US20040035172A1 - Device and method for hemming processing - Google Patents

Device and method for hemming processing Download PDF

Info

Publication number
US20040035172A1
US20040035172A1 US10/398,420 US39842003A US2004035172A1 US 20040035172 A1 US20040035172 A1 US 20040035172A1 US 39842003 A US39842003 A US 39842003A US 2004035172 A1 US2004035172 A1 US 2004035172A1
Authority
US
United States
Prior art keywords
bending
bent portion
hemming
axis
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/398,420
Inventor
Masazumi Sawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tri Engineering Co Ltd
Original Assignee
Tri Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tri Engineering Co Ltd filed Critical Tri Engineering Co Ltd
Assigned to TRI ENGINEERING COMPANY LIMITED reassignment TRI ENGINEERING COMPANY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAWA, MASAZUMI
Publication of US20040035172A1 publication Critical patent/US20040035172A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/02Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/02Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder
    • B21D39/021Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder for panels, e.g. vehicle doors
    • B21D39/023Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder for panels, e.g. vehicle doors using rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/02Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder
    • B21D39/021Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal by folding, e.g. connecting edges of a sheet to form a cylinder for panels, e.g. vehicle doors

Definitions

  • the invention relates to a device for hemming processing the peripheries of, for example, door panels and hood panels of automobiles (hereinafter simply referred to as “work”) and a method thereof.
  • roller type hemming devices have been proposed as hemming devices for performing such hemming processing.
  • Such devices comprise a bending roller attached to a robot hand.
  • the bending roller is rolled along a bent portion that is formed along the periphery of the work when the robot hand is moved, thereby hemming the bent portion.
  • the bending roller can be rolled along a desired three-dimensional trajectory by operating the robot hand based on a specified operational program. Therefore, it is possible to perform smooth and highly qualified hemming processing along the curved profile of the work.
  • the bending roller R is positioned in an inclined posture in which it is inclined at an angle of approximately 45° and is rolled onto the bent portion We that is formed by the flanging processing, thereby inwardly bending the bent portion at an angle of approximately 45° toward the bending direction (which is referred to as pre-bending step). Thereafter, the posture of the bending roller R was changed to a horizontal posture (i.e., the posture shown in FIG.
  • Such a process is similarly necessary in conventional hemming devices that utilize a press die.
  • the hemming processing must be performed in two steps, a pre-bending step and a final-bending step, in order to avoid buckling of the bent portion. Therefore, different metal dies must be prepared in order to perform respective steps. These dies are often incorporated into a common die holder. Also, it is generally difficult to prepare and adjust the die for pre-bending step. As a result, it has been desired to provide a device that can perform the hemming processing in one step.
  • the bent portion We that is formed by the flanging processing must be bent in two separate steps, the pre-bending step and the final-bending step, in order to prevent buckling of the bent portion We. Therefore, it is necessary to roll the bending roller R twice along the bent portion. As a result, it is difficult to reduce working time for hemming processing.
  • the hemming devices are complicated, thereby increasing manufacturing costs thereof.
  • the conventional hemming devices may lead to a problem of low productivity due to sophisticated adjustment techniques and considerable hemming time.
  • a first invention is characterized in that a side pressure in a bending direction is actively applied to a bent portion of a work that is formed by flanging processing, thereby bending the bent portion to a folded state in one bending step.
  • the second invention is a roller type hemming method.
  • the method is performed by pressing a bending roller on a bent portion of a work that is formed by flanging processing and is characterized in that a side pressure in a bending direction is applied to the bent portion by moving the bending roller in a rolling direction while a bending surface of the bending roller is rearwardly inclined relative to a normal line perpendicular to the rolling direction at a side of a folded edge of the bent portion, thereby bending the bent portion to a folded state in one bending step.
  • the third invention is a hemming device that is used for performing the hemming method as defined in claim 2, which comprises a multi-axes type robot hand, a bending roller rotatably attached to the robot hand, and a controller that controls the action of the robot hand such that the bending roller is rolled along the bent portion in a posture that an axis of rotation of the bending roller is rearwardly inclined relative to the normal line perpendicular to the rolling direction at the side of the folded edge of the bent portion in a plan view.
  • the fourth invention is a hemming device that is used for performing the hemming method as defined in claim 2, which comprises a multi-axes type robot hand, a tapered bending roller rotatably attached to the robot hand, and a controller that controls the action of the robot hand such that the bending roller is rolled along the bent portion in a posture that a small diameter side of the bending roller is positioned at the side of the folded edge of the bent portion and a rolling surface of the bending roller is parallel to the bent portion when hemming processing is completed.
  • the fifth invention is a press type hemming method for folding a bent portion of a work that is formed by flanging processing.
  • the method is performed by pressing a bending blade to the bent portion and is characterized in that a side pressure in a bending direction is actively applied to the bent portion by pressing the bending blade while moving it in a resultant direction of a direction of a surface of the bent portion and a direction perpendicular thereto, thereby bending the bent portion to a folded state in one pressing step.
  • the sixth invention is a hemming method as defined in claim 5 characterized in that the bent portion is incompletely bent while moving the bending blade in the resultant direction of a die closing direction and a direction perpendicular thereto, and then the bending blade is lowered with an upper die, thereby bending the bent portion to the folded state.
  • the seventh invention is a hemming device that is used for performing the hemming method as defined in claim 5 or 6, which comprises a lower die that supports the work, an upper die that vertically moves relative to the lower die, a bending blade that is attached to the upper die and is movable in the direction perpendicular to a die closing direction, and a bending blade moving mechanism that moves the bending blade in the direction perpendicular to the die closing direction.
  • the ninth invention is a hemming device as defined in claim 8 characterized in that the movement of the bending blade by means of the X-axis moving mechanism and/or the Y-axis moving mechanism is numerically controlled.
  • the bent portion is bent while applying the side pressure thereto, the bent portion can be bent at an angle of approximately 90° from an unfolded state to a folded state in one bending step without producing buckling. Therefore, unlike the conventional method, it is not necessary to bend the bent portion in two steps of a pre-bending step and a final-bending step. As a result, it is possible to reduce working time for hemming processing and to drastically simplify and downsize a hemming device.
  • the bending roller is moved while the bending surface (a portion that is pressed to the bent portion) of the bending roller is rearwardly inclined relative to the normal line perpendicular to the rolling direction at the side of the folded edge of the bent portion. Therefore, because the bent portion can be bent while the side pressure in the bending direction is applied thereto, the bent portion can be bent from an unfolded state to a folded state in one bending step without producing buckling even if the conventional pre-bending step is omitted. As a result, it is possible to reduce working time for hemming processing and to drastically simplify and downsize a hemming device.
  • the bending roller rolls on the bent portion in the posture that the axis of rotation of the bending roller is rearwardly inclined relative to the normal line perpendicular to the rolling direction (moving direction of the bending roller) at the side of the folded edge of the bent portion in a plan view.
  • a pressing force of the bending roller is applied to an edge of the bent portion as a force component that presses the bent portion in the bending direction. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in one bending step without performing the conventional pre-bending step. As a result, it is possible to reduce working time for hemming processing.
  • the tapered bending roller rolls on the bent portion in the posture that the small diameter side of the bending roller is positioned at the side of the folded edge of the bent portion and the axis of rotation of the bending roller is parallel to the bent portion when the hemming processing is completed.
  • the pressing force of the bending roller is applied to the edge of the bent portion as a force component that presses the bent portion in the bending direction. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in one bending step without performing the conventional pre-bending step. As a result, it is possible to reduce working time for hemming processing.
  • the bending blade presses the edge in the resultant direction (downwardly inclined direction) of the direction of the surface of the bent portion and the direction perpendicular thereto.
  • the side pressure in the bending direction is applied to the bent portion. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in one bending step (one shot) without performing the conventional pre-bending step. As a result, it is possible to omit the pre-bending step in the hemming processing.
  • the bending blade is moved in the resultant direction (downwardly inclined direction) of the direction of the X-axis and the direction of the Y-axis, so that the pressing force in the bending direction can be applied to the bent portion. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in only one bending step without performing the conventional pre-bending step. As a result, it is possible to omit the pre-bending step (device) in the hemming processing.
  • the hemming device of the ninth invention in addition to the above-described effect, it is possible to increase versatility of the hemming device in order to process a various types of work.
  • FIG. 1 is an overall side view of a roller type hemming device according to a first embodiment of the invention.
  • FIG. 2 is a view of the hemming device in FIG. 1 that is seen in the direction shown by Arrow H, showing a plan view of a bending roller that is bending a bent portion of a work.
  • FIG. 3 is a view of the hemming device in FIG. 2 that is seen in the direction shown by Arrow Y, showing a side view of the bending roller that is bending the bent portion of the work.
  • FIG. 4 is a view of a device according to a second embodiment of the invention, illustrating a condition in which a tapered bending roller is bending a bent portion of a work.
  • FIG. 5 is a view of the device in FIG. 4 that is seen in the direction shown by Arrow Y, illustrating a condition in which the tapered bending roller is bending the bent portion of the work.
  • FIG. 6 is a plan view of a cylindrical bending roller, illustrating a side pressure generating principle when such a cylindrical bending roller is used.
  • FIG. 7 is a plan view of the tapered bending roller, illustrating a side pressure generating principle when such a tapered bending roller is used.
  • FIG. 8 is a side view of a press die type hemming device according to a third embodiment of the invention.
  • FIG. 9 is a view illustrating a condition in which a bending blade 14 approaches a bent portion We in the hemming device of the third embodiment.
  • FIG. 10 is a view illustrating a condition in which the bending blade 14 moves and bends the bent portion We to a folded state.
  • FIG. 11 is a side view of another bending blade, illustrating an area around a lower edge of a bending blade 16 , which area has a beveled portion 16 a.
  • FIG. 12 is a side view of a further bending blade, illustrating an area around a lower edge of a bending blade 17 , which area has a rounded convex portion 17 a.
  • FIG. 13 is a side view of a further bending blade, illustrating an area around a lower edge of a bending blade 18 , which area has a shouldered concave portion 18 a.
  • FIG. 14 is a side view of a further bending blade, illustrating an area around a lower edge of a bending blade 19 , which area has an arcuate concave portion 19 a.
  • FIG. 15 is a side view illustrating a condition in which the bent portion We is bent by the bending blade 18 shown in FIG. 13.
  • the uppermost drawing shows a condition in which the bending blade 18 contacts the bent portion We, in which the periphery of the bent portion We engages the concave portion 18 a .
  • the central drawing shows a condition in which the bent portion We is bent at an angle of about 45° and an edge thereof is disengaged from the concave portion 18 a of the bending blade 18 .
  • the lowermost drawing shows a condition in which the bending blade 18 is lowered in the vertical direction and the bent portion We is substantially bent to a folded state.
  • FIG. 16 is a side view of a single-axis NC-controlled hemming device according to a fourth embodiment of the invention.
  • FIG. 17 is a side view illustrating another type of upper-die vertical position detection device of the hemming device of the fourth embodiment.
  • FIG. 18 is a side view illustrating a dual-axes NC-controlled hemming device according to a fifth embodiment of the invention.
  • FIG. 19 is a side view illustrating an area around a bent portion of a work, which portion is formed by flanging processing.
  • FIG. 20 is a side view of the bent portion of the work, which portion is formed by flanging processing, illustrating a condition in which a bending roller rolls on the bent portion without pre-bending and the bent portion is buckled.
  • FIG. 21 is a side view of the bent portion of the work, which portion is formed by flanging processing, illustrating a condition in which the bent portion is pre-bent.
  • FIG. 1 shows a hemming device 1 of a first embodiment.
  • a roller type hemming device 1 is exemplified.
  • the hemming device 1 comprises a multi-axes type robot hand 2 (a polar coordinate type multi-joint robot), a lower die 5 for supporting a work W, and a base 7 for securing these parts in a constant spatial relationship.
  • a multi-axes type robot hand 2 a polar coordinate type multi-joint robot
  • a lower die 5 for supporting a work W
  • a base 7 for securing these parts in a constant spatial relationship.
  • a bending roller R is rotatably attached to a distal end of the robot hand 2 via a support device 3 .
  • the robot hand 2 is operated based on a program that is previously memorized by teaching.
  • the bending roller R is rolled along a bent portion We formed along a periphery of the work W, so that the bent portion We is bent to a folded state.
  • hemming processing of the work W is performed.
  • the work W is a door panel for an automobile and comprises an inner panel Wi and an outer panel Wo.
  • the bent portion We that is formed along a periphery of the outer panel Wo is bent to a folded state, a periphery of the inner panel Wi is sandwiched therebetween.
  • the panels Wo and Wi are integrated.
  • the work W is placed on an upper surface 5 a of the lower die 5 and secured in a desired position by fixture members 6 - 6 .
  • FIG. 2 is a plan view illustrating a condition in which the bending roller R rolls on the bent portion We of the work W (the outer panel Wo), thereby bending the bent portion We.
  • the “plan view” corresponds to a view that is seen in the direction of Arrow H in FIG. 1, that is, a view that is seen in the direction perpendicular to the bent portion We that is folded.
  • an arrow-tipped line R1 indicates a rolling direction (moving direction) of the bending roller R.
  • the arrow-tipped line that indicates the direction of the rolling direction of the bending roller R will also be referred to as a rolling direction R1.
  • the rolling direction R1 of the bending roller R corresponds to a tangent line at the bent portion We having an arcuate shape.
  • the rolling direction of the bending roller R corresponds to a straight line parallel to the bent portion.
  • a line R2 indicates a normal line perpendicular to the rolling direction R1
  • a line R3 represents an axis of rotation of the bending roller R.
  • the axis of rotation R3 is inclined at an angle ⁇ 1 relative to the normal line R2 when shown in a plan view.
  • the axis of rotation R3 is inclined relative to the normal line R2 such that one end of the roller R corresponding to a folded edge Wee of the bent portion We that is folded may form a rearward end when viewed in the rolling direction.
  • the axis of rotation R3 of the bending roller R is set, so as to be parallel to the bent portion We that is folded, when laterally viewed as indicated by Arrow Y in FIG. 2.
  • This arrangement is identical to the arrangement in a conventional final-bending step.
  • the bending roller R moves in an inclined position and rolls on the bent portion We of a work W that is previously bent at an angle of approximately 90° by flanging processing. Therefore, it is possible to complete the hemming processing in one bending step without performing a conventional pre-bending step and without producing buckling in the bent portion We.
  • the bending roller R rolls on the bent portion We in a posture that the axis of rotation R3 thereof is rearwardly inclined at an angle ⁇ 1 relative to the rolling direction R1 at a side of the folded edge Wee of the bent portion We that is folded. Therefore, a portion of a pressing force of the bending roller R is applied to the folded edge Wee of the bent portion We as a force component (side pressure) that presses the bent portion We in its bending direction.
  • the bent portion We will be subjected to a pressing force in a direction of its surface and a pressing force (side pressure) in the direction (lateral direction) perpendicular to the surface. Therefore, even if the bending roller R rolls on the bent portion We in the same posture as that in the final-bending step of the conventional hemming device, the bent portion We is bent to a folded state as shown by the chain double-dashed line in FIG. 19 without producing buckling. Thus, it is possible to bend the bent portion We to the folded state without performing the conventional pre-bending step and without producing buckling in the bent portion We, to thereby complete the hemming processing.
  • the pre-bending step is performed in a posture that in a side view, the axis of rotation R3 of the bending roller R is inclined at an angle of approximately 45°, and then an additional vending step is again performed in a posture that in a side view, the axis of rotation R3 is positioned parallel to the bent portion We that is folded.
  • the axis of rotation R3 of the bending roller R is maintained in the same posture (the posture that the axis of rotation is positioned parallel to the bent portion We that is folded) as the conventional final-bending step in a side view and is inclined in a desired direction relative to the rolling direction in a plan view.
  • the inclination angle ⁇ 1 can be modified in accordance with the bent angle that is formed by the flanging processing (the angle relative to the portion along the upper surface 5 a of the lower die 5 ; hereinafter referred to as a flange angle ⁇ 2; see FIG. 19).
  • a flange angle ⁇ 2 the angle relative to the portion along the upper surface 5 a of the lower die 5 ; hereinafter referred to as a flange angle ⁇ 2; see FIG. 19.
  • the flange angle ⁇ 2 is an angle of approximately 60-80°
  • the inclination angle ⁇ 1 is set to an angle of approximately 10-15°
  • the flange angle ⁇ 2 is an angle of approximately 80-100°
  • the inclination angle ⁇ 2 is set to an angle of approximately 20-30°.
  • the inclination angle ⁇ 1 can be variously modified based on the diameter of the bending roller R, the shape of the bent portion We, or other such elements.
  • cylindrical bending roller R having a fixed diameter is used, for example, as shown in FIGS. 4 and 5, a tapered bending roller RT having an unfixed diameter can be used in order to bend the bent portion We from the unfolded state to the folded state in one rolling step.
  • the bending roller RT is positioned such that its small diameter side corresponds to the folded edge of the bent portion We that is folded, and the axis of rotation R3 thereof is positioned such that a bending surface of the roller (an edge line that contacts the bent portion) is parallel to the bent portion We when the bending step is completed.
  • the pressing force of the bending roller acts on an edge of the bent portion as a force component (side pressure) that presses the bent portion We in its bending direction.
  • the bent portion can be bent to the folded state without producing buckling. Therefore, similar to the bending roller R, the tapered bending roller RT can also bend the bent portion We from the unfolded state to the folded state in one rolling step. As a result, it is possible to drastically reduce the time required to perform the hemming processing.
  • This embodiment corresponds to an embodiment described in claim 2 or 4.
  • the axis of rotation R3 of the bending roller RT can be inclined at, for instance, angle ⁇ 1 relative to the normal line R2 that is perpendicular to the rolling direction R1 in a plan view.
  • a force component in the direction of Arrow S of the pressing force that is applied to the bent portion We via the bending roller R (the pressing force that is applied along a direction of a surface of the bent portion We, that is, the pressing force that may produce buckling in the conventional method) is applied to the bent portion We as a force (side pressure S) that presses the bent portion We in the bending direction.
  • the bent portion We is reliably bent to the folded state without producing buckling.
  • the tapered bending roller RT having an unfixed diameter is positioned such that the small diameter side corresponds to the folded edge Wee of the bent portion We that is folded and is rolled in the direction of Arrow R1 along the bent portion We in a condition that the axis of rotation R3 coincides with the normal line R2, the direction that the bending roller RT tends to roll (the direction of rotation) corresponds to the direction of Arrow C (the direction perpendicular to the edge line E of the circumferential surface). That is, the direction of rotation C corresponds to a direction that is inclined at angle ⁇ 3 relative to the rolling direction R1.
  • the angle ⁇ 3 corresponds to an inclination angle of the circumferential surface (edge line E) relative to the axis of rotation R3. Therefore, the bending roller RT is also rolled along the bent portion We while sliding in the direction opposite to the direction of Arrow S.
  • a force component in the direction of Arrow S of the pressing force that is applied to the bent portion We via the bending roller R (the pressing force that is applied along the direction of the surface of the bent portion We, that is, the pressing force that may produce buckling in the conventional method) is applied to the bent portion We as the force (side pressure S) that presses the bent portion We in the bending direction.
  • the bent portion We is reliably bent to the folded state without producing buckling.
  • the side pressure S can be increased, if the axis of rotation R3 of the roller is inclined at an angle ⁇ 1 relative to the normal line R2 at a side of the folded edge Wee of the bent portion We that is folded.
  • FIG. 8 a press type hemming device 10 is exemplified.
  • the hemming device 10 of the third embodiment is illustrated in FIG. 8.
  • the hemming device 10 comprises an upper die 11 that moves up and down, a lower die 12 on which the work W is seated, a bending blade 14 attached to the upper die 11 via an X-axis sliding device 13 , and a cam die 15 for moving the bending blade 14 in a direction of the X-axis.
  • the work W and the lower die 12 are the same members as those used in the first embodiment.
  • the upper die 11 is moved upwardly or downwardly by means of a lifting device that is actuated by a hydraulic cylinder (not shown).
  • the X-axis sliding device 13 is attached to the lower surface of the upper die 11 . Further, in this specification, the X-axis direction will be referred to as the horizontal direction (the right-to-left direction in FIG. 8).
  • the X-axis sliding device 13 comprises a base 13 d , a compressing spring 13 e that is sandwiched between the base 13 d and the upper die 11 , and a follower 13 g rotatably attached to the base 13 d via a bracket 13 f .
  • the base 13 d can be freely slid in the X-axis direction by means of a sliding mechanism 13 c .
  • the sliding mechanism 13 c comprises a slide rail 13 a and a sliding member 13 b that moves therealong.
  • the base 13 d is biased by means of the compressing spring 13 e in the rightward direction in FIG. 8. Rightward movement of the base 13 d is restricted by a stopper 13 h .
  • the X-axis sliding device 13 does not have any special driving source for sliding the base 13 d.
  • the bracket 13 f downwardly extends from the lower surface of the base 13 d , and the follower 13 g is rotatably retained on the proximal end thereof at a desired distance below the upper side 11 .
  • the bending blade 14 is attached to the lower surface of the base 13 d and downwardly projects.
  • the bent portion We of the work W is positioned beneath the bending blade 14 .
  • the cam die 15 is placed beneath the follower 13 g and is seated on and secured to a mount 15 b at a desired height.
  • the hemming device 10 of the third embodiment and the hemming method by utilizing such a device it is also possible to bend the bent portion We from the unfolded state to the folded state by an angle of approximately 90° by a single downward motion (one shot) of the upper die 11 . Therefore, it is possible to complete hemming processing without performing the conventional pre-bending step.
  • the bending blade 14 moves along an arcuate trajectory toward a combined direction (downwardly inclined direction) of a lowering direction (vertical direction) of the upper die 11 and an X-axis direction (horizontal direction). As shown in FIG. 9, after the bending blade 14 begins to move toward the downwardly inclined direction, an edge of the bending blade 14 contacts the edge of the bent portion We of the work W.
  • the cam surface 15 a is positioned such that the follower 13 g is disengaged from the edge of the cam surface 15 a when the bending of the bent portion We reaches its final stage (when it is bent, for example, by an angle of 45° or more from the unfolded state toward the folded state).
  • the upper die 11 When the upper die 11 has reached a lowermost position and the bent portion We is completely bent to the folded state, the upper die 11 begins to move upwardly.
  • the bending blade 14 and the follower 13 g move upwardly along a path opposite to the path along which they move when the upper die 11 is moved downwardly.
  • the follower 13 g reaches the cam surface 15 a , the bending blade 14 moves upwardly while sliding rightwardly along the X-axis by means of the spring force of the compressing spring 13 e of the X-axis sliding device 13 .
  • the bending blade 14 moves in the downwardly inclined direction along the arcuate trajectory. Therefore, the bent portion We can be bent to the folded state without producing buckling.
  • the edge of the bending blade 14 may have a variety of shapes.
  • a bending blade 16 shown in FIG. 11 has a flat beveled portion 16 a that is formed in its edge.
  • a bending blade 17 shown in FIG. 12 has a rounded convex portion 17 a that is formed in its edge.
  • a bending blade 18 shown in FIG. 13 has a shouldered concave portion 18 a that is formed in its edge.
  • a bending blade 19 shown in FIG. 14 has a rounded concave portion 19 a that is formed in its edge.
  • the edge 14 a of the bending blade 14 shown in FIGS. 9 and 10 is not specifically changed and has a normal shape.
  • the bending blade 14 moves leftwardly along the X-axis (inwardly in the bending direction), so that the edge 14 a thereof is laterally forced against the bent portion We. Therefore, when the bending blade 14 moves leftwardly along the X-axis, the bending blade 14 bends the bent portion We while sliding (relatively moving) the edge 14 a thereof toward the edge of the bent portion We along the surface thereof.
  • the cam surface 15 a can be designed such that when the bent portion We is progressively bent and is bent by an angle of approximately 45°, the follower 13 g is disengaged therefrom and the edge 14 a of the bending blade 14 is disengaged from the edge of the bent portion We, whereby the bending blade 14 moves downwardly in the vertical direction without moving along the X-axis. In this case, it is possible to reliably and attractively bend the bent portion We.
  • the bending blade 18 shown in FIG. 13 or the bending blade 19 shown in FIG. 14 it is possible to substantially prevent the bending blade 18 or 19 from sliding along the bent portion We.
  • the bending blade 18 shown in FIG. 15 it is possible to move the bending blade 18 in the downwardly inclined direction in a condition that the edge of the bent portion We is received within the concave portion 18 a (a condition shown in the uppermost drawing of FIG. 15), as shown in the light arrow in the drawing.
  • the bending blade 18 can be prevented from moving (sliding) relative to the bent portion We until the bent portion We is bent by approximately 45° (a condition shown in the central drawing of FIG. 15).
  • the bending blade 18 moves downwardly only in the vertical direction without moving along the X-axis, as shown in the light arrow of the drawing (a condition shown in the lowermost drawing of FIG. 15).
  • the bending blade 18 can be prevented from sliding relative to the bent portion We until the bent portion We is completely folded.
  • the beveled portion 16 a of the bending blade 16 shown in FIG. 11 and the rounded convex portion 17 a of the bending blade 17 shown in FIG. 12 do not have a lesser slide-preventing performance than the bending blades 18 and 19 . Therefore, these bending blades 16 and 17 will cause a certain amount of sliding motion relative to the bent portion We. However, these bending blades 16 and 17 may have a greater slide-preventing performance than the bending blade 14 .
  • a hemming device 30 of a fourth embodiment is shown in FIG. 16.
  • the hemming device 30 of the fourth embodiment has a mechanism for moving a bending blade 33 along the X-axis, which mechanism is different from that in the hemming device 10 of the third embodiment.
  • the hemming device comprises an upper die 31 , an upper-die vertical position detector 32 for detecting the vertical position of the upper die 31 , a bending blade 33 , an X-axis sliding device 34 for moving the bending blade 33 along the X-axis, a single-axis driver 35 for driving the X-axis sliding device 34 , and a lower die 36 for supporting the work W.
  • the upper die 31 is moved upwardly or downwardly by means of a lifting device that is actuated by a hydraulic cylinder (not shown).
  • the upper-die vertical position detection device 32 is a so-called linear scale that comprises a sensing beam 32 a attached to the upper die 31 and a position sensor 32 b for detecting the position of the sensing beam.
  • the position of the sensing beam 32 a detected by the position sensor 32 b i.e., the position of the upper die 31 is input into an NC controller 35 a of the single-axis driver 35 .
  • the X-axis sliding device 34 has the same construction as the X-axis sliding device 13 c of the third embodiment and includes a base 34 a .
  • the bending blade 33 and a nut 35 b of the single-axis driver 35 are attached to the lower surface of the base 34 a.
  • the single-axis driver 35 comprises a servo motor 35 c , a threaded shaft 35 d that is rotated by the servo motor, the nut 35 b which meshes the threaded shaft 35 d , and the NC controller 35 a for controlling the rotation of the servo motor 35 c.
  • the hemming device 30 According to the hemming device 30 thus constructed, when the upper die 31 is lowered to a certain position, such a position is detected by the upper-die vertical position detection device 32 .
  • the detection signal output by the upper-die vertical position detection device 32 is input into the NC controller 35 a .
  • the servo motor 35 c is actuated, thereby rotating the threaded shaft 35 d .
  • the base 34 a of the X-axis sliding device 34 moves leftwardly along the X-axis because the threaded shaft 35 d meshes the nut 35 b.
  • the bending blade 33 is lowered in the downwardly inclined direction along an arcuate trajectory. At this time, an edge of the bending blade 33 contacts the bent portion We of the work W. Thereafter, when the upper die 31 is further lowered, the bending blade 33 is lowered along the arcuate trajectory. As a result, similar to said third embodiment, the bent portion We is folded from the unfolded state to the folded state.
  • the bending blade 33 is lowered in the downwardly inclined direction along the arcuate trajectory, the bending blade 33 can apply a lateral force (side pressure) against the bent portion We. Therefore, it is possible to bend the bent portion to the folded state without performing the conventional pre-bending step in one shot. As a result, similar to the third embodiment, it is possible to omit the die for the conventional pre-bending.
  • the program can be changed by operating an input device (ten-key pad or pendant) provided to the NC controller 35 a , in order to change or adjust the motion of the bending blade 33 . Therefore, the hemming device 30 can be applied to the work W that has a variety of shapes. Thus, it is possible to increase versatility of the device.
  • an input device ten-key pad or pendant
  • the upper-die vertical position detection device 32 may be replaced with that as shown in FIG. 17.
  • An upper-die vertical position detection device 37 shown in FIG. 17 comprises a rack 37 a attached to the upper die 31 , a pinion 37 b meshed with the rack 37 a , and an encoder 37 c .
  • the pinion 37 b is attached to, for example, the lower die 36 .
  • the encoder 37 c has an output shaft, which shaft is coupled to the pinion 37 b .
  • the meshing position of the pinion 37 b relative to the rack 37 a changes.
  • the change of the meshing position is converted into the rotation of the encoder 37 c , so that the position of the upper die 31 is detected.
  • a corresponding detection signal is input into the NC controller 35 as described above.
  • the hemming method of the present invention can also be performed by utilizing a dual-axis-controlled hemming device 40 shown in FIG. 18. Unlike the third and fourth embodiments, the hemming device 40 of a fifth embodiment does not require the upper die 11 or 31 .
  • the hemming device 40 of the fifth embodiment comprises a lower die 41 for supporting the work W, a lifting base 42 that is supported on a side surface of the lower die 41 so as to be slidable in the vertical direction, a vertical driving device 43 for raising and lowering the lifting base 42 , an X-axis sliding device 45 disposed on an upper portion of the lifting base 42 for moving a bending blade 44 along the X-axis, and a lateral driving device 46 for sliding a base 45 a of the X-axis sliding device 45 along the X-axis.
  • the lifting device 42 is supported by means of a rail 42 a that is vertically attached to the side surface of the lower die 41 , so as to be slidable in the vertical direction.
  • the vertical driving device 43 comprises a base 43 a that is attached to the side surface of the lower die 41 and projects therefrom, a servo motor 43 b attached to the base 43 a , a drive pulley 43 c attached to an output shaft of the motor, a threaded shaft 43 e rotatably supported on the base 43 a via bearings 43 d , 43 d , a driven pulley 43 f attached to the lower end portion of the threaded shaft 43 e , and a belt 43 g engaged with the driven pulley 43 f and the drive pulley 43 c .
  • the upper end portion of the threaded shaft 43 e is meshed with a nut 43 h that is attached to the lower end portion of the lifting base 42 .
  • the X-axis sliding device 45 has the same construction as that of the the third and fourth embodiments.
  • the sliding device 46 comprises a support bracket 46 a vertically attached to the upper surface of the lifting base 42 , a servo motor 46 b attached to the upper portion of the support bracket 46 a , a drive pulley 46 c attached to an output shaft of the motor, a threaded shaft 46 e rotatably supported on the support bracket 46 a via bearings 46 d , 46 d , a driven pulley 46 f attached to one end of the threaded shaft 46 e , and a belt 46 g engaged with the driven pulley 46 f and the drive pulley 46 c .
  • the other end of the threaded shaft 46 e is meshed with a nut 46 h that is attached to the base 45 a of the X-axis sliding device 45 .
  • the bending blade 44 is attached to the left-side surface of the base 45 a.
  • the hemming device 40 of the fifth embodiment thus constructed, when the sliding device 46 is actuated while the lifting base 42 is lowered by the vertical driving device 43 , the bending blade 44 is moved in the downwardly inclined direction along an arcuate or linear trajectory, to thereby bend the bent portion We of the work W from its unfolded state to its folded state without producing buckling. Therefore, similar to the first to fourth embodiments, it is possible to complete hemming processing by a single pressing operation of the bending blade 44 without performing the conventional pre-bending step. Therefore, it is possible to omit the die for the conventional pre-bending step.
  • a slide mechanism comprising a slide rail and a sliding member that moves along the slide rail is exemplified.
  • a link mechanism in order to move the bending blades 33 and 44 in the X-axis direction or in the vertical direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

For example, in hemming processing that is performed along the peripheries of an automobile door panel, conventionally, a bent portion of the panel formed by flanging processing is previously bent at an angle of approximately 45°, and then is finally bent by changing a posture of a bending roller and rolling thereto again. Therefore, it is difficult to shorten time for hemming processing. It is one object of the present inventions to complete hemming processing in only one rolling step, to thereby reduce working time for hemming processing.
Therefore, the invention is constructed such that a bending roller R rolls on a bent portion We in a posture that an axis of rotation R3 of the bending roller is rearwardly inclined relative to a normal line R2 perpendicular to a rolling direction R1 at a side of a folded edge Wee of the bent portion in a plan view. According to this construction, because the bent portion We is bent while a side pressure in a bending direction is applied thereto, the bent portion We can be bent to a folded state in one bending step.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The invention relates to a device for hemming processing the peripheries of, for example, door panels and hood panels of automobiles (hereinafter simply referred to as “work”) and a method thereof. [0001]
  • BACKGROUND OF THE INVENTION
  • Conventionally, as disclosed in Japanese Patent Nos. 1,844,282 and 2,693,282, roller type hemming devices have been proposed as hemming devices for performing such hemming processing. Such devices comprise a bending roller attached to a robot hand. The bending roller is rolled along a bent portion that is formed along the periphery of the work when the robot hand is moved, thereby hemming the bent portion. [0002]
  • In such a hemming device, the bending roller can be rolled along a desired three-dimensional trajectory by operating the robot hand based on a specified operational program. Therefore, it is possible to perform smooth and highly qualified hemming processing along the curved profile of the work. [0003]
  • Furthermore, it is possible to easily conform to modifications to the curvature of the work by changing the operational program of the robot hand. Therefore, unlike bending processing by a conventional press die, it may have high versatility. [0004]
  • DISCLOSURE OF THE INVENTION
  • However, as shown in FIG. 19, when such a roller type hemming device is used to perform hemming processing, in order to bend a bent portion We which is formed by pre-bending the periphery of the work W at an angle of approximately 90° (by flanging processing) as shown by the solid line to a folded state as shown by the chain double-dashed line in one step, if a bending roller R is pressed to an edge of the bent portion We in a condition in which the axis of rotation of the bending roller R is approximately perpendicular to a direction of a surface of the bent portion, as shown in FIG. 20, the bent portion buckles and cannot be bent to the folded state. One aspect of the hemming processing is that any member for controlling bending does not exist inside or outside of the bent portion. [0005]
  • For this reason, conventionally, as shown in FIG. 21, first, the bending roller R is positioned in an inclined posture in which it is inclined at an angle of approximately 45° and is rolled onto the bent portion We that is formed by the flanging processing, thereby inwardly bending the bent portion at an angle of approximately 45° toward the bending direction (which is referred to as pre-bending step). Thereafter, the posture of the bending roller R was changed to a horizontal posture (i.e., the posture shown in FIG. 19) in which its axis of rotation is approximately perpendicular to the direction of the surface of the bent portion, and the bending roller R is again rolled along the same rolling trajectory, thereby completely bending the pre-bent bent portion We to a folded state as shown by the chain double-dashed line in FIG. 19 (which is referred to as final-bending step). [0006]
  • Such a process is similarly necessary in conventional hemming devices that utilize a press die. In the press die type hemming device, the hemming processing must be performed in two steps, a pre-bending step and a final-bending step, in order to avoid buckling of the bent portion. Therefore, different metal dies must be prepared in order to perform respective steps. These dies are often incorporated into a common die holder. Also, it is generally difficult to prepare and adjust the die for pre-bending step. As a result, it has been desired to provide a device that can perform the hemming processing in one step. [0007]
  • Thus, in the conventional hemming devices, the bent portion We that is formed by the flanging processing must be bent in two separate steps, the pre-bending step and the final-bending step, in order to prevent buckling of the bent portion We. Therefore, it is necessary to roll the bending roller R twice along the bent portion. As a result, it is difficult to reduce working time for hemming processing. [0008]
  • Moreover, in the conventional press die type hemming device, because the pre-bending step and the final-bending step are required in order to avoid buckling of the bent portion, it is necessary to separately use the different metal dies in the respective steps. Therefore, considerable time must be consumed to prepare and adjust these dies. This may lead to increased die production costs. Also, highly-skilled workers are required to perform the hemming processing. [0009]
  • That is, because the pre-bending step is necessary in the conventional hemming devices, the hemming devices are complicated, thereby increasing manufacturing costs thereof. In addition, the conventional hemming devices may lead to a problem of low productivity due to sophisticated adjustment techniques and considerable hemming time. [0010]
  • Accordingly, it is one object of the present inventions to provide a hemming method that can complete hemming processing of a bent periphery of a work in only one bending step without performing a conventional so-called pre-bending step, and a device for performing the method. [0011]
  • Therefore, in the present invention, a hemming method or a hemming device having the following construction is proposed. [0012]
  • A first invention is characterized in that a side pressure in a bending direction is actively applied to a bent portion of a work that is formed by flanging processing, thereby bending the bent portion to a folded state in one bending step. [0013]
  • The second invention is a roller type hemming method. The method is performed by pressing a bending roller on a bent portion of a work that is formed by flanging processing and is characterized in that a side pressure in a bending direction is applied to the bent portion by moving the bending roller in a rolling direction while a bending surface of the bending roller is rearwardly inclined relative to a normal line perpendicular to the rolling direction at a side of a folded edge of the bent portion, thereby bending the bent portion to a folded state in one bending step. [0014]
  • The third invention is a hemming device that is used for performing the hemming method as defined in [0015] claim 2, which comprises a multi-axes type robot hand, a bending roller rotatably attached to the robot hand, and a controller that controls the action of the robot hand such that the bending roller is rolled along the bent portion in a posture that an axis of rotation of the bending roller is rearwardly inclined relative to the normal line perpendicular to the rolling direction at the side of the folded edge of the bent portion in a plan view.
  • The fourth invention is a hemming device that is used for performing the hemming method as defined in [0016] claim 2, which comprises a multi-axes type robot hand, a tapered bending roller rotatably attached to the robot hand, and a controller that controls the action of the robot hand such that the bending roller is rolled along the bent portion in a posture that a small diameter side of the bending roller is positioned at the side of the folded edge of the bent portion and a rolling surface of the bending roller is parallel to the bent portion when hemming processing is completed.
  • The fifth invention is a press type hemming method for folding a bent portion of a work that is formed by flanging processing. The method is performed by pressing a bending blade to the bent portion and is characterized in that a side pressure in a bending direction is actively applied to the bent portion by pressing the bending blade while moving it in a resultant direction of a direction of a surface of the bent portion and a direction perpendicular thereto, thereby bending the bent portion to a folded state in one pressing step. [0017]
  • The sixth invention is a hemming method as defined in [0018] claim 5 characterized in that the bent portion is incompletely bent while moving the bending blade in the resultant direction of a die closing direction and a direction perpendicular thereto, and then the bending blade is lowered with an upper die, thereby bending the bent portion to the folded state.
  • The seventh invention is a hemming device that is used for performing the hemming method as defined in [0019] claim 5 or 6, which comprises a lower die that supports the work, an upper die that vertically moves relative to the lower die, a bending blade that is attached to the upper die and is movable in the direction perpendicular to a die closing direction, and a bending blade moving mechanism that moves the bending blade in the direction perpendicular to the die closing direction.
  • The eighth invention is a hemming device that is used for performing the hemming method as defined in [0020] claim 5 or 6, which comprises an X-axis moving mechanism that moves the bending blade along the X-axis corresponding to the direction of the surface of the bent portion, and a Y-axis moving mechanism that moves the bending blade along the Y-axis perpendicular to the X-axis, wherein the bending blade is adapted to press the bent portion while moving it in the resultant direction of the direction of the X-axis and the direction of the Y-axis.
  • The ninth invention is a hemming device as defined in claim 8 characterized in that the movement of the bending blade by means of the X-axis moving mechanism and/or the Y-axis moving mechanism is numerically controlled. [0021]
  • According to the hemming method of the first invention, because the bent portion is bent while applying the side pressure thereto, the bent portion can be bent at an angle of approximately 90° from an unfolded state to a folded state in one bending step without producing buckling. Therefore, unlike the conventional method, it is not necessary to bend the bent portion in two steps of a pre-bending step and a final-bending step. As a result, it is possible to reduce working time for hemming processing and to drastically simplify and downsize a hemming device. [0022]
  • According to the hemming method of the second invention, the bending roller is moved while the bending surface (a portion that is pressed to the bent portion) of the bending roller is rearwardly inclined relative to the normal line perpendicular to the rolling direction at the side of the folded edge of the bent portion. Therefore, because the bent portion can be bent while the side pressure in the bending direction is applied thereto, the bent portion can be bent from an unfolded state to a folded state in one bending step without producing buckling even if the conventional pre-bending step is omitted. As a result, it is possible to reduce working time for hemming processing and to drastically simplify and downsize a hemming device. [0023]
  • According to the hemming device of the third invention, the bending roller rolls on the bent portion in the posture that the axis of rotation of the bending roller is rearwardly inclined relative to the normal line perpendicular to the rolling direction (moving direction of the bending roller) at the side of the folded edge of the bent portion in a plan view. Thus, a pressing force of the bending roller is applied to an edge of the bent portion as a force component that presses the bent portion in the bending direction. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in one bending step without performing the conventional pre-bending step. As a result, it is possible to reduce working time for hemming processing. [0024]
  • According to the hemming device of the fourth invention, the tapered bending roller rolls on the bent portion in the posture that the small diameter side of the bending roller is positioned at the side of the folded edge of the bent portion and the axis of rotation of the bending roller is parallel to the bent portion when the hemming processing is completed. Thus, the pressing force of the bending roller is applied to the edge of the bent portion as a force component that presses the bent portion in the bending direction. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in one bending step without performing the conventional pre-bending step. As a result, it is possible to reduce working time for hemming processing. [0025]
  • According to the hemming method of the fifth invention or the hemming device of the seventh invention, the bending blade presses the edge in the resultant direction (downwardly inclined direction) of the direction of the surface of the bent portion and the direction perpendicular thereto. Thus, the side pressure in the bending direction is applied to the bent portion. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in one bending step (one shot) without performing the conventional pre-bending step. As a result, it is possible to omit the pre-bending step in the hemming processing. [0026]
  • According to the hemming method of the sixth invention or the hemming device of the seventh invention, in addition to the above-described effect, it is possible to minimize a moving distance of the bending blade in the direction perpendicular to the die closing direction and to remarkably reduce sliding motion of the bending blade relative to the bent portion. As a result, the bent portion can be more reliably bent to the folded state. [0027]
  • According to the hemming device of the eighth invention, the bending blade is moved in the resultant direction (downwardly inclined direction) of the direction of the X-axis and the direction of the Y-axis, so that the pressing force in the bending direction can be applied to the bent portion. Therefore, the bent portion can be bent to the folded state without producing buckling. That is, it is possible to complete the hemming processing in only one bending step without performing the conventional pre-bending step. As a result, it is possible to omit the pre-bending step (device) in the hemming processing. [0028]
  • According to the hemming device of the ninth invention, in addition to the above-described effect, it is possible to increase versatility of the hemming device in order to process a various types of work.[0029]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an overall side view of a roller type hemming device according to a first embodiment of the invention. [0030]
  • FIG. 2 is a view of the hemming device in FIG. 1 that is seen in the direction shown by Arrow H, showing a plan view of a bending roller that is bending a bent portion of a work. [0031]
  • FIG. 3 is a view of the hemming device in FIG. 2 that is seen in the direction shown by Arrow Y, showing a side view of the bending roller that is bending the bent portion of the work. [0032]
  • FIG. 4 is a view of a device according to a second embodiment of the invention, illustrating a condition in which a tapered bending roller is bending a bent portion of a work. [0033]
  • FIG. 5 is a view of the device in FIG. 4 that is seen in the direction shown by Arrow Y, illustrating a condition in which the tapered bending roller is bending the bent portion of the work. [0034]
  • FIG. 6 is a plan view of a cylindrical bending roller, illustrating a side pressure generating principle when such a cylindrical bending roller is used. [0035]
  • FIG. 7 is a plan view of the tapered bending roller, illustrating a side pressure generating principle when such a tapered bending roller is used. [0036]
  • FIG. 8 is a side view of a press die type hemming device according to a third embodiment of the invention. [0037]
  • FIG. 9 is a view illustrating a condition in which a [0038] bending blade 14 approaches a bent portion We in the hemming device of the third embodiment.
  • FIG. 10 is a view illustrating a condition in which the [0039] bending blade 14 moves and bends the bent portion We to a folded state.
  • FIG. 11 is a side view of another bending blade, illustrating an area around a lower edge of a [0040] bending blade 16, which area has a beveled portion 16 a.
  • FIG. 12 is a side view of a further bending blade, illustrating an area around a lower edge of a [0041] bending blade 17, which area has a rounded convex portion 17 a.
  • FIG. 13 is a side view of a further bending blade, illustrating an area around a lower edge of a [0042] bending blade 18, which area has a shouldered concave portion 18 a.
  • FIG. 14 is a side view of a further bending blade, illustrating an area around a lower edge of a [0043] bending blade 19, which area has an arcuate concave portion 19 a.
  • FIG. 15 is a side view illustrating a condition in which the bent portion We is bent by the [0044] bending blade 18 shown in FIG. 13. The uppermost drawing shows a condition in which the bending blade 18 contacts the bent portion We, in which the periphery of the bent portion We engages the concave portion 18 a. The central drawing shows a condition in which the bent portion We is bent at an angle of about 45° and an edge thereof is disengaged from the concave portion 18 a of the bending blade 18. The lowermost drawing shows a condition in which the bending blade 18 is lowered in the vertical direction and the bent portion We is substantially bent to a folded state.
  • FIG. 16 is a side view of a single-axis NC-controlled hemming device according to a fourth embodiment of the invention. [0045]
  • FIG. 17 is a side view illustrating another type of upper-die vertical position detection device of the hemming device of the fourth embodiment. [0046]
  • FIG. 18 is a side view illustrating a dual-axes NC-controlled hemming device according to a fifth embodiment of the invention. [0047]
  • FIG. 19 is a side view illustrating an area around a bent portion of a work, which portion is formed by flanging processing. [0048]
  • FIG. 20 is a side view of the bent portion of the work, which portion is formed by flanging processing, illustrating a condition in which a bending roller rolls on the bent portion without pre-bending and the bent portion is buckled. [0049]
  • FIG. 21 is a side view of the bent portion of the work, which portion is formed by flanging processing, illustrating a condition in which the bent portion is pre-bent.[0050]
  • PREFERRED EMBODIMENTS OF THE INVENTION
  • Next, a first embodiment of the present invention will be described with reference to FIGS. [0051] 1 to 3. FIG. 1 shows a hemming device 1 of a first embodiment. In the first embodiment, a roller type hemming device 1 is exemplified.
  • The hemming device [0052] 1 comprises a multi-axes type robot hand 2 (a polar coordinate type multi-joint robot), a lower die 5 for supporting a work W, and a base 7 for securing these parts in a constant spatial relationship.
  • A bending roller R is rotatably attached to a distal end of the [0053] robot hand 2 via a support device 3. The robot hand 2 is operated based on a program that is previously memorized by teaching. When the robot hand 2 is operated, the bending roller R is rolled along a bent portion We formed along a periphery of the work W, so that the bent portion We is bent to a folded state. Thus, hemming processing of the work W is performed.
  • The work W is a door panel for an automobile and comprises an inner panel Wi and an outer panel Wo. When the bent portion We that is formed along a periphery of the outer panel Wo is bent to a folded state, a periphery of the inner panel Wi is sandwiched therebetween. Thus, the panels Wo and Wi are integrated. The work W is placed on an [0054] upper surface 5 a of the lower die 5 and secured in a desired position by fixture members 6-6.
  • FIG. 2 is a plan view illustrating a condition in which the bending roller R rolls on the bent portion We of the work W (the outer panel Wo), thereby bending the bent portion We. In this specification, the “plan view” corresponds to a view that is seen in the direction of Arrow H in FIG. 1, that is, a view that is seen in the direction perpendicular to the bent portion We that is folded. [0055]
  • In the drawing, an arrow-tipped line R1 indicates a rolling direction (moving direction) of the bending roller R. Hereinafter, the arrow-tipped line that indicates the direction of the rolling direction of the bending roller R will also be referred to as a rolling direction R1. The rolling direction R1 of the bending roller R corresponds to a tangent line at the bent portion We having an arcuate shape. When the bent portion has a linear shape, the rolling direction of the bending roller R corresponds to a straight line parallel to the bent portion. A line R2 indicates a normal line perpendicular to the rolling direction R1, and a line R3 represents an axis of rotation of the bending roller R. The axis of rotation R3 is inclined at an angle θ1 relative to the normal line R2 when shown in a plan view. The axis of rotation R3 is inclined relative to the normal line R2 such that one end of the roller R corresponding to a folded edge Wee of the bent portion We that is folded may form a rearward end when viewed in the rolling direction. [0056]
  • On the other hand, as shown in FIG. 3, the axis of rotation R3 of the bending roller R is set, so as to be parallel to the bent portion We that is folded, when laterally viewed as indicated by Arrow Y in FIG. 2. This arrangement is identical to the arrangement in a conventional final-bending step. [0057]
  • According to the hemming device [0058] 1 described above, when the robot hand 2 is operated, the bending roller R moves in an inclined position and rolls on the bent portion We of a work W that is previously bent at an angle of approximately 90° by flanging processing. Therefore, it is possible to complete the hemming processing in one bending step without performing a conventional pre-bending step and without producing buckling in the bent portion We.
  • That is, in a plan view, the bending roller R rolls on the bent portion We in a posture that the axis of rotation R3 thereof is rearwardly inclined at an angle θ1 relative to the rolling direction R1 at a side of the folded edge Wee of the bent portion We that is folded. Therefore, a portion of a pressing force of the bending roller R is applied to the folded edge Wee of the bent portion We as a force component (side pressure) that presses the bent portion We in its bending direction. Thus, because the bending roller R rolls on the bent portion We in the posture that it is inclined relative to the rolling direction, the bent portion We will be subjected to a pressing force in a direction of its surface and a pressing force (side pressure) in the direction (lateral direction) perpendicular to the surface. Therefore, even if the bending roller R rolls on the bent portion We in the same posture as that in the final-bending step of the conventional hemming device, the bent portion We is bent to a folded state as shown by the chain double-dashed line in FIG. 19 without producing buckling. Thus, it is possible to bend the bent portion We to the folded state without performing the conventional pre-bending step and without producing buckling in the bent portion We, to thereby complete the hemming processing. [0059]
  • Conventionally, the pre-bending step is performed in a posture that in a side view, the axis of rotation R3 of the bending roller R is inclined at an angle of approximately 45°, and then an additional vending step is again performed in a posture that in a side view, the axis of rotation R3 is positioned parallel to the bent portion We that is folded. To the contrary, according to the hemming method exemplary described, the axis of rotation R3 of the bending roller R is maintained in the same posture (the posture that the axis of rotation is positioned parallel to the bent portion We that is folded) as the conventional final-bending step in a side view and is inclined in a desired direction relative to the rolling direction in a plan view. As a result, it is possible to bend the bent portion We from its unfolded state to its folded state in one step without producing buckling. Therefore, according to the hemming device [0060] 1 of the first embodiment and the hemming method that uses this device, it is possible to drastically reduce time required to perform the hemming processing (approximately onehalf of the conventional method).
  • A variety of modifications may be added to the first embodiment described above. For example, with regard to the rolling posture of the bending roller R in a plan view, the inclination angle θ1 can be modified in accordance with the bent angle that is formed by the flanging processing (the angle relative to the portion along the [0061] upper surface 5 a of the lower die 5; hereinafter referred to as a flange angle θ2; see FIG. 19). For example, if the flange angle θ2 is an angle of approximately 60-80°, the inclination angle θ1 is set to an angle of approximately 10-15°, and if the flange angle θ2 is an angle of approximately 80-100°, the inclination angle θ2 is set to an angle of approximately 20-30°. Thus, the effects described above are obtained. In addition, the inclination angle θ1 can be variously modified based on the diameter of the bending roller R, the shape of the bent portion We, or other such elements.
  • Further, in the first embodiment exemplified above, although the cylindrical bending roller R having a fixed diameter is used, for example, as shown in FIGS. 4 and 5, a tapered bending roller RT having an unfixed diameter can be used in order to bend the bent portion We from the unfolded state to the folded state in one rolling step. [0062]
  • The bending roller RT is positioned such that its small diameter side corresponds to the folded edge of the bent portion We that is folded, and the axis of rotation R3 thereof is positioned such that a bending surface of the roller (an edge line that contacts the bent portion) is parallel to the bent portion We when the bending step is completed. Thus, the pressing force of the bending roller acts on an edge of the bent portion as a force component (side pressure) that presses the bent portion We in its bending direction. As a result, the bent portion can be bent to the folded state without producing buckling. Therefore, similar to the bending roller R, the tapered bending roller RT can also bend the bent portion We from the unfolded state to the folded state in one rolling step. As a result, it is possible to drastically reduce the time required to perform the hemming processing. This embodiment (a second embodiment) corresponds to an embodiment described in [0063] claim 2 or 4.
  • Further, in the second embodiment, the axis of rotation R3 of the bending roller RT can be inclined at, for instance, angle θ1 relative to the normal line R2 that is perpendicular to the rolling direction R1 in a plan view. [0064]
  • With regard to the first and second embodiments described above, by appropriately controlling the shape or the rolling posture of the bending roller, the side pressure in the bending direction can be applied to the bent portion We. A side pressure producing mechanism will be explained. [0065]
  • As shown in FIG. 6, when the cylindrical bending roller R having a constant diameter is rolled in the direction of Arrow R1 (the direction along the bent portion We) along the bent portion We in a posture that the axis of rotation R3 thereof is tilted at an angle θ1 relative to the normal line R2, a direction that the bending roller RT tends to roll (a direction of rotation) corresponds to the direction of Arrow C (a direction perpendicular to the axis of rotation R3). Therefore, the direction of rotation C inclines by angle θ1 relative to the rolling direction R1. As a result, the bending roller R is rolled while sliding outwardly (a direction opposite to the direction of Arrow S) of the bent portion We. [0066]
  • Thus, a force component in the direction of Arrow S of the pressing force that is applied to the bent portion We via the bending roller R (the pressing force that is applied along a direction of a surface of the bent portion We, that is, the pressing force that may produce buckling in the conventional method) is applied to the bent portion We as a force (side pressure S) that presses the bent portion We in the bending direction. As a result, the bent portion We is reliably bent to the folded state without producing buckling. [0067]
  • Further, as shown in FIG. 7, when the tapered bending roller RT having an unfixed diameter is positioned such that the small diameter side corresponds to the folded edge Wee of the bent portion We that is folded and is rolled in the direction of Arrow R1 along the bent portion We in a condition that the axis of rotation R3 coincides with the normal line R2, the direction that the bending roller RT tends to roll (the direction of rotation) corresponds to the direction of Arrow C (the direction perpendicular to the edge line E of the circumferential surface). That is, the direction of rotation C corresponds to a direction that is inclined at angle θ3 relative to the rolling direction R1. The angle θ3 corresponds to an inclination angle of the circumferential surface (edge line E) relative to the axis of rotation R3. Therefore, the bending roller RT is also rolled along the bent portion We while sliding in the direction opposite to the direction of Arrow S. [0068]
  • Thus, a force component in the direction of Arrow S of the pressing force that is applied to the bent portion We via the bending roller R (the pressing force that is applied along the direction of the surface of the bent portion We, that is, the pressing force that may produce buckling in the conventional method) is applied to the bent portion We as the force (side pressure S) that presses the bent portion We in the bending direction. As a result, the bent portion We is reliably bent to the folded state without producing buckling. [0069]
  • Further, with regard to the tapered bending roller RT, the side pressure S can be increased, if the axis of rotation R3 of the roller is inclined at an angle θ1 relative to the normal line R2 at a side of the folded edge Wee of the bent portion We that is folded. [0070]
  • Next, a third embodiment of the present invention will be described with reference to FIGS. [0071] 8 to 15. In the third embodiment, a press type hemming device 10 is exemplified. The hemming device 10 of the third embodiment is illustrated in FIG. 8. The hemming device 10 comprises an upper die 11 that moves up and down, a lower die 12 on which the work W is seated, a bending blade 14 attached to the upper die 11 via an X-axis sliding device 13, and a cam die 15 for moving the bending blade 14 in a direction of the X-axis.
  • The work W and the [0072] lower die 12 are the same members as those used in the first embodiment.
  • The [0073] upper die 11 is moved upwardly or downwardly by means of a lifting device that is actuated by a hydraulic cylinder (not shown). The X-axis sliding device 13 is attached to the lower surface of the upper die 11. Further, in this specification, the X-axis direction will be referred to as the horizontal direction (the right-to-left direction in FIG. 8).
  • The [0074] X-axis sliding device 13 comprises a base 13 d, a compressing spring 13 e that is sandwiched between the base 13 d and the upper die 11, and a follower 13 g rotatably attached to the base 13 d via a bracket 13 f. The base 13 d can be freely slid in the X-axis direction by means of a sliding mechanism 13 c. The sliding mechanism 13 c comprises a slide rail 13 a and a sliding member 13 b that moves therealong. The base 13 d is biased by means of the compressing spring 13 e in the rightward direction in FIG. 8. Rightward movement of the base 13 d is restricted by a stopper 13 h. Further, the X-axis sliding device 13 does not have any special driving source for sliding the base 13 d.
  • The [0075] bracket 13 f downwardly extends from the lower surface of the base 13 d, and the follower 13 g is rotatably retained on the proximal end thereof at a desired distance below the upper side 11.
  • The [0076] bending blade 14 is attached to the lower surface of the base 13 d and downwardly projects. The bent portion We of the work W is positioned beneath the bending blade 14.
  • On the other hand, the cam die [0077] 15 is placed beneath the follower 13 g and is seated on and secured to a mount 15 b at a desired height.
  • According to the [0078] hemming device 10 of the third embodiment and the hemming method by utilizing such a device, it is also possible to bend the bent portion We from the unfolded state to the folded state by an angle of approximately 90° by a single downward motion (one shot) of the upper die 11. Therefore, it is possible to complete hemming processing without performing the conventional pre-bending step.
  • That is, when the [0079] upper die 11 is lowered by a desired distance, the follower 13 g contacts a cam surface 15 a of the cam die 15. Thereafter, when the upper die 11 is further lowered while maintaining this contacting state, the follower 13 g slidably contacts the cam surface 15 a, so that the base 13 d slides along the X-axis in the leftward direction in the drawing against the spring force of the compressing spring 13 e.
  • Because the base [0080] 13 d slides leftwardly along the X-axis (inwardly in the bending direction) while the upper die 11 is lowered, the bending blade 14 moves along an arcuate trajectory toward a combined direction (downwardly inclined direction) of a lowering direction (vertical direction) of the upper die 11 and an X-axis direction (horizontal direction). As shown in FIG. 9, after the bending blade 14 begins to move toward the downwardly inclined direction, an edge of the bending blade 14 contacts the edge of the bent portion We of the work W.
  • After the edge of the [0081] bending blade 14 contacts the bent portion We, when the upper die 11 is further lowered and the follower 13 g slidably contacts the cam surface 15 a of the cam die 15, the bending blade 14 is moved leftwardly along the X-axis by means of the X-axis sliding device 13 c. As a result, the bending blade 14 moves in the downwardly inclined direction along the arcuate trajectory. This motion is illustrated in FIG. 10. Because the bending blade 14 moves along such an arcuate trajectory, the bent portion We is downwardly pressed while being subjected to the pressing force in the bending direction (leftward direction along the X-axis). Therefore, the bent portion We is bent without producing buckling. The cam surface 15 a is positioned such that the follower 13 g is disengaged from the edge of the cam surface 15 a when the bending of the bent portion We reaches its final stage (when it is bent, for example, by an angle of 45° or more from the unfolded state toward the folded state).
  • When the [0082] upper die 11 is moved downwardly after the follower 13 g is disengaged from the cam surface 15 a, the follower 13 g moves downwardly in the vertical direction. That is, afterward, the bending blade 14 is not moved along the X-axis by the X-axis sliding device 13 c. As a result, the bending blade 14 moves downwardly in the vertical direction (the same direction as the direction of movement of the upper die 11). Thus, the bent portion We is bent to the folded state by the bending blade 14 that moves downwardly straight in the vertical direction. FIG. 10 shows a condition that the bent portion We is bent to the folded state. Further, the light arrow in FIG. 10 shows movement of the bending blade 14 that moves in the downwardly inclined direction along the arcuate trajectory and subsequently moves downwardly in the vertical direction.
  • When the [0083] upper die 11 has reached a lowermost position and the bent portion We is completely bent to the folded state, the upper die 11 begins to move upwardly. When the upper die 11 moves upwardly, the bending blade 14 and the follower 13 g move upwardly along a path opposite to the path along which they move when the upper die 11 is moved downwardly. When the follower 13 g reaches the cam surface 15 a, the bending blade 14 moves upwardly while sliding rightwardly along the X-axis by means of the spring force of the compressing spring 13 e of the X-axis sliding device 13. When the follower 13 g separates from the cam surface 15 a, the base 13 d of the X-axis sliding device 13 c returns by means of the spring force of the compressing spring 13 e, to thereby contacting the stopper 13 h. Thereafter, the upper die 11 is returned to an uppermost position in this state. Thus, a hemming cycle of the hemming device 10 of this embodiment is completed. This cycle is repeated in order to hem another bent portion of the work.
  • According to the [0084] hemming device 10 of the third embodiment thus constructed and the hemming method by utilizing such a device, the bending blade 14 moves in the downwardly inclined direction along the arcuate trajectory. Therefore, the bent portion We can be bent to the folded state without producing buckling. As a result, it is possible to complete the hemming processing by a single downward motion (one shot) of the upper die 11 (die for the final-bending step) without performing the conventional pre-bending step. Therefore, it is possible to omit the die for the conventional pre-bending step.
  • A variety of modifications can be added to the [0085] hemming device 10 of the third embodiment described above. For example, as shown in FIGS. 11 to 14, the edge of the bending blade 14 may have a variety of shapes. A bending blade 16 shown in FIG. 11 has a flat beveled portion 16 a that is formed in its edge. A bending blade 17 shown in FIG. 12 has a rounded convex portion 17 a that is formed in its edge. A bending blade 18 shown in FIG. 13 has a shouldered concave portion 18 a that is formed in its edge. A bending blade 19 shown in FIG. 14 has a rounded concave portion 19 a that is formed in its edge.
  • The [0086] edge 14 a of the bending blade 14 shown in FIGS. 9 and 10 is not specifically changed and has a normal shape. When the upper die 11 moves downwardly and the follower 13 g slidably contacts the cam surface 15 a, the bending blade 14 moves leftwardly along the X-axis (inwardly in the bending direction), so that the edge 14 a thereof is laterally forced against the bent portion We. Therefore, when the bending blade 14 moves leftwardly along the X-axis, the bending blade 14 bends the bent portion We while sliding (relatively moving) the edge 14 a thereof toward the edge of the bent portion We along the surface thereof. The cam surface 15 a can be designed such that when the bent portion We is progressively bent and is bent by an angle of approximately 45°, the follower 13 g is disengaged therefrom and the edge 14 a of the bending blade 14 is disengaged from the edge of the bent portion We, whereby the bending blade 14 moves downwardly in the vertical direction without moving along the X-axis. In this case, it is possible to reliably and attractively bend the bent portion We.
  • By utilizing the [0087] bending blade 18 shown in FIG. 13 or the bending blade 19 shown in FIG. 14, it is possible to substantially prevent the bending blade 18 or 19 from sliding along the bent portion We. For example, when the bending blade 18 shown in FIG. 15 is used, it is possible to move the bending blade 18 in the downwardly inclined direction in a condition that the edge of the bent portion We is received within the concave portion 18 a (a condition shown in the uppermost drawing of FIG. 15), as shown in the light arrow in the drawing. In this case, the bending blade 18 can be prevented from moving (sliding) relative to the bent portion We until the bent portion We is bent by approximately 45° (a condition shown in the central drawing of FIG. 15). After the edge of the bent portion We is disengaged from the concave portion 18 a, the bending blade 18 moves downwardly only in the vertical direction without moving along the X-axis, as shown in the light arrow of the drawing (a condition shown in the lowermost drawing of FIG. 15). The bending blade 18 can be prevented from sliding relative to the bent portion We until the bent portion We is completely folded.
  • The beveled [0088] portion 16 a of the bending blade 16 shown in FIG. 11 and the rounded convex portion 17 a of the bending blade 17 shown in FIG. 12 do not have a lesser slide-preventing performance than the bending blades 18 and 19. Therefore, these bending blades 16 and 17 will cause a certain amount of sliding motion relative to the bent portion We. However, these bending blades 16 and 17 may have a greater slide-preventing performance than the bending blade 14.
  • A [0089] hemming device 30 of a fourth embodiment is shown in FIG. 16. The hemming device 30 of the fourth embodiment has a mechanism for moving a bending blade 33 along the X-axis, which mechanism is different from that in the hemming device 10 of the third embodiment. The hemming device comprises an upper die 31, an upper-die vertical position detector 32 for detecting the vertical position of the upper die 31, a bending blade 33, an X-axis sliding device 34 for moving the bending blade 33 along the X-axis, a single-axis driver 35 for driving the X-axis sliding device 34, and a lower die 36 for supporting the work W.
  • Similar to the third embodiment, the [0090] upper die 31 is moved upwardly or downwardly by means of a lifting device that is actuated by a hydraulic cylinder (not shown).
  • The upper-die vertical [0091] position detection device 32 is a so-called linear scale that comprises a sensing beam 32 a attached to the upper die 31 and a position sensor 32 b for detecting the position of the sensing beam. The position of the sensing beam 32 a detected by the position sensor 32 b, i.e., the position of the upper die 31 is input into an NC controller 35 a of the single-axis driver 35.
  • The [0092] X-axis sliding device 34 has the same construction as the X-axis sliding device 13 c of the third embodiment and includes a base 34 a. The bending blade 33 and a nut 35 b of the single-axis driver 35 are attached to the lower surface of the base 34 a.
  • The single-[0093] axis driver 35 comprises a servo motor 35 c, a threaded shaft 35 d that is rotated by the servo motor, the nut 35 b which meshes the threaded shaft 35 d, and the NC controller 35 a for controlling the rotation of the servo motor 35 c.
  • According to the [0094] hemming device 30 thus constructed, when the upper die 31 is lowered to a certain position, such a position is detected by the upper-die vertical position detection device 32. The detection signal output by the upper-die vertical position detection device 32 is input into the NC controller 35 a. When a certain detection signal from the upper-die vertical position detection device 32 is input into the NC controller 35 a, according to a previously stored program, the servo motor 35 c is actuated, thereby rotating the threaded shaft 35 d. Thus, the base 34 a of the X-axis sliding device 34 moves leftwardly along the X-axis because the threaded shaft 35 d meshes the nut 35 b.
  • When the base [0095] 34 a moves leftwardly along the X while the upper die 31 is lowered, similar to the third embodiment, the bending blade 33 is lowered in the downwardly inclined direction along an arcuate trajectory. At this time, an edge of the bending blade 33 contacts the bent portion We of the work W. Thereafter, when the upper die 31 is further lowered, the bending blade 33 is lowered along the arcuate trajectory. As a result, similar to said third embodiment, the bent portion We is folded from the unfolded state to the folded state.
  • Thus, according to the [0096] hemming device 30 of the fourth embodiment, because the bending blade 33 is lowered in the downwardly inclined direction along the arcuate trajectory, the bending blade 33 can apply a lateral force (side pressure) against the bent portion We. Therefore, it is possible to bend the bent portion to the folded state without performing the conventional pre-bending step in one shot. As a result, similar to the third embodiment, it is possible to omit the die for the conventional pre-bending.
  • In the fourth embodiment, the program can be changed by operating an input device (ten-key pad or pendant) provided to the [0097] NC controller 35 a, in order to change or adjust the motion of the bending blade 33. Therefore, the hemming device 30 can be applied to the work W that has a variety of shapes. Thus, it is possible to increase versatility of the device.
  • A variety of modifications may also be added to the fourth embodiment. For example, the upper-die vertical [0098] position detection device 32 may be replaced with that as shown in FIG. 17. An upper-die vertical position detection device 37 shown in FIG. 17 comprises a rack 37 a attached to the upper die 31, a pinion 37 b meshed with the rack 37 a, and an encoder 37 c. The pinion 37 b is attached to, for example, the lower die 36. The encoder 37 c has an output shaft, which shaft is coupled to the pinion 37 b. When the upper die 31 is lowered, the meshing position of the pinion 37 b relative to the rack 37 a changes. The change of the meshing position is converted into the rotation of the encoder 37 c, so that the position of the upper die 31 is detected. A corresponding detection signal is input into the NC controller 35 as described above.
  • The hemming method of the present invention can also be performed by utilizing a dual-axis-controlled [0099] hemming device 40 shown in FIG. 18. Unlike the third and fourth embodiments, the hemming device 40 of a fifth embodiment does not require the upper die 11 or 31.
  • The [0100] hemming device 40 of the fifth embodiment comprises a lower die 41 for supporting the work W, a lifting base 42 that is supported on a side surface of the lower die 41 so as to be slidable in the vertical direction, a vertical driving device 43 for raising and lowering the lifting base 42, an X-axis sliding device 45 disposed on an upper portion of the lifting base 42 for moving a bending blade 44 along the X-axis, and a lateral driving device 46 for sliding a base 45 a of the X-axis sliding device 45 along the X-axis.
  • The [0101] lifting device 42 is supported by means of a rail 42 a that is vertically attached to the side surface of the lower die 41, so as to be slidable in the vertical direction.
  • The [0102] vertical driving device 43 comprises a base 43 a that is attached to the side surface of the lower die 41 and projects therefrom, a servo motor 43 b attached to the base 43 a, a drive pulley 43 c attached to an output shaft of the motor, a threaded shaft 43 e rotatably supported on the base 43 a via bearings 43 d, 43 d, a driven pulley 43 f attached to the lower end portion of the threaded shaft 43 e, and a belt 43 g engaged with the driven pulley 43 f and the drive pulley 43 c. The upper end portion of the threaded shaft 43 e is meshed with a nut 43 h that is attached to the lower end portion of the lifting base 42.
  • The [0103] X-axis sliding device 45 has the same construction as that of the the third and fourth embodiments. The sliding device 46 comprises a support bracket 46 a vertically attached to the upper surface of the lifting base 42, a servo motor 46 b attached to the upper portion of the support bracket 46 a, a drive pulley 46 c attached to an output shaft of the motor, a threaded shaft 46 e rotatably supported on the support bracket 46 a via bearings 46 d, 46 d, a driven pulley 46 f attached to one end of the threaded shaft 46 e, and a belt 46 g engaged with the driven pulley 46 f and the drive pulley 46 c. The other end of the threaded shaft 46 e is meshed with a nut 46 h that is attached to the base 45 a of the X-axis sliding device 45.
  • The [0104] bending blade 44 is attached to the left-side surface of the base 45 a.
  • According to the [0105] hemming device 40 of the fifth embodiment thus constructed, when the sliding device 46 is actuated while the lifting base 42 is lowered by the vertical driving device 43, the bending blade 44 is moved in the downwardly inclined direction along an arcuate or linear trajectory, to thereby bend the bent portion We of the work W from its unfolded state to its folded state without producing buckling. Therefore, similar to the first to fourth embodiments, it is possible to complete hemming processing by a single pressing operation of the bending blade 44 without performing the conventional pre-bending step. Therefore, it is possible to omit the die for the conventional pre-bending step.
  • As described above, in the [0106] X-axis sliding devices 34 and 45 in the fourth and fifth embodiments or the lifting device 43 in the fifth embodiment, a slide mechanism comprising a slide rail and a sliding member that moves along the slide rail is exemplified. However, such a mechanism can be replaced with a link mechanism in order to move the bending blades 33 and 44 in the X-axis direction or in the vertical direction

Claims (9)

1. A hemming method characterized in that a side pressure in a bending direction is actively applied to a bent portion of a work that is formed by flanging processing, thereby bending the bent portion to a folded state in one bending step.
2. A roller type hemming method, the method being performed by pressing a bending roller on a bent portion of a work that is formed by flanging processing, characterized in that a side pressure in a bending direction is applied to the bent portion by moving the bending roller in a rolling direction while a bending surface of the bending roller is rearwardly inclined relative to a normal line perpendicular to the rolling direction at a side of a folded edge of the bent portion, thereby bending the bent portion to a folded state in one bending step.
3. A hemming device that is used for performing the hemming method as defined in claim 2 comprising a multi-axes type robot hand, a bending roller rotatably attached to the robot hand, and a controller that controls the action of the robot hand such that the bending roller rolls on the bent portion in a posture that an axis of rotation of the bending roller is rearwardly inclined relative to the normal line perpendicular to the rolling direction at the side of the folded edge of the bent portion in a plan view.
4. A hemming device that is used for performing the hemming method as defined in claim 2 comprising a multi-axes type robot hand, a tapered bending roller rotatably attached to the robot hand, and a controller that controls the action of the robot hand such that the bending roller rolls on the bent portion in a posture that a small diameter side of the bending roller is positioned at the side of the folded edge of the bent portion and a rolling surface of the bending roller is parallel to the bent portion when hemming processing is completed.
5. A press type hemming method for folding a bent portion of a work that is formed by flanging processing, the method being performed by pressing a bending blade to the bent portion, characterized in that a side pressure in a bending direction is actively applied to the bent portion by pressing the bending blade while moving it in a resultant direction of a direction of a surface of the bent portion and a direction perpendicular thereto, thereby bending the bent portion to a folded state in one pressing step.
6. A hemming method as defined in claim 5 characterized in that the bent portion is incompletely bent while moving the bending blade in the resultant direction of a die closing direction and a direction perpendicular thereto, and then the bending blade is lowered with an upper die, thereby bending the bent portion to the folded state.
7. A hemming device that is used for performing the hemming method as defined in claim 5 or 6 comprising a lower die that supports the work, an upper die that vertically moves relative to the lower die, a bending blade that is attached to the upper die and is movable in the direction perpendicular to a die closing direction, and a bending blade moving mechanism that moves the bending blade in the direction perpendicular to the die closing direction.
8. A hemming device that is used for performing the hemming method as defined in claim 5 or 6 comprising an X-axis moving mechanism that moves the bending blade along the X-axis corresponding to the direction of the surface of the bent portion, and a Y-axis moving mechanism that moves the bending blade along the Y-axis perpendicular to the X-axis, wherein the bending blade is adapted to press the bent portion while moving it in the resultant direction of the direction of the X-axis and the direction of the Y-axis.
9. A hemming device as defined in claim 8 characterized in that the movement of the bending blade by means of the X-axis moving mechanism and/or the Y-axis moving mechanism is numerically controlled.
US10/398,420 2001-10-31 2002-10-04 Device and method for hemming processing Abandoned US20040035172A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001335397A JP3623474B2 (en) 2001-10-31 2001-10-31 Hemming apparatus and hemming method
JP2001-335397 2001-10-31
PCT/JP2002/010390 WO2003037541A1 (en) 2001-10-31 2002-10-04 Device and method for hemming processing

Publications (1)

Publication Number Publication Date
US20040035172A1 true US20040035172A1 (en) 2004-02-26

Family

ID=19150391

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/398,420 Abandoned US20040035172A1 (en) 2001-10-31 2002-10-04 Device and method for hemming processing

Country Status (6)

Country Link
US (1) US20040035172A1 (en)
EP (1) EP1445043A4 (en)
JP (1) JP3623474B2 (en)
KR (1) KR20040038890A (en)
CN (1) CN1525891A (en)
WO (1) WO2003037541A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874185A1 (en) * 2004-08-16 2006-02-17 Abb Mc Soc Par Actions Simplif CRIMPING TOOL
US20060075797A1 (en) * 2004-10-08 2006-04-13 Dominique Baulier Roller hemming machine
US20070240474A1 (en) * 2005-07-05 2007-10-18 Abb France Crimping Tool
US20090235713A1 (en) * 2008-03-24 2009-09-24 Hirotec America, Inc. Magnetically actuated roller head
US20090301160A1 (en) * 2006-03-07 2009-12-10 Gm Global Technology Operations, Inc. Flanging machine and method for spin-flanging workpieces
US20100281940A1 (en) * 2009-03-12 2010-11-11 Harrow Aaron E Vertical air compliant hemming head
US20110048094A1 (en) * 2009-08-26 2011-03-03 Hirotec America, Inc. Horizontally stacked hemming press
US20110107807A1 (en) * 2009-11-12 2011-05-12 Fanuc Corporation Roller hemming device using robot manipulator with force sensor
US8302444B2 (en) 2006-06-21 2012-11-06 Thyssenkrupp Drauz Nothelfer Gmbh Method for folding an edge of a sheet component in particular a sheet component of a motor vehicle chassis
US20120291508A1 (en) * 2005-12-05 2012-11-22 Honda Motor Co., Ltd. Hemming working method and working apparatus
EP2868403A1 (en) * 2013-11-01 2015-05-06 Kabushiki Kaisha Yaskawa Denki Robot system and method for producing to-be-processed material

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870479B2 (en) * 2005-06-21 2012-02-08 本田技研工業株式会社 Hemming processing method and hemming processing apparatus
FR2903030B1 (en) * 2006-07-03 2009-12-04 Process Conception Ing Sa DEVICE FOR ASSEMBLING TWO ROOF PANELS BY CRIMPING
CN100484657C (en) * 2007-12-19 2009-05-06 中国重型机械研究院 Flanging technique of multifunctional hydraulic pressure flanging machine
KR100872601B1 (en) * 2008-03-14 2008-12-08 (주)우신시스템 Panel hemming equipment for vehicle
CN101530881B (en) * 2009-04-16 2012-05-23 上海交通大学 Robot rolling hemming molding feature die covering a plurality of hemming methods
CN102125949B (en) * 2010-11-29 2013-02-13 上海华普汽车模具制造有限公司 Direct final wrapping mechanism of edge wrapping machine
JP5932411B2 (en) * 2012-03-13 2016-06-08 本田技研工業株式会社 Roller hemming apparatus and roller hemming method
CN105142818B (en) * 2013-04-24 2018-06-22 日产自动车株式会社 Rolling processing unit (plant) and rolling processing method
CN103357767B (en) * 2013-07-05 2015-04-22 湖南三一智能控制设备有限公司 Manufacturing method of spiral bin body and spiral bin machine system
CN106555792B (en) * 2015-09-24 2018-11-16 长城汽车股份有限公司 Bound edge module, wrapping mold and the Wrapping method of plate
CN106424264B (en) * 2016-10-13 2018-12-04 山东鸿民金属成型科技股份有限公司 A kind of design technology producing folded side profile
CN107839674B (en) * 2017-09-28 2019-11-05 浙江零跑科技有限公司 New energy vehicle brake apparatus and braking method
AU2019346637B2 (en) * 2018-09-27 2023-12-21 Inno-Spin LLC Multi-axis roll-forming methods, systems, and products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680346A (en) * 1971-01-04 1972-08-01 Rudolph R Wilcox Crimping tool
US4060046A (en) * 1976-01-30 1977-11-29 Eckold Gerd Juergen Hand tool
US4827595A (en) * 1985-12-05 1989-05-09 Utica Engineering Company Method for hemming overlapped sheet material
US5740691A (en) * 1994-02-14 1998-04-21 Western Atlas U.K. Limited Hemming machine
US6161410A (en) * 1998-08-11 2000-12-19 Unova Ip Corp. Multi-axis roller hemmer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039623B2 (en) * 1972-09-18 1975-12-18
JPS55122636A (en) * 1979-03-15 1980-09-20 Takatsu Seisakusho:Kk Hamming device
JPS57124524A (en) * 1981-01-27 1982-08-03 Nissan Motor Co Ltd Hemming work method
JPS61262432A (en) * 1985-05-15 1986-11-20 Torai Eng Kk Roller type hemming device and its method
JP2579530B2 (en) * 1988-06-24 1997-02-05 マツダ株式会社 Hemming molding method
JP2675347B2 (en) * 1988-09-06 1997-11-12 マツダ株式会社 Hemming molding equipment
JPH0318925U (en) * 1989-07-06 1991-02-25
JP2693282B2 (en) * 1991-03-20 1997-12-24 トライエンジニアリング株式会社 Roller type hemming device and roller type hemming method using the device
JP3532746B2 (en) * 1997-10-28 2004-05-31 株式会社東洋技研 Hemming equipment
JP2001062530A (en) * 1999-08-31 2001-03-13 Sango Co Ltd Hemming processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680346A (en) * 1971-01-04 1972-08-01 Rudolph R Wilcox Crimping tool
US4060046A (en) * 1976-01-30 1977-11-29 Eckold Gerd Juergen Hand tool
US4827595A (en) * 1985-12-05 1989-05-09 Utica Engineering Company Method for hemming overlapped sheet material
US5740691A (en) * 1994-02-14 1998-04-21 Western Atlas U.K. Limited Hemming machine
US6161410A (en) * 1998-08-11 2000-12-19 Unova Ip Corp. Multi-axis roller hemmer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027432A1 (en) * 2004-08-16 2006-03-16 Abb France Crimping tool
FR2874185A1 (en) * 2004-08-16 2006-02-17 Abb Mc Soc Par Actions Simplif CRIMPING TOOL
US20060075797A1 (en) * 2004-10-08 2006-04-13 Dominique Baulier Roller hemming machine
US7124611B2 (en) 2004-10-08 2006-10-24 Valiant Corporation Roller hemming machine
US20070240474A1 (en) * 2005-07-05 2007-10-18 Abb France Crimping Tool
US20120291508A1 (en) * 2005-12-05 2012-11-22 Honda Motor Co., Ltd. Hemming working method and working apparatus
US8914964B2 (en) * 2005-12-05 2014-12-23 Honda Motor Co., Ltd. Hemming working method and working apparatus
US20090301160A1 (en) * 2006-03-07 2009-12-10 Gm Global Technology Operations, Inc. Flanging machine and method for spin-flanging workpieces
US8302444B2 (en) 2006-06-21 2012-11-06 Thyssenkrupp Drauz Nothelfer Gmbh Method for folding an edge of a sheet component in particular a sheet component of a motor vehicle chassis
US20090235713A1 (en) * 2008-03-24 2009-09-24 Hirotec America, Inc. Magnetically actuated roller head
US20100281940A1 (en) * 2009-03-12 2010-11-11 Harrow Aaron E Vertical air compliant hemming head
US20110048094A1 (en) * 2009-08-26 2011-03-03 Hirotec America, Inc. Horizontally stacked hemming press
US8839651B2 (en) * 2009-08-26 2014-09-23 Hirotec America, Inc. Horizontally stacked hemming press
US8726708B2 (en) * 2009-11-12 2014-05-20 Fanuc Corporation Roller hemming device using robot manipulator with force sensor
US20110107807A1 (en) * 2009-11-12 2011-05-12 Fanuc Corporation Roller hemming device using robot manipulator with force sensor
EP2868403A1 (en) * 2013-11-01 2015-05-06 Kabushiki Kaisha Yaskawa Denki Robot system and method for producing to-be-processed material
US9908160B2 (en) 2013-11-01 2018-03-06 Kabushiki Kaisha Yaskawa Denki Robot system and method for producing to-be-processed material

Also Published As

Publication number Publication date
KR20040038890A (en) 2004-05-08
EP1445043A4 (en) 2006-08-02
JP3623474B2 (en) 2005-02-23
EP1445043A1 (en) 2004-08-11
WO2003037541A1 (en) 2003-05-08
CN1525891A (en) 2004-09-01
JP2003136161A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US20040035172A1 (en) Device and method for hemming processing
US20080250835A1 (en) Roll Hemming Method and Roll Hemming Apparatus
JP4943666B2 (en) Roll hemming processing method and processing apparatus
JP4221412B2 (en) Flange forming with main and sub flange molds
EP1477245B1 (en) Successive forming device
US5746082A (en) Thin sheet forming die assembly including lower die cylindrical member having varied diameters
JP5285463B2 (en) Hemming equipment
JP2002263753A (en) Negative angle forming die
JP2000051971A (en) Hemming device, and hemming method
EP1238720A2 (en) Negative-angle forming die
JP2002102957A (en) Roll hemming device and roll hemming machining method using the same
JP2008229670A (en) Hemming device and hemming method
JP6845573B2 (en) Hemming equipment
JP5556899B2 (en) Roller hemming device
CN108015139B (en) Roller hemming device and roller hemming method
WO2001003864A1 (en) Sheet metal bending system comprising press brake and sheet metal support device, control data creating method therefor, and computer-readable storage medium where the control data is stored
JP2019025529A (en) Roller hemming processing method
US7204118B2 (en) Hemming tool die assembly
JPH0747429A (en) Hemming device
JP2022541069A (en) Tools and methods for machining plate-like workpieces, especially metal plates
JPH09220626A (en) Method for hemming metal sheet work
KR102395980B1 (en) Roller hemming apparatus for sunroof panel
JPH0618653Y2 (en) Press type structure
JP2866630B2 (en) Thin plate mold
JPH0527212Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRI ENGINEERING COMPANY LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAWA, MASAZUMI;REEL/FRAME:014436/0036

Effective date: 20030307

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION