitrile).
- the initiators are used individually or as a mixture of two or more substances in amounts of from 0.01 to 20% by weight, preferably from 0.05 to 10% by weight, based on the mono
- the copolymers may be prepared either by esterifying maleic acid, fumaric acid and/or itaconic acid with the appropriate alcohols and subsequently copolymerizing, or by copolymerizing olefin or olefins with itaconic anhydride and/or maleic anhydride and subsequently esterifying. Preference is given to carrying out a copolymerization with anhydrides and esterifying the resulting copolymer after the preparation.
- esterification is effected, for example, by reacting with from 0.8 to 2.5 mol of alcohol per mole of anhydride, preferably with from 1.0 to 2.0 mol of alcohol per mole of anhydride, at from 50 to 300° C.
- esterification temperatures preference is given to esterification temperatures of from approx. 70 to 120° C.
- diesters are formed at 100-300° C., preferably 120-250° C.
- the water of reaction may be distilled off by means of an inert gas stream or removed by means of azeotropic distillation in the presence of an organic solvent.
- an organic solvent preferably 20-80%, in particular 30-70%, especially 35-55% by weight of at least one organic solvent is used.
- copolymers having acid numbers of 30-70 mg KOH/g, preferably of 40-60 mg KOH/g are regarded as monoesters.
- Copolymers having acid numbers of less than 40 mg, especially less than 30 mg KOH/g are regarded as diesters. Particular preference is given to monoesters.
- Suitable alcohols are in particular linear, but they may also contain minor amounts, for example up to 30% by weight, preferably up to 20% by weight and especially up to 10% by weight, of branched (in the 1- or 2-position) alcohols. Either shorter- or longer-chain alcohols may be used, but their proportion is preferably below 20 mol % and especially below 10 mol %, for example between 1 and 5 mol %, based on the total amount of the alcohols used. In the calculation of the Q factor, these shorter- and longer-chain alcohols, where present, are not taken into account, since they do not contribute to the effectiveness of the additives.
- Particularly preferred alcohols are octanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol and hexadecanol.
- the mixing ratio of the additives A and B according to the invention is (in parts by weight) from 20:1 to 1:20, preferably from 10:1 to 1:10, in particular from 5:1 to 1:2.
- the additives according to the invention are added to oils in amounts of from 0.001 to 5% by weight, preferably from 0.005 to 1% by weight and especially from 0.01 to 0.5% by weight. They may be used as such or else dissolved or dispersed in solvents, for example aliphatic and/or aromatic hydrocarbons or hydrocarbon mixtures, for example toluene, xylene, ethylbenzene, decane, pentadecane, petroleum fractions, kerosene, naphtha, diesel, heating oil, isoparaffins or commercial solvent mixtures such as Solvent Naphtha, ®Shellsol AB, ®Solvesso 150, ®Solvesso 200, ®Exxsol, ®Isopar and ®Shellsol D types. They are preferably dissolved in fuel oil of animal or vegetable origin based on fatty acid alkyl esters.
- the additives according to the invention preferably comprise 1-80%, especially 10-70%, in particular 25-60%, of
- the fuel oil F2 which is frequently also referred to as biodiesel or biofuel, is a fatty acid alkyl ester composed of fatty acids having from 12 to 24 carbon atoms and alcohols having from 1 to 4 carbon atoms. Typically, a relatively large portion of the fatty acids contains one, two or three double bonds.
- rapeseed oil which is a mixture of fatty acids partially esterified with glycerol, since it is obtainable in large amounts and is obtainable in a simple manner by extractive pressing of rapeseeds.
- preference is given to the likewise widely available oils of sunflowers and soya, and also to their mixtures with rapeseed oil.
- Particularly suitable biofuels F2 are lower alkyl esters of fatty acids. These include, for example, commercially available mixtures of the ethyl, propyl, butyl and in particular methyl esters of fatty acids having from 14 to 22 carbon atoms, for example of lauric acid, myristic acid, palmitic acid, palmitolic acid, stearic acid, oleic acid, elaidic acid, petroselic acid, ricinolic acid, elaeostearic acid, linolic acid, linolenic acid, eicosanoic acid, gadoleic acid, docosanoic acid or erucic acid, each of which preferably has an iodine number of from 50 to 150, in particular from 90 to 125.
- Mixtures having particularly advantageous properties are those which comprise mainly, i.e. comprise at least 50% by weight, of methyl esters of fatty acids having from 16 to 22 carbon atoms, and 1, 2 or 3 double bonds.
- the preferred lower alkyl esters of fatty acids are the methyl esters of oleic acid, linoleic acid, linolenic acid and erucic acid.
- a biofuel is therefore an oil which is obtained from vegetable or animal material or both or a derivative thereof which can be used as a fuel and in particular as a diesel or heating oil.
- oils can be used as biofuels, preference is given to vegetable oil derivatives, and particularly preferred biofuels are alkyl ester derivatives of rapeseed oil, cottonseed oil, soya oil, sunflower oil, olive oil or palm oil, and very particular preference is given to rapeseed oil methyl ester, sunflower oil methyl ester and soya oil methyl ester.
- Particularly preferred as a biofuel or as a component in biofuel are additionally also used fatty esters, for example used fatty acid methyl ester.
- Suitable mineral oil components F1 are in particular middle distillates which are obtained by distilling crude oil and boil in the range from 120 to 450° C., for example kerosene, jet fuel, diesel and heating oil. Preference is given to using those middle distillates which contain 0.05% by weight of sulfur and less, more preferably less than 350 ppm of sulfur, in particular less than 200 ppm of sulfur and in special cases less than 50 ppm of sulfur, for example less than 10 ppm of sulfur. These are generally those middle distillates which have been subjected to refining under hydrogenating conditions, and therefore contain only small proportions of polyaromatic and polar compounds. They are preferably those middle distillates which have 95% distillation points below 370° C., in particular 350° C. and in special cases below 330° C. Synthetic fuels, as obtainable, for example, by the Fischer-Tropsch process, are also suitable as middle distillates.
- inventive additives can also be used together with one or more oil-soluble coadditives which alone improve the cold flow properties of crude oils, lubricant oils or fuel oils.
- oil-soluble coadditives are polar compounds which differ from the inventive polymers B and bring about paraffin dispersion (paraffin dispersants), alkylphenol condensates, esters and ethers of polyoxyalkylene compounds, olefin copolymers, and also oil-soluble amphiphiles.
- the inventive additives may be used in a mixture with paraffin dispersants to further reduce the sedimentation under cold conditions of precipitated paraffins and fatty acid esters.
- Paraffin dispersants reduce the size of the paraffin and fatty acid ester crystals and have the effect that the paraffin particles do not separate but remain dispersed colloidally with a distinctly reduced tendency to sedimentation.
- Useful paraffin dispersants have been found to be both low molecular weight and polymeric oil-soluble compounds having ionic or polar groups, for example amine salts and/or amides.
- paraffin dispersants comprise reaction products of secondary fatty amines having from 20 to 44 carbon atoms, in particular dicocoamine, ditallow fat amine, distearylamine and dibehenylamine with carboxylic acids and derivatives thereof.
- Particularly useful paraffin dispersants have been found to be those obtained by reacting aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides (cf. U.S. Pat. No. 4,211,534).
- paraffin dispersants are amides and ammonium salts of aminoalkylenepolycarboxylic acids such as nitrilotriacetic acid or ethylenediaminetetraacetic acid with secondary amines (cf. EP 0 398 101).
- Other paraffin dispersants are copolymers of maleic anhydride and ⁇ , ⁇ -unsaturated compounds which may optionally be reacted with primary monoalkylamines and/or aliphatic alcohols (cf. EP 0 154 177) and the reaction products of alkenyl-spiro-bislactones with amines (cf.
- EP 0 413 279 B1 and, according to EP 0 606 055 A2, reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
- alkylphenol-aldehyde resins are described, for example, in Römpp Chemie Lexikon, 9th edition, Thieme Verlag 1988-92, volume 4, p. 3351ff.
- the alkyl radicals of the o- or p-alkylphenol may be the same or different and have 1-50, preferably 1-20, in particular 4-12, carbon atoms; they are preferably n-, iso- and tert-butyl, n- and isopentyl, n- and isohexyl, n- and isooctyl, n- and isononyl, n- and isodecyl, n- and isododecyl and octadecyl.
- these alkylphenol-formaldehyde resins are those which contain oligo- or polymers having a repeating structural unit of the formula where R 5 is C 1 -C 50 -alkyl or -alkenyl and n is a number from 2 to 100.
- R 5 is preferably C 4 -C 20 -alkyl or -alkenyl and in particular C 6 -C 16 -alkyl or -alkenyl.
- n is preferably a number from 4 to 50 and especially a number from 5 to 25.
- polyoxyalkylene compounds for example esters, ethers and ether/esters which bear at least one alkyl radical having from 12 to 30 carbon atoms.
- the alkyl groups stem from an acid, the rest stems from a polyhydric alcohol; when the alkyl radicals come from a fatty alcohol, the rest of the compound stems from a polyacid.
- Suitable polyols are polyethylene glycols, polypropylene glycols, polybutylene glycols and their copolymers having a molecular weight of from approx. 100 to approx. 5000, preferably from 200 to 2000.
- alkoxylates of polyols for example glycerol, trimethylolpropane, pentaerythritol, neopentyl glycol, and also the oligomers obtainable therefrom by condensation and having from 2 to 10 monomer units, for example polyglycerol.
- Preferred alkoxylates are those having from 1 to 100 mol, in particular from 5 to 50 mol, of ethylene oxide, propylene oxide and/or butylene oxide per mole of polyol. Particular preference is given to esters.
- Fatty acids having from 12 to 26 carbon atoms are preferably used for reaction with the polyols to form the ester additives, although preference is given to using C 18 to C 24 fatty acids, especially stearic acid and behenic acid.
- the esters can also be prepared by esterification of polyoxyalkylated alcohols. Preference is given to fully esterified polyoxyalkylated polyols having molecular weights of from 150 to 2000, preferably from 200 to 1500. PEG-600 dibehenate and glycerol-ethylene glycol tribehenate are particularly suitable.
- Olefin polymers suitable as a constituent of the inventive additive may be derived directly from monoethylenically unsaturated monomers or be prepared indirectly by hydrogenating polymers which are derived from polyunsaturated monomers such as isoprene or butadiene.
- preferred copolymers contain structural units which are derived from ⁇ -olefins having from 3 to 24 carbon atoms and molecular weights of up to 120 000.
- Preferred ⁇ -olefins are propylene, butene, isobutene, n-hexene, isohexene, n-octene, isooctene, n-decene, isodecene.
- the comonomer content of olefins is preferably between 15 and 50 mol %, more preferably between 20 and 35 mol % and especially between 30 and 45 mol %. These copolymers may also contain small amounts, for example up to 10 mol %, of further comonomers, for example nonterminal olefins or nonconjugated olefins. Preference is given to ethylene-propylene copolymers.
- the olefin copolymers may be prepared by known methods, for example by means of Ziegler or metallocene catalysts.
- olefin copolymers are block copolymers which contain blocks of olefinically unsaturated aromatic monomers A and blocks of hydrogenated polyolefins B.
- Particularly suitable block copolymers have the structure (AB) n A and (AB) m where n is a number between 1 and 10 and m is a number between 2 and 10.
- the mixing ratio (in parts by weight) of the inventive additives with paraffin dispersants, comb polymers, alkylphenol condensates, polyoxyalkylene derivatives and olefin copolymers respectively is in each case from 1:10 to 20:1, preferably from 1:1 to 10:1, for example from 1:1 to 4:1.
- the additives may be used alone or else together with other additives, for example with other pour point depressants or dewaxing assistants, with antioxidants, cetane number improvers, dehazers, deemulsifiers, detergents, dispersants, antifoams, dyes, corrosion inhibitors, conductivity improvers, sludge inhibitors, odorants and/or additives for lowering the cloud point.
- other pour point depressants or dewaxing assistants with antioxidants, cetane number improvers, dehazers, deemulsifiers, detergents, dispersants, antifoams, dyes, corrosion inhibitors, conductivity improvers, sludge inhibitors, odorants and/or additives for lowering the cloud point.
- the CFPP value is determined to EN 116 and the cloud point to ISO 3015. Both properties are determined in ° C. TABLE 1 Characterization of the biofuels used (F2) Oil No. CP CFPP E1 Rapeseed oil methyl ester ⁇ 2.3 ⁇ 14° C. E2 80% rapeseed oil methyl ester + 20% ⁇ 1.6 ⁇ 10° C. sunflower oil methyl ester E3 90% rapeseed oil methyl ester + 10% ⁇ 2.0 ⁇ 8° C. soya oil methyl ester
- the ethylene copolymers used are commercial products having the characteristics specified in Table 4. The products were used as 65% dilutions in kerosene. TABLE 4 Characterization of the ethylene copolymers used (A) Example Comonomer(s) V140 CH 3 /100 CH 2 A1 13.6 mol % of vinyl acetate 130 mPas 3.7 A2 13.7 mol % of vinyl acetate and 105 mPas 5.3 1.4 mol % of vinyl neodecanoate A3 i) 14.0 mol % of vinyl acetate 97 mPas 4.7 and 1.6 mol % of vinyl neodecanoate and ii) 12.9 mol % of vinyl acetate 145 mPas 5.4 in a i):ii) ratio of 6:1
- the polymerization of maleic anhydride (MA) with ⁇ -olefins is effected in a relatively high-boiling aromatic hydrocarbon mixture at 160° C. in the presence of a mixture of equal parts of tert-butyl peroxybenzoate and tert-butyl peroxy-2-ethylhexanoate as a free-radical chain starter.
- Table 5 lists various copolymers by way of example and the molar proportions of the monomers used to prepare them, and also the chain length and the molar amount (based on MA) of the alcohol used for derivatization and the factor Q calculated therefrom.
- the esterifications are effected in the presence of Solvent Naphtha (from 40 to 50% by weight) at from 90 to 100° C. to give the monoester and at from 160 to 180° C. with azeotropic separation of the water of reaction to give the diester.
- the degree of esterification is inversely proportional to the acid number.
- the further flow improvers used C are commercial products having the characteristics specified in Table 6. The products were used as 50% dilutions in Solvent Naphtha. TABLE 6 Characterization of the further flow improvers used C3 Reaction product of a copolymer composed of C 14 /C 16 olefin and maleic anhydride with 2 equivalents of secondary tallow fat amine per maleic anhydride unit C4 Reaction product of phthalic anhydride with 2 equivalents of di(hydrogenated tallow fat amine) to give an amide ammonium salt C5
- Nonylphenol resin prepared by condensation of a mixture of dodecylphenol with formaldehyde, Mw 2000 g/mol C6 Mixture of 2 parts of C3 and 1 part of C5 C7 Mixture of equal parts of C4 and C5
- the CFPP value (to EN 116, in ° C.) of different biofuels as per the above table was determined after addition of 1200 ppm, 1500 ppm and 2000 ppm of additive mixture. Percentages are based on parts by weight in the particular mixtures.
- the results reproduced in Tables 5 to 7 show that the comb polymers having the inventive factor Q achieve outstanding CFPP reductions even at low dosages and offer additional potential at higher dosages.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Liquid Carbonaceous Fuels (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10357877A DE10357877B4 (de) | 2003-12-11 | 2003-12-11 | Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften |
DE10357877.3 | 2003-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050126071A1 true US20050126071A1 (en) | 2005-06-16 |
Family
ID=34485304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/009,870 Abandoned US20050126071A1 (en) | 2003-12-11 | 2004-12-10 | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties |
Country Status (6)
Country | Link |
---|---|
US (1) | US20050126071A1 (enrdf_load_stackoverflow) |
EP (1) | EP1541664B1 (enrdf_load_stackoverflow) |
JP (1) | JP5025082B2 (enrdf_load_stackoverflow) |
KR (1) | KR101139277B1 (enrdf_load_stackoverflow) |
CA (1) | CA2489752C (enrdf_load_stackoverflow) |
DE (1) | DE10357877B4 (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050126072A1 (en) * | 2003-12-11 | 2005-06-16 | Clariant Gmbh | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties |
US20080168705A1 (en) * | 2004-07-02 | 2008-07-17 | Monsanto S.A.S. | Biofuel Composition |
US7473284B2 (en) | 2003-12-11 | 2009-01-06 | Clariant Produkte (Deutschland) Gmbh | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties |
US7476264B2 (en) | 2003-10-25 | 2009-01-13 | Lariant Produkte (Deutshland) Gmbh | Cold flow improvers for fuel oils of vegetable or animal origin |
US20090038208A1 (en) * | 2005-05-30 | 2009-02-12 | Monsanto S.A.S. | Biodiesel Composition |
US7500996B2 (en) | 2003-10-25 | 2009-03-10 | Clariant International Ltd. | Cold flow improvers for fuel oils of vegetable or animal origin |
US20090202703A1 (en) * | 2006-03-21 | 2009-08-13 | Monsanto S.A.S. | Fad-2 mutants and high oleic plants |
US20090276911A1 (en) * | 2006-01-04 | 2009-11-05 | Monsanto S.A.S. | Fad-2 mutants and high oleic plants |
US20090286704A1 (en) * | 2005-07-04 | 2009-11-19 | Monsanto S.A.S. | Use of a Rapeseed Oil in Biolubricants |
WO2009143566A1 (en) * | 2008-05-26 | 2009-12-03 | Meat & Livestock Australia Limited | Biodiesel additive |
US20100196580A1 (en) * | 2007-01-11 | 2010-08-05 | Monsanto Sas | Fad-2 mutants and high oleic acid plants |
US8790424B2 (en) | 2011-03-30 | 2014-07-29 | Basf Se | Copolymer and use thereof for improving the cold flow properties of middle distillate fuels |
EP3177699B1 (de) | 2014-08-07 | 2020-02-26 | Clariant International Ltd | Additive für schwefelarmen marinediesel |
US10947467B2 (en) | 2016-12-15 | 2021-03-16 | Basf Se | Polymers as additives for fuels |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1746147B1 (de) * | 2005-07-22 | 2016-02-24 | Basf Se | Copolymere auf Basis von Olefinen und Estern von ethylenisch ungesättigten Carbonsäuren zur Erniedrigung des CP-Werts von Brennstoffölen und Schmierstoffen |
EP1746146A1 (de) * | 2005-07-22 | 2007-01-24 | Basf Aktiengesellschaft | Copolymere auf Basis von Olefinen und Estern von ethylenisch ungesättigten Carbonsäuren zur Erniedrigung des CP-Werts von Brennstoffölen und Schmierstoffen |
DE102006016588A1 (de) * | 2006-04-06 | 2007-10-18 | Rohmax Additives Gmbh | Kraftstoffzusammensetzungen umfassend nachwachsende Rohstoffe |
DE102006022698B4 (de) * | 2006-05-16 | 2008-10-02 | Clariant International Limited | Zusammensetzung von Brennstoffölen |
DE102006022718B4 (de) * | 2006-05-16 | 2008-10-02 | Clariant International Limited | Zusammensetzung von Brennstoffölen |
DE102006022719B4 (de) * | 2006-05-16 | 2008-10-02 | Clariant International Limited | Kaltfließverbesserer für pflanzliche oder tierische Brennstofföle |
DE102006033150B4 (de) * | 2006-07-18 | 2008-10-16 | Clariant International Limited | Additive zur Verbesserung der Kälteeigenschaften von Brennstoffölen |
RU2011133876A (ru) | 2009-01-13 | 2013-02-20 | Эвоник РоМакс Эддитивс ГмбХ | Составы моторных топлив с улучшенной точкой помутнения и улучшенными свойствами при хранении |
JP2011122135A (ja) * | 2009-10-07 | 2011-06-23 | Adeka Corp | 脂肪酸メチルエステル用低温流動性向上剤 |
US20110192076A1 (en) | 2010-02-05 | 2011-08-11 | Evonik Rohmax Additives Gmbh | Composition having improved filterability |
JP5731238B2 (ja) * | 2010-03-04 | 2015-06-10 | 株式会社Adeka | バイオディーゼル燃料組成物 |
JP5634302B2 (ja) * | 2011-02-28 | 2014-12-03 | 株式会社Adeka | 脂肪酸メチルエステル用低温流動性向上剤 |
WO2012130824A1 (de) * | 2011-03-30 | 2012-10-04 | Basf Se | Copolymerisat und seine verwendung zur verbesserung der kaltfliesseigenschaften von mitteldestillat-kraftstoffen |
EP3363879A3 (de) * | 2014-01-29 | 2018-10-03 | Basf Se | Dieselkraftstoffe, enthaltend polycarbonsäure-basierte additive |
CN104403706B (zh) * | 2014-11-20 | 2016-06-22 | 中国石油大学(北京) | 一种新型柴油蜡晶分散剂 |
JP6602349B2 (ja) * | 2016-07-27 | 2019-11-06 | 三洋化成工業株式会社 | 流動性向上剤及び燃料油組成物 |
RU2684412C1 (ru) * | 2017-11-02 | 2019-04-09 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3462249A (en) * | 1967-03-31 | 1969-08-19 | Exxon Research Engineering Co | Fuel oil compositions containing grafted polymers |
US4211534A (en) * | 1978-05-25 | 1980-07-08 | Exxon Research & Engineering Co. | Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils |
US4608411A (en) * | 1984-10-25 | 1986-08-26 | Societe Nationale Elf Aquitaine | Grafted ethylene polymers usable more especially as additives for inhibiting the deposition of paraffins in crude oils and compositions containing the oils and said additives |
US4670516A (en) * | 1984-02-17 | 1987-06-02 | Bayer Aktiengesellschaft | Copolymers based on maleic anhydride and α, β-unsaturated compounds a process for their preparation and their use as paraffin inhibitors |
US4713088A (en) * | 1984-02-21 | 1987-12-15 | Exxon Chemical Patents Inc. | Middle distillate compositions with improved cold flow properties |
US4906682A (en) * | 1986-04-19 | 1990-03-06 | Rohm Gmbh | Ethylene-vinyl ester copolymer emulsions |
US5017299A (en) * | 1988-08-01 | 1991-05-21 | Exxon Chemical Patents, Inc. | Novel ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives |
US5045088A (en) * | 1988-08-26 | 1991-09-03 | Exxon Chemical Patents Inc. | Chemical compositions and use as fuel additives |
US5178641A (en) * | 1990-11-14 | 1993-01-12 | Basf Corporation | Middle distillates of crude oil having improved cold flow properties |
US5186720A (en) * | 1989-08-16 | 1993-02-16 | Hoechst Aktiengesellschaft | Use of products of the reaction of alkenyl-spiro-bislactones with amines as paraffin-dispersants |
US5188720A (en) * | 1989-10-27 | 1993-02-23 | Sollac | Installation and process for electrolytic coating of a metal strip |
US5200484A (en) * | 1990-06-29 | 1993-04-06 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates |
US5254652A (en) * | 1990-12-29 | 1993-10-19 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation, and their use as additives for mineral oil distillates |
US5275747A (en) * | 1990-02-01 | 1994-01-04 | Exxon Chemical Patents Inc. | Derivatized ethylene alpha-olefin polymer useful as multifunctional viscosity index improver additive for oleaginous composition |
US5389113A (en) * | 1990-12-17 | 1995-02-14 | Henkel Kommanditgesellschaft Auf Aktien | Mixtures of fatty alkyl lower alkyl esters having improved low-temperature stability |
US5391632A (en) * | 1993-01-06 | 1995-02-21 | Hoechst Aktiengesellschaft | Terpolymers based on α,β-unsaturated dicarboxylic anhydrides, α,β-unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols |
US5413725A (en) * | 1992-12-18 | 1995-05-09 | The Lubrizol Corporation | Pour point depressants for high monounsaturated vegetable oils and for high monounsaturated vegetable oils/biodegradable base and fluid mixtures |
US5439981A (en) * | 1992-12-12 | 1995-08-08 | Hoechst Aktiengesellschaft | Graft polymers, their preparation and use as pour point depressants and flow improvers for crude oils, residual oils and middle distillates |
US5441545A (en) * | 1985-08-28 | 1995-08-15 | Exxon Chemical Patents Inc. | Middle distillate compositions with improved low temperature properties |
US5733346A (en) * | 1994-05-31 | 1998-03-31 | Exxon Chemical Patents Inc. | Oil additives and compositions |
US5743923A (en) * | 1992-10-26 | 1998-04-28 | Exxon Chemical Patents Inc. | Oil additives and compositions |
US5767190A (en) * | 1996-05-18 | 1998-06-16 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates |
US5789510A (en) * | 1996-05-18 | 1998-08-04 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates |
US5833722A (en) * | 1994-12-13 | 1998-11-10 | Exxon Chemical Patents, Inc. | Fuel oil compositions with improved lubricity properties |
US6086645A (en) * | 1996-05-17 | 2000-07-11 | Ethyl Petroleum Additives, Ltd | Fuel additives and compositions |
US6143044A (en) * | 1994-09-02 | 2000-11-07 | Exxon Chemical Patents Inc | Oil additives, compositions and polymers for use therein |
US6162772A (en) * | 1998-08-20 | 2000-12-19 | Infineum Usa L.P. | Oil additives and compositions |
US6232277B1 (en) * | 1998-05-22 | 2001-05-15 | Exxon Chemical Patents Inc | Lubricating oil compositions |
US6306186B1 (en) * | 1994-09-02 | 2001-10-23 | Exxon Chemical Patents Inc | Oil additives compositions and polymers for use therein |
US20010034410A1 (en) * | 2000-03-14 | 2001-10-25 | Clariant Gmbh | Copolymer blends and their use as additives for improving the cold flow properties of middle distillates |
US6384170B1 (en) * | 1997-12-24 | 2002-05-07 | Clariant Gmbh | Hydroxyl-containing ethylene copolymers and fuel oils having an improved lubricating action |
US6391632B1 (en) * | 1996-04-05 | 2002-05-21 | Chiron Corporation | Recombinant alphavirus-based vectors with reduced inhibition of cellular macromolecular synthesis |
US6409778B1 (en) * | 1997-11-21 | 2002-06-25 | Rohmax Additives Gmbh | Additive for biodiesel and biofuel oils |
US20020099228A1 (en) * | 2000-11-24 | 2002-07-25 | Clariant Gmbh | Fatty acid mixtures of improved low-temperature stability which comprise comb polymers, and their use in fuel oils |
US6458175B1 (en) * | 1997-12-03 | 2002-10-01 | Exxon Chemical Patents Inc. | Oil additives and compositions |
US6461393B1 (en) * | 2000-03-16 | 2002-10-08 | Clariant Gmbh | Mixtures of carboxylic acids, their derivatives and hydroxyl-containing polymers and their use for improving the lubricating effect of oils |
US6509424B1 (en) * | 1997-12-09 | 2003-01-21 | Clariant Gmbh | Process for the preparation of ethylene copolymers, and their use as additives to mineral oil and mineral oil distillates |
US6565616B1 (en) * | 2000-03-14 | 2003-05-20 | Clariant Gmbh | Copolymer blends and their use as additives for improving the cold flow properties of middle distillates |
US20030119992A1 (en) * | 2001-10-15 | 2003-06-26 | Deneker Vincent J.P.R. | Additive compositions |
US6592638B2 (en) * | 2000-03-16 | 2003-07-15 | Clariant Gmbh | Mixtures of carboxylic acids, their derivatives and hydroxyl-containing polymers and their use for improving the lubricating effect of oils |
US20030136046A1 (en) * | 2001-11-21 | 2003-07-24 | Graham Jackson | Fuel additive |
US6638325B1 (en) * | 1992-06-30 | 2003-10-28 | Infineum International Ltd. | Oil additives and compositions |
US20050183326A1 (en) * | 2003-06-23 | 2005-08-25 | Jian Lin | Oil compositions |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2034759C (en) * | 1988-08-01 | 2003-06-03 | Won R. Song | Novel ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives |
FR2802940B1 (fr) | 1999-12-28 | 2003-11-07 | Elf Antar France | Composition d'additifs multifonctionnels d'operabilite a froid des distillats moyens |
EP1314771A3 (en) | 2001-11-21 | 2004-10-27 | Infineum International Limited | Fuel additive |
KR100990625B1 (ko) * | 2002-07-09 | 2010-10-29 | 클라리안트 프로두크테 (도이칠란트) 게엠베하 | 식물성 또는 동물성 기원의 연료 오일용 냉류 개선제 |
-
2003
- 2003-12-11 DE DE10357877A patent/DE10357877B4/de not_active Expired - Fee Related
-
2004
- 2004-11-30 EP EP04028308.7A patent/EP1541664B1/de not_active Expired - Lifetime
- 2004-12-10 KR KR1020040104261A patent/KR101139277B1/ko not_active Expired - Fee Related
- 2004-12-10 JP JP2004358637A patent/JP5025082B2/ja not_active Expired - Fee Related
- 2004-12-10 CA CA2489752A patent/CA2489752C/en not_active Expired - Fee Related
- 2004-12-10 US US11/009,870 patent/US20050126071A1/en not_active Abandoned
Patent Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3462249A (en) * | 1967-03-31 | 1969-08-19 | Exxon Research Engineering Co | Fuel oil compositions containing grafted polymers |
US4211534A (en) * | 1978-05-25 | 1980-07-08 | Exxon Research & Engineering Co. | Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils |
US4670516A (en) * | 1984-02-17 | 1987-06-02 | Bayer Aktiengesellschaft | Copolymers based on maleic anhydride and α, β-unsaturated compounds a process for their preparation and their use as paraffin inhibitors |
US4713088A (en) * | 1984-02-21 | 1987-12-15 | Exxon Chemical Patents Inc. | Middle distillate compositions with improved cold flow properties |
US4810260A (en) * | 1984-02-21 | 1989-03-07 | Exxon Chemical Patents Inc. | Middle distillate compositions with improved cold flow properties |
US4863486A (en) * | 1984-02-21 | 1989-09-05 | Exxon Chemical Patents Inc. | Middle distillate compositions with improved low temperature properties |
US4608411A (en) * | 1984-10-25 | 1986-08-26 | Societe Nationale Elf Aquitaine | Grafted ethylene polymers usable more especially as additives for inhibiting the deposition of paraffins in crude oils and compositions containing the oils and said additives |
US5441545A (en) * | 1985-08-28 | 1995-08-15 | Exxon Chemical Patents Inc. | Middle distillate compositions with improved low temperature properties |
US4906682A (en) * | 1986-04-19 | 1990-03-06 | Rohm Gmbh | Ethylene-vinyl ester copolymer emulsions |
US5017299A (en) * | 1988-08-01 | 1991-05-21 | Exxon Chemical Patents, Inc. | Novel ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives |
US5045088A (en) * | 1988-08-26 | 1991-09-03 | Exxon Chemical Patents Inc. | Chemical compositions and use as fuel additives |
US5186720A (en) * | 1989-08-16 | 1993-02-16 | Hoechst Aktiengesellschaft | Use of products of the reaction of alkenyl-spiro-bislactones with amines as paraffin-dispersants |
US5188720A (en) * | 1989-10-27 | 1993-02-23 | Sollac | Installation and process for electrolytic coating of a metal strip |
US5275747A (en) * | 1990-02-01 | 1994-01-04 | Exxon Chemical Patents Inc. | Derivatized ethylene alpha-olefin polymer useful as multifunctional viscosity index improver additive for oleaginous composition |
US5200484A (en) * | 1990-06-29 | 1993-04-06 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates |
US5178641A (en) * | 1990-11-14 | 1993-01-12 | Basf Corporation | Middle distillates of crude oil having improved cold flow properties |
US5389113A (en) * | 1990-12-17 | 1995-02-14 | Henkel Kommanditgesellschaft Auf Aktien | Mixtures of fatty alkyl lower alkyl esters having improved low-temperature stability |
US5254652A (en) * | 1990-12-29 | 1993-10-19 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation, and their use as additives for mineral oil distillates |
US6638325B1 (en) * | 1992-06-30 | 2003-10-28 | Infineum International Ltd. | Oil additives and compositions |
US5743923A (en) * | 1992-10-26 | 1998-04-28 | Exxon Chemical Patents Inc. | Oil additives and compositions |
US5439981A (en) * | 1992-12-12 | 1995-08-08 | Hoechst Aktiengesellschaft | Graft polymers, their preparation and use as pour point depressants and flow improvers for crude oils, residual oils and middle distillates |
US5413725A (en) * | 1992-12-18 | 1995-05-09 | The Lubrizol Corporation | Pour point depressants for high monounsaturated vegetable oils and for high monounsaturated vegetable oils/biodegradable base and fluid mixtures |
US5391632A (en) * | 1993-01-06 | 1995-02-21 | Hoechst Aktiengesellschaft | Terpolymers based on α,β-unsaturated dicarboxylic anhydrides, α,β-unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols |
US5733346A (en) * | 1994-05-31 | 1998-03-31 | Exxon Chemical Patents Inc. | Oil additives and compositions |
US6143044A (en) * | 1994-09-02 | 2000-11-07 | Exxon Chemical Patents Inc | Oil additives, compositions and polymers for use therein |
US6306186B1 (en) * | 1994-09-02 | 2001-10-23 | Exxon Chemical Patents Inc | Oil additives compositions and polymers for use therein |
US5858028A (en) * | 1994-12-13 | 1999-01-12 | Exxon Chemical Patents Inc. | Fuel oil compositions |
US5833722A (en) * | 1994-12-13 | 1998-11-10 | Exxon Chemical Patents, Inc. | Fuel oil compositions with improved lubricity properties |
US6391632B1 (en) * | 1996-04-05 | 2002-05-21 | Chiron Corporation | Recombinant alphavirus-based vectors with reduced inhibition of cellular macromolecular synthesis |
US6086645A (en) * | 1996-05-17 | 2000-07-11 | Ethyl Petroleum Additives, Ltd | Fuel additives and compositions |
US5789510A (en) * | 1996-05-18 | 1998-08-04 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates |
US5767190A (en) * | 1996-05-18 | 1998-06-16 | Hoechst Aktiengesellschaft | Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates |
US6409778B1 (en) * | 1997-11-21 | 2002-06-25 | Rohmax Additives Gmbh | Additive for biodiesel and biofuel oils |
US6458175B1 (en) * | 1997-12-03 | 2002-10-01 | Exxon Chemical Patents Inc. | Oil additives and compositions |
US6509424B1 (en) * | 1997-12-09 | 2003-01-21 | Clariant Gmbh | Process for the preparation of ethylene copolymers, and their use as additives to mineral oil and mineral oil distillates |
US6384170B1 (en) * | 1997-12-24 | 2002-05-07 | Clariant Gmbh | Hydroxyl-containing ethylene copolymers and fuel oils having an improved lubricating action |
US6232277B1 (en) * | 1998-05-22 | 2001-05-15 | Exxon Chemical Patents Inc | Lubricating oil compositions |
US6162772A (en) * | 1998-08-20 | 2000-12-19 | Infineum Usa L.P. | Oil additives and compositions |
US20010034410A1 (en) * | 2000-03-14 | 2001-10-25 | Clariant Gmbh | Copolymer blends and their use as additives for improving the cold flow properties of middle distillates |
US6565616B1 (en) * | 2000-03-14 | 2003-05-20 | Clariant Gmbh | Copolymer blends and their use as additives for improving the cold flow properties of middle distillates |
US6461393B1 (en) * | 2000-03-16 | 2002-10-08 | Clariant Gmbh | Mixtures of carboxylic acids, their derivatives and hydroxyl-containing polymers and their use for improving the lubricating effect of oils |
US6592638B2 (en) * | 2000-03-16 | 2003-07-15 | Clariant Gmbh | Mixtures of carboxylic acids, their derivatives and hydroxyl-containing polymers and their use for improving the lubricating effect of oils |
US20020099228A1 (en) * | 2000-11-24 | 2002-07-25 | Clariant Gmbh | Fatty acid mixtures of improved low-temperature stability which comprise comb polymers, and their use in fuel oils |
US20030119992A1 (en) * | 2001-10-15 | 2003-06-26 | Deneker Vincent J.P.R. | Additive compositions |
US20030136046A1 (en) * | 2001-11-21 | 2003-07-24 | Graham Jackson | Fuel additive |
US20050183326A1 (en) * | 2003-06-23 | 2005-08-25 | Jian Lin | Oil compositions |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7476264B2 (en) | 2003-10-25 | 2009-01-13 | Lariant Produkte (Deutshland) Gmbh | Cold flow improvers for fuel oils of vegetable or animal origin |
US7500996B2 (en) | 2003-10-25 | 2009-03-10 | Clariant International Ltd. | Cold flow improvers for fuel oils of vegetable or animal origin |
US20050126072A1 (en) * | 2003-12-11 | 2005-06-16 | Clariant Gmbh | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties |
US7473284B2 (en) | 2003-12-11 | 2009-01-06 | Clariant Produkte (Deutschland) Gmbh | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties |
US7815697B2 (en) * | 2003-12-11 | 2010-10-19 | Clariant Finance (Bvi) Limited | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties |
US20080168705A1 (en) * | 2004-07-02 | 2008-07-17 | Monsanto S.A.S. | Biofuel Composition |
US20090038208A1 (en) * | 2005-05-30 | 2009-02-12 | Monsanto S.A.S. | Biodiesel Composition |
US20090286704A1 (en) * | 2005-07-04 | 2009-11-19 | Monsanto S.A.S. | Use of a Rapeseed Oil in Biolubricants |
US20090276911A1 (en) * | 2006-01-04 | 2009-11-05 | Monsanto S.A.S. | Fad-2 mutants and high oleic plants |
US8124845B2 (en) | 2006-01-04 | 2012-02-28 | Monsanto S.A.S. | FAD-2 mutants and high oleic plants |
US20090202703A1 (en) * | 2006-03-21 | 2009-08-13 | Monsanto S.A.S. | Fad-2 mutants and high oleic plants |
US8143485B2 (en) | 2006-03-21 | 2012-03-27 | Monsanto S.A.S. | FAD-2 mutants and high oleic plants |
US20100196580A1 (en) * | 2007-01-11 | 2010-08-05 | Monsanto Sas | Fad-2 mutants and high oleic acid plants |
WO2009143566A1 (en) * | 2008-05-26 | 2009-12-03 | Meat & Livestock Australia Limited | Biodiesel additive |
US8790424B2 (en) | 2011-03-30 | 2014-07-29 | Basf Se | Copolymer and use thereof for improving the cold flow properties of middle distillate fuels |
EP3177699B1 (de) | 2014-08-07 | 2020-02-26 | Clariant International Ltd | Additive für schwefelarmen marinediesel |
US11174445B2 (en) | 2014-08-07 | 2021-11-16 | Clariant International Ltd. | Additives for low-sulfur marine diesel |
US10947467B2 (en) | 2016-12-15 | 2021-03-16 | Basf Se | Polymers as additives for fuels |
US11566196B2 (en) | 2016-12-15 | 2023-01-31 | Basf Se | Polymers as additives for fuels |
Also Published As
Publication number | Publication date |
---|---|
EP1541664B1 (de) | 2015-11-18 |
DE10357877B4 (de) | 2008-05-29 |
CA2489752C (en) | 2012-09-11 |
CA2489752A1 (en) | 2005-06-11 |
DE10357877A1 (de) | 2005-07-28 |
EP1541664A1 (de) | 2005-06-15 |
KR101139277B1 (ko) | 2012-04-26 |
JP2005171260A (ja) | 2005-06-30 |
JP5025082B2 (ja) | 2012-09-12 |
KR20050058225A (ko) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2489752C (en) | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties | |
US7473284B2 (en) | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties | |
US7500996B2 (en) | Cold flow improvers for fuel oils of vegetable or animal origin | |
US7041738B2 (en) | Cold flow improvers for fuel oils of vegetable or animal origin | |
US20070270319A1 (en) | Composition of fuel oils | |
US7815697B2 (en) | Fuel oils composed of middle distillates and oils of vegetable or animal origin and having improved cold flow properties | |
US20070266620A1 (en) | Cold flow improvers for vegetable or animal fuel oils | |
US7476264B2 (en) | Cold flow improvers for fuel oils of vegetable or animal origin | |
US20070270318A1 (en) | Cold flow improvers for vegetable or animal fuel oils | |
CA2573577A1 (en) | Additives for low-sulfur mineral oil distillates, comprising graft copolymers based on ethylene-vinyl ester copolymers | |
US20080178522A1 (en) | Pour point improvers for vegetable or animal fuel oils | |
US20060137242A1 (en) | Additives for low-sulfur mineral oil distillates, comprising graft copolymers based on ethylene-vinyl acetate copolymers | |
US6593426B2 (en) | Copolymer blends and their use as additives for improving the cold flow properties of middle distillates | |
US20070266621A1 (en) | Composition of fuel oils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CLARIANT GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRULL, MATTHIAS;SIGGELKOW, BETTINA;HESS, MARTINA;REEL/FRAME:016085/0690;SIGNING DATES FROM 20040913 TO 20040920 |
|
AS | Assignment |
Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH,GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:CLARIANT GMBH;REEL/FRAME:018640/0152 Effective date: 20051128 Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:CLARIANT GMBH;REEL/FRAME:018640/0152 Effective date: 20051128 |
|
AS | Assignment |
Owner name: CLARIANT INTERNATIONAL LTD., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLARIANT PRODUKTE (DEUTSCHLAND) GMBH;REEL/FRAME:022063/0679 Effective date: 20081217 |
|
AS | Assignment |
Owner name: CLARIANT FINANCE (BVI) LIMITED, VIRGIN ISLANDS, BR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLARIANT INTERNATIONAL LTD.;REEL/FRAME:024991/0658 Effective date: 20100729 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |