US20040226699A1 - Compositions for reducing atmosheric oxidising pollutants - Google Patents
Compositions for reducing atmosheric oxidising pollutants Download PDFInfo
- Publication number
- US20040226699A1 US20040226699A1 US10/477,961 US47796104A US2004226699A1 US 20040226699 A1 US20040226699 A1 US 20040226699A1 US 47796104 A US47796104 A US 47796104A US 2004226699 A1 US2004226699 A1 US 2004226699A1
- Authority
- US
- United States
- Prior art keywords
- heat exchanger
- composition
- exchanger according
- reducing
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 73
- 239000003344 environmental pollutant Substances 0.000 title claims abstract description 36
- 231100000719 pollutant Toxicity 0.000 title claims abstract description 36
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 37
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000003054 catalyst Substances 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 13
- 239000011572 manganese Substances 0.000 claims abstract description 13
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003232 water-soluble binding agent Substances 0.000 claims abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 30
- 239000004411 aluminium Substances 0.000 claims description 24
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 24
- 229910052782 aluminium Inorganic materials 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 14
- 229910000838 Al alloy Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 7
- -1 ether ester Chemical class 0.000 claims description 6
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 5
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 5
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical class 0.000 claims description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229920005822 acrylic binder Polymers 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229940071676 hydroxypropylcellulose Drugs 0.000 claims 1
- 229920000609 methyl cellulose Polymers 0.000 claims 1
- 239000001923 methylcellulose Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 abstract description 25
- 239000000463 material Substances 0.000 abstract description 22
- 150000001875 compounds Chemical class 0.000 abstract description 10
- 238000006479 redox reaction Methods 0.000 abstract description 5
- 230000001590 oxidative effect Effects 0.000 abstract 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 50
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical group [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 26
- 239000011787 zinc oxide Substances 0.000 description 25
- 229910052593 corundum Inorganic materials 0.000 description 23
- 229910001845 yogo sapphire Inorganic materials 0.000 description 23
- 230000007797 corrosion Effects 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000010457 zeolite Substances 0.000 description 10
- 229910021536 Zeolite Inorganic materials 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000005030 aluminium foil Substances 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910009112 xH2O Inorganic materials 0.000 description 1
- 229910003144 α-MnO2 Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/9454—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8671—Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
- B01D53/8675—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
- B01D53/885—Devices in general for catalytic purification of waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0232—Coating by pulverisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/455—Gas separation or purification devices adapted for specific applications for transportable use
- B01D2259/4558—Gas separation or purification devices adapted for specific applications for transportable use for being employed as mobile cleaners for ambient air, i.e. the earth's atmosphere
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
Definitions
- the present invention relates to compositions for reducing atmospheric oxidising pollutants, such as ozone (O 3 ) and nitrogen dioxide (NO 2 ), and in particular to compositions for coating surfaces for contacting the atmosphere.
- pollutants such as ozone (O 3 ) and nitrogen dioxide (NO 2 )
- NO 2 nitrogen dioxide
- atmospheric oxidising pollutant herein, we mean an atmospheric pollutant that has the potential to oxidise other atmospheric pollutants in a redox reaction.
- atmospheric oxidising pollutants include O 3 , NO 2 , dinitrogen tertroxide (N 2 O 4 ) and sulfur trioxide (SO 3 ).
- Ground-level O 3 a component of smog, is created from the reaction of nitrogen oxides (NOx) and hydrocarbons (HC), from vehicle and industrial emissions.
- NOx nitrogen oxides
- HC hydrocarbons
- Aldehydes organic species having a relatively high Maximum Incremental Reactivity adjustment factor (MIR) also known as carter factors (as defined by “Californian Non-methane organic gases test procedures”, The California Environmental Protection Agency Air Resource Board dated Aug. 5, 1999), are also produced. Part of this reaction is catalysed by sunlight and can be represented by two equations:
- Engelhard describes the concept of coating an atmosphere-contacting surface of a vehicle with a composition for treating one or more atmospheric pollutant, such as O 3 alone, O 3 and carbon monoxide (CO) or O 3 , CO and HC.
- the surface is preferably that of a heat exchanger, such as a radiator or air conditioner condenser, located within the vehicle's engine compartment.
- pollutants suspended in the atmosphere contact the composition and, depending on the formulation of the composition, it catalyses the reduction of the atmospheric oxidising pollutant O 3 to oxygen, and/or the oxidation of the atmospheric reducing pollutant carbon monoxide to carbon dioxide and/or of HC to water and carbon dioxide.
- Engelhard markets a vehicle radiator having a catalytic coating for reducing O 3 under the trade name PremAir®. Details of PremAir® can also be found on Engelhard's website at www.Engelhard.com/premair. It is also described in its WO 96/22146.
- the active material on the marketed radiators is a manganese-based component, cryptomelane (KMn 8 O 16 .xH 2 O, structurally related to ⁇ -MnO 2 ).
- Coated radiators have been fitted on certain Volvo production passenger vehicles, e.g. the S80 luxury sedan in USA and throughout Europe.
- Catalytically coated heat exchangers are also used for treating aeroplane cabin air and for reducing O 3 emissions from computer printers, photocopiers etc.
- Modern heat exchangers for use in vehicles are made from aluminium or aluminium alloys and are manufactured by companies such as Visteon, Delphi and Valeo. Heat exchangers for non-vehicle applications can also be made from aluminium or aluminium alloys.
- aluminium will be used to refer to aluminium and alloys of aluminium.
- Aluminium is a relatively reactive metal.
- a catalytic coating such as the cryptomelane-based composition used in Engelhard's Premair system
- it is important that the composition does not react with the aluminium substrate. If the catalytic coating does react with and/or promote the corrosion of the aluminium substrate, this can drastically reduce the working life of the heat exchanger.
- heat exchangers are exposed to conditions which can promote metallic corrosion including moist air, salt and/or grit.
- the aluminium vehicle radiators including the PremAir® manganese-based catalytic coatings are indeed more susceptible to corrosion following prolonged use as compared with non-coated radiators.
- the oxidation potential of Mn 4+ (the redox state of manganese in MnO 2 ) and Mn 2+ as measured by the standard electrode potential is relatively high being +1.1406 volt.
- Increased corrosivity of a catalytic coating will have an economic impact on the vehicle manufacturer or its customer, in that the radiator will need to be replaced earlier than for an un-coated radiator, either within warranty or at the cost of the vehicle owner.
- components of the composition including the catalytic material may contribute to the increased corrosion experienced in PremAir® coated radiators.
- Modem radiators comprise a radiator core typically of aluminium, which core including fins or plates extending from the outer surface of a housing or conduit for carrying a fluid to be cooled. To this core is fitted one or more plastic tanks which carry the fluid to and from the radiator core.
- a radiator core typically of aluminium, which core including fins or plates extending from the outer surface of a housing or conduit for carrying a fluid to be cooled.
- plastic tanks which carry the fluid to and from the radiator core.
- the coated radiator cores are prepared in a separate step before the plastic tanks are fitted thereto.
- the formulation of a composition suitable for application of a reducing agent to a surface is complex.
- the formulation can include one or more binder (including thermosetting or thermoplastic polymeric binders), stabiliser, age resistor, dispersant, plasticiser, flow improver, water resistance agent or adhesion improvement agent.
- the binder provides cohesion to the composition.
- it provides adhesion of the “wet” composition to a substrate following application, and once cured, it provides adhesion and mechanical robustness to the coating to prevent it flaking after prolonged thermal cycling, and the ability to withstand knocks and bumps.
- compositions including a reducing agent for coating e.g. an aluminium alloy radiator
- solvent medium and its compatibility with the other components and how the composition is to be used For example, how does the composition handle, flow or mix? Will the composition separate or settle on standing? Does the formulation diminish the activity of the reducing agent, for example by preventing air accessing the component, by chemical reaction with the solvent or any other component in the formulation or does the curing process thermally deactivate the reducing agent?
- composition suitable for the chosen mode of application e.g. spray coating, electrostatic spray coating or screen-printing? Does the cured formulation have the required physical properties?
- WO 96/22146 Engelhard describe a number of polymeric binder components for use in the catalyst compositions described therein.
- the preferred polymers and copolymer binders are vinyl acrylic polymers and ethylene vinyl acetate copolymers.
- Cellulosic polymers are also mentioned but none of the Examples exemplify a composition including a cellulosic binder.
- water soluble binders are particularly suited to compositions for coating atmosphere contacting surfaces, which compositions include, as an active component, the precious metal-free reducing agents described in our co-pending British patent application of the same filing date entitled “Agents for reducing atmospheric oxidising pollutants”, the trap materials per se described in our co-pending British patent application of the same filing date entitled “Method of treating atmospheric pollutants” or the catalysts described in WO 96/22146, particularly manganese-based catalysts such as MnO 2 and derivatives thereof, particularly cryptomelane.
- This observation provides a number of very useful advantages.
- atmospheric reducing pollutant herein, and as described in our co-pending British patent application of the same filing date entitled “Method of treating atmospheric pollutants”, we mean an atmospheric pollutant that has the potential to reduce other atmospheric pollutants in a redox reaction.
- atmospheric reducing pollutants are hydrocarbons including aliphatic hydrocarbons, e.g.
- alkanes, and cyclic hydrocarbons paraffins; olefins, alkenes and alkynes; dialkenes including conjugated unsaturated hydrocarbons; carboxylic, peroxy or sulfonic acids; partially oxygenated hydrocarbons including aldehydes, conjugated aldehydes, ketones, ethers, alcohols and esters; amides; ammonium compounds; aromatic hydrocarbons and cycloparaffins; any of the above including one or more nitrogen-, sulfur-, oxygen- or phosphorus-atoms; CO; sulphur dioxide and soot or particulate matter components exhausted from, e.g. a power plant (as defined hereinbelow).
- the invention provides a composition for reducing atmospheric oxidising pollutants, which composition comprises a reducing agent comprising: at least one transition element and/or one or more compounds including at least one transition element wherein the standard electrode potential of the redox reaction including the transition element and an ionic species of the transition element or between the ionic species of the transition element present in the or each compound and a further ionic species of the transition element is less than +1.0 volt; a precious metal-free trap material capable of trapping at least one atmospheric reducing pollutant, whereby the at least one atmospheric oxidising pollutant is reduced by a combination of the trap material and at least one trapped atmospheric reducing pollutant, which at least one trapped atmospheric reducing pollutant is consequently oxidised; or a manganese-based catalyst, preferably MnO 2 or a derivative thereof including cryptomelane, and a water soluble binder.
- a reducing agent comprising: at least one transition element and/or one or more compounds including at least one transition element wherein the standard electrode potential of the
- An important advantage of the present invention is that the composition can be cured at relatively low temperatures, e.g. ⁇ 90° C., compared with compositions including Engelhard's preferred binders.
- this feature enables the preparation of a radiator core fitted with its plastic tanks in a continuous process, i.e. without having first to prepare a coated core and then fit the plastic tanks thereto.
- the coated radiator core must be prepared before assembling the tanks to prevent heat damage of the tanks during curing.
- the composition according to the invention can be applied to a surface with known technology such as by spraying using a compressed air spray gun, by an electrostatic application process or using a screen printing process. Furthermore, the cured composition has acceptable physical properties as displayed by scrape, wipe, ultrasonic and SWAAT tests. In particular, no deterioration was seen following thermal cycling and the cured composition does not hydrate when contacted with aqueous media or flake or chip.
- the water-soluble binder is a cellulosic binder.
- the cellulosic binder can be an ether or ester or semi-synthetic cellulosic binder, but is preferably hydroxypropyl- or methylellulose.
- the water-soluble binder is a vinyl or acrylic binder, preferably polyvinyl alcohol or ammonium polymethacrylate.
- the transition element is copper, iron or zinc or a mixture of any two or more thereof.
- the or each compound including one or more transition element can be any suitable compound such as an oxide, carbonate, nitrate or hydroxide, but is preferably an oxide.
- it is preferable to reduce the transition element in a transition element-including compound if in the reduced form the reducing agent is more active in its intended use.
- Compounds including transition elements prior to reduction can be referred to as ‘precursor’.
- the reducing agent is CuO/ZnO/Al 2 O 3 is the precursor and the active form of the reducing agent is obtained by reducing the CuO to give Cu/ZnO//Al 2 O 3 .
- the reduced form of a transition element can be stabilised with suitable stabilisers as appropriate.
- the transition element or transition element compound is preferably supported on a high surface area oxide selected from alumina, ceria, silica, titania, zirconia, a mixture or a mixed oxide of any two or more thereof.
- the active form of the reducing agent is copper (II) oxide per se, a mixture of reduced copper (a) oxide and zinc oxide on an alumina support or iron oxide on a mixed alumina/ceria support.
- the CuO/ZnO//Al 2 O 3 reducing agent composition can be any suitable for the intended e.g. CuO30:ZnO60:Al 2 O 3 10 or CuO60:ZnO30:Al 2 O 3 10.
- Commercially available forms of these compositions are available from ICI as ICI 52-1 and ICI 51-2 respectively.
- Commercially available CuO/ZnO//Al 2 O 3 is sold as pellets, which can be ground to the required particle size.
- Preferred precious metal-free trap materials include high surface area inorganic species such as zeolites, other molecular sieves, crystalline silicates, crystalline silicate-containing species, aluminas, silicas, (optionally amorphous) aluminosilicates, layered clays and aluminium phosphates.
- the trap material is zeolite, we prefer beta-zeolite or zeolite Y and most preferably ZSM-5, optionally metal-substituted, so long as the metal substituted zeolite does not decompose O 3 per se, e.g. the zeolite is not transition metal substituted.
- the invention provides a method of making an atmosphere-contacting surface according to the invention comprising the steps of coating the surface with the composition and heating the coated surface to ⁇ 90° C. for a sufficient time to cure the composition.
- the atmosphere-contacting surface is associated with a means for causing movement of the surface relative to the atmosphere.
- the means for causing movement of the surface relative to the atmosphere is a power plant.
- the power plant can be an engine fuelled by gasoline, diesel, liquid petroleum gas, natural gas, methanol, ethanol, methane or a mixture of any two or more thereof, an electric cell, a solar cell or a hydrocarbon or hydrogen-powered fuel cell.
- the atmosphere-contacting surface is on or in a vehicle, and the movement-causing means is a power plant as described above.
- the vehicle can be a car, van, truck, bus, lorry, aeroplane, boat, ship, airship or train, for example.
- a particularly preferred application is for use in heavy-duty diesel vehicles, i.e. vans, trucks, buses or lorries, as defined by the relevant European legislation.
- the atmosphere-contacting surface can be any suitable surface that encounters and contacts the atmosphere, most preferably, at relatively large flow rates as the vehicle moves through the atmosphere.
- the support surface is preferably located at or towards the front end of the vehicle so that air will contact the surface as the vehicle is propelled through it. Suitable support locations are fan blades, wind deflectors, wing mirror backs or radiator grills and the like. Alternative locations for supporting the reducing agent are given in WO 96/22146 and are incorporated herein by reference.
- the apparatus comprises a heat exchange device such as a radiator, an air conditioner condenser, an air charge cooler (intercooler or aftercooler), an engine oil cooler, a transmission oil cooler or a power steering oil cooler.
- a heat exchange device such as a radiator, an air conditioner condenser, an air charge cooler (intercooler or aftercooler), an engine oil cooler, a transmission oil cooler or a power steering oil cooler.
- This feature has the advantage that the heat exchange device reaches above ambient temperatures, such as up to 140° C., e.g. 40° C. to 110° C., at which, for example, O 3 reduction can occur more favourably.
- a further advantage of using heat exchangers as the support surface for the or each reducing agent composition is that in order to transfer heat efficiently they have a relatively large surface area comprising fins or plates extending from the outer surface of a housing or conduit for carrying a fluid to be cooled. A higher surface area support surface provides for a greater level of contact between the each reducing agent composition and the atmosphere.
- ambient herein we mean the temperature and conditions, e.g. humidity, of the atmosphere.
- the apparatus comprises a radiator and/or air conditioning condenser which is housed within a compartment of a vehicle also including the power plant, e.g. an air-cooled engine.
- a radiator and/or air conditioning condenser which is housed within a compartment of a vehicle also including the power plant, e.g. an air-cooled engine.
- the radiator and/or condenser is exposed to ambient atmospheric air as the vehicle is propelled through the atmosphere whilst being protected by the radiator grill from damage by particulates, e.g. grit or stones, and from the impact of flies.
- air intakes and conduits can be arranged to carry atmospheric air to and from the supported reducing agent.
- radiator and/or condenser in the engine compartment is that exposure to corrosion-causing agents such as moist air, salt and/or grit is reduced and hence so too is the rate of any corrosion.
- the radiator and/or condenser can be formed of any material, it is usually a metal or an alloy. Most preferably, the heat exchanger is aluminium or an alloy containing aluminium.
- the composition of the invention can include particles of a transition metal, preferably silver or copper, for improving the thermal conductivity of the composition.
- radiator is releasably attached to a vehicle, typically in the engine compartment of the vehicle. This enables coated radiators and other heat exchangers to be retrofitted to the vehicle, e.g. during normal servicing of the vehicle, thereby to improve the pollutant treating ability of the vehicle.
- the apparatus can be non-mobile, and the surface is associated with the movement-causing means to provide the required relative movement between the surface and the atmosphere.
- the surface can be one or more blades for causing movement of air.
- the blades are fan blades for cooling a stationary power plant such as for powering an air conditioning unit or advertising hoarding.
- the blade is a fan or turbine blade for drawing air into the air conditioning system of a building.
- the surface can be the internal surfaces of pipes, tubes or other conduits for carrying atmospheric air, e.g. in an air conditioning system for a vehicle or a building and condenser elements in air conditioning units provided that the movement of the air is caused by a movement causing means.
- Example 4 That the reducing agents for use in the present invention are at least as active for reducing O 3 as Engelhard's Premair® manganese-based components is shown in Example 4 below, where a 20 mm thick aluminium radiator coated with a composition including our mixture of “reduced” copper (II) oxide and zinc oxide on an alumina support gave a % O 3 conversion of 94% whereas the commercially available 40 mm thick Premair® aluminium radiator including cryptomelane had a % O 3 conversion of 100%. From Example 1 we know that O 3 conversion activity improves significantly if the reducing agent loading is doubled. Therefore, if our coating were applied on a 40 mm thick unit at the same mass per unit volume, we would expect the O 3 conversion to improve from 94%, probably to 100%.
- FIG. 1 is a bar chart showing the % O 3 conversion for various candidate reducing agents
- FIG. 2 is a bar chart showing the effect on % O 3 conversion of increasing CuO content on the O 3 conversion of CuO/ZnO//Al 2 O 3 ;
- FIG. 3 is a bar chart comparing the % O 3 conversion of a composition including a mixture of copper (II) oxide and zinc oxide on an alumina support and a hydroxypropyl cellulose binder with a bare radiator and a Premair® radiator.
- a test rig comprising an upstream O 3 generator, a stainless steel tube including metal mesh to pack a reactor bed material therebetween and a downstream O 3 detector was set up in a fume cupboard.
- O 3 was generated and mixed with air before passing through the reactor bed containing powder or pellet samples.
- the exhaust gas from the reactor bed was passed through the O 3 detector (measured in 5 ppm units) before being vented.
- An inlet O 3 concentration of 200 ppm at a space velocity (GHSV) of ⁇ 1000/hr was used. Whilst higher space velocities would be observed at, e.g. the surface of a radiator, and atmospheric O 3 concentrations are present in the parts per billion range, the results were useful to compare directly the potential of each material tested to reduce O 3 .
- GHSV space velocity
- H Y zeolite (Si:Al ratio 200:1)—1′′ powder bed; a ceria-zirconia mixed oxide 1′′ powder (ceria-zirconia mixed oxide is an oxygen storage component used in three way catalyst compositions); iron oxide on a ceria support (hereinafter “Fe reducing agent”)—1′′ pellet bed; Cu/ZnO//Al 2 O 3 —1′′ pellet bed; Cu/ZnO//Al 2 O 3 —1′′ powder bed; and Cu/ZnO//Al 2 O 3 on a ceramic monolith.
- Fe reducing agent iron oxide on a ceria support
- FIG. 1 shows the results of a comparison of the O 3 decomposition activity of these materials tested in the rig described above at room temperature. No O 3 conversion was observed for the empty system or over a bare metallic or ceramic substrate. Zeolite and ceria-zirconia were also found to have no O 3 decomposition activity. The best material tested was Cu/ZnO//Al 2 O 3 ; this gave approximately 70% conversion over a 1′′ bed of pellets, compared to 45% for a 1′′ bed of Fe reducing agent. Cu/ZnO//Al 2 O 3 coated onto a ceramic monolith. As expected, the form of the reducing agent material was important—after grinding the Cu/ZnO//Al 2 O 3 pellets into a fine powder, the O 3 conversion increased to 100%.
- composition including the Cu/ZnO//Al 2 O 3 reducing agent component for application to e.g. an aluminium alloy radiator substrate.
- Cu/ZnO//Al 2 O 3 was mixed with an aqueous solution of hydroxypropyl cellulose binder, KlucelTM, to a concentration of 10% wt/wt.
- the coating was applied to each side of a Visteon aluminium alloy radiator of 20 mm thickness using a compressed air spray gun and then cured at or below 90° C.
- Beta zeolite trap component for application to an aluminium radiator substrate.
- Beta zeolite was mixed with an aqueous solution of hydroxypropyl cellulose binder, KlucelTM, to a concentration of 10% wt/wt.
- the coating was applied to each side of a Visteon aluminium radiator of 20 mm thickness using a compressed air spray gun and then cured at up to 90° C.
- This Example is designed to compare the O 3 conversion activity of our Cu/ZnO//Al 2 O 3 reducing agent with that of Engelhard's Premair® catalyst.
- a Ford Mondeo radiator manufactured by Visteon was supplied for coating.
- This radiator consisting of uncoated aluminium foil, has a face area of 16′′ ⁇ 10′′ and a thickness of 20 mm.
- the unit was coated with a washcoat including the Cu/ZnO//Al 2 O 3 and a 10% wt/wt aqueous solution of a hydroxypropyl cellulose binder (trade name “Klucel”) described in Example 3 above using a compressed air spray gun.
- Two layers were applied to each side, loading of 68 g or 0.54 g/in 3 . After drying, the radiator was found to have a thick, dark brown coating of approximately 20 mm total thickness which had acceptable adhesion and resisted most physical abrasion.
- the activity of the coated radiator was tested and compared to a bare aluminium alloy radiator and an Engelhard Premair coated aluminium alloy radiator. Activity testing was carried out in a similar manner to the material screening described in Example 1 above, with the powder bed reactor modified so that it clamped onto either side of the radiator. The results can be seen in FIG. 3. 94% O 3 conversion was obtained over the Cu/ZnO//Al 2 O 3 coated aluminium radiator; this compared favourably with the 100% conversion obtained over the Premair® radiator. The thickness of the Premair® radiator was approximately 40 mm, twice that of the radiator coated with our Cu/ZnO//Al 2 O 3 composition. No conversion was obtained from a bare radiator.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Paints Or Removers (AREA)
- Fire-Extinguishing Compositions (AREA)
- Processing Of Solid Wastes (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB0111733.2A GB0111733D0 (en) | 2001-05-15 | 2001-05-15 | Compositions for reducing atmospheric oxidising pollutants |
| GB0111733.2 | 2001-05-15 | ||
| PCT/GB2002/002141 WO2002092194A2 (en) | 2001-05-15 | 2002-05-15 | Compositions for reducing atmospheric oxidising pollutants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20040226699A1 true US20040226699A1 (en) | 2004-11-18 |
Family
ID=9914595
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/477,961 Abandoned US20040226699A1 (en) | 2001-05-15 | 2002-05-15 | Compositions for reducing atmosheric oxidising pollutants |
Country Status (14)
| Country | Link |
|---|---|
| US (1) | US20040226699A1 (enExample) |
| EP (1) | EP1395350B1 (enExample) |
| JP (1) | JP2004532381A (enExample) |
| KR (1) | KR20040026138A (enExample) |
| CN (1) | CN1524011A (enExample) |
| AT (1) | ATE295221T1 (enExample) |
| BR (1) | BR0209503A (enExample) |
| CA (1) | CA2444019A1 (enExample) |
| DE (1) | DE60204139T2 (enExample) |
| GB (1) | GB0111733D0 (enExample) |
| IL (2) | IL158401A0 (enExample) |
| MX (1) | MXPA03010242A (enExample) |
| WO (1) | WO2002092194A2 (enExample) |
| ZA (1) | ZA200308224B (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9029287B2 (en) | 2008-11-24 | 2015-05-12 | Siemens Aktiengesellschaft | Component having a catalytic surface, method for the production thereof, and use of said component |
| CN105233674A (zh) * | 2015-11-13 | 2016-01-13 | 无锡桥阳机械制造有限公司 | 一种烟气净化工艺 |
| CN105233614A (zh) * | 2015-11-13 | 2016-01-13 | 无锡桥阳机械制造有限公司 | 一种空气过滤器 |
| CN105435630A (zh) * | 2015-11-13 | 2016-03-30 | 无锡桥阳机械制造有限公司 | 一种烟气净化工艺 |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008059164B3 (de) * | 2008-11-24 | 2010-07-01 | Siemens Aktiengesellschaft | Bauteil mit einer antimikrobiellen Oberfläche und dessen Verwendung |
| GB2468519B (en) * | 2009-03-12 | 2014-01-15 | Steritrox Ltd | Improvements in and relating to sterilisation and/or decontamination |
| CN102240567A (zh) * | 2010-05-13 | 2011-11-16 | 上海牛翼新能源科技有限公司 | 室温或低温催化去除臭氧技术 |
| CN102284301A (zh) * | 2010-06-18 | 2011-12-21 | 上海牛翼新能源科技有限公司 | 冷触媒室温稳定去除臭氧 |
| GB2493549A (en) * | 2011-08-11 | 2013-02-13 | Steritrox Ltd | Process and device for sterilisation of an environment with ozone and decontamination after |
| KR102580976B1 (ko) * | 2015-11-05 | 2023-09-20 | 니키 유니바사루 가부시키가이샤 | 폴리머 필름 제조로 내 정화용 촉매 및 폴리머 필름 제조로 내 정화 방법 |
| CN105854592A (zh) * | 2016-04-28 | 2016-08-17 | 清华大学 | 一种净化空气材料及其制备方法和应用 |
| CN107952360A (zh) * | 2017-12-15 | 2018-04-24 | 江苏龙净科杰催化剂再生有限公司 | 铁粉脱硝工艺 |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4862836A (en) * | 1987-12-15 | 1989-09-05 | Mobil Oil Corporation | Operation of an internal combustion engine with a pre-engine converter |
| US5580534A (en) * | 1994-06-03 | 1996-12-03 | Daimler-Benz Ag | Zeolite-spinel catalyst for the reduction of nitrogen oxides and the process thereof |
| US5698165A (en) * | 1994-08-31 | 1997-12-16 | Nichias Corporation | Ozone filter and process for producing the same |
| US5880059A (en) * | 1994-06-02 | 1999-03-09 | Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdelenia Rossiiskos Akademii Nauk | Catalyst for deep oxidation of carbon oxide and organic compounds |
| US5888924A (en) * | 1996-08-07 | 1999-03-30 | Goal Line Enviromental Technologies Llc | Pollutant removal from air in closed spaces |
| US5905056A (en) * | 1995-12-13 | 1999-05-18 | Daimler-Benz Aktiengesellschaft | Catalyst and a method for its production and use of same |
| US5945080A (en) * | 1994-06-16 | 1999-08-31 | Daimler-Benz Ag | Catalyst and process for its production |
| US6146451A (en) * | 1997-07-03 | 2000-11-14 | Takasago Thermal Engineering Co. | Air-cleaning filter, method of producing the same, and high-level cleaning device |
| US6200542B1 (en) * | 1995-01-20 | 2001-03-13 | Engelhard Corporation | Method and apparatus for treating the atmosphere |
| US6214303B1 (en) * | 1995-01-20 | 2001-04-10 | Engelhard Corporation | Method and apparatus for treating the atmosphere |
| US20010031693A1 (en) * | 1995-01-20 | 2001-10-18 | Hoke Jeffrey B. | Catalyst and adsorption compositions having improved adhesion characteristics |
| US6340066B1 (en) * | 1995-01-20 | 2002-01-22 | Engelhard Corporation | Pollutant treating devices and methods of making the same |
| US6458187B1 (en) * | 1998-03-31 | 2002-10-01 | Grace Gmbh & Co. Kg | Shaped body of zeolite, a process for its production and its use |
| US6517889B1 (en) * | 2001-11-26 | 2003-02-11 | Swaminathan Jayaraman | Process for coating a surface of a stent |
| US7083829B2 (en) * | 1995-01-20 | 2006-08-01 | Engelhard Corporation | Vehicle having atmosphere pollutant treating surface |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1161869B (de) * | 1960-07-27 | 1964-01-30 | Darex G M B H | Verfahren zur Herstellung von gebundenen Adsorptionsmitteln, insbesondere Molekularsieben |
| GB1522389A (en) * | 1976-11-26 | 1978-08-23 | British Gas Corp | Production of gas from coal |
| GB8519319D0 (en) * | 1985-07-31 | 1985-09-04 | Shell Int Research | Catalyst |
| EP0387044A1 (en) * | 1989-03-07 | 1990-09-12 | Sakai Chemical Industry Co., Ltd., | Catalyst and method for ozone decomposition |
| HU906016D0 (en) * | 1989-03-20 | 1992-09-28 | Wladyslaw Fedorowicz | A system for reducing pollution of water, air and soil |
| US5160586A (en) * | 1989-05-19 | 1992-11-03 | Sakai Chemical Industry Co., Ltd. | Ozone decomposing reactor |
| FR2747320B1 (fr) * | 1996-04-12 | 1998-09-18 | Valeo Thermique Moteur Sa | Dispositif pour detruire les polluants atmospheriques |
| DE19826209A1 (de) * | 1998-06-08 | 1999-12-09 | Grace Gmbh | Formkörper aus Zeolith, Verfahren zu seiner Herstellung und dessen Verwendung |
-
2001
- 2001-05-15 GB GBGB0111733.2A patent/GB0111733D0/en not_active Ceased
-
2002
- 2002-05-15 CA CA002444019A patent/CA2444019A1/en not_active Abandoned
- 2002-05-15 AT AT02726293T patent/ATE295221T1/de not_active IP Right Cessation
- 2002-05-15 BR BR0209503-3A patent/BR0209503A/pt not_active Application Discontinuation
- 2002-05-15 JP JP2002589110A patent/JP2004532381A/ja active Pending
- 2002-05-15 KR KR10-2003-7014897A patent/KR20040026138A/ko not_active Withdrawn
- 2002-05-15 DE DE60204139T patent/DE60204139T2/de not_active Expired - Fee Related
- 2002-05-15 EP EP02726293A patent/EP1395350B1/en not_active Expired - Lifetime
- 2002-05-15 IL IL15840102A patent/IL158401A0/xx not_active IP Right Cessation
- 2002-05-15 US US10/477,961 patent/US20040226699A1/en not_active Abandoned
- 2002-05-15 CN CNA028101111A patent/CN1524011A/zh active Pending
- 2002-05-15 MX MXPA03010242A patent/MXPA03010242A/es unknown
- 2002-05-15 WO PCT/GB2002/002141 patent/WO2002092194A2/en not_active Ceased
-
2003
- 2003-10-14 IL IL158401A patent/IL158401A/en unknown
- 2003-10-22 ZA ZA200308224A patent/ZA200308224B/en unknown
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4862836A (en) * | 1987-12-15 | 1989-09-05 | Mobil Oil Corporation | Operation of an internal combustion engine with a pre-engine converter |
| US5880059A (en) * | 1994-06-02 | 1999-03-09 | Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdelenia Rossiiskos Akademii Nauk | Catalyst for deep oxidation of carbon oxide and organic compounds |
| US5580534A (en) * | 1994-06-03 | 1996-12-03 | Daimler-Benz Ag | Zeolite-spinel catalyst for the reduction of nitrogen oxides and the process thereof |
| US5945080A (en) * | 1994-06-16 | 1999-08-31 | Daimler-Benz Ag | Catalyst and process for its production |
| US5698165A (en) * | 1994-08-31 | 1997-12-16 | Nichias Corporation | Ozone filter and process for producing the same |
| US6616903B2 (en) * | 1995-01-20 | 2003-09-09 | Engelhard Corporation | Method and apparatus for treating the atmosphere |
| US7083829B2 (en) * | 1995-01-20 | 2006-08-01 | Engelhard Corporation | Vehicle having atmosphere pollutant treating surface |
| US6200542B1 (en) * | 1995-01-20 | 2001-03-13 | Engelhard Corporation | Method and apparatus for treating the atmosphere |
| US6214303B1 (en) * | 1995-01-20 | 2001-04-10 | Engelhard Corporation | Method and apparatus for treating the atmosphere |
| US20010031693A1 (en) * | 1995-01-20 | 2001-10-18 | Hoke Jeffrey B. | Catalyst and adsorption compositions having improved adhesion characteristics |
| US6340066B1 (en) * | 1995-01-20 | 2002-01-22 | Engelhard Corporation | Pollutant treating devices and methods of making the same |
| US5905056A (en) * | 1995-12-13 | 1999-05-18 | Daimler-Benz Aktiengesellschaft | Catalyst and a method for its production and use of same |
| US5888924A (en) * | 1996-08-07 | 1999-03-30 | Goal Line Enviromental Technologies Llc | Pollutant removal from air in closed spaces |
| US6146451A (en) * | 1997-07-03 | 2000-11-14 | Takasago Thermal Engineering Co. | Air-cleaning filter, method of producing the same, and high-level cleaning device |
| US6458187B1 (en) * | 1998-03-31 | 2002-10-01 | Grace Gmbh & Co. Kg | Shaped body of zeolite, a process for its production and its use |
| US6517889B1 (en) * | 2001-11-26 | 2003-02-11 | Swaminathan Jayaraman | Process for coating a surface of a stent |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9029287B2 (en) | 2008-11-24 | 2015-05-12 | Siemens Aktiengesellschaft | Component having a catalytic surface, method for the production thereof, and use of said component |
| CN105233674A (zh) * | 2015-11-13 | 2016-01-13 | 无锡桥阳机械制造有限公司 | 一种烟气净化工艺 |
| CN105233614A (zh) * | 2015-11-13 | 2016-01-13 | 无锡桥阳机械制造有限公司 | 一种空气过滤器 |
| CN105435630A (zh) * | 2015-11-13 | 2016-03-30 | 无锡桥阳机械制造有限公司 | 一种烟气净化工艺 |
Also Published As
| Publication number | Publication date |
|---|---|
| GB0111733D0 (en) | 2001-07-04 |
| BR0209503A (pt) | 2004-07-13 |
| MXPA03010242A (es) | 2004-03-16 |
| IL158401A0 (en) | 2004-05-12 |
| EP1395350A2 (en) | 2004-03-10 |
| WO2002092194A2 (en) | 2002-11-21 |
| DE60204139T2 (de) | 2006-02-02 |
| DE60204139D1 (de) | 2005-06-16 |
| CA2444019A1 (en) | 2002-11-21 |
| EP1395350B1 (en) | 2005-05-11 |
| ZA200308224B (en) | 2004-10-22 |
| JP2004532381A (ja) | 2004-10-21 |
| IL158401A (en) | 2007-07-04 |
| CN1524011A (zh) | 2004-08-25 |
| KR20040026138A (ko) | 2004-03-27 |
| ATE295221T1 (de) | 2005-05-15 |
| WO2002092194A3 (en) | 2003-03-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090098034A1 (en) | Method of treating atmospheric pollutants | |
| JP4077199B2 (ja) | 触媒および吸着用組成物 | |
| JP4065026B2 (ja) | 汚染物処理表面を有する乗物の移動による周囲空気の清掃 | |
| US6818254B1 (en) | Stable slurries of catalytically active materials | |
| EP0814893A2 (en) | Cleaning ambient air by moving a vehicle having a pollutant treating through the atmosphere | |
| KR102360991B1 (ko) | 오염 제어를 위한 촉매 코팅 | |
| US20040226699A1 (en) | Compositions for reducing atmosheric oxidising pollutants | |
| US20050260113A1 (en) | Agents for reducing atmospheric oxidising pollutants | |
| AU2002256777A1 (en) | Compositions for reducing atmospheric oxidising pollutants | |
| KR100470857B1 (ko) | 공해물질처리표면을갖는차량의이동에의한주변공기의정화 | |
| AU2002255166A1 (en) | Agents for reducing atmospheric oxidising pollutants | |
| HK1068829A (en) | Compositions for reducing atmospheric oxidising pollutants | |
| HK1068298A (en) | Agents for reducing atmospheric oxidising pollutants | |
| AU2002257914A1 (en) | Method of treating atmospheric pollutants | |
| MXPA97005478A (en) | Vehicle that has a surface for the treatment of contaminants in the atmosf | |
| KR19980701527A (ko) | 공해물질 처리 표면을 갖는 차량의 대기를 통한 이동에 의한 주변 공기의 정화(Cleaning Ambient Air by Moving a Vehicle Having a Pollutant Treating Surface Through the Atmosphere) | |
| MXPA98002442A (en) | Cleaning of environmental air through the movement of a vehicle that has a surface of treatment of contaminants |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: JOHNSON MATTHEY PUBLIC LIMITED COMPANY, UNITED KIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORGAN, CHRISTOPHER;REEL/FRAME:015600/0793 Effective date: 20040524 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |