WO2017072924A1 - Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method - Google Patents

Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method Download PDF

Info

Publication number
WO2017072924A1
WO2017072924A1 PCT/JP2015/080621 JP2015080621W WO2017072924A1 WO 2017072924 A1 WO2017072924 A1 WO 2017072924A1 JP 2015080621 W JP2015080621 W JP 2015080621W WO 2017072924 A1 WO2017072924 A1 WO 2017072924A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
area
region
holding surface
living tissue
Prior art date
Application number
PCT/JP2015/080621
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 成澤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/080621 priority Critical patent/WO2017072924A1/en
Publication of WO2017072924A1 publication Critical patent/WO2017072924A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to an energy treatment tool, a medical treatment apparatus, an operation method of a medical treatment apparatus, and a treatment method.
  • an energy treatment tool for applying energy to a living tissue to join or anastomote the living tissue has been activated.
  • Such an energy treatment tool does not leave a physical object such as a stapler in the living body, and thus has the advantage of having less adverse effects on the human body, while the bonding strength is weaker than that of the stapler etc.
  • extracellular matrix (collagen, elastin, etc.) of living tissue is composed of fibrous tissue. For this reason, when joining living tissues, the extracellular matrix is extracted from the living tissues, and it is thought that the joining strength is improved by closely encircling the extracellular matrices.
  • Patent Document 1 an energy treatment tool aimed at improving the bonding strength focusing on the extracellular matrix has been proposed (for example, see Patent Document 1).
  • the energy treatment tool described in Patent Document 1 strengthens the extraction and mixing of extracellular matrix by sandwiching a living tissue with a pair of jaws and applying mechanical vibration to the living tissue through the pair of jaws. There is.
  • the present invention has been made in view of the above, and provides an energy treatment tool, a medical treatment apparatus, an operation method of the medical treatment apparatus, and a treatment method capable of improving the bonding strength of living tissues. With the goal.
  • an energy treatment tool comprises a first holding member having a first holding surface, and the first holding surface facing the first holding surface and the first holding member
  • An energy treatment tool comprising a second holding member having a second holding surface holding the living tissue between the first and second peripheral regions, wherein the first holding surface is a first surrounding area which is an area surrounding the first area;
  • a first inclusion area which is an area including the first area, and the second holding surface is a state in which the first holding surface and the second holding surface are opposed to each other.
  • the energy treatment device includes a second surrounding area which is an area surrounding a second area projected onto the second holding surface, and a second inclusion area which is an area including the second area, Generating energy from at least one of the first surrounding area and the second surrounding area Comprising a first energy generating unit, and the first inclusion area, and a second energy generator for generating energy from at least one of said second inclusion area, characterized in that.
  • a medical treatment apparatus is characterized by including the above-described energy treatment tool, and an energy control unit that generates energy in the first energy generation unit and the second energy generation unit. .
  • the biological tissue is held between the first holding member having the first holding surface and the second holding member having the second holding surface, A first energy applying step of applying energy to the living tissue from at least one of a first peripheral region of the first clamping surface and a second peripheral region of the second clamping surface; and the first energy applying step is started A second energy applying step of applying energy to the living tissue from at least one of a first inclusion region of the first sandwiching surface and a second inclusion region of the second sandwiching surface;
  • the first peripheral area is an area surrounding the first area in the first holding surface
  • the second peripheral area is the first peripheral area with the first holding surface and the second holding surface facing each other.
  • Territory Is a region surrounding a second region projected on the second holding surface, the first inclusion region is a region including the first region, and the second inclusion region includes the second region. It is characterized by being an area.
  • a first energy applying step of applying energy to the living tissue from at least one of a surrounding region and a second surrounding region of the second sandwiching surface; and the first energy applying step is started;
  • a second energy applying step of applying energy to the living tissue from at least one of a first inclusion region in the holding surface and a second inclusion region in the second holding surface, and the first peripheral region is
  • the first surrounding area is an area surrounding a first area in the first sandwiching surface
  • the second peripheral area is a region surrounding the first sandwiching surface and the second sandwiching surface facing each other. It is an area surrounding a second area projected on a sandwiching surface, the first inclusion area is an area including the first area, and the second inclusion area is an area including the second area. It is characterized by
  • the energy treatment tool the medical treatment apparatus, the operation method of the medical treatment apparatus, and the treatment method according to the present invention, it is possible to improve the bonding strength of the living tissues.
  • FIG. 1 is a view schematically showing a medical treatment apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of a tip portion of the energy treatment device shown in FIG.
  • FIG. 3 is a view showing the first holding member shown in FIG.
  • FIG. 4 is a view showing the first holding member shown in FIG.
  • FIG. 5 is a view showing the second holding member shown in FIG.
  • FIG. 6 is a block diagram showing the configuration of the control device and the foot switch shown in FIG.
  • FIG. 7 is a flow chart showing bonding control by the control device shown in FIG.
  • FIG. 8 is a view of the positional relationship between the living tissue and the first holding member in the state where step S1 shown in FIG. 7 is performed, as viewed from the first sandwiching surface side.
  • FIG. 8 is a view of the positional relationship between the living tissue and the first holding member in the state where step S1 shown in FIG. 7 is performed, as viewed from the first sandwiching surface side.
  • FIG. 9 is a diagram showing the behavior of the impedance calculated after step S4 shown in FIG.
  • FIG. 10 is a view showing a first holding member constituting the medical treatment apparatus (energy treatment tool) according to the second embodiment of the present invention.
  • FIG. 11 is a view showing a first holding member constituting the medical treatment apparatus (energy treatment tool) according to the second embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a control device according to Embodiment 2 of the present invention.
  • FIG. 13 is a flowchart showing bonding control according to the second embodiment of the present invention.
  • FIG. 14A is a diagram showing a modification 1 of the first and second embodiments of the present invention.
  • FIG. 14B is a diagram showing a modification 1 of the first and second embodiments of the present invention.
  • FIG. 14C is a diagram showing a modification 1 of the first and second embodiments of the present invention.
  • FIG. 15A is a diagram showing a modification 2 of the first and second embodiments of the present invention.
  • FIG. 15B is a diagram showing a modification 2 of the first and second embodiments of the present invention.
  • FIG. 1 is a view schematically showing a medical treatment apparatus 1 according to Embodiment 1 of the present invention.
  • the medical treatment apparatus 1 applies energy to a living tissue to be treated, and performs treatment (such as bonding or anastomosis) on the living tissue.
  • the medical treatment apparatus 1 includes an energy treatment device 2, a control device 3, and a foot switch 4.
  • the energy treatment tool 2 is, for example, a linear type surgical treatment tool for performing treatment (such as bonding or anastomosis) on a living tissue through the abdominal wall.
  • the energy treatment unit 2 includes a handle 5, a shaft 6 and a holding unit 7.
  • the handle 5 is a portion held by the operator. Further, as shown in FIG. 1, the handle 5 is provided with an operation knob 51.
  • the shaft 6 has a substantially cylindrical shape and one end is connected to the handle 5. Further, at the other end of the shaft 6, a clamping unit 7 is attached.
  • An opening / closing mechanism (shown in the drawing) opens and closes the first and second holding members 8 and 8 '(FIG.
  • an electric cable C (FIG. 1) connected to the control device 3 is disposed inside the shaft 6 from one end side to the other end side via the handle 5.
  • FIG. 2 is an enlarged view of the distal end portion of the energy treatment device 2.
  • the clamping unit 7 is a portion that clamps a living tissue and performs treatment (such as bonding or anastomosis) of the living tissue.
  • the holding unit 7 includes a first holding member 8 and a second holding member 8 ′.
  • symbol which shows the structure of 2nd holding member 8 ' about the structure same as the 1st holding member 8, "'" is added to the code
  • the first and second holding members 8 and 8 ' are pivotally supported by the other end of the shaft 6 so as to be able to open and close in the direction of arrow R1 (FIG. 2), and hold biological tissue in accordance with the operation of the operation knob 51 by the operator. To be possible.
  • FIG. 3 and 4 are views showing the first holding member 8 shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a view of the first holding member 8 as viewed from above in FIG.
  • the III-III line is a line passing through the center position CP (FIG. 4) of the first holding surface 811.
  • the first holding member 8 is disposed below the second holding member 8 ′ in FIG. 1 or 2.
  • the first holding member 8 includes a first jaw 81, a first energy generator 82, and a second energy generator 83, as shown in FIGS.
  • the first jaw 81 is a long plate made of an insulating material such as ceramic, and is a portion pivotally supported by the other end of the shaft 6.
  • the first holding surface 811 on the surface 811 facing the second holding member 8 '(hereinafter referred to as the first holding surface 811), as shown in FIG. 3 or 4, the upper side (second holding member A protrusion 8111 is formed to protrude toward the 8 'side). Therefore, as shown in FIG. 3, the first holding surface 811 is formed in a convex shape having a step.
  • the protrusion 8111 is located at the central portion in the width direction of the first jaw 81 (in FIG.
  • the U-shaped portion 8112 is formed flat.
  • a region ArC (FIG. 4) that occupies substantially the entire tip surface of the protrusion 8111 is a region including the center position CP (FIG. 4) of the first holding surface 811.
  • the region including the region Ar1 corresponds to the first inclusion region according to the present invention.
  • the region ArC is referred to as a first inclusion region ArC.
  • a region ArS that occupies substantially the entire U-shaped portion 8112 excluding the projecting portion 8111 is a region surrounding the first region Ar1, and corresponds to a first peripheral region according to the present invention.
  • the region ArS is referred to as a first surrounding region ArS.
  • the first surrounding area ArS is set to an area surrounding the first inclusion area ArC.
  • the first energy generating unit 82 is fixed to the first holding surface 811 of the first jaw 81, and generates high frequency energy under the control of the control device 3.
  • the first energy generating unit 82 is, for example, a thin plate made of a conductive material such as copper, and has the same planar shape (substantially U-shaped) as the first surrounding area ArS, as shown in FIG. And is fixed to the first surrounding area ArS.
  • the first high frequency lead wire C1 (see FIG. 6) constituting the electric cable C is joined, and the first energy generation portion 82 is connected via the first high frequency lead wires C1 and C1 '(see FIG. 6).
  • the control device 3 supplies high frequency power between the control unit 3 and the first energy generation unit 82 'of the second holding member 8' to generate high frequency energy. That is, the first energy generating unit 82 is configured as an electrode to which high frequency power is supplied.
  • the second energy generating unit 83 is fixed to the first sandwiching surface 811 of the first jaw 81, and generates high frequency energy under the control of the control device 3.
  • the second energy generating unit 82 is formed of, for example, a thin plate made of a conductive material such as copper, and has the same planar shape (substantially rectangular shape) as the first inclusion region ArC as shown in FIG. And fixed to the first inclusion area ArC.
  • the second high frequency lead wire C2 (see FIG. 6) constituting the electric cable C is joined, and the second energy generation portion 83 is connected via the second high frequency lead wires C2 and C2 '(see FIG. 6).
  • the control device 3 supplies high frequency power between the control unit 3 and the second energy generation unit 83 'of the second holding member 8' to generate high frequency energy. That is, the second energy generating unit 83 is configured as an electrode to which high frequency power is supplied.
  • FIG. 5 is a view showing the second holding member 8 'shown in FIG. Specifically, FIG. 5 is a cross-sectional view corresponding to FIG. 3 and shows a state in which the first and second holding surfaces 811 and 811 'are opposed to each other by closing the first and second holding members 8 and 8'.
  • FIG. The second holding member 8 ′ has the same configuration and shape as the first holding member 8 as shown in FIG. 2 or 5. That is, as shown in FIG.
  • the second holding member 8 ′ includes the second jaw 81 ′ (the second holding surface 811 ′, the protrusion 8111 ′, the U-shaped portion 8112 ′, and the regions Ar 1 ′, ArS ′, And ArC 'is included, a first energy generating unit 82', and a second energy generating unit 83 '.
  • the second holding member 8 ′ is attached to the other end of the shaft 6 in a posture in which the first holding member 8 is turned upside down.
  • the region Ar1 ′ corresponds to the first region Ar1 of the first sandwiching surface 811 with the first sandwiching surface 811 and the second sandwiching surface 811 ′ facing each other.
  • the region Ar1 ' is referred to as a second region Ar1'.
  • the second area Ar1 ′ is an area including the center position CP ′ (FIG. 5) of the second holding surface 811 ′.
  • the area ArC ′ of the tip end face of the protrusion 8111 ′ is an area including the second area Ar1 ′, and corresponds to a second inclusion area according to the present invention.
  • the region ArC ' is referred to as a second inclusion region ArC'.
  • the region ArS ′ is a region surrounding the second region Ar1 ′, and corresponds to a second peripheral region according to the present invention.
  • the region ArS ' is referred to as a second surrounding region ArS'.
  • the second inclusion area ArC ′ and the second peripheral area ArS ′ are formed on the first holding surface 811 with the first holding surface 811 and the second holding surface 811 ′ facing each other. It is the area
  • FIG. 6 is a block diagram showing the configuration of the control device 3 and the foot switch 4.
  • the foot switch 4 is a portion operated by the operator with a foot. And according to the said operation (ON) to the foot switch 4, the control apparatus 3 starts joining control mentioned later.
  • it is not restricted to foot switch 4 as a means to start the said joining control, In addition, you may employ
  • the control device 3 generally controls the operation of the energy treatment device 2.
  • the control device 3 includes a high frequency energy output unit 31, a switch 32, a first sensor 33, and a control unit 34, as shown in FIG.
  • the high-frequency energy output unit 31 receives the first energy generation unit 82 or 82 'or the first high-frequency lead wire C1 or C1' or the second high-frequency lead wire C2 or C2 'under the control of the control unit 34.
  • the high frequency power is supplied to the second energy generating units 83 and 83 '.
  • the switch 32 switches the lead wire for supplying high frequency power from the high frequency energy output unit 31 to the first high frequency lead wire C1 or C1 'or the second high frequency lead wire C2 or C2' under the control of the control unit 34. .
  • the first sensor 33 detects the voltage value and the current value supplied from the high frequency energy output unit 31 to the first energy generation unit 82, 82 '. Then, the first sensor 33 outputs a signal corresponding to the detected voltage value and current value to the control unit 34.
  • the control unit 34 is configured to include a CPU (Central Processing Unit) or the like, and executes joint control according to a predetermined control program when the foot switch 4 is turned on. As shown in FIG. 6, the control unit 34 includes an energy control unit 341 and an impedance calculation unit 342.
  • the energy control unit 341 operates the switch 32 to switch the lead wires for supplying high frequency power to the first high frequency lead wires C1 and C1 ′, and drives the high frequency energy output unit 31 so that the high frequency energy output unit 31 (1)
  • the high frequency power is supplied to the energy generators 82 and 82 '(high frequency energy is generated).
  • the energy control unit 341 operates the switch 32 based on the impedance calculated by the impedance calculation unit 342 to supply the high frequency power to the lead wire from the first high frequency lead wires C1 and C1 'to the second high frequency wave.
  • the high-frequency energy output unit 31 supplies high-frequency power to the second energy generation units 83 and 83 '(generates high-frequency energy).
  • the energy control unit 341 makes the high frequency power supplied to the second energy generating unit 83, 83 'higher than the high frequency power supplied to the first energy generating unit 82, 82', or the first energy generating unit
  • the power amount of the high frequency power supplied to the second energy generation unit 83, 83 ' is made higher than the power amount of the high frequency power supplied to 82, 82'. That is, the energy control unit 341 generates the high-frequency energy from the first energy generation units 82 and 82 'by the second energy generation units 83 and 83' based on the highest temperature reached by the first energy generation units 82 and 82 '.
  • High-frequency energy is generated in the first energy generation units 82 and 82 'and the second energy generation units 83 and 83' so that the highest temperature reached by the second energy generation units 83 and 83 'at the time of generation of high-frequency energy
  • the impedance calculation unit 342 determines the impedance when high-frequency energy is applied to the living tissue from the first energy generation units 82 and 82 ′ based on the voltage value and the current value detected by the first sensor 33 (see FIG. Calculate the impedance of the living tissue.
  • FIG. 7 is a flowchart showing bonding control by the control device 3.
  • the operator holds the energy treatment tool 2 and inserts the distal end portion (a part of the pinching portion 7 and the shaft 6) of the energy treatment tool 2 into the abdominal cavity through the abdominal wall using, for example, a trocar.
  • the operator operates the operation knob 51 to clamp the living tissue with the first and second holding members 8 and 8 '(step S1: holding step).
  • the operator operates (turns on) the foot switch 4 to start bonding control by the control device 3 (step S2: Yes).
  • FIG. 8 is a view of the positional relationship between the living tissue LT and the first holding member 8 in the state where step S1 is performed, as viewed from the first holding surface 811 side.
  • the energy control unit 341 operates the switch 32 to switch the lead wire for supplying high frequency power to the first high frequency lead wires C1 and C1 ', and
  • the output unit 31 is driven, and supply of high frequency power from the high frequency energy output unit 31 to the first energy generation unit 82, 82 'is started (living tissue LT (region ArO (region indicated by oblique lines to the right in FIG. 8)) Start application of high-frequency energy)) (step S3: first energy application step).
  • step S3 when high-frequency energy is applied to the living tissue LT from the first energy generating units 82 and 82 ′, the positions of the first energy generating units 82 and 82 ′ in the living tissue LT High frequency energy is applied to the area ArO (FIG. 8) corresponding to the two surrounding areas ArS and ArS ′). That is, in step S3, before performing main junction of living tissue LT (application of high-frequency energy to region ArI (region shown by diagonal lines in the left diagonal in FIG.
  • region ArO located outside the region ArI Temporary joining of the living tissue LT is started by applying high frequency energy to the After step S3, the impedance calculation unit 342 starts calculation of the impedance of the living tissue LT (region ArO) based on the voltage value and the current value detected by the first sensor 33 (step S4).
  • FIG. 9 is a diagram showing the behavior of the impedance calculated after step S4.
  • the impedance of the living tissue LT exhibits the behavior shown in FIG.
  • the impedance gradually decreases in the initial time zone (high frequency energy application start time to time T1) where high frequency energy is applied. This is attributed to the fact that the application of the high frequency energy causes the cell membrane of the living tissue LT to be destroyed and the extracellular matrix is extracted from the living tissue LT.
  • the extracellular matrix is extracted from the living tissue LT, and the viscosity of the living tissue LT decreases (the living tissue LT softens).
  • the impedance gradually increases as shown in FIG. This is because Joule heat acts on the living tissue LT by the application of high frequency energy, and the living tissue LT itself generates heat, thereby reducing (evaporating) the water in the living tissue LT.
  • the extracellular matrix is not extracted from the living tissue LT, and the heat in the living tissue LT evaporates due to heat generation, and the viscosity of the living tissue LT increases (the living tissue LT coagulates It is a time zone).
  • step S5 the energy control unit 341 constantly monitors whether the impedance calculated by the impedance calculation unit 342 has reached the minimum value VL (FIG. 9) (step S5). In other words, the energy control unit 341 constantly monitors whether or not temporary bonding of the living tissue LT is completed by applying high-frequency energy from the first energy generation units 82 and 82 ′. When it is determined that the impedance has become the lowest value VL (step S5: Yes), the energy control unit 341 operates the switch 32 to supply the high frequency power to the first high frequency lead wires C1 and C1 '. To the second high frequency lead wires C2 and C2 '.
  • the energy control unit 341 ends temporary bonding of the living tissue LT (application of high frequency energy from the first energy generating units 82, 82 'to the living tissue LT (region ArO)) (step S6), and the high frequency energy output Start supply of high-frequency power from the unit 31 to the second energy generation unit 83, 83 '(start application of high-frequency energy to the living tissue LT (region ArI (FIG. 8))) (step S7: second energy application step ).
  • step S6 second energy application step
  • step S7 second energy application step
  • step S7 main junction of the living tissue LT is started by applying high-frequency energy to the region ArI of the living tissue LT.
  • step S7 the energy control unit 341 constantly monitors whether or not a predetermined time has elapsed since the main joining of the living tissue LT in step S7 is started (step S8). Then, when it is determined that the predetermined time has elapsed (step S8: Yes), the energy control unit 341 performs the main joining of the living tissue LT (from the second energy generating unit 83, 83 'to the living tissue LT (region ArI) The application of the high frequency energy) is ended (step S9).
  • the living tissue LT is joined by the above processing.
  • the medical treatment apparatus 1 (energy treatment tool 2) according to the first embodiment described above imparts high-frequency energy to the living tissue LT (area ArO) from the first and second surrounding areas ArS and ArS ′ to Perform temporary joining of the tissue LT. Thereafter, the medical treatment apparatus 1 applies high-frequency energy to the living tissue LT (area ArI) from the first and second inclusion areas ArC and ArC 'surrounded by the first and second surrounding areas ArS and ArS'.
  • the main junction of the living tissue LT is performed. That is, since the region ArO of the living tissue LT is temporarily joined, the extracellular matrix extracted from the region ArI at the time of main joining of the living tissue LT (region ArI) can be retained in the region ArI.
  • the medical treatment apparatus 1 energy treatment tool 2 according to the first embodiment, at the time of the main joining of the living tissue LT, the softened extracellular matrix extracted from the region ArI is closely entangled while retaining it.
  • the joint strength of the living tissue LT can be improved.
  • the first holding area ArC protrudes from the first surrounding area ArS, and the first holding surface 811 is formed in a convex shape having a step.
  • the second inclusion region ArC ′ protrudes with respect to the second surrounding region ArS ′, and is formed in a convex shape having a step. Therefore, a high load can be applied to the region ArI of the living tissue LT at the time of the main joining of the living tissue LT, and a strong bonding can be realized.
  • both the first holding surface 811 and the second holding surface 811 ′ are formed in a convex shape having a step, for example, a configuration in which only one is formed in a convex shape (the other is formed in a flat shape) Compared with the configuration), when the living tissue LT is held between the first holding surface 811 and the second holding surface 811 ′, unnecessary stress is not generated in the living tissue LT, and the living tissue LT (area ArI) High load can be applied uniformly to
  • the temporary joining of the living tissue LT is ended when the impedance of the living tissue LT (region ArO) becomes the lowest value VL Initiate main junction of tissue LT (region ArI)). Therefore, it can be appropriately determined whether or not temporary bonding of the region ArO of the living tissue LT is completed, and the above-described effect (the bonding strength can be improved) can be more suitably realized.
  • First energy generating unit 82, 82 'and second energy generating unit 83 such that the maximum temperature reached by second energy generating unit 83, 83' when generating high frequency energy from energy generating unit 83, 83 'becomes higher. , 83 'to generate high frequency energy. For this reason, it is possible to effectively suppress heat invasion to normal tissue outside the living tissue LT (region ArO).
  • the end timing of temporary joining of the living tissue is determined based on the impedance of the living tissue LT (region ArO).
  • the present invention is not limited thereto.
  • Living tissue (region ArI) As in the case of the final bonding, the determination may be made based on the time from the start of the temporary bonding.
  • the termination timing of the main junction of the living tissue (region ArI) may be determined based on the impedance of the region ArI, as in the temporary joining of the living tissue (region ArO).
  • the present invention is not limited thereto.
  • time T1 when the impedance of the living tissue LT (area ArO) becomes the lowest value VL for example, time T2 (FIG. 9) returned to initial value VI (FIG. 9) when temporary joining is started from time T1
  • the temporary joining of the living tissue LT (region ArO) may be terminated at any timing as long as
  • the switch 32 by providing the switch 32, the high-frequency energy generated in the first energy generating unit 82, 82 'and the second energy generating unit 83, 83' are applied to the living tissue LT.
  • the configuration has been described in which the generated high frequency energy can not be simultaneously applied, the present invention is not limited to this.
  • the switch 32 may be omitted and the configuration may be simultaneously applied. That is, even if there is a period in which the high-frequency energy generated by the first energy generating unit 82, 82 'and the high-frequency energy generated by the second energy generating unit 83, 83' are simultaneously applied to the living tissue LT. I do not care.
  • FIG.10 and FIG.11 is a figure which shows 1st holding member 8A which comprises the medical treatment apparatus 1A (energy treatment tool 2A) which concerns on Embodiment 2 of this invention.
  • FIGS. 10 and 11 correspond to FIGS. 3 and 4, respectively.
  • the first holding member 8A has the first jaw 81 and the second energy similarly to the first holding member 8 (FIGS. 3 and 4) described in the first embodiment.
  • a generator 83 is provided, and a first energy generator 82A is employed instead of the first energy generator 82.
  • the first energy generating unit 82A has the same shape as that of the first energy generating unit 82 described above (the same planar shape (substantially U-shaped) as the first surrounding area ArS), and is fixed to the first surrounding area ArS. ing. Then, the first energy generating unit 82A generates thermal energy under the control of the control device 3A (see FIG. 12).
  • a resistor heat generating source
  • a substantially U shape similar to that of the first energy generating unit 82A is an insulating material. (E.g., a ceramic heater).
  • the first heat generating lead wires C3 and C4 constituting the electrical cable C are joined to both ends of the resistor (not shown), and the first heat generating lead wire As a voltage is applied (energized) by the control device 3A via C3 and C4, heat is generated (heat energy is generated).
  • the second holding member 8A ′ has the same configuration and shape as the first holding member 8A.
  • symbol which shows the structure of 2nd holding member 8A ' about structure same as 1st holding member 8A, "'" is added to the code
  • the reference numeral indicating the configuration of the first holding member 8A is shown in parentheses. That is, as shown in FIG. 10 and FIG. 11, the second holding member 8A ′ is the second jaw 81 ′ and the second energy generating portion as in the second holding member 8 ′ described in the first embodiment.
  • the first energy generating unit 82A ' is provided in the same manner as the first energy generating unit 82A.
  • the second heat generating lead wires C3' and C4 '(see FIG. 12) constituting the electric cable C are joined to both ends of the resistor (not shown), and the second heat generating lead
  • the first energy generation unit 82A ′ is used to detect the thermal conductivity of the living tissue LT (region ArO) as described later.
  • FIG. 12 is a block diagram showing a configuration of a control device 3A according to Embodiment 2 of the present invention.
  • the switch 32 is omitted from the control device 3 (FIG. 6) described in the first embodiment described above, and the thermal energy output unit 35 And a second sensor 36 is added, and a control unit 34A in which some functions of the control unit 34 are changed is adopted. Since the switch 32 is omitted, the high frequency energy output unit 31 according to the second embodiment only includes the second energy generation unit 83, 83 'via the second high frequency lead wires C2, C2'. Are connected electrically.
  • the thermal energy output unit 35 applies (energizes) a voltage to the first energy generation units 82A and 82A 'through the heating lead wires C3, C4, C3' and C4 'under the control of the control unit 34A.
  • the second sensor 36 detects the voltage value and the current value supplied from the thermal energy output unit 35 to the first energy generation unit 82A ′. Then, the second sensor 36 outputs a signal corresponding to the detected voltage value and current value to the control unit 34A.
  • the control unit 34A employs a thermal conductivity calculation unit 343 instead of the impedance calculation unit 342 in the control unit 34 (FIG. 6) described in the first embodiment described above.
  • an energy control unit 341A is employed instead of the energy control unit 341.
  • the energy control unit 341A drives the thermal energy output unit 35, and applies a voltage from the thermal energy output unit 35 to the first energy generation unit 82A (generates thermal energy).
  • the energy control unit 341A applies a voltage for detecting the thermal conductivity from the thermal energy output unit 35 to the first energy generation unit 82A '.
  • the energy control unit 341A stops the drive of the thermal energy output unit 35 and drives the high frequency energy output unit 31 based on the thermal conductivity calculated by the thermal conductivity calculation unit 343, and the high frequency energy output unit
  • the high frequency power is supplied to the second energy output unit 83, 83 'from 31 (the high frequency energy is generated).
  • the energy control unit 341A generates a second energy generation unit based on the highest temperature reached by the first energy generation unit 82A when the thermal energy is generated from the first energy generation unit 82A.
  • the thermal conductivity calculation unit 343 applies thermal energy to the living tissue LT (area ArO) from the first energy generation unit 82A based on the voltage value and the current value detected by the second sensor 36.
  • the change (change in temperature) of the resistance value of the first energy generation unit 82A 'at that time is calculated, and the thermal conductivity of the living tissue LT (region ArO) is calculated based on the change in the resistance value.
  • FIG. 13 is a flowchart showing bonding control according to the second embodiment of the present invention.
  • the bonding control according to the second embodiment as shown in FIG. 13, with respect to the bonding control (FIG. 7) described in the first embodiment described above, the first energy generating unit 82, 82 'and the impedance calculating unit Steps S3A to S6A are employed instead of steps SS3 to S6 related to 342.
  • steps S3A to S6A will be described.
  • step S3A first energy application step. That is, in step S3A, temporary joining of the living tissue LT is started as in step S3 described in the first embodiment described above.
  • step S3A the energy control unit 341A applies a voltage for detecting the thermal conductivity from the thermal energy output unit 35 to the first energy generation unit 82A '.
  • step S4A the thermal conductivity calculation unit 343 starts calculation of the thermal conductivity of the living tissue LT (region ArO) based on the voltage value and the current value detected by the second sensor 36 (step S4A). ).
  • the thermal conductivity of the living tissue LT is increased. That is, when the thermal conductivity of the living tissue LT exceeds a predetermined value, it can be determined whether temporary joining of the living tissue LT is completed. Therefore, after step S4A, the energy control unit 341A constantly monitors whether the thermal conductivity calculated by the thermal conductivity calculation unit 343 exceeds a predetermined value (step S5A).
  • step S5A If it is determined that the thermal conductivity exceeds the predetermined value (step S5A: Yes), the energy control unit 341A proceeds from temporary joining of the living tissue LT (from the first energy generation unit 82A to the living tissue LT (area ArO) Application of the thermal energy (step S6A), and the process proceeds to step S7.
  • the medical treatment apparatus 1A has the following effects in addition to the effects similar to the first embodiment described above.
  • the first energy generating unit 82A (82A ') is formed of a ceramic heater or the like to ensure insulation. For this reason, it is possible to realize a configuration in which the first energy generation unit 82A (82A ') and the second energy generation unit 83 (83') are less likely to electrically short.
  • the first holding member 8A (second holding The members 8A ') can be miniaturized.
  • FIG. 14A to 14C are diagrams showing a first modification of the first and second embodiments of the present invention.
  • FIG. 14A and FIG. 14B correspond to FIG. 3 and show a modified example of the first embodiment (a modified example in which the first holding surface is flat).
  • FIG. 14C is a view corresponding to FIG. 3 and showing a modified example of the second embodiment (a modified example in which the first holding surface is flat).
  • the first jaw 81 has the protrusion 8111. That is, the first holding surface 811 had a convex shape having a step.
  • the first holding surface 811 is not limited to this.
  • the first holding members 8B and 8C (second holding members 8B', shown in FIGS. 14A and 14B). You may adopt 8C ').
  • the first holding member 8B adopts a first jaw 81B having a shape different from that of the first jaw 81 in addition to the first holding member 8 described in the first embodiment.
  • the protrusion 8111 is omitted from the first jaw 81 described in the first embodiment described above. That is, the first holding surface 811B of the first jaw 81B is configured to be flat.
  • the second energy generation unit 83 is a first region Ar1B that is a region including the center position CP in the first holding surface 811B (the first region Ar1 described in the first embodiment when viewed in a plan view) Having the same planar shape (substantially rectangular shape) as the first inclusion region ArCB (the same region as the region ArC described in the first embodiment when viewed in plan view) including the same region), It is fixed to the first inclusion area ArCB.
  • the first energy generation unit 82 is a first surrounding area ArSB surrounding the first area Ar1B in the first holding surface 811B (the same area as the area ArS described in the first embodiment when viewed in plan) And has the same planar shape (substantially U-shaped), and is fixed to the first surrounding area ArSB.
  • an air layer a gap
  • the second holding member 8B has the same configuration and shape as the first holding member 8A.
  • FIG. 14A as a symbol indicating the configuration of the second holding member 8B ′, “′ ′ ′ is added to the symbol indicating the configuration of the first holding member 8B for the same configuration as the first holding member 8B, and (1)
  • the reference numeral indicating the configuration of the holding member 8B is shown in parentheses. That is, as shown in FIG. 14A, the second holding member 8B ′ is the first holding member described above in place of the second jaw 81 ′ with respect to the second holding member 8 ′ described in the first embodiment.
  • a second jaw 81B '(including a second holding surface 811B') similar to the jaw 81B is employed.
  • the area Ar1B ′ is an area obtained by projecting the first area Ar1B of the first holding surface 811B onto the second holding surface 811B ′ with the first holding surface 811B and the second holding surface 811B ′ facing each other. And corresponds to a second area according to the present invention.
  • the region Ar1B ' will be referred to as a second region Ar1B'.
  • the region ArCB ′ is a region including the second region Ar1B ′ and corresponds to a second inclusion region according to the present invention.
  • the region ArCB ′ is described as a second inclusion region ArCB ′.
  • the area ArSB ′ is an area surrounding the second area Ar1B ′, and corresponds to a second surrounding area according to the present invention.
  • the region ArSB ′ is referred to as a second surrounding region.
  • the second inclusion region ArCB ′ and the second peripheral region ArSB ′ are configured such that the first sandwiching surface 811B and the second sandwiching surface 811B ′ are opposed to each other.
  • the first holding member 8C differs from the above-described first holding member 8B in that a first jaw 81C is employed instead of the first jaw 81B, as shown in FIG. 14B.
  • the first jaw 81C is different from the above-described first jaw 81B in that a projection 8113 is provided to fill the gap between the first energy generator 82 and the second energy generator 83.
  • the second holding member 8C has the same configuration and shape as the first holding member 8C. In FIG.
  • the first holding member 8D (second holding member 8D') shown in FIG. 14C is adopted instead of the first holding member 8A (second holding member 8A '). It does not matter. As shown in FIG. 14C, the first holding member 8D adopts the first jaw 81B described above in place of the first jaw 81 with respect to the first holding member 8A described in the second embodiment described above. The point is different. Under the present circumstances, the 1st energy generation part 82A is constituted by a ceramic heater etc., and insulation is secured. Therefore, as shown in FIG.
  • the first energy generating unit 82A and the second energy generating unit 83 are disposed such that there is no gap between the first energy generating unit 82A and the second energy generating unit 83. I don't care.
  • the size of the second energy generating unit 83 is increased to fill the gap, but the present invention is not limited to this, and the size of the first energy generating unit 82A may be increased to fill the gap. I don't care.
  • the second holding member 8D 'has the same configuration and shape as the first holding member 8D. In FIG.
  • “′ ′ ′ is added to the symbol indicating the configuration of the first holding member 8D for the same configuration as the first holding member 8D, and 1 indicates in parentheses the reference numeral indicating the configuration of the holding member 8D. That is, as shown in FIG. 14C, the second holding member 8D ′ is the first holding member described above in place of the second jaw 81 ′ with respect to the second holding member 8A ′ described in the second embodiment. A second jaw 81B 'similar to the jaw 81B is employed.
  • the first energy generation units 82 and 82A (82 'and 82A') and the second energy generation unit 83 (83 ') are the same. Although it was set so that it might become the thickness dimension of, it is not restricted to this.
  • the thickness dimension of the second energy generating unit 83 (83 ') may be set to be larger than the thickness dimension of the first energy generating units 82, 82A (82', 82A ').
  • FIG. 15A and 15B are diagrams showing a second modification of the first and second embodiments of the present invention.
  • FIG. 15A is a figure corresponding to FIG. 4, and is a figure which shows the 1st holding member 8E which concerns on this modification 2.
  • FIG. 15B is a view showing a second holding member 8E ′ according to the second modification.
  • the first holding member 8 (8A to 8D) and the second holding member 8 '(8A' to 8D ') have the same configuration. And although it had a shape, it is not restricted to this.
  • both the first holding surface 811 and the second holding surface 811 ' are not limited to the flat configuration, but only one of them is flat. The configuration may be adopted.
  • the first energy generating unit 82 (82A) and the second energy generating unit 83 are provided on the same first sandwiching surface 811 (first energy The generation unit 82 '(82A') and the second energy generation unit 83 'are provided on the same second holding surface 811'), but not limited to this, for example, as shown in FIGS. 15A and 15B. You may employ
  • the first holding member 8E shown in FIG. 15A includes the first jaw 81B and the first energy generator 82E described in the first modification.
  • the first energy generating unit 82E is configured of a ceramic heater or the like, and generates thermal energy. Then, as shown in FIG. 15A, the first energy generation unit 82E has the same planar shape (substantially U-shape) as the first surrounding area ArSB in the first holding surface 811B, and It is fixed. Moreover, 2nd holding member 8E 'shown to FIG. 15B is provided with 2nd jaw part 81 B' and the 2nd energy generation part 83E which were demonstrated by the modification 1 mentioned above. Similar to the first energy generating unit 82E described above, the second energy generating unit 83E includes a ceramic heater or the like, and generates heat energy.
  • the second energy generation unit 83E has the same planar shape (substantially rectangular shape) as the area ArCE ′ which occupies substantially the entire second sandwiching surface 811B ′, and the second energy generation unit 83E It is fixed.
  • the region ArCE ′ is a region including the second region Ar1B ′ and corresponds to a second inclusion region according to the present invention.
  • the area ArCE ' is described as a second inclusion area ArCE'. That is, the second inclusion region ArCE 'in which the second energy generation unit 83E is disposed only needs to include the second region Ar1B', and as shown in FIG. 15B, it extends to the second surrounding region ArSB '. It does not matter as an area.
  • the center of the first sandwiching surfaces 811 and 811 B (second sandwiching surfaces 811 ′ and 811 B ′) as the first region (second region) according to the present invention.
  • first regions Ar1 and Ar1B (second regions Ar1 ′ and Ar1B ′) including the position CP are employed, the present invention is not limited thereto, and other regions not including the center position may be used as the first region (second region). I don't care.
  • Embodiments 1 and 2 and Modifications 1 and 2 described above high frequency energy and thermal energy are adopted as energy for temporarily joining and main joining living tissue LT, but the invention is not limited thereto, and ultrasonic energy is adopted. It does not matter.
  • two types of different types of high frequency energy or thermal energy and ultrasonic energy may be combined as in the second embodiment described above, or as in the first embodiment described above, ultrasonic energy Only one kind of energy may be adopted.
  • the energy for temporarily joining the living tissue LT may be any of radio frequency energy, thermal energy, and ultrasonic energy, and the energy for main joining the living tissue LT is similarly high frequency energy, thermal energy, and Any energy of ultrasonic energy may be used.
  • main bonding of living tissue LT is started (termination of temporary bonding is completed) based on the impedance, time, and thermal conductivity of living tissue LT. Not limited to this.
  • main bonding of the living tissue LT may be started (termination of temporary bonding may be completed) based on physical properties such as hardness, thickness, or temperature of the living tissue LT.
  • the flow of bonding control is not limited to the order of the processing in the flowcharts (FIG. 7, FIG. 13) described in the first and second embodiments and the first and second modifications, and I do not care.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

This energy treatment device 2 is provided with: a first holding member 8 having a first clamping surface 811; a second holding member 8' having a second clamping surface 811' that faces the first clamping surface 811 to clamp living tissue between the first clamping surface 811 and the same; first energy generation units 82, 82' for generating energy from a first peripheral region Ar1 on the first clamping surface 811 and a second peripheral region Ar1' on the second clamping surface 811; and second energy generation units 83, 83' for generating energy from a first inclusion region Ar2 on the first clamping surface 811 and a second inclusion region Ar2' on the second clamping surface 811. The first peripheral region Ar1 surrounds the first inclusion region Ar2 on the first clamping surface 811. The second peripheral region Ar1' surrounds the second inclusion region Ar2', which is formed by projecting the first inclusion region Ar2 onto the second clamping surface 811' in a state in which the first clamping surface 811 and the second clamping surface 811' are facing each other.

Description

エネルギ処置具、医療用処置装置、医療用処置装置の作動方法、及び治療方法Energy treatment tool, medical treatment apparatus, operation method of medical treatment apparatus, and treatment method
 本発明は、エネルギ処置具、医療用処置装置、医療用処置装置の作動方法、及び治療方法に関する。 The present invention relates to an energy treatment tool, a medical treatment apparatus, an operation method of a medical treatment apparatus, and a treatment method.
 近年、生体組織にエネルギを印加して当該生体組織を接合若しくは吻合するエネルギ処置具の開発が活発化している。このようなエネルギ処置具は、ステープラ等の物理的な物体を生体内に残すことがないため、人体への悪影響が少ないというメリットがある一方、接合強度が当該ステープラ等に比べると弱く、厚さによっては接合が不可能な生体組織もあり、接合強度の向上が望まれている。
 ところで、生体組織の細胞外基質(コラーゲンやエラスチン等)は、繊維状組織で構成されている。このため、生体組織を接合する際に、生体組織から細胞外基質を抽出し、当該細胞外基質を密接に絡ませ合うことで、接合強度が向上すると考えられる。
 そして、当該細胞外基質に着目し、接合強度を向上させることを目的としたエネルギ処置具が提案されている(例えば、特許文献1参照)。
 特許文献1に記載のエネルギ処置具は、一対のジョーにて生体組織を挟持し、一対のジョーを介して生体組織に機械的振動を与えることにより、細胞外基質の抽出や混合を強化している。
In recent years, development of an energy treatment tool for applying energy to a living tissue to join or anastomote the living tissue has been activated. Such an energy treatment tool does not leave a physical object such as a stapler in the living body, and thus has the advantage of having less adverse effects on the human body, while the bonding strength is weaker than that of the stapler etc. In some cases, there are living tissues that can not be joined, and improvement in the joining strength is desired.
By the way, extracellular matrix (collagen, elastin, etc.) of living tissue is composed of fibrous tissue. For this reason, when joining living tissues, the extracellular matrix is extracted from the living tissues, and it is thought that the joining strength is improved by closely encircling the extracellular matrices.
Then, an energy treatment tool aimed at improving the bonding strength focusing on the extracellular matrix has been proposed (for example, see Patent Document 1).
The energy treatment tool described in Patent Document 1 strengthens the extraction and mixing of extracellular matrix by sandwiching a living tissue with a pair of jaws and applying mechanical vibration to the living tissue through the pair of jaws. There is.
特開2012-239899号公報JP 2012-239899 A
 しかしながら、特許文献1に記載のエネルギ処置具では、一対のジョーにおける生体組織に接触する処置面は、平坦状に形成されている。すなわち、機械的振動またはエネルギにより軟化した細胞外基質は液状であるため、細胞外基質の抽出を強化したとしても、当該抽出した細胞外基質を一対のジョーの間に留まらせることは難しい。したがって、特許文献1に記載のエネルギ処置具では、接合強度を向上させることが難しい、という問題がある。 However, in the energy treatment device described in Patent Document 1, the treatment surface of the pair of jaws in contact with the living tissue is formed flat. That is, since the extracellular matrix softened by mechanical vibration or energy is a liquid, it is difficult to retain the extracted extracellular matrix between the pair of jaws even if the extraction of the extracellular matrix is enhanced. Therefore, in the energy treatment tool described in Patent Document 1, there is a problem that it is difficult to improve the bonding strength.
 本発明は、上記に鑑みてなされたものであって、生体組織の接合強度を向上させることができるエネルギ処置具、医療用処置装置、医療用処置装置の作動方法、及び治療方法を提供することを目的とする。 The present invention has been made in view of the above, and provides an energy treatment tool, a medical treatment apparatus, an operation method of the medical treatment apparatus, and a treatment method capable of improving the bonding strength of living tissues. With the goal.
 上述した課題を解決し、目的を達成するために、本発明に係るエネルギ処置具は、第1挟持面を有する第1保持部材と、前記第1挟持面に対向して当該第1挟持面との間で生体組織を挟持する第2挟持面を有する第2保持部材と、を備えたエネルギ処置具であって、前記第1挟持面は、第1領域を囲む領域である第1周囲領域と、前記第1領域を包含する領域である第1包含領域と、を有し、前記第2挟持面は、前記第1挟持面及び前記第2挟持面を互いに対向させた状態で、前記第1領域を前記第2挟持面に投影した第2領域を囲む領域である第2周囲領域と、前記第2領域を包含する領域である第2包含領域と、を有し、当該エネルギ処置具は、前記第1周囲領域と、前記第2周囲領域とのうち少なくとも一方からエネルギを発生する第1エネルギ発生部と、前記第1包含領域と、前記第2包含領域とのうち少なくとも一方からエネルギを発生する第2エネルギ発生部と、を備える、ことを特徴とする。 In order to solve the problems described above and achieve the object, an energy treatment tool according to the present invention comprises a first holding member having a first holding surface, and the first holding surface facing the first holding surface and the first holding member An energy treatment tool comprising a second holding member having a second holding surface holding the living tissue between the first and second peripheral regions, wherein the first holding surface is a first surrounding area which is an area surrounding the first area; A first inclusion area which is an area including the first area, and the second holding surface is a state in which the first holding surface and the second holding surface are opposed to each other. The energy treatment device includes a second surrounding area which is an area surrounding a second area projected onto the second holding surface, and a second inclusion area which is an area including the second area, Generating energy from at least one of the first surrounding area and the second surrounding area Comprising a first energy generating unit, and the first inclusion area, and a second energy generator for generating energy from at least one of said second inclusion area, characterized in that.
 また、本発明に係る医療用処置装置は、上述したエネルギ処置具と、前記第1エネルギ発生部と前記第2エネルギ発生部とにエネルギを発生させるエネルギ制御部と、を備えることを特徴とする。 A medical treatment apparatus according to the present invention is characterized by including the above-described energy treatment tool, and an energy control unit that generates energy in the first energy generation unit and the second energy generation unit. .
 また、本発明に係る医療用処置装置の作動方法は、第1挟持面を有する第1保持部材と第2挟持面を有する第2保持部材との間に生体組織が挟持された後、前記第1挟持面における第1周囲領域と、前記第2挟持面における第2周囲領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第1エネルギ付与ステップと、前記第1エネルギ付与ステップが開始された後、前記第1挟持面における第1包含領域と、前記第2挟持面における第2包含領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第2エネルギ付与ステップと、を備え、前記第1周囲領域は、前記第1挟持面における第1領域を囲む領域であり、前記第2周囲領域は、前記第1挟持面及び前記第2挟持面を互いに対向させた状態で、前記第1領域を前記第2挟持面に投影した第2領域を囲む領域であり、前記第1包含領域は、前記第1領域を包含する領域であり、前記第2包含領域は、前記第2領域を包含する領域であることを特徴とする。 Further, in the method of operating a medical treatment apparatus according to the present invention, the biological tissue is held between the first holding member having the first holding surface and the second holding member having the second holding surface, A first energy applying step of applying energy to the living tissue from at least one of a first peripheral region of the first clamping surface and a second peripheral region of the second clamping surface; and the first energy applying step is started A second energy applying step of applying energy to the living tissue from at least one of a first inclusion region of the first sandwiching surface and a second inclusion region of the second sandwiching surface; The first peripheral area is an area surrounding the first area in the first holding surface, and the second peripheral area is the first peripheral area with the first holding surface and the second holding surface facing each other. Territory Is a region surrounding a second region projected on the second holding surface, the first inclusion region is a region including the first region, and the second inclusion region includes the second region. It is characterized by being an area.
 また、本発明に係る治療方法は、第1挟持面を有する第1保持部材と第2挟持面を有する第2保持部材とで生体組織を挟持する挟持ステップと、前記第1挟持面における第1周囲領域と、前記第2挟持面における第2周囲領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第1エネルギ付与ステップと、前記第1エネルギ付与ステップが開始された後、前記第1挟持面における第1包含領域と、前記第2挟持面における第2包含領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第2エネルギ付与ステップと、を備え、前記第1周囲領域は、前記第1挟持面における第1領域を囲む領域であり、前記第2周囲領域は、前記第1挟持面及び前記第2挟持面を互いに対向させた状態で、前記第1領域を前記第2挟持面に投影した第2領域を囲む領域であり、前記第1包含領域は、前記第1領域を包含する領域であり、前記第2包含領域は、前記第2領域を包含する領域であることを特徴とする。 In the treatment method according to the present invention, a holding step of holding a living tissue with a first holding member having a first holding surface and a second holding member having a second holding surface; A first energy applying step of applying energy to the living tissue from at least one of a surrounding region and a second surrounding region of the second sandwiching surface; and the first energy applying step is started; A second energy applying step of applying energy to the living tissue from at least one of a first inclusion region in the holding surface and a second inclusion region in the second holding surface, and the first peripheral region is The first surrounding area is an area surrounding a first area in the first sandwiching surface, and the second peripheral area is a region surrounding the first sandwiching surface and the second sandwiching surface facing each other. It is an area surrounding a second area projected on a sandwiching surface, the first inclusion area is an area including the first area, and the second inclusion area is an area including the second area. It is characterized by
 本発明に係るエネルギ処置具、医療用処置装置、医療用処置装置の作動方法、及び治療方法によれば、生体組織の接合強度を向上させることができる、という効果を奏する。 According to the energy treatment tool, the medical treatment apparatus, the operation method of the medical treatment apparatus, and the treatment method according to the present invention, it is possible to improve the bonding strength of the living tissues.
図1は、本発明の実施の形態1に係る医療用処置装置を模式的に示す図である。FIG. 1 is a view schematically showing a medical treatment apparatus according to Embodiment 1 of the present invention. 図2は、図1に示したエネルギ処置具の先端部分を拡大した図である。FIG. 2 is an enlarged view of a tip portion of the energy treatment device shown in FIG. 図3は、図2に示した第1保持部材を示す図である。FIG. 3 is a view showing the first holding member shown in FIG. 図4は、図2に示した第1保持部材を示す図である。FIG. 4 is a view showing the first holding member shown in FIG. 図5は、図2に示した第2保持部材を示す図である。FIG. 5 is a view showing the second holding member shown in FIG. 図6は、図1に示した制御装置及びフットスイッチの構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the control device and the foot switch shown in FIG. 図7は、図6に示した制御装置による接合制御を示すフローチャートである。FIG. 7 is a flow chart showing bonding control by the control device shown in FIG. 図8は、図7に示したステップS1が行われた状態での生体組織と第1保持部材との位置関係を第1挟持面側から見た図である。FIG. 8 is a view of the positional relationship between the living tissue and the first holding member in the state where step S1 shown in FIG. 7 is performed, as viewed from the first sandwiching surface side. 図9は、図7に示したステップS4以降に算出されたインピーダンスの挙動を示す図である。FIG. 9 is a diagram showing the behavior of the impedance calculated after step S4 shown in FIG. 図10は、本発明の実施の形態2に係る医療用処置装置(エネルギ処置具)を構成する第1保持部材を示す図である。FIG. 10 is a view showing a first holding member constituting the medical treatment apparatus (energy treatment tool) according to the second embodiment of the present invention. 図11は、本発明の実施の形態2に係る医療用処置装置(エネルギ処置具)を構成する第1保持部材を示す図である。FIG. 11 is a view showing a first holding member constituting the medical treatment apparatus (energy treatment tool) according to the second embodiment of the present invention. 図12は、本発明の実施の形態2に係る制御装置の構成を示すブロック図である。FIG. 12 is a block diagram showing a configuration of a control device according to Embodiment 2 of the present invention. 図13は、本発明の実施の形態2に係る接合制御を示すフローチャートである。FIG. 13 is a flowchart showing bonding control according to the second embodiment of the present invention. 図14Aは、本発明の実施の形態1,2の変形例1を示す図である。FIG. 14A is a diagram showing a modification 1 of the first and second embodiments of the present invention. 図14Bは、本発明の実施の形態1,2の変形例1を示す図である。FIG. 14B is a diagram showing a modification 1 of the first and second embodiments of the present invention. 図14Cは、本発明の実施の形態1,2の変形例1を示す図である。FIG. 14C is a diagram showing a modification 1 of the first and second embodiments of the present invention. 図15Aは、本発明の実施の形態1,2の変形例2を示す図である。FIG. 15A is a diagram showing a modification 2 of the first and second embodiments of the present invention. 図15Bは、本発明の実施の形態1,2の変形例2を示す図である。FIG. 15B is a diagram showing a modification 2 of the first and second embodiments of the present invention.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter, embodiments) will be described with reference to the drawings. The present invention is not limited by the embodiments described below. Furthermore, in the description of the drawings, the same parts are given the same reference numerals.
(実施の形態1)
 〔医療用処置装置の概略構成〕
 図1は、本発明の実施の形態1に係る医療用処置装置1を模式的に示す図である。
 医療用処置装置1は、処置対象である生体組織にエネルギを印加し、当該生体組織の処置(接合若しくは吻合等)を行う。この医療用処置装置1は、図1に示すように、エネルギ処置具2と、制御装置3と、フットスイッチ4とを備える。
Embodiment 1
[Schematic Configuration of Medical Treatment Device]
FIG. 1 is a view schematically showing a medical treatment apparatus 1 according to Embodiment 1 of the present invention.
The medical treatment apparatus 1 applies energy to a living tissue to be treated, and performs treatment (such as bonding or anastomosis) on the living tissue. As shown in FIG. 1, the medical treatment apparatus 1 includes an energy treatment device 2, a control device 3, and a foot switch 4.
 〔エネルギ処置具の構成〕
 エネルギ処置具2は、例えば、腹壁を通して生体組織に処置(接合若しくは吻合等)を行うためのリニアタイプの外科医療用処置具である。このエネルギ処置部2は、図1に示すように、ハンドル5と、シャフト6と、挟持部7とを備える。
 ハンドル5は、術者が把持する部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端がハンドル5に接続されている。また、シャフト6の他端には、挟持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、挟持部7を構成する第1,第2保持部材8,8´(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側から他端側まで配設されている。
[Configuration of energy treatment tool]
The energy treatment tool 2 is, for example, a linear type surgical treatment tool for performing treatment (such as bonding or anastomosis) on a living tissue through the abdominal wall. As shown in FIG. 1, the energy treatment unit 2 includes a handle 5, a shaft 6 and a holding unit 7.
The handle 5 is a portion held by the operator. Further, as shown in FIG. 1, the handle 5 is provided with an operation knob 51.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape and one end is connected to the handle 5. Further, at the other end of the shaft 6, a clamping unit 7 is attached. An opening / closing mechanism (shown in the drawing) opens and closes the first and second holding members 8 and 8 '(FIG. 1) constituting the holding unit 7 in accordance with the operation of the operation knob 51 by the operator. ) Is provided. Further, an electric cable C (FIG. 1) connected to the control device 3 is disposed inside the shaft 6 from one end side to the other end side via the handle 5.
 〔挟持部の構成〕
 図2は、エネルギ処置具2の先端部分を拡大した図である。
 挟持部7は、生体組織を挟持して、当該生体組織の処置(接合若しくは吻合等)を行う部分である。この挟持部7は、図2に示すように、第1保持部材8と、第2保持部材8´とを備える。
 なお、図2では、第2保持部材8´の構成を示す符号として、第1保持部材8と同一の構成については、当該第1保持部材8の構成を示す符号に「´」を付加している。以降の図も同様である。
 第1,第2保持部材8,8´は、矢印R1(図2)方向に開閉可能にシャフト6の他端に軸支され、術者による操作ノブ51の操作に応じて、生体組織を挟持可能とする。
[Configuration of clamping unit]
FIG. 2 is an enlarged view of the distal end portion of the energy treatment device 2.
The clamping unit 7 is a portion that clamps a living tissue and performs treatment (such as bonding or anastomosis) of the living tissue. As shown in FIG. 2, the holding unit 7 includes a first holding member 8 and a second holding member 8 ′.
In addition, in FIG. 2, as a code | symbol which shows the structure of 2nd holding member 8 ', about the structure same as the 1st holding member 8, "'" is added to the code | symbol which shows the structure of the said 1st holding member 8 concerned. There is. The same applies to the subsequent figures.
The first and second holding members 8 and 8 'are pivotally supported by the other end of the shaft 6 so as to be able to open and close in the direction of arrow R1 (FIG. 2), and hold biological tissue in accordance with the operation of the operation knob 51 by the operator. To be possible.
 〔第1保持部材の構成〕
 図3及び図4は、図2に示した第1保持部材8を示す図である。具体的に、図3は、図2のIII-III線で切断した断面図である。図4は、第1保持部材8を図2中、上方側から見た図である。
 なお、III-III線は、第1挟持面811の中心位置CP(図4)を通る線である。
 第1保持部材8は、第2保持部材8´に対して、図1または図2中、下方側に配設される。この第1保持部材8は、図2ないし図4に示すように、第1顎部81と、第1エネルギ発生部82と、第2エネルギ発生部83とを備える。
[Configuration of First Holding Member]
3 and 4 are views showing the first holding member 8 shown in FIG. Specifically, FIG. 3 is a cross-sectional view taken along the line III-III in FIG. FIG. 4 is a view of the first holding member 8 as viewed from above in FIG.
The III-III line is a line passing through the center position CP (FIG. 4) of the first holding surface 811.
The first holding member 8 is disposed below the second holding member 8 ′ in FIG. 1 or 2. The first holding member 8 includes a first jaw 81, a first energy generator 82, and a second energy generator 83, as shown in FIGS.
 第1顎部81は、セラミック等の絶縁性材料で構成された長尺状の板体であり、シャフト6の他端に軸支される部分である。
 この第1顎部81において、第2保持部材8´に対向する面811(以下、第1挟持面811と記載)には、図3または図4に示すように、上方側(第2保持部材8´側)に向けて突出する突出部8111が形成されている。このため、第1挟持面811は、図3に示すように、段差を有する凸状に形成されている。
 突出部8111は、第1顎部81の幅方向(図3中、左右方向(長手方向に直交する方向))の中央部分に位置し、当該第1顎部81の基端(図4中、下端部(シャフト6の他端に軸支される側))から先端側(図4中、上端部側)に向けて延びる形状を有する。また、突出部8111における突出方向の先端面(図3中、上方側の面)は、平坦状に形成されている。すなわち、第1挟持面811において、突出部8111を除くU字部分8112は、図4に示すように、第1顎部81の基端から外縁に沿って先端に向けて延び、さらに先端から外縁に沿って基端に向けて延びる略U字形状を有する。また、当該U字部分8112は、図3に示すように、平坦状に形成されている。
 ここで、第1挟持面811において、突出部8111の先端面の略全体を占める領域ArC(図4)は、当該第1挟持面811の中心位置CP(図4)を含む領域である第1領域Ar1を包含する領域であり、本発明に係る第1包含領域に相当する。以下、領域ArCを第1包含領域ArCと記載する。また、第1挟持面811において、突出部8111を除くU字部分8112の略全体を占める領域ArSは、第1領域Ar1を囲む領域であり、本発明に係る第1周囲領域に相当する。以下、領域ArSを第1周囲領域ArSと記載する。なお、本実施の形態1では、第1周囲領域ArSは、第1包含領域ArCを囲む領域に設定されている。
The first jaw 81 is a long plate made of an insulating material such as ceramic, and is a portion pivotally supported by the other end of the shaft 6.
In the first jaw 81, on the surface 811 facing the second holding member 8 '(hereinafter referred to as the first holding surface 811), as shown in FIG. 3 or 4, the upper side (second holding member A protrusion 8111 is formed to protrude toward the 8 'side). Therefore, as shown in FIG. 3, the first holding surface 811 is formed in a convex shape having a step.
The protrusion 8111 is located at the central portion in the width direction of the first jaw 81 (in FIG. 3, in the left-right direction (direction orthogonal to the longitudinal direction)), and the proximal end of the first jaw 81 (in FIG. 4) It has a shape extending from the lower end (the side pivotally supported by the other end of the shaft 6) to the tip side (the upper end side in FIG. 4). Further, a tip end surface (a surface on the upper side in FIG. 3) in the protrusion direction of the protrusion 8111 is formed flat. That is, in the first sandwiching surface 811, the U-shaped portion 8112 excluding the projecting portion 8111 extends from the proximal end of the first jaw 81 along the outer edge toward the tip as shown in FIG. Generally U-shaped extending towards the proximal end. Further, as shown in FIG. 3, the U-shaped portion 8112 is formed flat.
Here, in the first holding surface 811, a region ArC (FIG. 4) that occupies substantially the entire tip surface of the protrusion 8111 is a region including the center position CP (FIG. 4) of the first holding surface 811. The region including the region Ar1 corresponds to the first inclusion region according to the present invention. Hereinafter, the region ArC is referred to as a first inclusion region ArC. Further, in the first sandwiching surface 811, a region ArS that occupies substantially the entire U-shaped portion 8112 excluding the projecting portion 8111 is a region surrounding the first region Ar1, and corresponds to a first peripheral region according to the present invention. Hereinafter, the region ArS is referred to as a first surrounding region ArS. In the first embodiment, the first surrounding area ArS is set to an area surrounding the first inclusion area ArC.
 第1エネルギ発生部82は、第1顎部81の第1挟持面811に固定され、制御装置3による制御の下、高周波エネルギを発生する。
 具体的に、第1エネルギ発生部82は、例えば、銅等の導電性材料からなる薄板で構成され、図4に示すように、第1周囲領域ArSと同一の平面形状(略U字形状)を有し、当該第1周囲領域ArSに固定されている。そして、第1エネルギ発生部82は、電気ケーブルCを構成する第1高周波用リード線C1(図6参照)が接合され、第1高周波用リード線C1,C1´(図6参照)を介して制御装置3により第2保持部材8´の第1エネルギ発生部82´との間に高周波電力が供給されることで、高周波エネルギを発生する。すなわち、第1エネルギ発生部82は、高周波電力が供給される電極として構成されている。
The first energy generating unit 82 is fixed to the first holding surface 811 of the first jaw 81, and generates high frequency energy under the control of the control device 3.
Specifically, the first energy generating unit 82 is, for example, a thin plate made of a conductive material such as copper, and has the same planar shape (substantially U-shaped) as the first surrounding area ArS, as shown in FIG. And is fixed to the first surrounding area ArS. Then, in the first energy generating unit 82, the first high frequency lead wire C1 (see FIG. 6) constituting the electric cable C is joined, and the first energy generation portion 82 is connected via the first high frequency lead wires C1 and C1 '(see FIG. 6). The control device 3 supplies high frequency power between the control unit 3 and the first energy generation unit 82 'of the second holding member 8' to generate high frequency energy. That is, the first energy generating unit 82 is configured as an electrode to which high frequency power is supplied.
 第2エネルギ発生部83は、第1エネルギ発生部82と同様に、第1顎部81の第1挟持面811に固定され、制御装置3による制御の下、高周波エネルギを発生する。
 具体的に、第2エネルギ発生部82は、例えば、銅等の導電性材料からなる薄板で構成され、図4に示すように、第1包含領域ArCと同一の平面形状(略矩形形状)を有し、当該第1包含領域ArCに固定されている。そして、第2エネルギ発生部83は、電気ケーブルCを構成する第2高周波用リード線C2(図6参照)が接合され、第2高周波用リード線C2,C2´(図6参照)を介して制御装置3により第2保持部材8´の第2エネルギ発生部83´との間に高周波電力が供給されることで、高周波エネルギを発生する。すなわち、第2エネルギ発生部83は、高周波電力が供給される電極として構成されている。
Similar to the first energy generating unit 82, the second energy generating unit 83 is fixed to the first sandwiching surface 811 of the first jaw 81, and generates high frequency energy under the control of the control device 3.
Specifically, the second energy generating unit 82 is formed of, for example, a thin plate made of a conductive material such as copper, and has the same planar shape (substantially rectangular shape) as the first inclusion region ArC as shown in FIG. And fixed to the first inclusion area ArC. Then, in the second energy generating unit 83, the second high frequency lead wire C2 (see FIG. 6) constituting the electric cable C is joined, and the second energy generation portion 83 is connected via the second high frequency lead wires C2 and C2 '(see FIG. 6). The control device 3 supplies high frequency power between the control unit 3 and the second energy generation unit 83 'of the second holding member 8' to generate high frequency energy. That is, the second energy generating unit 83 is configured as an electrode to which high frequency power is supplied.
 〔第2保持部材の構成〕
 図5は、図2に示した第2保持部材8´を示す図である。具体的に、図5は、図3に対応した断面図であり、第1,第2保持部材8,8´を閉じて第1,第2挟持面811,811´を対向させた状態を示す図である。
 第2保持部材8´は、図2または図5に示すように、第1保持部材8と同一の構成及び形状を有する。すなわち、第2保持部材8´は、図5に示すように、第2顎部81´(第2挟持面811´、突出部8111´、U字部分8112´、及び領域Ar1´,ArS´,ArC´を含む)と、第1エネルギ発生部82´と、第2エネルギ発生部83´とを備える。
 そして、第2保持部材8´は、第1保持部材8を上下反転させた姿勢で、シャフト6の他端に取り付けられる。
 ここで、第2挟持面811´において、領域Ar1´は、第1挟持面811及び第2挟持面811´を互いに対向させた状態で、第1挟持面811の第1領域Ar1を当該第2挟持面811´に投影した領域であり、本発明に係る第2領域に相当する。以下、領域Ar1´を第2領域Ar1´と記載する。本実施の形態1では、第2領域Ar1´は、第2挟持面811´の中心位置CP´(図5)を含む領域である。また、突出部8111´の先端面の領域ArC´は、第2領域Ar1´を包含する領域であり、本発明に係る第2包含領域に相当する。以下、領域ArC´を第2包含領域ArC´と記載する。さらに、第2挟持面811´において、領域ArS´は、第2領域Ar1´を囲む領域であり、本発明に係る第2周囲領域に相当する。以下、領域ArS´を第2周囲領域ArS´と記載する。なお、本実施の形態1では、第2包含領域ArC´及び第2周囲領域ArS´は、第1挟持面811及び第2挟持面811´を互いに対向させた状態で、第1挟持面811の第1包含領域ArC及び第1周囲領域ArSを当該第2挟持面811´にそれぞれ投影した領域である。
[Configuration of Second Holding Member]
FIG. 5 is a view showing the second holding member 8 'shown in FIG. Specifically, FIG. 5 is a cross-sectional view corresponding to FIG. 3 and shows a state in which the first and second holding surfaces 811 and 811 'are opposed to each other by closing the first and second holding members 8 and 8'. FIG.
The second holding member 8 ′ has the same configuration and shape as the first holding member 8 as shown in FIG. 2 or 5. That is, as shown in FIG. 5, the second holding member 8 ′ includes the second jaw 81 ′ (the second holding surface 811 ′, the protrusion 8111 ′, the U-shaped portion 8112 ′, and the regions Ar 1 ′, ArS ′, And ArC 'is included, a first energy generating unit 82', and a second energy generating unit 83 '.
The second holding member 8 ′ is attached to the other end of the shaft 6 in a posture in which the first holding member 8 is turned upside down.
Here, in the second sandwiching surface 811 ′, the region Ar1 ′ corresponds to the first region Ar1 of the first sandwiching surface 811 with the first sandwiching surface 811 and the second sandwiching surface 811 ′ facing each other. It is an area projected onto the sandwiching surface 811 ′, and corresponds to a second area according to the present invention. Hereinafter, the region Ar1 'is referred to as a second region Ar1'. In the first embodiment, the second area Ar1 ′ is an area including the center position CP ′ (FIG. 5) of the second holding surface 811 ′. The area ArC ′ of the tip end face of the protrusion 8111 ′ is an area including the second area Ar1 ′, and corresponds to a second inclusion area according to the present invention. Hereinafter, the region ArC 'is referred to as a second inclusion region ArC'. Furthermore, in the second holding surface 811 ′, the region ArS ′ is a region surrounding the second region Ar1 ′, and corresponds to a second peripheral region according to the present invention. Hereinafter, the region ArS 'is referred to as a second surrounding region ArS'. In the first embodiment, the second inclusion area ArC ′ and the second peripheral area ArS ′ are formed on the first holding surface 811 with the first holding surface 811 and the second holding surface 811 ′ facing each other. It is the area | region which each projected 1st inclusion area ArC and 1st surrounding area ArS on the said 2nd clamping surface 811 '.
 〔制御装置及びフットスイッチの構成〕
 図6は、制御装置3及びフットスイッチ4の構成を示すブロック図である。
 なお、図6では、制御装置3の構成として、本発明の要部を主に図示している。
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作(ON)に応じて、制御装置3は、後述する接合制御を開始する。
 なお、当該接合制御を開始させる手段としては、フットスイッチ4に限られず、その他、手で操作するスイッチ等を採用しても構わない。
[Configuration of Control Device and Foot Switch]
FIG. 6 is a block diagram showing the configuration of the control device 3 and the foot switch 4.
In FIG. 6, the main part of the present invention is mainly illustrated as the configuration of the control device 3.
The foot switch 4 is a portion operated by the operator with a foot. And according to the said operation (ON) to the foot switch 4, the control apparatus 3 starts joining control mentioned later.
In addition, it is not restricted to foot switch 4 as a means to start the said joining control, In addition, you may employ | adopt the switch etc. which are operated by hand.
 制御装置3は、エネルギ処置具2の動作を統括的に制御する。この制御装置3は、図6に示すように、高周波エネルギ出力部31と、スイッチ32と、第1センサ33と、制御部34とを備える。
 高周波エネルギ出力部31は、制御部34による制御の下、第1高周波用リード線C1,C1´または第2高周波用リード線C2,C2´を介して、第1エネルギ発生部82,82´または第2エネルギ発生部83,83´に高周波電力を供給する。
 スイッチ32は、制御部34による制御の下、高周波エネルギ出力部31から高周波電力を供給するリード線を、第1高周波用リード線C1,C1´または第2高周波用リード線C2,C2´に切り替える。
 第1センサ33は、高周波エネルギ出力部31から第1エネルギ発生部82,82´に供給されている電圧値及び電流値を検出する。そして、第1センサ33は、検出した電圧値及び電流値に応じた信号を制御部34に出力する。
The control device 3 generally controls the operation of the energy treatment device 2. The control device 3 includes a high frequency energy output unit 31, a switch 32, a first sensor 33, and a control unit 34, as shown in FIG.
The high-frequency energy output unit 31 receives the first energy generation unit 82 or 82 'or the first high-frequency lead wire C1 or C1' or the second high-frequency lead wire C2 or C2 'under the control of the control unit 34. The high frequency power is supplied to the second energy generating units 83 and 83 '.
The switch 32 switches the lead wire for supplying high frequency power from the high frequency energy output unit 31 to the first high frequency lead wire C1 or C1 'or the second high frequency lead wire C2 or C2' under the control of the control unit 34. .
The first sensor 33 detects the voltage value and the current value supplied from the high frequency energy output unit 31 to the first energy generation unit 82, 82 '. Then, the first sensor 33 outputs a signal corresponding to the detected voltage value and current value to the control unit 34.
 制御部34は、CPU(Central Processing Unit)等を含んで構成され、フットスイッチ4がONになった場合に、所定の制御プログラムにしたがって、接合制御を実行する。この制御部34は、図6に示すように、エネルギ制御部341と、インピーダンス算出部342とを備える。
 エネルギ制御部341は、スイッチ32を動作させて高周波電力を供給するリード線を第1高周波用リード線C1,C1´に切り替えるとともに、高周波エネルギ出力部31を駆動し、高周波エネルギ出力部31から第1エネルギ発生部82,82´に高周波電力を供給させる(高周波エネルギを発生させる)。また、エネルギ制御部341は、インピーダンス算出部342にて算出されたインピーダンスに基づいて、スイッチ32を動作させて高周波電力を供給するリード線を第1高周波用リード線C1,C1´から第2高周波用リード線C2,C2´に切り替え、高周波エネルギ出力部31から第2エネルギ発生部83,83´に高周波電力を供給させる(高周波エネルギを発生させる)。
The control unit 34 is configured to include a CPU (Central Processing Unit) or the like, and executes joint control according to a predetermined control program when the foot switch 4 is turned on. As shown in FIG. 6, the control unit 34 includes an energy control unit 341 and an impedance calculation unit 342.
The energy control unit 341 operates the switch 32 to switch the lead wires for supplying high frequency power to the first high frequency lead wires C1 and C1 ′, and drives the high frequency energy output unit 31 so that the high frequency energy output unit 31 (1) The high frequency power is supplied to the energy generators 82 and 82 '(high frequency energy is generated). Further, the energy control unit 341 operates the switch 32 based on the impedance calculated by the impedance calculation unit 342 to supply the high frequency power to the lead wire from the first high frequency lead wires C1 and C1 'to the second high frequency wave. The high-frequency energy output unit 31 supplies high-frequency power to the second energy generation units 83 and 83 '(generates high-frequency energy).
 ここで、エネルギ制御部341は、第1エネルギ発生部82,82´に供給する高周波電力よりも第2エネルギ発生部83,83´に供給する高周波電力を高くする、あるいは、第1エネルギ発生部82,82´に供給する高周波電力の電力量よりも第2エネルギ発生部83,83´に供給する高周波電力の電力量を高くする。すなわち、エネルギ制御部341は、第1エネルギ発生部82,82´からの高周波エネルギの発生時での第1エネルギ発生部82,82´の最高到達温度より第2エネルギ発生部83,83´からの高周波エネルギの発生時での第2エネルギ発生部83,83´の最高到達温度が高くなるように第1エネルギ発生部82,82´及び第2エネルギ発生部83,83´に高周波エネルギを発生させる。 Here, the energy control unit 341 makes the high frequency power supplied to the second energy generating unit 83, 83 'higher than the high frequency power supplied to the first energy generating unit 82, 82', or the first energy generating unit The power amount of the high frequency power supplied to the second energy generation unit 83, 83 'is made higher than the power amount of the high frequency power supplied to 82, 82'. That is, the energy control unit 341 generates the high-frequency energy from the first energy generation units 82 and 82 'by the second energy generation units 83 and 83' based on the highest temperature reached by the first energy generation units 82 and 82 '. High-frequency energy is generated in the first energy generation units 82 and 82 'and the second energy generation units 83 and 83' so that the highest temperature reached by the second energy generation units 83 and 83 'at the time of generation of high-frequency energy Let
 インピーダンス算出部342は、第1センサ33にて検出された電圧値及び電流値に基づいて、第1エネルギ発生部82,82´から生体組織に対して高周波エネルギが付与されている際のインピーダンス(生体組織のインピーダンス)を算出する。 The impedance calculation unit 342 determines the impedance when high-frequency energy is applied to the living tissue from the first energy generation units 82 and 82 ′ based on the voltage value and the current value detected by the first sensor 33 (see FIG. Calculate the impedance of the living tissue.
 〔医療用処置装置の動作〕
 次に、上述した医療用処置装置1の動作について説明する。
 なお、以下では、医療用処置装置1の動作として、制御装置3による接合制御を主に説明する。
 図7は、制御装置3による接合制御を示すフローチャートである。
 術者は、エネルギ処置具2を把持し、当該エネルギ処置具2の先端部分(挟持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。そして、術者は、操作ノブ51を操作し、第1,第2保持部材8,8´にて生体組織を挟持する(ステップS1:挟持ステップ)。
 次に、術者は、フットスイッチ4を操作(ON)し、制御装置3による接合制御を開始させる(ステップS2:Yes)。
[Operation of medical treatment apparatus]
Next, the operation of the above-described medical treatment apparatus 1 will be described.
In addition, below, as operation | movement of the medical treatment apparatus 1, junction control by the control apparatus 3 is mainly demonstrated.
FIG. 7 is a flowchart showing bonding control by the control device 3.
The operator holds the energy treatment tool 2 and inserts the distal end portion (a part of the pinching portion 7 and the shaft 6) of the energy treatment tool 2 into the abdominal cavity through the abdominal wall using, for example, a trocar. Then, the operator operates the operation knob 51 to clamp the living tissue with the first and second holding members 8 and 8 '(step S1: holding step).
Next, the operator operates (turns on) the foot switch 4 to start bonding control by the control device 3 (step S2: Yes).
 図8は、ステップS1が行われた状態での生体組織LTと第1保持部材8との位置関係を第1挟持面811側から見た図である。
 エネルギ制御部341は、フットスイッチ4がONになると(ステップS2:Yes)、スイッチ32を動作させて高周波電力を供給するリード線を第1高周波用リード線C1,C1´に切り替えるとともに、高周波エネルギ出力部31を駆動し、高周波エネルギ出力部31から第1エネルギ発生部82,82´への高周波電力の供給を開始(生体組織LT(領域ArO(図8に右斜めの斜線で示した領域))に対する高周波エネルギの付与を開始)する(ステップS3:第1エネルギ付与ステップ)。
 ここで、第1エネルギ発生部82,82´から生体組織LTに対して高周波エネルギが付与された場合には、生体組織LTにおいて、第1エネルギ発生部82,82´の位置(第1,第2周囲領域ArS,ArS´)に対応する領域ArO(図8)に高周波エネルギが付与される。すなわち、ステップS3では、生体組織LTの本接合(領域ArI(図8に左斜めの斜線で示した領域)への高周波エネルギの付与)を行う前に、当該領域ArIの外側に位置する領域ArOに高周波エネルギを付与することにより生体組織LTの仮接合を開始している。
 ステップS3の後、インピーダンス算出部342は、第1センサ33にて検出された電圧値及び電流値に基づいて、生体組織LT(領域ArO)のインピーダンスの算出を開始する(ステップS4)。
FIG. 8 is a view of the positional relationship between the living tissue LT and the first holding member 8 in the state where step S1 is performed, as viewed from the first holding surface 811 side.
When the foot switch 4 is turned on (step S2: Yes), the energy control unit 341 operates the switch 32 to switch the lead wire for supplying high frequency power to the first high frequency lead wires C1 and C1 ', and The output unit 31 is driven, and supply of high frequency power from the high frequency energy output unit 31 to the first energy generation unit 82, 82 'is started (living tissue LT (region ArO (region indicated by oblique lines to the right in FIG. 8)) Start application of high-frequency energy)) (step S3: first energy application step).
Here, when high-frequency energy is applied to the living tissue LT from the first energy generating units 82 and 82 ′, the positions of the first energy generating units 82 and 82 ′ in the living tissue LT High frequency energy is applied to the area ArO (FIG. 8) corresponding to the two surrounding areas ArS and ArS ′). That is, in step S3, before performing main junction of living tissue LT (application of high-frequency energy to region ArI (region shown by diagonal lines in the left diagonal in FIG. 8)), region ArO located outside the region ArI Temporary joining of the living tissue LT is started by applying high frequency energy to the
After step S3, the impedance calculation unit 342 starts calculation of the impedance of the living tissue LT (region ArO) based on the voltage value and the current value detected by the first sensor 33 (step S4).
 図9は、ステップS4以降に算出されたインピーダンスの挙動を示す図である。
 生体組織LTに対して高周波エネルギを付与すると、生体組織LTのインピーダンスは、図9に示す挙動を示す。
 高周波エネルギを付与した初期の時間帯(高周波エネルギの付与開始~時間T1)では、インピーダンスは、図9に示すように、徐々に減少していく。これは、高周波エネルギの付与によって、生体組織LTの細胞膜破壊が生じ、生体組織LTから細胞外基質が抽出されていることに起因する。言い換えれば、当該初期の時間帯では、生体組織LTから細胞外基質が抽出され、生体組織LTの粘度が低くなっていく(生体組織LTが軟化していく)時間帯である。
FIG. 9 is a diagram showing the behavior of the impedance calculated after step S4.
When high frequency energy is applied to the living tissue LT, the impedance of the living tissue LT exhibits the behavior shown in FIG.
As shown in FIG. 9, the impedance gradually decreases in the initial time zone (high frequency energy application start time to time T1) where high frequency energy is applied. This is attributed to the fact that the application of the high frequency energy causes the cell membrane of the living tissue LT to be destroyed and the extracellular matrix is extracted from the living tissue LT. In other words, in the initial time zone, the extracellular matrix is extracted from the living tissue LT, and the viscosity of the living tissue LT decreases (the living tissue LT softens).
 そして、インピーダンスが最低値VLとなった時間T1以降、インピーダンスは、図9に示すように、徐々に増加していく。これは、高周波エネルギの付与により生体組織LTにジュール熱が作用し、生体組織LT自体が発熱することによって、生体組織LT内の水分が減少(蒸発)していることに起因する。言い換えれば、当該時間T1以降は、生体組織LTから細胞外基質が抽出されなくなり、発熱により生体組織LT内の水分が蒸発して当該生体組織LTの粘度が高くなっていく(生体組織LTが凝固していく)時間帯である。 Then, after the time T1 at which the impedance reaches the lowest value VL, the impedance gradually increases as shown in FIG. This is because Joule heat acts on the living tissue LT by the application of high frequency energy, and the living tissue LT itself generates heat, thereby reducing (evaporating) the water in the living tissue LT. In other words, after the time T1, the extracellular matrix is not extracted from the living tissue LT, and the heat in the living tissue LT evaporates due to heat generation, and the viscosity of the living tissue LT increases (the living tissue LT coagulates It is a time zone).
 ステップS4の後、エネルギ制御部341は、インピーダンス算出部342にて算出されたインピーダンスが最低値VL(図9)になったか否かを常時、監視する(ステップS5)。言い換えれば、エネルギ制御部341は、第1エネルギ発生部82,82´から高周波エネルギが付与されることにより、生体組織LTの仮接合が完了したか否かを常時、監視する。
 インピーダンスが最低値VLになったと判断した場合(ステップS5:Yes)には、エネルギ制御部341は、スイッチ32を動作させて高周波電力を供給するリード線を第1高周波用リード線C1,C1´から第2高周波用リード線C2,C2´に切り替える。すなわち、エネルギ制御部341は、生体組織LTの仮接合(第1エネルギ発生部82,82´から生体組織LT(領域ArO)への高周波エネルギの付与)を終了し(ステップS6)、高周波エネルギ出力部31から第2エネルギ発生部83,83´への高周波電力の供給を開始(生体組織LT(領域ArI(図8))に対する高周波エネルギの付与を開始)する(ステップS7:第2エネルギ付与ステップ)。
 ここで、第2エネルギ発生部83,83´から生体組織LTに対して高周波エネルギが付与された場合には、図8に示すように、生体組織LTにおいて、第2エネルギ発生部82,82´の位置(第1,第2包含領域ArC,ArC´)に対応する領域ArI(領域ArOの内側の領域)に高周波エネルギが付与される。すなわち、ステップS7では、生体組織LTの領域ArIに高周波エネルギを付与することにより生体組織LTの本接合を開始している。
After step S4, the energy control unit 341 constantly monitors whether the impedance calculated by the impedance calculation unit 342 has reached the minimum value VL (FIG. 9) (step S5). In other words, the energy control unit 341 constantly monitors whether or not temporary bonding of the living tissue LT is completed by applying high-frequency energy from the first energy generation units 82 and 82 ′.
When it is determined that the impedance has become the lowest value VL (step S5: Yes), the energy control unit 341 operates the switch 32 to supply the high frequency power to the first high frequency lead wires C1 and C1 '. To the second high frequency lead wires C2 and C2 '. That is, the energy control unit 341 ends temporary bonding of the living tissue LT (application of high frequency energy from the first energy generating units 82, 82 'to the living tissue LT (region ArO)) (step S6), and the high frequency energy output Start supply of high-frequency power from the unit 31 to the second energy generation unit 83, 83 '(start application of high-frequency energy to the living tissue LT (region ArI (FIG. 8))) (step S7: second energy application step ).
Here, when high frequency energy is applied to the living tissue LT from the second energy generating units 83 and 83 ′, as shown in FIG. 8, in the living tissue LT, the second energy generating units 82 and 82 ′ are provided. The high frequency energy is applied to the area ArI (area inside the area ArO) corresponding to the position (first and second inclusion areas ArC and ArC ′) of That is, in step S7, main junction of the living tissue LT is started by applying high-frequency energy to the region ArI of the living tissue LT.
 ステップS7の後、エネルギ制御部341は、ステップS7における生体組織LTの本接合を開始してから所定時間が経過したか否かを常時、監視する(ステップS8)。
 そして、所定時間が経過したと判断した場合(ステップS8:Yes)には、エネルギ制御部341は、生体組織LTの本接合(第2エネルギ発生部83,83´から生体組織LT(領域ArI)への高周波エネルギの付与)を終了する(ステップS9)。
 以上の処理により、生体組織LTは、接合される。
After step S7, the energy control unit 341 constantly monitors whether or not a predetermined time has elapsed since the main joining of the living tissue LT in step S7 is started (step S8).
Then, when it is determined that the predetermined time has elapsed (step S8: Yes), the energy control unit 341 performs the main joining of the living tissue LT (from the second energy generating unit 83, 83 'to the living tissue LT (region ArI) The application of the high frequency energy) is ended (step S9).
The living tissue LT is joined by the above processing.
 以上説明した本実施の形態1に係る医療用処置装置1(エネルギ処置具2)は、第1,第2周囲領域ArS,ArS´から高周波エネルギを生体組織LT(領域ArO)に付与して生体組織LTの仮接合を行う。この後、医療用処置装置1は、第1,第2周囲領域ArS,ArS´にて囲まれる第1,第2包含領域ArC,ArC´から高周波エネルギを生体組織LT(領域ArI)に付与して生体組織LTの本接合を行う。
 すなわち、生体組織LTの領域ArOが仮接合されているため、生体組織LT(領域ArI)の本接合時に当該領域ArIから抽出された細胞外基質を当該領域ArIに留めることができる。したがって、本実施の形態1に係る医療用処置装置1(エネルギ処置具2)によれば、生体組織LTの本接合時には領域ArIから抽出された軟化された細胞外基質を留保しながら密接に絡ませ合うことができ、生体組織LTの接合強度を向上させることができる、という効果を奏する。
The medical treatment apparatus 1 (energy treatment tool 2) according to the first embodiment described above imparts high-frequency energy to the living tissue LT (area ArO) from the first and second surrounding areas ArS and ArS ′ to Perform temporary joining of the tissue LT. Thereafter, the medical treatment apparatus 1 applies high-frequency energy to the living tissue LT (area ArI) from the first and second inclusion areas ArC and ArC 'surrounded by the first and second surrounding areas ArS and ArS'. The main junction of the living tissue LT is performed.
That is, since the region ArO of the living tissue LT is temporarily joined, the extracellular matrix extracted from the region ArI at the time of main joining of the living tissue LT (region ArI) can be retained in the region ArI. Therefore, according to the medical treatment apparatus 1 (energy treatment tool 2) according to the first embodiment, at the time of the main joining of the living tissue LT, the softened extracellular matrix extracted from the region ArI is closely entangled while retaining it. The joint strength of the living tissue LT can be improved.
 また、本実施の形態1に係るエネルギ処置具2では、第1挟持面811は、第1包含領域ArCが第1周囲領域ArSに対して突出し、段差を有する凸状に形成されている。同様に、第2挟持面811´は、第2包含領域ArC´が第2周囲領域ArS´に対して突出し、段差を有する凸状に形成されている。
 このため、生体組織LTの本接合時に生体組織LTの領域ArIに高荷重を加えることができ、強固な接合を実現することができる。また、第1挟持面811及び第2挟持面811´の双方が段差を有する凸状に形成されているので、例えば、一方のみが凸状に形成された構成(他方が平坦状に形成された構成)と比較して、第1挟持面811及び第2挟持面811´で生体組織LTを挟持した際に、生体組織LTに不要なストレスを生じさせることがなく、生体組織LT(領域ArI)に対して均一に高荷重を加えることができる。
Further, in the energy treatment device 2 according to the first embodiment, the first holding area ArC protrudes from the first surrounding area ArS, and the first holding surface 811 is formed in a convex shape having a step. Similarly, in the second holding surface 811 ′, the second inclusion region ArC ′ protrudes with respect to the second surrounding region ArS ′, and is formed in a convex shape having a step.
Therefore, a high load can be applied to the region ArI of the living tissue LT at the time of the main joining of the living tissue LT, and a strong bonding can be realized. Further, since both the first holding surface 811 and the second holding surface 811 ′ are formed in a convex shape having a step, for example, a configuration in which only one is formed in a convex shape (the other is formed in a flat shape) Compared with the configuration), when the living tissue LT is held between the first holding surface 811 and the second holding surface 811 ′, unnecessary stress is not generated in the living tissue LT, and the living tissue LT (area ArI) High load can be applied uniformly to
 また、本実施の形態1に係る医療用処置装置1では、生体組織LT(領域ArO)のインピーダンスが最低値VLになった場合に、生体組織LT(領域ArO)の仮接合を終了する(生体組織LT(領域ArI)の本接合を開始する)。
 このため、生体組織LTの領域ArOの仮接合が完了したか否かを適切に判断することができ、上述した効果(接合強度を向上させることができる)をより好適に実現することができる。
Further, in the medical treatment apparatus 1 according to the first embodiment, the temporary joining of the living tissue LT (region ArO) is ended when the impedance of the living tissue LT (region ArO) becomes the lowest value VL Initiate main junction of tissue LT (region ArI)).
Therefore, it can be appropriately determined whether or not temporary bonding of the region ArO of the living tissue LT is completed, and the above-described effect (the bonding strength can be improved) can be more suitably realized.
 また、本実施の形態1に係る医療用処置装置1では、第1エネルギ発生部82,82´からの高周波エネルギの発生時での第1エネルギ発生部82,82´の最高到達温度より第2エネルギ発生部83,83´からの高周波エネルギの発生時での第2エネルギ発生部83,83´の最高到達温度が高くなるように第1エネルギ発生部82,82´及び第2エネルギ発生部83,83´に高周波エネルギを発生させる。
 このため、生体組織LT(領域ArO)よりも外側の正常な組織への熱侵襲を効果的に抑制することができる。
Further, in the medical treatment apparatus 1 according to the first embodiment, the second highest reached temperature of the first energy generating parts 82, 82 'at the time of generation of the high frequency energy from the first energy generating parts 82, 82'. First energy generating unit 82, 82 'and second energy generating unit 83 such that the maximum temperature reached by second energy generating unit 83, 83' when generating high frequency energy from energy generating unit 83, 83 'becomes higher. , 83 'to generate high frequency energy.
For this reason, it is possible to effectively suppress heat invasion to normal tissue outside the living tissue LT (region ArO).
(実施の形態1の変形例)
 上述した実施の形態1では、生体組織(領域ArO)の仮接合の終了タイミングを生体組織LT(領域ArO)のインピーダンスに基づいて判断していたが、これに限られず、生体組織(領域ArI)の本接合時と同様に、仮接合の開始からの時間に基づいて判断しても構わない。同様に、生体組織(領域ArI)の本接合の終了タイミングについても、生体組織(領域ArO)の仮接合時と同様に、領域ArIのインピーダンスに基づいて判断しても構わない。
(Modification of Embodiment 1)
In the first embodiment described above, the end timing of temporary joining of the living tissue (region ArO) is determined based on the impedance of the living tissue LT (region ArO). However, the present invention is not limited thereto. Living tissue (region ArI) As in the case of the final bonding, the determination may be made based on the time from the start of the temporary bonding. Similarly, the termination timing of the main junction of the living tissue (region ArI) may be determined based on the impedance of the region ArI, as in the temporary joining of the living tissue (region ArO).
 上述した実施の形態1では、生体組織LT(領域ArO)のインピーダンスが最低値VLとなった場合に、生体組織LT(領域ArO)の仮接合を終了していたが、これに限られない。生体組織LT(領域ArO)のインピーダンスが最低値VLとなった時間T1の後(例えば、時間T1から仮接合を開始した時点での初期値VI(図9)に戻った時間T2(図9)までの間)であれば、いずれのタイミングで生体組織LT(領域ArO)の仮接合を終了しても構わない。 In the first embodiment described above, although the temporary joining of the living tissue LT (region ArO) is ended when the impedance of the living tissue LT (region ArO) becomes the lowest value VL, the present invention is not limited thereto. After time T1 when the impedance of the living tissue LT (area ArO) becomes the lowest value VL (for example, time T2 (FIG. 9) returned to initial value VI (FIG. 9) when temporary joining is started from time T1 The temporary joining of the living tissue LT (region ArO) may be terminated at any timing as long as
 上述した実施の形態1では、スイッチ32を設けることにより、生体組織LTに対して、第1エネルギ発生部82,82´にて発生した高周波エネルギ、及び第2エネルギ発生部83,83´にて発生した高周波エネルギを同時に付与することができない構成としていたが、これに限られず、スイッチ32を省略し、同時に付与することができる構成としても構わない。すなわち、第1エネルギ発生部82,82´にて発生した高周波エネルギ、及び第2エネルギ発生部83,83´にて発生した高周波エネルギが生体組織LTに対して同時に付与される期間があっても構わない。 In the first embodiment described above, by providing the switch 32, the high-frequency energy generated in the first energy generating unit 82, 82 'and the second energy generating unit 83, 83' are applied to the living tissue LT. Although the configuration has been described in which the generated high frequency energy can not be simultaneously applied, the present invention is not limited to this. The switch 32 may be omitted and the configuration may be simultaneously applied. That is, even if there is a period in which the high-frequency energy generated by the first energy generating unit 82, 82 'and the high-frequency energy generated by the second energy generating unit 83, 83' are simultaneously applied to the living tissue LT. I do not care.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 上述した実施の形態1に係る医療用処置装置1では、生体組織LTの仮接合及び本接合の双方に高周波エネルギを利用していた。
 これに対して本実施の形態2に係る医療用処置装置では、生体組織LTの仮接合に熱エネルギを利用し、生体組織LTの本接合に高周波エネルギを利用している。
 以下、本実施の形態2に係る第1保持部材、第2保持部材、及び制御装置の構成を説明する。
Second Embodiment
Next, a second embodiment of the present invention will be described.
In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted or simplified.
In the medical treatment apparatus 1 according to the first embodiment described above, high frequency energy is used for both temporary bonding and main bonding of the living tissue LT.
On the other hand, in the medical treatment apparatus according to the second embodiment, thermal energy is used for temporary bonding of the living tissue LT, and high frequency energy is used for main bonding of the living tissue LT.
The configurations of the first holding member, the second holding member, and the control device according to the second embodiment will be described below.
 〔第1保持部材の構成〕
 図10及び図11は、本発明の実施の形態2に係る医療用処置装置1A(エネルギ処置具2A)を構成する第1保持部材8Aを示す図である。具体的に、図10及び図11は、図3及び図4にそれぞれ対応した図である。
 第1保持部材8Aは、図10及び図11に示すように、上述した実施の形態1で説明した第1保持部材8(図3,図4)と同様に第1顎部81及び第2エネルギ発生部83を備えるとともに、第1エネルギ発生部82の代わりに第1エネルギ発生部82Aを採用している。
[Configuration of First Holding Member]
FIG.10 and FIG.11 is a figure which shows 1st holding member 8A which comprises the medical treatment apparatus 1A (energy treatment tool 2A) which concerns on Embodiment 2 of this invention. Specifically, FIGS. 10 and 11 correspond to FIGS. 3 and 4, respectively.
As shown in FIGS. 10 and 11, the first holding member 8A has the first jaw 81 and the second energy similarly to the first holding member 8 (FIGS. 3 and 4) described in the first embodiment. A generator 83 is provided, and a first energy generator 82A is employed instead of the first energy generator 82.
 第1エネルギ発生部82Aは、上述した第1エネルギ発生部82と同様の形状(第1周囲領域ArSと同一の平面形状(略U字形状))を有し、第1周囲領域ArSに固定されている。そして、第1エネルギ発生部82Aは、制御装置3A(図12参照)による制御の下、熱エネルギを発生する。
 本実施の形態2では、第1エネルギ発生部82Aは、具体的な図示は省略したが、当該第1エネルギ発生部82Aと同様の略U字形状を有する抵抗体(発熱源)が絶縁性材料にて被覆された構成(例えば、セラミックヒータ等)を有する。そして、第1エネルギ発生部82Aは、電気ケーブルCを構成する第1発熱用リード線C3,C4(図12参照)が抵抗体(図示略)の両端部に接合され、第1発熱用リード線C3,C4を介して制御装置3Aにより電圧が印加(通電)されることにより、発熱する(熱エネルギを発生する)。
The first energy generating unit 82A has the same shape as that of the first energy generating unit 82 described above (the same planar shape (substantially U-shaped) as the first surrounding area ArS), and is fixed to the first surrounding area ArS. ing. Then, the first energy generating unit 82A generates thermal energy under the control of the control device 3A (see FIG. 12).
In the second embodiment, although the first energy generating unit 82A is not specifically illustrated, a resistor (heat generating source) having a substantially U shape similar to that of the first energy generating unit 82A is an insulating material. (E.g., a ceramic heater). In the first energy generating unit 82A, the first heat generating lead wires C3 and C4 (see FIG. 12) constituting the electrical cable C are joined to both ends of the resistor (not shown), and the first heat generating lead wire As a voltage is applied (energized) by the control device 3A via C3 and C4, heat is generated (heat energy is generated).
 〔第2保持部材の構成〕
 本実施の形態2に係る第2保持部材8A´は、第1保持部材8Aと同一の構成及び形状を有する。図10及び図11では、第2保持部材8A´の構成を示す符号として、第1保持部材8Aと同一の構成については、当該第1保持部材8Aの構成を示す符号に「´」を付加し、当該第1保持部材8Aの構成を示す符号にかっこ付きで併記している。
 すなわち、第2保持部材8A´は、図10及び図11に示すように、上述した実施の形態1で説明した第2保持部材8´と同様に第2顎部81´及び第2エネルギ発生部83´を備えるとともに、第1エネルギ発生部82Aと同様の第1エネルギ発生部82A´を備える。
 第1エネルギ発生部82A´は、電気ケーブルCを構成する第2発熱用リード線C3´,C4´(図12参照)が抵抗体(図示略)の両端部に接合され、第2発熱用リード線C3´,C4´を介して制御装置3Aにより電圧が印加(通電)されることにより、発熱する(熱エネルギを発生する)。
 なお、本実施の形態2では、第1エネルギ発生部82A´は、後述するように、生体組織LT(領域ArO)の熱伝導率を検出するために用いられる。
[Configuration of Second Holding Member]
The second holding member 8A ′ according to the second embodiment has the same configuration and shape as the first holding member 8A. In FIG. 10 and FIG. 11, as a code | symbol which shows the structure of 2nd holding member 8A ', about structure same as 1st holding member 8A, "'" is added to the code | symbol which shows the structure of the said 1st holding member 8A. The reference numeral indicating the configuration of the first holding member 8A is shown in parentheses.
That is, as shown in FIG. 10 and FIG. 11, the second holding member 8A ′ is the second jaw 81 ′ and the second energy generating portion as in the second holding member 8 ′ described in the first embodiment. The first energy generating unit 82A 'is provided in the same manner as the first energy generating unit 82A.
In the first energy generating unit 82A ', the second heat generating lead wires C3' and C4 '(see FIG. 12) constituting the electric cable C are joined to both ends of the resistor (not shown), and the second heat generating lead As a voltage is applied (energized) by the control device 3A through the lines C3 'and C4', heat is generated (heat energy is generated).
In the second embodiment, the first energy generation unit 82A ′ is used to detect the thermal conductivity of the living tissue LT (region ArO) as described later.
 〔制御装置の構成〕
 図12は、本発明の実施の形態2に係る制御装置3Aの構成を示すブロック図である。
 本実施の形態2に係る制御装置3Aは、図12に示すように、上述した実施の形態1で説明した制御装置3(図6)に対して、スイッチ32が省略され、熱エネルギ出力部35及び第2センサ36が追加されるとともに、制御部34の一部の機能を変更した制御部34Aが採用されている。
 なお、スイッチ32が省略されたことに伴い、本実施の形態2に係る高周波エネルギ出力部31は、第2高周波用リード線C2,C2´を介して、第2エネルギ発生部83,83´のみに電気的に接続されている。
[Configuration of control device]
FIG. 12 is a block diagram showing a configuration of a control device 3A according to Embodiment 2 of the present invention.
In the control device 3A according to the second embodiment, as shown in FIG. 12, the switch 32 is omitted from the control device 3 (FIG. 6) described in the first embodiment described above, and the thermal energy output unit 35 And a second sensor 36 is added, and a control unit 34A in which some functions of the control unit 34 are changed is adopted.
Since the switch 32 is omitted, the high frequency energy output unit 31 according to the second embodiment only includes the second energy generation unit 83, 83 'via the second high frequency lead wires C2, C2'. Are connected electrically.
 熱エネルギ出力部35は、制御部34Aによる制御の下、発熱用リード線C3,C4,C3´,C4´を介して第1エネルギ発生部82A,82A´に電圧を印加(通電)する。
 第2センサ36は、熱エネルギ出力部35から第1エネルギ発生部82A´に供給されている電圧値及び電流値を検出する。そして、第2センサ36は、検出した電圧値及び電流値に応じた信号を制御部34Aに出力する。
The thermal energy output unit 35 applies (energizes) a voltage to the first energy generation units 82A and 82A 'through the heating lead wires C3, C4, C3' and C4 'under the control of the control unit 34A.
The second sensor 36 detects the voltage value and the current value supplied from the thermal energy output unit 35 to the first energy generation unit 82A ′. Then, the second sensor 36 outputs a signal corresponding to the detected voltage value and current value to the control unit 34A.
 制御部34Aは、図12に示すように、上述した実施の形態1で説明した制御部34(図6)に対して、インピーダンス算出部342の代わりに熱伝導率算出部343が採用されているとともに、エネルギ制御部341の代わりにエネルギ制御部341Aが採用されている。
 エネルギ制御部341Aは、熱エネルギ出力部35を駆動し、熱エネルギ出力部35から第1エネルギ発生部82Aに電圧を印加させる(熱エネルギを発生させる)。同時に、エネルギ制御部341Aは、熱エネルギ出力部35から第1エネルギ発生部82A´に熱伝導率の検出用の電圧を印加させる。また、エネルギ制御部341Aは、熱伝導率算出部343にて算出された熱伝導率に基づいて、熱エネルギ出力部35の駆動を停止して高周波エネルギ出力部31を駆動し、高周波エネルギ出力部31から第2エネルギ出力部83,83´に高周波電力を供給させる(高周波エネルギを発生させる)。
As shown in FIG. 12, the control unit 34A employs a thermal conductivity calculation unit 343 instead of the impedance calculation unit 342 in the control unit 34 (FIG. 6) described in the first embodiment described above. In addition, an energy control unit 341A is employed instead of the energy control unit 341.
The energy control unit 341A drives the thermal energy output unit 35, and applies a voltage from the thermal energy output unit 35 to the first energy generation unit 82A (generates thermal energy). At the same time, the energy control unit 341A applies a voltage for detecting the thermal conductivity from the thermal energy output unit 35 to the first energy generation unit 82A '. In addition, the energy control unit 341A stops the drive of the thermal energy output unit 35 and drives the high frequency energy output unit 31 based on the thermal conductivity calculated by the thermal conductivity calculation unit 343, and the high frequency energy output unit The high frequency power is supplied to the second energy output unit 83, 83 'from 31 (the high frequency energy is generated).
 ここで、エネルギ制御部341Aは、上述した実施の形態1と同様に、第1エネルギ発生部82Aからの熱エネルギの発生時での第1エネルギ発生部82Aの最高到達温度より第2エネルギ発生部83,83´からの高周波エネルギの発生時での第2エネルギ発生部83,83´の最高到達温度が高くなるように第1エネルギ発生部82A及び第2エネルギ発生部83,83´に熱エネルギ及び高周波エネルギをそれぞれ発生させる。 Here, as in the first embodiment described above, the energy control unit 341A generates a second energy generation unit based on the highest temperature reached by the first energy generation unit 82A when the thermal energy is generated from the first energy generation unit 82A. Thermal energy of the first energy generating unit 82A and the second energy generating unit 83, 83 'so that the maximum temperature reached by the second energy generating unit 83, 83' at the time of generation of high frequency energy from 83, 83 'becomes higher. And generate high frequency energy respectively.
 熱伝導率算出部343は、第2センサ36にて検出された電圧値及び電流値に基づいて、第1エネルギ発生部82Aから生体組織LT(領域ArO)に対して熱エネルギが付与されている際での第1エネルギ発生部82A´の抵抗値の変化(温度の変化)を算出し、当該抵抗値の変化に基づいて、生体組織LT(領域ArO)の熱伝導率を算出する。 The thermal conductivity calculation unit 343 applies thermal energy to the living tissue LT (area ArO) from the first energy generation unit 82A based on the voltage value and the current value detected by the second sensor 36. The change (change in temperature) of the resistance value of the first energy generation unit 82A 'at that time is calculated, and the thermal conductivity of the living tissue LT (region ArO) is calculated based on the change in the resistance value.
 〔接合制御〕
 次に、本実施の形態2に係る接合制御について説明する。
 図13は、本発明の実施の形態2に係る接合制御を示すフローチャートである。
 本実施の形態2に係る接合制御では、図13に示すように、上述した実施の形態1で説明した接合制御(図7)に対して、第1エネルギ発生部82,82´及びインピーダンス算出部342に関連するステップSS3~S6の代わりに、ステップS3A~S6Aが採用されている。以下、ステップS3A~S6Aのみ説明する。
[Joint control]
Next, bonding control according to the second embodiment will be described.
FIG. 13 is a flowchart showing bonding control according to the second embodiment of the present invention.
In the bonding control according to the second embodiment, as shown in FIG. 13, with respect to the bonding control (FIG. 7) described in the first embodiment described above, the first energy generating unit 82, 82 'and the impedance calculating unit Steps S3A to S6A are employed instead of steps SS3 to S6 related to 342. Hereinafter, only steps S3A to S6A will be described.
 エネルギ制御部341Aは、フットスイッチ4がONになると(ステップS2:Yes)、熱エネルギ出力部35を駆動し、熱エネルギ出力部35から第1エネルギ発生部82Aへの電圧の印加を開始(生体組織LT(領域ArO(図8))に対する熱エネルギの付与を開始)する(ステップS3A:第1エネルギ付与ステップ)。すなわち、ステップS3Aでは、上述した実施の形態1で説明したステップS3と同様に、生体組織LTの仮接合を開始している。また、ステップS3Aと同時に、エネルギ制御部341Aは、熱エネルギ出力部35から第1エネルギ発生部82A´に熱伝導率の検出用の電圧を印加させる。
 ステップS3Aの後、熱伝導率算出部343は、第2センサ36にて検出された電圧値及び電流値に基づいて、生体組織LT(領域ArO)の熱伝導率の算出を開始する(ステップS4A)。
When the foot switch 4 is turned on (step S2: Yes), the energy control unit 341A drives the thermal energy output unit 35, and starts applying a voltage from the thermal energy output unit 35 to the first energy generation unit 82A (living body The application of thermal energy to the tissue LT (area ArO (FIG. 8)) is started (step S3A: first energy application step). That is, in step S3A, temporary joining of the living tissue LT is started as in step S3 described in the first embodiment described above. At the same time as step S3A, the energy control unit 341A applies a voltage for detecting the thermal conductivity from the thermal energy output unit 35 to the first energy generation unit 82A '.
After step S3A, the thermal conductivity calculation unit 343 starts calculation of the thermal conductivity of the living tissue LT (region ArO) based on the voltage value and the current value detected by the second sensor 36 (step S4A). ).
 熱エネルギの付与により生体組織LT内の水分が減少(蒸発)していく(生体組織LTが凝固していく)と、当該生体組織LTの熱伝導率は、上昇していく。すなわち、生体組織LTの熱伝導率が所定の値を超えた時点で、生体組織LTの仮接合が完了したか否かを判断することができる。
 このため、ステップS4Aの後、エネルギ制御部341Aは、熱伝導率算出部343にて算出された熱伝導率が所定の値を超えたか否かを常時、監視する(ステップS5A)。
 熱伝導率が所定の値を超えたと判断した場合(ステップS5A:Yes)には、エネルギ制御部341Aは、生体組織LTの仮接合(第1エネルギ発生部82Aから生体組織LT(領域ArO)への熱エネルギの付与)を終了し(ステップS6A)、ステップS7に移行する。
As the moisture in the living tissue LT is reduced (evaporated) by the application of the thermal energy (the living tissue LT is solidified), the thermal conductivity of the living tissue LT is increased. That is, when the thermal conductivity of the living tissue LT exceeds a predetermined value, it can be determined whether temporary joining of the living tissue LT is completed.
Therefore, after step S4A, the energy control unit 341A constantly monitors whether the thermal conductivity calculated by the thermal conductivity calculation unit 343 exceeds a predetermined value (step S5A).
If it is determined that the thermal conductivity exceeds the predetermined value (step S5A: Yes), the energy control unit 341A proceeds from temporary joining of the living tissue LT (from the first energy generation unit 82A to the living tissue LT (area ArO) Application of the thermal energy (step S6A), and the process proceeds to step S7.
 以上説明した本実施の形態2に係る医療用処置装置1Aによれば、上述した実施の形態1と同様の効果の他、以下の効果がある。
 本実施の形態2では、第1エネルギ発生部82A(82A´)は、セラミックヒータ等により構成され絶縁性が確保されている。このため、第1エネルギ発生部82A(82A´)と第2エネルギ発生部83(83´)とが電気的にショートし難い構成を実現することができる。また、第1エネルギ発生部82A(82A´)と第2エネルギ発生部83(83´)との間の距離を比較的に近距離にすることができるため、第1保持部材8A(第2保持部材8A´)の小型化を図ることができる。
The medical treatment apparatus 1A according to the second embodiment described above has the following effects in addition to the effects similar to the first embodiment described above.
In the second embodiment, the first energy generating unit 82A (82A ') is formed of a ceramic heater or the like to ensure insulation. For this reason, it is possible to realize a configuration in which the first energy generation unit 82A (82A ') and the second energy generation unit 83 (83') are less likely to electrically short. In addition, since the distance between the first energy generating unit 82A (82A ') and the second energy generating unit 83 (83') can be relatively short, the first holding member 8A (second holding The members 8A ') can be miniaturized.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1,2によってのみ限定されるべきものではない。
 図14Aないし図14Cは、本発明の実施の形態1,2の変形例1を示す図である。具体的に、図14A及び図14Bは、図3に対応した図であり、本実施の形態1の変形例(第1挟持面を平坦状にした変形例)を示す図である。図14Cは、図3に対応した図であり、本実施の形態2の変形例(第1挟持面を平坦状にした変形例)を示す図である。
 上述した実施の形態1,2では、第1顎部81は、突出部8111を有していた。すなわち、第1挟持面811は、段差を有する凸形状を有していた。しかしながら、第1挟持面811としては、これに限られない。
(Other embodiments)
Although the modes for carrying out the present invention have been described above, the present invention is not to be limited only by the first and second embodiments described above.
14A to 14C are diagrams showing a first modification of the first and second embodiments of the present invention. Specifically, FIG. 14A and FIG. 14B correspond to FIG. 3 and show a modified example of the first embodiment (a modified example in which the first holding surface is flat). FIG. 14C is a view corresponding to FIG. 3 and showing a modified example of the second embodiment (a modified example in which the first holding surface is flat).
In the first and second embodiments described above, the first jaw 81 has the protrusion 8111. That is, the first holding surface 811 had a convex shape having a step. However, the first holding surface 811 is not limited to this.
 例えば、上述した実施の形態1において、第1保持部材8(第2保持部材8´)の代わりに、図14A及び図14Bに示した第1保持部材8B,8C(第2保持部材8B´,8C´)を採用しても構わない。
 第1保持部材8Bは、図14Aに示すように、上述した実施の形態1で説明した第1保持部材8に対して、第1顎部81と形状が異なる第1顎部81Bを採用している。
 具体的に、第1顎部81Bは、上述した実施の形態1で説明した第1顎部81に対して、突出部8111が省略されている。すなわち、第1顎部81Bの第1挟持面811Bは、平坦状に構成されている。
 このように構成した場合であっても、第1エネルギ発生部82と第2エネルギ発生部83との平面的に見た場合(図2中、上方側から見た場合)での位置関係は、上述した実施の形態1で説明した位置関係と同一である。すなわち、第2エネルギ発生部83は、第1挟持面811Bにおける中心位置CPを含む領域である第1領域Ar1B(平面的に見た場合に上述した実施の形態1で説明した第1領域Ar1と同一の領域)を包含する第1包含領域ArCB(平面的に見た場合に上述した実施の形態1で説明した領域ArCと同一の領域)と同一の平面形状(略矩形形状)を有し、当該第1包含領域ArCBに固定される。また、第1エネルギ発生部82は、第1挟持面811Bにおける第1領域Ar1Bを囲む第1周囲領域ArSB(平面的に見た場合に上述した実施の形態1で説明した領域ArSと同一の領域)と同一の平面形状(略U字形状)を有し、当該第1周囲領域ArSBに固定される。
 この際、第1エネルギ発生部82と第2エネルギ発生部83との間には、図14Aに示すように、空気層(隙間)が介在しているため、第1エネルギ発生部82と第2エネルギ発生部83との間でのショートを回避することができる。
 なお、第2保持部材8B´は、第1保持部材8Aと同一の構成及び形状を有する。図14Aでは、第2保持部材8B´の構成を示す符号として、第1保持部材8Bと同一の構成については、当該第1保持部材8Bの構成を示す符号に「´」を付加し、当該第1保持部材8Bの構成を示す符号にかっこ付きで併記している。
 すなわち、第2保持部材8B´は、図14Aに示すように、上述した実施の形態1で説明した第2保持部材8´に対して、第2顎部81´の代わりに、上述した第1顎部81Bと同様の第2顎部81B´(第2挟持面811B´を含む)を採用している。
 ここで、領域Ar1B´は、第1挟持面811B及び第2挟持面811B´を互いに対向させた状態で、第1挟持面811Bの第1領域Ar1Bを当該第2挟持面811B´に投影した領域であり、本発明に係る第2領域に相当する。以下、領域Ar1B´を第2領域Ar1B´と記載する。また、領域ArCB´は、第2領域Ar1B´を包含する領域であり、本発明に係る第2包含領域に相当する。以下、領域ArCB´を第2包含領域ArCB´と記載する。さらに、領域ArSB´は、第2領域Ar1B´を囲む領域であり、本発明に係る第2周囲領域に相当する。以下、領域ArSB´を第2周囲領域と記載する。なお、本変形例1では、第2包含領域ArCB´及び第2周囲領域ArSB´は、第1挟持面811B及び第2挟持面811B´を互いに対向させた状態で、第1挟持面811Bの第1包含領域ArCB及び第1周囲領域ArSBを当該第2挟持面811B´にそれぞれ投影した領域である。
For example, in Embodiment 1 described above, instead of the first holding member 8 (second holding member 8 '), the first holding members 8B and 8C (second holding members 8B', shown in FIGS. 14A and 14B). You may adopt 8C ').
As shown in FIG. 14A, the first holding member 8B adopts a first jaw 81B having a shape different from that of the first jaw 81 in addition to the first holding member 8 described in the first embodiment. There is.
Specifically, in the first jaw 81B, the protrusion 8111 is omitted from the first jaw 81 described in the first embodiment described above. That is, the first holding surface 811B of the first jaw 81B is configured to be flat.
Even in the case of this configuration, the positional relationship between the first energy generating unit 82 and the second energy generating unit 83 in plan view (when viewed from the upper side in FIG. 2) is It is the same as the positional relationship described in the first embodiment described above. That is, the second energy generation unit 83 is a first region Ar1B that is a region including the center position CP in the first holding surface 811B (the first region Ar1 described in the first embodiment when viewed in a plan view) Having the same planar shape (substantially rectangular shape) as the first inclusion region ArCB (the same region as the region ArC described in the first embodiment when viewed in plan view) including the same region), It is fixed to the first inclusion area ArCB. In addition, the first energy generation unit 82 is a first surrounding area ArSB surrounding the first area Ar1B in the first holding surface 811B (the same area as the area ArS described in the first embodiment when viewed in plan) And has the same planar shape (substantially U-shaped), and is fixed to the first surrounding area ArSB.
At this time, as shown in FIG. 14A, an air layer (a gap) is interposed between the first energy generation unit 82 and the second energy generation unit 83, and thus the first energy generation unit 82 and the second energy generation unit 82 A short circuit with the energy generating unit 83 can be avoided.
The second holding member 8B 'has the same configuration and shape as the first holding member 8A. In FIG. 14A, as a symbol indicating the configuration of the second holding member 8B ′, “′ ′ ′ is added to the symbol indicating the configuration of the first holding member 8B for the same configuration as the first holding member 8B, and (1) The reference numeral indicating the configuration of the holding member 8B is shown in parentheses.
That is, as shown in FIG. 14A, the second holding member 8B ′ is the first holding member described above in place of the second jaw 81 ′ with respect to the second holding member 8 ′ described in the first embodiment. A second jaw 81B '(including a second holding surface 811B') similar to the jaw 81B is employed.
Here, the area Ar1B ′ is an area obtained by projecting the first area Ar1B of the first holding surface 811B onto the second holding surface 811B ′ with the first holding surface 811B and the second holding surface 811B ′ facing each other. And corresponds to a second area according to the present invention. Hereinafter, the region Ar1B 'will be referred to as a second region Ar1B'. The region ArCB ′ is a region including the second region Ar1B ′ and corresponds to a second inclusion region according to the present invention. Hereinafter, the region ArCB ′ is described as a second inclusion region ArCB ′. Furthermore, the area ArSB ′ is an area surrounding the second area Ar1B ′, and corresponds to a second surrounding area according to the present invention. Hereinafter, the region ArSB ′ is referred to as a second surrounding region. In the first modification, the second inclusion region ArCB ′ and the second peripheral region ArSB ′ are configured such that the first sandwiching surface 811B and the second sandwiching surface 811B ′ are opposed to each other. (1) An area obtained by projecting the inclusion area ArCB and the first surrounding area ArSB onto the second sandwiching surface 811 B ′.
 第1保持部材8Cは、図14Bに示すように、上述した第1保持部材8Bに対して、第1顎部81Bの代わりに、第1顎部81Cを採用した点が異なる。
 第1顎部81Cは、上述した第1顎部81Bに対して、第1エネルギ発生部82と第2エネルギ発生部83との隙間を埋めるように突出部8113を設けた点が異なる。
 なお、第2保持部材8C´は、第1保持部材8Cと同一の構成及び形状を有する。図14Bでは、第2保持部材8C´の構成を示す符号として、第1保持部材8Cと同一の構成については、当該第1保持部材8Cの構成を示す符号に「´」を付加し、当該第1保持部材8Cの構成を示す符号にかっこ付きで併記している。
 すなわち、第2保持部材8C´は、図14Bに示すように、上述した実施の形態1で説明した第2保持部材8´に対して、第2顎部81´の代わりに、上述した第1顎部81Cと同様の第2顎部81C´(突出部8113´を含む)を採用している。
The first holding member 8C differs from the above-described first holding member 8B in that a first jaw 81C is employed instead of the first jaw 81B, as shown in FIG. 14B.
The first jaw 81C is different from the above-described first jaw 81B in that a projection 8113 is provided to fill the gap between the first energy generator 82 and the second energy generator 83.
The second holding member 8C 'has the same configuration and shape as the first holding member 8C. In FIG. 14B, as a symbol indicating the configuration of the second holding member 8C ′, “′ ′” is added to the symbol indicating the configuration of the first holding member 8C for the same configuration as the first holding member 8C, and (1) The reference numeral indicating the configuration of the holding member 8C is shown in parentheses.
That is, as shown in FIG. 14B, the second holding member 8C ′ is the first holding member described above in place of the second jaw 81 ′ with respect to the second holding member 8 ′ described in the first embodiment. A second jaw 81C '(including the protrusion 8113') similar to the jaw 81C is employed.
 また、例えば、上述した実施の形態2において、第1保持部材8A(第2保持部材8A´)の代わりに、図14Cに示した第1保持部材8D(第2保持部材8D´)を採用しても構わない。
 第1保持部材8Dは、図14Cに示すように、上述した実施の形態2で説明した第1保持部材8Aに対して、第1顎部81の代わりに上述した第1顎部81Bを採用した点が異なる。
 この際、第1エネルギ発生部82Aは、セラミックヒータ等により構成され絶縁性が確保されている。このため、図14Cに示すように、第1エネルギ発生部82Aと第2エネルギ発生部83との間に隙間がないように第1エネルギ発生部82Aと第2エネルギ発生部83とを配置しても構わない。なお、図14Cでは、当該隙間を埋めるために第2エネルギ発生部83のサイズを大きくしているが、これに限られず、当該隙間を埋めるために第1エネルギ発生部82Aのサイズを大きくしても構わない。
 なお、第2保持部材8D´は、第1保持部材8Dと同一の構成及び形状を有する。図14Cでは、第2保持部材8D´の構成を示す符号として、第1保持部材8Dと同一の構成については、当該第1保持部材8Dの構成を示す符号に「´」を付加し、当該第1保持部材8Dの構成を示す符号にかっこ付きで併記している。
 すなわち、第2保持部材8D´は、図14Cに示すように、上述した実施の形態2で説明した第2保持部材8A´に対して、第2顎部81´の代わりに、上述した第1顎部81Bと同様の第2顎部81B´を採用している。
Also, for example, in the second embodiment described above, instead of the first holding member 8A (second holding member 8A '), the first holding member 8D (second holding member 8D') shown in FIG. 14C is adopted. It does not matter.
As shown in FIG. 14C, the first holding member 8D adopts the first jaw 81B described above in place of the first jaw 81 with respect to the first holding member 8A described in the second embodiment described above. The point is different.
Under the present circumstances, the 1st energy generation part 82A is constituted by a ceramic heater etc., and insulation is secured. Therefore, as shown in FIG. 14C, the first energy generating unit 82A and the second energy generating unit 83 are disposed such that there is no gap between the first energy generating unit 82A and the second energy generating unit 83. I don't care. In FIG. 14C, the size of the second energy generating unit 83 is increased to fill the gap, but the present invention is not limited to this, and the size of the first energy generating unit 82A may be increased to fill the gap. I don't care.
The second holding member 8D 'has the same configuration and shape as the first holding member 8D. In FIG. 14C, as a symbol indicating the configuration of the second holding member 8D ′, “′ ′ ′ is added to the symbol indicating the configuration of the first holding member 8D for the same configuration as the first holding member 8D, and 1 indicates in parentheses the reference numeral indicating the configuration of the holding member 8D.
That is, as shown in FIG. 14C, the second holding member 8D ′ is the first holding member described above in place of the second jaw 81 ′ with respect to the second holding member 8A ′ described in the second embodiment. A second jaw 81B 'similar to the jaw 81B is employed.
 上述した実施の形態1,2及び変形例1(図14A~図14C)では、第1エネルギ発生部82,82A(82´,82A´)と第2エネルギ発生部83(83´)とが同一の厚み寸法となるように設定されていたが、これに限られない。例えば、第2エネルギ発生部83(83´)の厚み寸法が第1エネルギ発生部82,82A(82´,82A´)の厚み寸法よりも大きくなるように設定しても構わない。 In the first and second embodiments and the first modification (FIGS. 14A to 14C) described above, the first energy generation units 82 and 82A (82 'and 82A') and the second energy generation unit 83 (83 ') are the same. Although it was set so that it might become the thickness dimension of, it is not restricted to this. For example, the thickness dimension of the second energy generating unit 83 (83 ') may be set to be larger than the thickness dimension of the first energy generating units 82, 82A (82', 82A ').
 図15A及び図15Bは、本発明の実施の形態1,2の変形例2を示す図である。具体的に、図15Aは、図4に対応した図であり、本変形例2に係る第1保持部材8Eを示す図である。図15Bは、本変形例2に係る第2保持部材8E´を示す図である。
 上述した実施の形態1,2及び変形例1(図14A~図14C)では、第1保持部材8(8A~8D)と第2保持部材8´(8A´~8D´)とが同一の構成及び形状を有していたが、これに限られない。
 例えば、変形例1(図14A~図14C)に示したように第1挟持面811及び第2挟持面811´の双方を平坦状に構成した構成に限られず、一方のみを平坦状に構成した構成を採用しても構わない。
15A and 15B are diagrams showing a second modification of the first and second embodiments of the present invention. Concretely, FIG. 15A is a figure corresponding to FIG. 4, and is a figure which shows the 1st holding member 8E which concerns on this modification 2. As shown in FIG. FIG. 15B is a view showing a second holding member 8E ′ according to the second modification.
In the first and second embodiments and the first modification (FIGS. 14A to 14C) described above, the first holding member 8 (8A to 8D) and the second holding member 8 '(8A' to 8D ') have the same configuration. And although it had a shape, it is not restricted to this.
For example, as shown in the first modification (FIGS. 14A to 14C), both the first holding surface 811 and the second holding surface 811 'are not limited to the flat configuration, but only one of them is flat. The configuration may be adopted.
 また、上述した実施の形態1,2及び変形例1では、第1エネルギ発生部82(82A)と第2エネルギ発生部83とが同一の第1挟持面811に設けられていた(第1エネルギ発生部82´(82A´)と第2エネルギ発生部83´とが同一の第2挟持面811´に設けられていた)が、これに限られず、例えば、図15A及び図15Bに示すように、異なる挟持面にそれぞれ設けた構成を採用しても構わない。
 具体的に、図15Aに示した第1保持部材8Eは、上述した変形例1で説明した第1顎部81Bと、第1エネルギ発生部82Eとを備える。
 第1エネルギ発生部82Eは、上述した実施の形態2で説明した第1エネルギ発生部82Aと同様に、セラミックヒータ等で構成され、熱エネルギを発生する。そして、第1エネルギ発生部82Eは、図15Aに示すように、第1挟持面811Bにおける第1周囲領域ArSBと同一の平面形状(略U字形状)を有し、当該第1周囲領域ArSBに固定される。
 また、図15Bに示した第2保持部材8E´は、上述した変形例1で説明した第2顎部81B´と、第2エネルギ発生部83Eとを備える。
 第2エネルギ発生部83Eは、上述した第1エネルギ発生部82Eと同様に、セラミックヒータ等で構成され、熱エネルギを発生する。そして、第2エネルギ発生部83Eは、図15Bに示すように、第2挟持面811B´の略全体を占める領域ArCE´と同一の平面形状(略矩形状)を有し、当該領域ArCE´に固定される。なお、領域ArCE´は、第2領域Ar1B´を包含する領域であり、本発明に係る第2包含領域に相当する。以下、領域ArCE´を第2包含領域ArCE´と記載する。
 すなわち、第2エネルギ発生部83Eが配置される第2包含領域ArCE´としては、第2領域Ar1B´を包含していればよく、図15Bに示すように、第2周囲領域ArSB´まで広がった領域としても構わない。
In the first and second embodiments and the first modification described above, the first energy generating unit 82 (82A) and the second energy generating unit 83 are provided on the same first sandwiching surface 811 (first energy The generation unit 82 '(82A') and the second energy generation unit 83 'are provided on the same second holding surface 811'), but not limited to this, for example, as shown in FIGS. 15A and 15B. You may employ | adopt the structure each provided in the different clamping surface.
Specifically, the first holding member 8E shown in FIG. 15A includes the first jaw 81B and the first energy generator 82E described in the first modification.
Similar to the first energy generating unit 82A described in the second embodiment, the first energy generating unit 82E is configured of a ceramic heater or the like, and generates thermal energy. Then, as shown in FIG. 15A, the first energy generation unit 82E has the same planar shape (substantially U-shape) as the first surrounding area ArSB in the first holding surface 811B, and It is fixed.
Moreover, 2nd holding member 8E 'shown to FIG. 15B is provided with 2nd jaw part 81 B' and the 2nd energy generation part 83E which were demonstrated by the modification 1 mentioned above.
Similar to the first energy generating unit 82E described above, the second energy generating unit 83E includes a ceramic heater or the like, and generates heat energy. Then, as shown in FIG. 15B, the second energy generation unit 83E has the same planar shape (substantially rectangular shape) as the area ArCE ′ which occupies substantially the entire second sandwiching surface 811B ′, and the second energy generation unit 83E It is fixed. The region ArCE ′ is a region including the second region Ar1B ′ and corresponds to a second inclusion region according to the present invention. Hereinafter, the area ArCE 'is described as a second inclusion area ArCE'.
That is, the second inclusion region ArCE 'in which the second energy generation unit 83E is disposed only needs to include the second region Ar1B', and as shown in FIG. 15B, it extends to the second surrounding region ArSB '. It does not matter as an area.
 上述した実施の形態1,2及び変形例1,2では、本発明に係る第1領域(第2領域)として、第1挟持面811,811B(第2挟持面811´,811B´)の中心位置CPを含む第1領域Ar1,Ar1B(第2領域Ar1´,Ar1B´)を採用していたが、これに限られず、中心位置を含まない他の領域を第1領域(第2領域)としても構わない。 In Embodiments 1 and 2 and Modifications 1 and 2 described above, the center of the first sandwiching surfaces 811 and 811 B (second sandwiching surfaces 811 ′ and 811 B ′) as the first region (second region) according to the present invention. Although the first regions Ar1 and Ar1B (second regions Ar1 ′ and Ar1B ′) including the position CP are employed, the present invention is not limited thereto, and other regions not including the center position may be used as the first region (second region). I don't care.
 上述した実施の形態1,2及び変形例1,2では、生体組織LTを仮接合及び本接合するエネルギとして高周波エネルギや熱エネルギを採用していたが、これに限られず、超音波エネルギを採用しても構わない。この際、上述した実施の形態2のように高周波エネルギまたは熱エネルギと超音波エネルギとの種類の異なる2つのエネルギを組み合わせてもよく、あるいは、上述した実施の形態1のように超音波エネルギの一種類のエネルギのみを採用しても構わない。また、生体組織LTを仮接合するエネルギとしては、高周波エネルギ、熱エネルギ、及び超音波エネルギのうちいずれのエネルギでもよく、生体組織LTを本接合するエネルギも同様に、高周波エネルギ、熱エネルギ、及び超音波エネルギのうちいずれのエネルギでも構わない。 In Embodiments 1 and 2 and Modifications 1 and 2 described above, high frequency energy and thermal energy are adopted as energy for temporarily joining and main joining living tissue LT, but the invention is not limited thereto, and ultrasonic energy is adopted. It does not matter. At this time, two types of different types of high frequency energy or thermal energy and ultrasonic energy may be combined as in the second embodiment described above, or as in the first embodiment described above, ultrasonic energy Only one kind of energy may be adopted. The energy for temporarily joining the living tissue LT may be any of radio frequency energy, thermal energy, and ultrasonic energy, and the energy for main joining the living tissue LT is similarly high frequency energy, thermal energy, and Any energy of ultrasonic energy may be used.
 上述した実施の形態1,2及び変形例1,2では、生体組織LTのインピーダンス、時間、及び熱伝導率に基づいて、生体組織LTの本接合を開始(仮接合を終了)していたが、これに限られない。例えば、生体組織LTの硬さ、厚さ、または温度等の物性値に基づいて、生体組織LTの本接合を開始(仮接合を終了)しても構わない。 In Embodiments 1 and 2 and Modifications 1 and 2 described above, main bonding of living tissue LT is started (termination of temporary bonding is completed) based on the impedance, time, and thermal conductivity of living tissue LT. Not limited to this. For example, main bonding of the living tissue LT may be started (termination of temporary bonding may be completed) based on physical properties such as hardness, thickness, or temperature of the living tissue LT.
 また、接合制御のフローは、上述した実施の形態1,2及び変形例1,2で説明したフローチャート(図7,図13)における処理の順序に限られず、矛盾のない範囲で変更しても構わない。 Further, the flow of bonding control is not limited to the order of the processing in the flowcharts (FIG. 7, FIG. 13) described in the first and second embodiments and the first and second modifications, and I do not care.
 1,1A 医療用処置装置
 2,2A エネルギ処置具
 3,3A 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7 挟持部
 8,8A~8E 第1保持部材
 8´,8A´~8D´,8E´ 第2保持部材
 31 高周波エネルギ出力部
 32 スイッチ
 33 第1センサ
 34,34A 制御部
 35 熱エネルギ出力部
 36 第2センサ
 51 操作ノブ
 81,81B,81C 第1顎部
 81´,81B´ 第2顎部
 82,82´,82A,82A´,82E 第1エネルギ発生部
 83,83´,83E 第2エネルギ発生部
 341,341A エネルギ制御部
 342 インピーダンス算出部
 343 熱伝導率算出部
 811,811B 第1挟持面
 811´811B´ 第2挟持面
 8111,8111´,8113 突出部
 8112 U字部分
 Ar1,Ar1B 第1領域
 Ar1´,Ar1B´ 第2領域
 ArC,ArCB 第1包含領域
 ArC´,ArCB´,ArCE´ 第2包含領域
 ArS,ArSB 第1周囲領域
 ArS´,ArSB´ 第2周囲領域
 ArO,ArI 領域
 C 電気ケーブル
 C1,C1´ 第1高周波用リード線
 C2,C2´ 第2高周波用リード線
 C3,C4 第1発熱用リード線
 C3´,C4´ 第2発熱用リード線
 CP,CP´ 中心位置
 LT 生体組織
 R1 矢印
 T1,T2 時間
 VI 初期値
 VL 最低値
1, 1A medical treatment device 2, 2A energy treatment tool 3, 3A control device 4 foot switch 5 handle 6 shaft 7 pinching portion 8, 8A to 8E first holding member 8 ', 8A' to 8D ', 8E' second Holding member 31 high frequency energy output unit 32 switch 33 first sensor 34, 34A control unit 35 thermal energy output unit 36 second sensor 51 operation knob 81, 81B, 81C first jaw 81 ', 81B' second jaw 82, 82 ', 82A, 82A', 82E first energy generation unit 83, 83 ', 83E second energy generation unit 341, 341A energy control unit 342 impedance calculation unit 343 thermal conductivity calculation unit 811, 811B first sandwiching surface 811' 811 B ′ second holding surface 8111, 8111 ′, 8113 protrusion 8112 U-shaped portion Ar1, Ar1 B first region r1 ', Ar1B' second area ArC, ArCB first inclusion area ArC ', ArCB', ArCE 'second inclusion area ArS, ArSB first surrounding area ArS', ArSB 'second surrounding area ArO, ArI area C electrical cable C1, C1 'first high frequency lead wire C2, C2' second high frequency lead wire C3, C4 first heat generation lead wire C3 ', C4' second heat generation lead wire CP, CP 'center position LT living tissue R1 Arrow T1, T2 Time VI Initial value VL Lowest value

Claims (11)

  1.  第1挟持面を有する第1保持部材と、前記第1挟持面に対向して当該第1挟持面との間で生体組織を挟持する第2挟持面を有する第2保持部材と、を備えたエネルギ処置具であって、
     前記第1挟持面は、第1領域を囲む領域である第1周囲領域と、前記第1領域を包含する領域である第1包含領域と、を有し、
     前記第2挟持面は、前記第1挟持面及び前記第2挟持面を互いに対向させた状態で、前記第1領域を前記第2挟持面に投影した第2領域を囲む領域である第2周囲領域と、前記第2領域を包含する領域である第2包含領域と、を有し、
     当該エネルギ処置具は、
     前記第1周囲領域と、前記第2周囲領域とのうち少なくとも一方からエネルギを発生する第1エネルギ発生部と、
     前記第1包含領域と、前記第2包含領域とのうち少なくとも一方からエネルギを発生する第2エネルギ発生部と、を備える、
    ことを特徴とするエネルギ処置具。
    A first holding member having a first holding surface, and a second holding member having a second holding surface for holding a living tissue between the first holding surface and the first holding surface. Energy treatment tool,
    The first sandwiching surface has a first surrounding area which is an area surrounding the first area, and a first inclusion area which is an area including the first area,
    The second surrounding surface is a region surrounding a second region obtained by projecting the first region onto the second sandwiching surface, with the first sandwiching surface and the second sandwiching surface facing each other, with the second sandwiching surface being in a state in which the first sandwiching surface and the second sandwiching surface are opposed to each other. A region and a second inclusion region which is a region including the second region,
    The energy treatment tool is
    A first energy generating unit generating energy from at least one of the first peripheral region and the second peripheral region;
    And a second energy generation unit that generates energy from at least one of the first inclusion region and the second inclusion region.
    An energy treatment tool characterized by the above.
  2.  前記第1領域は、前記第1挟持面における中心位置を含む領域であり、
     前記第2領域は、前記第2挟持面における中心位置を含む領域である
    ことを特徴とする請求項1に記載のエネルギ処置具。
    The first area is an area including a center position of the first holding surface,
    The energy treatment tool according to claim 1, wherein the second area is an area including a center position of the second holding surface.
  3.  前記第1包含領域は、前記第1周囲領域に対して突出している
    ことを特徴とする請求項1または2に記載のエネルギ処置具。
    The energy treatment device according to claim 1, wherein the first inclusion area protrudes with respect to the first surrounding area.
  4.  前記第2包含領域は、前記第2周囲領域に対して突出している
    ことを特徴とする請求項3に記載のエネルギ処置具。
    The energy treatment device according to claim 3, wherein the second inclusion area protrudes relative to the second surrounding area.
  5.  前記第1エネルギ発生部及び前記第2エネルギ発生部の一方は、熱エネルギを発生し、
     前記第1エネルギ発生部及び前記第2エネルギ発生部の他方は、高周波エネルギを発生する
    ことを特徴とする請求項1~4のいずれか一つに記載のエネルギ処置具。
    One of the first energy generating unit and the second energy generating unit generates thermal energy,
    The energy treatment tool according to any one of claims 1 to 4, wherein the other of the first energy generation unit and the second energy generation unit generates high frequency energy.
  6.  請求項1~5のいずれか一つに記載のエネルギ処置具と、
     前記第1エネルギ発生部と前記第2エネルギ発生部とにエネルギを発生させるエネルギ制御部と、を備える
    ことを特徴とする医療用処置装置。
    The energy treatment tool according to any one of claims 1 to 5.
    A medical treatment apparatus comprising: an energy control unit configured to generate energy in the first energy generation unit and the second energy generation unit.
  7.  前記エネルギ制御部は、前記第1エネルギ発生部にエネルギの発生を開始させた後、前記第2エネルギ発生部にエネルギの発生を開始させる
    ことを特徴とする請求項6に記載の医療用処置装置。
    The medical treatment apparatus according to claim 6, wherein the energy control unit causes the second energy generation unit to start energy generation after the first energy generation unit starts the energy generation. .
  8.  前記生体組織のインピーダンスを検出するインピーダンス検出部をさらに備え、
     前記エネルギ制御部は、前記第1エネルギ発生部にて発生したエネルギが前記生体組織に付与されている際に前記インピーダンス検出部にて検出された前記インピーダンスに基づいて、前記第2エネルギ発生部にエネルギの発生を開始させる
    ことを特徴とする請求項7に記載の医療用処置装置。
    It further comprises an impedance detection unit for detecting the impedance of the living tissue,
    The energy control unit controls the second energy generation unit based on the impedance detected by the impedance detection unit when the energy generated by the first energy generation unit is applied to the living tissue. The medical treatment apparatus according to claim 7, wherein generation of energy is started.
  9.  前記エネルギ制御部は、前記第1エネルギ発生部からのエネルギの発生時での当該第1エネルギ発生部の最高到達温度より前記第2エネルギ発生部からのエネルギの発生時での当該第2エネルギ発生部の最高到達温度が高くなるように前記第1エネルギ発生部と前記第2エネルギ発生部とにエネルギを発生させる
    ことを特徴とする請求項6~8のいずれか一つに記載の医療用処置装置。
    The energy control unit is configured to generate the second energy at the time of generation of energy from the second energy generation unit based on the highest reached temperature of the first energy generation unit at the time of generation of energy from the first energy generation unit The medical treatment according to any one of claims 6 to 8, wherein energy is generated in the first energy generation part and the second energy generation part so that the highest reached temperature of the part becomes high. apparatus.
  10.  第1挟持面を有する第1保持部材と第2挟持面を有する第2保持部材との間に生体組織が挟持された後、前記第1挟持面における第1周囲領域と、前記第2挟持面における第2周囲領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第1エネルギ付与ステップと、
     前記第1エネルギ付与ステップが開始された後、前記第1挟持面における第1包含領域と、前記第2挟持面における第2包含領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第2エネルギ付与ステップと、を備え、
     前記第1周囲領域は、前記第1挟持面における第1領域を囲む領域であり、
     前記第2周囲領域は、前記第1挟持面及び前記第2挟持面を互いに対向させた状態で、前記第1領域を前記第2挟持面に投影した第2領域を囲む領域であり、
     前記第1包含領域は、前記第1領域を包含する領域であり、
     前記第2包含領域は、前記第2領域を包含する領域である
    ことを特徴とする医療用処置装置の作動方法。
    After living tissue is sandwiched between a first holding member having a first holding surface and a second holding member having a second holding surface, a first peripheral region of the first holding surface, and the second holding surface Applying energy to the living tissue from at least one of the second surrounding regions in
    After the first energy applying step is started, energy is applied to the living tissue from at least one of a first inclusion region in the first holding surface and a second inclusion region in the second holding surface. Providing an energy applying step;
    The first surrounding area is an area surrounding a first area in the first holding surface,
    The second surrounding area is an area surrounding a second area obtained by projecting the first area onto the second holding surface, with the first holding surface and the second holding surface facing each other,
    The first inclusion region is a region including the first region,
    A method of operating a medical treatment apparatus, wherein the second inclusion area is an area including the second area.
  11.  第1挟持面を有する第1保持部材と第2挟持面を有する第2保持部材とで生体組織を挟持する挟持ステップと、
     前記第1挟持面における第1周囲領域と、前記第2挟持面における第2周囲領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第1エネルギ付与ステップと、
     前記第1エネルギ付与ステップが開始された後、前記第1挟持面における第1包含領域と、前記第2挟持面における第2包含領域とのうち少なくとも一方から前記生体組織にエネルギを付与する第2エネルギ付与ステップと、を備え、
     前記第1周囲領域は、前記第1挟持面における第1領域を囲む領域であり、
     前記第2周囲領域は、前記第1挟持面及び前記第2挟持面を互いに対向させた状態で、前記第1領域を前記第2挟持面に投影した第2領域を囲む領域であり、
     前記第1包含領域は、前記第1領域を包含する領域であり、
     前記第2包含領域は、前記第2領域を包含する領域である
    ことを特徴とする治療方法。
    A sandwiching step of sandwiching a living tissue with a first holding member having a first holding surface and a second holding member having a second holding surface;
    A first energy applying step of applying energy to the living tissue from at least one of a first peripheral region of the first clamping surface and a second peripheral region of the second clamping surface;
    After the first energy applying step is started, energy is applied to the living tissue from at least one of a first inclusion region in the first holding surface and a second inclusion region in the second holding surface. Providing an energy applying step;
    The first surrounding area is an area surrounding a first area in the first holding surface,
    The second surrounding area is an area surrounding a second area obtained by projecting the first area onto the second holding surface, with the first holding surface and the second holding surface facing each other,
    The first inclusion region is a region including the first region,
    The treatment method, wherein the second inclusion area is an area including the second area.
PCT/JP2015/080621 2015-10-29 2015-10-29 Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method WO2017072924A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080621 WO2017072924A1 (en) 2015-10-29 2015-10-29 Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080621 WO2017072924A1 (en) 2015-10-29 2015-10-29 Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method

Publications (1)

Publication Number Publication Date
WO2017072924A1 true WO2017072924A1 (en) 2017-05-04

Family

ID=58631420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080621 WO2017072924A1 (en) 2015-10-29 2015-10-29 Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method

Country Status (1)

Country Link
WO (1) WO2017072924A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245285A (en) * 2002-01-23 2003-09-02 Ethicon Endo Surgery Inc Feedback light apparatus and method for use with electrosurgical instrument
WO2014141530A1 (en) * 2013-03-12 2014-09-18 オリンパスメディカルシステムズ株式会社 Treatment device and treatment method
WO2015159607A1 (en) * 2014-04-18 2015-10-22 オリンパス株式会社 Therapeutic treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245285A (en) * 2002-01-23 2003-09-02 Ethicon Endo Surgery Inc Feedback light apparatus and method for use with electrosurgical instrument
WO2014141530A1 (en) * 2013-03-12 2014-09-18 オリンパスメディカルシステムズ株式会社 Treatment device and treatment method
WO2015159607A1 (en) * 2014-04-18 2015-10-22 オリンパス株式会社 Therapeutic treatment device

Similar Documents

Publication Publication Date Title
JP6940537B2 (en) Equipment and methods for sealing tissues with low power
JP5931604B2 (en) Therapeutic treatment device
CN107405167B (en) Medical treatment device and method for operating medical treatment device
EP1481642A1 (en) Forceps for endoscope
JP5988868B2 (en) Therapeutic treatment device
JP5840326B2 (en) Treatment tool and treatment system
JP5814685B2 (en) Therapeutic treatment device
US20170000558A1 (en) Medical treatment apparatus
JP5797348B2 (en) THERAPEUTIC TREATMENT DEVICE AND MANUFACTURING METHOD THEREOF
CN106999228B (en) Holding treatment unit
US10603097B2 (en) Treatment energy application structure and medical treatment device
US20190105101A1 (en) Medical treatment device, operation method of medical treatment device, and treatment method
US7458969B2 (en) Therapeutic device for tissue from living body
WO2017072924A1 (en) Energy treatment tool, medical treatment device, medical treatment device operating method, and treatment method
JP2018515268A (en) Electrosurgical coagulation instrument
US20140031815A1 (en) Electrosurgical gripping element
JP2001340349A (en) Surgical instrument
US20200038099A1 (en) Treatment system
EP2952150A1 (en) Therapeutic treatment device and control method therefor
CN109475380B (en) Treatment tool
JP6000717B2 (en) THERAPEUTIC TREATMENT DEVICE AND ITS CONTROL METHOD
WO2018173151A1 (en) Treatment system
JP2012196340A (en) Therapeutic treatment apparatus
US20200038094A1 (en) Treatment system
JP6454361B2 (en) Medical treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP