US20050080486A1 - Facet joint replacement - Google Patents
Facet joint replacement Download PDFInfo
- Publication number
- US20050080486A1 US20050080486A1 US10/687,865 US68786503A US2005080486A1 US 20050080486 A1 US20050080486 A1 US 20050080486A1 US 68786503 A US68786503 A US 68786503A US 2005080486 A1 US2005080486 A1 US 2005080486A1
- Authority
- US
- United States
- Prior art keywords
- vertebra
- prosthesis
- bone
- facet
- bone contacting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000002517 zygapophyseal joint Anatomy 0.000 title description 34
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 283
- 238000002513 implantation Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims description 72
- 230000000153 supplemental effect Effects 0.000 claims 8
- 238000002271 resection Methods 0.000 description 60
- 239000007943 implant Substances 0.000 description 44
- 238000013461 design Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 210000003484 anatomy Anatomy 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 238000000576 coating method Methods 0.000 description 8
- 230000000087 stabilizing effect Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 208000014674 injury Diseases 0.000 description 7
- 230000008733 trauma Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000002146 bilateral effect Effects 0.000 description 6
- 230000007170 pathology Effects 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000010952 cobalt-chrome Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 208000012659 Joint disease Diseases 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 210000000845 cartilage Anatomy 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007850 degeneration Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 206010006002 Bone pain Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- -1 allograft bone Substances 0.000 description 2
- 230000002917 arthritic effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- CGMRCMMOCQYHAD-UHFFFAOYSA-J dicalcium hydroxide phosphate Chemical compound [OH-].[Ca++].[Ca++].[O-]P([O-])([O-])=O CGMRCMMOCQYHAD-UHFFFAOYSA-J 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 230000000278 osteoconductive effect Effects 0.000 description 2
- 230000002138 osteoinductive effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000011477 surgical intervention Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000002607 Pseudarthrosis Diseases 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000037873 arthrodesis Diseases 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 210000002805 bone matrix Anatomy 0.000 description 1
- 230000010072 bone remodeling Effects 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 239000004068 calcium phosphate ceramic Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000004800 psychological effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4405—Joints for the spine, e.g. vertebrae, spinal discs for apophyseal or facet joints, i.e. between adjacent spinous or transverse processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
- A61B17/7064—Devices acting on, attached to, or simulating the effect of, vertebral facets; Tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/844—Fasteners therefor or fasteners being internal fixation devices with expandable anchors or anchors having movable parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4637—Special tools for implanting artificial joints for connecting or disconnecting two parts of a prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2002/448—Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
Definitions
- the present invention relates to surgical devices and methods to replace a damaged, diseased, or otherwise painful spinal facet joint.
- arthrodesis or spine fusion, of one or more motion segments, with approximately 300,000 procedures performed annually in the U.S.
- Clinical success varies considerably, depending upon technique and indications, and consideration must be given to the concomitant risks and complications.
- Tsantrizos and Nibu have shown that spine fusion decreases function by limiting the range of motion for patients in flexion, extension, rotation, and lateral bending.
- Khoo and Nagata have shown that spine fusion creates increased stresses and, therefore, accelerated degeneration of adjacent non-fused motion segments.
- pseudoarthrosis as a result of an incomplete or ineffective fusion, may reduce or even eliminate the desired pain relief for the patient.
- the fusion device whether artificial or biological, may migrate out of the fusion site.
- the artificial discs proposed to date do not fully address the mechanics of motion of the spinal column.
- posterior elements called the facet joints help to support axial, torsional and shear loads that act on the spinal column.
- the facet joints are diarthroidal joints that provide both sliding articulation and load transmission features. The effects of their absence as a result of facetectomy was observed by Goh to produce significant decreases in the stiffness of the spinal column in all planes of motion: flexion and extension, lateral bending, and rotation.
- contraindications for artificial discs include arthritic facet joints, absent facet joints, severe facet joint tropism or otherwise deformed facet joints, as noted by Lemaire.
- U.S. Pat. No. 36,758 to Fitz discloses an artificial facet joint where the inferior facet, the mating superior facet, or both, are resurfaced.
- U.S. Pat. No. 6,132,464 to Martin discloses a spinal facet joint prosthesis that is supported on the posterior arch of the vertebra. Extending from this support structure are inferior and/or superior blades that replace the cartilage at the facet joint.
- the Martin prosthesis generally preserves existing bony structures and therefore does not address pathologies that affect the bone of the facets in addition to affecting the associated cartilage.
- the Martin invention requires a mating condition between the prosthesis and the posterior arch (also known as the lamina) that is a thin base of curved bone that carries all four facets and the spinous process. Since the posterior arch is a very complex and highly variable anatomic surface, it would be very difficult to design a prosthesis that provides reproducible positioning to correctly locate the cartilage-replacing blades for the facet joints.
- Facet joint replacement in conjunction with artificial disc replacements represent a holistic solution to recreating a fully functional motion segment that is compromised due to disease or trauma. Together, facet joint and disc replacement can eliminate all sources of pain, return full function and range of motion, and completely restore the natural biomechanics of the spinal column. Additionally, degenerative or traumatized facet joints may be replaced in the absence of disc replacement when the natural intervertebral disc is unaffected by the disease or trauma.
- an inferior facet of a superior vertebra is resected at the base of the facet where it connects to the posterior arch.
- the fin of a prosthetic inferior facet is pressed into the interior bone space of the posterior arch.
- a tool such as a broach or punch, may be used to first prepare a space for the fin within the posterior arch.
- a superior facet of an inferior vertebra that articulates with the inferior facet is resected at the base of the facet where it connects to the pedicle.
- the post of a prosthetic superior facet is pressed into the interior bone space of the pedicle.
- a tool such as a broach or punch, may be used to first prepare a space for the post within the pedicle.
- the post and the fin may be porous coated to promote bone ingrowth in order to achieve long term fixation. Long term fixation is provided by a press fit between the post or fin and the internal surface of the bone.
- the porous coating may carry osteoconductive agents, such as hydroxylapatite, calcium sulfate, or demineralized bone matrix.
- the porous coating may carry osteoinductive agents, such as bone morphogenic proteins, including rhBMP-2 and rhBMP-7.
- Another embodiment of the present invention provides a flange extending from the prosthetic facet.
- the flange is oriented relative to the body of the prosthesis such that when the flange is placed against the pedicle and in a manner such that the planar surface of the flange is perpendicular to the axis of the pedicle interior bone canal, the articulating surface of the prosthesis will be properly positioned to match the articulating surface of the natural facet.
- the flange includes a hole for the passage of a fastener to securely attach the prosthesis to the pedicle.
- the fastener can be a screw, spike, tack, staple, or the like.
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a superior facet located on a mammalian vertebra and for replacement of at least a portion of the bone of an inferior facet located on the same mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a superior facet located on a first mammalian vertebra and for replacement of at least a portion of the bone of an inferior facet located on a second mammalian vertebra comprising:
- a method for replacing at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a prosthesis for the replacement of at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- a method for replacing at least a portion of the bone of a facet located on a mammalian vertebra comprising:
- facets need be replaced. For example, if only one facet is affected by disease or trauma, it can be resected and replaced with a facet prosthesis that articulates with an opposing natural facet.
- the present invention has numerous advantages over the prior art.
- One advantage is that the quality of attachment of the prosthesis is improved.
- the present invention provides a precise press fit into bones, as opposed to relying on prosthetic surfaces mating with highly complex and variable external surfaces of the vertebra, such as the posterior arch or facet.
- Another advantage is that the optional porous coating is placed into interior bone spaces where porous coatings have proven to achieve bone ingrowth for excellent long term fixation strength. This ability to achieve bone ingrowth is uncertain for the prior art devices that engage the external bone surfaces of the vertebra.
- Yet another advantage lies in the removal of the facet bone structure; where the facet bone is involved in the disease pathology or the trauma that compromised the articular or cartilaginous surface of the facet, resection provides a means for ensuring that all pain associated with the disease or trauma is removed.
- FIG. 1 is a perspective view of a portion of the spine
- FIG. 1A is a dorsal view of the portion of the spine shown in FIG. 1 ;
- FIG. 2 is a lateral view of a facet joint reconstructed in accordance with the present invention.
- FIG. 3 is a dorsal view of the facet joint shown in FIG. 2 ;
- FIG. 4 is a perspective view of the implanted left inferior facet prosthesis shown in FIGS. 2 and 3 ;
- FIG. 5 is a perspective view of the left inferior facet prosthesis shown in FIGS. 2 and 3 ;
- FIG. 6 is a cranial view of the implanted left superior facet prosthesis shown in FIGS. 2 and 3 ;
- FIG. 7 is a perspective view of the left superior facet prosthesis shown in FIGS. 2 and 3 ;
- FIG. 8 is a perspective view of an alternate implanted left inferior facet prosthesis
- FIG. 9 is a perspective view of an alternate left inferior facet prosthesis
- FIG. 10 is a lateral view of an alternative reconstructed facet joint
- FIG. 11 is a dorsal view of an alternative reconstructed facet joint
- FIG. 12 is a perspective view of the implanted left inferior facet prosthesis shown in FIGS. 10 and 11 ;
- FIG. 13 is a perspective view of the alternative left inferior facet prosthesis shown in FIGS. 10 and
- FIG. 14 is a cranial view of the alternative implanted left superior facet prosthesis shown in FIGS. 10 and 11 ;
- FIG. 15 is a perspective view of the alternative left superior facet prosthesis shown in FIGS. 10 and 11 ;
- FIG. 16 is a perspective view of an alternate bearing surface for the superior facet prosthesis shown in FIG. 15 ;
- FIG. 17 is a dorsal view of a single intact vertebra
- FIG. 18 is a lateral view of the same intact vertebra shown in FIG. 17 ;
- FIG. 19 is a dorsal view of the same vertebra of FIG. 17 and FIG. 18 , with a portion of the superior facet resected and a portion of the inferior facet resected;
- FIG. 20 is a lateral view of the resected vertebra shown in FIG. 19 ;
- FIG. 21 is a dorsal view of the same resected vertebra shown in FIG. 18 and FIG. 19 with a fixation element placed through the first superior resection surface and into the pedicle bone;
- FIG. 22 is a dorsal view showing the resected vertebra, the fixation element, and a superior facet prosthesis
- FIG. 23 is a dorsal view of the vertebra and the implant of FIG. 23 and also showing the addition of an inferior facet prosthesis;
- FIG. 24 is a dorsal view of the implant and vertebra of FIG. 23 and also showing the addition of an enlarged head that has the shape of a locking nut;
- FIG. 25 is an isometric posteriolateral view of a vertebra with an assembled implant comprising a fixation element, superior facet prosthesis, and a locking nut;
- FIG. 26 is a cross-sectional view of the same vertebra and implant of FIG. 25 showing the result of a cross-sectional view cut aligned with the axis of the fixation element;
- FIG. 27 is a view of the same cross-section described in FIG. 26 , aligned to face the viewer;
- FIG. 28 is a side view of embodiments A, B, C, D, E, and F of the fixation element, and a cross-sectional view of the same embodiments, and a side view of the enlarged head in the shape of a locking nut;
- FIG. 28A is a side view of embodiments G, H, I, J, K, and L of the fixation element with attached enlarged heads, and a cross-sectional view of the same embodiments;
- FIG. 29 is an isometric view of a radially expanding fixation element in its unexpanded state
- FIG. 30 is a side view and a bottom view of (i) an expanded radially expanding fixation element and (ii) an unexpanded radially expanding fixation element;
- FIG. 31 is an isometric cross-sectional view of a vertebra and a facet implant showing a cross-pin torsionally and axially securing the fixation element;
- FIG. 32 is a dorsal view of a spinal section showing a top, middle, and bottom vertebra with unilateral facet replacements on the right side of the spine section, both between the top and middle vertebra, and between the middle and bottom vertebra;
- FIG. 33 is a dorsal view of a spine section showing a superior hemiplasty facet replacement between the top and the middle vertebra and unilateral replacement between the middle and the bottom vertebra;
- FIG. 34 is a dorsal view of a spinal section showing an inferior facet hemiplasty replacement between the top and the middle vertebra and a unilateral replacement on the right side between the middle and the bottom vertebra;
- FIG. 35 is a dorsal view of a spinal section showing a unilateral replacement between the top and the middle vertebra on the right side, and an inferior facet hemiplasty replacement between the middle and the bottom vertebra on the same side;
- FIG. 36 is a dorsal view of a spinal section showing a unilateral replacement between the top and the middle vertebra on the right side and a superior facet hemiplasty replacement on the right side between the middle and the bottom vertebra on the same side;
- FIG. 37 is a spinal section of two vertebra showing the inferior facet of the top vertebra and the superior facet of the joining bottom vertebra replaced by an articulating facet implant;
- FIG. 38 is an isometric view of a curved superior facet prosthesis
- FIG. 39 is an isometric view of the bone ingrowth surface on a superior facet prosthesis.
- FIG. 40 is an isometric view of an inferior facet prosthesis
- FIG. 41 is an isometric view of an inferior facet prosthesis with a bone ingrowth surface
- FIG. 42 shows the addition of a locking washer to the construction of the implant shown in FIG. 25 ;
- FIG. 43 shows the assembly of the construct shown in FIG. 42 ;
- FIG. 44 shows an isometric view of the locking washer shown in FIG. 42 ;
- FIG. 45 shows superior and inferior facet prostheses held to a vertebra by flexible fixation elements
- FIG. 46 is a dorsal view of a bilateral inferior implant.
- Vertebra 1 has superior facets 43 , inferior facets 6 , posterior arch (or lamina) 35 and spinous process 46 .
- Vertebra 3 has superior facets 7 , inferior facets 44 , posterior arch (or lamina) 36 and spinous process 45 .
- FIG. 2 the left inferior facet 6 of vertebra 1 shown in FIG. 1 and FIG. 1A has been resected and inferior facet prosthesis 4 has been attached to vertebra 1 .
- the left superior facet 7 of vertebra 3 has been resected and a superior facet prosthesis 5 has been attached to vertebra 3 .
- FIG. 3 illustrates a dorsal view of the elements shown in FIG. 2 .
- inferior facet prosthesis 4 replicates the natural anatomy when compared to the contralateral inferior facet 6 of vertebra 1 .
- superior facet prosthesis 5 replicates the natural anatomy when compared to the contralateral superior facet 7 of vertebra 3 .
- Neither inferior facet prosthesis 4 nor superior facet prosthesis 5 rests on the lamina.
- FIG. 4 a perspective view of vertebra 1 with implanted inferior facet prosthesis 4 is provided.
- a bone resection on the left side of the vertebra 1 shown as resection 31 , has removed the natural inferior facet 6 at the bony junction between the inferior facet 6 and the posterior arch (or lamina) 35 .
- any bone pain associated with a disease, such as osteoarthritis, or trauma of the left inferior facet 6 will be eliminated as the involved bony tissue has been osteotomized.
- FIG. 5 illustrates a perspective view of inferior facet prosthesis 4 .
- Surface 8 replicates the natural articular surface of the replaced inferior facet 6 .
- Post 9 provides a means to affix inferior facet prosthesis 4 to vertebra 1 .
- Post 9 is implanted into the interior bone space of the left pedicle on vertebra 1 and may or may not extend into the vertebral body of vertebra 1 to provide additional stability.
- FIG. 6 illustrates a cranial view of vertebra 3 with implanted superior facet prosthesis 5 .
- Resection surface 32 represents the bony junction between the natural superior facet 7 and the posterior arch 35 .
- FIG. 7 illustrates a perspective view of superior facet prosthesis 5 .
- Surface 36 replicates the natural articular surface of the replaced superior facet 7 .
- Post 37 provides a means for affixing superior facet prosthesis 5 to vertebra 3 .
- Post 37 is implanted into the interior bone space of the left pedicle P ( FIG. 6 ) on vertebra 3 and may or may not extend into the vertebral body of vertebra 3 to provide additional stability.
- FIG. 8 illustrates an alternative inferior facet prosthesis 10 which is implanted into the interior bone space of posterior arch (or lamina) 35 .
- the interior bone space is accessed from the resection 31 .
- FIG. 9 shows details of alternative inferior facet prosthesis 10 , including the fin 13 that extends into the interior bone space of posterior arch 35 .
- Surface 12 replicates the natural articular surface of the replaced facet.
- the surfaces of post 9 ( FIG. 5 ), post 37 ( FIG. 7 ) and fin 13 ( FIG. 9 ) may or may not include porous coatings to facilitate bone ingrowth to enhance the long term fixation of the implant. Furthermore, such porous coatings may or may not include osteoinductive or osteoconductive substances to further enhance the bone remodeling into the porous coating.
- FIG. 10 there is shown a lateral view of a superior vertebra 14 and an inferior vertebra 16 , with an intervertebral disc 15 located in between.
- the left inferior facet of vertebra 14 has been resected and an inferior facet prosthesis 18 has been attached to vertebra 14 by means of a screw fastener 17 .
- the left superior facet of vertebra 16 has been resected and a superior facet prosthesis 19 has been attached to vertebra 16 by means of a screw fastener 17 .
- FIG. 11 illustrates a dorsal view of the elements of FIG. 10 .
- inferior facet prosthesis 18 replicates the natural anatomy when compared to the contralateral inferior facet 22 of vertebra 14 .
- superior facet prosthesis 19 replicates the natural anatomy when compared to the contralateral superior facet 21 of vertebra 16 .
- Neither inferior facet prosthesis 18 nor superior facet prosthesis 19 rests on the lamina.
- FIG. 12 there is provided a perspective view of vertebra 14 with implanted inferior facet prosthesis 18 .
- Resection 34 has removed the natural inferior facet at the bony junction between the inferior facet and the posterior arch 37 .
- any bone pain associated with a disease, such as osteoarthritis, or trauma of the natural inferior facet 22 will be eliminated inasmuch as the involved bony tissue has been osteotomized.
- FIG. 13 illustrates a perspective view of inferior facet prosthesis 18 .
- Surface 23 replicates the natural articular surface of the replaced facet.
- Flange 25 contacts the pedicle P ( FIG. 12 ) and hole 24 receives a screw fastener 17 to attach inferior facet prosthesis 18 to vertebra 14 .
- FIG. 14 illustrates a cranial view of vertebra 16 with implanted superior facet prosthesis 19 .
- Resection surface 35 A represents the bony junction between the natural superior facet 21 ( FIG. 11 ) and the posterior arch 38 .
- FIG. 15 illustrates a perspective view of superior facet prosthesis 19 .
- Surface 27 replicates the natural articular surface of the replaced facet.
- Flange 39 contacts the pedicle P ( FIG. 14 ) and hole 26 receives a screw fastener 17 to attach superior facet prosthesis 19 to vertebra 16 .
- FIG. 16 illustrates an alternative superior facet prosthesis 40 with a bearing surface 41 that mounts to substrate 42 .
- the bearing surface 41 is a biocompatible polymeric material, such as ultra high molecular weight polyethylene. Alternately, the bearing surface can be ceramic, such as zirconia or alumina.
- the substrate is a biocompatible metal alloy, such as an alloy of titanium, cobalt, or iron.
- FIG. 17 is a dorsal view of the vertebra 100 .
- FIG. 18 is a lateral view of the same vertebra 100 .
- the vertebra 100 has posterior anatomy comprising left and right superior facets 43 on the superior, or top side in this view of the dorsal vertebra 100 , left and right inferior facets 6 on the inferior or bottom side of the posterior vertebra 100 , left and right transverse processes 105 extending laterally from the posterior portion of vertebra 100 , and left and right pedicles P.
- the posterior portion of vertebra 100 also has a posterior arch (or lamina) 35 , and a spinous process 46 that protrudes from the posterior arch 35 posteriorly, out of the page in FIG. 17 and to the left in FIG. 18 .
- the bony structure of the superior facets 43 and the inferior facets 6 are intact, as it would be presented in a vertebra without significant tissue degeneration or remodeling resulting from facet joint disease.
- the vertebra 100 is shown in FIG. 17 as a generally structurally healthy and intact vertebra, if the vertebra 100 were a diseased vertebra, the vertebra could exhibit signs of facet joint disease.
- the left superior facet 43 and the right superior facet 43 of the vertebra 100 are symmetrical in FIG. 17 and FIG. 18 .
- the facet on the diseased side would likely be showing pathological signs of disease such as tissue degeneration or inflammation resulting in an asymmetrical structural comparison between the two facets.
- the facet disease could progress to a state in which the articular process of the facet is eroded or inflamed resulting in anatomic morphology that is unique to the pathology of a particular facet joint of an individual patient.
- the facet disease could eventually disable the biomechanics of a patient such that the facet joint is essentially non-articulating and immobile.
- one superior facet of a first vertebra could essentially be fused to one inferior facet of a second vertebra.
- FIG. 19 and FIG. 20 which are dorsal and lateral views of the same vertebra shown in FIG. 17 and FIG. 18 after a portion of the right superior facet 43 and a portion of the right inferior facet 6 have been resected.
- the removal of a portion of the superior facet 43 by resection results in a superior facet resection 111 .
- the superior resection 111 has two resulting faces, a first resection surface 112 and a second resection surface 113 .
- the inferior facet resection results in an inferior facet resection surface 121 .
- Tissue removal tools such as a bone burr, rasp, reamer, mill, saw, rounger, osteotome or similar tools designed to cut and remove bone tissue can be used to create these resection surfaces.
- the surgeon uses anatomic landmarks such as the pedicle P or transverse process 105 to align the tissue removal tools in such a way as to remove the portion of the facet necessary to provide a superior resection 111 that serves as a bone apposition surface or foundation to eventually support the superior facet prosthesis 300 , as shown in FIG. 22 .
- the left superior facet 43 is shown intact in both FIG. 19 and FIG.
- first resection surface 112 and the second resection surface 113 are on approximately perpendicular planes.
- the geometry of the resections surfaces are a function of the patient anatomy, the pathology of the diseased tissue, the technique of the surgeon, and other factors such as the type of tissue removal tools used to prepare the resection.
- first resection surface 112 will be formed in such a way that it will serve as a foundation to support the superior facet prosthesis 300 ( FIG. 22 ).
- the second resection surface 113 or other additional resection surfaces may or may not be present.
- FIG. 19 and FIG. 20 also show that a portion of the inferior facet 6 is resected by tissue removal instruments resulting in an inferior resection surface 121 .
- tissue removal instruments resulting in an inferior resection surface 121 .
- Such resection is preferably effected so that resection is confined to the tissue of inferior facet 6 and does not extend into the tissue of posterior arch (or lamina) 35 .
- the left inferior facet 6 is intact, while a portion of the right inferior facet 6 is resected resulting in an inferior resection surface 121 on the right side.
- the bone surrounding the inferior resection surface 121 is formed by tissue removal tools in a shape designed to cradle and support the inferior facet prosthesis 400 ( FIG. 23 ) on the medial side such that when the inferior facet prosthesis 400 is loaded on the lateral side it compresses against and is supported by the inferior resection surface 121 .
- inferior facet 6 can be resected, and inferior facet prosthesis 400 sized and shaped, so that inferior facet prosthesis 400 does not engage inferior resection surface 121 .
- FIG. 21 shows the vertebra 100 with a fixation element 200 portion of the facet implant placed through the superior resection 111 and into the bone of the pedicle P.
- the fixation element 200 is aligned and placed into the pedicle, similar to how other pedicle screws for posterior stabilization involved with vertebrae fusion are placed in the pedicle.
- a long guide wire (not shown), with a diameter sized to fit freely into a cannulation 211 (as shown in FIG. 26 and FIG. 27 ) in the fixation element 200 , is placed through the first resection surface 112 and into the pedicle bone P.
- the alignment of the long guide wire can be confirmed by x-ray.
- the fixation element 200 is then guided over the guide wire and driven into the vertebra by a driver (not shown) engaged with the drive feature 212 ( FIG. 21 ) on the proximal post 230 of the fixation element 200 .
- the fixation element 200 is driven into the vertebra until a connection feature 213 (e.g., a screw thread) is just above the first resection surface 112 .
- This connection feature 213 is eventually used to secure the superior facet prosthesis 300 to the vertebra 100 .
- a long guide wire (not shown), with a diameter sized to fit freely into a cannulation in a bone preparation instrument (not shown) such as a tap, drill, broach or reamer, is placed through the first resection surface 112 and into the pedicle bone P.
- the alignment of the long guide wire can be confirmed by x-ray.
- the bone preparation instrument is then guided over the guide wire and driven into the pedicle P bone to prepare a cavity for the fixation element 200 .
- the guide wire and bone preparation instrument are then removed and the fixation element 200 is guided into the prepared cavity in the pedicle bone P by a driver (not shown) engaged with the drive feature 212 on the proximal post 230 of the fixation element 200 .
- the fixation element 200 is driven into the vertebra until a connection feature 213 (e.g., a screw thread) is just above the first resection surface 112 .
- This connection feature 213 is eventually used to secure the superior facet prosthesis 300 to the vertebra 100 .
- the surgeon aligns the fixation element 200 with anatomic landmarks and simply drives the fixation element 200 through the first resected surface 112 and into the pedicle bone P.
- the fixation element 200 is driven into the vertebra until a connection feature 213 (e.g., a screw thread) is just above the first superior resection surface 112 .
- a superior facet prosthesis 300 is shown placed around the fixation element 200 .
- the superior facet prosthesis 300 has a facet articulating component 320 that articulates with the inferior facet articulating surface of the vertebra above it. Facet articulating component 320 is preferably formed in the general shape of a blade or wing ear.
- the superior facet prosthesis 300 also has a bone apposition surface 322 that has been placed on the first resection surface 112 and an opening 324 in a flange 323 that surrounds the fixation element 200 .
- the superior facet articulating component 320 has an articulating surface 321 generally adjacent to the flange 323 that is orientated in a direction that faces approximately the same direction that the original anatomic superior articulating surface 145 faced prior to resection.
- This orientation of the articulating surface 321 allows the superior facet prosthesis 300 to function as either a hemiplasty implant and articulate against a natural anatomic inferior facet 6 or act as a unilateral prosthesis and articulate against an inferior facet prosthesis 400 on the vertebra superior (cephalad) to it. No portion of superior facet prosthesis 300 rests on the lamina.
- FIG. 23 shows the addition of the inferior facet prosthesis 400 to the construct described in FIG. 22 .
- the inferior facet prosthesis 400 generally has a shape similar to a longitudinal rod that is curved to match the contour of the inferior resection 121 ( FIGS. 19 and 20 ).
- the inferior facet prosthesis 400 has an opening 410 through its superior end 420 that is shaped to surround the portion of the fixation element 200 that protrudes from the first resection surface 112 .
- the inferior facet prosthesis 400 is placed over the superior facet prosthesis 300 .
- the order of the placement of the prostheses can be reversed such that the inferior prosthesis 400 is placed on the fixation element 200 first followed by the superior prosthesis 300 .
- only the inferior facet 6 or the superior facet 43 is being replaced, only the appropriate (superior or inferior) facet prosthesis is placed on the fixation element 200 without the other (inferior or superior) facet prosthesis.
- the various components of the implant are modular, many combinations of configurations and implant size, structure and shapes are feasible.
- the inferior facet prosthesis 400 may need to be larger than expected to conform to a particularly unusual or exceptionally large morphology of the inferior resection surface 121 , and the superior facet prosthesis 300 may need to have an unusual angle to its articulating surface to conform to particular anatomic constraints.
- the modularity of the system allows for the surgeon to assemble an implant specifically designed to match the patient's anatomic structures during the surgery. This flexibility of a modular implant design allows the implant manufacturer to accommodate a large variation in anatomic structures with a limited selection of implant component sizes, shapes, and material types.
- fixation implants such as the fixation element 300 are fabricated from biocompatible metals or alloys that provide sufficient strength and fatigue properties, such as cobalt chrome alloys, titanium and titanium alloys, and stainless steels.
- the fixation element 300 may be fabricated from ceramics, polymers, or biological materials such as allograft bone, composites, or other biocompatible structural materials.
- the superior facet prosthesis 300 and the inferior facet prosthesis 400 may be fabricated from metals, alloys, ceramics, polymers, biological materials, composites, or other biocompatible structural materials.
- an enlarged head 500 is added to the fixation element 200 and is tightened down to force the prosthesis or prostheses into the bone to stabilize them.
- the enlarged head 500 shown in FIG. 24 has a hexagonal geometry on its external surface that is shaped to accept a driver (not shown) that is used to force an internal connection feature 520 (e.g., a screw thread) of the enlarged head 500 onto the connection feature 213 of the fixation element 200 .
- the enlarged head 500 is provided with a threaded connection feature 520 and is driven onto the fixation element 200 by turning the enlarged head 500 and allowing the threads to drive all components of the implant between the enlarged head 500 and the first resection surface 112 into the bone at or near the resection surface 112 .
- FIG. 25 is an isometric posterior view of the assembly of the fixation element 200 , the superior facet prosthesis 300 , and the enlarged head 500 placed on the first resection surface 112 .
- FIG. 26 is the same construct shown in FIG. 25 , but with the implants and the vertebra 100 cut by a cross-sectioning plane 150 placed along an axis that passes through the center of the fixation element 200 .
- the cross-section plan 150 shown cutting through the vertebra 100 and the implant in FIG. 26 is shown for visualization purposes to illustrate, using a cross-sectioned view, how the vertebra 100 , fixation element 200 , superior facet prosthesis 300 and the enlarged head 500 engage with each other. In actual surgery, it is highly unlikely that a surgeon would make a cut as illustrated by the cross-section 150 shown in FIG. 26 .
- FIG. 27 is a view of the vertebra 100 and the implant wherein the cross-section 150 shown in FIG. 26 is orientated such that the cross-section plane is facing the viewer.
- the fixation element 200 is in the vertebra 100 .
- the embodiment of the fixation element 200 in FIG. 27 comprises a distal end 220 that is shaped to guide the fixation element 200 into bone tissue, a bone stabilizing portion 210 adjacent and proximal to the distal end, a shaft portion 240 adjacent and proximal to the bone stabilizing portion 210 , a connection feature 213 adjacent and proximal to the shaft portion 240 , and a drive feature 212 .
- the distal end 220 shown in FIG. 27 has a frustro-conical shape that allows the fixation element 200 to be driven or guided into the vertebra 100 .
- the distal end 220 could be shaped in the form of a spade tip, trochar tip, or twist drill tip to assist in the guidance of the fixation element 200 in the vertebra 100 .
- the fixation element 200 may also have a cutting flute (not shown) formed in the distal end 220 to help remove bone tissue and accommodate the guidance of the fixation element 200 in the vertebra 100 .
- the fixation element 200 has a stabilizing portion 210 to help secure the fixation element 200 to the vertebra 100 .
- This stabilizing portion 210 is a structure that can be the shape of various features that are designed to anchor into bone such as threads, ribs, grooves, slots, fins, barbs, splines, bone ingrowth surfaces, roughened surfaces, or any geometric feature that helps to engage the fixation element 200 with the bone tissue to help stabilize the fixation element 200 .
- the stabilizing portion 210 is shown as a unitary continuous bone thread 231 .
- other types of threads such as multiple lead threads, variable pitched thread, non-uniform pitch thread, buttress thread, or other thread forms used on bone screws may be used. Because FIG. 27 is a cross-sectional view, the full length of the cannulation 211 is seen passing from the distal end 220 of the fixation element 200 to the proximal post 230 of the fixation element 200 .
- the drive feature 212 in the embodiment shown in FIG. 27 is an internal hex. However, any shape of drive feature 212 that transmits the loads necessary to drive the fixation element 200 into the vertebra can be formed on the proximal post 230 of the fixation element 200 .
- the depth of the drive feature 212 formed in the proximal post 230 of the fixation element 200 is seen in the cross-sectional view of FIG. 27 .
- the drive feature 212 may be an internal drive feature such as the hex socket shown in this embodiment, or an external drive feature with geometry on the periphery of the proximal post 230 of the fixation element 200 that engages with a corresponding internal drive feature on a driver tool (not shown).
- the depth of the drive feature 212 is slightly longer than its cross-section is wide. This depth can be adjusted based on the material properties of the fixation element 200 and the drive tool (not shown).
- the fixation element 200 is fabricated from biocompatible base materials that allow for the structural rigidity and strength needed.
- base materials that the fixation element 200 are made from include titanium, titanium alloys, cobalt-chrome alloys, stainless steel alloys, zirconium alloys, other biocompatible metal materials, biocompatible ceramics, biocompatible composites, and biocompatible polymers.
- the fixation element 200 may also have surface materials formed on the base material that allow for material properties specific to a particular portion of the fixation element 200 .
- the bone stabilization portion 210 could be coated with materials that allow for improved bone ingrowth into the implant surface such as a hydroxylapatite, bioceramic, Bioglass®, or other calcium phosphate derived material.
- the tribological bearing properties of the material in the areas that the fixation element 200 interfaces with other artificial elements may be improved by applying surface hardening techniques to the material of the fixation element 200 in these areas.
- Surface hardening techniques known in the materials science and materials engineering arts such as anodizing, ion implantation, and other techniques could be applied to these isolated areas.
- connection feature 213 is formed on the portion of the fixation element 200 that protrudes from the first resection surface 112 .
- This connection feature 213 is designed to connect the enlarged head 500 to the fixation element 200 .
- threads 260 are on the external surface of this proximal section of the fixation element 200 . These threads 260 engage with the threads on the internal connection feature 520 ( FIG. 27 ) of the enlarged head 500 .
- connection feature 213 in this embodiment is threaded
- other mechanical locking features capable of locking the fixation element 200 and the enlarged head 500 together, such as press fit, taper fit, bonding fit by cement or glue, interference fit, expansion fit and mechanical interlocking fit such as a bayonet connection, can be used as the connection feature 213 (and a corresponding construction used on connection feature 520 of head 500 ).
- FIG. 27 Also shown in FIG. 27 is a cross-sectional view of an embodiment of the superior facet prosthesis 300 .
- This embodiment of the superior facet prosthesis 300 has a flange 323 that has an opening 324 that wraps around the fixation element 200 .
- the flange 323 is positioned such that its bone contacting surface 322 makes contact with the first resection surface 112 .
- other embodiments of the superior facet prosthesis 300 have structures (e.g., spikes) that protrude into the first resection surface 112 to help resist torsion and other anatomic loads.
- the articulating component 320 Protruding from the flange 323 at a given angle ⁇ , and a given distance X from the opening 324 , is an articulating component 320 .
- the articulating component 320 has an articulating surface 321 that replicates the natural articular surface of the replaced facet.
- the enlarged head 500 in this embodiment has an internal connection feature 520 and a hexagonal shaped external drive feature 510 that is used to drive the enlarged head 500 over the fixation element 200 and against the superior facet prosthesis 300 .
- the specific shape of the external drive feature 510 is dependent on the mating shape of the driver (not shown).
- FIG. 28 six different embodiments of the bone stabilization portion 210 of the fixation element 200 are shown that are labeled A, B, C, D, E, and F.
- the figure shows a side view of each fixation element 200 embodiment and a cross-sectional view of each embodiment to the right of the respective side view.
- To the left of the six embodiments is a representative enlarged head 500 .
- Embodiment A is the threaded fixation element 200 embodiment shown in FIGS. 26 and 27 and described above.
- Embodiments B through E are various designs of fixation elements with non-circular cross-sections.
- Embodiment B is a four rib cruciate design with four longitudinal fins configured to resist torsion when the fixation element 200 is in the vertebra 100 .
- Embodiment C is an oval shaped cross-section design that is wider in the first direction than the second direction to resist torsion. If the dimension of the width in the first and second directions is equal, the cross-section shape becomes more of a circle and bone stabilization portion 210 becomes more of a press-fit peg.
- Embodiment D is a square cross-section design with four approximately perpendicular sides. The corners of the sides help to resist torsion.
- Embodiment E is a triangular cross-section design with three sides to resist torsion.
- Embodiment F is an anchor-like design that is driven into the vertebra, with the wire arches or barbs 290 being compressed against the host bone and applying a radial expansion force so as to lock the structure to the bone.
- FIG. 28A shows a side view of each fixation element 200 embodiment and a cross-sectional view of each embodiment to the right of the respective side view. Each embodiment has an attached enlarged head 500 .
- Embodiment G is similar to the threaded fixation element 200 embodiment shown in FIGS. 10, 11 , 12 and 24 and described above.
- Embodiments H through K are various designs of fixation elements 200 with non-circular cross-sections.
- Embodiment H is a four rib cruciate design with four longitudinal fins 285 configured to resist torsion when the fixation element 200 is in the vertebra 100 .
- Embodiment I is an oval shaped cross-section design that is wider in the first direction 286 than the second direction 287 to resist torsion. If the dimension of the width in the first direction 286 and second direction 287 is equal, the cross-section shape becomes more of a circle and bone stabilization portion 210 becomes more of a press-fit peg.
- Embodiment J is a square cross-section design with four approximately perpendicular sides 288 . The corners 289 of the sides 288 help to resist torsion.
- Embodiment K is a triangular cross-section design with three sides 291 to resist torsion.
- Embodiment L is an anchor-like design that is similar to Embodiment F in FIG. 28 , but with an attached enlarged head 500 ′. As embodiment L is driven into the vertebra, wire arches or barbs 290 are compressed and apply radial expansion force against the wall of the prepared bone and into the pedicle bone P resulting in a locking anchor.
- FIG. 29 is an isometric view of a radially expanding fixation element 600 .
- the radially expanding fixation element 600 comprises two main elements, an expansion sleeve 620 and a central element 610 that is inside of the expansion sleeve 620 .
- the radially expanding fixation element 600 is placed into the vertebra and then the central element 610 is pulled relative to the expansion sleeve 620 resulting in radial expansion of the fixation element 600 . This is shown in FIG. 30 .
- talons 621 on the expansion sleeve 620 are radially expanded outward by a mandrel 660 on the central element 610 .
- the talons or fingers 621 provide both torsional and axial stability to the radially expanding fixation element 600 . This provides a secure fixation element for fixation of the remaining components of the implant.
- FIG. 31 shows a cross-pin element 700 engaged with the fixation element 200 to help secure the fixation element 200 both torsionally and axially.
- the cross-pin element 700 is columnar in shape having a distal end 710 , mid section 730 (with a length along its longitudinal axis that is longer than its transverse cross-sectional width), and a proximal post 720 .
- the distal end 710 is shaped to penetrate through bone tissue and into a cross hole 280 formed in the fixation element 200 .
- Instrumentation (not shown) is used to align the cross-pin element 700 with the cross-hole 280 by fixing to the drive feature 212 or the cannulation 211 on the fixation element 200 and aligning the direction of insertion of the cross-pin element 700 with the cross-hole 280 .
- FIGS. 32 through 37 show a fixation element 200 and enlarged head 500 as the means of securing the prostheses to the vertebra
- other clamping means such as the screw fastener 17 ( FIG. 10 ) may be used to mount the prosthesis to the bone.
- the screw prostheses 17 shown in FIGS. 10 through 12 passes through either the opening 324 ( FIG. 22 ) in the superior facet prosthesis 300 or the opening 410 ( FIG. 23 ) in the inferior facet prosthesis 400 or through both of these openings wherein the head of the screw fastener 17 acts as the securing means pressing the inferior facet prostheses 400 and the superior facet prosthesis 300 against their respective resection surfaces.
- FIGS. 32 through 37 demonstrate different combinations of assemblies of the facet replacement prosthesis.
- the basic components of the prosthesis are the fixation element 200 , superior facet prosthesis 300 , inferior facet prosthesis 400 , and the enlarged head 500 .
- a screw fastener 17 can replace the fixation element 200 and the enlarged head 500 .
- top vertebra 101 is above the middle vertebra 102 that is shown above the bottom vertebra 103 .
- portions of some of the facets on the right side of the vertebrae are replaced by prostheses.
- inferior facet prosthesis 401 is articulating against superior facet prosthesis 302 to form an artificial unilateral joint.
- the inferior facet of the middle vertebra 102 is replaced by inferior facet prosthesis 402 and the superior facet of the bottom vertebra 103 is replaced by superior facet prosthesis 303 .
- FIG. 32 demonstrates the difference in shape of the inferior facet prosthesis 401 that is implanted around the fixation element 201 without a superior facet prosthesis 300 and an inferior facet prosthesis 402 that is implanted around a fixation element 202 and over a superior facet prosthesis 302 .
- the opening 410 of the inferior facet prosthesis 401 on the top vertebra 101 in this assembly is offset more laterally than the opening 410 in the inferior facet prosthesis 402 for the middle vertebra 102 . This is because the fixation element 201 is implanted more laterally on the top vertebra 101 to preserve more of the superior facet since it is not replaced by a prosthesis at this level.
- the top vertebra 101 is left intact without resection of the facets. Portions of both the superior and inferior facets on the right side of the middle vertebra 102 are replaced by superior facet prosthesis 302 and an inferior facet prosthesis 402 . Only the right superior facet of the bottom vertebra 103 is replaced (i.e., by a superior facet prosthesis 303 ) in FIG. 33 . Thus, a hemiplasty replacement results on the right facet joint between the top vertebra 101 and the middle vertebra 102 and a unilateral replacement results between the middle vertebra 102 and the bottom vertebra 103 .
- This assembly shown in FIG. 33 demonstrates how the superior facet prosthesis 302 can articulate against a natural inferior facet 6 or superior facet prosthesis 303 can articulate against an inferior facet prosthesis 402 .
- FIG. 34 shows how an inferior facet prosthesis 401 can articulate against a natural superior facet 43 , or a inferior facet prosthesis 402 can articulate against superior facet prosthesis 303 .
- the right facet joint between the top vertebra 101 and the middle vertebra 102 is a hemiplasty replacement with the inferior facet replaced by an inferior facet prosthesis 401 .
- the right facet joint between the middle vertebra 102 and the bottom vertebra 103 is a unilateral replacement with the inferior facet replaced by an inferior facet prosthesis 402 and the superior facet of the bottom vertebra 103 replaced by a superior facet prosthesis 303 .
- FIG. 35 shows another example of how the superior facet prosthesis 303 can articulate against a natural inferior facet 6 or superior facet prosthesis 302 can articulate against an inferior facet prosthesis 401 .
- the right side between the top vertebra 101 and the middle vertebra 102 is a unilateral replacement and the right side between the middle vertebra 102 and the bottom vertebra 103 is a hemiplasty replacement.
- FIG. 36 shows another example of how an inferior facet prosthesis 402 can articulate against a natural superior facet 43 , or an inferior facet prosthesis 401 can articulate against superior facet prosthesis 302 .
- the right facet joint between the top vertebra 101 and the middle vertebra 102 is an unilateral replacement with the inferior facet replaced by an inferior facet prosthesis 401 and the superior facet of the middle vertebra 102 replaced by a superior facet prosthesis 302 .
- the right facet joint between the middle vertebra 102 and the bottom vertebra 103 is a hemiplasty replacement with the inferior facet replaced by an inferior facet prosthesis 402 .
- the assembly of the implant shown in FIG. 37 demonstrates only one level, that between the middle vertebra 102 and the bottom vertebra 103 , being replaced on the right side.
- FIG. 38 and FIG. 39 show two embodiments of the superior facet prosthesis.
- the embodiment shown in FIG. 38 is curved superior facet prosthesis 305 with a curved articulating component 320 that has a curved articulating surface 321 .
- This curved articulating surface 321 allows for a more distributed contact load between an inferior facet prosthesis 400 and the curved articulating surface 321 .
- the articulating surface 321 of the superior facet prosthesis 300 previously described is relatively flat.
- the articulating surface 321 of the curved superior facet prosthesis 305 is curved. Since the bearing portion of the inferior facet prosthesis 400 is columnar, the two prosthesis can be aligned on a slight mismatch and make more of an anatomic contact if the articulated surface is curved as in FIG. 38 .
- FIG. 39 illustrates bone ingrowth feature 390 on the superior facet prosthesis 306 .
- This bone ingrowth feature can be any surface that allows bone to grow into the implant between the first resection 111 of the vertebra and the 322 bone-contacting surface 321 of the implant.
- Examples of bone ingrowth features 390 include porous coating of beads or meshes, electrochemically etched shapes and porous pads pressed onto the implant surface made from tantalum, titanium, cobalt chrome alloys or and other biocompatible material such as hydroxylapatite or calcium phosphate ceramics.
- FIG. 40 shows an isometric view of an inferior facet prosthesis 400 formed in the general shape of a finger or talon. More particularly, inferior facet prosthesis 400 is formed with a flange 420 on its superior side shaped to either fit between the superior facet prosthesis 300 and the enlarged head 500 , or between the first resection surface 112 and the enlarged head 500 .
- the flange 420 has an opening 410 through it that is dimensioned to allow the inferior facet prosthesis 400 to fit over the proximal end 210 of the fixation element 200 and around the post of the fixation element 200 .
- the inferior facet prosthesis 400 also has an inferior portion 450 on the opposite side of the flange 420 that has a bone apposition side 440 that is shaped to contact the surface of the resected bone 121 ( FIG. 19 ) and joint articulation side 430 that is shaped to articulate with a natural or prosthetic superior facet.
- FIG. 41 shows an isometric view of an inferior facet prosthesis 400 also formed in the general shape of a finger or talon.
- Inferior facet prosthesis 400 is formed with a superior end 420 having an opening 410 that is dimensioned and shaped to accept the fixation element 200 .
- the inferior facet prosthesis is generally columnar in shape, having a curved length designed to conform to the prepared anatomy of the vertebra 100 .
- the inferior facet prosthesis 400 of FIG. 41 has an inferior portion 450 , which is shown opposite the superior end 420 , and slightly medially offset from the superior end 420 .
- the inferior facet prosthesis embodiment of FIG. 41 has a bone ingrowth surface 441 and an articulating surface 430 on its inferior end 450 .
- the bone ingrowth surface 441 is a textured structure that permits bone cells to grow into the implant surface.
- the shape of the bone ingrowth surface 441 can be a uniform textured surface as shown in FIG.
- the bone ingrowth surface is shaped to mate with the inferior resected bone surface 121 such as shown in FIG. 19 and FIG. 20 .
- FIG. 42 shows a posterior isometric view of an embodiment of the superior facet implant 300 that has an additional locking washer 800 to assist in stabilizing the superior facet implant to the first resection surface 112 .
- the construction of the implant assembly shown in FIG. 42 is similar to that of the assembly shown in FIG. 25 with the addition of the locking washer 800 that is placed over and around the superior facet implant 300 .
- FIG. 43 shows the same implant of FIG. 42 with the enlarged head 500 locked onto the fixation element 200 and pushing the locking washer 800 against the superior prosthesis 300 and into the bone tissue. This added bone penetration of the locking washer 800 helps to fix the superior prosthesis 300 such that the entire assembly is more mechanically stable with respect to the vertebra 100 .
- FIG. 43 shows a further step in the assembly of the implant construct described in FIG. 42 .
- the locking washer 800 is secured over the fixation element 200 and into the bone tissue by the enlarged head 500 .
- the locking washer 800 can also be used to mechanically secure the inferior facet prosthesis 400 and the combination of the inferior facet prosthesis 400 and the superior facet prosthesis 300 .
- the locking washer 800 is placed over the superior facet prosthesis 300 .
- the locking washer 800 may be placed under the superior facet prosthesis 300 or under any other combination of inferior facet prosthesis 400 and superior facet prosthesis 300 , or between the superior facet prosthesis 300 and the inferior facet prosthesis 400 to stabilize the implant construct.
- FIG. 44 shows an isometric view of the locking washer 800 .
- the locking washed 800 has an opening 810 in the body 805 that is dimensioned to fit over the proximal post 230 of the fixation element 200 .
- the locking washer 800 also has an anti-rotation feature 820 that mates with either the superior facet prosthesis 300 or the inferior facet prosthesis 400 or a combination of both the inferior facet prosthesis 400 and the superior facet prosthesis 400 .
- the anti-rotation feature 820 shown in this embodiment is a flat surface, however, any feature that would rotationally constrain the locking washer 800 to the other components of the implant (such as a tab, groove, taper or other geometric shape) can be formed on the washer as a anti-rotation feature 820 .
- the locking washer 800 also has prongs 830 that pass into the bone tissue of vertebra 100 to help stabilize the implant construct.
- the prongs in this embodiment of the locking washer 800 are elongated protrusions that taper to a tissue penetration tip 840 .
- the prongs have sidewalls 850 that provide a surface to resist torsion once the locking washer 800 penetrates the bone tissue.
- the prongs 830 may also be simple spikes that are either symmetrical or nonsymmetrical in cross-section that protrude from the locking washer body 805 .
- the shape and length of the locking washer prongs 830 is dependent on how the locking washer is used.
- the prongs 830 of the locking washer 800 that holds only one of the inferior facet prosthesis 400 or the superior facet prosthesis 300 to the vertebra 100 may be shorter than the prongs 830 of the locking washer 800 that holds both the inferior facet prosthesis 400 and the superior facet prosthesis 300 to the vertebra 100 .
- FIG. 45 shows the superior facet prosthesis 300 and inferior facet prosthesis 400 held to the vertebra 100 by adjunctive flexible fixation element 900 and secondary flexible fixation element 910 .
- These flexible fixation elements 900 and/or 910 may be made from such constructs as suture, braided cable, wire, ribbon, and other constructs that have longer lengths than cross-sections and withstand larger loads in tension than in compression.
- the flexible fixation element 900 and/or 910 may be manufactured from biocompatible metals, alloys such as cobalt chrome alloys, titanium alloys, stainless steel alloys, polymers, bioabsorbale materials, composites, or other materials that are biocompatible and can be formed into a flexible element structure 900 and/or 910 such as those shown in FIG. 45 .
- the adjunctive flexible element 900 shown in FIG. 45 is shown attached to and securing the elongated head 500 .
- a flexible element attachment portion 580 (e.g., including an opening) mates the flexible element 900 to the elongated head.
- the adjunctive flexible fixation element 900 may attach to and add adjunctive fixation element 900 to the fixation element 200 , the superior facet prosthesis 300 , the inferior facet prosthesis 400 or a combination of the above listed elements of the prosthesis.
- a flexible fixation attachment portion 480 (e.g., including an opening) in the inferior facet prosthesis 400 allows the secondary flexible fixation element 910 to secure the inferior facet prostheses 400 to the vertebra 100 .
- the flexible fixation elements 900 and/or 910 may be secured to the vertebra 100 by physically wrapping around anatomic features such as the posterior arch 35 , the spinous process 46 , or transverse process 105 or a combination of these anatomic features.
- the flexible element 900 and secondary flexible element 910 may also be secured to the vertebra by bone anchors such as anchors designed to anchor flexible fixation elements (such as suture) to bone.
- Suture anchors such as threaded suture anchors, barbed suture anchors, toggle suture anchors or any other means of anchoring a flexible fixation element to bone may be used to anchor the flexible fixation element 900 or the secondary flexible fixation element 910 to the vertebra 100 .
- FIG. 46 is a dorsal view of a bilateral inferior facet prosthesis 1000 .
- the bilateral inferior facet prosthesis 1000 is a one-piece inferior facet prosthesis that has both a right inferior side 1040 and a left inferior side 1020 connected by a stabilizing bar 1010 . Both the right inferior side 1040 and the left inferior side 1020 are designed to fix to the vertebra at the respective inferior resection surface 121 ( FIG. 19 ) and the first resection surface 112 .
- the bilateral inferior prosthesis is a design that allows replacement of both the left and the right inferior facet. In this embodiment, the bilateral inferior prosthesis is placed over the left and right fixation elements 200 which extend into the top vertebra 101 . In this embodiment shown in FIG.
- the right inferior side is articulating with a right superior facet prosthesis 300 attached to the lower vertebra 102 .
- the left inferior side 1020 is articulating with the left natural superior facet 43 of the lower vertebra 102 .
- the stabilizing bar 1010 of the bilateral inferior prosthesis 1000 is designed to stabilize the left side 1020 and the right side 1040 so that they are secure.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physical Education & Sports Medicine (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/687,865 US20050080486A1 (en) | 2000-11-29 | 2003-10-17 | Facet joint replacement |
AU2004275830A AU2004275830A1 (en) | 2003-09-23 | 2004-09-22 | Facet joint replacement |
EP04789041A EP1677711B1 (en) | 2003-09-23 | 2004-09-22 | Facet joint replacement |
JP2006528255A JP4851329B2 (ja) | 2003-09-23 | 2004-09-22 | 椎間関節置換 |
DE602004019668T DE602004019668D1 (de) | 2003-09-23 | 2004-09-22 | Fazettengelenkersatz |
CA002539119A CA2539119A1 (en) | 2003-09-23 | 2004-09-22 | Facet joint replacement |
PCT/US2004/031488 WO2005030087A2 (en) | 2003-09-23 | 2004-09-22 | Facet joint replacement |
AT04789041T ATE423533T1 (de) | 2003-09-23 | 2004-09-22 | Fazettengelenkersatz |
US11/670,292 US8556936B2 (en) | 2000-11-29 | 2007-02-01 | Facet joint replacement |
US13/963,655 US9241741B2 (en) | 2000-11-29 | 2013-08-09 | Facet joint replacement |
US14/700,509 US9668874B2 (en) | 2000-11-29 | 2015-04-30 | Facet joint replacement |
US15/584,577 US20170231776A1 (en) | 2000-11-29 | 2017-05-02 | Facet joint replacement |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/726,169 US6579319B2 (en) | 2000-11-29 | 2000-11-29 | Facet joint replacement |
US10/421,078 US7041136B2 (en) | 2000-11-29 | 2003-04-23 | Facet joint replacement |
US50519903P | 2003-09-23 | 2003-09-23 | |
US10/687,865 US20050080486A1 (en) | 2000-11-29 | 2003-10-17 | Facet joint replacement |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/421,078 Continuation-In-Part US7041136B2 (en) | 2000-11-29 | 2003-04-23 | Facet joint replacement |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/670,292 Continuation US8556936B2 (en) | 2000-11-29 | 2007-02-01 | Facet joint replacement |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050080486A1 true US20050080486A1 (en) | 2005-04-14 |
Family
ID=34396240
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/687,865 Abandoned US20050080486A1 (en) | 2000-11-29 | 2003-10-17 | Facet joint replacement |
US11/670,292 Expired - Lifetime US8556936B2 (en) | 2000-11-29 | 2007-02-01 | Facet joint replacement |
US13/963,655 Expired - Fee Related US9241741B2 (en) | 2000-11-29 | 2013-08-09 | Facet joint replacement |
US14/700,509 Expired - Fee Related US9668874B2 (en) | 2000-11-29 | 2015-04-30 | Facet joint replacement |
US15/584,577 Abandoned US20170231776A1 (en) | 2000-11-29 | 2017-05-02 | Facet joint replacement |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/670,292 Expired - Lifetime US8556936B2 (en) | 2000-11-29 | 2007-02-01 | Facet joint replacement |
US13/963,655 Expired - Fee Related US9241741B2 (en) | 2000-11-29 | 2013-08-09 | Facet joint replacement |
US14/700,509 Expired - Fee Related US9668874B2 (en) | 2000-11-29 | 2015-04-30 | Facet joint replacement |
US15/584,577 Abandoned US20170231776A1 (en) | 2000-11-29 | 2017-05-02 | Facet joint replacement |
Country Status (6)
Country | Link |
---|---|
US (5) | US20050080486A1 (enrdf_load_stackoverflow) |
EP (1) | EP1677711B1 (enrdf_load_stackoverflow) |
JP (1) | JP4851329B2 (enrdf_load_stackoverflow) |
AU (1) | AU2004275830A1 (enrdf_load_stackoverflow) |
CA (1) | CA2539119A1 (enrdf_load_stackoverflow) |
WO (1) | WO2005030087A2 (enrdf_load_stackoverflow) |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050027361A1 (en) * | 1999-10-22 | 2005-02-03 | Reiley Mark A. | Facet arthroplasty devices and methods |
US20050043799A1 (en) * | 1999-10-22 | 2005-02-24 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US20050209696A1 (en) * | 2004-01-16 | 2005-09-22 | Jo-Wen Lin | Implant frames for use with settable materials and related methods of use |
US20050240265A1 (en) * | 2004-04-22 | 2005-10-27 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US20050240266A1 (en) * | 2004-04-22 | 2005-10-27 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US20050261770A1 (en) * | 2004-04-22 | 2005-11-24 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US20050267579A1 (en) * | 1999-10-22 | 2005-12-01 | Reiley Mark A | Implantable device for facet joint replacement |
US20050283238A1 (en) * | 1999-10-22 | 2005-12-22 | Reiley Mark A | Facet arthroplasty devices and methods |
US20060041311A1 (en) * | 2004-08-18 | 2006-02-23 | Mcleer Thomas J | Devices and methods for treating facet joints |
US20060084987A1 (en) * | 2004-10-20 | 2006-04-20 | Kim Daniel H | Systems and methods for posterior dynamic stabilization of the spine |
US20060200156A1 (en) * | 2005-01-05 | 2006-09-07 | Jamal Taha | Spinal docking system, spinal docking device, and methods of spinal stabilization |
US20060235391A1 (en) * | 2005-03-08 | 2006-10-19 | Sutterlin Chester Iii | Facet joint stabilization |
US20060271195A1 (en) * | 2005-05-24 | 2006-11-30 | Jeffery Thramann | Facet replacement |
US20070043359A1 (en) * | 2005-07-22 | 2007-02-22 | Moti Altarac | Systems and methods for stabilization of bone structures |
US20070055242A1 (en) * | 2005-07-27 | 2007-03-08 | Bailly Frank E | Device for securing spinal rods |
US20070083265A1 (en) * | 2000-12-14 | 2007-04-12 | Malone David G | Devices and methods for facilitating controlled bone growth or repair |
US20070167949A1 (en) * | 2004-10-20 | 2007-07-19 | Moti Altarac | Screw systems and methods for use in stabilization of bone structures |
US20070239159A1 (en) * | 2005-07-22 | 2007-10-11 | Vertiflex, Inc. | Systems and methods for stabilization of bone structures |
US20070270959A1 (en) * | 2006-04-18 | 2007-11-22 | Sdgi Holdings, Inc. | Arthroplasty device |
US20070299446A1 (en) * | 2003-09-24 | 2007-12-27 | Spinefrontier Lls | Apparatus and method for connecting spinal vertebras |
US20080015585A1 (en) * | 2005-03-22 | 2008-01-17 | Philip Berg | Minimally invasive spine restoration systems, devices, methods and kits |
US20080097441A1 (en) * | 2004-10-20 | 2008-04-24 | Stanley Kyle Hayes | Systems and methods for posterior dynamic stabilization of the spine |
US20080119845A1 (en) * | 2006-09-25 | 2008-05-22 | Archus Orthopedics, Inc. | Facet replacement device removal and revision systems and methods |
US20080132951A1 (en) * | 1999-10-22 | 2008-06-05 | Reiley Mark A | Prostheses systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US20080172090A1 (en) * | 2007-01-12 | 2008-07-17 | Warsaw Orthopedic, Inc. | Spinal Prosthesis Systems |
US20080177308A1 (en) * | 2004-10-04 | 2008-07-24 | Archus Orthopedics, Inc. | Polymeric joint complex and methods of use |
US20080249568A1 (en) * | 2004-10-25 | 2008-10-09 | Kuiper Mark K | Crossbar Spinal Prosthesis Having a Modular Design and Systems for Treating Spinal Pathologies |
US20090005818A1 (en) * | 2007-06-27 | 2009-01-01 | Spinefrontier Inc | Dynamic facet replacement system |
US20090125066A1 (en) * | 2005-02-09 | 2009-05-14 | Gary Kraus | Facet stabilization schemes |
US20090138053A1 (en) * | 2007-09-25 | 2009-05-28 | Zyga Technology, Inc. | Method and apparatus for facet joint stabilization |
US20090177237A1 (en) * | 2008-01-04 | 2009-07-09 | Spartek Medical, Inc. | Cervical spine implant system and method |
US7608104B2 (en) | 2003-05-14 | 2009-10-27 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US20100087880A1 (en) * | 2004-02-17 | 2010-04-08 | Facet Solutions, Inc. | Facet Joint Replacement Instruments and Methods |
US20100249842A1 (en) * | 2009-03-31 | 2010-09-30 | Dr. Hamid R. Mir | Spinous process cross-link |
US7815648B2 (en) | 2004-06-02 | 2010-10-19 | Facet Solutions, Inc | Surgical measurement systems and methods |
US20110004247A1 (en) * | 2008-03-06 | 2011-01-06 | Beat Lechmann | Facet interference screw |
US20110022089A1 (en) * | 2009-07-24 | 2011-01-27 | Zyga Technology, Inc | Systems and methods for facet joint treatment |
US7914556B2 (en) | 2005-03-02 | 2011-03-29 | Gmedelaware 2 Llc | Arthroplasty revision system and method |
US7914560B2 (en) | 2004-02-17 | 2011-03-29 | Gmedelaware 2 Llc | Spinal facet implant with spherical implant apposition surface and bone bed and methods of use |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
US8114158B2 (en) | 2004-08-03 | 2012-02-14 | Kspine, Inc. | Facet device and method |
US8206418B2 (en) | 2007-01-10 | 2012-06-26 | Gmedelaware 2 Llc | System and method for facet joint replacement with detachable coupler |
US8231655B2 (en) | 2003-07-08 | 2012-07-31 | Gmedelaware 2 Llc | Prostheses and methods for replacement of natural facet joints with artificial facet joint surfaces |
US8317836B2 (en) | 2007-06-05 | 2012-11-27 | Spartek Medical, Inc. | Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method |
US8357182B2 (en) | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Alignment system with longitudinal support features |
US8394127B2 (en) | 2009-12-02 | 2013-03-12 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US8398681B2 (en) | 2004-08-18 | 2013-03-19 | Gmedelaware 2 Llc | Adjacent level facet arthroplasty devices, spine stabilization systems, and methods |
US8409254B2 (en) | 2003-05-14 | 2013-04-02 | Gmedelaware 2 Llc | Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces |
US8430916B1 (en) | 2012-02-07 | 2013-04-30 | Spartek Medical, Inc. | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
US8663293B2 (en) | 2010-06-15 | 2014-03-04 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US8675930B2 (en) | 2004-04-22 | 2014-03-18 | Gmedelaware 2 Llc | Implantable orthopedic device component selection instrument and methods |
US8702755B2 (en) | 2006-08-11 | 2014-04-22 | Gmedelaware 2 Llc | Angled washer polyaxial connection for dynamic spine prosthesis |
US8777994B2 (en) | 2004-06-02 | 2014-07-15 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
US8828058B2 (en) | 2008-11-11 | 2014-09-09 | Kspine, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US8920472B2 (en) | 2011-11-16 | 2014-12-30 | Kspine, Inc. | Spinal correction and secondary stabilization |
US8986355B2 (en) | 2010-07-09 | 2015-03-24 | DePuy Synthes Products, LLC | Facet fusion implant |
US9056016B2 (en) | 2003-12-15 | 2015-06-16 | Gmedelaware 2 Llc | Polyaxial adjustment of facet joint prostheses |
US9095380B2 (en) | 2009-03-31 | 2015-08-04 | Hamid R. Mir | Spinous process cross-link |
US9168071B2 (en) | 2009-09-15 | 2015-10-27 | K2M, Inc. | Growth modulation system |
US20150374412A1 (en) * | 2013-08-30 | 2015-12-31 | Newsouth Innovations Pty Limited | Spine stabilization device |
US9233006B2 (en) | 2010-06-15 | 2016-01-12 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US9333009B2 (en) | 2011-06-03 | 2016-05-10 | K2M, Inc. | Spinal correction system actuators |
US9468468B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse connector for spinal stabilization system |
US9468471B2 (en) | 2013-09-17 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US9468469B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US20170056196A1 (en) * | 2004-04-22 | 2017-03-02 | Globus Medical Inc. | Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies |
US9585764B2 (en) * | 2012-07-26 | 2017-03-07 | Warsaw Orthopedic, Inc. | Bone implant device |
US9833328B2 (en) | 2010-06-15 | 2017-12-05 | Zyga Technology | System and methods for facet joint treatment |
US9931143B2 (en) | 2012-08-31 | 2018-04-03 | New South Innovations Pty Limited | Bone stabilization device and methods of use |
US10342581B2 (en) | 2011-11-16 | 2019-07-09 | K2M, Inc. | System and method for spinal correction |
US10702311B2 (en) | 2011-11-16 | 2020-07-07 | K2M, Inc. | Spinal correction and secondary stabilization |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2897259B1 (fr) | 2006-02-15 | 2008-05-09 | Ldr Medical Soc Par Actions Si | Cage intersomatique transforaminale a greffon de fusion intervetebrale et instrument d'implantation de la cage |
FR2824261B1 (fr) | 2001-05-04 | 2004-05-28 | Ldr Medical | Prothese de disque intervertebral et procede et outils de mise en place |
FR2827156B1 (fr) | 2001-07-13 | 2003-11-14 | Ldr Medical | Dispositif de cage vertebrale avec fixation modulaire |
FR2846550B1 (fr) | 2002-11-05 | 2006-01-13 | Ldr Medical | Prothese de disque intervertebral |
FR2865629B1 (fr) | 2004-02-04 | 2007-01-26 | Ldr Medical | Prothese de disque intervertebral |
DK2113227T3 (en) | 2004-02-04 | 2015-11-02 | Ldr Medical | Intervertebral disc prosthesis |
FR2869528B1 (fr) | 2004-04-28 | 2007-02-02 | Ldr Medical | Prothese de disque intervertebral |
US7648523B2 (en) * | 2004-12-08 | 2010-01-19 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
FR2879436B1 (fr) | 2004-12-22 | 2007-03-09 | Ldr Medical | Prothese de disque intervertebral |
US20070055373A1 (en) * | 2005-09-08 | 2007-03-08 | Zimmer Spine, Inc. | Facet replacement/spacing and flexible spinal stabilization |
FR2891135B1 (fr) | 2005-09-23 | 2008-09-12 | Ldr Medical Sarl | Prothese de disque intervertebral |
FR2893838B1 (fr) | 2005-11-30 | 2008-08-08 | Ldr Medical Soc Par Actions Si | Prothese de disque intervertebral et instrumentation d'insertion de la prothese entre les vertebres |
US8465546B2 (en) | 2007-02-16 | 2013-06-18 | Ldr Medical | Intervertebral disc prosthesis insertion assemblies |
US7751907B2 (en) | 2007-05-24 | 2010-07-06 | Smiths Medical Asd, Inc. | Expert system for insulin pump therapy |
FR2916956B1 (fr) | 2007-06-08 | 2012-12-14 | Ldr Medical | Cage intersomatique,prothese intervertebrale,dispositif d'ancrage et instrumentation d'implantation |
DE202007009619U1 (de) * | 2007-07-09 | 2007-11-22 | Zrinski Ag | Gelenkteilprothese mit spreizbarem Schaft |
DE202007009620U1 (de) | 2007-07-09 | 2007-11-22 | Zrinski Ag | Gelenkteilprothese mit einer Verdrehsicherung |
US7947063B2 (en) * | 2007-11-08 | 2011-05-24 | Spine21 Ltd. | Posterior-medial facet support assembly |
US20110106170A1 (en) * | 2008-08-14 | 2011-05-05 | Doerr Timothy E | Tack for spine fixation |
WO2010019928A2 (en) * | 2008-08-14 | 2010-02-18 | Doerr Timothy E | Tack for spine fixation |
US9089436B2 (en) | 2008-11-25 | 2015-07-28 | DePuy Synthes Products, Inc. | Visco-elastic facet joint implant |
CN102596109B (zh) | 2009-09-17 | 2015-10-21 | Ldr控股公司 | 具有可伸展骨固定部件的椎间植入件 |
EP2519194B1 (en) | 2009-12-31 | 2018-01-24 | LDR Medical | Intervertebral system comprising an anchoring device |
FR2987256B1 (fr) | 2012-02-24 | 2014-08-08 | Ldr Medical | Dispositif d'ancrage pour implant intervertebral, implant intervertebral et instrumentation d'implantation |
US9730737B2 (en) * | 2013-03-14 | 2017-08-15 | Atlas Spine, Inc. | Facet fixation with anchor wire |
FR3005569B1 (fr) | 2013-05-16 | 2021-09-03 | Ldr Medical | Implant vertebral, dispositif de fixation vertebrale d'implant et instrumentation d'implantation |
FR3016793B1 (fr) | 2014-01-30 | 2021-05-07 | Ldr Medical | Dispositif d'ancrage pour implant spinal, implant spinal et instrumentation d'implantation |
FR3020756B1 (fr) | 2014-05-06 | 2022-03-11 | Ldr Medical | Implant vertebral, dispositif de fixation vertebrale d'implant et instrumentation d'implantation |
US20180070986A1 (en) * | 2015-03-12 | 2018-03-15 | Spinal Balance, Inc. | Pedicle Reconstruction Device |
EP3435925B1 (en) | 2016-03-29 | 2024-05-01 | Facet Dynamics, Inc. | Facet joint replacement device |
KR102443253B1 (ko) * | 2022-01-12 | 2022-09-15 | 주식회사 셀루메드 | 최소침습식 인공무릎관절 전치환술 시술용 환자맞춤형 핀 가이드 |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2677369A (en) * | 1952-03-26 | 1954-05-04 | Fred L Knowles | Apparatus for treatment of the spinal column |
US3426364A (en) * | 1966-08-25 | 1969-02-11 | Colorado State Univ Research F | Prosthetic appliance for replacing one or more natural vertebrae |
US3648691A (en) * | 1970-02-24 | 1972-03-14 | Univ Colorado State Res Found | Method of applying vertebral appliance |
US3867728A (en) * | 1971-12-30 | 1975-02-25 | Cutter Lab | Prosthesis for spinal repair |
US3875595A (en) * | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
US4003376A (en) * | 1975-08-25 | 1977-01-18 | Bio-Dynamics, Inc. | Apparatus for straightening the spinal column |
US4349921A (en) * | 1980-06-13 | 1982-09-21 | Kuntz J David | Intervertebral disc prosthesis |
US4369769A (en) * | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
US4458642A (en) * | 1981-05-02 | 1984-07-10 | Honda Giken Kogyo Kabushiki Kaisha | Lubricant heating system for internal combustion engine |
US4479491A (en) * | 1982-07-26 | 1984-10-30 | Martin Felix M | Intervertebral stabilization implant |
US4599086A (en) * | 1985-06-07 | 1986-07-08 | Doty James R | Spine stabilization device and method |
US4653481A (en) * | 1985-07-24 | 1987-03-31 | Howland Robert S | Advanced spine fixation system and method |
US4743260A (en) * | 1985-06-10 | 1988-05-10 | Burton Charles V | Method for a flexible stabilization system for a vertebral column |
US4759769A (en) * | 1987-02-12 | 1988-07-26 | Health & Research Services Inc. | Artificial spinal disc |
US4772287A (en) * | 1987-08-20 | 1988-09-20 | Cedar Surgical, Inc. | Prosthetic disc and method of implanting |
US4863477A (en) * | 1987-05-12 | 1989-09-05 | Monson Gary L | Synthetic intervertebral disc prosthesis |
US4890545A (en) * | 1987-10-01 | 1990-01-02 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
US4911718A (en) * | 1988-06-10 | 1990-03-27 | University Of Medicine & Dentistry Of N.J. | Functional and biocompatible intervertebral disc spacer |
US4955908A (en) * | 1987-07-09 | 1990-09-11 | Sulzer Brothers Limited | Metallic intervertebral prosthesis |
US5015255A (en) * | 1989-05-10 | 1991-05-14 | Spine-Tech, Inc. | Spinal stabilization method |
US5047055A (en) * | 1990-12-21 | 1991-09-10 | Pfizer Hospital Products Group, Inc. | Hydrogel intervertebral disc nucleus |
US5092893A (en) * | 1990-09-04 | 1992-03-03 | Smith Thomas E | Human orthopedic vertebra implant |
US5129900A (en) * | 1990-07-24 | 1992-07-14 | Acromed Corporation | Spinal column retaining method and apparatus |
US5147404A (en) * | 1987-12-07 | 1992-09-15 | Downey Ernest L | Vertebra prosthesis |
US5180393A (en) * | 1990-09-21 | 1993-01-19 | Polyclinique De Bourgogne & Les Hortensiad | Artificial ligament for the spine |
US5192326A (en) * | 1990-12-21 | 1993-03-09 | Pfizer Hospital Products Group, Inc. | Hydrogel bead intervertebral disc nucleus |
US5236460A (en) * | 1990-02-12 | 1993-08-17 | Midas Rex Pneumatic Tools, Inc. | Vertebral body prosthesis |
US5304178A (en) * | 1992-05-29 | 1994-04-19 | Acromed Corporation | Sublaminar wire |
US5306308A (en) * | 1989-10-23 | 1994-04-26 | Ulrich Gross | Intervertebral implant |
US5306309A (en) * | 1992-05-04 | 1994-04-26 | Calcitek, Inc. | Spinal disk implant and implantation kit |
US5318567A (en) * | 1991-07-02 | 1994-06-07 | Olivier Vichard | Screw-on plate for treatment of fractures of the odontoid apophysis |
US5401269A (en) * | 1992-03-13 | 1995-03-28 | Waldemar Link Gmbh & Co. | Intervertebral disc endoprosthesis |
US5437672A (en) * | 1992-11-12 | 1995-08-01 | Alleyne; Neville | Spinal cord protection device |
US5456722A (en) * | 1993-01-06 | 1995-10-10 | Smith & Nephew Richards Inc. | Load bearing polymeric cable |
US5458641A (en) * | 1993-09-08 | 1995-10-17 | Ramirez Jimenez; Juan J. | Vertebral body prosthesis |
US5496318A (en) * | 1993-01-08 | 1996-03-05 | Advanced Spine Fixation Systems, Inc. | Interspinous segmental spine fixation device |
US5514180A (en) * | 1994-01-14 | 1996-05-07 | Heggeness; Michael H. | Prosthetic intervertebral devices |
US5527312A (en) * | 1994-08-19 | 1996-06-18 | Salut, Ltd. | Facet screw anchor |
US5534031A (en) * | 1992-01-28 | 1996-07-09 | Asahi Kogaku Kogyo Kabushiki Kaisha | Prosthesis for spanning a space formed upon removal of an intervertebral disk |
US5534030A (en) * | 1993-02-09 | 1996-07-09 | Acromed Corporation | Spine disc |
US5534028A (en) * | 1993-04-20 | 1996-07-09 | Howmedica, Inc. | Hydrogel intervertebral disc nucleus with diminished lateral bulging |
US5540688A (en) * | 1991-05-30 | 1996-07-30 | Societe "Psi" | Intervertebral stabilization device incorporating dampers |
US5545229A (en) * | 1988-08-18 | 1996-08-13 | University Of Medicine And Dentistry Of Nj | Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness |
US5545166A (en) * | 1994-07-14 | 1996-08-13 | Advanced Spine Fixation Systems, Incorporated | Spinal segmental reduction derotational fixation system |
US5556431A (en) * | 1992-03-13 | 1996-09-17 | B+E,Uml U+Ee Ttner-Janz; Karin | Intervertebral disc endoprosthesis |
US5609634A (en) * | 1992-07-07 | 1997-03-11 | Voydeville; Gilles | Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization |
US5645597A (en) * | 1995-12-29 | 1997-07-08 | Krapiva; Pavel I. | Disc replacement method and apparatus |
US5645599A (en) * | 1994-07-26 | 1997-07-08 | Fixano | Interspinal vertebral implant |
US5653762A (en) * | 1994-03-18 | 1997-08-05 | Pisharodi; Madhavan | Method of stabilizing adjacent vertebrae with rotating, lockable, middle-expanded intervertebral disk stabilizer |
US5713900A (en) * | 1996-05-31 | 1998-02-03 | Acromed Corporation | Apparatus for retaining bone portions in a desired spatial relationship |
US5716415A (en) * | 1993-10-01 | 1998-02-10 | Acromed Corporation | Spinal implant |
US5725582A (en) * | 1992-08-19 | 1998-03-10 | Surgicraft Limited | Surgical implants |
US5728097A (en) * | 1992-03-17 | 1998-03-17 | Sdgi Holding, Inc. | Method for subcutaneous suprafascial internal fixation |
US5755796A (en) * | 1996-06-06 | 1998-05-26 | Ibo; Ivo | Prosthesis of the cervical intervertebralis disk |
US5865846A (en) * | 1994-11-14 | 1999-02-02 | Bryan; Vincent | Human spinal disc prosthesis |
US5868745A (en) * | 1992-11-12 | 1999-02-09 | Alleyne; Neville | Spinal protection device |
US5888223A (en) * | 1995-12-08 | 1999-03-30 | Bray, Jr.; Robert S. | Anterior stabilization device |
US5893889A (en) * | 1997-06-20 | 1999-04-13 | Harrington; Michael | Artificial disc |
US5916267A (en) * | 1997-04-07 | 1999-06-29 | Arthit Sitiso | Anterior spinal implant system for vertebral body prosthesis |
US5951555A (en) * | 1996-03-27 | 1999-09-14 | Rehak; Lubos | Device for the correction of spinal deformities |
US6014588A (en) * | 1998-04-07 | 2000-01-11 | Fitz; William R. | Facet joint pain relief method and apparatus |
US6019792A (en) * | 1998-04-23 | 2000-02-01 | Cauthen Research Group, Inc. | Articulating spinal implant |
US6039763A (en) * | 1998-10-27 | 2000-03-21 | Disc Replacement Technologies, Inc. | Articulating spinal disc prosthesis |
US6063121A (en) * | 1998-07-29 | 2000-05-16 | Xavier; Ravi | Vertebral body prosthesis |
US6066325A (en) * | 1996-08-27 | 2000-05-23 | Fusion Medical Technologies, Inc. | Fragmented polymeric compositions and methods for their use |
US6068630A (en) * | 1997-01-02 | 2000-05-30 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
USRE36758E (en) * | 1995-03-16 | 2000-06-27 | Fitz; William R. | Artificial facet joint |
US6080157A (en) * | 1995-09-12 | 2000-06-27 | Cg Surgical Limited | Device to stabilize the lamina |
US6093205A (en) * | 1997-06-25 | 2000-07-25 | Bridport-Gundry Plc C/O Pearsalls Implants | Surgical implant |
US6113637A (en) * | 1998-10-22 | 2000-09-05 | Sofamor Danek Holdings, Inc. | Artificial intervertebral joint permitting translational and rotational motion |
US6113639A (en) * | 1999-03-23 | 2000-09-05 | Raymedica, Inc. | Trial implant and trial implant kit for evaluating an intradiscal space |
US6183471B1 (en) * | 1997-01-02 | 2001-02-06 | St. Francis Medical Technologies, Inc. | Spine distraction implant and method |
US6228118B1 (en) * | 1997-08-04 | 2001-05-08 | Gordon, Maya, Roberts And Thomas, Number 1, Llc | Multiple axis intervertebral prosthesis |
US6235030B1 (en) * | 1997-01-02 | 2001-05-22 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US20020065557A1 (en) * | 2000-11-29 | 2002-05-30 | Goble E. Marlowe | Facet joint replacement |
US6402750B1 (en) * | 2000-04-04 | 2002-06-11 | Spinlabs, Llc | Devices and methods for the treatment of spinal disorders |
US20020072800A1 (en) * | 2000-12-13 | 2002-06-13 | Goble E. Marlowe | Multiple facet joint replacement |
US6419703B1 (en) * | 2001-03-01 | 2002-07-16 | T. Wade Fallin | Prosthesis for the replacement of a posterior element of a vertebra |
US6419704B1 (en) * | 1999-10-08 | 2002-07-16 | Bret Ferree | Artificial intervertebral disc replacement methods and apparatus |
US20020099384A1 (en) * | 1998-08-14 | 2002-07-25 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
US20020123806A1 (en) * | 1999-10-22 | 2002-09-05 | Total Facet Technologies, Inc. | Facet arthroplasty devices and methods |
US6451019B1 (en) * | 1998-10-20 | 2002-09-17 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device and method |
US20030004572A1 (en) * | 2001-03-02 | 2003-01-02 | Goble E. Marlowe | Method and apparatus for spine joint replacement |
US20030028250A1 (en) * | 1999-10-22 | 2003-02-06 | Archus Orthopedics, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artifical facet joint surfaces |
US6540747B1 (en) * | 1999-04-16 | 2003-04-01 | Nuvasive, Inc. | System for securing joints together |
US20030073998A1 (en) * | 2000-08-01 | 2003-04-17 | Endius Incorporated | Method of securing vertebrae |
US20030151895A1 (en) * | 2002-02-11 | 2003-08-14 | Jon Zuo | Heat spreader with oscillating flow |
US6610091B1 (en) * | 1999-10-22 | 2003-08-26 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US20040092932A1 (en) * | 2000-11-03 | 2004-05-13 | Carl-Eric Aubin | Adjustable surgical templates |
US20050033434A1 (en) * | 2003-08-06 | 2005-02-10 | Sdgi Holdings, Inc. | Posterior elements motion restoring device |
US20050033439A1 (en) * | 2003-08-05 | 2005-02-10 | Charles Gordon | Artificial functional spinal unit assemblies |
US20050113927A1 (en) * | 2003-11-25 | 2005-05-26 | Malek Michel H. | Spinal stabilization systems |
US20050171609A1 (en) * | 2004-01-09 | 2005-08-04 | Sdgi Holdings, Inc. | Spinal arthroplasty device and method |
Family Cites Families (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3486505A (en) | 1967-05-22 | 1969-12-30 | Gordon M Morrison | Orthopedic surgical instrument |
US3508954A (en) | 1967-10-05 | 1970-04-28 | Texaco Inc | Silicon carbide structures |
US3857642A (en) | 1973-02-26 | 1974-12-31 | Ingersoll Rand Co | Flexible or universal coupling means |
DE2655353A1 (de) | 1976-12-07 | 1978-06-08 | Lemfoerder Metallwaren Ag | Elastische verbindung eines axialgelenks mit dem anschlussgestaenge einer kraftfahrzeuglenkung |
US4289123A (en) | 1980-03-31 | 1981-09-15 | Dunn Harold K | Orthopedic appliance |
US4501269A (en) | 1981-12-11 | 1985-02-26 | Washington State University Research Foundation, Inc. | Process for fusing bone joints |
US4483334A (en) | 1983-04-11 | 1984-11-20 | Murray William M | External fixation device |
FR2545350B1 (fr) | 1983-05-04 | 1985-08-23 | Cotrel Yves | Dispositif pour l'etaiement du rachis |
US4611581A (en) | 1983-12-16 | 1986-09-16 | Acromed Corporation | Apparatus for straightening spinal columns |
US4696290A (en) | 1983-12-16 | 1987-09-29 | Acromed Corporation | Apparatus for straightening spinal columns |
US4604995A (en) | 1984-03-30 | 1986-08-12 | Stephens David C | Spinal stabilizer |
FR2575059B1 (fr) | 1984-12-21 | 1988-11-10 | Daher Youssef | Dispositif d'etaiement utilisable dans une prothese vertebrale |
SE458417B (sv) | 1985-08-15 | 1989-04-03 | Sven Olerud | Fixationsinstrument avsett foer anvaendning vid ryggoperationer |
DE3614101C1 (de) | 1986-04-25 | 1987-10-22 | Juergen Prof Dr Med Harms | Pedikelschraube |
DE3620549A1 (de) | 1986-06-19 | 1987-12-23 | S & G Implants Gmbh | Implantat zum fixieren benachbarter wirbelknochen der wirbelsaeule |
AT387711B (de) | 1986-07-15 | 1989-03-10 | David Thomas | Knochenfixationsplatte |
GB8620937D0 (en) | 1986-08-29 | 1986-10-08 | Shepperd J A N | Spinal implant |
US4805602A (en) | 1986-11-03 | 1989-02-21 | Danninger Medical Technology | Transpedicular screw and rod system |
US4790303A (en) | 1987-03-11 | 1988-12-13 | Acromed Corporation | Apparatus and method for securing bone graft |
SU1468543A1 (ru) | 1987-04-09 | 1989-03-30 | Харьковский Научно-Исследовательский Институт Ортопедии И Травматологии Им.Проф.М.И.Ситенко | Способ лечени больных с артрозом дугоотростчатых суставов позвоночника |
SU1517953A1 (ru) | 1987-11-16 | 1989-10-30 | Запорожский Областной Отдел Здравоохранения | Устройство дл чрескостного остеосинтеза |
FR2623085B1 (fr) | 1987-11-16 | 1992-08-14 | Breard Francis | Implant chirurgical pour limiter le mouvement relatif des vertebres |
US5772661A (en) | 1988-06-13 | 1998-06-30 | Michelson; Gary Karlin | Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine |
AU7139994A (en) | 1988-06-13 | 1995-01-03 | Karlin Technology, Inc. | Apparatus and method of inserting spinal implants |
CA1333209C (en) | 1988-06-28 | 1994-11-29 | Gary Karlin Michelson | Artificial spinal fusion implants |
DE3823737A1 (de) | 1988-07-13 | 1990-01-18 | Lutz Biedermann | Korrektur- und haltevorrichtung, insbesondere fuer die wirbelsaeule |
GB8825909D0 (en) * | 1988-11-04 | 1988-12-07 | Showell A W Sugicraft Ltd | Pedicle engaging means |
USRE36221E (en) | 1989-02-03 | 1999-06-01 | Breard; Francis Henri | Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column |
FR2642645B1 (fr) | 1989-02-03 | 1992-08-14 | Breard Francis | Stabilisateur intervertebral souple ainsi que procede et appareillage pour le controle de sa tension avant mise en place sur le rachis |
SE8901315L (sv) | 1989-04-11 | 1990-10-12 | Bjoern Albrektsson | Ledprotes |
US5458638A (en) | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
JPH066810Y2 (ja) | 1989-11-29 | 1994-02-23 | 旭光学工業株式会社 | 椎体固定用プレート |
US5127912A (en) | 1990-10-05 | 1992-07-07 | R. Charles Ray | Sacral implant system |
ES2076467T3 (es) | 1990-10-31 | 1995-11-01 | El Gendler | Membranas flexibles producidas con materia de hueso organica para la reparacion y reconstruccion de partes del esqueleto. |
FR2672202B1 (fr) | 1991-02-05 | 1993-07-30 | Safir | Implant chirurgical osseux, notamment pour stabilisateur inter-vertebral. |
US5167664A (en) * | 1991-08-26 | 1992-12-01 | Zimmer, Inc. | Ratcheting bone screw |
US5603713A (en) | 1991-09-24 | 1997-02-18 | Aust; Gilbert M. | Anterior lumbar/cervical bicortical compression plate |
US5313962A (en) | 1991-10-18 | 1994-05-24 | Obenchain Theodore G | Method of performing laparoscopic lumbar discectomy |
US5263953A (en) | 1991-12-31 | 1993-11-23 | Spine-Tech, Inc. | Apparatus and system for fusing bone joints |
US5261910A (en) | 1992-02-19 | 1993-11-16 | Acromed Corporation | Apparatus for maintaining spinal elements in a desired spatial relationship |
NL9200612A (nl) * | 1992-04-01 | 1993-11-01 | Acromed Bv | Inrichting ter correctie van de vorm en/of ter fixatie van de wervelkolom van de mens. |
FR2689750B1 (fr) | 1992-04-10 | 1997-01-31 | Eurosurgical | Element d'ancrage osseux et dispositif d'osteosynthese rachidienne incorporant de tels elements. |
US5246458A (en) | 1992-10-07 | 1993-09-21 | Graham Donald V | Artificial disk |
US5562735A (en) | 1992-11-09 | 1996-10-08 | Hospital For Joint Diseases | Spinal stabilization system and improved method |
US5814046A (en) | 1992-11-13 | 1998-09-29 | Sofamor S.N.C. | Pedicular screw and posterior spinal instrumentation |
US5306275A (en) * | 1992-12-31 | 1994-04-26 | Bryan Donald W | Lumbar spine fixation apparatus and method |
FR2701650B1 (fr) | 1993-02-17 | 1995-05-24 | Psi | Amortisseur double pour la stabilisation intervertébrale. |
US5549607A (en) | 1993-02-19 | 1996-08-27 | Alphatec Manufacturing, Inc, | Apparatus for spinal fixation system |
US5439464A (en) | 1993-03-09 | 1995-08-08 | Shapiro Partners Limited | Method and instruments for performing arthroscopic spinal surgery |
US5470333A (en) | 1993-03-11 | 1995-11-28 | Danek Medical, Inc. | System for stabilizing the cervical and the lumbar region of the spine |
US5531745A (en) | 1993-03-11 | 1996-07-02 | Danek Medical, Inc. | System for stabilizing the spine and reducing spondylolisthesis |
ES2124302T3 (es) | 1993-03-15 | 1999-02-01 | Synthes Ag | Gancho con tornillo para el tratamiento de deformidades de la columna vertebral. |
US5415661A (en) | 1993-03-24 | 1995-05-16 | University Of Miami | Implantable spinal assist device |
US5437669A (en) | 1993-08-12 | 1995-08-01 | Amei Technologies Inc. | Spinal fixation systems with bifurcated connectors |
FR2709247B1 (fr) | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Dispositif d'ancrage d'une instrumentation rachidienne sur une vertèbre. |
FR2709246B1 (fr) | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Orthèse vertébrale implantée dynamique. |
FR2709248B1 (fr) | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Matériel ancillaire de pose d'une instrumentation rachidienne. |
FR2722393B1 (fr) | 1993-08-27 | 1996-08-23 | Martin Jean Raymond | Materiel ancillaire de correction d'une deformation vertebrale |
FR2712481B1 (fr) | 1993-11-18 | 1996-01-12 | Graf Henry | Perfectionnements aux stabilisateurs inter-vertébraux souples. |
DE4340398C2 (de) | 1993-11-26 | 1997-06-19 | Jeffrey D Dr Fairley | Vorrichtung zur in einer Ebene beweglichen passiven Verbindung von zwei Knochen in einer Ebene |
US5507813A (en) | 1993-12-09 | 1996-04-16 | Osteotech, Inc. | Shaped materials derived from elongate bone particles |
US5476463A (en) | 1994-01-12 | 1995-12-19 | Acromed Corporation | Spinal column retaining apparatus |
US6716216B1 (en) | 1998-08-14 | 2004-04-06 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
US5507745A (en) | 1994-02-18 | 1996-04-16 | Sofamor, S.N.C. | Occipito-cervical osteosynthesis instrumentation |
FR2721501B1 (fr) | 1994-06-24 | 1996-08-23 | Fairant Paulette | Prothèses des facettes articulaires vertébrales. |
US5681310A (en) | 1994-07-20 | 1997-10-28 | Yuan; Hansen A. | Vertebral auxiliary fixation device having holding capability |
US5556687A (en) | 1994-10-14 | 1996-09-17 | Acromed Corporation | Composite structure suitable for use as a bone plate and method for making said structure |
US5562736A (en) | 1994-10-17 | 1996-10-08 | Raymedica, Inc. | Method for surgical implantation of a prosthetic spinal disc nucleus |
US6004322A (en) | 1994-10-25 | 1999-12-21 | Sdgi Holdings, Inc. | Modular pedicle screw system |
US6176861B1 (en) | 1994-10-25 | 2001-01-23 | Sdgi Holdings, Inc. | Modular spinal system |
WO1996018363A1 (en) | 1994-12-08 | 1996-06-20 | Vanderbilt University | Low profile intraosseous anterior spinal fusion system and method |
US5620443A (en) | 1995-01-25 | 1997-04-15 | Danek Medical, Inc. | Anterior screw-rod connector |
US6206922B1 (en) | 1995-03-27 | 2001-03-27 | Sdgi Holdings, Inc. | Methods and instruments for interbody fusion |
US5688272A (en) | 1995-03-30 | 1997-11-18 | Danek Medical, Inc. | Top-tightening transverse connector for a spinal fixation system |
US5582612A (en) | 1995-05-01 | 1996-12-10 | Lin; Chih-I | Vertebral fixing and retrieving device having centrally two fixation |
US6264655B1 (en) | 1995-06-07 | 2001-07-24 | Madhavan Pisharodi | Cervical disk and spinal stabilizer |
US5683465A (en) | 1996-03-18 | 1997-11-04 | Shinn; Gary Lee | Artificial intervertebral disk prosthesis |
US5690629A (en) | 1996-04-24 | 1997-11-25 | Acromed Corporation | Apparatus for maintaining vertebrae of a spinal column in a desired spatial relationship |
US6835207B2 (en) | 1996-07-22 | 2004-12-28 | Fred Zacouto | Skeletal implant |
US6019759A (en) | 1996-07-29 | 2000-02-01 | Rogozinski; Chaim | Multi-Directional fasteners or attachment devices for spinal implant elements |
FR2751864B1 (fr) | 1996-08-01 | 1999-04-30 | Graf Henry | Dispositif pour relier et assister mecaniquement des vertebres entre elles |
US5666243A (en) | 1996-09-03 | 1997-09-09 | Seagate Technology, Inc. | Spring loaded stacked actuator assembly |
US6063088A (en) | 1997-03-24 | 2000-05-16 | United States Surgical Corporation | Method and instrumentation for implant insertion |
US6190414B1 (en) | 1996-10-31 | 2001-02-20 | Surgical Dynamics Inc. | Apparatus for fusion of adjacent bone structures |
FR2755844B1 (fr) | 1996-11-15 | 1999-01-29 | Stryker France Sa | Systeme d'osteosynthese a deformation elastique pour colonne vertebrale |
US7101375B2 (en) | 1997-01-02 | 2006-09-05 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US5836948A (en) | 1997-01-02 | 1998-11-17 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
US6156038A (en) | 1997-01-02 | 2000-12-05 | St. Francis Medical Technologies, Inc. | Spine distraction implant and method |
US7306628B2 (en) | 2002-10-29 | 2007-12-11 | St. Francis Medical Technologies | Interspinous process apparatus and method with a selectably expandable spacer |
US20020143331A1 (en) | 1998-10-20 | 2002-10-03 | Zucherman James F. | Inter-spinous process implant and method with deformable spacer |
US6796983B1 (en) | 1997-01-02 | 2004-09-28 | St. Francis Medical Technologies, Inc. | Spine distraction implant and method |
US7201751B2 (en) | 1997-01-02 | 2007-04-10 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device |
US6695842B2 (en) | 1997-10-27 | 2004-02-24 | St. Francis Medical Technologies, Inc. | Interspinous process distraction system and method with positionable wing and method |
US6514256B2 (en) | 1997-01-02 | 2003-02-04 | St. Francis Medical Technologies, Inc. | Spine distraction implant and method |
US6039761A (en) | 1997-02-12 | 2000-03-21 | Li Medical Technologies, Inc. | Intervertebral spacer and tool and method for emplacement thereof |
JP4047392B2 (ja) | 1997-04-25 | 2008-02-13 | ツィマー ゲーエムベーハー | 軟骨内または骨軟骨孔の生成装置 |
IES970323A2 (en) * | 1997-04-30 | 1998-06-03 | Eskina Developments Limited | Spinal osteosynthesis device for mechanically interconnecting two adjacent vertebrae, in particular lumbar vertebrae |
JP2001511388A (ja) | 1997-07-31 | 2001-08-14 | プルス エンドプロシェティク アーゲー | 脊柱などを補強及び/又は補正するための装置 |
FR2771280B1 (fr) | 1997-11-26 | 2001-01-26 | Albert P Alby | Dispositif de liaison vertebrale resilient |
US5986169A (en) | 1997-12-31 | 1999-11-16 | Biorthex Inc. | Porous nickel-titanium alloy article |
FR2774581B1 (fr) | 1998-02-10 | 2000-08-11 | Dimso Sa | Stabilisateur interepineux a fixer a des apophyses epineuses de deux vertebres |
FR2775183B1 (fr) | 1998-02-20 | 2000-08-04 | Jean Taylor | Prothese inter-epineuse |
US6179838B1 (en) | 1998-02-24 | 2001-01-30 | Daniel Fiz | Bone fixation arrangements and method |
US6314325B1 (en) | 1998-04-07 | 2001-11-06 | William R. Fitz | Nerve hyperpolarization method and apparatus for pain relief |
US7029473B2 (en) | 1998-10-20 | 2006-04-18 | St. Francis Medical Technologies, Inc. | Deflectable spacer for use as an interspinous process implant and method |
US6652527B2 (en) | 1998-10-20 | 2003-11-25 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device and method |
US6652534B2 (en) | 1998-10-20 | 2003-11-25 | St. Francis Medical Technologies, Inc. | Apparatus and method for determining implant size |
US6151934A (en) | 1998-10-23 | 2000-11-28 | Emhart Inc. | Lock assembly with over-torque defense system |
US6206882B1 (en) | 1999-03-30 | 2001-03-27 | Surgical Dynamics Inc. | Plating system for the spine |
WO2000059388A1 (en) | 1999-04-05 | 2000-10-12 | Surgical Dynamics, Inc. | Artificial spinal ligament |
US6299613B1 (en) | 1999-04-23 | 2001-10-09 | Sdgi Holdings, Inc. | Method for the correction of spinal deformities through vertebral body tethering without fusion |
CN2386790Y (zh) | 1999-08-31 | 2000-07-12 | 四川华神川大生物材料有限责任公司 | 人工椎板 |
US6312469B1 (en) | 1999-09-13 | 2001-11-06 | Medtronic Inc. | Lamina prosthesis for delivery of medical treatment |
FR2799640B1 (fr) | 1999-10-15 | 2002-01-25 | Spine Next Sa | Implant intervetebral |
US7691145B2 (en) | 1999-10-22 | 2010-04-06 | Facet Solutions, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US20050027361A1 (en) | 1999-10-22 | 2005-02-03 | Reiley Mark A. | Facet arthroplasty devices and methods |
US6461359B1 (en) | 1999-11-10 | 2002-10-08 | Clifford Tribus | Spine stabilization device |
WO2001039678A1 (fr) | 1999-12-01 | 2001-06-07 | Henry Graf | Dispositif de stabilisation intervertebral |
FR2803188A1 (fr) | 1999-12-29 | 2001-07-06 | Henry Graf | Dispositif et ensemble intervertebraux de stabilisation |
DK1239785T3 (da) | 1999-12-20 | 2004-11-29 | Synthes Ag | Indretning til stabilisering af to nabohvirvellegemer af hvirvelsöjlen |
US7066957B2 (en) | 1999-12-29 | 2006-06-27 | Sdgi Holdings, Inc. | Device and assembly for intervertebral stabilization |
DE10004712C1 (de) | 2000-02-03 | 2001-08-09 | Aesculap Ag & Co Kg | Knochenplatte |
CA2394663A1 (en) | 2000-02-28 | 2001-09-07 | Sdgi Holdings, Inc. | Articulating spinal implant |
US6293949B1 (en) | 2000-03-01 | 2001-09-25 | Sdgi Holdings, Inc. | Superelastic spinal stabilization system and method |
US6875212B2 (en) | 2000-06-23 | 2005-04-05 | Vertelink Corporation | Curable media for implantable medical device |
US6964667B2 (en) | 2000-06-23 | 2005-11-15 | Sdgi Holdings, Inc. | Formed in place fixation system with thermal acceleration |
EP1292239B1 (en) | 2000-06-23 | 2013-02-13 | University Of Southern California | Percutaneous vertebral fusion system |
AU7072001A (en) | 2000-06-30 | 2002-01-08 | Henry Graf | Intervertebral linking device |
FR2811540B1 (fr) | 2000-07-12 | 2003-04-25 | Spine Next Sa | Implant intervertebral amortissant |
FR2812185B1 (fr) | 2000-07-25 | 2003-02-28 | Spine Next Sa | Piece de liaison semi-rigide pour la stabilisation du rachis |
FR2812186B1 (fr) | 2000-07-25 | 2003-02-28 | Spine Next Sa | Piece de liaison souple pour la stabilisation du rachis |
US6447546B1 (en) | 2000-08-11 | 2002-09-10 | Dale G. Bramlet | Apparatus and method for fusing opposing spinal vertebrae |
CA2323252C (en) | 2000-10-12 | 2007-12-11 | Biorthex Inc. | Artificial disc |
WO2002034120A2 (en) | 2000-10-27 | 2002-05-02 | Blackstone Medical, Inc. | Facet fixation devices |
FR2817461B1 (fr) | 2000-12-01 | 2003-08-15 | Henry Graf | Dispositif de stabilisation intervertebral |
US6413259B1 (en) | 2000-12-14 | 2002-07-02 | Blackstone Medical, Inc | Bone plate assembly including a screw retaining member |
FR2818530B1 (fr) | 2000-12-22 | 2003-10-31 | Spine Next Sa | Implant intervertebral a cale deformable |
CA2437575C (en) * | 2001-02-16 | 2009-04-07 | Queen's University At Kingston | Method and device for treating abnormal curvature of the spine |
US7229441B2 (en) | 2001-02-28 | 2007-06-12 | Warsaw Orthopedic, Inc. | Flexible systems for spinal stabilization and fixation |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
FR2822051B1 (fr) | 2001-03-13 | 2004-02-27 | Spine Next Sa | Implant intervertebral a fixation auto-bloquante |
US6582433B2 (en) | 2001-04-09 | 2003-06-24 | St. Francis Medical Technologies, Inc. | Spine fixation device and method |
US6475219B1 (en) | 2001-06-07 | 2002-11-05 | Alexis P. Shelokov | Anterior vertebral protection method and device |
GB0114783D0 (en) | 2001-06-16 | 2001-08-08 | Sengupta Dilip K | A assembly for the stabilisation of vertebral bodies of the spine |
PT1275377E (pt) | 2001-07-11 | 2003-11-28 | Fidia Farmaceutici | Granulados contendo substancias lipossoluveis e sua preparacao |
US6527806B2 (en) | 2001-07-16 | 2003-03-04 | Third Millennium Engineering, Llc | Intervertebral spacer device having a spiral wave washer force restoring element |
FR2827499B1 (fr) | 2001-07-20 | 2004-05-07 | Henry Graf | Dispositif de liaison intervertebral |
US20030028251A1 (en) | 2001-07-30 | 2003-02-06 | Mathews Hallett H. | Methods and devices for interbody spinal stabilization |
JP4755781B2 (ja) | 2001-08-01 | 2011-08-24 | 昭和医科工業株式会社 | 骨接合用連結部材 |
FR2828398B1 (fr) | 2001-08-08 | 2003-09-19 | Jean Taylor | Ensemble de stabilisation de vertebres |
US6783527B2 (en) | 2001-10-30 | 2004-08-31 | Sdgi Holdings, Inc. | Flexible spinal stabilization system and method |
FR2832054B1 (fr) * | 2001-11-15 | 2004-09-10 | Rene Louis | Prothese d'articulation vertebrale posterieure |
FR2832917B1 (fr) | 2001-11-30 | 2004-09-24 | Spine Next Sa | Implant intervertebral a cale elastiquement deformable |
US7485134B2 (en) | 2001-12-07 | 2009-02-03 | Simonson Rush E | Vertebral implants adapted for posterior insertion |
US6733534B2 (en) | 2002-01-29 | 2004-05-11 | Sdgi Holdings, Inc. | System and method for spine spacing |
US6626909B2 (en) | 2002-02-27 | 2003-09-30 | Kingsley Richard Chin | Apparatus and method for spine fixation |
US6669729B2 (en) * | 2002-03-08 | 2003-12-30 | Kingsley Richard Chin | Apparatus and method for the replacement of posterior vertebral elements |
FR2837094B1 (fr) | 2002-03-15 | 2004-11-26 | Fixano | Implant intervertebral |
US6966910B2 (en) | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
CA2486536A1 (en) * | 2002-05-21 | 2003-12-04 | Sdgi Holdings, Inc. | Vertebrae bone anchor and cable for coupling it to a rod |
ES2246036T3 (es) | 2002-05-21 | 2006-02-01 | Spinelab Ag | Sistema elastico para la estabilizacion de la columna vertebral. |
US20030220643A1 (en) | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
DE10236691B4 (de) | 2002-08-09 | 2005-12-01 | Biedermann Motech Gmbh | Dynamische Stabilisierungseinrichtung für Knochen, insbesondere für Wirbel |
US20040143264A1 (en) | 2002-08-23 | 2004-07-22 | Mcafee Paul C. | Metal-backed UHMWPE rod sleeve system preserving spinal motion |
FR2844179B1 (fr) | 2002-09-10 | 2004-12-03 | Jean Taylor | Ensemble de soutien vertebral posterieur |
AU2003279922A1 (en) | 2002-10-10 | 2004-05-04 | Mekanika, Inc. | Apparatus and method for restoring biomechanical function to a motion segment unit of the spine |
FR2845587B1 (fr) | 2002-10-14 | 2005-01-21 | Scient X | Dispositif dynamique de liaison intervertebrale a debattement controle multidirectionnel |
US7549999B2 (en) | 2003-05-22 | 2009-06-23 | Kyphon Sarl | Interspinous process distraction implant and method of implantation |
US20050075634A1 (en) | 2002-10-29 | 2005-04-07 | Zucherman James F. | Interspinous process implant with radiolucent spacer and lead-in tissue expander |
US20040147928A1 (en) | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
EP1578287A4 (en) | 2002-10-30 | 2008-05-28 | Mekanika Inc | DEVICE AND METHOD FOR MEASURING THE INSTABILITY OF A MOVEMENT SEQUENCE OF A SPINE |
US7101398B2 (en) | 2002-12-31 | 2006-09-05 | Depuy Acromed, Inc. | Prosthetic facet joint ligament |
US7282064B2 (en) | 2003-02-11 | 2007-10-16 | Spinefrontier Lls | Apparatus and method for connecting spinal vertebrae |
FR2851154B1 (fr) | 2003-02-19 | 2006-07-07 | Sdgi Holding Inc | Dispositif inter-epineux pour freiner les mouvements de deux vertebres successives, et procede de fabrication d'un coussin lui etant destine |
US7588589B2 (en) | 2003-03-20 | 2009-09-15 | Medical Designs Llc | Posterior spinal reconstruction system |
DE10319781B3 (de) * | 2003-04-30 | 2004-08-26 | Biedermann Motech Gmbh | Knochenverankerungselement zum Verankern einer externen Vorrichtung in einem Knochen |
DE602004031604D1 (de) | 2003-05-02 | 2011-04-14 | Univ Yale | Dynamischer wirbelsäulenstabilisator |
DE10320417A1 (de) | 2003-05-07 | 2004-12-02 | Biedermann Motech Gmbh | Dynamische Verankerungsvorrichtung und dynamische Stabilisierungseinrichtung für Knochen, insbesondere für Wirbel, mit einer derartigen Verankerungsvorrichtung |
US20040230304A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US20040230201A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US7608104B2 (en) | 2003-05-14 | 2009-10-27 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
JP5078355B2 (ja) | 2003-05-23 | 2012-11-21 | グローバス メディカル インコーポレイティッド | 脊椎安定化システム |
US6986771B2 (en) | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
US7074238B2 (en) | 2003-07-08 | 2006-07-11 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces |
JP2007537768A (ja) | 2003-07-17 | 2007-12-27 | リー、ケーシー、ケー. | 椎間関節用プロテーゼ |
AU2003285751A1 (en) | 2003-10-20 | 2005-05-05 | Impliant Ltd. | Facet prosthesis |
DE602004006709T2 (de) | 2003-11-07 | 2008-02-07 | Impliant Ltd. | Wirbelsäulenprothesen |
US20050131406A1 (en) | 2003-12-15 | 2005-06-16 | Archus Orthopedics, Inc. | Polyaxial adjustment of facet joint prostheses |
US20050154467A1 (en) | 2004-01-09 | 2005-07-14 | Sdgi Holdings, Inc. | Interconnected spinal device and method |
-
2003
- 2003-10-17 US US10/687,865 patent/US20050080486A1/en not_active Abandoned
-
2004
- 2004-09-22 WO PCT/US2004/031488 patent/WO2005030087A2/en active Application Filing
- 2004-09-22 JP JP2006528255A patent/JP4851329B2/ja not_active Expired - Lifetime
- 2004-09-22 CA CA002539119A patent/CA2539119A1/en not_active Abandoned
- 2004-09-22 EP EP04789041A patent/EP1677711B1/en not_active Expired - Lifetime
- 2004-09-22 AU AU2004275830A patent/AU2004275830A1/en not_active Abandoned
-
2007
- 2007-02-01 US US11/670,292 patent/US8556936B2/en not_active Expired - Lifetime
-
2013
- 2013-08-09 US US13/963,655 patent/US9241741B2/en not_active Expired - Fee Related
-
2015
- 2015-04-30 US US14/700,509 patent/US9668874B2/en not_active Expired - Fee Related
-
2017
- 2017-05-02 US US15/584,577 patent/US20170231776A1/en not_active Abandoned
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2677369A (en) * | 1952-03-26 | 1954-05-04 | Fred L Knowles | Apparatus for treatment of the spinal column |
US3426364A (en) * | 1966-08-25 | 1969-02-11 | Colorado State Univ Research F | Prosthetic appliance for replacing one or more natural vertebrae |
US3648691A (en) * | 1970-02-24 | 1972-03-14 | Univ Colorado State Res Found | Method of applying vertebral appliance |
US3867728A (en) * | 1971-12-30 | 1975-02-25 | Cutter Lab | Prosthesis for spinal repair |
US3875595A (en) * | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
US4003376A (en) * | 1975-08-25 | 1977-01-18 | Bio-Dynamics, Inc. | Apparatus for straightening the spinal column |
US4349921A (en) * | 1980-06-13 | 1982-09-21 | Kuntz J David | Intervertebral disc prosthesis |
US4369769A (en) * | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
US4458642A (en) * | 1981-05-02 | 1984-07-10 | Honda Giken Kogyo Kabushiki Kaisha | Lubricant heating system for internal combustion engine |
US4479491A (en) * | 1982-07-26 | 1984-10-30 | Martin Felix M | Intervertebral stabilization implant |
US4599086A (en) * | 1985-06-07 | 1986-07-08 | Doty James R | Spine stabilization device and method |
US4743260A (en) * | 1985-06-10 | 1988-05-10 | Burton Charles V | Method for a flexible stabilization system for a vertebral column |
US4653481A (en) * | 1985-07-24 | 1987-03-31 | Howland Robert S | Advanced spine fixation system and method |
US4759769A (en) * | 1987-02-12 | 1988-07-26 | Health & Research Services Inc. | Artificial spinal disc |
US4863477A (en) * | 1987-05-12 | 1989-09-05 | Monson Gary L | Synthetic intervertebral disc prosthesis |
US4955908A (en) * | 1987-07-09 | 1990-09-11 | Sulzer Brothers Limited | Metallic intervertebral prosthesis |
US4904260A (en) * | 1987-08-20 | 1990-02-27 | Cedar Surgical, Inc. | Prosthetic disc containing therapeutic material |
US4772287A (en) * | 1987-08-20 | 1988-09-20 | Cedar Surgical, Inc. | Prosthetic disc and method of implanting |
US4890545A (en) * | 1987-10-01 | 1990-01-02 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
US5147404A (en) * | 1987-12-07 | 1992-09-15 | Downey Ernest L | Vertebra prosthesis |
US4911718A (en) * | 1988-06-10 | 1990-03-27 | University Of Medicine & Dentistry Of N.J. | Functional and biocompatible intervertebral disc spacer |
US5545229A (en) * | 1988-08-18 | 1996-08-13 | University Of Medicine And Dentistry Of Nj | Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness |
US5015255A (en) * | 1989-05-10 | 1991-05-14 | Spine-Tech, Inc. | Spinal stabilization method |
US5306308A (en) * | 1989-10-23 | 1994-04-26 | Ulrich Gross | Intervertebral implant |
US5236460A (en) * | 1990-02-12 | 1993-08-17 | Midas Rex Pneumatic Tools, Inc. | Vertebral body prosthesis |
US5129900A (en) * | 1990-07-24 | 1992-07-14 | Acromed Corporation | Spinal column retaining method and apparatus |
US5129900B1 (en) * | 1990-07-24 | 1998-12-29 | Acromed Corp | Spinal column retaining method and apparatus |
US5092893A (en) * | 1990-09-04 | 1992-03-03 | Smith Thomas E | Human orthopedic vertebra implant |
US5180393A (en) * | 1990-09-21 | 1993-01-19 | Polyclinique De Bourgogne & Les Hortensiad | Artificial ligament for the spine |
US5047055A (en) * | 1990-12-21 | 1991-09-10 | Pfizer Hospital Products Group, Inc. | Hydrogel intervertebral disc nucleus |
US5192326A (en) * | 1990-12-21 | 1993-03-09 | Pfizer Hospital Products Group, Inc. | Hydrogel bead intervertebral disc nucleus |
US5540688A (en) * | 1991-05-30 | 1996-07-30 | Societe "Psi" | Intervertebral stabilization device incorporating dampers |
US5318567A (en) * | 1991-07-02 | 1994-06-07 | Olivier Vichard | Screw-on plate for treatment of fractures of the odontoid apophysis |
US5534031A (en) * | 1992-01-28 | 1996-07-09 | Asahi Kogaku Kogyo Kabushiki Kaisha | Prosthesis for spanning a space formed upon removal of an intervertebral disk |
US5401269A (en) * | 1992-03-13 | 1995-03-28 | Waldemar Link Gmbh & Co. | Intervertebral disc endoprosthesis |
US5556431A (en) * | 1992-03-13 | 1996-09-17 | B+E,Uml U+Ee Ttner-Janz; Karin | Intervertebral disc endoprosthesis |
US5728097A (en) * | 1992-03-17 | 1998-03-17 | Sdgi Holding, Inc. | Method for subcutaneous suprafascial internal fixation |
US5306309A (en) * | 1992-05-04 | 1994-04-26 | Calcitek, Inc. | Spinal disk implant and implantation kit |
US5304178A (en) * | 1992-05-29 | 1994-04-19 | Acromed Corporation | Sublaminar wire |
US5609634A (en) * | 1992-07-07 | 1997-03-11 | Voydeville; Gilles | Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization |
US5725582A (en) * | 1992-08-19 | 1998-03-10 | Surgicraft Limited | Surgical implants |
US5868745A (en) * | 1992-11-12 | 1999-02-09 | Alleyne; Neville | Spinal protection device |
US5437672A (en) * | 1992-11-12 | 1995-08-01 | Alleyne; Neville | Spinal cord protection device |
US5456722A (en) * | 1993-01-06 | 1995-10-10 | Smith & Nephew Richards Inc. | Load bearing polymeric cable |
US5496318A (en) * | 1993-01-08 | 1996-03-05 | Advanced Spine Fixation Systems, Inc. | Interspinous segmental spine fixation device |
US5534030A (en) * | 1993-02-09 | 1996-07-09 | Acromed Corporation | Spine disc |
US5534028A (en) * | 1993-04-20 | 1996-07-09 | Howmedica, Inc. | Hydrogel intervertebral disc nucleus with diminished lateral bulging |
US5458641A (en) * | 1993-09-08 | 1995-10-17 | Ramirez Jimenez; Juan J. | Vertebral body prosthesis |
US5716415A (en) * | 1993-10-01 | 1998-02-10 | Acromed Corporation | Spinal implant |
US5514180A (en) * | 1994-01-14 | 1996-05-07 | Heggeness; Michael H. | Prosthetic intervertebral devices |
US5653762A (en) * | 1994-03-18 | 1997-08-05 | Pisharodi; Madhavan | Method of stabilizing adjacent vertebrae with rotating, lockable, middle-expanded intervertebral disk stabilizer |
US5545166A (en) * | 1994-07-14 | 1996-08-13 | Advanced Spine Fixation Systems, Incorporated | Spinal segmental reduction derotational fixation system |
US5645599A (en) * | 1994-07-26 | 1997-07-08 | Fixano | Interspinal vertebral implant |
US5527312A (en) * | 1994-08-19 | 1996-06-18 | Salut, Ltd. | Facet screw anchor |
US5865846A (en) * | 1994-11-14 | 1999-02-02 | Bryan; Vincent | Human spinal disc prosthesis |
USRE36758E (en) * | 1995-03-16 | 2000-06-27 | Fitz; William R. | Artificial facet joint |
US6080157A (en) * | 1995-09-12 | 2000-06-27 | Cg Surgical Limited | Device to stabilize the lamina |
US5888223A (en) * | 1995-12-08 | 1999-03-30 | Bray, Jr.; Robert S. | Anterior stabilization device |
US5645597A (en) * | 1995-12-29 | 1997-07-08 | Krapiva; Pavel I. | Disc replacement method and apparatus |
US5951555A (en) * | 1996-03-27 | 1999-09-14 | Rehak; Lubos | Device for the correction of spinal deformities |
US5713900A (en) * | 1996-05-31 | 1998-02-03 | Acromed Corporation | Apparatus for retaining bone portions in a desired spatial relationship |
US5755796A (en) * | 1996-06-06 | 1998-05-26 | Ibo; Ivo | Prosthesis of the cervical intervertebralis disk |
US6066325A (en) * | 1996-08-27 | 2000-05-23 | Fusion Medical Technologies, Inc. | Fragmented polymeric compositions and methods for their use |
US6183471B1 (en) * | 1997-01-02 | 2001-02-06 | St. Francis Medical Technologies, Inc. | Spine distraction implant and method |
US6235030B1 (en) * | 1997-01-02 | 2001-05-22 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US6068630A (en) * | 1997-01-02 | 2000-05-30 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US6190387B1 (en) * | 1997-01-02 | 2001-02-20 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US5916267A (en) * | 1997-04-07 | 1999-06-29 | Arthit Sitiso | Anterior spinal implant system for vertebral body prosthesis |
US5893889A (en) * | 1997-06-20 | 1999-04-13 | Harrington; Michael | Artificial disc |
US6093205A (en) * | 1997-06-25 | 2000-07-25 | Bridport-Gundry Plc C/O Pearsalls Implants | Surgical implant |
US6228118B1 (en) * | 1997-08-04 | 2001-05-08 | Gordon, Maya, Roberts And Thomas, Number 1, Llc | Multiple axis intervertebral prosthesis |
US6014588A (en) * | 1998-04-07 | 2000-01-11 | Fitz; William R. | Facet joint pain relief method and apparatus |
US6019792A (en) * | 1998-04-23 | 2000-02-01 | Cauthen Research Group, Inc. | Articulating spinal implant |
US6063121A (en) * | 1998-07-29 | 2000-05-16 | Xavier; Ravi | Vertebral body prosthesis |
US20020099384A1 (en) * | 1998-08-14 | 2002-07-25 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
US6451019B1 (en) * | 1998-10-20 | 2002-09-17 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device and method |
US6113637A (en) * | 1998-10-22 | 2000-09-05 | Sofamor Danek Holdings, Inc. | Artificial intervertebral joint permitting translational and rotational motion |
US6540785B1 (en) * | 1998-10-22 | 2003-04-01 | Sdgi Holdings, Inc. | Artificial intervertebral joint permitting translational and rotational motion |
US6039763A (en) * | 1998-10-27 | 2000-03-21 | Disc Replacement Technologies, Inc. | Articulating spinal disc prosthesis |
US6113639A (en) * | 1999-03-23 | 2000-09-05 | Raymedica, Inc. | Trial implant and trial implant kit for evaluating an intradiscal space |
US6540747B1 (en) * | 1999-04-16 | 2003-04-01 | Nuvasive, Inc. | System for securing joints together |
US6419704B1 (en) * | 1999-10-08 | 2002-07-16 | Bret Ferree | Artificial intervertebral disc replacement methods and apparatus |
US7087084B2 (en) * | 1999-10-22 | 2006-08-08 | Archus Orthopedics, Inc. | Method for replacing a natural facet joint with a prosthesis having an artificial facet joint structure |
US20020123806A1 (en) * | 1999-10-22 | 2002-09-05 | Total Facet Technologies, Inc. | Facet arthroplasty devices and methods |
US20030028250A1 (en) * | 1999-10-22 | 2003-02-06 | Archus Orthopedics, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artifical facet joint surfaces |
US6610091B1 (en) * | 1999-10-22 | 2003-08-26 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US6402750B1 (en) * | 2000-04-04 | 2002-06-11 | Spinlabs, Llc | Devices and methods for the treatment of spinal disorders |
US20030073998A1 (en) * | 2000-08-01 | 2003-04-17 | Endius Incorporated | Method of securing vertebrae |
US20040092932A1 (en) * | 2000-11-03 | 2004-05-13 | Carl-Eric Aubin | Adjustable surgical templates |
US6579319B2 (en) * | 2000-11-29 | 2003-06-17 | Medicinelodge, Inc. | Facet joint replacement |
US20020065557A1 (en) * | 2000-11-29 | 2002-05-30 | Goble E. Marlowe | Facet joint replacement |
US20020072800A1 (en) * | 2000-12-13 | 2002-06-13 | Goble E. Marlowe | Multiple facet joint replacement |
US20030040797A1 (en) * | 2001-03-01 | 2003-02-27 | Fallin T. Wade | Prosthesis for the replacement of a posterior element of a vertebra |
US6419703B1 (en) * | 2001-03-01 | 2002-07-16 | T. Wade Fallin | Prosthesis for the replacement of a posterior element of a vertebra |
US20030004572A1 (en) * | 2001-03-02 | 2003-01-02 | Goble E. Marlowe | Method and apparatus for spine joint replacement |
US20030151895A1 (en) * | 2002-02-11 | 2003-08-14 | Jon Zuo | Heat spreader with oscillating flow |
US20050033439A1 (en) * | 2003-08-05 | 2005-02-10 | Charles Gordon | Artificial functional spinal unit assemblies |
US20050033434A1 (en) * | 2003-08-06 | 2005-02-10 | Sdgi Holdings, Inc. | Posterior elements motion restoring device |
US20050113927A1 (en) * | 2003-11-25 | 2005-05-26 | Malek Michel H. | Spinal stabilization systems |
US20050171609A1 (en) * | 2004-01-09 | 2005-08-04 | Sdgi Holdings, Inc. | Spinal arthroplasty device and method |
Cited By (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080132951A1 (en) * | 1999-10-22 | 2008-06-05 | Reiley Mark A | Prostheses systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US20070255411A1 (en) * | 1999-10-22 | 2007-11-01 | Reiley Mark A | Facet arthroplasty devices and methods |
US20080091268A1 (en) * | 1999-10-22 | 2008-04-17 | Archus Orthopedics, Inc. | Facet arthroplasty devices and methods |
US7691145B2 (en) | 1999-10-22 | 2010-04-06 | Facet Solutions, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US7608106B2 (en) | 1999-10-22 | 2009-10-27 | Archus Orthopedics, Inc. | Facet arthroplasty devices and methods |
US8066740B2 (en) | 1999-10-22 | 2011-11-29 | Gmedelaware 2 Llc | Facet joint prostheses |
US20050267579A1 (en) * | 1999-10-22 | 2005-12-01 | Reiley Mark A | Implantable device for facet joint replacement |
US20050283238A1 (en) * | 1999-10-22 | 2005-12-22 | Reiley Mark A | Facet arthroplasty devices and methods |
US20060009849A1 (en) * | 1999-10-22 | 2006-01-12 | Reiley Mark A | Facet arthroplasty devices and methods |
US20050027361A1 (en) * | 1999-10-22 | 2005-02-03 | Reiley Mark A. | Facet arthroplasty devices and methods |
US20090018585A1 (en) * | 1999-10-22 | 2009-01-15 | Reiley Mark A | Facet arthroplasty devices and methods |
US20080086213A1 (en) * | 1999-10-22 | 2008-04-10 | Reiley Mark A | Facet arthroplasty devices and methods |
US20050043799A1 (en) * | 1999-10-22 | 2005-02-24 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US20080091201A1 (en) * | 1999-10-22 | 2008-04-17 | Reiley Mark A | Facet Arthroplasty Devices and Methods |
US20080097609A1 (en) * | 1999-10-22 | 2008-04-24 | Archus Orthopedics, Inc. | Facet arthroplasty devices and methods |
US20080097438A1 (en) * | 1999-10-22 | 2008-04-24 | Reiley Mark A | Facet Arthroplasty Devices and Methods |
US20080091210A1 (en) * | 1999-10-22 | 2008-04-17 | Archus Orthopedics, Inc. | Facet arthroplasty devices and methods |
US20080097439A1 (en) * | 1999-10-22 | 2008-04-24 | Reiley Mark A | Facet Arthroplasty Devices and Methods |
US20080045954A1 (en) * | 1999-10-22 | 2008-02-21 | Reiley Mark A | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US20080015696A1 (en) * | 1999-10-22 | 2008-01-17 | Reiley Mark A | Facet arthroplasty devices and methods |
US20080097437A1 (en) * | 1999-10-22 | 2008-04-24 | Archus Orthopedics, Inc. | Facet arthroplasty devices and methods |
US20080015583A1 (en) * | 1999-10-22 | 2008-01-17 | Reiley Mark A | Facet arthroplasty devices and methods |
US20060100709A1 (en) * | 1999-10-22 | 2006-05-11 | Reiley Mark A | Facet arthroplasty devices and methods |
US20070265706A1 (en) * | 1999-10-22 | 2007-11-15 | Reiley Mark A | Facet arthroplasty devices and methods |
US20080091202A1 (en) * | 1999-10-22 | 2008-04-17 | Reiley Mark A | Facet Arthroplasty Devices and Methods |
US20070282445A1 (en) * | 1999-10-22 | 2007-12-06 | Reiley Mark A | Facet arthroplasty devices and methods |
US8906093B2 (en) | 2000-12-14 | 2014-12-09 | DePuy Synthes Products, LLC | Devices and methods for facilitating controlled bone growth or repair |
US8523908B2 (en) | 2000-12-14 | 2013-09-03 | Depuy Synthes Products Llc | Devices and methods for facilitating controlled bone growth or repair |
US8617246B2 (en) | 2000-12-14 | 2013-12-31 | Depuy Spine, Inc. | Devices and methods for facilitating controlled bone growth or repair |
US20070083265A1 (en) * | 2000-12-14 | 2007-04-12 | Malone David G | Devices and methods for facilitating controlled bone growth or repair |
US8142503B2 (en) * | 2000-12-14 | 2012-03-27 | Depuy Spine, Inc. | Devices and methods for facilitating controlled bone growth or repair |
US7837735B2 (en) | 2000-12-14 | 2010-11-23 | Depuy Spine, Inc. | Devices and methods for facilitating controlled bone growth or repair |
US20080097446A1 (en) * | 2001-09-25 | 2008-04-24 | Reiley Mark A | Prostheses, Systems and Methods for Replacement of Natural Facet Joints With Artificial Facet Joint Surfaces |
US9198766B2 (en) | 2003-05-14 | 2015-12-01 | Gmedelaware 2 Llc | Prostheses, tools, and methods for replacement of natural facet joints with artificial facet joint surfaces |
US8409254B2 (en) | 2003-05-14 | 2013-04-02 | Gmedelaware 2 Llc | Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces |
US7608104B2 (en) | 2003-05-14 | 2009-10-27 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US8523907B2 (en) | 2003-07-08 | 2013-09-03 | Gmedelaware 2 Llc | Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces |
US8231655B2 (en) | 2003-07-08 | 2012-07-31 | Gmedelaware 2 Llc | Prostheses and methods for replacement of natural facet joints with artificial facet joint surfaces |
US20070299446A1 (en) * | 2003-09-24 | 2007-12-27 | Spinefrontier Lls | Apparatus and method for connecting spinal vertebras |
US9056016B2 (en) | 2003-12-15 | 2015-06-16 | Gmedelaware 2 Llc | Polyaxial adjustment of facet joint prostheses |
US20050209696A1 (en) * | 2004-01-16 | 2005-09-22 | Jo-Wen Lin | Implant frames for use with settable materials and related methods of use |
US8012210B2 (en) * | 2004-01-16 | 2011-09-06 | Warsaw Orthopedic, Inc. | Implant frames for use with settable materials and related methods of use |
US7998178B2 (en) | 2004-02-17 | 2011-08-16 | Gmedelaware 2 Llc | Linked bilateral spinal facet implants and methods of use |
US7914560B2 (en) | 2004-02-17 | 2011-03-29 | Gmedelaware 2 Llc | Spinal facet implant with spherical implant apposition surface and bone bed and methods of use |
US20100087880A1 (en) * | 2004-02-17 | 2010-04-08 | Facet Solutions, Inc. | Facet Joint Replacement Instruments and Methods |
US9451990B2 (en) * | 2004-02-17 | 2016-09-27 | Globus Medical, Inc. | Facet joint replacement instruments and methods |
US8906063B2 (en) | 2004-02-17 | 2014-12-09 | Gmedelaware 2 Llc | Spinal facet joint implant |
US7998177B2 (en) | 2004-02-17 | 2011-08-16 | Gmedelaware 2 Llc | Linked bilateral spinal facet implants and methods of use |
US20170065306A1 (en) * | 2004-02-17 | 2017-03-09 | Globus Medical, Inc. | Facet joint replacement instruments and methods |
US20170056196A1 (en) * | 2004-04-22 | 2017-03-02 | Globus Medical Inc. | Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies |
US10010426B2 (en) * | 2004-04-22 | 2018-07-03 | Globus Medical, Inc. | Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies |
US20050261770A1 (en) * | 2004-04-22 | 2005-11-24 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US20080091200A1 (en) * | 2004-04-22 | 2008-04-17 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US8425557B2 (en) | 2004-04-22 | 2013-04-23 | Gmedelaware 2 Llc | Crossbar spinal prosthesis having a modular design and related implantation methods |
US20050240266A1 (en) * | 2004-04-22 | 2005-10-27 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US7674293B2 (en) | 2004-04-22 | 2010-03-09 | Facet Solutions, Inc. | Crossbar spinal prosthesis having a modular design and related implantation methods |
US20050240265A1 (en) * | 2004-04-22 | 2005-10-27 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US8491635B2 (en) | 2004-04-22 | 2013-07-23 | Gmedelaware 2 Llc | Crossbar spinal prosthesis having a modular design and related implantation methods |
US8496687B2 (en) | 2004-04-22 | 2013-07-30 | Gmedelaware 2 Llc | Crossbar spinal prosthesis having a modular design and related implantation methods |
US8675930B2 (en) | 2004-04-22 | 2014-03-18 | Gmedelaware 2 Llc | Implantable orthopedic device component selection instrument and methods |
US8777994B2 (en) | 2004-06-02 | 2014-07-15 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
US7815648B2 (en) | 2004-06-02 | 2010-10-19 | Facet Solutions, Inc | Surgical measurement systems and methods |
US8114158B2 (en) | 2004-08-03 | 2012-02-14 | Kspine, Inc. | Facet device and method |
US9451997B2 (en) | 2004-08-03 | 2016-09-27 | K2M, Inc. | Facet device and method |
US9011491B2 (en) | 2004-08-03 | 2015-04-21 | K Spine, Inc. | Facet device and method |
US20060041311A1 (en) * | 2004-08-18 | 2006-02-23 | Mcleer Thomas J | Devices and methods for treating facet joints |
US8398681B2 (en) | 2004-08-18 | 2013-03-19 | Gmedelaware 2 Llc | Adjacent level facet arthroplasty devices, spine stabilization systems, and methods |
US20080177308A1 (en) * | 2004-10-04 | 2008-07-24 | Archus Orthopedics, Inc. | Polymeric joint complex and methods of use |
US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US20080097441A1 (en) * | 2004-10-20 | 2008-04-24 | Stanley Kyle Hayes | Systems and methods for posterior dynamic stabilization of the spine |
US20060084982A1 (en) * | 2004-10-20 | 2006-04-20 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US20060084984A1 (en) * | 2004-10-20 | 2006-04-20 | The Board Of Trustees For The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US20070167949A1 (en) * | 2004-10-20 | 2007-07-19 | Moti Altarac | Screw systems and methods for use in stabilization of bone structures |
US8075595B2 (en) | 2004-10-20 | 2011-12-13 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US7998175B2 (en) | 2004-10-20 | 2011-08-16 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US20060084987A1 (en) * | 2004-10-20 | 2006-04-20 | Kim Daniel H | Systems and methods for posterior dynamic stabilization of the spine |
US8551142B2 (en) | 2004-10-20 | 2013-10-08 | Exactech, Inc. | Methods for stabilization of bone structures |
US8221461B2 (en) | 2004-10-25 | 2012-07-17 | Gmedelaware 2 Llc | Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies |
US20080249568A1 (en) * | 2004-10-25 | 2008-10-09 | Kuiper Mark K | Crossbar Spinal Prosthesis Having a Modular Design and Systems for Treating Spinal Pathologies |
US20060200156A1 (en) * | 2005-01-05 | 2006-09-07 | Jamal Taha | Spinal docking system, spinal docking device, and methods of spinal stabilization |
US20090125066A1 (en) * | 2005-02-09 | 2009-05-14 | Gary Kraus | Facet stabilization schemes |
US7914556B2 (en) | 2005-03-02 | 2011-03-29 | Gmedelaware 2 Llc | Arthroplasty revision system and method |
US8696707B2 (en) | 2005-03-08 | 2014-04-15 | Zyga Technology, Inc. | Facet joint stabilization |
US20060235391A1 (en) * | 2005-03-08 | 2006-10-19 | Sutterlin Chester Iii | Facet joint stabilization |
US8496686B2 (en) | 2005-03-22 | 2013-07-30 | Gmedelaware 2 Llc | Minimally invasive spine restoration systems, devices, methods and kits |
US20080015585A1 (en) * | 2005-03-22 | 2008-01-17 | Philip Berg | Minimally invasive spine restoration systems, devices, methods and kits |
US20060271195A1 (en) * | 2005-05-24 | 2006-11-30 | Jeffery Thramann | Facet replacement |
US7862589B2 (en) | 2005-05-24 | 2011-01-04 | Lanx, Inc. | Facet replacement |
US20070239159A1 (en) * | 2005-07-22 | 2007-10-11 | Vertiflex, Inc. | Systems and methods for stabilization of bone structures |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US20070043359A1 (en) * | 2005-07-22 | 2007-02-22 | Moti Altarac | Systems and methods for stabilization of bone structures |
US20070055242A1 (en) * | 2005-07-27 | 2007-03-08 | Bailly Frank E | Device for securing spinal rods |
US7766946B2 (en) | 2005-07-27 | 2010-08-03 | Frank Emile Bailly | Device for securing spinal rods |
US20070270959A1 (en) * | 2006-04-18 | 2007-11-22 | Sdgi Holdings, Inc. | Arthroplasty device |
US8702755B2 (en) | 2006-08-11 | 2014-04-22 | Gmedelaware 2 Llc | Angled washer polyaxial connection for dynamic spine prosthesis |
US20080119845A1 (en) * | 2006-09-25 | 2008-05-22 | Archus Orthopedics, Inc. | Facet replacement device removal and revision systems and methods |
US8252027B2 (en) | 2007-01-10 | 2012-08-28 | Gmedelaware 2 Llc | System and method for facet joint replacement |
US8211147B2 (en) | 2007-01-10 | 2012-07-03 | Gmedelaware 2 Llc | System and method for facet joint replacement |
US8206418B2 (en) | 2007-01-10 | 2012-06-26 | Gmedelaware 2 Llc | System and method for facet joint replacement with detachable coupler |
US20080172090A1 (en) * | 2007-01-12 | 2008-07-17 | Warsaw Orthopedic, Inc. | Spinal Prosthesis Systems |
US8075596B2 (en) | 2007-01-12 | 2011-12-13 | Warsaw Orthopedic, Inc. | Spinal prosthesis systems |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
US9050144B2 (en) | 2007-04-17 | 2015-06-09 | Gmedelaware 2 Llc | System and method for implant anchorage with anti-rotation features |
US8702759B2 (en) | 2007-04-17 | 2014-04-22 | Gmedelaware 2 Llc | System and method for bone anchorage |
US8317836B2 (en) | 2007-06-05 | 2012-11-27 | Spartek Medical, Inc. | Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method |
US8568451B2 (en) | 2007-06-05 | 2013-10-29 | Spartek Medical, Inc. | Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method |
US8460341B2 (en) | 2007-06-27 | 2013-06-11 | Spinefrontier Inc | Dynamic facet replacement system |
US20090005818A1 (en) * | 2007-06-27 | 2009-01-01 | Spinefrontier Inc | Dynamic facet replacement system |
US20090138053A1 (en) * | 2007-09-25 | 2009-05-28 | Zyga Technology, Inc. | Method and apparatus for facet joint stabilization |
US8343189B2 (en) | 2007-09-25 | 2013-01-01 | Zyga Technology, Inc. | Method and apparatus for facet joint stabilization |
US20090177237A1 (en) * | 2008-01-04 | 2009-07-09 | Spartek Medical, Inc. | Cervical spine implant system and method |
US8696708B2 (en) | 2008-03-06 | 2014-04-15 | DePuy Synthes Products, LLC | Facet interference screw |
US20110004247A1 (en) * | 2008-03-06 | 2011-01-06 | Beat Lechmann | Facet interference screw |
US10842536B2 (en) | 2008-11-11 | 2020-11-24 | K2M, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US8828058B2 (en) | 2008-11-11 | 2014-09-09 | Kspine, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US9510865B2 (en) | 2008-11-11 | 2016-12-06 | K2M, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US8357182B2 (en) | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Alignment system with longitudinal support features |
US11154329B2 (en) | 2009-03-26 | 2021-10-26 | K2M, Inc. | Semi-constrained anchoring system |
US12137943B2 (en) | 2009-03-26 | 2024-11-12 | K2M, Inc. | Semi-constrained anchoring system |
US9358044B2 (en) | 2009-03-26 | 2016-06-07 | K2M, Inc. | Semi-constrained anchoring system |
US9173681B2 (en) | 2009-03-26 | 2015-11-03 | K2M, Inc. | Alignment system with longitudinal support features |
US9095380B2 (en) | 2009-03-31 | 2015-08-04 | Hamid R. Mir | Spinous process cross-link |
US20100249842A1 (en) * | 2009-03-31 | 2010-09-30 | Dr. Hamid R. Mir | Spinous process cross-link |
US9017389B2 (en) | 2009-07-24 | 2015-04-28 | Zyga Technology, Inc. | Methods for facet joint treatment |
US8394125B2 (en) | 2009-07-24 | 2013-03-12 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US20110022089A1 (en) * | 2009-07-24 | 2011-01-27 | Zyga Technology, Inc | Systems and methods for facet joint treatment |
US10736669B2 (en) | 2009-09-15 | 2020-08-11 | K2M, Inc. | Growth modulation system |
US9168071B2 (en) | 2009-09-15 | 2015-10-27 | K2M, Inc. | Growth modulation system |
US9827022B2 (en) | 2009-09-15 | 2017-11-28 | K2M, Llc | Growth modulation system |
US8394127B2 (en) | 2009-12-02 | 2013-03-12 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US9314277B2 (en) | 2010-06-15 | 2016-04-19 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US9833328B2 (en) | 2010-06-15 | 2017-12-05 | Zyga Technology | System and methods for facet joint treatment |
US8663293B2 (en) | 2010-06-15 | 2014-03-04 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US9233006B2 (en) | 2010-06-15 | 2016-01-12 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US8986355B2 (en) | 2010-07-09 | 2015-03-24 | DePuy Synthes Products, LLC | Facet fusion implant |
US9333009B2 (en) | 2011-06-03 | 2016-05-10 | K2M, Inc. | Spinal correction system actuators |
US9895168B2 (en) | 2011-06-03 | 2018-02-20 | K2M, Inc. | Spinal correction system actuators |
US9408638B2 (en) | 2011-06-03 | 2016-08-09 | K2M, Inc. | Spinal correction system actuators |
US10675062B2 (en) | 2011-06-03 | 2020-06-09 | K2M, Inc. | Spinal correction system actuators |
US9468468B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse connector for spinal stabilization system |
US8920472B2 (en) | 2011-11-16 | 2014-12-30 | Kspine, Inc. | Spinal correction and secondary stabilization |
US9113959B2 (en) | 2011-11-16 | 2015-08-25 | K2M, Inc. | Spinal correction and secondary stabilization |
US9468469B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US9827017B2 (en) | 2011-11-16 | 2017-11-28 | K2M, Inc. | Spinal correction and secondary stabilization |
US10342581B2 (en) | 2011-11-16 | 2019-07-09 | K2M, Inc. | System and method for spinal correction |
US11013538B2 (en) | 2011-11-16 | 2021-05-25 | K2M, Inc. | System and method for spinal correction |
US10702311B2 (en) | 2011-11-16 | 2020-07-07 | K2M, Inc. | Spinal correction and secondary stabilization |
US8430916B1 (en) | 2012-02-07 | 2013-04-30 | Spartek Medical, Inc. | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
US9585764B2 (en) * | 2012-07-26 | 2017-03-07 | Warsaw Orthopedic, Inc. | Bone implant device |
US9931143B2 (en) | 2012-08-31 | 2018-04-03 | New South Innovations Pty Limited | Bone stabilization device and methods of use |
US9592083B2 (en) * | 2013-08-30 | 2017-03-14 | New South Innovations Pty Limited | Spine stabilization device |
US10441323B2 (en) | 2013-08-30 | 2019-10-15 | New South Innovations Pty Limited | Spine stabilization device |
US20150374412A1 (en) * | 2013-08-30 | 2015-12-31 | Newsouth Innovations Pty Limited | Spine stabilization device |
US11413075B2 (en) | 2013-08-30 | 2022-08-16 | New South Innovations Pty Limited | Spine stabilization device |
US9468471B2 (en) | 2013-09-17 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US9668874B2 (en) | 2017-06-06 |
US9241741B2 (en) | 2016-01-26 |
AU2004275830A1 (en) | 2005-04-07 |
US20170231776A1 (en) | 2017-08-17 |
US20140046444A1 (en) | 2014-02-13 |
US20070270967A1 (en) | 2007-11-22 |
CA2539119A1 (en) | 2005-04-07 |
JP4851329B2 (ja) | 2012-01-11 |
EP1677711A4 (en) | 2007-01-03 |
US8556936B2 (en) | 2013-10-15 |
EP1677711B1 (en) | 2009-02-25 |
WO2005030087A2 (en) | 2005-04-07 |
JP2007506528A (ja) | 2007-03-22 |
EP1677711A2 (en) | 2006-07-12 |
WO2005030087A3 (en) | 2005-11-17 |
US20150230933A1 (en) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9668874B2 (en) | Facet joint replacement | |
EP1715820B1 (en) | Spinal facet joint implant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FACET SOLUTIONS, INC., UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FALLIN, T. WADE;GOBLE, E. MARLOWE;HOY, ROBERT W.;AND OTHERS;REEL/FRAME:015387/0036;SIGNING DATES FROM 20031028 TO 20031104 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |