US20040261572A1 - Method for the purification of an aluminium alloy - Google Patents
Method for the purification of an aluminium alloy Download PDFInfo
- Publication number
- US20040261572A1 US20040261572A1 US10/488,042 US48804204A US2004261572A1 US 20040261572 A1 US20040261572 A1 US 20040261572A1 US 48804204 A US48804204 A US 48804204A US 2004261572 A1 US2004261572 A1 US 2004261572A1
- Authority
- US
- United States
- Prior art keywords
- stream
- aluminium alloy
- alloying element
- content
- downgrade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 44
- 238000000746 purification Methods 0.000 title claims abstract description 9
- 238000005275 alloying Methods 0.000 claims abstract description 44
- 238000001640 fractional crystallisation Methods 0.000 claims abstract description 41
- 239000002699 waste material Substances 0.000 claims abstract description 38
- 239000000654 additive Substances 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 230000000996 additive effect Effects 0.000 claims abstract description 24
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 20
- 238000000926 separation method Methods 0.000 claims abstract description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 32
- 239000000047 product Substances 0.000 description 24
- 229910052782 aluminium Inorganic materials 0.000 description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 239000004411 aluminium Substances 0.000 description 17
- 230000005496 eutectics Effects 0.000 description 15
- 229910052742 iron Inorganic materials 0.000 description 11
- 239000011572 manganese Substances 0.000 description 10
- 239000000356 contaminant Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000956 alloy Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/06—Obtaining aluminium refining
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/0084—Obtaining aluminium melting and handling molten aluminium
- C22B21/0092—Remelting scrap, skimmings or any secondary source aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/02—Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to a method for the purification of an aluminium alloy.
- a known method is fractional crystallisation, which can be applied to purify e.g. an aluminium alloy contaminated with an alloying element such as iron.
- fractional crystallisation an input stream of an aluminium alloy scrap material, which, for a certain alloying element or contaminant, is hypoeutectic in composition, is split into a first output stream or product stream of purified aluminium and a second output stream or downgrade stream, which is more contaminated with the contaminant than the input stream and has a composition closer to the eutectic composition for the contaminant.
- fractional crystallisation this is to be understood as comprising all forms of fractional crystallisation and all other purification methods starting from a hypoeutectic alloy, whereby the composition of the downgrade stream is determined by the eutectic composition of aluminium and an alloying element.
- a problem of fractional crystallisation is that the maximum content of contaminant in the downgrade stream is determined by the eutectic composition.
- the downgrade stream, having an increased Fe content is more than 25% of the input stream.
- the material of the product stream has a higher economic value than the material of the original aluminium alloy, whereas the material of the downgrade stream has a lower economic value.
- the loss in value of the higher contaminated downgrade stream, as compared to the value of the original aluminium alloy is not compensated by the increase of the economic value of the product stream.
- the demand in the market for the material of the downgrade stream from the fractional crystallisation process is fairly low, so if it would be produced in large amounts, the economic value thereof will drop fast. Therefore, the process of fractional crystallisation, or in fact any other separation process wherein the input waste stream results in a more purified and a more contaminated stream of eutectic or near eutectic composition is to date economically not feasible.
- An object of the invention is to provide a method for the purification of an aluminium alloy that is economically more feasible.
- This and other objects are achieved with a method for the purification of an aluminium alloy containing an alloying element or contaminant wherein the aluminium alloy is subjected to a fractional crystallisation process wherein at least the aluminium alloy is separated into a product stream having a content of the alloying element less than the content of the alloying element in the aluminium alloy and a downgrade stream having a content of the alloying element higher than the content of the alloying element in the aluminium alloy and wherein the downgrade stream is subjected to a process of separation of intermetallics wherein an additive is added to the downgrade stream to form a mixture containing aluminium-alloying element-additive intermetallics and from this mixture a waste stream and a recycle stream is separated which waste stream contains a higher content of the alloying element than the recycle stream and the recycle stream is at least partly fed into the fractional crystallisation process.
- the method according to the invention combines a hypoeutectic process, like fractional crystallisation (FC), with a hypereutectic process, like separation of intermetallics (SIM).
- the waste stream comprises solid Al-alloying element-additive intermetallics
- the recycle stream is basically a liquid aluminium stream containing less of the alloying element than the downgrade component.
- a frequently occurring alloying element is Fe.
- SIM processes are known in the art of metallurgy and comprises such processes as layer crystallisation, filtration, magnetic separation, hydro cyclonage and precipitation in molten salts.
- the downgrade stream of the FC process is used as an input stream for the SIM process.
- an additive is added.
- the additive is selected such that it effectively lowers the eutectic composition of the alloying element and aluminium such as the eutectic composition of Fe and aluminium.
- the downgrade stream of the fractional crystallisation process is made into a hypereutectic mixture by adding the additive thereto.
- the mixture is split into a waste stream with a high content of the additive and the alloying element and a recycle stream with a lower composition of the alloying element. This recycle stream is mixed with the input stream of the aluminium alloy.
- the method of the invention opens a new, much more economic, way to the purification of aluminium alloys, in particular suitable for aluminium alloys of a composition typical in the field of scrap recycling.
- the method of the invention uses the separation of intermetallics process to purify the downgrade of the PC process and the PC process to purify at least part of the product stream (recycle stream) of the SIM process.
- the fundamental impossibility to cross the eutectic for the FC process and the SIM process separately is circumvented by introducing a recycle loop in the process of the invention.
- The, nearer to the eutectic, downgrade stream of the FC process is made hypereutectic by adding the additive.
- The, nearer to the eutectic, product stream (recycle stream) of the SIM process is made hypoeutectic by diluting the additive through addition of aluminium alloy material to be purified.
- the result of the process is at least partial removal of the alloying element from the aluminium alloy with a small resulting waste stream with a content of the alloying element above eutectic.
- the method of the invention is therefore also referred to as cross-eutectic purification or XEP.
- the process of the invention only produces a small waste stream. Therefore, it does not suffer from the problems described above that the waste stream of each of the separate processes, SIM process and FC process, is large compared to the demand in the market. Hence, large-scale application of the process of the invention only to a small extent influences the value of the waste stream and the profitability of the total process.
- the mass balance of the process of the invention may limit the proportion of the product stream from the SIM process that can be fed back into the fractional crystallization process as recyle. Part of the liquid product stream then remains with the intermetallics formed. Preferably, at least part of the liquid aluminium is separated from the intermetallics in a subsequent separation process.
- a preferred embodiment is characterised in that the additive comprises at least one element chosen from Si, Mn, Cu, Co and Ni. These elements as additive, added either individually or in combination, easily form intermetallics with many alloying elements used in the aluminium industry and yield a high removal efficiency. This applies in particular but not restricted thereto when the alloying element to be removed is Fe.
- a further embodiment is characterised in that the additive comprises mainly Mn.
- the additive comprises mainly Mn.
- the invention is of particular interest in the event the alloying element is Fe.
- the Fe content in the aluminium alloy is less than 1.7 weight %, more preferably less than 1.5 weight %.
- the possible increase of Fe content in the downgrade stream of the FC process compared to the Fe content in the input stream is too low to make the overall process economically feasible.
- the Fe content in the aluminium alloy is more than 0.4 weight %, more preferably more than 0.5% Fe.
- Table 3 shows the result when our invention is applied to the scrap by adding an additive like manganese to the downgrade stream of the FC process and feeding back at least part of the product stream from the SIM process as recycle to the input of the FC process.
- the table shows that the waste is reduced to less than 17% of the input scrap mass. It is assumed that at least the intermetallic Al 6 [Fe, Mn] is formed.
- the waste according to Table 3, is about 17% of the input mass.
- the amount of recycle that can be fed back into the FC process is determined by mass balance consideration and in many cases does not comprise the total amount of product from the SIM-process.
- the amount of waste can be further reduced by further separating in a separate process aluminium, preferably in liquid form, from the intermetallics.
- FIG. 1 shows the principle of the invention
- FIG. 2 shows in a diagrammatic representation of an embodiment of the invention.
- FIG. 1 the basic processes of the method of the invention are enclosed by square 20 .
- the processes comprise a FC process, indicated by numeral 21 , and a SIM process, indicated by numeral 22 .
- Scrap to be cleaned indicated by numeral 23 is fed through a line 24 into the FC process 21 .
- the obtained purified product is indicated by numeral 25 and is removed from the FC process through line 26 .
- the downgrade 27 is exported from the FC process through line 28 and fed into the SIM process 22 through line 29 .
- a waste component 30 from the SIM process is taken from the SIM process through line 31 .
- Additive 32 is fed into the SIM process through line 33 .
- the recycle component 34 is taken from SIM process 22 through line 35 and fed into the FC process through line 36 .
- reference number 11 indicates a supply line through which a stream of an aluminium alloy, as scrap, preferably in molten form, containing an alloying element is fed to a first process vessel 12 in which the fractional crystallisation process is performed.
- This fractional crystallisation process may be chosen to be a known embodiment of fractional crystallisation.
- Connected to supply line 11 is a return line 13 the function of which will be described later.
- the supply line 11 and return line 13 merge into an input line 19 , which is coupled to process vessel 12 .
- the fractional crystallisation process the mixture of aluminium alloy and downgrade stream is separated into a product component, which is removed through product line 14 , and a residual component that is extracted from process vessel 12 through waste line 15 .
- the waste stream is fed through line 18 into a subsequent separation process 10 in which aluminium, in liquid or solid form, is separated from intermetallics.
- a subsequent separation process 10 in which aluminium, in liquid or solid form, is separated from intermetallics.
- the total combined process has as input-streams the stream of aluminium alloy to be cleaned, and the stream of additive and as output-stream the waste stream and the product component.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Acoustics & Sound (AREA)
- Physics & Mathematics (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
- Polyesters Or Polycarbonates (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- ing And Chemical Polishing (AREA)
- Processing Of Solid Wastes (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP20010203312 EP1288319B1 (en) | 2001-09-03 | 2001-09-03 | Method for the purification of an aluminium alloy |
| PCT/EP2002/009817 WO2003020991A1 (en) | 2001-09-03 | 2002-08-30 | Method for the purification of an aluminium alloy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20040261572A1 true US20040261572A1 (en) | 2004-12-30 |
Family
ID=8180872
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/488,042 Abandoned US20040261572A1 (en) | 2001-09-03 | 2002-08-30 | Method for the purification of an aluminium alloy |
Country Status (16)
| Country | Link |
|---|---|
| US (1) | US20040261572A1 (enExample) |
| EP (1) | EP1288319B1 (enExample) |
| JP (1) | JP4159989B2 (enExample) |
| KR (1) | KR20040029145A (enExample) |
| CN (1) | CN1257293C (enExample) |
| AT (1) | ATE270348T1 (enExample) |
| CA (1) | CA2459252A1 (enExample) |
| DE (1) | DE60104114T2 (enExample) |
| ES (1) | ES2222309T3 (enExample) |
| NO (1) | NO20041401L (enExample) |
| NZ (1) | NZ531655A (enExample) |
| PL (1) | PL197423B1 (enExample) |
| RU (1) | RU2293128C2 (enExample) |
| UA (1) | UA75725C2 (enExample) |
| WO (1) | WO2003020991A1 (enExample) |
| ZA (1) | ZA200401717B (enExample) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080000326A1 (en) * | 2004-03-19 | 2008-01-03 | Corus Technology Bv | Method for the Purification of a Molten Metal |
| US7419530B2 (en) | 2002-07-05 | 2008-09-02 | Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft | Method for fractional crystallisation of a molten metal |
| US7442228B2 (en) | 2001-10-03 | 2008-10-28 | Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft | Method and device for controlling the proportion of crystals in a liquid-crystal mixture |
| US7537639B2 (en) | 2003-11-19 | 2009-05-26 | Aleris Switzerland Gmbh | Method of cooling molten metal during fractional crystallisation |
| US20090285716A1 (en) * | 2006-06-23 | 2009-11-19 | Alcan Rhenalu | Process for recycling aluminium alloy scrap coming from the aeronautical industry |
| US20090301259A1 (en) * | 2006-06-22 | 2009-12-10 | Aleris Switzerland Gmbh | Method for the separation of molten aluminium and solid inclusions |
| US20090308203A1 (en) * | 2006-07-07 | 2009-12-17 | Aleris Switzerland Gmbh C/O K+P Treuhandgesellschaft | Method and device for metal purification and separation of purified metal from metal mother liquid such as aluminium |
| US7648559B2 (en) | 2002-07-05 | 2010-01-19 | Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft | Method for fractional crystallisation of a metal |
| US20100024602A1 (en) * | 2006-06-28 | 2010-02-04 | Aleris Switzwerland Gmbh | Crystallisation method for the purification of a molten metal, in particular recycled aluminium |
| WO2019035909A1 (en) * | 2017-08-16 | 2019-02-21 | Alcoa Usa Corp. | PROCESSES FOR RECYCLING AND PURIFYING ALUMINUM ALLOYS |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL1023009C2 (nl) * | 2003-03-25 | 2004-09-30 | Univ Delft Tech | Werkwijze voor het winnen van een metaal uit een mengsel. |
| CN102586623B (zh) * | 2012-03-16 | 2014-01-15 | 南南铝业股份有限公司 | 高纯铝的提取方法和设备 |
| CN102732754B (zh) * | 2012-06-07 | 2014-03-12 | 包头铝业有限公司 | 低含量铝基合金分离浓缩与提纯工艺及系统 |
| CN105274357A (zh) * | 2015-11-24 | 2016-01-27 | 重庆汇程铝业有限公司 | 一种铝合金精炼装置 |
| JP6667485B2 (ja) * | 2017-10-20 | 2020-03-18 | 株式会社豊田中央研究所 | Al合金の再生方法 |
| CN115283593B (zh) * | 2022-08-18 | 2024-06-25 | 重庆新钰立金属科技有限公司 | 一种发电机油箱框铝锻件的成型方法 |
Citations (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1562090A (en) * | 1923-11-08 | 1925-11-17 | Aluminum Co Of America | Electrolytic cell |
| US1938101A (en) * | 1931-08-11 | 1933-12-05 | Arthur E Hall | Metal refining process |
| US3211547A (en) * | 1961-02-10 | 1965-10-12 | Aluminum Co Of America | Treatment of molten aluminum |
| US3296811A (en) * | 1963-12-20 | 1967-01-10 | Phillips Petroleum Co | Fractional crystallization melt control responsive to product composition |
| US3303019A (en) * | 1964-04-23 | 1967-02-07 | Aluminum Co Of America | Purification of aluminum |
| US3308666A (en) * | 1963-04-29 | 1967-03-14 | Cook Electric Co | High temperature measuring devices |
| US3671229A (en) * | 1968-12-06 | 1972-06-20 | Pechiney | Process for purification of metals |
| US3839019A (en) * | 1972-09-18 | 1974-10-01 | Aluminum Co Of America | Purification of aluminum with turbine blade agitation |
| US3840364A (en) * | 1972-01-28 | 1974-10-08 | Massachusetts Inst Technology | Methods of refining metal alloys |
| US4043802A (en) * | 1974-09-30 | 1977-08-23 | Commonwealth Scientific And Industrial Research Organization | Continuous reflux refining of metals |
| US4050683A (en) * | 1976-05-25 | 1977-09-27 | Klockner-Werke Ag | Smelting plant and method |
| US4099965A (en) * | 1975-09-26 | 1978-07-11 | Servimetal | Method of using MgCl2 -KCl flux for purification of an aluminum alloy preparation |
| US4133517A (en) * | 1974-09-30 | 1979-01-09 | Commonwealth Scientific And Industrial Research Organization | Continuous reflux refining of metals |
| US4222830A (en) * | 1978-12-26 | 1980-09-16 | Aluminum Company Of America | Production of extreme purity aluminum |
| US4239606A (en) * | 1979-12-26 | 1980-12-16 | Aluminum Company Of America | Production of extreme purity aluminum |
| US4305763A (en) * | 1978-09-29 | 1981-12-15 | The Boeing Company | Method of producing an aluminum alloy product |
| US4411747A (en) * | 1982-08-30 | 1983-10-25 | Aluminum Company Of America | Process of electrolysis and fractional crystallization for aluminum purification |
| US4456480A (en) * | 1982-03-30 | 1984-06-26 | Pechiney | Process for purifying metals by segregation |
| US4581062A (en) * | 1984-05-17 | 1986-04-08 | Aluminium Pechiney | Process for the continuous purification of metals by fractional crystallization on a rotary drum |
| US4736314A (en) * | 1984-11-19 | 1988-04-05 | Alfa-Laval Food & Dairy Engineering Ab | Measuring the content of crystals |
| US4744823A (en) * | 1986-01-06 | 1988-05-17 | Aluminum Pechiney | Process for the purification of metals by fractional crystallisation |
| US4781771A (en) * | 1980-10-16 | 1988-11-01 | Unitika Ltd. | Amorphous Co-based metal filaments and process for production of the same |
| US5160532A (en) * | 1991-10-21 | 1992-11-03 | General Electric Company | Direct processing of electroslag refined metal |
| US5221377A (en) * | 1987-09-21 | 1993-06-22 | Aluminum Company Of America | Aluminum alloy product having improved combinations of properties |
| US5312498A (en) * | 1992-08-13 | 1994-05-17 | Reynolds Metals Company | Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness |
| US5573574A (en) * | 1993-07-22 | 1996-11-12 | Aluminium Pechiney | Electrorefined aluminium with a low content of uranium, thorium and rare earths |
| US5741348A (en) * | 1995-05-31 | 1998-04-21 | Hoogovens Aluminium Bv | Method for refining an aluminium scrap smelt |
| US5968223A (en) * | 1993-07-13 | 1999-10-19 | Eckert; C. Edward | Method for heating molten metal using heated baffle |
| US6143070A (en) * | 1998-05-15 | 2000-11-07 | The United States Of America As Represented By The Secretary Of The Air Force | Silicon-germanium bulk alloy growth by liquid encapsulated zone melting |
| US6224648B1 (en) * | 1996-12-18 | 2001-05-01 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method and device for separating metals and/or metal alloys of different melting points |
| US6290900B1 (en) * | 1998-03-13 | 2001-09-18 | Denso Corporation | Molten metal vessel for filtering impurities |
| US6355085B1 (en) * | 1996-02-07 | 2002-03-12 | Centre National De La Recherche Scientifique | Method and device for separating particles from an electrically conductive liquid flow using electromagnetic forces |
| US6972110B2 (en) * | 2000-12-21 | 2005-12-06 | Alcoa Inc. | Aluminum alloy products having improved property combinations and method for artificially aging same |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5912731B2 (ja) * | 1978-10-05 | 1984-03-26 | 株式会社神戸製鋼所 | アルミニウム又はアルミニウム合金の精製法 |
| JPS60234930A (ja) * | 1984-05-07 | 1985-11-21 | Toyota Motor Corp | アルミニウム合金の鉄分低減方法 |
| EP0375308A1 (en) * | 1988-12-22 | 1990-06-27 | Alcan International Limited | Process and apparatus for producing high purity aluminum |
| RU2041292C1 (ru) * | 1991-04-15 | 1995-08-09 | Акционерное общество "Красалькор" | Способ получения алюминия особой чистоты |
| JP3329013B2 (ja) * | 1993-09-02 | 2002-09-30 | 日本軽金属株式会社 | Al−Si系アルミニウムスクラップの連続精製方法及び装置 |
-
2001
- 2001-09-03 ES ES01203312T patent/ES2222309T3/es not_active Expired - Lifetime
- 2001-09-03 EP EP20010203312 patent/EP1288319B1/en not_active Expired - Lifetime
- 2001-09-03 AT AT01203312T patent/ATE270348T1/de not_active IP Right Cessation
- 2001-09-03 DE DE2001604114 patent/DE60104114T2/de not_active Expired - Fee Related
-
2002
- 2002-08-30 RU RU2004110030A patent/RU2293128C2/ru not_active IP Right Cessation
- 2002-08-30 US US10/488,042 patent/US20040261572A1/en not_active Abandoned
- 2002-08-30 UA UA2004042505A patent/UA75725C2/uk unknown
- 2002-08-30 CN CNB02819375XA patent/CN1257293C/zh not_active Expired - Fee Related
- 2002-08-30 KR KR10-2004-7003175A patent/KR20040029145A/ko not_active Ceased
- 2002-08-30 JP JP2003525689A patent/JP4159989B2/ja not_active Expired - Fee Related
- 2002-08-30 CA CA 2459252 patent/CA2459252A1/en not_active Abandoned
- 2002-08-30 WO PCT/EP2002/009817 patent/WO2003020991A1/en not_active Ceased
- 2002-08-30 NZ NZ531655A patent/NZ531655A/en unknown
- 2002-08-30 PL PL367791A patent/PL197423B1/pl not_active IP Right Cessation
-
2004
- 2004-03-02 ZA ZA200401717A patent/ZA200401717B/en unknown
- 2004-04-02 NO NO20041401A patent/NO20041401L/no not_active Application Discontinuation
Patent Citations (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1562090A (en) * | 1923-11-08 | 1925-11-17 | Aluminum Co Of America | Electrolytic cell |
| US1938101A (en) * | 1931-08-11 | 1933-12-05 | Arthur E Hall | Metal refining process |
| US3211547A (en) * | 1961-02-10 | 1965-10-12 | Aluminum Co Of America | Treatment of molten aluminum |
| US3308666A (en) * | 1963-04-29 | 1967-03-14 | Cook Electric Co | High temperature measuring devices |
| US3296811A (en) * | 1963-12-20 | 1967-01-10 | Phillips Petroleum Co | Fractional crystallization melt control responsive to product composition |
| US3303019A (en) * | 1964-04-23 | 1967-02-07 | Aluminum Co Of America | Purification of aluminum |
| US3671229A (en) * | 1968-12-06 | 1972-06-20 | Pechiney | Process for purification of metals |
| US3840364A (en) * | 1972-01-28 | 1974-10-08 | Massachusetts Inst Technology | Methods of refining metal alloys |
| US3839019A (en) * | 1972-09-18 | 1974-10-01 | Aluminum Co Of America | Purification of aluminum with turbine blade agitation |
| US4043802A (en) * | 1974-09-30 | 1977-08-23 | Commonwealth Scientific And Industrial Research Organization | Continuous reflux refining of metals |
| US4133517A (en) * | 1974-09-30 | 1979-01-09 | Commonwealth Scientific And Industrial Research Organization | Continuous reflux refining of metals |
| US4099965A (en) * | 1975-09-26 | 1978-07-11 | Servimetal | Method of using MgCl2 -KCl flux for purification of an aluminum alloy preparation |
| US4050683A (en) * | 1976-05-25 | 1977-09-27 | Klockner-Werke Ag | Smelting plant and method |
| US4305763A (en) * | 1978-09-29 | 1981-12-15 | The Boeing Company | Method of producing an aluminum alloy product |
| US4273627A (en) * | 1978-12-26 | 1981-06-16 | Aluminum Company Of America | Production of extreme purity aluminum |
| US4222830A (en) * | 1978-12-26 | 1980-09-16 | Aluminum Company Of America | Production of extreme purity aluminum |
| US4239606A (en) * | 1979-12-26 | 1980-12-16 | Aluminum Company Of America | Production of extreme purity aluminum |
| US4781771A (en) * | 1980-10-16 | 1988-11-01 | Unitika Ltd. | Amorphous Co-based metal filaments and process for production of the same |
| US4456480A (en) * | 1982-03-30 | 1984-06-26 | Pechiney | Process for purifying metals by segregation |
| US4411747A (en) * | 1982-08-30 | 1983-10-25 | Aluminum Company Of America | Process of electrolysis and fractional crystallization for aluminum purification |
| US4581062A (en) * | 1984-05-17 | 1986-04-08 | Aluminium Pechiney | Process for the continuous purification of metals by fractional crystallization on a rotary drum |
| US4736314A (en) * | 1984-11-19 | 1988-04-05 | Alfa-Laval Food & Dairy Engineering Ab | Measuring the content of crystals |
| US4744823A (en) * | 1986-01-06 | 1988-05-17 | Aluminum Pechiney | Process for the purification of metals by fractional crystallisation |
| US5221377A (en) * | 1987-09-21 | 1993-06-22 | Aluminum Company Of America | Aluminum alloy product having improved combinations of properties |
| US5160532A (en) * | 1991-10-21 | 1992-11-03 | General Electric Company | Direct processing of electroslag refined metal |
| US5312498A (en) * | 1992-08-13 | 1994-05-17 | Reynolds Metals Company | Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness |
| US5968223A (en) * | 1993-07-13 | 1999-10-19 | Eckert; C. Edward | Method for heating molten metal using heated baffle |
| US5573574A (en) * | 1993-07-22 | 1996-11-12 | Aluminium Pechiney | Electrorefined aluminium with a low content of uranium, thorium and rare earths |
| US5741348A (en) * | 1995-05-31 | 1998-04-21 | Hoogovens Aluminium Bv | Method for refining an aluminium scrap smelt |
| US6355085B1 (en) * | 1996-02-07 | 2002-03-12 | Centre National De La Recherche Scientifique | Method and device for separating particles from an electrically conductive liquid flow using electromagnetic forces |
| US6224648B1 (en) * | 1996-12-18 | 2001-05-01 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method and device for separating metals and/or metal alloys of different melting points |
| US6290900B1 (en) * | 1998-03-13 | 2001-09-18 | Denso Corporation | Molten metal vessel for filtering impurities |
| US6143070A (en) * | 1998-05-15 | 2000-11-07 | The United States Of America As Represented By The Secretary Of The Air Force | Silicon-germanium bulk alloy growth by liquid encapsulated zone melting |
| US6972110B2 (en) * | 2000-12-21 | 2005-12-06 | Alcoa Inc. | Aluminum alloy products having improved property combinations and method for artificially aging same |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7442228B2 (en) | 2001-10-03 | 2008-10-28 | Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft | Method and device for controlling the proportion of crystals in a liquid-crystal mixture |
| US7648559B2 (en) | 2002-07-05 | 2010-01-19 | Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft | Method for fractional crystallisation of a metal |
| US7419530B2 (en) | 2002-07-05 | 2008-09-02 | Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft | Method for fractional crystallisation of a molten metal |
| US7537639B2 (en) | 2003-11-19 | 2009-05-26 | Aleris Switzerland Gmbh | Method of cooling molten metal during fractional crystallisation |
| US20080000326A1 (en) * | 2004-03-19 | 2008-01-03 | Corus Technology Bv | Method for the Purification of a Molten Metal |
| US7531023B2 (en) * | 2004-03-19 | 2009-05-12 | Aleris Switzerland Gmbh | Method for the purification of a molten metal |
| US20090301259A1 (en) * | 2006-06-22 | 2009-12-10 | Aleris Switzerland Gmbh | Method for the separation of molten aluminium and solid inclusions |
| US8313554B2 (en) | 2006-06-22 | 2012-11-20 | Aleris Switzerland Gmbh | Method for the separation of molten aluminium and solid inclusions |
| US20090285716A1 (en) * | 2006-06-23 | 2009-11-19 | Alcan Rhenalu | Process for recycling aluminium alloy scrap coming from the aeronautical industry |
| US8202347B2 (en) | 2006-06-23 | 2012-06-19 | Constellium France | Process for recycling aluminum alloy scrap coming from the aeronautical industry |
| US7892318B2 (en) | 2006-06-28 | 2011-02-22 | Aleris Switzerland Gmbh C/O K+P Treuhandgesellschaft | Crystallisation method for the purification of a molten metal, in particular recycled aluminium |
| US20100024602A1 (en) * | 2006-06-28 | 2010-02-04 | Aleris Switzwerland Gmbh | Crystallisation method for the purification of a molten metal, in particular recycled aluminium |
| US7955414B2 (en) | 2006-07-07 | 2011-06-07 | Aleris Switzerland Gmbh | Method and device for metal purification and separation of purified metal from metal mother liquid such as aluminium |
| US20090308203A1 (en) * | 2006-07-07 | 2009-12-17 | Aleris Switzerland Gmbh C/O K+P Treuhandgesellschaft | Method and device for metal purification and separation of purified metal from metal mother liquid such as aluminium |
| WO2019035909A1 (en) * | 2017-08-16 | 2019-02-21 | Alcoa Usa Corp. | PROCESSES FOR RECYCLING AND PURIFYING ALUMINUM ALLOYS |
| US20190136342A1 (en) * | 2017-08-16 | 2019-05-09 | Alcoa Usa Corp. | Methods of recycling aluminum alloys and purification thereof |
| KR20200032160A (ko) * | 2017-08-16 | 2020-03-25 | 알코아 유에스에이 코포레이션 | 알루미늄 합금의 재활용 및 이의 정제 방법 |
| KR102544523B1 (ko) * | 2017-08-16 | 2023-06-15 | 알코아 유에스에이 코포레이션 | 알루미늄 합금의 재활용 및 이의 정제 방법 |
| US12338507B2 (en) * | 2017-08-16 | 2025-06-24 | Alcoa Usa Corp. | Methods of recycling aluminum alloys and purification thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| PL197423B1 (pl) | 2008-03-31 |
| UA75725C2 (en) | 2006-05-15 |
| WO2003020991A1 (en) | 2003-03-13 |
| NO20041401L (no) | 2004-04-02 |
| CN1561402A (zh) | 2005-01-05 |
| ZA200401717B (en) | 2005-03-02 |
| EP1288319A1 (en) | 2003-03-05 |
| JP4159989B2 (ja) | 2008-10-01 |
| CA2459252A1 (en) | 2003-03-13 |
| PL367791A1 (en) | 2005-03-07 |
| NZ531655A (en) | 2005-08-26 |
| JP2005501968A (ja) | 2005-01-20 |
| DE60104114D1 (de) | 2004-08-05 |
| CN1257293C (zh) | 2006-05-24 |
| DE60104114T2 (de) | 2005-08-18 |
| EP1288319B1 (en) | 2004-06-30 |
| RU2004110030A (ru) | 2005-06-10 |
| ATE270348T1 (de) | 2004-07-15 |
| KR20040029145A (ko) | 2004-04-03 |
| RU2293128C2 (ru) | 2007-02-10 |
| ES2222309T3 (es) | 2005-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1288319B1 (en) | Method for the purification of an aluminium alloy | |
| US20250283192A1 (en) | Methods of recycling aluminum alloys and purification thereof | |
| US6355090B1 (en) | Method of manufacturing aluminum alloy for flattening material and aluminum alloy flattening material for automobiles | |
| EP1727917B1 (en) | Method for the purification of a molten metal | |
| WO2001025498A1 (fr) | Alliage hautement resistant a base d'aluminium et article fait a partir de cet alliage | |
| GB1564257A (en) | Manufacture of reactive metal alloys | |
| AU2002331102B2 (en) | Method for the purification of an aluminium alloy | |
| AU2002331102A1 (en) | Method for the purification of an aluminium alloy | |
| JP3969672B2 (ja) | 熱間鍛造性及び切削性に優れたアルミニウム合金展伸材 | |
| DE10131344C1 (de) | Zinklegierungen für den Zinkguss oder Zinkdruckguss und Verfahren zu deren Herstellung | |
| JP4707075B2 (ja) | 切削性に優れたアルミニウム合金 | |
| JP3005673B2 (ja) | Al−Si−Fe系合金の製造方法 | |
| JP5302645B2 (ja) | Alスクラップの精製方法 | |
| US3169855A (en) | Zinc purification | |
| US20250051880A1 (en) | Method for producing refined aluminum alloy | |
| JPS6331537B2 (enExample) | ||
| SU1271096A1 (ru) | Способ переработки анодных осадков электролитического рафинировани алюмини | |
| CN121039304A (zh) | 铝合金铸块的制造方法、铝合金连续铸造棒及铝合金锻造品 | |
| JPH0941050A (ja) | AlまたはAl合金スクラップの溶解法 | |
| JPWO1997008350A1 (ja) | アルミニウム合金用成分添加剤 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CORUS TECHNOLOGY BV, NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DE VRIES, PAUL ALEXANDER;REEL/FRAME:015745/0581 Effective date: 20040717 |
|
| AS | Assignment |
Owner name: ALERIS SWITZERLAND GMBH C/O K+P TREUHANGESELLSCHAF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORUS TECHNOLOGY BV;REEL/FRAME:019336/0949 Effective date: 20060801 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |