US20050066589A1 - Hurricane proof modular building structure - Google Patents

Hurricane proof modular building structure Download PDF

Info

Publication number
US20050066589A1
US20050066589A1 US10/943,667 US94366704A US2005066589A1 US 20050066589 A1 US20050066589 A1 US 20050066589A1 US 94366704 A US94366704 A US 94366704A US 2005066589 A1 US2005066589 A1 US 2005066589A1
Authority
US
United States
Prior art keywords
roof
floor
modular building
hurricane
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/943,667
Inventor
Rick Bedell
Paul Moss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MILLER BUILDING SYSTEMS Inc
Original Assignee
MILLER BUILDING SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MILLER BUILDING SYSTEMS Inc filed Critical MILLER BUILDING SYSTEMS Inc
Priority to US10/943,667 priority Critical patent/US20050066589A1/en
Assigned to MILLER BUILDING SYSTEMS, INC. reassignment MILLER BUILDING SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEDELL, RICK, MOSS, PAUL NEAL
Publication of US20050066589A1 publication Critical patent/US20050066589A1/en
Assigned to FIFTH THIRD BANK (CHICAGO) reassignment FIFTH THIRD BANK (CHICAGO) SECURITY AGREEMENT Assignors: MILLER BUILDING SYSTEMS, INC.
Assigned to CAPX III, LP reassignment CAPX III, LP SECURITY AGREEMENT Assignors: MILLER BUILDING SYSTEMS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton

Definitions

  • This invention relates generally to modular building systems, and more particularly to hurricane proof modular building structures.
  • Modularly constructed building structures are advantageous in that they provide shelter from the elements in which a variety of activities can be housed, and are relatively easily transported from one locale to another. Moreover, such structures can typically be assembled in stackable sections, or sections placed side-by-side (i.e., the sections are positioned adjacent each other), right on site after being transported. Modular building structures can be used for production of single and multi-unit or multi-family homes, as well as apartments, condominiums, classrooms, general offices, medical facilities, commercial buildings and the like.
  • One construction technique to address the above includes building a wall within a wall. However, such a procedure promotes heat transfer and moisture/vapor transfer that leads to mold growth. A need exists to improve the wall within a wall construction to create thermal barriers and moisture/vapor barriers.
  • modular building structures are custom designed. However, building structures can also be designed according to standard or pre-fabricated building templates as well. Today's modular building structures are computer-engineered to meet national building codes. They can be precisely engineered for increased structural durability. High quality can be maintained by inspection during construction process. In one construction example, a modular building structure is delivered to a desired site, after which individual modular structures or “modules” are assembled into an overall modular building structure.
  • the metrics of building construction costs break out on a per square foot basis. It is a continuous goal to reduce the construction costs of the modular structures. To this end, it would be desirable to provide a modular building structure that, while meeting all applicable building codes and other standards, is simpler to construct than known modular building structures. For example, a building structure comprising fewer pieces, parts or other components in its construction is desirable. Similarly, material selection for such modular building structures is key, in that the material type and placement can result in a building structure of having a greater useful life and durability.
  • This invention relates generally to a hurricane proof modular building structure, and more specifically to a hurricane proof modular building structure that has a combination of hurricane force wind resistance, relocateability, modularity, fire and heat resistance, mold resistance and substantial concrete construction.
  • a hurricane proof modular building structure in one aspect of the invention, includes a floor structure for use in a hurricane proof modular building structure.
  • the floor structure includes: a first floor structure portion and a second floor structure portion each comprising: a plurality of metal support structures; a non-composite deck disposed on top of the support structures; and a metal cross-member connected to the metal support structures.
  • the first and second metal cross members are in opposing, spaced apart relationship with respect to each other to define a floor seam that permits separation of the floor structure along the floor seam;
  • the building also includes a wall structure comprising: an outer concrete layer; a plurality of metal studs spaced apart from each other and positioned adjacent to, but separated from, the concrete layer, to create metal stud-concrete layer thermal gaps; a first insulation layer located between the plurality of metal studs and adjacent the concrete layer; a second insulation layer positioned adjacent the first insulation layer; and a mold resistant layer located adjacent the second insulation layer.
  • the plurality of thermal gaps and at least one of the first and the second insulation layers create a thermal break.
  • the structure also includes a roof structure, the roof structure comprising: a roof portion having load-bearing perimeter; and an inclined roof comprising opposing slanted portions reaching a central apex such that the apex of the slanted portions does not extend above the load-bearing perimeter.
  • FIG. 1 is a perspective view of one embodiment of a hurricane proof modular building structure according to one aspect of the present invention
  • FIG. 2 is top view illustrating a floor plan of the hurricane proof modular building structure of FIG. 1 ;
  • FIG. 3 is a cross-sectional view taken along line 3 - 3 of FIG. 1 ;
  • FIG. 4 is a cross-sectional view taken along line 4 - 4 of FIG. 1 ;
  • FIG. 5 is an enlarged detailed view of a portion of the hurricane proof modular building structure shown in FIG. 4 ;
  • FIG. 6 is an enlarged detailed view of a portion of the hurricane proof modular building structure taken along line 6 - 6 of FIG. 2 ;
  • FIG. 7 is a perspective view of a plurality of hurricane proof modular building structures showing their modularity and stackability.
  • FIG. 1 is a perspective view of one embodiment of a hurricane proof modular building structure 10 according to one aspect of the present invention.
  • hurricane proof it is meant that the structure is built to withstand and be resistant to high winds (e.g., tropical storm level winds up to about 75 mph, hurricane force winds from about 75 mph up to about 150 mph, and the like).
  • the structure is “modular” in that the structure is designed an built with standardized units or dimensions so as to promote ease of assembly and repair. As will be described in greater detail below, each such structure is built from prefabricated and standardized parts and/or component pieces.
  • the structure shown can include: single and multi-unit or multi-family homes, as well as apartments, condominiums, support facilities, general offices, medical facilities, light manufacturing, commercial buildings and the like, although, in a preferred embodiment, the structure can be used for a classroom.
  • the modular building structure can include such features as door 12 and windows 14 , replicating features found in permanent building structures.
  • the structure 10 is generally rectangular, although other shapes are contemplated and considered within the scope of the present invention.
  • Structure 10 includes a roof structure 16 that typically inclined downwardly from a roof centerline or apex 18 to promote drainage of water off of or away from the roof via, as shown, drainage pipes 20 to a grounded location.
  • the structure shown represents a combination of two half modular sections placed together and connected (as will be shown and described in following) in side-by-side fashion along line 22 after being delivered to the site of use.
  • the structure shown and described herein represents a culmination of a transition or trend in the modular building marketplace towards what is referred to as “concrete construction”.
  • the structure includes walls 24 that is a poured concrete wall. The walls, notwithstanding the windows, renders the structure substantially bullet-proof.
  • the structure 10 is constructed for several design parameters, for example, the floor structure 36 of FIG. 5 is designed for a 50 PSF live load; roof structure 16 is designed for a 30 PSF live load snow-to-ground load; and the overall structure 10 is designed to withstand an overall wind speed of 150 mph, and a class C wind exposure.
  • structure 10 i.e., both its exterior and in its interior
  • a substantially complete module i.e., about 95% finished. This results in a cost reduction for the user, and decreases time to use (e.g., on the order of about a day or two) from the time of delivery of module structure 10 to the site of use.
  • FIG. 2 is top view illustrating a floor plan of the hurricane proof modular building structure of FIG. 1 .
  • Doors 12 are shown in an open position.
  • Centerline 22 delineates the location at which the two half modular sections 26 a - b are combined to create the overall building structure 10 .
  • One advantage of this structure design is that each of the sections 26 a - b are easily transported to a specified location. For example, each of the half structures can be brought separately (e.g., via truck) to a job site.
  • each of the structures 26 a - b can be used in locations that would otherwise be inaccessible due to the need to previously transport structure as a whole.
  • Walls 24 define structure interior portions 28 a - b.
  • portions 28 a - b are “open-concept” in that other structure support members (e.g., beams, pillars, etc.) are not required. Therefore, a variety of uses can be accomplished within the interior, and the interior is highly adaptable to such uses.
  • FIG. 3 is a cross-sectional view taken along line 3 - 3 of FIG. 1 , showing the building structure 10 , and in particular, illustrating a recessed roof structure 16 , the roof structure supported by walls 24 , connected to a floor structure 40 .
  • Roof structure 16 comprises a raised roof portion 30 defining load-bearing perimeter, and further including an inclined roof 32 comprising two opposing slanted roof portions 34 a - b. The roof portions are opposingly sloped or pitched so as to reach or define a central apex 35 , which coincides with a roof centerline 18 .
  • the apex of the slanted portions 34 a - b does not extend above the load-bearing perimeter of the roof portion 30 , thereby permitting or facilitating stacking of at least one additional modular building structure of similar size and shape thereon.
  • the inclined roof first and second opposingly inclined roof structure portions are in spaced apart relationship with respect to each other to define a roof seam that permits separation of the inclined roof along the seam. Since the raised roof portion is preferably substantially level, and since the roof is recessed from the raised roof portion, dual benefits are achieved. Namely, stacking of a plurality of modular structures is facilitated, while simultaneously permitting drainage along the two opposing slanted portions away from the structure itself.
  • FIG. 4 is a cross-sectional view taken along line 4 - 4 of FIG. 1 showing interior portions 28 a - b of half modular sections 26 a - b.
  • structures 26 a - b are separate and distinct, they are joined to form a single unit in a cohesive fashion, for example, by common interior finishing of walls 33 and drop ceiling 37 . In this way, interior portions 28 a - b can be used to create a single interior space.
  • FIG. 5 is an enlarged detailed view of a portion of the hurricane proof modular building structure shown in FIG. 4 .
  • the floor structure comprises a first floor structure portion 38 having a plurality of metal support structures 40 (e.g., steel I-beams), one of which is shown, and a non-composite deck 42 disposed on top of the support structures 40 .
  • the first floor structure portion 38 includes a metal cross-member 44 connected to the metal support structures.
  • the floor structure 36 also includes a second floor structure portion 46 having a second plurality of metal support structures 48 (again, one of which is shown) and a second non-composite deck 50 disposed on top of the support structures 48 .
  • the second floor structure portion 46 also includes a second metal cross-member 52 connected to the metal support structures 48 .
  • the first and second metal cross members are in opposing, spaced apart relationship with respect to each other so as to define a floor seam 54 that permits separation of the floor structure along the floor seam or channel.
  • the seam or channel 54 can be bridged using, for example, a lightweight concrete deck.
  • the non-composite deck can comprise, by way example, a 24 gauge galvanized steel.
  • the floor structure can be finished by including a concrete deck 43 over the non-composite deck.
  • the inventive floor structure results in a hurricane proof modular building structure that does not comprise a knockout floor section.
  • “Knockout” sections are typically used during the installation of indoor plumbing.
  • “Knockout sections” are sections that are removable prior to such installation (e.g., at the site), and then following installation, the sections are re-poured, for example, with a concrete material.
  • FIG. 6 is an enlarged detailed view of a portion of the hurricane proof modular building structure taken along line 6 - 6 of FIG. 2 .
  • a wall structure 56 for use in the inventive hurricane proof modular building structure 10 ( FIG. 5 ) is shown in detail.
  • the wall structure comprises an outer concrete layer 58 and a plurality of metal studs 60 spaced apart from each other and positioned adjacent to, but separated from, the concrete layer to create metal stud-concrete layer thermal gaps 62 .
  • the wall structure 56 further includes a first insulation layer 64 located between the plurality of metal studs 60 and adjacent the concrete layer 58 .
  • a second insulation layer 66 is positioned adjacent the first insulation layer 64 and a mold resistant layer 68 is located adjacent the second insulation layer 66 .
  • the plurality of thermal gaps 62 and at least one of the first and the second insulation layers 64 , 66 are utilized to create a thermal break 70 , and a plurality of thermal breaks are included in the structure.
  • the concrete layer 58 is of prescribed thickness and density so as to create a moisture-impermeable external vapor barrier.
  • the vapor barrier and thermal break create substantially mold-resistant conditions within the wall structure.
  • hurricane proof modular building structure comprising a vapor proof wall section.
  • the building structure can include a poured concrete exterior modular wall section having a finished interior wall. It can be said that the hurricane proof modular building structure comprises a wall within a wall, providing both a thermal break and a moisture barrier.
  • a foam seal insulation system can be used to provide the thermal break, eliminating the need to use mechanical fasteners.
  • the wall structure is provided with both a plumbing entry and a plumbing discharge to permit indoor plumbing while also providing for ease of hook up and disconnect to enhance and facilitate mobility of the structures.
  • the plumbing entry and the plumbing discharge do not run through the building structure floor. Because the plumbing entry and discharge can be positioned to run above the floor, and through the exterior wall (as opposed to through the floor), there is no need to utilize a “knock-out” portion of the floor during plumbing installation at the site.
  • the present invention provides a wall structure that includes a space defined by the steel studs and the concrete walls, as well as insulation between the steel studs and the interior drywall, in order to create a thermal break.
  • the concrete provides a built-in, external vapor barrier. The combination of the vapor barrier and the thermal break serves to eliminate conditions that allow mold to form, such as mold that results from moisture and temperature change-induced condensation.
  • roof structure 16 is supported by structural steel make beam 72 embedded on a light track 74 and cross beam steel joist 75 , joined by steel angles 76 , which support roofing materials, such as corrugated deck pan 78 .
  • a roofing material 80 e.g., EPDM
  • roofing material 80 and deck pan 78 are a layer (e.g., 2 inches in thickness) of insulation material (e.g., polyiso) to provide additional insulation and heat retention within structure 10 .
  • insulation material e.g., polyiso
  • FIG. 7 is a perspective view of a plurality of hurricane proof modular building structures 10 a - c showing both their modularity and stackability.
  • the modular building structures shown include a combination of industry-desired characteristics including hurricane force wind resistance, relocateability, modularity, fire and heat resistance, mold resistance and substantial concrete construction.
  • the hurricane proof modular building structure is suitable for human use or habitation.
  • the structures are formed into a modular building structure arrangement that is two stories high and two structures wide. However, it is contemplated that other arrangements could be of different height or width, as applications vary and conditions so dictate.
  • the concealed interior slope for drainage, coupled with external load-bearing vertical wall members results in a design that provides for such stackability to create multi-story modular buildings.
  • beveled edge drywall panels are used and fasteners are covered with spackle.
  • a specially-designed paint and application system can be used to spray, for example, for colors at once over the walls to provide a suitable finish.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)

Abstract

Disclosed is a modular hurricane proof modular building structure. The structure includes a dual wall system that includes a rugged exterior constructed primarily of concrete and steel and a finished interior, with a thermal break in-between to prevent heat from the concrete and metallic structure from heating the interior surfaces. The thermal break also prevents moisture and water vapor transfer, and therefore, significantly reduces mold growth. The building combines the best of industry desired characteristics in a single modular constructed building, combining hurricane force wind resistance, relocateability, modularity, fire and heat resistance, mold resistance and substantial concrete construction.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a nonprovisional of U.S. Patent Application Ser. No. 60/506,498, filed Sep. 26, 2003, which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • This invention relates generally to modular building systems, and more particularly to hurricane proof modular building structures.
  • Increasingly, states that are confronted with the possibility of tropical storms and hurricanes have promulgated safety standards in the construction of certain buildings aimed at minimizing damage to those buildings in hurricane-type situations, in effect requiring the buildings to be “hurricane proof” to the extent possible, to for example, withstand extremely high level winds and high velocity projectiles that are associated with such wind levels. In response, the industry has moved towards concrete construction. In the modular building industry, it is a continuing design goal to meet or exceed the state imposed construction parameters for hurricane-resistance, and at the same time maintain a level of portability for the modularly constructed buildings.
  • Modularly constructed building structures are advantageous in that they provide shelter from the elements in which a variety of activities can be housed, and are relatively easily transported from one locale to another. Moreover, such structures can typically be assembled in stackable sections, or sections placed side-by-side (i.e., the sections are positioned adjacent each other), right on site after being transported. Modular building structures can be used for production of single and multi-unit or multi-family homes, as well as apartments, condominiums, classrooms, general offices, medical facilities, commercial buildings and the like.
  • Further, in the modular building structure industry, there are increasing requirements and market forces aimed at improving the structure resistance to mold and combustion. It has been found that there is a need for a modular building with substantial concrete construction, therefore meeting the hurricane-proof requirements, as well as providing a fire-resistant (or non-combustible) structure with mold-resistant characteristics.
  • One construction technique to address the above includes building a wall within a wall. However, such a procedure promotes heat transfer and moisture/vapor transfer that leads to mold growth. A need exists to improve the wall within a wall construction to create thermal barriers and moisture/vapor barriers.
  • Many modular building structures are custom designed. However, building structures can also be designed according to standard or pre-fabricated building templates as well. Today's modular building structures are computer-engineered to meet national building codes. They can be precisely engineered for increased structural durability. High quality can be maintained by inspection during construction process. In one construction example, a modular building structure is delivered to a desired site, after which individual modular structures or “modules” are assembled into an overall modular building structure.
  • In general, the metrics of building construction costs break out on a per square foot basis. It is a continuous goal to reduce the construction costs of the modular structures. To this end, it would be desirable to provide a modular building structure that, while meeting all applicable building codes and other standards, is simpler to construct than known modular building structures. For example, a building structure comprising fewer pieces, parts or other components in its construction is desirable. Similarly, material selection for such modular building structures is key, in that the material type and placement can result in a building structure of having a greater useful life and durability.
  • It would also be desirable to use stronger and more durable modules or substructures in making the overall modular building structure. This can lead to a decrease in the number of supports or braces in a given area, thereby reducing modular building structure costs on a square foot basis.
  • Accordingly, it would be desirable to provide a modular building structure that combines the best of industry desired characteristics in a single modular constructed building, combining hurricane force wind resistance, relocateability, modularity, fire and heat resistance, mold resistance and substantial concrete construction.
  • SUMMARY OF THE INVENTION
  • This invention relates generally to a hurricane proof modular building structure, and more specifically to a hurricane proof modular building structure that has a combination of hurricane force wind resistance, relocateability, modularity, fire and heat resistance, mold resistance and substantial concrete construction.
  • In one aspect of the invention, a hurricane proof modular building structure is disclosed. The building structure includes a floor structure for use in a hurricane proof modular building structure. The floor structure includes: a first floor structure portion and a second floor structure portion each comprising: a plurality of metal support structures; a non-composite deck disposed on top of the support structures; and a metal cross-member connected to the metal support structures. The first and second metal cross members are in opposing, spaced apart relationship with respect to each other to define a floor seam that permits separation of the floor structure along the floor seam;
  • The building also includes a wall structure comprising: an outer concrete layer; a plurality of metal studs spaced apart from each other and positioned adjacent to, but separated from, the concrete layer, to create metal stud-concrete layer thermal gaps; a first insulation layer located between the plurality of metal studs and adjacent the concrete layer; a second insulation layer positioned adjacent the first insulation layer; and a mold resistant layer located adjacent the second insulation layer. The plurality of thermal gaps and at least one of the first and the second insulation layers create a thermal break. The structure also includes a roof structure, the roof structure comprising: a roof portion having load-bearing perimeter; and an inclined roof comprising opposing slanted portions reaching a central apex such that the apex of the slanted portions does not extend above the load-bearing perimeter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention are disclosed with reference to the accompanying drawings and are for illustrative purposes only. The invention is not limited in its application to the details of construction or the arrangement of the components illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in other various ways. Like reference numerals are used to indicate like components.
  • FIG. 1 is a perspective view of one embodiment of a hurricane proof modular building structure according to one aspect of the present invention;
  • FIG. 2 is top view illustrating a floor plan of the hurricane proof modular building structure of FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 1;
  • FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 1;
  • FIG. 5 is an enlarged detailed view of a portion of the hurricane proof modular building structure shown in FIG. 4;
  • FIG. 6 is an enlarged detailed view of a portion of the hurricane proof modular building structure taken along line 6-6 of FIG. 2; and
  • FIG. 7 is a perspective view of a plurality of hurricane proof modular building structures showing their modularity and stackability.
  • DETAILED DESCRIPTION
  • FIG. 1 is a perspective view of one embodiment of a hurricane proof modular building structure 10 according to one aspect of the present invention. By “hurricane proof” it is meant that the structure is built to withstand and be resistant to high winds (e.g., tropical storm level winds up to about 75 mph, hurricane force winds from about 75 mph up to about 150 mph, and the like). The structure is “modular” in that the structure is designed an built with standardized units or dimensions so as to promote ease of assembly and repair. As will be described in greater detail below, each such structure is built from prefabricated and standardized parts and/or component pieces. Various applications are intended and contemplated for the structure shown, and these include: single and multi-unit or multi-family homes, as well as apartments, condominiums, support facilities, general offices, medical facilities, light manufacturing, commercial buildings and the like, although, in a preferred embodiment, the structure can be used for a classroom. In a typical construction, the modular building structure can include such features as door 12 and windows 14, replicating features found in permanent building structures.
  • As shown, the structure 10 is generally rectangular, although other shapes are contemplated and considered within the scope of the present invention. Structure 10 includes a roof structure 16 that typically inclined downwardly from a roof centerline or apex 18 to promote drainage of water off of or away from the roof via, as shown, drainage pipes 20 to a grounded location. The structure shown represents a combination of two half modular sections placed together and connected (as will be shown and described in following) in side-by-side fashion along line 22 after being delivered to the site of use. The structure shown and described herein represents a culmination of a transition or trend in the modular building marketplace towards what is referred to as “concrete construction”. Accordingly, in one embodiment, the structure includes walls 24 that is a poured concrete wall. The walls, notwithstanding the windows, renders the structure substantially bullet-proof.
  • The structure 10 is constructed for several design parameters, for example, the floor structure 36 of FIG. 5 is designed for a 50 PSF live load; roof structure 16 is designed for a 30 PSF live load snow-to-ground load; and the overall structure 10 is designed to withstand an overall wind speed of 150 mph, and a class C wind exposure.
  • Advantageously, structure 10 (i.e., both its exterior and in its interior) can be delivered to a site as a substantially complete module (i.e., about 95% finished). This results in a cost reduction for the user, and decreases time to use (e.g., on the order of about a day or two) from the time of delivery of module structure 10 to the site of use.
  • FIG. 2 is top view illustrating a floor plan of the hurricane proof modular building structure of FIG. 1. Doors 12 are shown in an open position. Centerline 22 delineates the location at which the two half modular sections 26 a-b are combined to create the overall building structure 10. One advantage of this structure design is that each of the sections 26 a-b are easily transported to a specified location. For example, each of the half structures can be brought separately (e.g., via truck) to a job site. In addition, each of the structures 26 a-b can be used in locations that would otherwise be inaccessible due to the need to previously transport structure as a whole. Walls 24 define structure interior portions 28 a-b. Because of the high level of structural support provided by walls 24, portions 28 a-b are “open-concept” in that other structure support members (e.g., beams, pillars, etc.) are not required. Therefore, a variety of uses can be accomplished within the interior, and the interior is highly adaptable to such uses.
  • FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 1, showing the building structure 10, and in particular, illustrating a recessed roof structure 16, the roof structure supported by walls 24, connected to a floor structure 40. Roof structure 16 comprises a raised roof portion 30 defining load-bearing perimeter, and further including an inclined roof 32 comprising two opposing slanted roof portions 34 a-b. The roof portions are opposingly sloped or pitched so as to reach or define a central apex 35, which coincides with a roof centerline 18. The apex of the slanted portions 34 a-b does not extend above the load-bearing perimeter of the roof portion 30, thereby permitting or facilitating stacking of at least one additional modular building structure of similar size and shape thereon. Stated another way, the inclined roof first and second opposingly inclined roof structure portions are in spaced apart relationship with respect to each other to define a roof seam that permits separation of the inclined roof along the seam. Since the raised roof portion is preferably substantially level, and since the roof is recessed from the raised roof portion, dual benefits are achieved. Namely, stacking of a plurality of modular structures is facilitated, while simultaneously permitting drainage along the two opposing slanted portions away from the structure itself.
  • FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 1 showing interior portions 28 a-b of half modular sections 26 a-b. Although structures 26 a-b are separate and distinct, they are joined to form a single unit in a cohesive fashion, for example, by common interior finishing of walls 33 and drop ceiling 37. In this way, interior portions 28 a-b can be used to create a single interior space.
  • FIG. 5 is an enlarged detailed view of a portion of the hurricane proof modular building structure shown in FIG. 4. Specifically, a floor structure 36 for use in the hurricane proof modular building structure 10 is shown. The floor structure comprises a first floor structure portion 38 having a plurality of metal support structures 40 (e.g., steel I-beams), one of which is shown, and a non-composite deck 42 disposed on top of the support structures 40. The first floor structure portion 38 includes a metal cross-member 44 connected to the metal support structures. The floor structure 36 also includes a second floor structure portion 46 having a second plurality of metal support structures 48 (again, one of which is shown) and a second non-composite deck 50 disposed on top of the support structures 48. The second floor structure portion 46 also includes a second metal cross-member 52 connected to the metal support structures 48. The first and second metal cross members are in opposing, spaced apart relationship with respect to each other so as to define a floor seam 54 that permits separation of the floor structure along the floor seam or channel. The seam or channel 54 can be bridged using, for example, a lightweight concrete deck. The non-composite deck can comprise, by way example, a 24 gauge galvanized steel. The floor structure can be finished by including a concrete deck 43 over the non-composite deck.
  • Advantageously, the inventive floor structure results in a hurricane proof modular building structure that does not comprise a knockout floor section. “Knockout” sections are typically used during the installation of indoor plumbing. “Knockout sections” are sections that are removable prior to such installation (e.g., at the site), and then following installation, the sections are re-poured, for example, with a concrete material.
  • FIG. 6 is an enlarged detailed view of a portion of the hurricane proof modular building structure taken along line 6-6 of FIG. 2. Referring now to FIGS. 5 and 6, a wall structure 56 for use in the inventive hurricane proof modular building structure 10 (FIG. 5) is shown in detail. The wall structure comprises an outer concrete layer 58 and a plurality of metal studs 60 spaced apart from each other and positioned adjacent to, but separated from, the concrete layer to create metal stud-concrete layer thermal gaps 62. The wall structure 56 further includes a first insulation layer 64 located between the plurality of metal studs 60 and adjacent the concrete layer 58. A second insulation layer 66 is positioned adjacent the first insulation layer 64 and a mold resistant layer 68 is located adjacent the second insulation layer 66. The plurality of thermal gaps 62 and at least one of the first and the second insulation layers 64, 66 are utilized to create a thermal break 70, and a plurality of thermal breaks are included in the structure. Typically, the concrete layer 58 is of prescribed thickness and density so as to create a moisture-impermeable external vapor barrier. And the vapor barrier and thermal break create substantially mold-resistant conditions within the wall structure. Advantageously, hurricane proof modular building structure comprising a vapor proof wall section. The building structure can include a poured concrete exterior modular wall section having a finished interior wall. It can be said that the hurricane proof modular building structure comprises a wall within a wall, providing both a thermal break and a moisture barrier. In one embodiment, a foam seal insulation system can be used to provide the thermal break, eliminating the need to use mechanical fasteners.
  • Advantageously, the wall structure is provided with both a plumbing entry and a plumbing discharge to permit indoor plumbing while also providing for ease of hook up and disconnect to enhance and facilitate mobility of the structures. In such embodiments, it can be said that the plumbing entry and the plumbing discharge do not run through the building structure floor. Because the plumbing entry and discharge can be positioned to run above the floor, and through the exterior wall (as opposed to through the floor), there is no need to utilize a “knock-out” portion of the floor during plumbing installation at the site.
  • The present invention provides a wall structure that includes a space defined by the steel studs and the concrete walls, as well as insulation between the steel studs and the interior drywall, in order to create a thermal break. The concrete provides a built-in, external vapor barrier. The combination of the vapor barrier and the thermal break serves to eliminate conditions that allow mold to form, such as mold that results from moisture and temperature change-induced condensation.
  • Referring to FIG. 5, roof structure 16 is supported by structural steel make beam 72 embedded on a light track 74 and cross beam steel joist 75, joined by steel angles 76, which support roofing materials, such as corrugated deck pan 78. A roofing material 80 (e.g., EPDM) may be applied over the deck pan 78. Between roofing material 80 and deck pan 78 is a layer (e.g., 2 inches in thickness) of insulation material (e.g., polyiso) to provide additional insulation and heat retention within structure 10. The advantage of using a steel I-beam, as opposed to, for example, a cast concrete I-beam, provides for a reduced-weight construction, which enhances portability of the structures.
  • FIG. 7 is a perspective view of a plurality of hurricane proof modular building structures 10 a-c showing both their modularity and stackability. The modular building structures shown include a combination of industry-desired characteristics including hurricane force wind resistance, relocateability, modularity, fire and heat resistance, mold resistance and substantial concrete construction. The hurricane proof modular building structure is suitable for human use or habitation. As shown, the structures are formed into a modular building structure arrangement that is two stories high and two structures wide. However, it is contemplated that other arrangements could be of different height or width, as applications vary and conditions so dictate. As referenced previously, the concealed interior slope for drainage, coupled with external load-bearing vertical wall members results in a design that provides for such stackability to create multi-story modular buildings.
  • Preferably, in order to eliminate the need for battens to conceal joints and mechanical fasteners, beveled edge drywall panels are used and fasteners are covered with spackle. A specially-designed paint and application system can be used to spray, for example, for colors at once over the walls to provide a suitable finish.
  • The present invention combines multiple beneficial features in one composite structure. While the present invention has been described in terms of the preferred embodiment, it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

Claims (20)

1. A floor structure for use in a hurricane proof modular building structure, the floor structure comprising:
a first floor structure portion comprising:
a plurality of metal support structures;
a non-composite deck disposed on top of the support structures; and
a metal cross-member connected to the metal support structures; and
a second floor structure portion comprising:
a second plurality of metal support structures;
a second non-composite deck disposed on top of the support structures; and
a second metal cross-member connected to the metal support structures; wherein the first and second metal cross members are in opposing, spaced apart relationship with respect to each other to define a floor seam that permits separation of the floor structure along the floor seam.
2. The floor structure of claim 1 wherein the first and second floor structure portions do not include either a plumbing entry or a plumbing discharge.
3. The floor structure of claim 1 wherein the first and second floor structure portions do not include any knockout sections.
4. The floor structure of claim 1 wherein the floor structure is designed for a 50 PSF live load.
5. The floor structure of claim 1 further comprising a concrete deck layer formed over the non-composite deck.
6. A wall structure for use in a hurricane proof modular building structure, the wall structure comprising:
an outer concrete layer;
a plurality of metal studs spaced apart from each other and positioned adjacent to, but separated from, the concrete layer, to create metal stud-concrete layer thermal gaps;
a first insulation layer located between the plurality of metal studs and adjacent the concrete layer;
a second insulation layer positioned adjacent the first insulation layer; and
a mold resistant layer located adjacent the second insulation layer;
wherein the plurality of thermal gaps and at least one of the first and the second insulation layers create a thermal break.
7. The wall structure of claim 6 wherein the concrete layer is of prescribed thickness and density so as to create a moisture-impermeable external vapor barrier.
8. The wall structure of claim 7 wherein the vapor barrier and thermal break create substantially mold-resistant conditions within the wall structure.
9. A roof structure for use in a hurricane proof modular building structure, the roof structure comprising:
a roof portion having load-bearing perimeter;
an inclined roof comprising opposing slanted portions reaching a central apex such that the apex of the slanted portions does not extend above the load-bearing perimeter.
10. The roof structure of claim 9, wherein the inclined roof further comprises first and second opposingly inclined roof structure portions that are in spaced apart relationship with respect to each other to define a roof seam that permits separation of the inclined roof along the roof seam.
11. The roof structure of claim 9 wherein the load-bearing perimeter roof portion permits stacking of a plurality of roof structures and drainage along the two opposing slated portions.
12. The roof structure of claim 9 wherein the first and second roof portions are disposed below the perimeter so as to receive another modular structure thereon.
13. The roof structure of claim 9 wherein the roof structure is designed for a 30 PSF live load snow-to-ground load.
14. A hurricane proof modular building structure comprising:
a floor structure for use in a hurricane proof modular building structure, the floor structure comprising:
a first floor structure portion comprising:
a plurality of metal support structures;
a non-composite deck disposed on top of the support structures; and
a metal cross-member connected to the metal support structures; and
a second floor structure portion comprising:
a second plurality of metal support structures;
a second non-composite deck disposed on top of the support structures; and
a second metal cross-member connected to the metal support structures;
wherein the first and second metal cross members are in opposing, spaced apart relationship with respect to each other to define a floor seam that permits separation of the floor structure along the floor seam;
a wall structure for use in a hurricane proof modular building structure, the wall structure comprising:
an outer concrete layer;
a plurality of metal studs spaced apart from each other and positioned adjacent to, but separated from, the concrete layer, to create metal stud-concrete layer thermal gaps;
a first insulation layer located between the plurality of metal studs and adjacent the concrete layer;
a second insulation layer positioned adjacent the first insulation layer; and
a mold resistant layer located adjacent the second insulation layer;
wherein the plurality of thermal gaps and at least one of the first and the second insulation layers create a thermal break; and
a roof structure for use in a hurricane proof modular building structure, the roof structure comprising:
a roof portion having load-bearing perimeter;
an inclined roof comprising opposing slanted portions reaching a central apex such that the apex of the slanted portions does not extend above the load-bearing perimeter.
15. The hurricane proof modular building structure of claim 14 a thermal break and a moisture barrier.
16. The hurricane proof modular building structure of claim 14 further comprising a poured concrete exterior modular wall that can withstand a wind speed of at least 150 mph.
17. The hurricane proof modular building structure of claim 14 wherein the building is suitable for human use or habitation.
18. The hurricane proof modular building structure of claim 14 wherein the wall structure further comprises a plumbing entry and a plumbing discharge, and wherein the plumbing entry and the plumbing discharge run through at least one of the wall layers.
19 The hurricane proof modular building structure of claim 14 wherein the wall structure further comprises a plumbing entry and a plumbing discharge, and wherein the plumbing entry and the plumbing discharge does not run through a floor.
20. The hurricane proof modular building structure of claim 14 wherein the building structure has a combination of hurricane force wind resistance, relocateability, modularity, fire and heat resistance, mold resistance and substantial concrete construction.
US10/943,667 2003-09-26 2004-09-17 Hurricane proof modular building structure Abandoned US20050066589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/943,667 US20050066589A1 (en) 2003-09-26 2004-09-17 Hurricane proof modular building structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50649803P 2003-09-26 2003-09-26
US10/943,667 US20050066589A1 (en) 2003-09-26 2004-09-17 Hurricane proof modular building structure

Publications (1)

Publication Number Publication Date
US20050066589A1 true US20050066589A1 (en) 2005-03-31

Family

ID=34381248

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/943,667 Abandoned US20050066589A1 (en) 2003-09-26 2004-09-17 Hurricane proof modular building structure

Country Status (1)

Country Link
US (1) US20050066589A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100083607A1 (en) * 2008-10-06 2010-04-08 Charles Roig Wind Force Resistant Structure
US20110083379A1 (en) * 2007-08-14 2011-04-14 Peer Moshe Lavi Prefabricated sealed room assembly
US20150233108A1 (en) * 2014-03-26 2015-08-20 Ii Richard John Eggleston Stackable tower shaft wall stair unit and method
US9611637B2 (en) * 2013-04-15 2017-04-04 Matthew Dynon Prefabricated foldable building module
USD844172S1 (en) * 2017-06-21 2019-03-26 Kwikspace Guam Modular building
USD844174S1 (en) * 2017-07-12 2019-03-26 Kwikspace Guam Modular building
USD844173S1 (en) * 2017-06-21 2019-03-26 Kwikspace Guam Modular building
USD844834S1 (en) * 2017-07-11 2019-04-02 Kwikspace Guam Modular building
USD844833S1 (en) * 2017-06-22 2019-04-02 Kwikspace Guam Modular building
USD844831S1 (en) * 2017-04-13 2019-04-02 Kwikspace Guam Modular building
USD844835S1 (en) * 2016-10-13 2019-04-02 Kwikspace Guam Modular building
USD844832S1 (en) * 2016-10-13 2019-04-02 Kwikspace Guam Modular building
USD844836S1 (en) * 2017-07-11 2019-04-02 Kwikspace Guam Modular building
USD844837S1 (en) * 2017-07-12 2019-04-02 Kwikspace Guam Modular building
USD845510S1 (en) * 2017-06-22 2019-04-09 Kwikspace Guam Modular building
USD845508S1 (en) * 2017-04-13 2019-04-09 Kwikspace Guam Modular building
WO2020056276A1 (en) * 2018-09-13 2020-03-19 Baker Engineering & Risk Consultants, Inc. Fragment-, overpressure-, radiation-, and toxic-resistant emergency safety shelter
JP2021134484A (en) * 2020-02-21 2021-09-13 三井住友建設株式会社 Construction method of building having rc structural skeleton
US11384524B2 (en) 2018-11-02 2022-07-12 United States Gypsum Company Below-grade modular assembly

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2499498A (en) * 1947-04-29 1950-03-07 Jr John Hays Hammond Mobile housing unit
US3596417A (en) * 1969-04-09 1971-08-03 Zachry Co H B Precast rooms
US5724774A (en) * 1994-07-22 1998-03-10 Rooney; James W. Modular building assembly and method of assembling the same
US5740643A (en) * 1995-08-24 1998-04-21 Huntley; Henry Fireproof building
US5890341A (en) * 1995-08-04 1999-04-06 Bridges; Robert E. Method of constructing a modular structure
US6038824A (en) * 1998-03-17 2000-03-21 Hamrick, Sr.; William T. Noncombustible transportable building
US6185891B1 (en) * 1999-07-07 2001-02-13 R-40 Homes, Inc. Hurricane resistant foam-concrete structural composite
US6202375B1 (en) * 1997-10-28 2001-03-20 Rolf Otto Kleinschmidt Method for concrete building system using composite panels with highly insulative plastic connector
US20010037615A1 (en) * 1998-07-30 2001-11-08 Jacqueline E. Hartt Prefabricated storm shelter and associated methods
US20010047628A1 (en) * 1999-12-21 2001-12-06 Roy Mouton Relocatable fire, storm and contaminant resistant modular building structures
US6330771B1 (en) * 2000-02-04 2001-12-18 Charles W. Hester, Jr. Safer school module and assembly
US20020069602A1 (en) * 2000-12-08 2002-06-13 Blanchet Paulin A. Hurricane resistant precast composite building system
US20020104287A1 (en) * 2001-02-02 2002-08-08 Sanger Wallace D. Concrete building module with module lifting means and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2499498A (en) * 1947-04-29 1950-03-07 Jr John Hays Hammond Mobile housing unit
US3596417A (en) * 1969-04-09 1971-08-03 Zachry Co H B Precast rooms
US5724774A (en) * 1994-07-22 1998-03-10 Rooney; James W. Modular building assembly and method of assembling the same
US5890341A (en) * 1995-08-04 1999-04-06 Bridges; Robert E. Method of constructing a modular structure
US5740643A (en) * 1995-08-24 1998-04-21 Huntley; Henry Fireproof building
US6202375B1 (en) * 1997-10-28 2001-03-20 Rolf Otto Kleinschmidt Method for concrete building system using composite panels with highly insulative plastic connector
US6038824A (en) * 1998-03-17 2000-03-21 Hamrick, Sr.; William T. Noncombustible transportable building
US20010037615A1 (en) * 1998-07-30 2001-11-08 Jacqueline E. Hartt Prefabricated storm shelter and associated methods
US6185891B1 (en) * 1999-07-07 2001-02-13 R-40 Homes, Inc. Hurricane resistant foam-concrete structural composite
US20010047628A1 (en) * 1999-12-21 2001-12-06 Roy Mouton Relocatable fire, storm and contaminant resistant modular building structures
US6330771B1 (en) * 2000-02-04 2001-12-18 Charles W. Hester, Jr. Safer school module and assembly
US20020069602A1 (en) * 2000-12-08 2002-06-13 Blanchet Paulin A. Hurricane resistant precast composite building system
US20020104287A1 (en) * 2001-02-02 2002-08-08 Sanger Wallace D. Concrete building module with module lifting means and method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110083379A1 (en) * 2007-08-14 2011-04-14 Peer Moshe Lavi Prefabricated sealed room assembly
US20100083607A1 (en) * 2008-10-06 2010-04-08 Charles Roig Wind Force Resistant Structure
US7941984B2 (en) 2008-10-06 2011-05-17 Charles Roig Wind force resistant structure
US9611637B2 (en) * 2013-04-15 2017-04-04 Matthew Dynon Prefabricated foldable building module
AU2014253661B2 (en) * 2013-04-15 2018-10-04 Matthew DYNON Prefabricated foldable building module
US20150233108A1 (en) * 2014-03-26 2015-08-20 Ii Richard John Eggleston Stackable tower shaft wall stair unit and method
US9249566B2 (en) * 2014-03-26 2016-02-02 Ii Richard John Eggleston Stackable tower shaft wall stair unit and method
USD844832S1 (en) * 2016-10-13 2019-04-02 Kwikspace Guam Modular building
USD844835S1 (en) * 2016-10-13 2019-04-02 Kwikspace Guam Modular building
USD844831S1 (en) * 2017-04-13 2019-04-02 Kwikspace Guam Modular building
USD845508S1 (en) * 2017-04-13 2019-04-09 Kwikspace Guam Modular building
USD844173S1 (en) * 2017-06-21 2019-03-26 Kwikspace Guam Modular building
USD844172S1 (en) * 2017-06-21 2019-03-26 Kwikspace Guam Modular building
USD845510S1 (en) * 2017-06-22 2019-04-09 Kwikspace Guam Modular building
USD844833S1 (en) * 2017-06-22 2019-04-02 Kwikspace Guam Modular building
USD844836S1 (en) * 2017-07-11 2019-04-02 Kwikspace Guam Modular building
USD844834S1 (en) * 2017-07-11 2019-04-02 Kwikspace Guam Modular building
USD844837S1 (en) * 2017-07-12 2019-04-02 Kwikspace Guam Modular building
USD844174S1 (en) * 2017-07-12 2019-03-26 Kwikspace Guam Modular building
WO2020056276A1 (en) * 2018-09-13 2020-03-19 Baker Engineering & Risk Consultants, Inc. Fragment-, overpressure-, radiation-, and toxic-resistant emergency safety shelter
US11274464B2 (en) * 2018-09-13 2022-03-15 Baker Engineering & Risk Consultants, Inc. Fragment-, overpressure-, radiation-, and toxic-resistant emergency safety shelter
US11384524B2 (en) 2018-11-02 2022-07-12 United States Gypsum Company Below-grade modular assembly
JP2021134484A (en) * 2020-02-21 2021-09-13 三井住友建設株式会社 Construction method of building having rc structural skeleton
JP7330118B2 (en) 2020-02-21 2023-08-21 三井住友建設株式会社 CONSTRUCTION METHOD FOR BUILDING HAVING RC FRAME

Similar Documents

Publication Publication Date Title
US20050066589A1 (en) Hurricane proof modular building structure
US9115504B2 (en) System for modular building construction
US4641468A (en) Panel structure and building structure made therefrom
US20160160515A1 (en) System for modular building construction
US20210301528A1 (en) Systems and methods for constructing a single-storey building
US6779314B1 (en) Structure formed of foaming cement and lightweight steel, and a structure system and method of forming the structure system
US20090013615A1 (en) Resin Knockdown House
US20210102378A1 (en) Building system and method utilizing integrated insulation, combination
US7895796B2 (en) Building system, building element and methods of construction
US20220205242A1 (en) Building system and method utilizing integrated insulation, method to construct wall panel
US20220049488A1 (en) Systems and methods for constructing a multi-storey building
US3149437A (en) Building construction
WO2011137478A1 (en) Elongate building panel improvement
US10494771B1 (en) Precast park refuge construction method and apparatus
WO2001055518A1 (en) Snap-screw steel frame and concrete building system
RU2819533C1 (en) Block-module of building structure (versions)
RU74403U1 (en) FULL ASSEMBLY FRAME BUILDING AND BINDING BEAM (TWO OPTIONS), DESIGNED FOR USE IN THIS BUILDING
WO2010015042A2 (en) Modular building construction system
JP2579712B2 (en) Roof terrace roof unit
WO2014042554A1 (en) Building consisting of light metal structures and sandwich panel used for constructing same
AU783400B2 (en) Building
RU2800657C2 (en) Modular building
GB2042043A (en) Building construction
GB2455360A (en) Timber-framed building structures
AU2005209578A1 (en) Building panels

Legal Events

Date Code Title Description
AS Assignment

Owner name: MILLER BUILDING SYSTEMS, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEDELL, RICK;MOSS, PAUL NEAL;REEL/FRAME:015817/0978

Effective date: 20040913

AS Assignment

Owner name: FIFTH THIRD BANK (CHICAGO), ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:MILLER BUILDING SYSTEMS, INC.;REEL/FRAME:017406/0257

Effective date: 20060331

AS Assignment

Owner name: CAPX III, LP, ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:MILLER BUILDING SYSTEMS, INC.;REEL/FRAME:017447/0317

Effective date: 20060331

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION