New! View global litigation for patent families

US20030139742A1 - Feedback light apparatus and method for use with an electrosurgical instrument - Google Patents

Feedback light apparatus and method for use with an electrosurgical instrument Download PDF

Info

Publication number
US20030139742A1
US20030139742A1 US10055782 US5578202A US2003139742A1 US 20030139742 A1 US20030139742 A1 US 20030139742A1 US 10055782 US10055782 US 10055782 US 5578202 A US5578202 A US 5578202A US 2003139742 A1 US2003139742 A1 US 2003139742A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
tissue
light
feedback
electrodes
fig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10055782
Other versions
US6676660B2 (en )
Inventor
Scott Wampler
David Yates
Trevor Speeg
Jeffrey Vaitekunas
Vance Van Drake
Ryan Niezgoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2945Curved jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1226Generators therefor powered by a battery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1432Needle curved
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws

Abstract

The present invention relates, in general, to electrosurgical instruments and, more particularly, to a feedback light used in cooperation with an electrosurgical instrument. The present invention further comprises first and second moveable jaws. A first electrode is housed within the first moveable jaw and a second electrode is housed within the second moveable jaw, where the electrodes are connectable to a power source for providing an electric current between the electrodes. The present invention further comprises a feedback light connectable to a first lead and a second lead in order to form a second circuit, where the second circuit is adjacent to the first circuit in order to facilitate capacitive coupling between the first and second circuits in order to light a feedback light.

Description

    FIELD OF THE INVENTION
  • [0001]
    The present invention relates, in general, to electrosurgical instruments and, more particularly, to a feedback light apparatus and method used in cooperation with an electrosurgical instrument.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The application of heat to treat bleeding wounds dates back to antiquity, with a hot iron being widely applied in medieval times to cauterize battle wounds to stop bleeding. In cauterization, the essential mechanism behind the treatment is using conductive heat transfer from a hot object to raise the temperature of the bleeding tissue sufficiently high to denature the tissue proteins, or heat the blood sufficiently high to cause a thrombus to form.
  • [0003]
    Coagulation by means of electrosurgery is also accomplished by heating tissue, but the primary mechanism is electrical power dissipation in the affected tissue, rather than heat transfer from an external object. Current flows through the tissue, and is resisted by the tissue. This creates a small envelope of steam around the electrodes of the electrosurgical instrument, and the steam vaporizes the tissue to cause cellular dehydration, denaturation of proteins, and tissue shrinkage, leading to blood vessel thrombosis. This form of hemostasis is now routinely used in both open and endoscopic surgery for small blood vessels (typically smaller than 1 mm), and has largely replaced individual vessel ligation.
  • [0004]
    Currently-available bipolar grasping instruments for electro-coagulation of tissue, or “tissue welding,” generally use only two electrodes of opposite polarity, one of which is located on each of the opposite jaws of the grasper. As illustrated in FIG. 1, in use, tissue is held between a pair of grasper jaws (shown in cross-section) having first and second electrodes (Electrode 1 and Electrode 2) of opposite polarity. Bipolar current flows between the two electrodes along the illustrated current flow lines, with tissue coagulating first at the edges of the jaws. Then, as the tissue dries out and the impedance increases, the current flows through the moister tissue and the coagulation spreads both inward toward the center of the jaws and outward from the jaw edges. The tissue coagulation and heating outside the jaw continues until the power is shut off.
  • [0005]
    Thermal damage to adjacent structures can occur due to this spread of thermal energy outside the jaws of the instrument. Because of the spread of thermal energy outside the jaws of the instrument, it is difficult to coagulate long sections of tissue, such as bowel, lung, or larger blood vessels, without significant lateral thermal spread. Over-coagulation frequently occurs, resulting in tissue sticking to the jaws of the instrument. When the jaws of the instrument are opened, if the tissue sticking is severe, the tissue can be pulled apart, thus adversely affecting hemostasis. Under-coagulation can occur if insufficient energy has been applied to the tissue, and the resulting hemostasis will be incomplete.
  • [0006]
    Some electrosurgical devices measure the impedance of tissue to be affected as a feedback parameter to maintain the impedance of the tissue within predetermined limits by controlling the level of electrosurgical energy. By controlling the level of electrosurgical energy applied to a tissue area, the electrosurgical device allows simultaneous cutting and cauterization of tissue independently of a user's technique.
  • [0007]
    Other electrosurgical tools have digital display units or bar graph displays for indicating power, voltage and other parameters relating to electrosurgical device operation. Such displays often provide a theoretical value and not a value measured at a relevant tissue area. While these displays might provide some information, actual measurements of the affected tissue are necessary in order to allow a user to most effectively cut and cauterize tissue during an electrosurgical procedure. Furthermore, such graphical displays require a user to focus attention on the display for an amount of time necessary to ascertain a display reading and process that information.
  • [0008]
    Still other electrosurgical devices provide an audible alarm that sounds when a theoretical energy level is exceeded, thus not providing information from an affected tissue area. Also, as one skilled in the art will appreciate, an audible alarm may be confused with other equipment having sounds associated therewith, such as cardiac and respiratory monitors.
  • [0009]
    U.S. Pat. No. 5,817,091 filed May 20, 1997 issued Oct. 6, 1998 to Medical Scientific, Inc. discloses an electrosurgical system having a visual indicator. The electrosurgical system further includes a lamp in electrical communication with the active and return electrodes, wherein the neon bulb is illuminated when the current flowing through the tissue exceeds a predetermined threshold.
  • [0010]
    U.S. Pat. No. 5,762,609 filed Jun. 7, 1995 issued Jun. 9, 1998 to Sextant Medical Corporation discloses a class of surgical tools constructed from the surgical tools and a tissue state monitoring device to assess or image changes in the chemical or structural composition of tissue over time.
  • [0011]
    U.S. Pat. No. 5,599,350 filed Apr. 3, 1995 issued Feb. 4, 1997 to Ethicon Endo-Surgery discloses an electrosurgical hemostatic instrument in which the coagulation status of tissue engaged by two elements delivering electrosurgical energy to tissue may be observed, and in which damage from thermal spread may be minimized.
  • [0012]
    U.S. Pat. No. 4,800,878 filed Aug. 26, 1987 issued Jan. 31, 1989 to Becton, Dickinson and Company discloses a disposable electrosurgical knife handle and blade with a built-in warning light positioned on the top of the handle in the surgeon's line of vision during surgical procedures in order to warn, instantly, of unwanted surges in the electrical system.
  • [0013]
    U.S. Pat. No. 6,258,085 filed May 11, 1999 issued Jul. 10, 2001 to Sherwood Services AG discloses a method of determining the probability of a patient burn under a return electrode in a monopolar electrode.
  • [0014]
    U.S. Pat. No. 6,245,065 filed Sep. 10, 1998 issued Jun. 12, 2001 to Scimed Life Systems, Inc. discloses systems and methods for controlling the power supplied to an electrosurgical probe. The systems and methods may be used to monitor electrode-tissue contact, adjust power in response to a loss of contact, and apply power.
  • [0015]
    Thus, it would be advantageous to provide an electrosurgical tissue welding instrument in which the current pathway is limited to tissue within the jaws, so as to minimize tissue damage due to thermal effects outside the jaws of the device. It would be advantageous to provide an electrosurgical tissue welding instrument which allows coagulation of a relatively long section of tissue, while minimizing the lateral spread of thermal energy. It would be advantageous to provide an electrosurgical tissue welding instrument in which the maximum current density in the coagulated tissue occurs away from the electrodes, and between two stick resistant surfaces, to minimize tissue sticking to the electrodes. It would be advantageous to provide an electrosurgical tissue welding instrument where the current flow is self-limiting to prevent over-coagulation of the tissue. It would be advantageous to provide an electrosurgical tissue welding instrument which provides a clear view of coagulated tissue to prevent under-coagulation of the tissue. It would be advantageous to provide an electrosurgical tissue welding instrument that provides a cutting capability combined with the other features and advantages described above.
  • SUMMARY OF THE INVENTION
  • [0016]
    The present invention relates, in general, to electrosurgical instruments and, more particularly, to a feedback light apparatus and method used in cooperation with an electrosurgical instrument. The present invention further comprises first and second moveable jaws each comprising a tissue contacting surface in face-to-face relating with the tissue contacting surface of the other jaw, where the tissue contacting surfaces of the jaws comprise an insulating material. A first electrode is housed within the first moveable jaw and a second electrode is housed within the second moveable jaw, where the electrodes are connectable to a power source for providing an electric current between the electrodes. When tissue is grasped between the tissue contacting surfaces, electrical current may be caused to flow between the electrodes and through the tissue grasped between the tissue contacting surfaces forming a first circuit.
  • [0017]
    The present invention further comprises a feedback light connectable to a first lead and a second lead in order to form a second circuit, where the second circuit is adjacent to the first circuit in order to facilitate capacitive coupling between the first and second circuits in order to light the feedback light. The present invention has application in conventional endoscopic and open surgical instrumentation as well application in robotic-assisted surgery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    The novel features of the invention are set forth with particularity in the appended claims. The invention itself, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings in which:
  • [0019]
    [0019]FIG. 1 is a cross sectional view of the jaws of the prior art bipolar graspers, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;
  • [0020]
    [0020]FIG. 2 is a perspective view of an endoscopic bipolar tissue grasper in accordance with the present invention shown with an associated electrosurgical current generating unit and connector table;
  • [0021]
    [0021]FIG. 3. is an enlarged perspective view of the distal end of the endoscopic bipolar tissue grasper of FIG. 2, showing the jaw members in greater detail;
  • [0022]
    [0022]FIGS. 4a-c are top (FIG. 4a) and side (FIGS. 4b and c) views of the distal end of the graspers shown in FIG. 3, in partial cross-section to show the actuation mechanism for moving the grasper jaws between the closed (FIG. 4b) and open (FIG. 4c) positions;
  • [0023]
    [0023]FIG. 5 is a cross-sectional view of the grasper jaws taken along line 5-5 of FIG. 4b;
  • [0024]
    [0024]FIG. 6 is a cross-sectional view of the jaws of the inventive bipolar tissue graspers, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;
  • [0025]
    [0025]FIG. 7 is a perspective of an alternate embodiment of the present invention, a bipolar forceps in coagulation mode;
  • [0026]
    [0026]FIG. 8 is a perspective magnified view of the jaws illustrated in FIG. 7;
  • [0027]
    [0027]FIG. 9 illustrates the instrument of FIG. 7 in its closed position;
  • [0028]
    [0028]FIG. 10 illustrates the instrument of FIG. 7 in its scissors mode, jaws open;
  • [0029]
    [0029]FIG. 11 is a perspective magnified view of the jaws illustrated in FIG. 10;
  • [0030]
    [0030]FIG. 12 is a cross sectional view of jaws from a bipolar instrument having offset opposed electrodes in accordance with the present invention;
  • [0031]
    [0031]FIG. 13 is a side plan view of an alternate embodiment of a combination grasping/cutting instrument in accordance with the present invention;
  • [0032]
    [0032]FIG. 14 is a cross-sectional view of the jaws of the instrument illustrated in FIG. 13;
  • [0033]
    [0033]FIG. 15 is a side plan view of an instrument according to the present invention incorporating a ratchet handle;
  • [0034]
    [0034]FIG. 16 is a side plan view of one half of an instrument in accordance with the present invention with detents and blade actuation improvements;
  • [0035]
    [0035]FIG. 17 is a top sectional view taken from the part of FIG. 16;
  • [0036]
    [0036]FIG. 18 is an alternate top sectional view taken from the part of FIG. 16;
  • [0037]
    [0037]FIG. 19 is a side sectional view of the knife from the instrument illustrated in FIG. 16;
  • [0038]
    [0038]FIG. 20 is a top sectioned view of the jaw from the instrument illustrated in FIG. 16, showing that the jaw is curved;
  • [0039]
    [0039]FIG. 21 illustrates an instrument in accordance with the present invention showing the connector and wire layout for a bi-polar instrument;
  • [0040]
    [0040]FIG. 22 is a perspective view of an electrosurgical instrument having a feedback light in accordance with the present invention shown with an associated electrosurgical current generating unit and connector table;
  • [0041]
    [0041]FIG. 23 is an enlarged perspective view of the distal end of the electrosurgical instrument having a feedback light of FIG. 22, showing the jaw members in greater detail;
  • [0042]
    FIGS. 24-26 are top (FIG. 24) and side (FIGS. 25 and 26) views of the distal end of the jaws shown in FIG. 23, in partial cross-section to show the actuation mechanism for moving the jaws between the closed (FIG. 25) and open (FIG. 26) positions and the accompanying feedback light;
  • [0043]
    [0043]FIG. 27 illustrates an electrical schematic of an electrosurgical instrument having a feedback light in accordance with the present invention;
  • [0044]
    [0044]FIG. 28 illustrates an electrical schematic of an alternated electrosurgical instrument having a feedback light in accordance with the present invention;
  • [0045]
    [0045]FIG. 29 is a cross sectional view of the jaws (FIG. 23) of an electrosurgical instrument having a feedback light in accordance with the present invention;
  • [0046]
    [0046]FIG. 30 is a cross-sectional view of the jaws of the electrosurgical instrument having a feedback light, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;
  • [0047]
    [0047]FIG. 31 is a perspective view of an electrosurgical instrument having a feedback light in accordance with the present invention shown with an associated electrosurgical current generating unit and connector cable and associated biased power source and a connector cable;
  • [0048]
    [0048]FIG. 32 is an enlarged perspective view of the distal end of theelectrosurgical instrument having a feedback light of FIG. 22, showing the jaw members in greater detail;
  • [0049]
    [0049]FIG. 33a-c are top (FIG. 33a) and side (FIGS. 33b and c) views of the distal end of the jaws shown in FIG. 32, in partial cross-section to show the actuation mechanism for moving the jaws between the closed (FIG. 33b) and open (FIG. 33c) positions and the accompanying feedback light;
  • [0050]
    [0050]FIG. 34 illustrates an electrical schematic of an electrosurgical instrument having a feedback light in accordance with the present invention;
  • [0051]
    [0051]FIG. 35 illustrates an electrical schematic of an alternate embodiment of an electrosurgical instrument having a feedback light in accordance with the present invention;
  • [0052]
    [0052]FIG. 36 illustrates an electrical schematic of an alternate embodiment of an electrosurgical instrument having a feedback light in accordance with the present invention;
  • [0053]
    [0053]FIG. 37 is a cross sectional view of the jaws (FIG. 32) of an electrosurgical instrument having a feedback light in accordance with the present invention;
  • [0054]
    [0054]FIG. 38 is a cross-sectional view of the jaws of the electrosurgical instrument having a feedback light, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;
  • [0055]
    [0055]FIG. 39 is a perspective view of an electrosurgical instrument in accordance with the present invention shown with an associated electrosurgical current generating unit and connector cable;
  • [0056]
    [0056]FIG. 40 is a cross sectional view of the jaws of an electrosurgical instrument having a plurality of guard electrodes in accordance with the present invention;
  • [0057]
    [0057]FIG. 41 is a cross sectional view of the jaws of an electrosurgical instrument having a plurality of electrodes and a feedback device in accordance with the present invention;
  • [0058]
    [0058]FIG. 42 is a partial view of an electrosurgical instrument in accordance with the present invention having a knife lock out system;
  • [0059]
    [0059]FIG. 43 is a partial view of an electrosurgical instrument in accordance with the present invention having a knife lock out system;
  • [0060]
    [0060]FIG. 44 is a section view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;
  • [0061]
    [0061]FIG. 45 is a section view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;
  • [0062]
    [0062]FIG. 45a is a perspective view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;
  • [0063]
    [0063]FIG. 46 is a perspective view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;
  • [0064]
    [0064]FIG. 47 is a perspective view of a jaw in accordance with the present invention, wherein the tissue dam is located at the distal end of the jaw;
  • [0065]
    [0065]FIG. 48 is a top view of the jaw illustrated in FIG. 47; and
  • [0066]
    [0066]FIG. 49 is a side view of the jaw illustrated in FIG. 47.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0067]
    Turning to FIG. 2, there is seen a perspective view of an electrosurgical instrument system, generally designated 10, embodying the present invention. The illustrated system includes an RF energy generator 12, a hand-held, endoscopic electrosurgical graspers 14, and a cable 16 that connects the graspers 14 to the plug clip receptacles 18, 20 for positive and negative bipolar outputs of the generator 12. While the illustrated graspers 14 are endoscopic graspers for use in minimally invasive surgical procedures, the invention of the present application is equally applicable to graspers designed for use in open surgical procedures.
  • [0068]
    The illustrated RF generator 12 may be, for example, a unitary monopolar-bipolar RF generator, such as the PEGASYS (T rademark of Ethicon Endo-Surgery Inc., Cincinnati Ohio) generator, and thus also include plug clip receptacles for the mono-polar active and return terminals. However, for the purposes of the present invention, only the bipolar current generating feature is utilized.
  • [0069]
    The graspers 14 have two relatively moveable opposed jaws 22, 24, best seen in FIGS. 3 and 4a-4 c. The general construction and mechanism for actuation of the graspers 14 is known in the art, and is typified by those graspers disclosed in U.S. Pat. Nos. 5,342,359 and 5,403,312. In general, a closure tube 26 is coaxially advanced through a sheath 28 by a trigger mechanism so as to engage a camming surface 32 on the jaws 22, 24 to close the jaws. Retraction of the closure tube moves the jaws to the open position (FIG. 4c) because the shape and material of the jaws 22, 24 springs open when the closure tube 26 retracts.
  • [0070]
    The illustrated graspers also include a linear cutting element or knife 34 (best seen in FIGS. 4c and 5). Knife 34 is advanced into a slot 36 in the jaws 22, 24 to cut tissue held between jaws 22, 24 after the tissue has been coagulated. Again, the mechanism for advancing the knife is well known, and may include drive rod 38 that is advanced upon actuation of a trigger 40. While the illustrated graspers include a knife blade, the invention is equally applicable to simple graspers not including a cutting element.
  • [0071]
    In keeping with the present invention, each jaw includes a tissue contacting surface made of insulating material with two electrode surfaces carried adjacent the tissue contacting portions of each jaw. The tissue contacting surfaces of the jaws are in a generally face-to-face relationship, with the two electrodes associated with each jaw being spaced apart and in face-to-face relationship with the corresponding electrodes on the opposite jaw so that the electrodes in each offset face-to-face electrode pair is of a like polarity. This configuration for the electrodes, with the opposed electrodes in each offset face-to-face pair of electrodes being of the same polarity which is opposite to the polarity of the other offset face-to-face pair of electrodes, is similar to that shown in U.S. Pat. No. 2,031,682 to Wappler et al.
  • [0072]
    Turning to FIGS. 3-5, the jaws 22, 24 include electrode pairs 42, 44 and 46, 48 respectively. The electrodes 42, 44 and 46, 48 are carried by the jaws 22, 24 adjacent the insulating members 50, 52, respectively. The insulating members 50, 52 form a tissue contacting surface on each jaw 22, 24 which is defined substantially by the surface on the insulating members 50, 52 that lies between their associated electrode pairs. However, the electrodes 42, 44 and 46, 48 also partially contact tissue grasped between the jaws.
  • [0073]
    As best seen in FIG. 5, the tissue contacting surfaces of each jaw are in face-to-face relationship, and the electrodes are connected to the terminals of a bipolar RF generator so that the electrodes of each offset face-to-face pair are of the same polarity, and one offset face-to-face electrode pair is the opposite polarity of the other offset face-to-face electrode pair. Thus, as illustrated in FIGS. 5 and 6, offset face-to-face electrodes 42 and 46 are of a positive polarity, while offset face-to-face electrodes 44 and 48 are of a negative polarity. The term offset means that no portion of the surface areas of electrodes 42, 46, 44, and 48 are in an overlapping relationship.
  • [0074]
    As shown in FIG. 6, this configuration of insulating members and electrodes provides for a current flow (as shown by the double-headed arrows) through the tissue 54 between the electrodes of opposite polarity. There is no current flow through the tissue that is not held between the grasper jaws, and the current flow is at its maximum density between the tissue contacting surfaces of the jaws. Accordingly, tissue is coagulated first along the center of the jaws and, as the impedance of the tissue increases due to its coagulation, the current flow between the electrodes is cut-off. Thus, the flow of current between the electrodes naturally stops when coagulation is complete. This is in marked contrast to the prior art bipolar graspers illustrated in FIG. 1, in which current flow continues through the tissue held outside of the jaws until such time as the operator deactivates the electrodes.
  • [0075]
    The insulating members 50, 52 comprising the tissue contacting surfaces are made of a non-stick, non-conductive material such as polytetreflouroethylene, polypropylene-polystyrene, polycarbonate, ABS (Acrylonitrile Butadiene Styrene), ULTEM (Trademark of General Electric Plastics), RADEL (Trademark of B.P. Amoco)or other suitable material. A substantially clear or transparent stick resistant insulating material permits the tissue held between the jaws to be viewed through the top or bottom surfaces of the jaw, thus allowing the operator to view the extent of tissue coagulation.
  • [0076]
    The electrodes 42, 44, 46, 48 are preferably made of a conductive material such as aluminum, stainless steel, platinum, silver, platinum, and gold. For better structural support, the electrodes themselves could be structural elements (as shown in FIGS. 3-5).
  • [0077]
    The graspers are constructed so that the clamped jaw spacing S is small enough relative to the electrode width to achieve a significantly higher current density in the tissue between the insulated surfaces than the current density through the tissue that contacts the electrode surfaces. This insures that current density at the electrodes is significantly less than the current density in the tissue held between the tissue contacting surfaces. Consequently, the tissue in contact with the electrodes will be coagulated less than the tissue held between the tissue contacting surfaces, and the tissue will be less likely to stick to the electrodes.
  • [0078]
    Other embodiments of the present invention are illustrated in FIGS. 7 through 23. Illustrated in FIGS. 7-11 is a forceps, a hemostat 200, that may be made, for example, of an electrically insulative plastic with filler for strength. The electrodes would be offset opposing with like polarity that minimizes lateral thermal tissue damage, such as, for example, those illustrated in FIG. 12. This electrode configuration eliminates shorting of the electrodes when fully closed and minimizes tissue sticking. The hemostat 200 may also incorporate a blade, designated sliding knife 220 (see, for example, FIG. 11), for cutting tissue after coagulation. Additionally, when using the instrument in the scissors mode as illustrated in FIGS. 10 and 11, the sliding knife 220 would be extended out (unenergized) and the tissue would be mechanically cut between the upper surface of the blade and the opposing jaw of the instrument.
  • [0079]
    The offset opposed electrode configuration offers a current limiting feature. As tissue becomes desiccated, the impedance to the current flow increases which will shut the system down when the coagulation is complete. Each jaw 240 of the instrument incorporates positive and negative electrodes. The opposing jaws 240A and 240B consist of a pair of offset opposing electrodes with like polarity for providing the proper tissue effects and preventing tissue sticking due to the electrodes not physically being able to touch each other when fully closed. The tissue is coagulated from the current flowing between the opposite polarity electrodes on each jaw 240. In the scissors cutting mode the upper edge of the sliding knife 220 many be sharpened to improve the cutting capability. The sliding knife 220 may be locked in the extended position until one changes it over to bipolar cutting/coagulating mode.
  • [0080]
    An advantage of this invention is a coagulation and cutting forceps, which has current limiting electrodes that deliver the proper amount of current to coagulate tissue (minimal lateral thermal spread) along with a mechanical scissors mode without instrument interchange.
  • [0081]
    The electrodes may be insert molded into the jaws 240. Hemostat 200 has two opposing jaws 240A and 240B, joined in a cross-over fashion by a pivot feature such as pin 205. Each jaw 240 has an opposing tissue compression zone with two electrodes along the length of each compression zone as more fully described in FIGS. 44-49.
  • [0082]
    The user interface portion of hemostat 200 would contain opposable handles 260A and 260B for actuation. The user interface portion may also include a means of connection to an electrosurgical generator such as, for example, connector 290 (FIG. 21). The desired electrode configuration should be an electrode of each polarity in each compression member. The opposing electrodes in opposing compression members would be of like polarity as illustrated in FIG. 12. This offset electrode configuration is desirable because it eliminates shorting on thin tissue as well as limits thermal spread. The thermal spread is limited by the current flow. The current flow is maintained within the aperture of the device. In addition, this electrode configuration offers a limiting feature. As the tissue becomes desiccated, the impedance to current flow increases. Because the current flow is maintained within the jaws, when the impedance in the tissue gets high enough the system will shut itself down.
  • [0083]
    Referring again to FIG. 11, a forceps in accordance with the present invention may additionally have a sliding knife 220 added to sever tissue following cauterization. The device may include a ratchet mechanism 288 (FIG. 13) near the ring handles 260A and 260B (such as, for example, those shown in FIG. 7) in order to provide the surgeon with a method of setting clamp pressure. Both forcep members may include a slot 222, (designated 222A or 222B on individual forcep members) positioned parallel to the electrodes and centered between the electrodes. One of the forcep members may have an extended slot (toward ring handle) in order to accommodate the sliding knife 220 and it's movement. The sliding knife 220 may include a cutout or slot 221 in order to allow movement with respect to the forcep pivot pin 205 along the forcep jaw 240. In addition, the sliding knife 220 may include a feature to provide actuation force to the sliding knife 220 (i.e. a slide button 223). As shown in FIGS. 19 and 20, the knife 220 may include grooves 266 to accommodate a curved jaw 240.
  • [0084]
    The hemostat 200 may include a scissors cutting member 288 that is spring loaded open and works off of the same pivot as the forceps, as illustrated in FIG. 13. Both forcep members may include slots through the tissue contact areas parallel to and centered between the electrodes. The scissors cutting member may be sharp at the tissue interface edge and reside within one of the forcep members. The forcep members may include a ratchet mechanism 2288 near the ring handles in order to provide the surgeon with a method for maintaining clamp pressure.
  • [0085]
    FIGS. 22-30 illustrate an electrosurgical instrument system, generally designated 310, an alternate embodiment of the present invention. The features of the illustrated system correspond to like features of the embodiment shown in FIGS. 2-6, but referenced with “300” series element numbers for similar features. New numbers are added for newly presented features. FIG. 22 further illustrates a feedback light 327 that, in one embodiment of the present invention, is housed within one or both of first and second moveable jaws 322, 324. Feedback light 327 will be further described below.
  • [0086]
    The present invention illustrates a feedback light 327 used in cooperation with first moveable jaw 322, where feedback light 327 indicates to the operator of the electrosurgical instrument system 310 when a significant electric current is no longer passing through tissue 354 held between first moveable jaw 322 and second moveable jaw 324. In a further embodiment of the present invention feedback light 327 is housed within first moveable jaw 322, where first moveable jaw 322 is constructed from a substantially transparent material so as to allow the operator to view the light housed within first moveable jaw 322. Feedback light 327 may be found on any portion of first and/or second moveable jaws 322, 324, a plurality of feedback lights 327 may be found on electrosurgical instrument system 310, and/or feedback light 327 may be located externally to first and/or second moveable jaws 322, 324, where feedback light 327 is permanently or removably affixed to first and second moveable jaws 322, 324. Feedback light 327 may be constructed in a variety of forms such as, for example, oval, square, looped, square, or rectangular, and may be any color desirable.
  • [0087]
    FIGS. 24-26 illustrate a means of operating the electrosurgical instrument system 310 in accordance with the present invention. In general, a closure tube 326 is coaxially advanced through a sheath 328 by a trigger mechanism 330 so as to engage a camming surface 332 on the first and second moveable jaws 322, 324 to close first and second moveable jaws 322, 324. Retraction of the closure tube 326 moves the first and second movable jaws 322, 324 to the open position because the shape and material of the first and second moveable jaws 322, 324 springs open when the closure tube 326 retracts. FIGS. 24-26 illustrate one embodiment of the present invention comprising a first feedback light 327, a first lead 329 and a second lead 331 where first feedback light 327, first lead 329 and second lead 331 form an untwisted circuit 335. First and second leads 329, 331 run parallel to cable 316 (FIG. 27). First feedback light 327 may be any light emitting device such as, for example, an LED (light emitting diode). First and second leads 329, 331 may be constructed from any conductive material suitable for use in surgical applications such as, but not limited to, silver or stainless steel.
  • [0088]
    Referring to FIGS. 27-30, the present invention may also include variations in circuit design such as, for example, leads 329, 331 that extend along the entire length of closure tube 326, a plurality of leads 329, 331, and/or a plurality of feedback lights 327. In one embodiment of the present invention, untwisted circuit 335 is parallel to, but not connectively coupled with cable 316. First feedback light 327 is adapted for illumination when current is passed through circuit 335. Bipolar current delivered between electrodes 342, 344, 346, 348 conducts through tissue 354 until tissue 354 is desiccated. Once desiccated, tissue 354 impedance increases reducing the voltage passing through untwisted circuit 335. By passing the leads 351, 353, 355, 357 of cable 316 and first and second leads 329, 331 down a length of closure tube 326 without twisting first and second leads 329, 331, a capacitive coupling will be created between the two circuits. As power is applied to the leads 351, 353, 355, 357 of cable 316, they will create a current in untwisted circuit 335 that will cause feedback light 327 to light. The current in untwisted circuit 335 will be proportional to the current in the leads of cable 316, giving the operator a qualitative indicator of power passing through the instrument.
  • [0089]
    The illustrated first and second moveable jaws 322, 324 may also include a linear cutting element or knife 334 (best seen in FIGS. 26 and 29). Knife 334 is advanced into a slot 336 in the first and second moveable jaws 322, 324 to cut tissue 354 held between the first and second moveable jaws 322, 324 after the tissue 354 has been coagulated. Again, the mechanism for advancing the knife is well known, and may include drive rod 338 that is advanced upon actuation of a trigger 340. While the illustrated first and second moveable jaws 322, 324 include a knife blade, the invention is equally applicable to simple jaws not including a cutting element.
  • [0090]
    The distal placement of feedback light 327, in close proximity to the area of surgical application, provides the operator with a clear indicator of when tissue 354 has been sufficiently desiccated to insure proper hemostasis while reducing lateral damage due to over exposure of electric current. The present invention further may also include the use of feedback light 327 in cooperation with all other bipolar electrosurgical devices such as, for example, instruments having a single pair of electrodes.
  • [0091]
    [0091]FIG. 27 illustrates a electrical schematic of one embodiment of the present invention illustrating RF generator 312, where RF generator 312 is connected to electrodes 342, 344, 346, 348 via leads 351, 355, 353, 357, respectively. In one embodiment of the present invention, electrodes 342, 344, 346, 348 are adapted, as illustrated, for electrodes 342, 346 to be positive electrodes in an off-set but substantially face-to-face arrangement. Electrodes 344, 348 are adapted, as illustrated, to be negative electrodes in an off-set but substantially face-to-face arrangement. Further embodiments of the present invention may include the use of a single off-set pair of electrodes, a single pair of aligned electrodes, a plurality of electrodes and their accompanying plurality of leads, a plurality of aligned electrodes, a pair or a plurality of electrodes of like polarity arranged opposedly as opposed to a face-to-face arrangement, or any other bipolar configuration suitable for use in a surgical application. FIG. 27 further illustrates untwisted circuit 335 comprising first and second leads 329, 331, and feedback light 327. The present invention may also include a means of lighting feedback light 327 when a complete circuit is made between electrodes 342, 344, 346, 348 leads 351, 353, 355, 357, tissue 354 and, generator 312, by capacitively coupling second lead 331 and/or first lead 329 to at least one lead 351, 353, 355, 357 resulting in the introduction of a current into untwisted circuit 335. When tissue 354 desiccates, it will increase the impedance of the transmission circuit resulting in a loss of current transmitted by capacitive coupling, causing the feedback light 327 to dim or turn off. Dimming, or inactivity of feedback light 327 signals the operator to cease applying electrosurgical current to tissue 354 in order to prevent burns or lateral tissue damage. The present invention may also include other features necessary to facilitate the capacitive coupling of circuit 335 such as, capacitors, resistors, relays, transformers, switches, or other suitable electrical features.
  • [0092]
    [0092]FIG. 28 illustrates an electrical schematic of a further embodiment of the present invention comprising RF generator 312, where RF generator 312 is connected to electrodes 342, 344, 346, 348 via leads 351, 355, 353, 357, respectively. In one embodiment of the present invention, electrodes 342, 344, 346, 348 are adapted, as illustrated, for electrodes 342, 346 to be positive electrodes in an off-set, but substantially face-to-face arrangement. Electrodes 344, 348 may be adapted to be negative electrodes in an off-set but substantially face-to-face arrangement. Further embodiments of the present invention may include the use of a single off-set pair of electrodes, a single pair of aligned electrodes, a plurality of electrodes and their accompanying plurality of leads, a plurality of aligned electrodes, and/or electrodes of like polarity arranged opposedly as opposed to a face-to-face arrangement, or other bipolar configurations suitable for use in a surgical application. FIG. 28 further illustrates twisted circuit 371 comprising first and second leads 329, 331, toroid 370, and feedback light 327. Second lead 331 may be wound around toroid 370 in order to facilitate inductive coupling between at least one lead 351, 353, 355, 357 and toroid 370. Electric current passing through at least one lead 351, 353, 355, 357 will create a magnetic field which may then be converted into electric current in twisted circuit 371 by toroid 370. Twisted Circuit 371 and/or twisted transmission circuit 372 may be twisted in order to reduce capacitive coupling between twisted circuit 371 and twisted transmission circuit 372. The present invention may also include a means of lighting feedback light 327 when a complete circuit is made between electrodes 342, 344, 346, 348 leads 351, 353, 355, 357, tissue 354 and, generator 312 by inductively coupling second lead 331 and/or first lead 329, in cooperation with toroid 370, to at least one lead 351, 353, 355, 357, resulting in the introduction of a current into twisted circuit 371. As tissue 354 desiccates, it will increase the impedance of the transmission circuit resulting in a loss of current transmitted by inductive coupling, causing the feedback light 327 to dim or turn off. Dimming, or inactivity of feedback light 327 signals the operator to cease applying electrosurgical current to a tissue in order to prevent burns or lateral tissue damage. The present invention may also include other features necessary to facilitate the inductive coupling of circuit 371 such as, capacitors, resistors, relays, transformers, switches, or other suitable electrical features.
  • [0093]
    FIGS. 31-38 illustrate an electrosurgical instrument system, generally designated 410, an alternate embodiment of the present invention. The features of the illustrated system correspond to like features of the embodiment shown in FIGS. 2-6, but referenced with “400” series element numbers for similar features. As before, new numbers are added for newly presented features. FIG. 31 illustrates a perspective view of one embodiment of the present invention comprising an electrosurgical instrument system, generally designated 410, including an RF energy generator 412, housing 414, and a cable 416 that connects the housing 414 to the positive bipolar output plug clip receptacle 418, and negative bipolar output plug clip receptacle 420 of the generator 412, where the cable 416 is adapted to transmit electric current to electrodes 442, 444 housed within first moveable jaw 422 and to electrodes 446, 448 housed within second moveable jaw 424, and a battery 413 having a cable 415. The battery 413 may be any power source suitable for use with a particular surgical application such as, for example, a 5 volt battery. Battery 413 may be incorporated into housing 414 or may be located externally to housing 414. FIG. 31 further illustrates a feedback light 427 that, in one embodiment of the present invention, is housed within one or both of first and second moveable jaws 422, 424. Feedback light 427, battery 413, and cable 415 will be further described below.
  • [0094]
    [0094]FIGS. 33a-c and 34 illustrate one embodiment of the present invention comprising a first feedback light 427, a first lead 429, a second lead 431, and a battery 413, where first feedback light 427, first lead 429, second lead 431, and battery 413 form an untwisted circuit 435. First and second leads 429, 431 may run parallel to cable 416. First feedback light 427 is connected to battery 413 via cable 415 that houses first and second leads 429, 431. Battery 413 may be located externally in relation to housing 414 or may be housed internally. First feedback light 427 may be any light emitting device such as, for example, an LED (light emitting diode). First and second leads 429, 431 may be constructed from any conductive material suitable for use in surgical applications such as, but not limited to, silver or stainless steel. The present invention may also include variations in circuit design such as, for example, a plurality of first and second leads 429, 431 and/or a plurality of feedback lights 427. In the illustrated embodiment, first and second leads 429, 431 are parallel to, but not connectively coupled with leads 451, 453, 455, 457 housed within cable 416. Battery 413 is a biased power source delivering direct current at a voltage lower than necessary to light feedback light 427. The use of battery 413 in cooperation with feedback light 427 provides a tuning capability allowing the operator to control how much energy is required for the feedback light 427 to light. For example, by setting the voltage delivery of battery 413 at just below the threshold needed to light feedback light 427, the operator will easily cross the threshold even as impedance continues to increase. If a lower voltage delivery from battery 413 is chosen, in cooperation with the same first feedback light 427, the voltage of untwisted circuit 435 may drop below the threshold required to keep feedback light 427 lit with only a minimal amount of impedance. Using a variety of voltage deliveries from a battery 413 in cooperation with the choice of a variety of different feedback lights having different lighting thresholds allows for the operator to choose the optimal set-up for a particular surgical application. First feedback light 427 is adapted for illumination when current is passed through untwisted circuit 435. Bipolar current delivered between electrodes 442, 444, 446, 448 conducts through tissue 454 until tissue 454 is desiccated. Once desiccated, tissue 454 no longer conducts current and will therefore increase the impedance in the untwisted transmission circuit 459 between electrodes 442,444, 446, 448. By passing the leads 451, 454, 455, 457 of cable 416, and first and second leads 429, 441 down a length of closure tube 426 without twisting first and second leads 429, 441, a capacitive coupling will be created between the two circuits. As power is applied to the leads 451, 453, 455, 457 of cable 416, they will increase the voltage in the untwisted circuit 435 causing feedback light 427 to light. The current in untwisted circuit 435 will be proportional to the current in the leads of cable 416, giving the operator a qualitative indicator of power passing through the instrument.
  • [0095]
    [0095]FIG. 37 further illustrates feedback light 427 housed within first moveable jaw 422, however other embodiment of the present invention may include feedback light 427 housed within second moveable jaw 424, feedback light 427 housed within first and second moveable jaws 422, 424, and feedback light 427 affixed externally to one or both of first and second moveable jaws 422, 424. The distal placement of feedback light 427, in close proximity to the area of surgical application, provides the operator with a clear indicator of when tissue 454 has been sufficiently desiccated to insure proper hemostasis while reducing lateral damage due to over exposure of electric current.
  • [0096]
    [0096]FIG. 35 illustrates a further embodiment of the present invention. First lead 429 includes a Zener diode 461 that functions to transfer current through untwisted circuit 435 only after a specific voltage threshold has been exceeded. This feature allows, for example, the operator to set the voltage threshold of the Zener diode 461 just above the voltage of battery 413 allowing feedback light 427 to light only when capacitively coupled voltage from untwisted transmission circuit 459 is present. The operator will be able to carefully tune the electrosurgical instrument system 410 to his exact needs by selecting the appropriate battery 413 voltage, feedback light 427 voltage, and the Zener diode 416 threshold voltage, providing a highly controlled qualitative indicator of the power passing through the instrument. When tissue 454 desiccates, it will increase the impedance of the untwisted transmission circuit 459 resulting in a loss of current transmitted by capacitive coupling, causing the feedback light 427 to dim or turn off. Dimming, or inactivity of feedback light 427 signals the operator to cease applying electrosurgical current to a tissue 454 in order to prevent burns or lateral tissue damage.
  • [0097]
    [0097]FIG. 36 illustrates an electrical schematic of a further embodiment of the present invention. FIG. 36 further discloses a second feedback light 477, a relay 478, leads 485, 479, 480, 481, 483, 484, transformer 482, and switch 486, herein collectively known as feedback means 490. Feedback means 490 functions to detect when a first level of impedance of tissue 454 has been exceeded. Depression of switch 486 completes the coupled transmission circuit 476 allowing energy to flow through tissue 454. Depression of switch 486 further couples lead 485 to lead 479. Lead 479 is coupled to relay 478. Relay 478 is normally closed when electric current is not running through leads 483, 484. When switch 486 is depressed and electrical current passes through coupled transmission circuit 476, energy is transmitted through leads 483,484 due to inductive coupling via transformer 482. Current passing through leads 483, 484 causes relay 478 to open breaking the circuit connecting lead 479 to lead 480, second feedback light 477, and lead 481. When decreased electric current is not passing through coupled transmission circuit 476, as when switch 486 has not been depressed or when impedance has significantly decreased the voltage of coupled transmission circuit 476, relay 478 will be closed due to a lack of significant inductive coupling in transformer 482. When relay 478 is closed, DC current originating from battery 413 passes through leads 485, 479, relay 478, lead 480, second feedback light 477, and leads 481, 431, where this current functions to light second feedback light 477.
  • [0098]
    The lighting of second feedback light 477 alerts the operator that significant electric current is not passing through coupled transmission circuit 476 and that either the instrument is not active or that tissue 454 has been appropriately desiccated. Significant current passing through transmission circuit 476 is inductively coupled through transformer 482 to relay 478, where the presence of current then lights first feedback light 427. The opening of relay 478 extinguishes second feedback light 477, alerting the operator that a significant electric current is passing through coupled transmission circuit 476. This embodiment of the present invention functions to light feedback light 427 when coupled transmission circuit 476 carries a significant voltage and extinguishes feedback light 427 when coupled transmission circuit 427 no longer carries a significant electric current. At the same time, a lack of significant current in coupled transmission circuit 476 will cause second feedback light 477 to light.
  • [0099]
    The use of a second light provides the operator with an extra measure of security in determining when a significant level of voltage is no longer passing through coupled transmission circuit 476 due to impedance caused by the desiccation of tissue 454. A significant level of electrical current refers to the voltage requirements or outputs of the feedback lights, Zener diodes, batteries, or other electrical components designed to provide the operator with the level of qualitative feedback for a particular application. Dimming, or inactivity of feedback light 427 and the lighting of second feedback light 477 signals the operator to cease applying electrosurgical current to a tissue 454 in order to prevent burns or lateral tissue damage. The present invention further may also include the use of a plurality of feedback lights, a plurality of relays, a plurality of transformers, twisted or untwisted leads, a plurality of switches, and or the use of capacitive and/or inductive coupling. It will be clear to one of ordinary skill in the art that a number of electrical configurations to achieve the desired qualitative feedback result are possible.
  • [0100]
    [0100]FIG. 39 illustrates a perspective view of an electrosurgical instrument system, generally designated 510, embodying the present invention. The illustrated system includes an RF energy generator 512, a housing 514, and a cable 516 that connects the housing 514 to the positive bipolar output plug clip receptacle 518, and negative bipolar output plug clip receptacle 520 of the generator 512, where the housing is adapted to transmit electric current to electrode 542 housed within first moveable jaw 522 and to electrode 546 housed within second moveable jaw 524. First moveable jaw 522 further houses guard electrodes 550, 560 and second moveable jaw 524 further houses guard electrodes 570,580, wherein guard electrodes 550, 560, 570, 580 may be connected to a grounding pad (not shown). While the illustrated first and second moveable jaws 522, 524 are endoscopic jaws for use in minimally invasive surgical procedures, the invention of the present application is equally applicable to jaws designed for use in open surgical procedures.
  • [0101]
    The illustrated RF generator 512 may be, for example, a unitary monopolar-bipolar RF generator, such as the PEGASYS RF generator, and thus also include plug clip receptacles for the monopolar active and return terminals. However, for the purposes of the present invention, only the bipolar current generating feature is utilized.
  • [0102]
    [0102]FIG. 40 illustrates a cross section of one embodiment of the present invention comprising first moveable jaw 522 having electrode 542 and guard electrodes 550, 560 and second moveable jaw 524 having electrode 546 and guard electrodes 570, 580. When first and second moveable jaws are clamped onto tissue 554 and electrodes 542, 546 are electrically activated via generator 512, electric current is passed through tissue 554, where the electric current desiccates tissue 554. As tissue 554 desiccates, the impedance of tissue 554 rises. As the impedance of tissue 554 rises between electrode 542 and electrode 546 the electric current may choose a path of lesser resistance from electrode 542 to guard electrodes 550, 560, 570, 580 or from electrode 546 to guard electrodes 550, 560, 570, 580. Attraction of electric current to guard electrodes 550, 560, 570, 580 when tissue impedance is high between electrode 542 and electrode 546 will contain lateral electric current and will prevent electric current from causing serious lateral tissue damage. In order for guard electrodes 550, 560, 570, 580 to be a favorable transmission surface, they may be held at a desirable charge potential actively such as, for example, by incorporating resistors connecting guard electrodes 550, 560, 570, 580 to generator 512; a grounding pad connected to ground electrodes 550, 560, 570, 580; or by using sense electrodes in cooperation with guard electrodes that transmit the presence of lateral current flow to the generator, where this functions to decrease generator 512 output and/or warn the operator of the presence of lateral electric current flow. Guard electrodes may also operate in a passive system such as, for example, where guard electrodes 550, 560, 570, 580 form an autonomous unit. The present invention may also include the use of other configurations of guard electrodes 550, 560, 570, 580 and/or sense electrodes (not shown) that substantially achieve the function of reducing thermal damage to tissue outside the desired cutting/coagulating region. The present invention may also include a plurality of guard electrodes 550, 560, 570, 580, and/or sense electrodes, a combination of features of the disclosed embodiments such as, for example, resistors used in cooperation with sense electrodes, and the use of other electrical features not disclosed that would be apparent to one skilled in the art to achieve the desired function.
  • [0103]
    [0103]FIG. 41 illustrates a further embodiment of the present invention comprising guard electrodes 550, 560, 570, 580, connected to feedback lights 551, 552, via leads 553, 554, 555, 556, where feedback lights 551,552 will light if lateral current is picked up by guard electrodes 550, 560, 570, 580. The presence of feedback light 551, 522 will indicate to an operator when the impedance of tissue 554 has increased substantially as to favor the transmission of electric current of guard electrodes 550, 560, 570, 580, where the feedback light will indicate to the operator that undesirable lateral current flow is occurring. The present invention may also include the use of a single feedback light 551, or a plurality of feedback lights. The feedback light is located preferably in the distal portion of the end effector in order to provide direct visual feedback to the operator in the area of operation, however the feedback light 551 may be located anywhere on the instrument or external to the instrument desirable for a surgical procedure. Feedback light 551 may be any feedback device such as an light emitting diode (LED), an audio alarm, a generator shut down system, or other suitable feedback device. The feedback device may be directly coupled, inductively coupled, or capacitively coupled to one or a plurality of feedback electrodes, ground electrodes, and/or sense electrodes.
  • [0104]
    [0104]FIG. 42 illustrates a further embodiment of the present invention comprising a knife lock out system 650 for hemostat 200, where lock out system 650 may also include a knife actuator 651, such as a slide switch. Knife actuator 651 is connected to a knife rod 652, and a ratchet 653. The distal end of knife rod 652 is affixed to sliding knife 220 and the proximal end of knife rod 652 is affixed to knife actuator 651. When hemostat 200 is in a closed position, knife actuator 651 may be actuated, extending the sliding knife 220. As sliding knife 220 is extended distally, knife actuator 651 engages closed ratchet 653 effectively locking hemostat 200 in the closed position. Hemostat 200 may only open after knife actuator 651 retracts from its engagement with ratchet 653. Knife finger actuator 651 may hold ratchet 653 when engaged with ratchet 653 by engaging male protrusions of the ratchet 653 with corresponding female groves of the knife actuator 651, however other suitable means of engagement between ratchet 653 and knife actuator 651 are consistent with the present invention. Engaging knife actuator 651 with ratchet 653 while sliding knife 220 is extended prevents the operator from opening the blade and continuing the application in a knife-exposed mode. This safety prevents the operator from opening the hemostat until the sliding knife 220 is retracted.
  • [0105]
    [0105]FIG. 43 illustrates a further embodiment of the present invention comprising an alternate knife lock out system 654 having a knife lock out latch 657. Male protrusions of the knife lock out latch 657 correspond with female groves of the knife actuator 655, however other suitable means of engagement between knife lock out latch 657 and knife finger actuator 655 are consistent with the present invention.
  • [0106]
    [0106]FIG. 44, In keeping with the present invention, illustrates first and second moveable jaws 622, 624 comprising a first tissue contacting surface 625 and a second tissue contacting surface 626 including a first insulating member 650 and a second insulating member 652, respectively, where first and second insulating members 650, 652 are made from an insulative material such as plastic, rubber, NYLON, polytetraflouroethylene (PTFE), or other suitable insulative material. First moveable jaw 622 includes a first electrode 642. Second moveable jaw 624 includes a second electrode 646. The first and second tissue contacting surfaces 625, 626 of the first and second moveable jaws 622, 624 are in a generally face-to-face relationship, with the first electrode 642 associated with first moveable jaw 622 is in face-to-face relationship with the corresponding first electrode 646 of second moveable jaw 624. First moveable jaw 622 further may also include a first dam member 656 and a second dam member 657. Second moveable jaw 624 may also include a first dam member 658 and a second dam member 659, where first dam member 656 and first dam member 658 are opposable, and second dam member 657 and second dam member 659 are opposable. When first electrode 642 and first electrode 646 are electrically activated, tissue 654 held between first dam members 656, 658 and tissue 654 held between second dam members 657, 659 will have a high impedance due to the pressure applied by first dam members 656, 658 and second dam members 657, 659. An increase in tissue impedance in the regions adjacent first dam members 656, 658 and second dam members 657, 659 will discourage the transmission of electric current though the region of high tissue impedance, inhibiting the transmission of electric current outside of first moveable jaw 622 and second moveable jaw 624, whereby decreasing the risk of unwanted lateral tissue damage. First dam members 656, 658 and second dam members 657, 659 may be extended from first moveable jaw 622 and second moveable jaw 624 from 0.0005 inches-0.015 inches respectively, however other suitable measurements desirable for a particular application are consistent with the present invention.
  • [0107]
    The present invention may also include the use of first dam member 656 and second dam member 657 of first moveable jaw 622 to be used in the absence of first dam member 658 and second dam member 659 of second moveable jaw 624. The present invention may also include the use of first dam member 658 and second dam member 659 in the absence of first dam member 656 and second dam member 657 of first moveable jaw 622. First dam members 656, 658 and second dam members 657, 659 may be any shape suitable for use in a surgical application such as an interlocking form, where, for example, a male portion of first dam member 656 and second dam member 657 fit into corresponding female portions of first dam member 658 and second dam member 659, respectively, a flat surfaced embodiment where the faces of first dam members 656, 658 and second dam members 657 and 659 are substantially flush with one another, or other forms suitable for use with a surgical procedure. First and second electrodes 642, 646 may be electrically activated by a connection to a generator 312 via a cable 316 or by other suitable electrically activating means. First dam members 656, 658 and second dam members 657, 659 may be permanently affixed, or removably detachable from first moveable jaw 622 and second moveable jaw 624, respectively. For purposes herein, first dam members 656, 658 and second dam members 657, 659 may be collectively called a tissue dam.
  • [0108]
    [0108]FIGS. 45 and 45a illustrate first and second moveable jaws 722, 724, the features of the illustrated embodiment corresponding to like features and attributes of the embodiment shown in FIG. 44, but referenced with “700” series reference numerals for similar features. Jaws 722 and 724 comprise a first tissue contacting surface 725 and a second tissue contacting surface 726 including a first insulating member 750 and a second insulating member 752, respectively, where first and second insulating members 750, 752 are made from an insulative material such as plastic, rubber, NYLON, polytetraflouroethylene (PTFE), or other suitable insulative material. First moveable jaw 722 includes a first electrode 742 and a second electrode 743. Second moveable jaw 724 includes a first electrode 746 and a second electrode 747. The first and second tissue contacting surfaces 725, 726 of the first and second moveable jaws 722, 724 are in a generally face-to-face relationship, where the first electrode 742 and second electrode 743 associated with first moveable jaw 622 are in face-to-face relationship with the corresponding first electrode 746 and second electrode 747 of second moveable jaw 724. First moveable jaw 722 further may also include a first dam member 756 and a second dam member 757. Second moveable jaw 724 may also include a first dam member 758 and a second dam member 759, where first dam member 756 and first dam member 758 are opposable, and second dam member 757 and second dam member 759 are opposable. When first electrode 742 and second electrode 743 of first moveable jaw 722 and first electrode 746 and second electrode 747 of second moveable jaw 724 are electrically activated, tissue 754 held between first dam members 756, 758 and tissue 754 held between second dam members 757, 759 will have a high impedance due to the pressure applied by first dam members 756, 758 and second dam members 757, 759. An increase in tissue impedance in the regions adjacent first dam members 756, 758 and second dam members 757, 759 will discourage the transmission of electric current though the region of high tissue impedance, inhibiting the transmission of electric current outside of first moveable jaw 722 and second moveable jaw 724, whereby decreasing the risk of unwanted lateral tissue damage.
  • [0109]
    [0109]FIG. 46 illustrates a further embodiment of the present invention comprising first and second moveable jaws 822, 824 comprising a first tissue contacting surface 825 and a second tissue contacting surface 826 including a first insulating member 850 and a second insulating member 852, respectively, where first and second insulating members 850, 852 are made from an insulative material such as plastic, rubber, polytetraflouroethylene (PTFE), or other suitable insulative material. First moveable jaw 822 includes a first electrode 842 and a second electrode 843. Second moveable jaw 824 includes a first electrode 846 and a second electrode 847. The first and second tissue contacting surfaces 825, 826 of the first and second moveable jaws 822, 824 are in a generally face-to-face relationship, where the first electrode 842 and second electrode 843 associated with first moveable jaw 822 are in face-to-face relationship with the corresponding first electrode 846 and second electrode 847 of second moveable jaw 824. One embodiment of the present invention further may also include a first dam member 856 and a second dam member 857 a first dam member 858 and a second dam member 859, where first dam member 856 and first dam member 858 are opposable, and second dam member 857 and second dam member 859 are opposable. For purposes herein, first dam members 856, 858 and second dam members 857, 858 may be collectively called an independent tissue dam 865. When first electrode 842 and second electrode 843 of first moveable jaw 822 and first electrode 846 and second electrode 847 of second moveable jaw 824 are electrically activated, tissue 854 held between first dam members 856, 858 and tissue 854 held between second dam members 857, 859 will have a high impedance due to the pressure applied by first dam members 856, 858 and second dam members 857, 859.
  • [0110]
    The illustrated embodiment allows the operator to apply pressure to the first dam members 856, 858 and second dam members 857, 859 independently of the pressure applied from first moveable jaw 822 and second moveable jaw 824. The ability to apply controlled pressure with both the independent tissue dam 865 and first and second moveable jaws 822, 824 allows for greater manipulation and control of an area to be cut and/or coagulated during a procedure. An increase in tissue impedance in the regions adjacent first dam members 856, 858 and second dam members 857, 859 will discourage the transmission of electric current though the region of high tissue impedance, inhibiting the transmission of electric current outside of first moveable jaw 822 and second moveable jaw 824, whereby decreasing the risk of unwanted lateral tissue damage.
  • [0111]
    The present invention may also include the use of first dam member 856 and second dam member 857 in the absence of first dam member 858 and second dam member 859. Independent tissue dam 865 may be actuated by a trigger mechanism, a scissors mechanism, or by other means of actuation known in the art. First moveable jaw 822 and second moveable jaw 824 may be actuated independently of independent tissue dam 865 by a camming system, a scissors system, or by other means of actuation commonly known in the art. First dam members 856, 858 and second dam members 857, 859 may be any shape suitable for use in a surgical application such as an interlocking form, where, for example, a male portion of first dam member 856 and second dam member 857 fit into corresponding female portions of first dam member 858 and second dam member 859, respectively, a flat surfaced embodiment where the faces of first dam members 856, 858 and second dam members 857 and 858 are substantially flush with one another, or other forms suitable for use with a surgical procedure. First electrodes 842, 846 and second electrodes 843, 847 may be electrically activated by a connection to a generator 312 via a cable 316 or by other suitable electrically activating means. One embodiment of the present invention may also include the disposal, after one use, of the tissue dam and/or the entire instrument (not shown). A further embodiment of the present invention may also include the use of a sliding knife 220 that may be actuated through knife slots (not shown). The present invention may also include the use a feedback system, such as, a light emitting diode as previously described herein, to indicate, for example, lateral thermal spread, impedance levels, or other variables, a single pair of electrodes, a plurality of electrodes, removable first and second moveable jaws 822, 824 from Independent tissue dam 865, where independent tissue dam 865 would function as a hemostat, a plurality of first dam members 856, 858 and/or second dam members 857, 859, tissue cutting elements not having opposable jaws, tissue cutting elements utilizing energy sources other than RF electrosurgical energy such as, for example, ultrasound or laser.
  • [0112]
    [0112]FIGS. 47 through 49 illustrate an embodiment of the present invention wherein first moveable jaw 822 may also include a first tissue contacting surface 825 including a first insulating member 850 where insulating member 850 is made from an insulative material such as plastic, rubber, nylon polytetraflouroethylene (PTFE), or other suitable insulative material. First moveable jaw 822 includes a first electrode 842 and a second electrode 843. In this embodiment, first insulating member 850 acts as a tissue dam at the distal end of first movable jaw 822. First insulating member 850 is raised above first electrode 842 only at the distal end of first movable jaw 822. Insulating members such as, for example, first insulating member 850 may alternately be coatings that may be sprayed onto first movable jaw 822, or by using alternate coating methods such as, for example, dipping, plasma coating, encasement, or the like.
  • [0113]
    While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. For example, as would be apparent to those skilled in the art, the disclosures herein of the electrode configuration, including the cutting knife used as either means for coagulation, and mechanical grasping and cutting as well as the tissue dam and indicator light have equal application in robotic-assisted surgery. In addition, it should be understood that every structure described above has a function and such structure can be referred to as a means for performing that function. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Claims (12)

    What is claimed is:
  1. 1. An electrosurgical apparatus comprising:
    first and second moveable jaws, each jaw including a tissue contacting surface in face-to-face relation with the tissue contacting surface of the other jaw;
    said grasping jaws being relatively movable for grasping tissue between said tissue contacting surfaces;
    said tissue contacting surfaces of said jaws comprising an insulating material;
    a first and second electrode housed within said first moveable jaw and said second moveable jaw, respectively, wherein said first and second electrodes are connectable to a power source for providing an electrical current between said first and second electrodes; and
    a feedback light, wherein said feedback light is positioned on said first moveable jaw, wherein said feedback light is connectable to a first lead and a second lead, whereby forming a second circuit, wherein said second circuit is adjacent to said first circuit, whereby facilitating capacitive coupling between said first circuit and said second circuit, whereby lighting said feedback light.
  2. 2. apparatus of claim 1, wherein said feedback light is an LED.
  3. 3. The apparatus of claim 1, further comprising a biased power source, wherein said biased power source is coupled to said second circuit, wherein said biased power source delivers direct current through said second circuit.
  4. 4. The apparatus of claim 3, further comprising a first Zener diode, wherein said first Zener diode is positioned on said second circuit, wherein said first Zener diode has an established voltage threshold.
  5. 5. The apparatus of claim 4, further comprising a second Zener diode, wherein said second Zener diode is positioned on said second circuit.
  6. 6. The apparatus of claim 1, further comprising a feedback means for indicating when a first level of impedance has been reached.
  7. 7. An electrosurgical apparatus comprising:
    first and second moveable jaws, each jaw including a tissue contacting surface in face-to-face relation with the tissue contacting surface of the other jaw;
    said grasping jaws being relatively movable for grasping tissue between said tissue contacting surfaces;
    said tissue contacting surfaces of said jaws comprising an insulating material;
    a first and second electrode housed within said first moveable jaw and said second moveable jaw, respectively, wherein said first and second electrodes are connectable to a power source for providing an electrical current between said first and second electrodes; and
    a feedback light, wherein said feedback light is positioned on said first moveable jaw, wherein said feedback light is connectable to a first lead, a second lead, and a toroid, wherein said second lead is wound around said toroid, whereby forming a second circuit, wherein a third lead of said first circuit passes through said toroid, whereby facilitating inductive coupling between said first circuit and said second circuit, whereby lighting said feedback light.
  8. 8. The apparatus of claim 7, wherein said insulating material of said tissue contacting surface comprises a transparent material.
  9. 9. The apparatus of claim 8, wherein said insulating material houses said feedback light.
  10. 10. The apparatus of claim 7, further comprising a first Zener diode, wherein said first Zener diode is positioned along said second circuit.
  11. 11. The apparatus of claim 10, further comprising a second Zener diode, wherein said second Zener diode is positioned along said second circuit.
  12. 12. The apparatus of claim 10, wherein said first Zener diode is electrically biased by a battery.
US10055782 2002-01-23 2002-01-23 Feedback light apparatus and method for use with an electrosurgical instrument Active 2022-05-04 US6676660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10055782 US6676660B2 (en) 2002-01-23 2002-01-23 Feedback light apparatus and method for use with an electrosurgical instrument

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10055782 US6676660B2 (en) 2002-01-23 2002-01-23 Feedback light apparatus and method for use with an electrosurgical instrument
DE2003616052 DE60316052D1 (en) 2002-01-23 2003-01-22 An electrosurgical instrument with light monitor on gripper arm
DE2003616052 DE60316052T2 (en) 2002-01-23 2003-01-22 An electrosurgical instrument with light monitor on gripper arm
JP2003013951A JP2003245285A (en) 2002-01-23 2003-01-22 Feedback light apparatus and method for use with electrosurgical instrument
EP20030250409 EP1330991B1 (en) 2002-01-23 2003-01-22 Electrosurgical instrument with light monitor on effector
CA 2417016 CA2417016A1 (en) 2002-01-23 2003-01-23 Feedback light apparatus and method for use with an electrosurgical instrument

Publications (2)

Publication Number Publication Date
US20030139742A1 true true US20030139742A1 (en) 2003-07-24
US6676660B2 US6676660B2 (en) 2004-01-13

Family

ID=22000121

Family Applications (1)

Application Number Title Priority Date Filing Date
US10055782 Active 2022-05-04 US6676660B2 (en) 2002-01-23 2002-01-23 Feedback light apparatus and method for use with an electrosurgical instrument

Country Status (5)

Country Link
US (1) US6676660B2 (en)
EP (1) EP1330991B1 (en)
JP (1) JP2003245285A (en)
CA (1) CA2417016A1 (en)
DE (2) DE60316052D1 (en)

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020188294A1 (en) * 2001-04-06 2002-12-12 Couture Gary M. Vessel sealer and divider
US20030018332A1 (en) * 2001-06-20 2003-01-23 Schmaltz Dale Francis Bipolar electrosurgical instrument with replaceable electrodes
US20030199869A1 (en) * 1998-10-23 2003-10-23 Johnson Kristin D. Vessel sealing instrument
US20030229344A1 (en) * 2002-01-22 2003-12-11 Dycus Sean T. Vessel sealer and divider and method of manufacturing same
US20040082952A1 (en) * 2001-04-06 2004-04-29 Dycus Sean T. Vessel sealer and divider
US20040250419A1 (en) * 2003-06-13 2004-12-16 Sremcich Paul S. Method of manufacturing jaw assembly for vessel sealer and divider
US20040254573A1 (en) * 2003-06-13 2004-12-16 Dycus Sean T. Vessel sealer and divider for use with small trocars and cannulas
EP1532932A1 (en) * 2003-11-19 2005-05-25 Sherwood Services AG Open vessel sealing instrument with cutting mechanism
US20050137590A1 (en) * 2003-11-17 2005-06-23 Kate Lawes Bipolar forceps having monopolar extension
US20060009764A1 (en) * 1997-11-14 2006-01-12 Lands Michael J Laparoscopic bipolar electrosurgical instrument
US20060020265A1 (en) * 1997-09-09 2006-01-26 Ryan Thomas P Apparatus and method for sealing and cutting tissue
US20060074416A1 (en) * 2004-10-06 2006-04-06 Dylan Hushka Slide-activated cutting assembly
US20090248021A1 (en) * 2008-03-31 2009-10-01 Tyco Healthcare Group Lp End Effector Assembly for Electrosurgical Devices and System for Using the Same
US7655007B2 (en) 2003-05-01 2010-02-02 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7708735B2 (en) 2003-05-01 2010-05-04 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7799028B2 (en) 2004-09-21 2010-09-21 Covidien Ag Articulating bipolar electrosurgical instrument
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7819872B2 (en) 2005-09-30 2010-10-26 Covidien Ag Flexible endoscopic catheter with ligasure
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US20110060334A1 (en) * 2009-09-09 2011-03-10 Tyco Healthcare Group Lp Apparatus and Method of Controlling Cutting Blade Travel Through the Use of Etched Features
US7909823B2 (en) * 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US20110071522A1 (en) * 2009-09-18 2011-03-24 Tyco Healthcare Group Lp In Vivo Attachable and Detachable End Effector Assembly and Laparoscopic Surgical Instrument and Methods Therefor
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7935052B2 (en) 2004-09-09 2011-05-03 Covidien Ag Forceps with spring loaded end effector assembly
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7963965B2 (en) 1997-11-12 2011-06-21 Covidien Ag Bipolar electrosurgical instrument for sealing vessels
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US20110251606A1 (en) * 2010-04-12 2011-10-13 Tyco Healthcare Group Lp Surgical Instrument with Non-Contact Electrical Coupling
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8192433B2 (en) 2002-10-04 2012-06-05 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8211105B2 (en) 1997-11-12 2012-07-03 Covidien Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US8277447B2 (en) 2005-08-19 2012-10-02 Covidien Ag Single action tissue sealer
US8298228B2 (en) 1997-11-12 2012-10-30 Coviden Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8303586B2 (en) 2003-11-19 2012-11-06 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8361071B2 (en) 1999-10-22 2013-01-29 Covidien Ag Vessel sealing forceps with disposable electrodes
US20130030328A1 (en) * 2011-07-25 2013-01-31 Tyco Healthcare Group Lp Ultrasonic Dissection System
US8382754B2 (en) 2005-03-31 2013-02-26 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
WO2013048595A1 (en) * 2011-06-10 2013-04-04 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8540711B2 (en) 2001-04-06 2013-09-24 Covidien Ag Vessel sealer and divider
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8604742B2 (en) 2003-07-08 2013-12-10 Board Of Regents Of The University Of Nebraska Robotic devices with arms and related methods
US8603089B2 (en) 2011-01-19 2013-12-10 Covidien Lp Surgical instrument including inductively coupled accessory
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8679096B2 (en) 2007-06-21 2014-03-25 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8828024B2 (en) 2007-07-12 2014-09-09 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical access and procedures
US8834488B2 (en) 2006-06-22 2014-09-16 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic surgical devices and related methods
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8894633B2 (en) 2009-12-17 2014-11-25 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US8968267B2 (en) 2010-08-06 2015-03-03 Board Of Regents Of The University Of Nebraska Methods and systems for handling or delivering materials for natural orifice surgery
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8968360B2 (en) 2012-01-25 2015-03-03 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US8974440B2 (en) 2007-08-15 2015-03-10 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US9010214B2 (en) 2012-06-22 2015-04-21 Board Of Regents Of The University Of Nebraska Local control robotic surgical devices and related methods
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US9089353B2 (en) 2011-07-11 2015-07-28 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9095347B2 (en) 2003-11-20 2015-08-04 Covidien Ag Electrically conductive/insulative over shoe for tissue fusion
US9107672B2 (en) 1998-10-23 2015-08-18 Covidien Ag Vessel sealing forceps with disposable electrodes
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
CN105708519A (en) * 2011-07-11 2016-06-29 柯惠有限合伙公司 Surgical forceps
US9439711B2 (en) 2012-10-02 2016-09-13 Covidien Lp Medical devices for thermally treating tissue
US9498292B2 (en) 2012-05-01 2016-11-22 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US9687290B2 (en) 2012-10-02 2017-06-27 Covidien Lp Energy-based medical devices
US9743987B2 (en) 2013-03-14 2017-08-29 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US9770305B2 (en) 2012-08-08 2017-09-26 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9888966B2 (en) 2013-03-14 2018-02-13 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems

Families Citing this family (408)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1513464B1 (en) * 2002-06-06 2006-08-09 Sherwood Services AG Laparoscopic bipolar electrosurgical instrument
ES2250379T3 (en) * 2001-04-06 2006-04-16 Sherwood Serv Ag Suturing instrument of vessels.
US7582087B2 (en) * 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
JP2004500207A (en) * 2000-03-06 2004-01-08 ティシューリンク・メディカル・インコーポレーテッドTissuelink Medical,Inc. Fluid delivery system and electrosurgical instrument controller
US7811282B2 (en) * 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US6558385B1 (en) * 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US6689131B2 (en) 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
EP1372512B1 (en) * 2001-04-06 2005-06-22 Sherwood Services AG Molded insulating hinge for bipolar instruments
US20040115296A1 (en) * 2002-04-05 2004-06-17 Duffin Terry M. Retractable overmolded insert retention apparatus
DE60139815D1 (en) 2001-04-06 2009-10-15 Covidien Ag An apparatus for sealing and dividing of a vessel with a non-conductive end stop
US7311708B2 (en) * 2001-12-12 2007-12-25 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6953461B2 (en) * 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
JP2006504472A (en) 2002-10-29 2006-02-09 ティシューリンク・メディカル・インコーポレーテッドTissuelink Medical,Inc. Fluid auxiliary electrosurgical scissors and methods
US7033354B2 (en) * 2002-12-10 2006-04-25 Sherwood Services Ag Electrosurgical electrode having a non-conductive porous ceramic coating
US20060052779A1 (en) * 2003-03-13 2006-03-09 Hammill Curt D Electrode assembly for tissue fusion
US20060064086A1 (en) * 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
JP5137230B2 (en) * 2003-05-15 2013-02-06 コヴィディエン・アクチェンゲゼルシャフト Method of sealing a tissue sealer and tissue with a non-conductive variable stop member
US20070084897A1 (en) * 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7232440B2 (en) * 2003-11-17 2007-06-19 Sherwood Services Ag Bipolar forceps having monopolar extension
US7204835B2 (en) * 2004-02-02 2007-04-17 Gyrus Medical, Inc. Surgical instrument
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US8251891B2 (en) * 2004-05-13 2012-08-28 Nathan Moskowitz Totally wireless electronically embedded action-ended endoscope utilizing differential directional illumination with digitally controlled mirrors and/or prisms
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US20060079933A1 (en) * 2004-10-08 2006-04-13 Dylan Hushka Latching mechanism for forceps
US7846155B2 (en) 2004-10-08 2010-12-07 Ethicon Endo-Surgery, Inc. Handle assembly having hand activation for use with an ultrasonic surgical instrument
US20060190035A1 (en) * 2004-10-08 2006-08-24 Sherwood Services Ag Latching mechanism for forceps
US8197472B2 (en) 2005-03-25 2012-06-12 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US8025668B2 (en) * 2005-04-28 2011-09-27 C. R. Bard, Inc. Medical device removal system
US20060259035A1 (en) * 2005-05-12 2006-11-16 Camran Nezhat Method and Apparatus for Performing a Surgical Procedure
US8696662B2 (en) * 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US8574229B2 (en) * 2006-05-02 2013-11-05 Aesculap Ag Surgical tool
US9339323B2 (en) 2005-05-12 2016-05-17 Aesculap Ag Electrocautery method and apparatus
US7862565B2 (en) * 2005-05-12 2011-01-04 Aragon Surgical, Inc. Method for tissue cauterization
US8728072B2 (en) 2005-05-12 2014-05-20 Aesculap Ag Electrocautery method and apparatus
US20070265613A1 (en) * 2006-05-10 2007-11-15 Edelstein Peter Seth Method and apparatus for sealing tissue
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070194082A1 (en) * 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US20130334284A1 (en) 2005-08-31 2013-12-19 Ethicon Endo-Surgery, Inc. Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7594916B2 (en) * 2005-11-22 2009-09-29 Covidien Ag Electrosurgical forceps with energy based tissue division
US20070118115A1 (en) * 2005-11-22 2007-05-24 Sherwood Services Ag Bipolar electrosurgical sealing instrument having an improved tissue gripping device
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US7815641B2 (en) * 2006-01-25 2010-10-19 The Regents Of The University Of Michigan Surgical instrument and method for use thereof
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7803156B2 (en) * 2006-03-08 2010-09-28 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US8251990B2 (en) * 2006-03-21 2012-08-28 The Cleveland Clinic Foundation Apparatus and method of performing radiofrequency cauterization and tissue removal
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US7641653B2 (en) * 2006-05-04 2010-01-05 Covidien Ag Open vessel sealing forceps disposable handswitch
US20070260238A1 (en) * 2006-05-05 2007-11-08 Sherwood Services Ag Combined energy level button
US20070265616A1 (en) * 2006-05-10 2007-11-15 Sherwood Services Ag Vessel sealing instrument with optimized power density
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
US7731717B2 (en) * 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7785060B2 (en) * 2006-10-27 2010-08-31 Applied Materials, Inc. Multi-directional mechanical scanning in an ion implanter
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US8142461B2 (en) * 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8226675B2 (en) * 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) * 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20080234709A1 (en) * 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
DE102007017966B3 (en) * 2007-04-10 2008-11-13 Aesculap Ag Surgical instrument has clamping unit for holding or clamping tissue, cutting unit for cutting tissue and handling device for operating clamping unit and cutting unit
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7905380B2 (en) * 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8534528B2 (en) * 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
GB0711868D0 (en) * 2007-06-19 2007-07-25 Gyrus Medical Ltd Electrosurgical system
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8590762B2 (en) * 2007-06-29 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8257377B2 (en) * 2007-07-27 2012-09-04 Ethicon Endo-Surgery, Inc. Multiple end effectors ultrasonic surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US8512365B2 (en) * 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) * 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20090088750A1 (en) * 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Insulating Boot with Silicone Overmold for Electrosurgical Forceps
US20090088745A1 (en) * 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Tapered Insulating Boot for Electrosurgical Forceps
EP2217157A2 (en) 2007-10-05 2010-08-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
USD594983S1 (en) 2007-10-05 2009-06-23 Ethicon Endo-Surgery, Inc. Handle assembly for surgical instrument
DE102007053359B3 (en) * 2007-10-30 2009-06-04 Aesculap Ag A surgical instrument
US8057498B2 (en) * 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US20090143806A1 (en) * 2007-11-30 2009-06-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical blades
US7901423B2 (en) * 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
USD700699S1 (en) 2011-08-23 2014-03-04 Covidien Ag Handle for portable surgical device
GB0800772D0 (en) 2008-01-16 2008-02-27 Gyrus Medical Ltd Electrosurgical system
US8870867B2 (en) * 2008-02-06 2014-10-28 Aesculap Ag Articulable electrosurgical instrument with a stabilizable articulation actuator
US20090198272A1 (en) * 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) * 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US7793812B2 (en) * 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8622274B2 (en) * 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US20130153636A1 (en) 2008-02-15 2013-06-20 Ethicon Endo-Surgery, Inc. Implantable arrangements for surgical staple cartridges
ES2428719T3 (en) 2008-03-31 2013-11-11 Applied Medical Resources Corporation electrosurgical system with means for measuring permittivity and conductivity of the tissue
WO2009130752A1 (en) * 2008-04-21 2009-10-29 オリンパスメディカルシステムズ株式会社 Therapy system, therapy instrument and method of treating living tissues with the use of energy
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US9402680B2 (en) 2008-05-27 2016-08-02 Maquet Cardiovasular, Llc Surgical instrument and method
US9402679B2 (en) 2008-05-27 2016-08-02 Maquet Cardiovascular Llc Surgical instrument and method
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US20100057081A1 (en) * 2008-08-28 2010-03-04 Tyco Healthcare Group Lp Tissue Fusion Jaw Angle Improvement
US20100063500A1 (en) * 2008-09-05 2010-03-11 Tyco Healthcare Group Lp Apparatus, System and Method for Performing an Electrosurgical Procedure
US20100069953A1 (en) * 2008-09-16 2010-03-18 Tyco Healthcare Group Lp Method of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US20100076430A1 (en) * 2008-09-24 2010-03-25 Tyco Healthcare Group Lp Electrosurgical Instrument Having a Thumb Lever and Related System and Method of Use
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8414577B2 (en) * 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US20110006101A1 (en) * 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US20100298743A1 (en) * 2009-05-20 2010-11-25 Ethicon Endo-Surgery, Inc. Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9700339B2 (en) * 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US9017326B2 (en) * 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US8663220B2 (en) * 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
DE102009049401A1 (en) * 2009-08-20 2011-02-24 Erbe Elektromedizin Gmbh The electrosurgical forceps
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8357159B2 (en) 2009-09-03 2013-01-22 Covidien Lp Open vessel sealing instrument with pivot assembly
US9023042B1 (en) 2009-09-09 2015-05-05 Keith Huron Bipolar electrosurgical coagulator
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US8512371B2 (en) 2009-10-06 2013-08-20 Covidien Lp Jaw, blade and gap manufacturing for surgical instruments with small jaws
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US20110165536A1 (en) * 2010-01-06 2011-07-07 Rainbow Medical Ltd. Alveolar ridge augmentation
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8480671B2 (en) 2010-01-22 2013-07-09 Covidien Lp Compact jaw including split pivot pin
US8556929B2 (en) 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
US8858553B2 (en) 2010-01-29 2014-10-14 Covidien Lp Dielectric jaw insert for electrosurgical end effector
KR101786410B1 (en) * 2010-02-04 2017-10-17 아에스쿨랍 아게 Laparoscopic radiofrequency surgical device
US8382782B2 (en) * 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8419759B2 (en) * 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8323302B2 (en) * 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8961547B2 (en) * 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8827992B2 (en) * 2010-03-26 2014-09-09 Aesculap Ag Impedance mediated control of power delivery for electrosurgery
US8425511B2 (en) * 2010-03-26 2013-04-23 Covidien Lp Clamp and scissor forceps
US8419727B2 (en) 2010-03-26 2013-04-16 Aesculap Ag Impedance mediated power delivery for electrosurgery
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
GB201008510D0 (en) 2010-05-21 2010-07-07 Ethicon Endo Surgery Inc Medical device
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8430877B2 (en) 2010-06-02 2013-04-30 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469991B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409247B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491624B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491626B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9173698B2 (en) 2010-09-17 2015-11-03 Aesculap Ag Electrosurgical tissue sealing augmented with a seal-enhancing composition
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
RU2606493C2 (en) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Staple cartridge, containing staples, located inside its compressible part
RU2013119928A (en) 2010-09-30 2014-11-10 Этикон Эндо-Серджери, Инк. Crosslinking system comprising a retaining matrix and an alignment matrix
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
JP6224070B2 (en) 2012-03-28 2017-11-01 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Retainer assembly including a tissue thickness compensator
US20120080340A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a variable thickness compressible portion
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
RU2604397C2 (en) 2011-04-29 2016-12-10 Этикон Эндо-Серджери, Инк. Tissue thickness compensator for surgical suturing instrument comprising adjustable support
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
EP2621389B1 (en) 2010-10-01 2015-03-18 Applied Medical Resources Corporation Electrosurgical instrument with jaws and with an electrode
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9345534B2 (en) 2010-10-04 2016-05-24 Covidien Lp Vessel sealing instrument
US8906018B2 (en) 2010-10-18 2014-12-09 Covidien Lp Surgical forceps
US9089338B2 (en) 2010-11-05 2015-07-28 Ethicon Endo-Surgery, Inc. Medical device packaging with window for insertion of reusable component
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US8613752B2 (en) 2011-04-21 2013-12-24 Cook Medical Technologies Llc Surgical instrument for removing body tissue or vessels
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US8900232B2 (en) 2011-05-06 2014-12-02 Covidien Lp Bifurcated shaft for surgical instrument
US8685009B2 (en) 2011-05-16 2014-04-01 Covidien Lp Thread-like knife for tissue cutting
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9039704B2 (en) 2011-06-22 2015-05-26 Covidien Lp Forceps
US9339327B2 (en) 2011-06-28 2016-05-17 Aesculap Ag Electrosurgical tissue dissecting device
US8628557B2 (en) 2011-07-11 2014-01-14 Covidien Lp Surgical forceps
US8968306B2 (en) 2011-08-09 2015-03-03 Covidien Lp Surgical forceps
US9113909B2 (en) 2011-09-01 2015-08-25 Covidien Lp Surgical vessel sealer and divider
US9636169B2 (en) 2011-09-19 2017-05-02 Covidien Lp Electrosurgical instrument
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8961515B2 (en) 2011-09-28 2015-02-24 Covidien Lp Electrosurgical instrument
US9486220B2 (en) 2011-09-28 2016-11-08 Covidien Lp Surgical tissue occluding device
US8756785B2 (en) 2011-09-29 2014-06-24 Covidien Lp Surgical instrument shafts and methods of manufacturing shafts for surgical instruments
US9060780B2 (en) 2011-09-29 2015-06-23 Covidien Lp Methods of manufacturing shafts for surgical instruments
US8864795B2 (en) 2011-10-03 2014-10-21 Covidien Lp Surgical forceps
US9314295B2 (en) 2011-10-20 2016-04-19 Covidien Lp Dissection scissors on surgical device
US8968308B2 (en) 2011-10-20 2015-03-03 Covidien Lp Multi-circuit seal plates
US9492221B2 (en) 2011-10-20 2016-11-15 Covidien Lp Dissection scissors on surgical device
USD687549S1 (en) 2011-10-24 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8968309B2 (en) 2011-11-10 2015-03-03 Covidien Lp Surgical forceps
US9265565B2 (en) 2011-11-29 2016-02-23 Covidien Lp Open vessel sealing instrument and method of manufacturing the same
US9113899B2 (en) 2011-11-29 2015-08-25 Covidien Lp Coupling mechanisms for surgical instruments
US8968310B2 (en) 2011-11-30 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade lockout mechanism
US9259268B2 (en) 2011-12-06 2016-02-16 Covidien Lp Vessel sealing using microwave energy
US8864753B2 (en) 2011-12-13 2014-10-21 Covidien Lp Surgical Forceps Connected to Treatment Light Source
US9023035B2 (en) 2012-01-06 2015-05-05 Covidien Lp Monopolar pencil with integrated bipolar/ligasure tweezers
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9113897B2 (en) 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
US9113882B2 (en) 2012-01-23 2015-08-25 Covidien Lp Method of manufacturing an electrosurgical instrument
US8961513B2 (en) 2012-01-25 2015-02-24 Covidien Lp Surgical tissue sealer
US9693816B2 (en) 2012-01-30 2017-07-04 Covidien Lp Electrosurgical apparatus with integrated energy sensing at tissue site
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8747434B2 (en) 2012-02-20 2014-06-10 Covidien Lp Knife deployment mechanisms for surgical forceps
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US9011435B2 (en) 2012-02-24 2015-04-21 Covidien Lp Method for manufacturing vessel sealing instrument with reduced thermal spread
US8961514B2 (en) 2012-03-06 2015-02-24 Covidien Lp Articulating surgical apparatus
US8752264B2 (en) 2012-03-06 2014-06-17 Covidien Lp Surgical tissue sealer
US8968298B2 (en) 2012-03-15 2015-03-03 Covidien Lp Electrosurgical instrument
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
RU2014143245A (en) 2012-03-28 2016-05-27 Этикон Эндо-Серджери, Инк. Compensator tissue thickness, comprising a capsule for a medium with a low pressure
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9265569B2 (en) 2012-03-29 2016-02-23 Covidien Lp Method of manufacturing an electrosurgical forceps
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9713493B2 (en) 2012-04-30 2017-07-25 Covidien Lp Method of switching energy modality on a cordless RF device
US8968311B2 (en) 2012-05-01 2015-03-03 Covidien Lp Surgical instrument with stamped double-flag jaws and actuation mechanism
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US8920461B2 (en) 2012-05-01 2014-12-30 Covidien Lp Surgical forceps with bifurcated flanged jaw components
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US9034009B2 (en) 2012-05-01 2015-05-19 Covidien Lp Surgical forceps
US9039731B2 (en) 2012-05-08 2015-05-26 Covidien Lp Surgical forceps including blade safety mechanism
US9375258B2 (en) 2012-05-08 2016-06-28 Covidien Lp Surgical forceps
US9113901B2 (en) 2012-05-14 2015-08-25 Covidien Lp Modular surgical instrument with contained electrical or mechanical systems
US9192432B2 (en) 2012-05-29 2015-11-24 Covidien Lp Lever latch assemblies for surgical improvements
US8968313B2 (en) 2012-06-12 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade stop
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9011436B2 (en) 2012-06-26 2015-04-21 Covidien Lp Double-length jaw system for electrosurgical instrument
US9510891B2 (en) 2012-06-26 2016-12-06 Covidien Lp Surgical instruments with structures to provide access for cleaning
US9770255B2 (en) 2012-06-26 2017-09-26 Covidien Lp One-piece handle assembly
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9072524B2 (en) 2012-06-29 2015-07-07 Covidien Lp Surgical forceps
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US8939975B2 (en) 2012-07-17 2015-01-27 Covidien Lp Gap control via overmold teeth and hard stops
US9833285B2 (en) 2012-07-17 2017-12-05 Covidien Lp Optical sealing device with cutting ability
US9301798B2 (en) 2012-07-19 2016-04-05 Covidien Lp Surgical forceps including reposable end effector assemblies
US9192421B2 (en) 2012-07-24 2015-11-24 Covidien Lp Blade lockout mechanism for surgical forceps
US9636168B2 (en) 2012-08-09 2017-05-02 Covidien Lp Electrosurgical instrument including nested knife assembly
US9433461B2 (en) 2012-09-07 2016-09-06 Covidien Lp Instruments, systems, and methods for sealing tissue structures
ES2628297T3 (en) 2012-09-26 2017-08-02 Aesculap Ag Cutting apparatus and sealing tissue
US9549749B2 (en) 2012-10-08 2017-01-24 Covidien Lp Surgical forceps
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9681908B2 (en) 2012-10-08 2017-06-20 Covidien Lp Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9375259B2 (en) 2012-10-24 2016-06-28 Covidien Lp Electrosurgical instrument including an adhesive applicator assembly
US9572529B2 (en) 2012-10-31 2017-02-21 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US9375205B2 (en) 2012-11-15 2016-06-28 Covidien Lp Deployment mechanisms for surgical instruments
US9498281B2 (en) 2012-11-27 2016-11-22 Covidien Lp Surgical apparatus
US9364277B2 (en) 2012-12-13 2016-06-14 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
US9204921B2 (en) 2012-12-13 2015-12-08 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
US9375256B2 (en) 2013-02-05 2016-06-28 Covidien Lp Electrosurgical forceps
US9713491B2 (en) 2013-02-19 2017-07-25 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument
US9375262B2 (en) 2013-02-27 2016-06-28 Covidien Lp Limited use medical devices
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9655673B2 (en) 2013-03-11 2017-05-23 Covidien Lp Surgical instrument
US9456863B2 (en) 2013-03-11 2016-10-04 Covidien Lp Surgical instrument with switch activation control
US9877775B2 (en) 2013-03-12 2018-01-30 Covidien Lp Electrosurgical instrument with a knife blade stop
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US20140263541A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising an articulation lock
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
USD728786S1 (en) 2013-05-03 2015-05-05 Covidien Lp Vessel sealer with mechanical cutter and pistol-grip-style trigger
US9468453B2 (en) 2013-05-03 2016-10-18 Covidien Lp Endoscopic surgical forceps
US9622810B2 (en) 2013-05-10 2017-04-18 Covidien Lp Surgical forceps
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9649151B2 (en) 2013-05-31 2017-05-16 Covidien Lp End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
US9554845B2 (en) 2013-07-18 2017-01-31 Covidien Lp Surgical forceps for treating and cutting tissue
USD744644S1 (en) 2013-08-07 2015-12-01 Covidien Lp Disposable housing for open vessel sealer with mechanical cutter
USD726910S1 (en) 2013-08-07 2015-04-14 Covidien Lp Reusable forceps for open vessel sealer with mechanical cutter
USD738499S1 (en) 2013-08-07 2015-09-08 Covidien Lp Open vessel sealer with mechanical cutter
US9439717B2 (en) 2013-08-13 2016-09-13 Covidien Lp Surgical forceps including thermal spread control
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9445865B2 (en) 2013-09-16 2016-09-20 Covidien Lp Electrosurgical instrument with end-effector assembly including electrically-conductive, tissue-engaging surfaces and switchable bipolar electrodes
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument
US9642671B2 (en) 2013-09-30 2017-05-09 Covidien Lp Limited-use medical device
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US20150272574A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Power management through sleep options of segmented circuit and wake up control
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
JP2017513567A (en) 2014-03-26 2017-06-01 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Power management with segmentation circuit and variable voltage protection
US20150272572A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Interface systems for use with surgical instruments
US20150297232A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridge comprising non-uniform fasteners
US9687295B2 (en) 2014-04-17 2017-06-27 Covidien Lp Methods of manufacturing a pair of jaw members of an end-effector assembly for a surgical instrument
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US20160066915A1 (en) 2014-09-05 2016-03-10 Ethicon Endo-Surgery, Inc. Polarity of hall magnet to detect misloaded cartridge
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US20160074102A1 (en) 2014-09-17 2016-03-17 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US9918785B2 (en) 2014-09-17 2018-03-20 Covidien Lp Deployment mechanisms for surgical instruments
US20160089143A1 (en) 2014-09-26 2016-03-31 Ethicon Endo-Surgery, Inc. Surgical stapling buttresses and adjunct materials
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
DE102015203617A1 (en) * 2015-02-27 2016-09-01 Olympus Winter & Ibe Gmbh Lighting element for use in an electrosurgical system and / or an electrosurgical instrument
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9848935B2 (en) 2015-05-27 2017-12-26 Covidien Lp Surgical instruments including components and features facilitating the assembly and manufacturing thereof
WO2017072924A1 (en) * 2015-10-29 2017-05-04 オリンパス株式会社 Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method
WO2017123189A1 (en) 2016-01-11 2017-07-20 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Advanced energy device with bipolar dissection capability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875945A (en) * 1973-11-02 1975-04-08 Demetron Corp Electrosurgery instrument
US5817091A (en) * 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
US20020002372A1 (en) * 2000-04-27 2002-01-03 Medtronic, Inc. Suction stabilized epicardial ablation devices

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041682A (en) 1932-06-27 1936-05-26 Adrian X Ray Shoe Fitter Compa X-ray equipment for inspection
US2002594A (en) 1933-03-24 1935-05-28 Wappler Frederick Charles Instrument for electro-surgical treatment of tissue
US4315510A (en) 1979-05-16 1982-02-16 Cooper Medical Devices Corporation Method of performing male sterilization
EP0371011B1 (en) 1985-09-17 1995-02-22 Canon Kabushiki Kaisha Developing method and apparatus
US4800878A (en) 1987-08-26 1989-01-31 Becton, Dickinson And Company Electrosurgical knife with visual alarm
US4848335B1 (en) 1988-02-16 1994-06-07 Aspen Lab Inc Return electrode contact monitor
DE69226761T2 (en) 1991-12-27 1999-01-14 Fujitsu Ltd The optical waveguide assembly with reduced DC drift
US5762609A (en) 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
US5442459A (en) 1992-12-09 1995-08-15 Samsung Electronics Co., Ltd. Process for encoding a half tone image considering similarity between blocks
US5342359A (en) 1993-02-05 1994-08-30 Everest Medical Corporation Bipolar coagulation device
US5342396A (en) 1993-03-02 1994-08-30 Cook Melvin S Staples
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5458598A (en) 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
US6106524A (en) 1995-03-03 2000-08-22 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US5947964A (en) 1995-03-03 1999-09-07 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US5766166A (en) 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5745849A (en) 1996-02-09 1998-04-28 Digital Monitoring Products, Inc. Combination cordless telephone and premise-monitoring alarm system
US5707469A (en) 1996-03-11 1998-01-13 Robert R. Hixson Method of producing dyed nylon walk-off mats having improved washfastness, and mats produced thereby
US5700261A (en) 1996-03-29 1997-12-23 Ethicon Endo-Surgery, Inc. Bipolar Scissors
US5797948A (en) 1996-10-03 1998-08-25 Cordis Corporation Centering balloon catheter
US5951549A (en) 1996-12-20 1999-09-14 Enable Medical Corporation Bipolar electrosurgical scissors
US5800449A (en) 1997-03-11 1998-09-01 Ethicon Endo-Surgery, Inc. Knife shield for surgical instruments
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
DE69841285D1 (en) 1997-09-10 2009-12-24 Covidien Ag A bipolar electrode instrument
US6296640B1 (en) 1998-02-06 2001-10-02 Ethicon Endo-Surgery, Inc. RF bipolar end effector for use in electrosurgical instruments
US6132429A (en) 1998-02-17 2000-10-17 Baker; James A. Radiofrequency medical instrument and methods for luminal welding
US6010516A (en) 1998-03-20 2000-01-04 Hulka; Jaroslav F. Bipolar coaptation clamps
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6183468B1 (en) 1998-09-10 2001-02-06 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6086586A (en) 1998-09-14 2000-07-11 Enable Medical Corporation Bipolar tissue grasping apparatus and tissue welding method
WO2000024440A1 (en) 1998-10-23 2000-05-04 Gambro Ab Method and device for measuring access flow
JP4245278B2 (en) 1998-10-23 2009-03-25 コビディエン アクチェンゲゼルシャフト Outer incision vascular sealing forceps having a disposable electrode
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6258085B1 (en) 1999-05-11 2001-07-10 Sherwood Services Ag Electrosurgical return electrode monitor
DE60111517T2 (en) 2000-04-27 2006-05-11 Medtronic, Inc., Minneapolis Vibration-sensitive ablation
US20020107517A1 (en) 2001-01-26 2002-08-08 Witt David A. Electrosurgical instrument for coagulation and cutting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875945A (en) * 1973-11-02 1975-04-08 Demetron Corp Electrosurgery instrument
US5817091A (en) * 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
US20020002372A1 (en) * 2000-04-27 2002-01-03 Medtronic, Inc. Suction stabilized epicardial ablation devices

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060020265A1 (en) * 1997-09-09 2006-01-26 Ryan Thomas P Apparatus and method for sealing and cutting tissue
US8298228B2 (en) 1997-11-12 2012-10-30 Coviden Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8211105B2 (en) 1997-11-12 2012-07-03 Covidien Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7963965B2 (en) 1997-11-12 2011-06-21 Covidien Ag Bipolar electrosurgical instrument for sealing vessels
US7828798B2 (en) 1997-11-14 2010-11-09 Covidien Ag Laparoscopic bipolar electrosurgical instrument
US20060009764A1 (en) * 1997-11-14 2006-01-12 Lands Michael J Laparoscopic bipolar electrosurgical instrument
US20060189980A1 (en) * 1998-10-23 2006-08-24 Johnson Kristin D Vessel sealing instrument
US9107672B2 (en) 1998-10-23 2015-08-18 Covidien Ag Vessel sealing forceps with disposable electrodes
US20030199869A1 (en) * 1998-10-23 2003-10-23 Johnson Kristin D. Vessel sealing instrument
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US8361071B2 (en) 1999-10-22 2013-01-29 Covidien Ag Vessel sealing forceps with disposable electrodes
US8540711B2 (en) 2001-04-06 2013-09-24 Covidien Ag Vessel sealer and divider
US9861430B2 (en) 2001-04-06 2018-01-09 Covidien Ag Vessel sealer and divider
US9737357B2 (en) 2001-04-06 2017-08-22 Covidien Ag Vessel sealer and divider
US20020188294A1 (en) * 2001-04-06 2002-12-12 Couture Gary M. Vessel sealer and divider
US20040082952A1 (en) * 2001-04-06 2004-04-29 Dycus Sean T. Vessel sealer and divider
US20030018332A1 (en) * 2001-06-20 2003-01-23 Schmaltz Dale Francis Bipolar electrosurgical instrument with replaceable electrodes
US20030229344A1 (en) * 2002-01-22 2003-12-11 Dycus Sean T. Vessel sealer and divider and method of manufacturing same
US8333765B2 (en) 2002-10-04 2012-12-18 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US8192433B2 (en) 2002-10-04 2012-06-05 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US7753909B2 (en) 2003-05-01 2010-07-13 Covidien Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US7708735B2 (en) 2003-05-01 2010-05-04 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7655007B2 (en) 2003-05-01 2010-02-02 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US8647341B2 (en) 2003-06-13 2014-02-11 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US9492225B2 (en) 2003-06-13 2016-11-15 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US20040250419A1 (en) * 2003-06-13 2004-12-16 Sremcich Paul S. Method of manufacturing jaw assembly for vessel sealer and divider
US20040254573A1 (en) * 2003-06-13 2004-12-16 Dycus Sean T. Vessel sealer and divider for use with small trocars and cannulas
US9403281B2 (en) 2003-07-08 2016-08-02 Board Of Regents Of The University Of Nebraska Robotic devices with arms and related methods
US8604742B2 (en) 2003-07-08 2013-12-10 Board Of Regents Of The University Of Nebraska Robotic devices with arms and related methods
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US20050137590A1 (en) * 2003-11-17 2005-06-23 Kate Lawes Bipolar forceps having monopolar extension
US7922718B2 (en) 2003-11-19 2011-04-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
EP1532932A1 (en) * 2003-11-19 2005-05-25 Sherwood Services AG Open vessel sealing instrument with cutting mechanism
US8303586B2 (en) 2003-11-19 2012-11-06 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
EP2942026A1 (en) * 2003-11-19 2015-11-11 Covidien AG Open vessel sealing instrument with cutting mechanism
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US9095347B2 (en) 2003-11-20 2015-08-04 Covidien Ag Electrically conductive/insulative over shoe for tissue fusion
US7935052B2 (en) 2004-09-09 2011-05-03 Covidien Ag Forceps with spring loaded end effector assembly
US8366709B2 (en) 2004-09-21 2013-02-05 Covidien Ag Articulating bipolar electrosurgical instrument
US7799028B2 (en) 2004-09-21 2010-09-21 Covidien Ag Articulating bipolar electrosurgical instrument
US20060074416A1 (en) * 2004-10-06 2006-04-06 Dylan Hushka Slide-activated cutting assembly
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US8123743B2 (en) 2004-10-08 2012-02-28 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7909823B2 (en) * 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US8382754B2 (en) 2005-03-31 2013-02-26 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US8939973B2 (en) 2005-08-19 2015-01-27 Covidien Ag Single action tissue sealer
US8945126B2 (en) 2005-08-19 2015-02-03 Covidien Ag Single action tissue sealer
US8277447B2 (en) 2005-08-19 2012-10-02 Covidien Ag Single action tissue sealer
US8945127B2 (en) 2005-08-19 2015-02-03 Covidien Ag Single action tissue sealer
US9198717B2 (en) 2005-08-19 2015-12-01 Covidien Ag Single action tissue sealer
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
USRE44834E1 (en) 2005-09-30 2014-04-08 Covidien Ag Insulating boot for electrosurgical forceps
US7819872B2 (en) 2005-09-30 2010-10-26 Covidien Ag Flexible endoscopic catheter with ligasure
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US9539053B2 (en) 2006-01-24 2017-01-10 Covidien Lp Vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8034052B2 (en) 2006-05-05 2011-10-11 Covidien Ag Apparatus and method for electrode thermosurgery
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US8968332B2 (en) 2006-06-22 2015-03-03 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic surgical devices and related methods
US8834488B2 (en) 2006-06-22 2014-09-16 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic surgical devices and related methods
US9883911B2 (en) 2006-06-22 2018-02-06 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US8425504B2 (en) 2006-10-03 2013-04-23 Covidien Lp Radiofrequency fusion of cardiac tissue
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US8679096B2 (en) 2007-06-21 2014-03-25 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US9179981B2 (en) 2007-06-21 2015-11-10 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US8828024B2 (en) 2007-07-12 2014-09-09 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical access and procedures
US8974440B2 (en) 2007-08-15 2015-03-10 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US9554841B2 (en) 2007-09-28 2017-01-31 Covidien Lp Dual durometer insulating boot for electrosurgical forceps
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8696667B2 (en) 2007-09-28 2014-04-15 Covidien Lp Dual durometer insulating boot for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US20090248021A1 (en) * 2008-03-31 2009-10-01 Tyco Healthcare Group Lp End Effector Assembly for Electrosurgical Devices and System for Using the Same
US9113905B2 (en) 2008-07-21 2015-08-25 Covidien Lp Variable resistor jaw
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US9247988B2 (en) 2008-07-21 2016-02-02 Covidien Lp Variable resistor jaw
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8568412B2 (en) 2009-09-09 2013-10-29 Covidien Lp Apparatus and method of controlling cutting blade travel through the use of etched features
US20110060334A1 (en) * 2009-09-09 2011-03-10 Tyco Healthcare Group Lp Apparatus and Method of Controlling Cutting Blade Travel Through the Use of Etched Features
US20110071522A1 (en) * 2009-09-18 2011-03-24 Tyco Healthcare Group Lp In Vivo Attachable and Detachable End Effector Assembly and Laparoscopic Surgical Instrument and Methods Therefor
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8894633B2 (en) 2009-12-17 2014-11-25 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US8597295B2 (en) * 2010-04-12 2013-12-03 Covidien Lp Surgical instrument with non-contact electrical coupling
US9375260B2 (en) 2010-04-12 2016-06-28 Covidien Lp Surgical instrument with non-contact electrical coupling
US20110251606A1 (en) * 2010-04-12 2011-10-13 Tyco Healthcare Group Lp Surgical Instrument with Non-Contact Electrical Coupling
US8968267B2 (en) 2010-08-06 2015-03-03 Board Of Regents Of The University Of Nebraska Methods and systems for handling or delivering materials for natural orifice surgery
US9788884B2 (en) 2011-01-19 2017-10-17 Covidien Lp Surgical instrument including inductively coupled accessory
US8603089B2 (en) 2011-01-19 2013-12-10 Covidien Lp Surgical instrument including inductively coupled accessory
US9060781B2 (en) 2011-06-10 2015-06-23 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US9757187B2 (en) 2011-06-10 2017-09-12 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
WO2013048595A1 (en) * 2011-06-10 2013-04-04 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
CN105708519A (en) * 2011-07-11 2016-06-29 柯惠有限合伙公司 Surgical forceps
US9089353B2 (en) 2011-07-11 2015-07-28 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US20130030328A1 (en) * 2011-07-25 2013-01-31 Tyco Healthcare Group Lp Ultrasonic Dissection System
US9504514B2 (en) 2012-01-25 2016-11-29 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US8968360B2 (en) 2012-01-25 2015-03-03 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US9498292B2 (en) 2012-05-01 2016-11-22 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US9010214B2 (en) 2012-06-22 2015-04-21 Board Of Regents Of The University Of Nebraska Local control robotic surgical devices and related methods
US9770305B2 (en) 2012-08-08 2017-09-26 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9439711B2 (en) 2012-10-02 2016-09-13 Covidien Lp Medical devices for thermally treating tissue
US9687290B2 (en) 2012-10-02 2017-06-27 Covidien Lp Energy-based medical devices
US9888966B2 (en) 2013-03-14 2018-02-13 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
US9743987B2 (en) 2013-03-14 2017-08-29 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers

Also Published As

Publication number Publication date Type
DE60316052D1 (en) 2007-10-18 grant
EP1330991A1 (en) 2003-07-30 application
US6676660B2 (en) 2004-01-13 grant
JP2003245285A (en) 2003-09-02 application
CA2417016A1 (en) 2003-07-23 application
EP1330991B1 (en) 2007-09-05 grant
DE60316052T2 (en) 2008-05-29 grant

Similar Documents

Publication Publication Date Title
US7951150B2 (en) Vessel sealer and divider with rotating sealer and cutter
US7922718B2 (en) Open vessel sealing instrument with cutting mechanism
US6464702B2 (en) Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US7819872B2 (en) Flexible endoscopic catheter with ligasure
US7160298B2 (en) Electrosurgical instrument which reduces effects to adjacent tissue structures
US8262655B2 (en) Bipolar forceps
US5342359A (en) Bipolar coagulation device
US6458128B1 (en) Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US6533778B2 (en) Thermal cautery surgical forceps
US8579897B2 (en) Bipolar forceps
US7083613B2 (en) Ringed forceps
US6808525B2 (en) Bipolar electrosurgical hook probe for cutting and coagulating tissue
US6458130B1 (en) Endoscopic bipolar electrosurgical forceps
US6620161B2 (en) Electrosurgical instrument with an operational sequencing element
US6174309B1 (en) Seal & cut electrosurgical instrument
US5951549A (en) Bipolar electrosurgical scissors
US20090048596A1 (en) Electrically Conductive/Insulative Over Shoe for Tissue Fusion
US5954720A (en) Bipolar electrosurgical end effectors
US20100036370A1 (en) Electrosurgical instrument jaw structure with cutting tip
US5817093A (en) Impedance feedback monitor with query electrode for electrosurgical instrument
US7195631B2 (en) Forceps with spring loaded end effector assembly
US6102909A (en) Scissorlike electrosurgical cutting instrument
US6585735B1 (en) Endoscopic bipolar electrosurgical forceps
US20120022526A1 (en) Electrosurgical cutting and sealing instrument
US6554829B2 (en) Electrosurgical instrument with minimally invasive jaws

Legal Events

Date Code Title Description
AS Assignment

Owner name: EHTICON ENDO-SURGERY, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WAMPLER, SCOTT D.;YATES, DAVID C.;SPEEG, TREVOR W.V.;ANDOTHERS;REEL/FRAME:012830/0839;SIGNING DATES FROM 20020313 TO 20020326

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12