WO2017122286A1 - Energy treatment tool - Google Patents

Energy treatment tool Download PDF

Info

Publication number
WO2017122286A1
WO2017122286A1 PCT/JP2016/050774 JP2016050774W WO2017122286A1 WO 2017122286 A1 WO2017122286 A1 WO 2017122286A1 JP 2016050774 W JP2016050774 W JP 2016050774W WO 2017122286 A1 WO2017122286 A1 WO 2017122286A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
jaw
energy treatment
pair
gripping surface
Prior art date
Application number
PCT/JP2016/050774
Other languages
French (fr)
Japanese (ja)
Inventor
尚英 鶴田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/050774 priority Critical patent/WO2017122286A1/en
Publication of WO2017122286A1 publication Critical patent/WO2017122286A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to an energy treatment device.
  • Patent Literature 1 there is known an energy treatment device that treats biological tissues (joining (or anastomosis), cutting, etc.) by applying energy to the biological tissues (for example, see Patent Document 1).
  • the energy treatment tool described in Patent Literature 1 includes a pair of jaws that grip biological tissue. Each of the pair of jaws is provided with electrodes to which high-frequency power is supplied.
  • the living tissue is treated by holding the living tissue with a pair of jaws and supplying high frequency power to each electrode to generate Joule heat inside the living tissue.
  • a coolant line for circulating a cooling medium is provided inside each electrode.
  • the treatment target tissue in the living tissue the tissue grasped by the pair of jaws
  • the surrounding tissue of the treatment target tissue due to heat conduction from each electrode.
  • the influence of heat may be exerted and the natural healing ability of the tissue around the tissue to be treated may be reduced.
  • the energy treatment device described in Patent Document 1 it is possible to reduce the influence of heat on the surrounding tissue of the treatment target tissue in the living tissue by flowing the cooling medium through the coolant line and cooling each electrode. is there.
  • the pair of jaws is small, and the thickness dimension of the living tissue is also small. For this reason, the contribution of heat transfer by cooling cannot be ignored.
  • the present invention has been made in view of the above, and an energy treatment device capable of appropriately treating a treatment target tissue while reducing the influence of heat on the tissue around the treatment target tissue in a living tissue.
  • the purpose is to provide.
  • an energy treatment device includes a second jaw for grasping a living tissue between a first jaw having a first grasping surface and the first grasping surface.
  • a second jaw having a gripping surface; a first electrode provided on the first jaw across the first central region of the first gripping surface; and the second jaw sandwiching a second central region of the second gripping surface.
  • a second electrode provided on the jaw; and at least one of the first jaw and the second jaw; and the electrode in contact with at least one of the first electrode and the second electrode
  • the energy treatment device produces an effect that the treatment target tissue can be appropriately treated while reducing the influence of heat on the tissue around the treatment target tissue in the living tissue.
  • FIG. 1 is a diagram showing an energy treatment system according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of the distal end portion of the energy treatment device shown in FIG.
  • FIG. 3 is a diagram illustrating the gripping unit illustrated in FIG. 2.
  • FIG. 4 is a diagram illustrating the grip portion illustrated in FIG. 2.
  • FIG. 5 is a cross-sectional view illustrating a configuration of the first cooling member illustrated in FIG. 4.
  • FIG. 6 is a diagram for explaining the operation of the energy treatment system shown in FIG.
  • FIG. 7 is a diagram showing a first jaw constituting the energy treatment system (energy treatment tool) according to Embodiment 2 of the present invention.
  • FIG. 1 is a diagram showing an energy treatment system according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of the distal end portion of the energy treatment device shown in FIG.
  • FIG. 3 is a diagram illustrating the gripping unit illustrated in FIG. 2.
  • FIG. 4 is a
  • FIG. 8 is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 3 of the present invention.
  • FIG. 9 is a view showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 4 of the present invention.
  • FIG. 10 is a view showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 5 of the present invention.
  • FIG. 11 is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 6 of the present invention.
  • FIG. 12A is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 7 of the present invention.
  • FIG. 12B is a diagram showing a first jaw constituting the energy treatment system (energy treatment device) according to Embodiment 7 of the present invention.
  • FIG. 13A is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 8 of the present invention.
  • FIG. 13B is a diagram showing a first jaw constituting the energy treatment system (energy treatment tool) according to Embodiment 8 of the present invention.
  • FIG. 14 is a cross-sectional view showing the configuration of the first cooling member according to Embodiment 9 of the present invention.
  • FIG. 15 is a diagram showing a gripping part constituting the energy treatment system (energy treatment tool) according to Embodiment 10 of the present invention.
  • FIG. 16 is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 11 of the present invention.
  • FIG. 17 shows a modification of the first to eleventh embodiments of the present invention.
  • FIG. 1 is a diagram showing an energy treatment system 1 according to Embodiment 1 of the present invention.
  • the energy treatment system 1 treats (joins (or anastomoses), detaches, etc.) the living tissue by applying energy (electric energy (high frequency energy) in the first embodiment) to the living tissue.
  • the energy treatment system 1 includes an energy treatment tool 2, a control device 3, and a foot switch 4.
  • the energy treatment device 2 is, for example, a linear type surgical treatment device for performing treatment on a living tissue through an abdominal wall.
  • the energy treatment device 2 includes a handle 5, a shaft 6, and a grip portion 7.
  • the handle 5 is a portion that the operator holds.
  • the handle 5 is provided with an operation knob 51 as shown in FIG.
  • the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5.
  • a gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1).
  • An opening / closing mechanism (not shown) that opens and closes the first and second jaws 8 and 8 ′ (FIG.
  • FIG. 2 is an enlarged view of the distal end portion of the energy treatment device 2.
  • 3 and 4 are diagrams showing the gripping portion 7. Specifically, FIG. 3 is a view of the first jaw 8 (second jaw 8 ′) viewed from the first gripping surface 821 (second gripping surface 821 ′) side.
  • FIG. 4 is a cross-sectional view of the grip portion 7 cut along a cut surface along the width direction (left-right direction in FIG. 3). 1 to 4, the configuration indicated by the reference sign without “′” and the configuration indicated by the reference sign with “′” are the same. The same applies to the subsequent figures.
  • the gripping part 7 is a part that grips a living tissue and treats the living tissue. As shown in FIGS.
  • the grip portion 7 includes first and second jaws 8 and 8 ′.
  • the first and second jaws 8 and 8 ' are pivotally supported on the other end of the shaft 6 so as to be openable and closable in the direction of the arrow R1 (FIG. 2).
  • the first jaw 8 is disposed on the lower side in FIGS. 1 and 2 with respect to the second jaw 8 ′.
  • the first jaw 8 includes a first support member 81 and a first treatment portion 82.
  • the first support member 81 has a substantially rectangular parallelepiped shape extending along the central axis of the shaft 6, and one end side (base end side) in the longitudinal direction is supported by the shaft 6.
  • a first recess 811 At a substantially central position of the first support member 81, there is provided a first recess 811 that is recessed downward and in which the first treatment portion 82 is installed.
  • the first support member 81 described above is formed by molding a resin material (fluorine resin or the like), for example.
  • the first treatment portion 82 has a substantially rectangular parallelepiped shape extending along the central axis of the shaft 6, and is installed in the first recess 811 in a state in which a part projects toward the second jaw 8 ′ side.
  • the upper surface of the first treatment section 82 is formed in a flat shape, and a first gripping surface 821 (FIGS. 2 to 4) that grips a living tissue with the second jaw 8 ′ (second gripping surface 821 ′).
  • a region in the center in the width direction is defined as a first central region Ar1 (FIG. 3).
  • the first central region Ar1 is a region including the center position CP (FIG.
  • the first treatment section 82 includes a first electrode 83, a first thermal resistance member 84, and a first cooling member 85 (FIG. 4).
  • the first electrode 83 generates high frequency energy under the control of the control device 3.
  • the first electrode 83 is configured as a pair as shown in FIGS.
  • the pair of first electrodes 83 is made of a conductive material such as copper, for example.
  • the pair of first electrodes 83 is configured by a substantially rectangular parallelepiped plate extending along the central axis of the shaft 6, and each upper surface configures the entire pair of first opposing regions Ar ⁇ b> 2 on the first gripping surface 821. Is arranged.
  • a pair of lead wires (not shown) constituting the electric cable C are joined to the pair of first electrodes 83, respectively.
  • the first heat resistance member 84 has a function as a heat resistance portion according to the present invention.
  • the first thermal resistance member 84 is configured separately from the pair of first electrodes 83.
  • the first thermal resistance member 84 is composed of a low thermal conductive member having a thermal conductivity lower than that of the pair of first electrodes 83.
  • the first heat resistance member 84 extends along the central axis of the shaft 6, is configured by a substantially rectangular parallelepiped plate having the same thickness as the pair of first electrodes 83, and the upper surface thereof is a pair of first electrodes. It is disposed so as to be flush with each upper surface of 83 and constitute the entire first central region Ar1 in the first gripping surface 821.
  • the material of the first thermal resistance member 84 may be any material as long as it has a thermal conductivity lower than the thermal conductivity of the pair of first electrodes 83, for example, a low thermal conductivity metal such as titanium, Low density metal composed of porous material, resin such as PFA (tetrafluoroethylene / perfluoroalkoxyethylene copolymer) and PTFE (polytetrafluoroethylene), hollow resin, porous thermosetting plastic, Examples include low thermal conductive ceramics such as alumina, zirconia, and macerite, or porous ceramics.
  • the first central region Ar1 (first thermal resistance member 84) is configured to have a lower thermal conductivity than the pair of first opposing regions Ar2 (first electrode 83).
  • the thermal resistance to the living tissue in the central region Ar1 (first thermal resistance member 84) is higher than the thermal resistance to the living tissue in the pair of first opposing regions Ar2 (first electrode 83).
  • FIG. 5 is a cross-sectional view showing the configuration of the first cooling member 85.
  • the first cooling member 85 has a function of cooling as a cooling member according to the present invention, contacts at least the pair of first electrodes 83, and cools the pair of first electrodes 83.
  • the first cooling member 85 includes a first latent heat storage material 851 and a first sealing member 852 that seals the first latent heat storage material 851. It is formed in a shape.
  • the first latent heat storage material 851 has a function as a latent heat storage material according to the present invention.
  • the 1st sealing member 852 has a function as a sealing member which concerns on this invention. As shown in FIG.
  • the first cooling member 85 includes the first back surfaces 831 spaced apart from the first gripping surfaces 821 of the pair of first electrodes 83, and the first gripping surfaces 821 of the first thermal resistance members 84. Covering the entire three back surfaces 831 and 841 of the back surface 841 spaced apart from each other, the three back surfaces 831 and 841 are disposed.
  • the first latent heat storage material 851 exhibits the same thermal behavior as that of other substances up to a certain temperature, but causes a phase transition at the certain temperature inherent to the substance, and utilizes the endothermic effect due to the latent heat associated therewith. Thus, it is a substance that can hold a larger amount of heat per unit volume than other substances.
  • the material of the first latent heat storage material 851 include solid substances at room temperature such as paraffin, polylactic acid, magnesium hydroxide, erythritol, and mannitol.
  • the operating temperature of paraffin (the temperature that causes a phase transition from solid to liquid) is about 40 ° C.
  • the operating temperature of erythritol is about 120 ° C. That is, the material of the first latent heat storage material 851 may be selected according to the operating temperature at which heat absorption is desired.
  • the second jaw 8 ′ has substantially the same outer shape and the same configuration as the first jaw 8. That is, as shown in FIGS. 2 to 4, the second jaw 8 ′ includes the first support member 81 (including the first recess 811) and the first treatment portion 82 (the first gripping surface 821 ( A first central region Ar1 and a pair of first opposing regions Ar2), a first electrode 83 (including a first back surface 831), a first thermal resistance member 84 (including a back surface 841), and a first cooling member 85 (including Second support member 81 ′ (including second recess 811 ′) and second treatment portion 82 ′ (second gripping surface 821), including the first latent heat storage material 851 and the first sealing member 852.
  • Second cooling member 85 ′ (second latent heat storage material 851 ′ and second sealing member 85 It comprises including) the including) a '.
  • a pair of lead wires (not shown) constituting the electric cable C are joined to the pair of second electrodes 83 ′, respectively.
  • the pair of first electrodes 83 and the pair of second electrodes 83 ′ generate high-frequency energy by being supplied with high-frequency power by the control device 3 via the electric cable C (lead wire).
  • the high-frequency current is passed through the living tissue grasped between the first electrode 83 and the pair of second electrodes 83 ′).
  • the pair of first electrodes 83 are at the same potential.
  • the pair of second electrodes 83 ′ have the same potential. That is, the high-frequency current flows in the vertical direction in FIG. 4 between the first and second electrodes 83 and 83 ′ facing each other (see FIG. 6).
  • the foot switch 4 is a part operated by the operator with his / her foot. Then, according to the operation to the foot switch 4, energization (supply of high-frequency power) from the control device 3 to the energy treatment instrument 2 (a pair of first electrodes 83 and a pair of second electrodes 83 ′) is turned on and off. Is switched. Note that the means for switching on and off is not limited to the foot switch 4, and other switches that are operated by hand may be employed.
  • the control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the energy treatment device 2 according to a predetermined control program.
  • CPU Central Processing Unit
  • control device 3 determines the pair of first electrodes 83 and the pair of second electrodes via the electric cable C (lead wire) in response to an operation of the foot switch 4 by the operator (operation to turn on the power).
  • a high-frequency power having a preset output is supplied between the electrode 83 ′.
  • FIG. 6 is a diagram for explaining the operation of the energy treatment system 1. Specifically, FIG. 6 is a cross-sectional view corresponding to FIG. 4 and shows a state where the living tissue LT is grasped by the first and second jaws 8 and 8 ′. The surgeon grasps the energy treatment instrument 2 and inserts the tip portion of the energy treatment instrument 2 (a part of the grasping portion 7 and the shaft 6) into the abdominal cavity through the abdominal wall using, for example, a trocar. Further, the surgeon operates the operation knob 51 to hold the living tissue LT with the first and second jaws 8 and 8 'as shown in FIG.
  • the surgeon operates the foot switch 4 to switch on energization from the control device 3 to the energy treatment instrument 2.
  • the control device 3 supplies high-frequency power between the pair of first electrodes 83 and the pair of second electrodes 83 ′ via the electric cable C (lead wire).
  • a high-frequency current Cu (FIG. 6) flows between the first and second electrodes 83 and 83 ′ facing each other, and is sandwiched between the first and second electrodes 83 and 83 ′ in the living tissue LT.
  • Joule heat is generated in each region LT1 (FIG. 6). Then, the living tissue LT is treated by the generation of the Joule heat.
  • the pair of first electrodes 83 is the entire pair of first opposing regions Ar2 located on the outer side in the width direction of the first gripping surface 821. Each is composed. Further, the pair of first electrodes 83 is cooled by the first cooling member 85. The same applies to the second jaw 8 '. For this reason, Joule heat generated in each region LT1 in the living tissue LT spreads by transferring heat in the living tissue LT, but the living tissue LT in the vicinity of the pair of first and second electrodes 83, 83 ' The first and second cooling media 85 and 85 ′ are used to cool the tissue to be treated (the first and second gripping surfaces 821 and 821) in the living tissue LT.
  • the temperature of the tissue around the tissue) grasped at 821 ' can be lowered. Further, since the temperature of the electrode inherently increases due to heat transfer to each region LT1 to the pair of first and second electrodes 83 and 83 ′, the pair of first and second electrodes 83 and 83 ′ to the living tissue LT.
  • the influence of the heat transferred to the surrounding tissue of the treatment target tissue by following the heat transfer path to the surrounding tissue of the treatment target tissue in the first and second electrodes 83 and 83 ' is also the first and first. Since it is cooled by the two cooling members 85 and 85 ', it can be reduced. Therefore, it is possible to reduce the influence of heat on the tissue around the tissue to be treated in the living tissue LT.
  • the first thermal resistance member 84 constitutes a first central region Ar ⁇ b> 1 located at the center in the width direction of the first gripping surface 821.
  • the first thermal resistance member 84 has a lower thermal conductivity than the first electrode 83 and a higher thermal resistance to the living tissue LT than the first electrode 83.
  • the second jaw 8 ' the first and second electrodes 83 and 83 ′ from the living tissue LT (region LT1) take the amount of heat taken by the first and second heat resistance members 84 and 84 ′ from the living tissue LT (region LT2 (FIG. 6)).
  • the amount of heat to be taken can be reduced, and in the tissue to be treated of the living tissue LT, it is possible to suppress a decrease in the temperature of the region LT2 in the center in the width direction where treatment is originally desired. Therefore, it is possible to appropriately treat the tissue to be treated in the living tissue LT. From the above, according to the energy treatment device 2 according to the first embodiment, the treatment target tissue is appropriately treated while reducing the influence of heat on the tissue around the treatment target tissue in the living tissue LT. There is an effect that can be.
  • the first cooling member 85 cools the pair of first electrodes 83 using the first latent heat storage material 851.
  • the second cooling member 85 ' it is possible to execute the treatment until the operating temperature of the first and second latent heat storage materials 851 and 851 ′ is not significantly hindered from the temperature increase of the treatment target tissue in the living tissue LT.
  • the first and second latent heat storage materials 851 and 851 ′ reach the operating temperature or higher, the first and second latent heat storage materials 851 start to absorb heat by the non-linear thermal behavior, and the temperature exceeds that. Can prevent it from rising. Therefore, the treatment target tissue in the living tissue LT can be appropriately treated without increasing the treatment time.
  • the first cooling member 85 is formed in a sheet shape, and is disposed on each of the back surfaces 831 and 841 of the pair of first electrodes 83 and the first thermal resistance member 84. Has been. The same applies to the second cooling member 85 '. For this reason, the thickness dimension of the 1st, 2nd jaws 8 and 8 'can be reduced, and the holding part 7 can be reduced in size.
  • FIG. 7 is a diagram showing a first jaw 8A constituting the energy treatment system 1A (energy treatment tool 2A) according to Embodiment 2 of the present invention. Specifically, FIG. 7 is a cross-sectional view corresponding to FIG. As shown in FIG. 7, the energy treatment system 1A (energy treatment tool 2A) according to the second embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. Instead of the first jaw 8, a first jaw 8A having a first treatment portion 82A different from the first treatment portion 82 is employed.
  • the first treatment section 82A has a pair of first electrodes 83 and a first electrode compared to the first treatment section 82 (FIG. 4) described in the first embodiment.
  • a pair of first electrodes 83A and a first cooling member 85A are employed.
  • the pair of first electrodes 83A has a substantially circular cross section inside the pair of first electrodes 83 described in the first embodiment, and is in the longitudinal direction (perpendicular to the plane of FIG. 7).
  • a sealed space SpA extending along (direction) is formed.
  • the first cooling member 85A has a function as a cooling member according to the present invention, is made of the same material as the first latent heat storage material 851 described in the first embodiment, and is mounted in each sealed space SpA. Has been.
  • illustration was abbreviate
  • FIG. 8 is a diagram showing a first jaw 8B constituting the energy treatment system 1B (energy treatment tool 2B) according to Embodiment 3 of the present invention.
  • FIG. 8 is a cross-sectional view corresponding to FIG.
  • the energy treatment system 1 ⁇ / b> B energy treatment tool 2 ⁇ / b> B
  • the third embodiment has the following configuration with respect to the energy treatment system 1 (energy treatment tool 2) described in the first embodiment.
  • a first jaw 8B having a first treatment portion 82B different from the first treatment portion 82 is employed.
  • the first treatment unit 82 ⁇ / b> B has a pair of first electrodes 83 and a first electrode compared to the first treatment unit 82 (FIG. 4) described in the first embodiment.
  • the first electrode 83B and the first heat resistance member 84B are employed.
  • the first electrode 83B is made of the same material as that of the first electrode 83 described in the first embodiment, and is made of one member as shown in FIG. That is, in the third embodiment, since the first electrode 83B is a single member, only one lead wire (not shown) constituting the electric cable C is joined to the first electrode 83B.
  • the first electrode 83B is formed in a substantially rectangular parallelepiped shape having the same outer shape as the unit obtained by combining the pair of first electrodes 83 and the first thermal resistance member 84 described in the first embodiment.
  • the first thermal resistance member 84B functions as a thermal resistance unit according to the present invention.
  • the first thermal resistance member 84B is configured separately from the first electrode 83B, similarly to the first thermal resistance member 84 described in the first embodiment.
  • the first thermal resistance member 84B is formed of a coating member formed on a part of the upper surface of the first electrode 83B.
  • the same material as the 1st heat resistance member 84 demonstrated in Embodiment 1 mentioned above is employable.
  • the first gripping surface 821B has the same planar shape as the first gripping surface 821 described in the first embodiment.
  • first gripping surface 821B is planarly viewed (as viewed from the direction along the normal line of the first gripping surface 821B), and similarly to the first gripping surface 821, the first central region Ar1 and the pair of first gripping surfaces 821B 1 opposing region Ar2.
  • the first thermal resistance member 84B is viewed in plan (from the direction along the normal line of the first gripping surfaces 821, 821B), and the first thermal resistance member 84 described in the first embodiment described above. Have the same shape.
  • the first thermal resistance member 84B is formed so as to constitute the entire first central region Ar1 in the first gripping surface 821B among the upper surface of the first electrode 83B. That is, the region other than the first thermal resistance member 84B on the upper surface of the first electrode 83B constitutes the entire pair of first opposing regions Ar2 on the first gripping surface 821B. Then, as shown in FIG.
  • the first cooling member 85 covers the entire first back surface 831B separated from the first gripping surface 821B of the first electrode 83B, and the first back surface 831B is covered with the first back surface 831B. It arrange
  • illustration was abbreviate
  • the above-described embodiment. 1 has the same effect.
  • the first electrode 83B is composed of one member, the number of parts can be reduced.
  • the first heat resistance member 84B is formed of a coating member, the thickness dimension of the first jaw 8B can be reduced. The same applies to the second jaw.
  • FIG. 9 is a diagram showing a first jaw 8C constituting an energy treatment system 1C (energy treatment tool 2C) according to Embodiment 3 of the present invention. Specifically, FIG. 9 is a cross-sectional view corresponding to FIG. As shown in FIG. 9, the energy treatment system 1 ⁇ / b> C (energy treatment tool 2 ⁇ / b> C) according to the fourth embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. Instead of the first jaw 8, a first jaw 8C having a first treatment portion 82C different from the first treatment portion 82 is employed.
  • the first treatment unit 82 ⁇ / b> C has a pair of first electrodes 83 and a first electrode compared to the first treatment unit 82 (FIG. 4) described in the first embodiment.
  • a first electrode 83C and a first heat resistance portion 84C are employed.
  • the first electrode 83C is made of the same material as the first electrode 83B described in the third embodiment and has the same outer shape.
  • the upper surface of the first electrode 83C functions as a first gripping surface 821C (FIG. 9) that grips the living tissue LT with the second jaw (second gripping surface).
  • the first gripping surface 821C has the same planar shape as the first gripping surface 821 described in the first embodiment. That is, the first gripping surface 821C is planarly viewed (viewed from the direction along the normal line of the first gripping surface 821C), like the first gripping surface 821, the first central region Ar1 and the pair of first gripping surfaces 821C 1 opposing region Ar2.
  • the first thermal resistance portion 84C is formed by subjecting a part of the upper surface of the first electrode 83C (first central region Ar1 in the first gripping surface 821C) to surface processing (for example, etching, sandblasting, etc.). This is a region with a rough surface relative to other regions on the upper surface of the electrode 83C. And the area
  • the surface roughness of the first central region Ar1 (first thermal resistance portion 84C) is made rougher than that of the pair of first opposing regions Ar2 (first electrode 83C).
  • the thermal resistance to the living tissue LT in the central region Ar1 (first thermal resistance member 84) is higher than the thermal resistance to the living tissue LT in the pair of first opposing regions Ar2 (first electrode 83C).
  • the first cooling member 85 has a first back surface 831C spaced from the first gripping surface 821C in the first electrode 83C, as in the third embodiment described above. The whole is covered and disposed so as to contact the first back surface 831C.
  • illustration was abbreviate
  • the first heat resistance portion 84C is a region having a rough surface roughness in the first electrode 83C as in the energy treatment tool 2C according to the fourth embodiment described above, the first embodiment described above 3 has the same effect. Moreover, since the area
  • FIG. 10 is a diagram showing a first jaw 8D constituting an energy treatment system 1D (energy treatment tool 2D) according to Embodiment 5 of the present invention.
  • FIG. 10 is a cross-sectional view corresponding to FIG.
  • the energy treatment system 1D (energy treatment tool 2D) according to the fifth embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above.
  • a first jaw 8D having a first treatment portion 82D different from the first treatment portion 82 is employed.
  • the first treatment unit 82D includes a pair of first electrodes 83 and a first electrode compared to the first treatment unit 82 (FIG. 4) described in the first embodiment.
  • a first electrode 83D and a first thermal resistance member 84D are employed.
  • the first electrode 83D is provided with a first recess 832D that is recessed downward in a region corresponding to the entire first central region Ar1 on the upper surface of the first electrode 83D described in the third embodiment. It has been.
  • the first heat resistance member 84D has a function as a heat resistance portion according to the present invention, and the outer shape of the first heat resistance member 84D in the first recess 832D is the same as that of the first heat resistance member 84 described in the first embodiment.
  • the shape is changed so as to be the same as the shape, and is installed (fitted) in the first recess 832D. That is, the upper surface of the first treatment portion 82D (the region other than the first recess 832D (the first thermal resistance member 84D) of the upper surface of the first thermal resistance member 84D and the upper surface of the first electrode 83D) is formed in a flat shape. It functions as a first gripping surface 821D (FIG.
  • the upper surface of the first thermal resistance member 84D constitutes the entire first central region Ar1 in the first gripping surface 821D.
  • the region of the upper surface of the first electrode 83D other than the first recess 832D constitutes the entire pair of first opposing regions Ar2 on the first gripping surface 821D.
  • the first cooling member 85 has a first back surface 831D spaced from the first gripping surface 821D in the first electrode 83D, as in the third embodiment described above. The whole is covered and disposed so as to be in contact with the first back surface 831D.
  • illustration was abbreviate
  • the first thermal resistance member 84D is embedded in the upper surface of the first electrode 83D as in the energy treatment tool 2D according to the fifth embodiment described above, the same as in the first and third embodiments described above. There is an effect. Further, since the first thermal resistance member 84D is embedded in the upper surface of the first electrode 83D, the thickness dimension of the first jaw 8D can be reduced. The same applies to the second jaw.
  • FIG. 11 is a diagram showing a first jaw 8E constituting an energy treatment system 1E (energy treatment tool 2E) according to Embodiment 6 of the present invention. Specifically, FIG. 11 is a cross-sectional view corresponding to FIG. As shown in FIG. 11, the energy treatment system 1E (energy treatment tool 2E) according to the sixth embodiment is different from the energy treatment system 1D (energy treatment tool 2D) described in the fifth embodiment described above. Instead of the first jaw 8D, a first jaw 8E having a first treatment portion 82E different from the first treatment portion 82D is employed.
  • the first treatment portion 82E is obtained by omitting the first thermal resistance member 84D from the first treatment portion 82D (FIG. 10) described in the fifth embodiment. Yes.
  • the air layer in 1st recessed part 831D is comprised as the 1st heat resistance member 84E. That is, in the sixth embodiment, similarly to the first embodiment described above, the first central region Ar1 rather than the pair of first opposing regions Ar2 (regions other than the first recess 832D on the upper surface of the first electrode 83D).
  • the thermal conductivity of the (first thermal resistance member 84E (air layer)) By configuring the thermal conductivity of the (first thermal resistance member 84E (air layer)) to be low, the thermal resistance to the living tissue LT in the first central region Ar1 (first thermal resistance member 84E (air layer)) is paired.
  • the first opposing region Ar2 (the region of the upper surface of the first electrode 83D other than the first recess 832D) is higher than the thermal resistance to the living tissue LT.
  • the 1st cooling member 85 which concerns on this Embodiment 6 is arrange
  • the second jaw according to the sixth embodiment is omitted in illustration, but has the same configuration as the first jaw 8E described above.
  • the first heat resistance member 84E is formed of an air layer as in the energy treatment device 2E according to the sixth embodiment described above, the same effects as those of the first and third embodiments described above are obtained.
  • the first heat resistance member 84E is composed of an air layer, the number of parts can be reduced and the thickness of the first jaw 8E can be reduced as compared with a structure in which the first heat resistance member is separately provided. Dimensions can be reduced. The same applies to the second jaw.
  • FIGS. 12A and 12B are views showing a first jaw 8F constituting an energy treatment system 1F (energy treatment tool 2F) according to Embodiment 7 of the present invention.
  • FIG. 12A is a cross-sectional view of the first jaw 8F cut along a cut surface along the longitudinal direction.
  • 12B is a cross-sectional view corresponding to FIG.
  • the energy treatment system 1F (energy treatment tool 2F) according to the seventh embodiment as shown in FIGS. 12A and 12B, the energy treatment system 1 (energy treatment tool 2) described in the first embodiment is used.
  • a first jaw 8F having a first treatment portion 82F different from the first treatment portion 82 is employed.
  • the first treatment unit 82F has a pair of first electrodes 83 with respect to the first treatment unit 82 (FIG. 4) described in the first embodiment.
  • a first electrode 83F, a first thermal resistance member 84F, and a first cooling member 85F are employed.
  • the first electrode 83F is made of the same material as the first electrode 83 described in the first embodiment, and is made of one member as shown in FIGS. 12A and 12B. That is, in the seventh embodiment, since the first electrode 83F is one member, only one lead wire (not shown) constituting the electric cable C is joined to the first electrode 83F.
  • the first electrode 83F includes a first base portion 833F and a pair of electrode portions 834F.
  • the first base portion 833F has a rectangular parallelepiped shape and has a sealed space SpF inside.
  • the first base portion 833F is disposed in the first recess 811 on the base end side of the first jaw 8F (the side where the first jaw 8F is supported by the shaft 6 (the right end side in FIG. 12A)).
  • the pair of electrode portions 834F is a substantially rectangular parallelepiped plate that protrudes from the side end portion of the first base portion 833F toward the tip end (left end portion in FIG. 12A) of the first jaw 8F along the upper surface of the first base portion 833F.
  • Each body is composed.
  • the first heat resistance member 84F has a function as a heat resistance portion according to the present invention, the outer dimensions are changed with respect to the first heat resistance member 84 described in the first embodiment, and the first base portion It is installed in an L-shaped inner portion surrounded by 833F and the pair of first electrode portions 834F. And the area
  • the first gripping surface 821F has a stepped shape unlike the flat first gripping surface 821 described in the first embodiment.
  • the first gripping surface 821F has the same planar shape as the first gripping surface 821 described in the first embodiment. That is, the first gripping surface 821F is seen in a plan view (viewed from the direction along the normal line of the first gripping surface 821F), like the first gripping surface 821, and the first central region Ar1 and the pair of first gripping surfaces 821F. 1 opposing region Ar2.
  • the pair of first electrode portions 834F is formed so as to constitute the entire pair of first opposing regions Ar2 on the first gripping surface 821F. That is, the region other than the pair of first electrode portions 834F on the upper surface of the first thermal resistance member 84F constitutes the entire first central region Ar1 on the first gripping surface 821F.
  • the first cooling member 85F has a function as a cooling member according to the present invention, is made of the same material as the first latent heat storage material 851 described in the first embodiment, and is mounted in the sealed space SpF. Yes.
  • the second jaw according to the seventh embodiment is not shown, it has the same configuration as the first jaw 8F described above.
  • the first jaw 8F is configured as in the energy treatment tool 2F according to the seventh embodiment described above, the same effects as those of the first embodiment described above can be obtained.
  • the first cooling member 85F is provided on the proximal end side of the first jaw 8F, even if there is a design limitation in the width direction or the thickness direction on the distal end side of the first jaw 8F, A cooling structure for the one electrode 83F can be easily realized.
  • FIGS. 13A and 13B are views showing a first jaw 8G constituting an energy treatment system 1G (energy treatment tool 2G) according to Embodiment 8 of the present invention.
  • FIGS. 13A and 13B are cross-sectional views corresponding to FIGS. 12A and 12B, respectively.
  • the energy treatment system 1G (energy treatment tool 2G) according to the eighth embodiment as shown in FIGS. 13A and 13B, the energy treatment system 1F (energy treatment tool 2F) described in the seventh embodiment is used.
  • a first jaw 8G having a first treatment portion 82G different from the first treatment portion 82F is employed.
  • the first treatment section 82G has a first thermal resistance compared to the first treatment section 82F (FIGS. 12A and 12B) described in the seventh embodiment.
  • a first heat resistance member 84G in which the shape of the member 84F is changed is employed.
  • the first thermal resistance member 84G includes a first expansion bulging upward in a region corresponding to the entire first central region Ar1 with respect to the first thermal resistance member 84G described in the seventh embodiment.
  • a protruding portion 842G (FIG. 13B) is provided.
  • the upper surface of the first bulging portion 842G is formed to be flush with the upper surfaces of the pair of first electrode portions 834F. That is, the first gripping surface 821G (FIGS.
  • FIG. 14 is a cross-sectional view showing a configuration of first cooling member 85H that constitutes the energy treatment system according to Embodiment 9 of the present invention.
  • the first heat members 85, 85A, and 85F use the latent heat storage material that is made of a solid substance at room temperature.
  • a latent heat storage material composed of a liquid substance at room temperature instead of the first cooling members 85, 85A, 85F.
  • the 1st cooling member 85H using is adopted.
  • the first cooling member 85H includes a first latent heat storage material 851H, a first sealing member 852H that seals the first latent heat storage material 851H, and a first sealing member 852H. It is comprised with what is called a heat pipe provided with the 1st wick 853H provided in the inner wall.
  • the material of the first latent heat storage material 851H include liquid substances at room temperature such as water and alternative chlorofluorocarbon.
  • high heat conductive members such as copper, can be illustrated, for example.
  • the first cooling member 85H cools the first electrodes 83, 83A to 83D, 83F by repeating the following behavior. That is, the liquid first latent heat storage material 851H absorbs heat from the first electrodes 83, 83A to 83D, and 83F via the first sealing member 852H and evaporates. Then, the vapor of the first latent heat storage material 851H moves to the low temperature space separated from the first electrodes 83, 83A to 83D, 83F inside the first sealing member 852H. The vapor
  • the liquid first latent heat storage material 851H follows the inner wall (first wick 853H) of the first sealing member 852H by capillarity, and enters the high-temperature space close to the first electrodes 83, 83A to 83D, 83F. Moving.
  • FIG. 15 is a diagram showing a gripping portion 7I that constitutes an energy treatment system 1I (energy treatment tool 2I) according to Embodiment 10 of the present invention.
  • FIG. 15 is a cross-sectional view corresponding to FIG.
  • the energy treatment system 1I (energy treatment tool 2I) according to the tenth embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above.
  • a clamping unit 7I in which a cutter 9 is added to the clamping unit 7 is employed.
  • the sandwiching portion 7I includes first and second jaws 8, 8 ′ and a cutter 9.
  • the first and second jaws 8 and 8 ′ according to the tenth embodiment divide the first and second treatment sections 82 and 82 ′ into two at substantially the center position in the width direction.
  • first and second cutter moving grooves 822 and 822 ′ serving as a moving path of the cutter 9 are formed.
  • the cutter 9 is attached to the other end of the shaft 6 (left end portion in FIGS. 1 and 2) so as to be movable in a direction along the central axis of the shaft 6 (a direction orthogonal to the paper surface of FIG. 15). It moves in response to an operation by the user (for example, an operation on the operation knob 51). And the cutter 9 cut
  • FIG. 16 is a diagram showing a first jaw 8J constituting an energy treatment system 1J (energy treatment tool 2J) according to Embodiment 11 of the present invention. Specifically, FIG. 16 is a cross-sectional view corresponding to FIG. As shown in FIG. 16, the energy treatment system 1J (energy treatment tool 2J) according to the eleventh embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. Instead of the first jaw 8, a first jaw 8J having a first treatment portion 82J different from the first treatment portion 82 is employed.
  • the first treatment unit 82 ⁇ / b> J is a pair of the first treatment unit 82 (FIG. 4) described in the first embodiment, instead of the first cooling member 85.
  • the first cooling member 85J is employed, and a pair of transverse members 86 are added.
  • the pair of transverse members 86 are formed of substantially rectangular parallelepiped plates extending along the central axis of the shaft 6 and having the same thickness as the pair of first electrodes 83.
  • the pair of transverse members 86 are respectively disposed on the outer sides in the width direction of the pair of first electrodes 83 so that the upper surfaces thereof are flush with the upper surfaces of the pair of first electrodes 83.
  • the pair of transverse members 86 may be made of a material having the same thermal conductivity as that of the pair of electrodes 83, and have a thermal conductivity lower or higher than that of the pair of electrodes 83. You may comprise with material.
  • the pair of first cooling members 85J have the same configuration as the first cooling member 85 described in the first embodiment.
  • the pair of first cooling members 85J are respectively arranged on the outer sides in the width direction of the pair of lateral members 86 so that the upper surfaces thereof are flush with the upper surfaces of the pair of lateral members 86. That is, the pair of first cooling members 85J does not contact the pair of electrodes 83.
  • the upper surface functions as a first gripping surface 821J (FIG. 16) that grips the living tissue LT with the second jaw (second gripping surface).
  • the pair of first cooling members 85J can directly cool the tissue in contact with the outer side in the width direction of the first gripping surface 821J (tissue around the tissue to be treated in the living tissue LT) in the living tissue LT.
  • illustration was abbreviate
  • the energy treatment device 2 (2A to 2G, 2I, 2J) is configured to perform treatment by applying only high-frequency energy to the living tissue LT, but is not limited thereto.
  • a configuration may be adopted in which treatment is performed by applying at least one of ultrasonic energy, optical energy such as a laser, and thermal energy to the living tissue LT in addition to high-frequency energy.
  • the first and second thermal resistance members 84 (84B, 84D to 84G, the first thermal resistance portion 84C), 84 ′, and the first and second cooling members 85 (85A, 85F).
  • , 85H, 85J) and 85 ' are provided on both the first and second jaws 8 (8A to 8G, 8J) and 8', but the present invention is not limited to this, and the first and second jaws 8 (8A ⁇ 8G, 8J), 8 ′ may be provided only on one side.
  • the heat resistance member and the cooling member may be provided on the same jaw, or may be provided on different jaws.
  • the first and second cooling members 85 (85A, 85F, 85H, 85J) and 85 ′ are configured using a latent heat storage material.
  • a coolant line is provided so as to be in contact with the inside or the outer surface of the first and second electrodes 83 (83A to 83D, 83F), 83 ′, and a cooling medium such as water, nitrogen, carbon dioxide or the like is circulated in the coolant line.
  • a configuration may be adopted.
  • the first electrode 83 (83A to 83D, 83F) and the second electrode 83 ′ are connected to the first and second heat resistance members 84 (84B, 84D to 84G, the first heat resistance portion).
  • 84C) and 84 ′ as long as they are in contact with each other with a lower thermal resistance, the position is not limited to the position described in the first to eleventh embodiments, and may be disposed at other positions.
  • the center positions CP of the first and second gripping faces 821 (821B to 821D, 821F, 821G, 821J) and 821 ′ are used as the first and second central regions according to the present invention.
  • the first and second central regions Ar1 and Ar1 ′ including the above are employed, but the present invention is not limited to this, and other regions not including the center position may be used as the first and second central regions.
  • the first and second jaws 8 (8A to 8G, 8J) and 8 ′ are configured to include the first and second support members 81 and 81 ′.
  • the first and second support members 81 and 81 ' are omitted, and the first and second treatment portions 82 (82A to 82G and 82J) and 82' are directly supported by the shaft 6. It doesn't matter.
  • the shapes of the first and second gripping surfaces 821 and 821 ′ are not limited to the shapes described in the first to eleventh embodiments.
  • FIG. 17 shows a modification of the first to eleventh embodiments of the present invention. Specifically, FIG. 17 corresponds to FIG.
  • the first gripping surface 821 (second gripping surface 821 ′) has a substantially rectangular shape when viewed in plan, as shown in FIG.
  • the first central region Ar1 (second central region Ar1 ′) configured by the upper surface of the first thermal resistance member 84 (second thermal resistance member 84 ′) is a first gripping surface 821 (second gripping surface 821 ′).
  • first opposing region Ar2 (second opposing region Ar2 ′) configured by the upper surface of the first electrode 83 (second electrode 83 ′) sandwiches the first central region Ar1 (second central region Ar1 ′). They face each other in the width direction and have a substantially rectangular shape.
  • the first gripping surface 821K (second gripping surface 821K ′) according to this modification is different from the first gripping surface 821 (second gripping surface 821 ′) described above.
  • the tip has a rounded arc shape.
  • the entire U-shaped region Ar2K (Ar2K ′) along the outer edge of the first gripping surface 821K (second gripping surface 821K ′) (a pair of first opposing regions Ar2 (second opposing regions Ar2 ′)) ) Is formed on the upper surface of the first electrode 83 (second electrode 83 ′).
  • first central region Ar1K (second central region Ar1K ′) surrounded by the region Ar2K (Ar2K ′) in the first gripping surface 821K (second gripping surface 821K ′) (first central region Ar1 (second central)
  • first central region Ar1 (second central)
  • the entire region in which the tip of the region Ar2) has an arc shape) is configured by the upper surface of the first thermal resistance member 84 (second thermal resistance member 84 ′).
  • the first electrode 83 (83A, second electrode 83 ′) can be formed of one member (in the first, second, tenth, and eleventh embodiments, a pair). That is, since the first electrode 83 (83A, second electrode 83 ′) is a single member, the first electrode 83 (83A, second electrode 83 ′) has only one lead constituting the electric cable C. Lines are joined.

Abstract

This energy treatment tool is provided with: a first jaw 8 having a first gripping surface 821; a second jaw 8' having a second gripping surface 821'; a first electrode 83 provided to the first jaw 8 so as to sandwich a first central region Ar1 of the first gripping surface 821; a second electrode 83' provided to the second jaw 8' so as to sandwich a second central region Ar1' of the second gripping surface 821'; first and second cooling members 85, 85' which are in contact with the first and second electrodes 83, 83', respectively, and cool the same; and first and second thermal resistance members 84, 84' which constitute the first and second central regions Ar1, Ar1', respectively, and which have a higher thermal resistance with respect to a biological tissue than the first and second electrodes 83, 83'.

Description

エネルギ処置具Energy treatment tool
 本発明は、エネルギ処置具に関する。 The present invention relates to an energy treatment device.
 従来、生体組織にエネルギを付与することにより生体組織を処置(接合(若しくは吻合)及び切離等)するエネルギ処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載のエネルギ処置具は、生体組織を把持する一対のジョーを備える。一対のジョーには、高周波電力が供給される電極がそれぞれ設けられている。そして、当該エネルギ処置具では、一対のジョーにて生体組織を把持し、各電極に高周波電力を供給して当該生体組織の内部にジュール熱を発生させることにより、当該生体組織を処置する。
 また、特許文献1に記載のエネルギ処置具では、各電極を冷却するために、当該各電極の内部に冷却媒体を流通させるためのクーラントラインがそれぞれ設けられている。
2. Description of the Related Art Conventionally, there is known an energy treatment device that treats biological tissues (joining (or anastomosis), cutting, etc.) by applying energy to the biological tissues (for example, see Patent Document 1).
The energy treatment tool described in Patent Literature 1 includes a pair of jaws that grip biological tissue. Each of the pair of jaws is provided with electrodes to which high-frequency power is supplied. In the energy treatment instrument, the living tissue is treated by holding the living tissue with a pair of jaws and supplying high frequency power to each electrode to generate Joule heat inside the living tissue.
Moreover, in the energy treatment tool described in Patent Document 1, in order to cool each electrode, a coolant line for circulating a cooling medium is provided inside each electrode.
特開2007-37932号公報(図11)JP 2007-37932 A (FIG. 11)
 ところで、エネルギ付与による生体組織の処置を行った場合には、生体組織における処置対象組織(一対のジョーにて把持された組織)や各電極からの熱伝導により、当該処置対象組織の周辺の組織にも熱の影響がおよび、当該処置対象組織の周辺の組織の自然治癒能力を低下させる虞がある。
 特許文献1に記載のエネルギ処置具では、クーラントラインに冷却媒体を流通させて各電極を冷却することにより、生体組織における処置対象組織の周辺の組織への熱の影響を低減することが可能である。
 しかしながら、一対のジョーは小型のものであり、生体組織の厚み寸法も小さいものである。このため、冷却による伝熱の寄与を無視することができない。すなわち、特許文献1に記載のエネルギ処置具のように、クーラントラインに冷却媒体を流通させることで各電極を冷却した場合には、発熱部位と冷却部位とが近いために、生体組織における処置対象組織も直ちに冷却されてしまい、処置に必要な温度上昇を直ちに行うことができない、という問題がある。
 したがって、生体組織における処置対象組織の周辺の組織への熱の影響を低減しつつ、処置対象組織を適切に処置することができる技術が要望されている。
By the way, when the treatment of the living tissue is performed by applying energy, the treatment target tissue in the living tissue (the tissue grasped by the pair of jaws) and the surrounding tissue of the treatment target tissue due to heat conduction from each electrode. In addition, there is a possibility that the influence of heat may be exerted and the natural healing ability of the tissue around the tissue to be treated may be reduced.
In the energy treatment device described in Patent Document 1, it is possible to reduce the influence of heat on the surrounding tissue of the treatment target tissue in the living tissue by flowing the cooling medium through the coolant line and cooling each electrode. is there.
However, the pair of jaws is small, and the thickness dimension of the living tissue is also small. For this reason, the contribution of heat transfer by cooling cannot be ignored. That is, when each electrode is cooled by circulating a cooling medium through a coolant line as in the energy treatment device described in Patent Document 1, the heat generation part and the cooling part are close to each other. There is a problem that the tissue is also immediately cooled, and the temperature increase necessary for the treatment cannot be performed immediately.
Therefore, there is a demand for a technique that can appropriately treat a tissue to be treated while reducing the influence of heat on the tissue around the tissue to be treated in the living tissue.
 本発明は、上記に鑑みてなされたものであって、生体組織における処置対象組織の周辺の組織への熱の影響を低減しつつ、処置対象組織を適切に処置することができるエネルギ処置具を提供することを目的とする。 The present invention has been made in view of the above, and an energy treatment device capable of appropriately treating a treatment target tissue while reducing the influence of heat on the tissue around the treatment target tissue in a living tissue. The purpose is to provide.
 上述した課題を解決し、目的を達成するために、本発明に係るエネルギ処置具は、第1把持面を有する第1ジョーと、前記第1把持面との間で生体組織を把持する第2把持面を有する第2ジョーと、前記第1把持面における第1中央領域を挟んで前記第1ジョーに設けられる第1電極と、前記第2把持面における第2中央領域を挟んで前記第2ジョーに設けられる第2電極と、前記第1ジョーと前記第2ジョーとの少なくとも一方のジョーに設けられ、前記第1電極と前記第2電極とのうち少なくとも一方の電極に接触して当該電極を冷却する冷却部材と、前記第1ジョーと前記第2ジョーとの少なくとも一方のジョーに設けられ、前記第1中央領域と前記第2中央領域との少なくとも一方の領域を構成し、前記第1電極及び前記第2電極よりも前記生体組織への熱抵抗が高い熱抵抗部と、を備える。 In order to solve the above-described problems and achieve the object, an energy treatment device according to the present invention includes a second jaw for grasping a living tissue between a first jaw having a first grasping surface and the first grasping surface. A second jaw having a gripping surface; a first electrode provided on the first jaw across the first central region of the first gripping surface; and the second jaw sandwiching a second central region of the second gripping surface. A second electrode provided on the jaw; and at least one of the first jaw and the second jaw; and the electrode in contact with at least one of the first electrode and the second electrode A cooling member for cooling the at least one jaw of the first jaw and the second jaw, constituting at least one of the first central region and the second central region, Electrode and second electrode Comprising a remote thermal resistance high thermal resistance portion to the biological tissue, a.
 本発明に係るエネルギ処置具によれば、生体組織における処置対象組織の周辺の組織への熱の影響を低減しつつ、処置対象組織を適切に処置することができる、という効果を奏する。 The energy treatment device according to the present invention produces an effect that the treatment target tissue can be appropriately treated while reducing the influence of heat on the tissue around the treatment target tissue in the living tissue.
図1は、本発明の実施の形態1に係るエネルギ処置システムを示す図である。FIG. 1 is a diagram showing an energy treatment system according to Embodiment 1 of the present invention. 図2は、図1に示したエネルギ処置具の先端部分を拡大した図である。FIG. 2 is an enlarged view of the distal end portion of the energy treatment device shown in FIG. 図3は、図2に示した把持部を示す図である。FIG. 3 is a diagram illustrating the gripping unit illustrated in FIG. 2. 図4は、図2に示した把持部を示す図である。FIG. 4 is a diagram illustrating the grip portion illustrated in FIG. 2. 図5は、図4に示した第1冷却部材の構成を示す断面図である。FIG. 5 is a cross-sectional view illustrating a configuration of the first cooling member illustrated in FIG. 4. 図6は、図1に示したエネルギ処置システムの動作を説明する図である。FIG. 6 is a diagram for explaining the operation of the energy treatment system shown in FIG. 図7は、本発明の実施の形態2に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 7 is a diagram showing a first jaw constituting the energy treatment system (energy treatment tool) according to Embodiment 2 of the present invention. 図8は、本発明の実施の形態3に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 8 is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 3 of the present invention. 図9は、本発明の実施の形態4に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 9 is a view showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 4 of the present invention. 図10は、本発明の実施の形態5に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 10 is a view showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 5 of the present invention. 図11は、本発明の実施の形態6に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 11 is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 6 of the present invention. 図12Aは、本発明の実施の形態7に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 12A is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 7 of the present invention. 図12Bは、本発明の実施の形態7に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 12B is a diagram showing a first jaw constituting the energy treatment system (energy treatment device) according to Embodiment 7 of the present invention. 図13Aは、本発明の実施の形態8に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 13A is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 8 of the present invention. 図13Bは、本発明の実施の形態8に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 13B is a diagram showing a first jaw constituting the energy treatment system (energy treatment tool) according to Embodiment 8 of the present invention. 図14は、本発明の実施の形態9に係る第1冷却部材の構成を示す断面図である。FIG. 14 is a cross-sectional view showing the configuration of the first cooling member according to Embodiment 9 of the present invention. 図15は、本発明の実施の形態10に係るエネルギ処置システム(エネルギ処置具)を構成する把持部を示す図である。FIG. 15 is a diagram showing a gripping part constituting the energy treatment system (energy treatment tool) according to Embodiment 10 of the present invention. 図16は、本発明の実施の形態11に係るエネルギ処置システム(エネルギ処置具)を構成する第1ジョーを示す図である。FIG. 16 is a diagram showing a first jaw constituting an energy treatment system (energy treatment tool) according to Embodiment 11 of the present invention. 図17は、本発明の実施の形態1~11の変形例を示す図である。FIG. 17 shows a modification of the first to eleventh embodiments of the present invention.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 DETAILED DESCRIPTION Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing.
(実施の形態1)
 〔エネルギ処置システムの概略構成〕
 図1は、本発明の実施の形態1に係るエネルギ処置システム1を示す図である。
 エネルギ処置システム1は、生体組織に対してエネルギ(本実施の形態1では、電気エネルギ(高周波エネルギ))を付与することにより、当該生体組織を処置(接合(若しくは吻合)及び切離等)する。このエネルギ処置システム1は、図1に示すように、エネルギ処置具2と、制御装置3と、フットスイッチ4とを備える。
(Embodiment 1)
[Schematic configuration of energy treatment system]
FIG. 1 is a diagram showing an energy treatment system 1 according to Embodiment 1 of the present invention.
The energy treatment system 1 treats (joins (or anastomoses), detaches, etc.) the living tissue by applying energy (electric energy (high frequency energy) in the first embodiment) to the living tissue. . As shown in FIG. 1, the energy treatment system 1 includes an energy treatment tool 2, a control device 3, and a foot switch 4.
 〔エネルギ処置具の構成〕
 エネルギ処置具2は、例えば、腹壁を通して生体組織に処置を行うためのリニアタイプの外科医療用処置具である。このエネルギ処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が把持する部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2ジョー8,8´(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側(図1中、右端部側)から他端側(図1中、左端部側)まで配設されている。
[Configuration of energy treatment device]
The energy treatment device 2 is, for example, a linear type surgical treatment device for performing treatment on a living tissue through an abdominal wall. As shown in FIG. 1, the energy treatment device 2 includes a handle 5, a shaft 6, and a grip portion 7.
The handle 5 is a portion that the operator holds. The handle 5 is provided with an operation knob 51 as shown in FIG.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5. A gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1). An opening / closing mechanism (not shown) that opens and closes the first and second jaws 8 and 8 ′ (FIG. 1) constituting the gripping portion 7 in response to the operation of the operation knob 51 by the operator is provided inside the shaft 6. ) Is provided. Further, in the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 is connected to the other end side (in FIG. 1) from one end side (right end side in FIG. 1) via the handle 5. (Up to the left end side).
 〔把持部の構成〕
 図2は、エネルギ処置具2の先端部分を拡大した図である。図3及び図4は、把持部7を示す図である。具体的に、図3は、第1ジョー8(第2ジョー8´)を第1把持面821(第2把持面821´)側から見た図である。図4は、把持部7を幅方向(図3中、左右方向)に沿う切断面で切断した断面図である。
 なお、図1ないし図4において、「´」が付加されていない符号が示す構成と「´」が付加された符号が示す構成とは、同一の構成である。以降の図も同様である。
 把持部7は、生体組織を把持して、当該生体組織を処置する部分である。この把持部7は、図1ないし図4に示すように、第1,第2ジョー8,8´を備える。
 第1,第2ジョー8,8´は、矢印R1(図2)方向に開閉可能にシャフト6の他端に軸支され、術者による操作ノブ51の操作に応じて、生体組織を把持可能とする。
(Configuration of gripping part)
FIG. 2 is an enlarged view of the distal end portion of the energy treatment device 2. 3 and 4 are diagrams showing the gripping portion 7. Specifically, FIG. 3 is a view of the first jaw 8 (second jaw 8 ′) viewed from the first gripping surface 821 (second gripping surface 821 ′) side. FIG. 4 is a cross-sectional view of the grip portion 7 cut along a cut surface along the width direction (left-right direction in FIG. 3).
1 to 4, the configuration indicated by the reference sign without “′” and the configuration indicated by the reference sign with “′” are the same. The same applies to the subsequent figures.
The gripping part 7 is a part that grips a living tissue and treats the living tissue. As shown in FIGS. 1 to 4, the grip portion 7 includes first and second jaws 8 and 8 ′.
The first and second jaws 8 and 8 'are pivotally supported on the other end of the shaft 6 so as to be openable and closable in the direction of the arrow R1 (FIG. 2). And
 〔第1ジョーの構成〕
 第1ジョー8は、第2ジョー8´に対して、図1及び図2中、下方側に配設される。この第1ジョー8は、図2ないし図4に示すように、第1支持部材81と、第1処置部82とを備える。
 第1支持部材81は、シャフト6の中心軸に沿って延びる略直方体形状を有し、長手方向の一端側(基端側)がシャフト6に支持される。この第1支持部材81の略中心位置には、下方に向けて窪み、第1処置部82が設置される第1凹部811が設けられている。
 以上説明した第1支持部材81は、例えば、樹脂材料(フッ素樹脂等)を成型したものである。
[Configuration of first jaw]
The first jaw 8 is disposed on the lower side in FIGS. 1 and 2 with respect to the second jaw 8 ′. As shown in FIGS. 2 to 4, the first jaw 8 includes a first support member 81 and a first treatment portion 82.
The first support member 81 has a substantially rectangular parallelepiped shape extending along the central axis of the shaft 6, and one end side (base end side) in the longitudinal direction is supported by the shaft 6. At a substantially central position of the first support member 81, there is provided a first recess 811 that is recessed downward and in which the first treatment portion 82 is installed.
The first support member 81 described above is formed by molding a resin material (fluorine resin or the like), for example.
 第1処置部82は、シャフト6の中心軸に沿って延びる略直方体形状を有し、一部が第2ジョー8´側に突出した状態で第1凹部811に設置される。そして、第1処置部82の上面は、平坦状に形成され、第2ジョー8´(第2把持面821´)との間で生体組織を把持する第1把持面821(図2~図4)として機能する。
 ここで、第1把持面821において、幅方向中央の領域を第1中央領域Ar1(図3)とする。この第1中央領域Ar1は、第1把持面821の中心位置CP(図3)を含み、第1把持面821の長手方向に沿って延びる領域である。また、第1把持面821において、第1中央領域Ar1を挟んで幅方向に互いに対向する領域(第1中央領域Ar1における幅方向外側の領域)をそれぞれ第1対向領域Ar2(図3)とする。
 この第1処置部82は、図2ないし図4に示すように、第1電極83と、第1熱抵抗部材84と、第1冷却部材85(図4)とを備える。
The first treatment portion 82 has a substantially rectangular parallelepiped shape extending along the central axis of the shaft 6, and is installed in the first recess 811 in a state in which a part projects toward the second jaw 8 ′ side. The upper surface of the first treatment section 82 is formed in a flat shape, and a first gripping surface 821 (FIGS. 2 to 4) that grips a living tissue with the second jaw 8 ′ (second gripping surface 821 ′). ).
Here, in the first gripping surface 821, a region in the center in the width direction is defined as a first central region Ar1 (FIG. 3). The first central region Ar1 is a region including the center position CP (FIG. 3) of the first gripping surface 821 and extending along the longitudinal direction of the first gripping surface 821. In the first gripping surface 821, regions facing each other in the width direction across the first central region Ar1 (regions on the outer side in the width direction in the first central region Ar1) are respectively defined as first opposing regions Ar2 (FIG. 3). .
As shown in FIGS. 2 to 4, the first treatment section 82 includes a first electrode 83, a first thermal resistance member 84, and a first cooling member 85 (FIG. 4).
 第1電極83は、制御装置3による制御の下、高周波エネルギを発生する。本実施の形態1では、第1電極83は、図2ないし図4に示すように、一対で構成されている。
 具体的に、一対の第1電極83は、例えば、銅等の導電性材料から構成されている。また、一対の第1電極83は、シャフト6の中心軸に沿って延びる略直方体状の板体でそれぞれ構成され、各上面が第1把持面821における一対の第1対向領域Ar2全体をそれぞれ構成するように配設される。さらに、一対の第1電極83には、電気ケーブルCを構成する一対のリード線(図示略)がそれぞれ接合されている。
The first electrode 83 generates high frequency energy under the control of the control device 3. In the first embodiment, the first electrode 83 is configured as a pair as shown in FIGS.
Specifically, the pair of first electrodes 83 is made of a conductive material such as copper, for example. In addition, the pair of first electrodes 83 is configured by a substantially rectangular parallelepiped plate extending along the central axis of the shaft 6, and each upper surface configures the entire pair of first opposing regions Ar <b> 2 on the first gripping surface 821. Is arranged. Further, a pair of lead wires (not shown) constituting the electric cable C are joined to the pair of first electrodes 83, respectively.
 第1熱抵抗部材84は、本発明に係る熱抵抗部としての機能を有する。本実施の形態1では、第1熱抵抗部材84は、一対の第1電極83とは別体で構成されている。
 具体的に、第1熱抵抗部材84は、一対の第1電極83の熱伝導率よりも低い熱伝導率を有する低熱伝導部材で構成されている。また、第1熱抵抗部材84は、シャフト6の中心軸に沿って延び、一対の第1電極83と同一の厚み寸法を有する略直方体状の板体で構成され、上面が一対の第1電極83の各上面と面一となり、かつ、第1把持面821における第1中央領域Ar1全体を構成するように配設される。
 第1熱抵抗部材84の材料としては、一対の第1電極83の熱伝導率よりも低い熱伝導率を有していれば、いずれの材料でもよく、例えば、チタン等の低熱伝導の金属、多孔質体で構成された低密度金属、PFA(テトラフルオロエチレン・パーフルオロアルコキシエチレン共重合体)やPTFE(ポリテトラフルオロエチレン)等の樹脂、内部が空洞な樹脂、多孔質熱硬化性プラスチック、アルミナ・ジルコニア・マセライト等の低熱伝導のセラミック、あるいは、多孔質セラミック等を例示することができる。
 すなわち、本実施の形態1では、一対の第1対向領域Ar2(第1電極83)よりも第1中央領域Ar1(第1熱抵抗部材84)の熱伝導率を低く構成することにより、第1中央領域Ar1(第1熱抵抗部材84)における生体組織への熱抵抗を一対の第1対向領域Ar2(第1電極83)における生体組織への熱抵抗よりも高いものとしている。
The first heat resistance member 84 has a function as a heat resistance portion according to the present invention. In the first embodiment, the first thermal resistance member 84 is configured separately from the pair of first electrodes 83.
Specifically, the first thermal resistance member 84 is composed of a low thermal conductive member having a thermal conductivity lower than that of the pair of first electrodes 83. The first heat resistance member 84 extends along the central axis of the shaft 6, is configured by a substantially rectangular parallelepiped plate having the same thickness as the pair of first electrodes 83, and the upper surface thereof is a pair of first electrodes. It is disposed so as to be flush with each upper surface of 83 and constitute the entire first central region Ar1 in the first gripping surface 821.
The material of the first thermal resistance member 84 may be any material as long as it has a thermal conductivity lower than the thermal conductivity of the pair of first electrodes 83, for example, a low thermal conductivity metal such as titanium, Low density metal composed of porous material, resin such as PFA (tetrafluoroethylene / perfluoroalkoxyethylene copolymer) and PTFE (polytetrafluoroethylene), hollow resin, porous thermosetting plastic, Examples include low thermal conductive ceramics such as alumina, zirconia, and macerite, or porous ceramics.
That is, in the first embodiment, the first central region Ar1 (first thermal resistance member 84) is configured to have a lower thermal conductivity than the pair of first opposing regions Ar2 (first electrode 83). The thermal resistance to the living tissue in the central region Ar1 (first thermal resistance member 84) is higher than the thermal resistance to the living tissue in the pair of first opposing regions Ar2 (first electrode 83).
 図5は、第1冷却部材85の構成を示す断面図である。
 第1冷却部材85は、本発明に係る冷却部材として冷却する機能を有し、少なくとも一対の第1電極83に接触し、当該一対の第1電極83を冷却する。
 本実施の形態1では、第1冷却部材85は、図5に示すように、第1潜熱蓄熱材851と、第1潜熱蓄熱材851を封止する第1封止部材852とを備えたシート状に形成されている。第1潜熱蓄熱材851は、本発明に係る潜熱蓄熱材としての機能を有する。また、第1封止部材852は、本発明に係る封止部材としての機能を有する。そして、第1冷却部材85は、図4に示すように、一対の第1電極83における第1把持面821から離間した各第1背面831、及び第1熱抵抗部材84における第1把持面821から離間した背面841の3つの背面831,841全体を覆い、当該3つの背面831,841に接触するように配設される。
FIG. 5 is a cross-sectional view showing the configuration of the first cooling member 85.
The first cooling member 85 has a function of cooling as a cooling member according to the present invention, contacts at least the pair of first electrodes 83, and cools the pair of first electrodes 83.
In the first embodiment, as shown in FIG. 5, the first cooling member 85 includes a first latent heat storage material 851 and a first sealing member 852 that seals the first latent heat storage material 851. It is formed in a shape. The first latent heat storage material 851 has a function as a latent heat storage material according to the present invention. Moreover, the 1st sealing member 852 has a function as a sealing member which concerns on this invention. As shown in FIG. 4, the first cooling member 85 includes the first back surfaces 831 spaced apart from the first gripping surfaces 821 of the pair of first electrodes 83, and the first gripping surfaces 821 of the first thermal resistance members 84. Covering the entire three back surfaces 831 and 841 of the back surface 841 spaced apart from each other, the three back surfaces 831 and 841 are disposed.
 ここで、第1潜熱蓄熱材851は、ある温度までは他の物質と同様の熱的挙動を示すものの、物質固有の当該ある温度で相転移を生じ、それに伴う潜熱による吸熱作用を利用することで、他の物質に比べて単位体積当たり大きな熱量を保持することができる物質である。第1潜熱蓄熱材851の材料としては、パラフィン、ポリ乳酸、水酸化マグネシウム、エリスリトール、マンニトール等の室温時固体の物質を例示することができる。例えば、パラフィンの作動温度(固体から液体への相転移を生じる温度)は、約40℃である。また、エリスリトールの作動温度は、約120℃である。すなわち、第1潜熱蓄熱材851の材料としては、吸熱を始めたい作動温度によって選択すればよい。 Here, the first latent heat storage material 851 exhibits the same thermal behavior as that of other substances up to a certain temperature, but causes a phase transition at the certain temperature inherent to the substance, and utilizes the endothermic effect due to the latent heat associated therewith. Thus, it is a substance that can hold a larger amount of heat per unit volume than other substances. Examples of the material of the first latent heat storage material 851 include solid substances at room temperature such as paraffin, polylactic acid, magnesium hydroxide, erythritol, and mannitol. For example, the operating temperature of paraffin (the temperature that causes a phase transition from solid to liquid) is about 40 ° C. The operating temperature of erythritol is about 120 ° C. That is, the material of the first latent heat storage material 851 may be selected according to the operating temperature at which heat absorption is desired.
 〔第2ジョーの構成〕
 第2ジョー8´は、第1ジョー8と略同一の外形形状及び同様の構成を有する。すなわち、第2ジョー8´は、図2ないし図4に示すように、第1ジョー8における第1支持部材81(第1凹部811を含む)及び第1処置部82(第1把持面821(第1中央領域Ar1及び一対の第1対向領域Ar2を含む)、第1電極83(第1背面831を含む)、第1熱抵抗部材84(背面841を含む)、及び第1冷却部材85(第1潜熱蓄熱材851及び第1封止部材852を含む)を含む)と同様の第2支持部材81´(第2凹部811´を含む)及び第2処置部82´(第2把持面821´(第2中央領域Ar1´及び一対の第2対向領域Ar2´を含む)、第2電極83´(第2背面831´を含む)、第2熱抵抗部材84´(背面841´を含む)、及び第2冷却部材85´(第2潜熱蓄熱材851´及び第2封止部材852´を含む)を含む)を備える。
[Configuration of second jaw]
The second jaw 8 ′ has substantially the same outer shape and the same configuration as the first jaw 8. That is, as shown in FIGS. 2 to 4, the second jaw 8 ′ includes the first support member 81 (including the first recess 811) and the first treatment portion 82 (the first gripping surface 821 ( A first central region Ar1 and a pair of first opposing regions Ar2), a first electrode 83 (including a first back surface 831), a first thermal resistance member 84 (including a back surface 841), and a first cooling member 85 (including Second support member 81 ′ (including second recess 811 ′) and second treatment portion 82 ′ (second gripping surface 821), including the first latent heat storage material 851 and the first sealing member 852. '(Including the second central region Ar1' and the pair of second opposing regions Ar2 '), the second electrode 83' (including the second back surface 831 '), the second thermal resistance member 84' (including the back surface 841 ') , And second cooling member 85 ′ (second latent heat storage material 851 ′ and second sealing member 85 It comprises including) the including) a '.
 ここで、一対の第2電極83´には、一対の第1電極83と同様に、電気ケーブルCを構成する一対のリード線(図示略)がそれぞれ接合されている。そして、一対の第1電極83と一対の第2電極83´とは、電気ケーブルC(リード線)を介して制御装置3により高周波電力がそれぞれ供給されることで、高周波エネルギを発生する(一対の第1電極83と一対の第2電極83´との間に把持された生体組織に高周波電流を流す)。なお、高周波電力が供給されている際には、一対の第1電極83は、同電位となっている。また、高周波電力が供給されている際には、一対の第2電極83´は、同電位となっている。すなわち、高周波電流は、互いに対向する第1,第2電極83,83´間で図4中、上下方向に流れる(図6参照)。 Here, similarly to the pair of first electrodes 83, a pair of lead wires (not shown) constituting the electric cable C are joined to the pair of second electrodes 83 ′, respectively. The pair of first electrodes 83 and the pair of second electrodes 83 ′ generate high-frequency energy by being supplied with high-frequency power by the control device 3 via the electric cable C (lead wire). The high-frequency current is passed through the living tissue grasped between the first electrode 83 and the pair of second electrodes 83 ′). Note that when the high-frequency power is supplied, the pair of first electrodes 83 are at the same potential. Further, when the high frequency power is supplied, the pair of second electrodes 83 ′ have the same potential. That is, the high-frequency current flows in the vertical direction in FIG. 4 between the first and second electrodes 83 and 83 ′ facing each other (see FIG. 6).
 〔制御装置及びフットスイッチの構成〕
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3からエネルギ処置具2(一対の第1電極83及び一対の第2電極83´)への通電(高周波電力の供給)のオン及びオフが切り替えられる。
 なお、当該オン及びオフを切り替える手段としては、フットスイッチ4に限られず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、エネルギ処置具2の動作を統括的に制御する。より具体的に、制御装置3は、術者によるフットスイッチ4への操作(通電オンの操作)に応じて、電気ケーブルC(リード線)を介して一対の第1電極83と一対の第2電極83´との間に、予め設定した出力の高周波電力を供給する。
[Configuration of control device and foot switch]
The foot switch 4 is a part operated by the operator with his / her foot. Then, according to the operation to the foot switch 4, energization (supply of high-frequency power) from the control device 3 to the energy treatment instrument 2 (a pair of first electrodes 83 and a pair of second electrodes 83 ′) is turned on and off. Is switched.
Note that the means for switching on and off is not limited to the foot switch 4, and other switches that are operated by hand may be employed.
The control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the energy treatment device 2 according to a predetermined control program. More specifically, the control device 3 determines the pair of first electrodes 83 and the pair of second electrodes via the electric cable C (lead wire) in response to an operation of the foot switch 4 by the operator (operation to turn on the power). A high-frequency power having a preset output is supplied between the electrode 83 ′.
 〔エネルギ処置システムの動作〕
 次に、上述したエネルギ処置システム1の動作(作動方法)について説明する。
 図6は、エネルギ処置システム1の動作を説明する図である。具体的に、図6は、図4に対応した断面図であり、第1,第2ジョー8,8´にて生体組織LTを把持した状態を示している。
 術者は、エネルギ処置具2を把持し、当該エネルギ処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。また、術者は、操作ノブ51を操作し、図6に示すように、第1,第2ジョー8,8´にて生体組織LTを把持する。
 次に、術者は、フットスイッチ4を操作し、制御装置3からエネルギ処置具2への通電をオンに切り替える。当該オンに切り替えられると、制御装置3は、電気ケーブルC(リード線)を介して一対の第1電極83と一対の第2電極83´との間に高周波電力を供給する。当該高周波電力の供給に伴い、互いに対向する第1,第2電極83,83´間で高周波電流Cu(図6)が流れ、生体組織LTにおける第1,第2電極83,83´で挟まれた各領域LT1(図6)にジュール熱が発生する。そして、当該ジュール熱の発生により、生体組織LTは処置される。
[Operation of energy treatment system]
Next, operation | movement (operation method) of the energy treatment system 1 mentioned above is demonstrated.
FIG. 6 is a diagram for explaining the operation of the energy treatment system 1. Specifically, FIG. 6 is a cross-sectional view corresponding to FIG. 4 and shows a state where the living tissue LT is grasped by the first and second jaws 8 and 8 ′.
The surgeon grasps the energy treatment instrument 2 and inserts the tip portion of the energy treatment instrument 2 (a part of the grasping portion 7 and the shaft 6) into the abdominal cavity through the abdominal wall using, for example, a trocar. Further, the surgeon operates the operation knob 51 to hold the living tissue LT with the first and second jaws 8 and 8 'as shown in FIG.
Next, the surgeon operates the foot switch 4 to switch on energization from the control device 3 to the energy treatment instrument 2. When switched on, the control device 3 supplies high-frequency power between the pair of first electrodes 83 and the pair of second electrodes 83 ′ via the electric cable C (lead wire). With the supply of the high-frequency power, a high-frequency current Cu (FIG. 6) flows between the first and second electrodes 83 and 83 ′ facing each other, and is sandwiched between the first and second electrodes 83 and 83 ′ in the living tissue LT. Joule heat is generated in each region LT1 (FIG. 6). Then, the living tissue LT is treated by the generation of the Joule heat.
 以上説明した本実施の形態1に係るエネルギ処置具2では、第1ジョー8において、一対の第1電極83は、第1把持面821における幅方向外側に位置する一対の第1対向領域Ar2全体をそれぞれ構成している。また、一対の第1電極83は、第1冷却部材85により冷却される。第2ジョー8´も同様である。
 このため、生体組織LTにおける各領域LT1で発生したジュール熱が、生体組織LT内を伝熱して広がっていくものの、一対の第1,第2電極83,83´近傍の生体組織LTは、一対の第1,第2電極83,83´を介して、第1,第2冷却媒体85,85´にて冷却されるため、生体組織LTにおける処置対象組織(第1,第2把持面821,821´にて把持された組織)の周辺の組織の温度を低下させることができる。また、各領域LT1~一対の第1,第2電極83,83´に伝熱することで本来電極温度も上がってしまうために、一対の第1,第2電極83,83´~生体組織LTにおける処置対象組織の周辺の組織への熱伝達経路を辿って当該処置対象組織の周辺の組織に伝達される熱の影響も、一対の第1,第2電極83,83´を第1,第2冷却部材85,85´にて冷却しているため、低減することができる。したがって、生体組織LTにおける処置対象組織の周辺の組織への熱の影響を低減することができる。
In the energy treatment device 2 according to the first embodiment described above, in the first jaw 8, the pair of first electrodes 83 is the entire pair of first opposing regions Ar2 located on the outer side in the width direction of the first gripping surface 821. Each is composed. Further, the pair of first electrodes 83 is cooled by the first cooling member 85. The same applies to the second jaw 8 '.
For this reason, Joule heat generated in each region LT1 in the living tissue LT spreads by transferring heat in the living tissue LT, but the living tissue LT in the vicinity of the pair of first and second electrodes 83, 83 ' The first and second cooling media 85 and 85 ′ are used to cool the tissue to be treated (the first and second gripping surfaces 821 and 821) in the living tissue LT. The temperature of the tissue around the tissue) grasped at 821 'can be lowered. Further, since the temperature of the electrode inherently increases due to heat transfer to each region LT1 to the pair of first and second electrodes 83 and 83 ′, the pair of first and second electrodes 83 and 83 ′ to the living tissue LT. The influence of the heat transferred to the surrounding tissue of the treatment target tissue by following the heat transfer path to the surrounding tissue of the treatment target tissue in the first and second electrodes 83 and 83 'is also the first and first. Since it is cooled by the two cooling members 85 and 85 ', it can be reduced. Therefore, it is possible to reduce the influence of heat on the tissue around the tissue to be treated in the living tissue LT.
 また、第1ジョー8において、第1熱抵抗部材84は、第1把持面821における幅方向中央に位置する第1中央領域Ar1を構成している。また、第1熱抵抗部材84は、第1電極83よりも熱伝導率が低く、生体組織LTへの熱抵抗が第1電極83よりも高い。第2ジョー8´も同様である。
 このため、生体組織LT(領域LT2(図6))から第1,第2熱抵抗部材84,84´が奪う熱量を生体組織LT(領域LT1)から第1,第2電極83,83´が奪う熱量よりも少なくすることができ、生体組織LTの処置対象組織において、本来、処置を行いたい幅方向中央の領域LT2の温度の低下を抑制することができる。したがって、生体組織LTにおける処置対象組織を適切に処置することができる。
 以上のことから、本実施の形態1に係るエネルギ処置具2によれば、生体組織LTにおける処置対象組織の周辺の組織への熱の影響を低減しつつ、処置対象組織を適切に処置することができる、という効果を奏する。
Further, in the first jaw 8, the first thermal resistance member 84 constitutes a first central region Ar <b> 1 located at the center in the width direction of the first gripping surface 821. In addition, the first thermal resistance member 84 has a lower thermal conductivity than the first electrode 83 and a higher thermal resistance to the living tissue LT than the first electrode 83. The same applies to the second jaw 8 '.
For this reason, the first and second electrodes 83 and 83 ′ from the living tissue LT (region LT1) take the amount of heat taken by the first and second heat resistance members 84 and 84 ′ from the living tissue LT (region LT2 (FIG. 6)). The amount of heat to be taken can be reduced, and in the tissue to be treated of the living tissue LT, it is possible to suppress a decrease in the temperature of the region LT2 in the center in the width direction where treatment is originally desired. Therefore, it is possible to appropriately treat the tissue to be treated in the living tissue LT.
From the above, according to the energy treatment device 2 according to the first embodiment, the treatment target tissue is appropriately treated while reducing the influence of heat on the tissue around the treatment target tissue in the living tissue LT. There is an effect that can be.
 また、本実施の形態1に係るエネルギ処置具2では、第1冷却部材85は、第1潜熱蓄熱材851を利用して、一対の第1電極83を冷却している。第2冷却部材85´も同様である。
 このため、第1,第2潜熱蓄熱材851,851´の作動温度までは、生体組織LTにおける処置対象組織の温度上昇を大きく妨げることがなく、処置を実行することができる。一方、第1,第2潜熱蓄熱材851,851´が作動温度以上になった場合には、第1,第2潜熱蓄熱材851の非線形な熱挙動によって吸熱を開始し、それ以上に温度が上昇することを妨げることができる。したがって、処置の時間を長くすることなく、生体組織LTにおける処置対象組織を適切に処置することができる。
In the energy treatment device 2 according to the first embodiment, the first cooling member 85 cools the pair of first electrodes 83 using the first latent heat storage material 851. The same applies to the second cooling member 85 '.
For this reason, it is possible to execute the treatment until the operating temperature of the first and second latent heat storage materials 851 and 851 ′ is not significantly hindered from the temperature increase of the treatment target tissue in the living tissue LT. On the other hand, when the first and second latent heat storage materials 851 and 851 ′ reach the operating temperature or higher, the first and second latent heat storage materials 851 start to absorb heat by the non-linear thermal behavior, and the temperature exceeds that. Can prevent it from rising. Therefore, the treatment target tissue in the living tissue LT can be appropriately treated without increasing the treatment time.
 また、本実施の形態1に係るエネルギ処置具2では、第1冷却部材85は、シート状に形成され、一対の第1電極83及び第1熱抵抗部材84の各背面831,841に配設されている。第2冷却部材85´も同様である。
 このため、第1,第2ジョー8,8´の厚み寸法を低減し、把持部7の小型化を図ることができる。
In the energy treatment device 2 according to the first embodiment, the first cooling member 85 is formed in a sheet shape, and is disposed on each of the back surfaces 831 and 841 of the pair of first electrodes 83 and the first thermal resistance member 84. Has been. The same applies to the second cooling member 85 '.
For this reason, the thickness dimension of the 1st, 2nd jaws 8 and 8 'can be reduced, and the holding part 7 can be reduced in size.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 本実施の形態2の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図7は、本発明の実施の形態2に係るエネルギ処置システム1A(エネルギ処置具2A)を構成する第1ジョー8Aを示す図である。具体的に、図7は、図4に対応した断面図である。
 本実施の形態2に係るエネルギ処置システム1A(エネルギ処置具2A)には、図7に示すように、上述した実施の形態1で説明したエネルギ処置システム1(エネルギ処置具2)に対して、第1ジョー8の代わりに、第1処置部82とは異なる第1処置部82Aを有する第1ジョー8Aが採用されている。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
In the description of the second embodiment, the same reference numerals are given to the same components as those in the first embodiment, and the detailed description thereof is omitted or simplified.
FIG. 7 is a diagram showing a first jaw 8A constituting the energy treatment system 1A (energy treatment tool 2A) according to Embodiment 2 of the present invention. Specifically, FIG. 7 is a cross-sectional view corresponding to FIG.
As shown in FIG. 7, the energy treatment system 1A (energy treatment tool 2A) according to the second embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. Instead of the first jaw 8, a first jaw 8A having a first treatment portion 82A different from the first treatment portion 82 is employed.
 具体的に、第1処置部82Aには、図7に示すように、上述した実施の形態1で説明した第1処置部82(図4)に対して、一対の第1電極83及び第1冷却部材85の代わりに一対の第1電極83A及び第1冷却部材85Aが採用されている。
 一対の第1電極83Aには、上述した実施の形態1で説明した一対の第1電極83に対して、その内部に、断面略円形状を有し、長手方向(図7の紙面に直交する方向)に沿って延びる密閉空間SpAがそれぞれ形成されている。
 第1冷却部材85Aは、本発明に係る冷却部材としての機能を有し、上述した実施の形態1で説明した第1潜熱蓄熱材851と同一の材料で構成され、各密閉空間SpAにそれぞれ実装されている。
 なお、本実施の形態2に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Aと同一の構成を有する。
Specifically, as shown in FIG. 7, the first treatment section 82A has a pair of first electrodes 83 and a first electrode compared to the first treatment section 82 (FIG. 4) described in the first embodiment. Instead of the cooling member 85, a pair of first electrodes 83A and a first cooling member 85A are employed.
The pair of first electrodes 83A has a substantially circular cross section inside the pair of first electrodes 83 described in the first embodiment, and is in the longitudinal direction (perpendicular to the plane of FIG. 7). A sealed space SpA extending along (direction) is formed.
The first cooling member 85A has a function as a cooling member according to the present invention, is made of the same material as the first latent heat storage material 851 described in the first embodiment, and is mounted in each sealed space SpA. Has been.
In addition, although illustration was abbreviate | omitted about the 2nd jaw which concerns on this Embodiment 2, it has the same structure as the 1st jaw 8A mentioned above.
 以上説明した本実施の形態2に係るエネルギ処置具2Aのように第1冷却部材85Aを一対の第1電極83Aの内部に実装した場合であっても、上述した実施の形態1と同様の効果を奏する。
 また、第1冷却部材85Aが一対の第1電極83Aの内部に実装されているので、第1ジョー8Aの厚み寸法を低減することができる。第2ジョーも同様である。
Even when the first cooling member 85A is mounted inside the pair of first electrodes 83A as in the energy treatment tool 2A according to the second embodiment described above, the same effects as those of the first embodiment described above are obtained. Play.
Further, since the first cooling member 85A is mounted inside the pair of first electrodes 83A, the thickness dimension of the first jaw 8A can be reduced. The same applies to the second jaw.
(実施の形態3)
 次に、本発明の実施の形態3について説明する。
 本実施の形態3の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図8は、本発明の実施の形態3に係るエネルギ処置システム1B(エネルギ処置具2B)を構成する第1ジョー8Bを示す図である。具体的に、図8は、図4に対応した断面図である。
 本実施の形態3に係るエネルギ処置システム1B(エネルギ処置具2B)には、図8に示すように、上述した実施の形態1で説明したエネルギ処置システム1(エネルギ処置具2)に対して、第1ジョー8の代わりに、第1処置部82とは異なる第1処置部82Bを有する第1ジョー8Bが採用されている。
(Embodiment 3)
Next, a third embodiment of the present invention will be described.
In the description of the third embodiment, the same reference numerals are given to the same components as those in the first embodiment described above, and the detailed description thereof will be omitted or simplified.
FIG. 8 is a diagram showing a first jaw 8B constituting the energy treatment system 1B (energy treatment tool 2B) according to Embodiment 3 of the present invention. Specifically, FIG. 8 is a cross-sectional view corresponding to FIG.
As shown in FIG. 8, the energy treatment system 1 </ b> B (energy treatment tool 2 </ b> B) according to the third embodiment has the following configuration with respect to the energy treatment system 1 (energy treatment tool 2) described in the first embodiment. Instead of the first jaw 8, a first jaw 8B having a first treatment portion 82B different from the first treatment portion 82 is employed.
 具体的に、第1処置部82Bには、図8に示すように、上述した実施の形態1で説明した第1処置部82(図4)に対して、一対の第1電極83及び第1熱抵抗部材84の代わりに第1電極83B及び第1熱抵抗部材84Bが採用されている。
 第1電極83Bは、上述した実施の形態1で説明した第1電極83と同一の材料で構成され、図8に示すように、一部材で構成されている。すなわち、本実施の形態3では、第1電極83Bが一部材であるため、当該第1電極83Bには、電気ケーブルCを構成する1本のみのリード線(図示略)が接合される。この第1電極83Bは、上述した実施の形態1で説明した一対の第1電極83と第1熱抵抗部材84とを組み合わせたユニットと同一の外形形状を有する略直方体状に形成されている。
Specifically, as shown in FIG. 8, the first treatment unit 82 </ b> B has a pair of first electrodes 83 and a first electrode compared to the first treatment unit 82 (FIG. 4) described in the first embodiment. Instead of the heat resistance member 84, the first electrode 83B and the first heat resistance member 84B are employed.
The first electrode 83B is made of the same material as that of the first electrode 83 described in the first embodiment, and is made of one member as shown in FIG. That is, in the third embodiment, since the first electrode 83B is a single member, only one lead wire (not shown) constituting the electric cable C is joined to the first electrode 83B. The first electrode 83B is formed in a substantially rectangular parallelepiped shape having the same outer shape as the unit obtained by combining the pair of first electrodes 83 and the first thermal resistance member 84 described in the first embodiment.
 第1熱抵抗部材84Bは、本発明に係る熱抵抗部としての機能を有する。本実施の形態3では、第1熱抵抗部材84Bは、上述した実施の形態1で説明した第1熱抵抗部材84と同様に、第1電極83Bとは別体で構成されている。具体的に、第1熱抵抗部材84Bは、図8に示すように、第1電極83Bの上面の一部に形成されたコーティング部材で構成されている。なお、第1熱抵抗部材84Bの材料としては、上述した実施の形態1で説明した第1熱抵抗部材84と同一の材料を採用することができる。
 そして、第1熱抵抗部材84Bの上面と、第1電極83Bの上面のうち第1熱抵抗部材84B以外の領域とは、第2ジョー(第2把持面)との間で生体組織LTを把持する第1把持面821B(図8)として機能する。すなわち、第1把持面821Bは、上述した実施の形態1で説明した平坦状の第1把持面821とは異なり、段付き形状を有する。なお、第1把持面821Bは、上述した実施の形態1で説明した第1把持面821と同一の平面形状を有する。すなわち、第1把持面821Bは、平面的に見て(第1把持面821Bの法線に沿う方向から見て)、第1把持面821と同様に、第1中央領域Ar1と、一対の第1対向領域Ar2とを有する。
The first thermal resistance member 84B functions as a thermal resistance unit according to the present invention. In the third embodiment, the first thermal resistance member 84B is configured separately from the first electrode 83B, similarly to the first thermal resistance member 84 described in the first embodiment. Specifically, as shown in FIG. 8, the first thermal resistance member 84B is formed of a coating member formed on a part of the upper surface of the first electrode 83B. In addition, as a material of the 1st heat resistance member 84B, the same material as the 1st heat resistance member 84 demonstrated in Embodiment 1 mentioned above is employable.
The upper surface of the first thermal resistance member 84B and the region other than the first thermal resistance member 84B on the upper surface of the first electrode 83B grip the living tissue LT between the second jaw (second gripping surface). Functions as the first gripping surface 821B (FIG. 8). That is, the first gripping surface 821B has a stepped shape unlike the flat first gripping surface 821 described in the first embodiment. The first gripping surface 821B has the same planar shape as the first gripping surface 821 described in the first embodiment. That is, the first gripping surface 821B is planarly viewed (as viewed from the direction along the normal line of the first gripping surface 821B), and similarly to the first gripping surface 821, the first central region Ar1 and the pair of first gripping surfaces 821B 1 opposing region Ar2.
 ここで、第1熱抵抗部材84Bは、平面的に見て(第1把持面821,821Bの法線に沿う方向から見て)、上述した実施の形態1で説明した第1熱抵抗部材84と同一の形状を有する。そして、第1熱抵抗部材84Bは、第1電極83Bの上面のうち、第1把持面821Bにおける第1中央領域Ar1全体を構成するように形成されている。すなわち、第1電極83Bの上面のうち第1熱抵抗部材84B以外の領域は、第1把持面821Bにおける一対の第1対向領域Ar2全体をそれぞれ構成する。
 そして、本実施の形態3に係る第1冷却部材85は、図8に示すように、第1電極83Bにおける第1把持面821Bから離間した第1背面831B全体を覆い、当該第1背面831Bに接触するように配設される。
 なお、本実施の形態3に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Bと同一の構成を有する。
Here, the first thermal resistance member 84B is viewed in plan (from the direction along the normal line of the first gripping surfaces 821, 821B), and the first thermal resistance member 84 described in the first embodiment described above. Have the same shape. The first thermal resistance member 84B is formed so as to constitute the entire first central region Ar1 in the first gripping surface 821B among the upper surface of the first electrode 83B. That is, the region other than the first thermal resistance member 84B on the upper surface of the first electrode 83B constitutes the entire pair of first opposing regions Ar2 on the first gripping surface 821B.
Then, as shown in FIG. 8, the first cooling member 85 according to the third embodiment covers the entire first back surface 831B separated from the first gripping surface 821B of the first electrode 83B, and the first back surface 831B is covered with the first back surface 831B. It arrange | positions so that it may contact.
In addition, although illustration was abbreviate | omitted about the 2nd jaw which concerns on this Embodiment 3, it has the same structure as the 1st jaw 8B mentioned above.
 以上説明した本実施の形態3に係るエネルギ処置具2Bのように第1電極83Bを一部材で構成し第1熱抵抗部材84Bをコーティング部材で構成した場合であっても、上述した実施の形態1と同様の効果を奏する。
 また、第1電極83Bを一部材で構成しているので、部品点数を削減することができる。さらに、第1熱抵抗部材84Bをコーティング部材で構成しているので、第1ジョー8Bの厚み寸法を低減することができる。第2ジョーも同様である。
Even when the first electrode 83B is constituted by one member and the first thermal resistance member 84B is constituted by a coating member as in the energy treatment instrument 2B according to the third embodiment described above, the above-described embodiment. 1 has the same effect.
In addition, since the first electrode 83B is composed of one member, the number of parts can be reduced. Furthermore, since the first heat resistance member 84B is formed of a coating member, the thickness dimension of the first jaw 8B can be reduced. The same applies to the second jaw.
(実施の形態4)
 次に、本発明の実施の形態4について説明する。
 本実施の形態4の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図9は、本発明の実施の形態3に係るエネルギ処置システム1C(エネルギ処置具2C)を構成する第1ジョー8Cを示す図である。具体的に、図9は、図4に対応した断面図である。
 本実施の形態4に係るエネルギ処置システム1C(エネルギ処置具2C)には、図9に示すように、上述した実施の形態1で説明したエネルギ処置システム1(エネルギ処置具2)に対して、第1ジョー8の代わりに、第1処置部82とは異なる第1処置部82Cを有する第1ジョー8Cが採用されている。
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described.
In the description of the fourth embodiment, the same reference numerals are given to the same components as those of the above-described first embodiment, and the detailed description thereof is omitted or simplified.
FIG. 9 is a diagram showing a first jaw 8C constituting an energy treatment system 1C (energy treatment tool 2C) according to Embodiment 3 of the present invention. Specifically, FIG. 9 is a cross-sectional view corresponding to FIG.
As shown in FIG. 9, the energy treatment system 1 </ b> C (energy treatment tool 2 </ b> C) according to the fourth embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. Instead of the first jaw 8, a first jaw 8C having a first treatment portion 82C different from the first treatment portion 82 is employed.
 具体的に、第1処置部82Cには、図9に示すように、上述した実施の形態1で説明した第1処置部82(図4)に対して、一対の第1電極83及び第1熱抵抗部材84の代わりに第1電極83C及び第1熱抵抗部84Cが採用されている。
 第1電極83Cは、上述した実施の形態3で説明した第1電極83Bと同一の材料で構成されているとともに同一の外形形状を有する。
 そして、本実施の形態4では、第1電極83Cの上面は、第2ジョー(第2把持面)との間で生体組織LTを把持する第1把持面821C(図9)として機能する。なお、第1把持面821Cは、上述した実施の形態1で説明した第1把持面821と同一の平面形状を有する。すなわち、第1把持面821Cは、平面的に見て(第1把持面821Cの法線に沿う方向から見て)、第1把持面821と同様に、第1中央領域Ar1と、一対の第1対向領域Ar2とを有する。
Specifically, as shown in FIG. 9, the first treatment unit 82 </ b> C has a pair of first electrodes 83 and a first electrode compared to the first treatment unit 82 (FIG. 4) described in the first embodiment. Instead of the heat resistance member 84, a first electrode 83C and a first heat resistance portion 84C are employed.
The first electrode 83C is made of the same material as the first electrode 83B described in the third embodiment and has the same outer shape.
In the fourth embodiment, the upper surface of the first electrode 83C functions as a first gripping surface 821C (FIG. 9) that grips the living tissue LT with the second jaw (second gripping surface). The first gripping surface 821C has the same planar shape as the first gripping surface 821 described in the first embodiment. That is, the first gripping surface 821C is planarly viewed (viewed from the direction along the normal line of the first gripping surface 821C), like the first gripping surface 821, the first central region Ar1 and the pair of first gripping surfaces 821C 1 opposing region Ar2.
 第1熱抵抗部84Cは、第1電極83Cの上面の一部(第1把持面821Cにおける第1中央領域Ar1)に表面加工(例えば、エッチングやサンドブラスト等)を施すことで形成され、第1電極83Cの上面における他の領域に対して表面粗さの粗い領域である。そして、第1電極83Cの上面のうち第1熱抵抗部84C(表面粗さの粗い領域)以外の領域は、第1把持面821Cにおける一対の第1対向領域Ar2全体をそれぞれ構成する。
 すなわち、本実施の形態4では、一対の第1対向領域Ar2(第1電極83C)よりも第1中央領域Ar1(第1熱抵抗部84C)の表面粗さを粗く構成することにより、第1中央領域Ar1(第1熱抵抗部材84)における生体組織LTへの熱抵抗を一対の第1対向領域Ar2(第1電極83C)における生体組織LTへの熱抵抗よりも高いものとしている。
The first thermal resistance portion 84C is formed by subjecting a part of the upper surface of the first electrode 83C (first central region Ar1 in the first gripping surface 821C) to surface processing (for example, etching, sandblasting, etc.). This is a region with a rough surface relative to other regions on the upper surface of the electrode 83C. And the area | regions other than the 1st thermal resistance part 84C (area | region where surface roughness is rough) among the upper surfaces of the 1st electrode 83C comprises the whole pair of 1st opposing area | region Ar2 in 821C of 1st each.
That is, in the fourth embodiment, the surface roughness of the first central region Ar1 (first thermal resistance portion 84C) is made rougher than that of the pair of first opposing regions Ar2 (first electrode 83C). The thermal resistance to the living tissue LT in the central region Ar1 (first thermal resistance member 84) is higher than the thermal resistance to the living tissue LT in the pair of first opposing regions Ar2 (first electrode 83C).
 そして、本実施の形態4に係る第1冷却部材85は、図9に示すように、上述した実施の形態3と同様に、第1電極83Cにおける第1把持面821Cから離間した第1背面831C全体を覆い、当該第1背面831Cに接触するように配設される。
 なお、本実施の形態4に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Cと同一の構成を有する。
Then, as shown in FIG. 9, the first cooling member 85 according to the fourth embodiment has a first back surface 831C spaced from the first gripping surface 821C in the first electrode 83C, as in the third embodiment described above. The whole is covered and disposed so as to contact the first back surface 831C.
In addition, although illustration was abbreviate | omitted about the 2nd jaw which concerns on this Embodiment 4, it has the structure same as the 1st jaw 8C mentioned above.
 以上説明した本実施の形態4に係るエネルギ処置具2Cのように第1電極83Cにおける表面粗さの粗い領域を第1熱抵抗部84Cとした場合であっても、上述した実施の形態1,3と同様の効果を奏する。
 また、第1電極83Cにおける表面粗さの粗い領域を第1熱抵抗部84Cとしているため、別途、第1熱抵抗部材を設けた構成と比較して、部品点数を削減することができるとともに、第1ジョー8Cの厚み寸法を低減することができる。第2ジョーも同様である。
Even when the first heat resistance portion 84C is a region having a rough surface roughness in the first electrode 83C as in the energy treatment tool 2C according to the fourth embodiment described above, the first embodiment described above 3 has the same effect.
Moreover, since the area | region where the surface roughness in the 1st electrode 83C is rough is made into the 1st thermal resistance part 84C, while being able to reduce a number of parts compared with the structure which provided the 1st thermal resistance member separately, The thickness dimension of the first jaw 8C can be reduced. The same applies to the second jaw.
(実施の形態5)
 次に、本発明の実施の形態5について説明する。
 本実施の形態5の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図10は、本発明の実施の形態5に係るエネルギ処置システム1D(エネルギ処置具2D)を構成する第1ジョー8Dを示す図である。具体的に、図10は、図4に対応した断面図である。
 本実施の形態5に係るエネルギ処置システム1D(エネルギ処置具2D)には、図10に示すように、上述した実施の形態1で説明したエネルギ処置システム1(エネルギ処置具2)に対して、第1ジョー8の代わりに、第1処置部82とは異なる第1処置部82Dを有する第1ジョー8Dが採用されている。
(Embodiment 5)
Next, a fifth embodiment of the present invention will be described.
In the description of the fifth embodiment, the same reference numerals are given to the same components as those in the first embodiment described above, and the detailed description thereof will be omitted or simplified.
FIG. 10 is a diagram showing a first jaw 8D constituting an energy treatment system 1D (energy treatment tool 2D) according to Embodiment 5 of the present invention. Specifically, FIG. 10 is a cross-sectional view corresponding to FIG.
As shown in FIG. 10, the energy treatment system 1D (energy treatment tool 2D) according to the fifth embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. Instead of the first jaw 8, a first jaw 8D having a first treatment portion 82D different from the first treatment portion 82 is employed.
 具体的に、第1処置部82Dには、図10に示すように、上述した実施の形態1で説明した第1処置部82(図4)に対して、一対の第1電極83及び第1熱抵抗部材84の代わりに第1電極83D及び第1熱抵抗部材84Dが採用されている。
 第1電極83Dには、上述した実施の形態3で説明した第1電極83Dに対して、上面における第1中央領域Ar1全体に対応した領域に、下方に向けて窪む第1凹部832Dが設けられている。
Specifically, as shown in FIG. 10, the first treatment unit 82D includes a pair of first electrodes 83 and a first electrode compared to the first treatment unit 82 (FIG. 4) described in the first embodiment. Instead of the thermal resistance member 84, a first electrode 83D and a first thermal resistance member 84D are employed.
The first electrode 83D is provided with a first recess 832D that is recessed downward in a region corresponding to the entire first central region Ar1 on the upper surface of the first electrode 83D described in the third embodiment. It has been.
 第1熱抵抗部材84Dは、本発明に係る熱抵抗部としての機能を有し、上述した実施の形態1で説明した第1熱抵抗部材84に対して、外形形状が第1凹部832Dの内形形状と同一となるように変更され、第1凹部832Dに設置(嵌合)されている。
 すなわち、第1処置部82Dの上面(第1熱抵抗部材84Dの上面と第1電極83Dの上面のうち第1凹部832D(第1熱抵抗部材84D)以外の領域)は、平坦状に形成され、第2ジョー(第2把持面)との間で生体組織を把持する第1把持面821D(図10)として機能する。ここで、第1熱抵抗部材84Dの上面は、第1把持面821Dにおける第1中央領域Ar1全体を構成する。また、第1電極83Dの上面のうち第1凹部832D以外の領域は、第1把持面821Dにおける一対の第1対向領域Ar2全体をそれぞれ構成する。
The first heat resistance member 84D has a function as a heat resistance portion according to the present invention, and the outer shape of the first heat resistance member 84D in the first recess 832D is the same as that of the first heat resistance member 84 described in the first embodiment. The shape is changed so as to be the same as the shape, and is installed (fitted) in the first recess 832D.
That is, the upper surface of the first treatment portion 82D (the region other than the first recess 832D (the first thermal resistance member 84D) of the upper surface of the first thermal resistance member 84D and the upper surface of the first electrode 83D) is formed in a flat shape. It functions as a first gripping surface 821D (FIG. 10) for gripping the living tissue with the second jaw (second gripping surface). Here, the upper surface of the first thermal resistance member 84D constitutes the entire first central region Ar1 in the first gripping surface 821D. In addition, the region of the upper surface of the first electrode 83D other than the first recess 832D constitutes the entire pair of first opposing regions Ar2 on the first gripping surface 821D.
 そして、本実施の形態5に係る第1冷却部材85は、図10に示すように、上述した実施の形態3と同様に、第1電極83Dにおける第1把持面821Dから離間した第1背面831D全体を覆い、当該第1背面831Dに接触するように配設される。
 なお、本実施の形態5に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Dと同一の構成を有する。
As shown in FIG. 10, the first cooling member 85 according to the fifth embodiment has a first back surface 831D spaced from the first gripping surface 821D in the first electrode 83D, as in the third embodiment described above. The whole is covered and disposed so as to be in contact with the first back surface 831D.
In addition, although illustration was abbreviate | omitted about the 2nd jaw which concerns on this Embodiment 5, it has the structure same as 1st jaw 8D mentioned above.
 以上説明した本実施の形態5に係るエネルギ処置具2Dのように第1熱抵抗部材84Dを第1電極83Dの上面に埋め込んだ場合であっても、上述した実施の形態1,3と同様の効果を奏する。
 また、第1熱抵抗部材84Dを第1電極83Dの上面に埋め込んでいるため、第1ジョー8Dの厚み寸法を低減することができる。第2ジョーも同様である。
Even when the first thermal resistance member 84D is embedded in the upper surface of the first electrode 83D as in the energy treatment tool 2D according to the fifth embodiment described above, the same as in the first and third embodiments described above. There is an effect.
Further, since the first thermal resistance member 84D is embedded in the upper surface of the first electrode 83D, the thickness dimension of the first jaw 8D can be reduced. The same applies to the second jaw.
(実施の形態6)
 次に、本発明の実施の形態6について説明する。
 本実施の形態6の説明では、上述した実施の形態5と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図11は、本発明の実施の形態6に係るエネルギ処置システム1E(エネルギ処置具2E)を構成する第1ジョー8Eを示す図である。具体的に、図11は、図4に対応した断面図である。
 本実施の形態6に係るエネルギ処置システム1E(エネルギ処置具2E)には、図11に示すように、上述した実施の形態5で説明したエネルギ処置システム1D(エネルギ処置具2D)に対して、第1ジョー8Dの代わりに、第1処置部82Dとは異なる第1処置部82Eを有する第1ジョー8Eが採用されている。
(Embodiment 6)
Next, a sixth embodiment of the present invention will be described.
In the description of the sixth embodiment, the same reference numerals are given to the same components as those of the fifth embodiment described above, and the detailed description thereof is omitted or simplified.
FIG. 11 is a diagram showing a first jaw 8E constituting an energy treatment system 1E (energy treatment tool 2E) according to Embodiment 6 of the present invention. Specifically, FIG. 11 is a cross-sectional view corresponding to FIG.
As shown in FIG. 11, the energy treatment system 1E (energy treatment tool 2E) according to the sixth embodiment is different from the energy treatment system 1D (energy treatment tool 2D) described in the fifth embodiment described above. Instead of the first jaw 8D, a first jaw 8E having a first treatment portion 82E different from the first treatment portion 82D is employed.
 具体的に、第1処置部82Eは、図11に示すように、上述した実施の形態5で説明した第1処置部82D(図10)に対して、第1熱抵抗部材84Dが省略されている。そして、第1凹部831D内の空気層を第1熱抵抗部材84Eとして構成している。
 すなわち、本実施の形態6では、上述した実施の形態1と同様に、一対の第1対向領域Ar2(第1電極83Dの上面のうち第1凹部832D以外の領域)よりも第1中央領域Ar1(第1熱抵抗部材84E(空気層))の熱伝導率を低く構成することにより、第1中央領域Ar1(第1熱抵抗部材84E(空気層))における生体組織LTへの熱抵抗を一対の第1対向領域Ar2(第1電極83Dの上面のうち第1凹部832D以外の領域)における生体組織LTへの熱抵抗よりも高いものとしている。
Specifically, as shown in FIG. 11, the first treatment portion 82E is obtained by omitting the first thermal resistance member 84D from the first treatment portion 82D (FIG. 10) described in the fifth embodiment. Yes. And the air layer in 1st recessed part 831D is comprised as the 1st heat resistance member 84E.
That is, in the sixth embodiment, similarly to the first embodiment described above, the first central region Ar1 rather than the pair of first opposing regions Ar2 (regions other than the first recess 832D on the upper surface of the first electrode 83D). By configuring the thermal conductivity of the (first thermal resistance member 84E (air layer)) to be low, the thermal resistance to the living tissue LT in the first central region Ar1 (first thermal resistance member 84E (air layer)) is paired. The first opposing region Ar2 (the region of the upper surface of the first electrode 83D other than the first recess 832D) is higher than the thermal resistance to the living tissue LT.
 なお、本実施の形態6に係る第1冷却部材85は、図11に示すように、上述した実施の形態5で説明した第1冷却部材5と同一の位置に配設されている。
 また、本実施の形態6に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Eと同一の構成を有する。
In addition, the 1st cooling member 85 which concerns on this Embodiment 6 is arrange | positioned in the same position as the 1st cooling member 5 demonstrated in Embodiment 5 mentioned above, as shown in FIG.
Further, the second jaw according to the sixth embodiment is omitted in illustration, but has the same configuration as the first jaw 8E described above.
 以上説明した本実施の形態6に係るエネルギ処置具2Eのように第1熱抵抗部材84Eを空気層で構成した場合であっても、上述した実施の形態1,3と同様の効果を奏する。
 また、第1熱抵抗部材84Eを空気層で構成しているため、別途、第1熱抵抗部材を設けた構成と比較して、部品点数を削減することができるとともに、第1ジョー8Eの厚み寸法を低減することができる。第2ジョーも同様である。
Even when the first heat resistance member 84E is formed of an air layer as in the energy treatment device 2E according to the sixth embodiment described above, the same effects as those of the first and third embodiments described above are obtained.
In addition, since the first heat resistance member 84E is composed of an air layer, the number of parts can be reduced and the thickness of the first jaw 8E can be reduced as compared with a structure in which the first heat resistance member is separately provided. Dimensions can be reduced. The same applies to the second jaw.
(実施の形態7)
 次に、本発明の実施の形態7について説明する。
 本実施の形態7の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図12A及び図12Bは、本発明の実施の形態7に係るエネルギ処置システム1F(エネルギ処置具2F)を構成する第1ジョー8Fを示す図である。具体的に、図12Aは、第1ジョー8Fを長手方向に沿う切断面で切断した断面図である。図12Bは、図4に対応した断面図である。
 本実施の形態7に係るエネルギ処置システム1F(エネルギ処置具2F)には、図12A及び図12Bに示すように、上述した実施の形態1で説明したエネルギ処置システム1(エネルギ処置具2)に対して、第1ジョー8の代わりに、第1処置部82とは異なる第1処置部82Fを有する第1ジョー8Fが採用されている。
(Embodiment 7)
Next, a seventh embodiment of the present invention will be described.
In the description of the seventh embodiment, the same reference numerals are given to the same components as those in the first embodiment described above, and the detailed description thereof will be omitted or simplified.
12A and 12B are views showing a first jaw 8F constituting an energy treatment system 1F (energy treatment tool 2F) according to Embodiment 7 of the present invention. Specifically, FIG. 12A is a cross-sectional view of the first jaw 8F cut along a cut surface along the longitudinal direction. 12B is a cross-sectional view corresponding to FIG.
In the energy treatment system 1F (energy treatment tool 2F) according to the seventh embodiment, as shown in FIGS. 12A and 12B, the energy treatment system 1 (energy treatment tool 2) described in the first embodiment is used. On the other hand, instead of the first jaw 8, a first jaw 8F having a first treatment portion 82F different from the first treatment portion 82 is employed.
 具体的に、第1処置部82Fには、図12A及び図12Bに示すように、上述した実施の形態1で説明した第1処置部82(図4)に対して、一対の第1電極83、第1熱抵抗部材84、及び第1冷却部材85の代わりに第1電極83F、第1熱抵抗部材84F、及び第1冷却部材85Fが採用されている。
 第1電極83Fは、上述した実施の形態1で説明した第1電極83と同一の材料で構成され、図12A及び図12Bに示すように、一部材で構成されている。すなわち、本実施の形態7では、第1電極83Fが一部材であるため、当該第1電極83Fには、電気ケーブルCを構成する1本のみのリード線(図示略)が接合される。この第1電極83Fは、第1基部833Fと、一対の電極部834Fとを備える。
 第1基部833Fは、直方体形状を有し、内部に密閉空間SpFを有する。そして、第1基部833Fは、第1凹部811において、第1ジョー8Fの基端側(第1ジョー8Fがシャフト6に支持される側(図12A中、右端部側))に配設される。
 一対の電極部834Fは、第1基部833Fにおける側端部から当該第1基部833Fの上面に沿って第1ジョー8Fの先端(図12A中、左端部)に向けて突出する略直方体状の板体でそれぞれ構成されている。
Specifically, as shown in FIGS. 12A and 12B, the first treatment unit 82F has a pair of first electrodes 83 with respect to the first treatment unit 82 (FIG. 4) described in the first embodiment. Instead of the first thermal resistance member 84 and the first cooling member 85, a first electrode 83F, a first thermal resistance member 84F, and a first cooling member 85F are employed.
The first electrode 83F is made of the same material as the first electrode 83 described in the first embodiment, and is made of one member as shown in FIGS. 12A and 12B. That is, in the seventh embodiment, since the first electrode 83F is one member, only one lead wire (not shown) constituting the electric cable C is joined to the first electrode 83F. The first electrode 83F includes a first base portion 833F and a pair of electrode portions 834F.
The first base portion 833F has a rectangular parallelepiped shape and has a sealed space SpF inside. The first base portion 833F is disposed in the first recess 811 on the base end side of the first jaw 8F (the side where the first jaw 8F is supported by the shaft 6 (the right end side in FIG. 12A)). .
The pair of electrode portions 834F is a substantially rectangular parallelepiped plate that protrudes from the side end portion of the first base portion 833F toward the tip end (left end portion in FIG. 12A) of the first jaw 8F along the upper surface of the first base portion 833F. Each body is composed.
 第1熱抵抗部材84Fは、本発明に係る熱抵抗部としての機能を有し、上述した実施の形態1で説明した第1熱抵抗部材84に対して、外形寸法が変更され、第1基部833F及び一対の第1電極部834Fで囲まれるL字内側部分に設置されている。
 そして、第1熱抵抗部材84Fの上面のうち一対の第1電極部834Fを除く領域と、一対の第1電極部834Fの各上面とは、第2ジョー(第2把持面)との間で生体組織LTを把持する第1把持面821F(図12A,図12B)として機能する。すなわち、第1把持面821Fは、上述した実施の形態1で説明した平坦状の第1把持面821とは異なり、段付き形状を有する。なお、第1把持面821Fは、上述した実施の形態1で説明した第1把持面821と同一の平面形状を有する。すなわち、第1把持面821Fは、平面的に見て(第1把持面821Fの法線に沿う方向から見て)、第1把持面821と同様に、第1中央領域Ar1と、一対の第1対向領域Ar2とを有する。そして、一対の第1電極部834Fは、第1把持面821Fにおける一対の第1対向領域Ar2全体を構成するように形成されている。すなわち、第1熱抵抗部材84Fの上面のうち一対の第1電極部834F以外の領域は、第1把持面821Fにおける第1中央領域Ar1全体を構成する。
The first heat resistance member 84F has a function as a heat resistance portion according to the present invention, the outer dimensions are changed with respect to the first heat resistance member 84 described in the first embodiment, and the first base portion It is installed in an L-shaped inner portion surrounded by 833F and the pair of first electrode portions 834F.
And the area | region except a pair of 1st electrode part 834F among the upper surfaces of the 1st thermal resistance member 84F, and each upper surface of a pair of 1st electrode part 834F are between 2nd jaws (2nd holding surface). It functions as a first gripping surface 821F (FIGS. 12A and 12B) for gripping the living tissue LT. That is, the first gripping surface 821F has a stepped shape unlike the flat first gripping surface 821 described in the first embodiment. The first gripping surface 821F has the same planar shape as the first gripping surface 821 described in the first embodiment. That is, the first gripping surface 821F is seen in a plan view (viewed from the direction along the normal line of the first gripping surface 821F), like the first gripping surface 821, and the first central region Ar1 and the pair of first gripping surfaces 821F. 1 opposing region Ar2. The pair of first electrode portions 834F is formed so as to constitute the entire pair of first opposing regions Ar2 on the first gripping surface 821F. That is, the region other than the pair of first electrode portions 834F on the upper surface of the first thermal resistance member 84F constitutes the entire first central region Ar1 on the first gripping surface 821F.
 第1冷却部材85Fは、本発明に係る冷却部材としての機能を有し、上述した実施の形態1で説明した第1潜熱蓄熱材851と同一の材料で構成され、密閉空間SpFに実装されている。
 なお、本実施の形態7に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Fと同一の構成を有する。
The first cooling member 85F has a function as a cooling member according to the present invention, is made of the same material as the first latent heat storage material 851 described in the first embodiment, and is mounted in the sealed space SpF. Yes.
Although the second jaw according to the seventh embodiment is not shown, it has the same configuration as the first jaw 8F described above.
 以上説明した本実施の形態7に係るエネルギ処置具2Fのように第1ジョー8Fを構成した場合であっても、上述した実施の形態1と同様の効果を奏する。
 また、第1冷却部材85Fが第1ジョー8Fの基端側に設けられているため、第1ジョー8Fの先端側で幅方向や厚み方向に設計上の制限がある場合であっても、第1電極83Fの冷却構造を容易に実現することができる。
Even when the first jaw 8F is configured as in the energy treatment tool 2F according to the seventh embodiment described above, the same effects as those of the first embodiment described above can be obtained.
In addition, since the first cooling member 85F is provided on the proximal end side of the first jaw 8F, even if there is a design limitation in the width direction or the thickness direction on the distal end side of the first jaw 8F, A cooling structure for the one electrode 83F can be easily realized.
(実施の形態8)
 次に、本発明の実施の形態8について説明する。
 本実施の形態8の説明では、上述した実施の形態7と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図13A及び図13Bは、本発明の実施の形態8に係るエネルギ処置システム1G(エネルギ処置具2G)を構成する第1ジョー8Gを示す図である。具体的に、図13A及び図13Bは、図12A及び図12Bにそれぞれ対応した断面図である。
 本実施の形態8に係るエネルギ処置システム1G(エネルギ処置具2G)には、図13A及び図13Bに示すように、上述した実施の形態7で説明したエネルギ処置システム1F(エネルギ処置具2F)に対して、第1ジョー8Fの代わりに、第1処置部82Fとは異なる第1処置部82Gを有する第1ジョー8Gが採用されている。
(Embodiment 8)
Next, an eighth embodiment of the present invention will be described.
In the description of the eighth embodiment, the same reference numerals are given to the same components as those in the above-described seventh embodiment, and the detailed description thereof is omitted or simplified.
FIGS. 13A and 13B are views showing a first jaw 8G constituting an energy treatment system 1G (energy treatment tool 2G) according to Embodiment 8 of the present invention. Specifically, FIGS. 13A and 13B are cross-sectional views corresponding to FIGS. 12A and 12B, respectively.
In the energy treatment system 1G (energy treatment tool 2G) according to the eighth embodiment, as shown in FIGS. 13A and 13B, the energy treatment system 1F (energy treatment tool 2F) described in the seventh embodiment is used. On the other hand, instead of the first jaw 8F, a first jaw 8G having a first treatment portion 82G different from the first treatment portion 82F is employed.
 具体的に、第1処置部82Gは、図13A及び図13Bに示すように、上述した実施の形態7で説明した第1処置部82F(図12A,図12B)に対して、第1熱抵抗部材84Fの形状を変更した第1熱抵抗部材84Gが採用されている。
 第1熱抵抗部材84Gには、上述した実施の形態7で説明した第1熱抵抗部材84Gに対して、第1中央領域Ar1全体に対応した領域に、上方に向けて膨出した第1膨出部842G(図13B)が設けられている。
 ここで、第1膨出部842Gの上面は、一対の第1電極部834Fの各上面と面一となるように形成されている。すなわち、第1膨出部842Gの上面と一対の第1電極部834Fの各上面とで構成される第1把持面821G(図13A,図13B)は、上述した実施の形態1で説明した段付き状の第1把持面821Fとは異なり、平坦状に形成されている。
 なお、本実施の形態8に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Gと同一の構成を有する。
Specifically, as shown in FIGS. 13A and 13B, the first treatment section 82G has a first thermal resistance compared to the first treatment section 82F (FIGS. 12A and 12B) described in the seventh embodiment. A first heat resistance member 84G in which the shape of the member 84F is changed is employed.
The first thermal resistance member 84G includes a first expansion bulging upward in a region corresponding to the entire first central region Ar1 with respect to the first thermal resistance member 84G described in the seventh embodiment. A protruding portion 842G (FIG. 13B) is provided.
Here, the upper surface of the first bulging portion 842G is formed to be flush with the upper surfaces of the pair of first electrode portions 834F. That is, the first gripping surface 821G (FIGS. 13A and 13B) configured by the upper surface of the first bulging portion 842G and the upper surfaces of the pair of first electrode portions 834F is the same as that described in the first embodiment. Unlike the attached first gripping surface 821F, it is formed in a flat shape.
In addition, although illustration was abbreviate | omitted about the 2nd jaw which concerns on this Embodiment 8, it has the structure same as the 1st jaw 8G mentioned above.
 以上説明した本実施の形態8に係るエネルギ処置具2Gのように第1ジョー8Gを構成した場合であっても、上述した実施の形態7と同様の効果を奏する。 Even when the first jaw 8G is configured as in the energy treatment tool 2G according to the eighth embodiment described above, the same effects as those of the seventh embodiment described above can be obtained.
(実施の形態9)
 次に、本発明の実施の形態9について説明する。
 本実施の形態9の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図14は、本発明の実施の形態9に係るエネルギ処置システムを構成する第1冷却部材85Hの構成を示す断面図である。
 上述した実施の形態1~8に係るエネルギ処置システム1,1A~1Gでは、第1冷却部材85,85A,85Fとして、室温時固体の物質で構成された潜熱蓄熱材を利用していた。
 これに対して、本実施の形態9に係るエネルギ処置システムには、図14に示すように、第1冷却部材85,85A,85Fの代わりに、室温時液体の物質で構成された潜熱蓄熱材を利用した第1冷却部材85Hが採用されている。
(Embodiment 9)
Next, a ninth embodiment of the present invention will be described.
In the description of the ninth embodiment, the same reference numerals are given to the same components as those in the first embodiment described above, and the detailed description thereof is omitted or simplified.
FIG. 14 is a cross-sectional view showing a configuration of first cooling member 85H that constitutes the energy treatment system according to Embodiment 9 of the present invention.
In the energy treatment systems 1 and 1A to 1G according to Embodiments 1 to 8 described above, the first heat members 85, 85A, and 85F use the latent heat storage material that is made of a solid substance at room temperature.
On the other hand, in the energy treatment system according to the ninth embodiment, as shown in FIG. 14, a latent heat storage material composed of a liquid substance at room temperature instead of the first cooling members 85, 85A, 85F. The 1st cooling member 85H using is adopted.
 具体的に、第1冷却部材85Hは、図14に示すように、第1潜熱蓄熱材851Hと、第1潜熱蓄熱材851Hを封止する第1封止部材852Hと、第1封止部材852Hの内壁に設けられた第1ウィック853Hとを備えた所謂、ヒートパイプで構成されている。
 第1潜熱蓄熱材851Hの材料としては、水、代替フロン等の室温時液体の物質を例示することができる。また、第1封止部材852H及び第1ウィック853Hの材料としては、例えば、銅等の高熱伝導部材を例示することができる。
 そして、第1冷却部材85Hは、以下に示す挙動を繰り返すことにより、第1電極83,83A~83D,83Fを冷却する。
 すなわち、液体の第1潜熱蓄熱材851Hは、第1封止部材852Hを介して第1電極83,83A~83D,83Fからの熱を吸収して蒸発する。そして、第1潜熱蓄熱材851Hの蒸気は、第1封止部材852Hの内部において、第1電極83,83A~83D,83Fから離間した低温空間に移動する。当該低温空間で冷却された第1潜熱蓄熱材851Hの蒸気は、凝集して液体に戻り、第1ウィック853Hに吸収される。そして、液体の第1潜熱蓄熱材851Hは、毛細管現象により、第1封止部材852Hの内壁(第1ウィック853H)を辿って、第1電極83,83A~83D,83Fに近接した高温空間に移動する。
 なお、本実施の形態9に係る第2冷却部材については、図示を省略したが、上述した第1冷却部材85Hと同一の構成を有する。
Specifically, as shown in FIG. 14, the first cooling member 85H includes a first latent heat storage material 851H, a first sealing member 852H that seals the first latent heat storage material 851H, and a first sealing member 852H. It is comprised with what is called a heat pipe provided with the 1st wick 853H provided in the inner wall.
Examples of the material of the first latent heat storage material 851H include liquid substances at room temperature such as water and alternative chlorofluorocarbon. Moreover, as a material of the 1st sealing member 852H and the 1st wick 853H, high heat conductive members, such as copper, can be illustrated, for example.
The first cooling member 85H cools the first electrodes 83, 83A to 83D, 83F by repeating the following behavior.
That is, the liquid first latent heat storage material 851H absorbs heat from the first electrodes 83, 83A to 83D, and 83F via the first sealing member 852H and evaporates. Then, the vapor of the first latent heat storage material 851H moves to the low temperature space separated from the first electrodes 83, 83A to 83D, 83F inside the first sealing member 852H. The vapor | steam of the 1st latent heat storage material 851H cooled in the said low temperature space aggregates, returns to a liquid, and is absorbed by the 1st wick 853H. The liquid first latent heat storage material 851H follows the inner wall (first wick 853H) of the first sealing member 852H by capillarity, and enters the high-temperature space close to the first electrodes 83, 83A to 83D, 83F. Moving.
In addition, although illustration was abbreviate | omitted about the 2nd cooling member which concerns on this Embodiment 9, it has the same structure as the 1st cooling member 85H mentioned above.
 以上説明した本実施の形態9に係るエネルギ処置具のようにヒートパイプで構成された第1冷却部材85Hを採用した場合であっても、上述した実施の形態1~8と同様の効果を奏する。 Even when the first cooling member 85H configured by a heat pipe is employed as in the energy treatment device according to the ninth embodiment described above, the same effects as those of the first to eighth embodiments described above can be obtained. .
(実施の形態10)
 次に、本発明の実施の形態10について説明する。
 本実施の形態10の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図15は、本発明の実施の形態10に係るエネルギ処置システム1I(エネルギ処置具2I)を構成する把持部7Iを示す図である。具体的に、図15は、図4に対応した断面図である。
 本実施の形態10に係るエネルギ処置システム1I(エネルギ処置具2I)には、図15に示すように、上述した実施の形態1で説明したエネルギ処置システム1(エネルギ処置具2)に対して、挟持部7にカッタ9を追加した挟持部7Iが採用されている。
(Embodiment 10)
Next, an embodiment 10 of the invention will be described.
In the description of the tenth embodiment, the same reference numerals are given to the same components as those in the first embodiment, and the detailed description thereof will be omitted or simplified.
FIG. 15 is a diagram showing a gripping portion 7I that constitutes an energy treatment system 1I (energy treatment tool 2I) according to Embodiment 10 of the present invention. Specifically, FIG. 15 is a cross-sectional view corresponding to FIG.
As shown in FIG. 15, the energy treatment system 1I (energy treatment tool 2I) according to the tenth embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. A clamping unit 7I in which a cutter 9 is added to the clamping unit 7 is employed.
 具体的に、挟持部7Iは、第1,第2ジョー8,8´と、カッタ9とを備える。
 本実施の形態10に係る第1,第2ジョー8,8´には、図15に示すように、第1,第2処置部82,82´を幅方向の略中心位置にて2分割することにより、カッタ9の移動経路となる第1,第2カッタ移動溝822,822´が形成されている。
 カッタ9は、シャフト6の他端(図1,図2中、左端部)に対して当該シャフト6の中心軸に沿う方向(図15の紙面に直交する方向)に移動可能に取り付けられ、術者による操作(例えば、操作ノブ51への操作等)に応じて、移動する。そして、カッタ9は、当該移動により、第1,第2ジョー8,8´にて把持された生体組織LTを切断する。
Specifically, the sandwiching portion 7I includes first and second jaws 8, 8 ′ and a cutter 9.
As shown in FIG. 15, the first and second jaws 8 and 8 ′ according to the tenth embodiment divide the first and second treatment sections 82 and 82 ′ into two at substantially the center position in the width direction. As a result, first and second cutter moving grooves 822 and 822 ′ serving as a moving path of the cutter 9 are formed.
The cutter 9 is attached to the other end of the shaft 6 (left end portion in FIGS. 1 and 2) so as to be movable in a direction along the central axis of the shaft 6 (a direction orthogonal to the paper surface of FIG. 15). It moves in response to an operation by the user (for example, an operation on the operation knob 51). And the cutter 9 cut | disconnects the biological tissue LT hold | gripped by the 1st, 2nd jaw 8, 8 'by the said movement.
 以上説明した本実施の形態10に係るエネルギ処置具2Iのようにカッタ9を追加した場合であっても、上述した実施の形態1と同様の効果を奏する。
 なお、カッタ9で機械的に生体組織LTを切断する構成に限られず、電気、化学、光、熱等のエネルギを用いて生体組織LTを溶融あるいは蒸散させて切断する構成を採用しても構わない。
Even when the cutter 9 is added as in the energy treatment instrument 2I according to the tenth embodiment described above, the same effects as those of the first embodiment described above can be obtained.
In addition, the structure which cut | disconnects the biological tissue LT mechanically with the cutter 9 is not restricted, You may employ | adopt the structure cut | disconnected by melting or evaporating the biological tissue LT using energy, such as electricity, chemistry, light, and heat. Absent.
(実施の形態11)
 次に、本発明の実施の形態11について説明する。
 本実施の形態11の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図16は、本発明の実施の形態11に係るエネルギ処置システム1J(エネルギ処置具2J)を構成する第1ジョー8Jを示す図である。具体的に、図16は、図4に対応した断面図である。
 本実施の形態11に係るエネルギ処置システム1J(エネルギ処置具2J)には、図16に示すように、上述した実施の形態1で説明したエネルギ処置システム1(エネルギ処置具2)に対して、第1ジョー8の代わりに、第1処置部82とは異なる第1処置部82Jを有する第1ジョー8Jが採用されている。
(Embodiment 11)
Next, an eleventh embodiment of the present invention will be described.
In the description of the eleventh embodiment, the same reference numerals are given to the same components as those in the first embodiment, and the detailed description thereof will be omitted or simplified.
FIG. 16 is a diagram showing a first jaw 8J constituting an energy treatment system 1J (energy treatment tool 2J) according to Embodiment 11 of the present invention. Specifically, FIG. 16 is a cross-sectional view corresponding to FIG.
As shown in FIG. 16, the energy treatment system 1J (energy treatment tool 2J) according to the eleventh embodiment is different from the energy treatment system 1 (energy treatment tool 2) described in the first embodiment described above. Instead of the first jaw 8, a first jaw 8J having a first treatment portion 82J different from the first treatment portion 82 is employed.
 具体的に、第1処置部82Jは、図16に示すように、上述した実施の形態1で説明した第1処置部82(図4)に対して、第1冷却部材85の代わりに一対の第1冷却部材85Jが採用されているとともに、一対の横接部材86が追加されている。
 一対の横接部材86は、シャフト6の中心軸に沿って延び、一対の第1電極83と同一の厚み寸法を有する略直方体状の板体で構成されている。そして、一対の横接部材86は、各上面が一対の第1電極83の各上面と面一となるように、一対の第1電極83における幅方向外側にそれぞれ配設される。
 なお、一対の横接部材86としては、一対の電極83と同一の熱伝導率を有する材料で構成してもよく、一対の電極83の熱伝導率よりも低い、あるいは高い熱伝導率を有する材料で構成しても構わない。
Specifically, as shown in FIG. 16, the first treatment unit 82 </ b> J is a pair of the first treatment unit 82 (FIG. 4) described in the first embodiment, instead of the first cooling member 85. The first cooling member 85J is employed, and a pair of transverse members 86 are added.
The pair of transverse members 86 are formed of substantially rectangular parallelepiped plates extending along the central axis of the shaft 6 and having the same thickness as the pair of first electrodes 83. The pair of transverse members 86 are respectively disposed on the outer sides in the width direction of the pair of first electrodes 83 so that the upper surfaces thereof are flush with the upper surfaces of the pair of first electrodes 83.
The pair of transverse members 86 may be made of a material having the same thermal conductivity as that of the pair of electrodes 83, and have a thermal conductivity lower or higher than that of the pair of electrodes 83. You may comprise with material.
 一対の第1冷却部材85Jは、上述した実施の形態1で説明した第1冷却部材85と同一の構成を有する。そして、一対の第1冷却部材85Jは、各上面が一対の横接部材86の各上面と面一となるように、一対の横接部材86における幅方向外側にそれぞれ配設される。すなわち、一対の第1冷却部材85Jは、一対の電極83に接触していない。
 そして、本実施の形態11では、第1熱抵抗部材84の上面と、一対の第1電極83の各上面と、一対の横接部材86の各上面と、一対の第1冷却部材85Jの各上面とは、第2ジョー(第2把持面)との間で生体組織LTを把持する第1把持面821J(図16)として機能する。すなわち、一対の第1冷却部材85Jは、生体組織LTにおいて、第1把持面821Jの幅方向外側に接触する組織(生体組織LTにおける処置対象組織の周辺の組織)を直接、冷却することを可能とする。
 なお、本実施の形態11に係る第2ジョーについては、図示を省略したが、上述した第1ジョー8Jと同一の構成を有する。
The pair of first cooling members 85J have the same configuration as the first cooling member 85 described in the first embodiment. The pair of first cooling members 85J are respectively arranged on the outer sides in the width direction of the pair of lateral members 86 so that the upper surfaces thereof are flush with the upper surfaces of the pair of lateral members 86. That is, the pair of first cooling members 85J does not contact the pair of electrodes 83.
In the eleventh embodiment, the upper surface of the first thermal resistance member 84, the upper surfaces of the pair of first electrodes 83, the upper surfaces of the pair of transverse members 86, and the pair of first cooling members 85J. The upper surface functions as a first gripping surface 821J (FIG. 16) that grips the living tissue LT with the second jaw (second gripping surface). In other words, the pair of first cooling members 85J can directly cool the tissue in contact with the outer side in the width direction of the first gripping surface 821J (tissue around the tissue to be treated in the living tissue LT) in the living tissue LT. And
In addition, although illustration was abbreviate | omitted about the 2nd jaw which concerns on this Embodiment 11, it has the same structure as the 1st jaw 8J mentioned above.
 以上説明した本実施の形態11に係るエネルギ処置具2Jのように第1ジョー8Jを構成した場合であっても、上述した実施の形態1と同様の効果を奏する。 Even when the first jaw 8J is configured as in the energy treatment device 2J according to the eleventh embodiment described above, the same effects as those of the first embodiment described above can be obtained.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~11によってのみ限定されるべきものではない。
 上述した実施の形態1~11では、エネルギ処置具2(2A~2G,2I,2J)は、生体組織LTに対して高周波エネルギのみを付与して処置を行う構成としていたが、これに限られず、生体組織LTに対して、高周波エネルギの他、超音波エネルギ、レーザ等の光エネルギ、及び熱エネルギの少なくともいずれかのエネルギを付与して処置を行う構成を採用しても構わない。
(Other embodiments)
The embodiments for carrying out the present invention have been described so far, but the present invention should not be limited only by the above-described first to eleventh embodiments.
In Embodiments 1 to 11 described above, the energy treatment device 2 (2A to 2G, 2I, 2J) is configured to perform treatment by applying only high-frequency energy to the living tissue LT, but is not limited thereto. A configuration may be adopted in which treatment is performed by applying at least one of ultrasonic energy, optical energy such as a laser, and thermal energy to the living tissue LT in addition to high-frequency energy.
 上述した実施の形態1~11では、第1,第2熱抵抗部材84(84B,84D~84G、第1熱抵抗部84C),84´、及び第1,第2冷却部材85(85A,85F,85H,85J),85´は、第1,第2ジョー8(8A~8G,8J),8´の双方に設けられていたが、これに限られず、第1,第2ジョー8(8A~8G,8J),8´の一方のみに設けた構成を採用しても構わない。また、この際、熱抵抗部材と冷却部材とを同一のジョーに設けてもよく、あるいは、異なるジョーに設けても構わない。 In the first to eleventh embodiments described above, the first and second thermal resistance members 84 (84B, 84D to 84G, the first thermal resistance portion 84C), 84 ′, and the first and second cooling members 85 (85A, 85F). , 85H, 85J) and 85 'are provided on both the first and second jaws 8 (8A to 8G, 8J) and 8', but the present invention is not limited to this, and the first and second jaws 8 (8A ˜8G, 8J), 8 ′ may be provided only on one side. At this time, the heat resistance member and the cooling member may be provided on the same jaw, or may be provided on different jaws.
 上述した実施の形態1~11では、第1,第2冷却部材85(85A,85F,85H,85J),85´として、潜熱蓄熱材を利用した構成を採用していたが、これに限られず、第1,第2電極83(83A~83D,83F),83´の内部あるいは外面に接触するようにクーラントラインを設け、当該クーラントライン内に水、窒素、二酸化炭素等の冷却媒体を流通させる構成を採用しても構わない。
 また、本発明に係る冷却部材としては、第1電極83(83A~83D,83F)や第2電極83´に第1,第2熱抵抗部材84(84B,84D~84G、第1熱抵抗部84C),84´に比べ低熱抵抗で接触していれば、その位置は、上述した実施の形態1~11で説明した位置に限られず、その他の位置に配設しても構わない。
In the above-described first to eleventh embodiments, the first and second cooling members 85 (85A, 85F, 85H, 85J) and 85 ′ are configured using a latent heat storage material. However, the present invention is not limited to this. A coolant line is provided so as to be in contact with the inside or the outer surface of the first and second electrodes 83 (83A to 83D, 83F), 83 ′, and a cooling medium such as water, nitrogen, carbon dioxide or the like is circulated in the coolant line. A configuration may be adopted.
Further, as the cooling member according to the present invention, the first electrode 83 (83A to 83D, 83F) and the second electrode 83 ′ are connected to the first and second heat resistance members 84 (84B, 84D to 84G, the first heat resistance portion). 84C) and 84 ′ as long as they are in contact with each other with a lower thermal resistance, the position is not limited to the position described in the first to eleventh embodiments, and may be disposed at other positions.
 上述した実施の形態1~11では、本発明に係る第1,第2中央領域として、第1,第2把持面821(821B~821D,821F,821G,821J),821´の中心位置CPを含む第1,第2中央領域Ar1,Ar1´を採用していたが、これに限られず、中心位置を含まない他の領域を第1,第2中央領域としても構わない。 In Embodiments 1 to 11 described above, the center positions CP of the first and second gripping faces 821 (821B to 821D, 821F, 821G, 821J) and 821 ′ are used as the first and second central regions according to the present invention. The first and second central regions Ar1 and Ar1 ′ including the above are employed, but the present invention is not limited to this, and other regions not including the center position may be used as the first and second central regions.
 上述した実施の形態1~11では、第1,第2ジョー8(8A~8G,8J),8´は、第1,第2支持部材81,81´を含んで構成されていたが、これに限られず、第1,第2支持部材81,81´を省略し、第1,第2処置部82(82A~82G,82J),82´をシャフト6に直接、支持させた構成を採用しても構わない。 In the first to eleventh embodiments described above, the first and second jaws 8 (8A to 8G, 8J) and 8 ′ are configured to include the first and second support members 81 and 81 ′. However, the first and second support members 81 and 81 'are omitted, and the first and second treatment portions 82 (82A to 82G and 82J) and 82' are directly supported by the shaft 6. It doesn't matter.
 また、上述した実施の形態1~11において、第1,第2把持面821,821´の形状は、上述した実施の形態1~11で説明した形状に限られない。
 図17は、本発明の実施の形態1~11の変形例を示す図である。具体的に、図17は、図3に対応した図である。
 上述した実施の形態1~11では、第1把持面821(第2把持面821´)は、図3に示すように、平面的に見て略矩形形状を有していた。また、第1熱抵抗部材84(第2熱抵抗部材84´)の上面で構成される第1中央領域Ar1(第2中央領域Ar1´)は、第1把持面821(第2把持面821´)における幅方向中央に位置し、第1把持面821の長手方向に沿って延びる略矩形形状を有していた。さらに、第1電極83(第2電極83´)の上面で構成される第1対向領域Ar2(第2対向領域Ar2´)は、第1中央領域Ar1(第2中央領域Ar1´)を挟んで幅方向に互いに対向し、略矩形形状を有していた。
In the first to eleventh embodiments described above, the shapes of the first and second gripping surfaces 821 and 821 ′ are not limited to the shapes described in the first to eleventh embodiments.
FIG. 17 shows a modification of the first to eleventh embodiments of the present invention. Specifically, FIG. 17 corresponds to FIG.
In the first to eleventh embodiments described above, the first gripping surface 821 (second gripping surface 821 ′) has a substantially rectangular shape when viewed in plan, as shown in FIG. Further, the first central region Ar1 (second central region Ar1 ′) configured by the upper surface of the first thermal resistance member 84 (second thermal resistance member 84 ′) is a first gripping surface 821 (second gripping surface 821 ′). ) And has a substantially rectangular shape extending along the longitudinal direction of the first gripping surface 821. Further, the first opposing region Ar2 (second opposing region Ar2 ′) configured by the upper surface of the first electrode 83 (second electrode 83 ′) sandwiches the first central region Ar1 (second central region Ar1 ′). They face each other in the width direction and have a substantially rectangular shape.
 これに対して、本変形例に係る第1把持面821K(第2把持面821K´)は、図17に示すように、上述した第1把持面821(第2把持面821´)に対して、平面的に見て先端が円弧状に丸みを帯びた形状を有する。そして、本変形例では、第1把持面821K(第2把持面821K´)の外縁に沿うU字状の領域Ar2K(Ar2K´)全体(一対の第1対向領域Ar2(第2対向領域Ar2´)の先端を繋げたU字状の領域全体)を、第1電極83(第2電極83´)の上面で構成する。また、第1把持面821K(第2把持面821K´)における領域Ar2K(Ar2K´)で囲まれた第1中央領域Ar1K(第2中央領域Ar1K´)全体(第1中央領域Ar1(第2中央領域Ar2)の先端を円弧形状とした領域全体)を、第1熱抵抗部材84(第2熱抵抗部材84´)の上面で構成する。 On the other hand, as shown in FIG. 17, the first gripping surface 821K (second gripping surface 821K ′) according to this modification is different from the first gripping surface 821 (second gripping surface 821 ′) described above. When viewed from above, the tip has a rounded arc shape. In this modification, the entire U-shaped region Ar2K (Ar2K ′) along the outer edge of the first gripping surface 821K (second gripping surface 821K ′) (a pair of first opposing regions Ar2 (second opposing regions Ar2 ′)) ) Is formed on the upper surface of the first electrode 83 (second electrode 83 ′). Further, the entire first central region Ar1K (second central region Ar1K ′) surrounded by the region Ar2K (Ar2K ′) in the first gripping surface 821K (second gripping surface 821K ′) (first central region Ar1 (second central) The entire region in which the tip of the region Ar2) has an arc shape) is configured by the upper surface of the first thermal resistance member 84 (second thermal resistance member 84 ′).
 以上の本変形例によれば、先端側でも生体組織LTに処置を行うことができる。また、第1電極83(83A、第2電極83´)を一部材で構成することができる(実施の形態1,2,10,11では一対で構成)。すなわち、第1電極83(83A、第2電極83´)が一部材であるため、当該第1電極83(83A、第2電極83´)には、電気ケーブルCを構成する1本のみのリード線が接合される。 According to the above modification, treatment can be performed on the living tissue LT even on the distal end side. Further, the first electrode 83 (83A, second electrode 83 ′) can be formed of one member (in the first, second, tenth, and eleventh embodiments, a pair). That is, since the first electrode 83 (83A, second electrode 83 ′) is a single member, the first electrode 83 (83A, second electrode 83 ′) has only one lead constituting the electric cable C. Lines are joined.
 1,1A~1G,1I,1J エネルギ処置システム
 2,2A~2G,2I,2J エネルギ処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7,7I 把持部
 8,8A~8G,8J 第1ジョー
 8´ 第2ジョー
 9 カッタ
 51 操作ノブ
 81 第1支持部材
 81´ 第2支持部材
 82,82A~82G,82J 第1処置部
 82´ 第2処置部
 83,83A~83D,83F 第1電極
 83´ 第2電極
 84,84B,84D~84G 第1熱抵抗部材
 84C 第1熱抵抗部
 84´ 第2熱抵抗部材
 85,85A,85F,85H,85J 第1冷却部材
 85´ 第2冷却部材
 86 横接部材
 811 第1凹部
 811´ 第2凹部
 821,821B~821D,821F,821G,821J,821K 第1把持面
 821´,821K´ 第2把持面
 822,822´ 第1,第2カッタ移動溝
 831,831B~831D 第1背面
 831´ 第2背面
 832D 第1凹部
 833F 第1基部
 834F 電極部
 841,841´ 背面
 842G 第1膨出部
 851,851H 第1潜熱蓄熱材
 851´ 第2潜熱蓄熱材
 852,852H 第1封止部材
 852´ 第2封止部材
 853H 第1ウィック
 Ar1,Ar1K 第1中央領域
 Ar1´,Ar1K´ 第2中央領域
 Ar2 第1対向領域
 Ar2´ 第2対向領域
 Ar2K,Ar2K´ 領域
 C 電気ケーブル
 CP 中心位置
 Cu 高周波電流
 LT 生体組織
 LT1,LT2 領域
 R1 矢印
 SpA,SpF 密閉空間
1, 1A to 1G, 1I, 1J Energy treatment system 2, 2A to 2G, 2I, 2J Energy treatment tool 3 Control device 4 Foot switch 5 Handle 6 Shaft 7 Shaft 7, 7I Grip part 8, 8A to 8G, 8J First jaw 8 ′ Second jaw 9 Cutter 51 Operation knob 81 First support member 81 ′ Second support member 82, 82A to 82G, 82J First treatment portion 82 ′ Second treatment portion 83, 83A to 83D, 83F First electrode 83 ′ First Two electrodes 84, 84B, 84D to 84G First thermal resistance member 84C First thermal resistance portion 84 'Second thermal resistance member 85, 85A, 85F, 85H, 85J First cooling member 85' Second cooling member 86 Transverse member 811 1st recessed part 811 '2nd recessed part 821, 821B-821D, 821F, 821G, 821J, 821K 1st holding surface 821', 821K '2nd Holding surface 822, 822 'first and second cutter moving groove 831, 831B to 831D first back surface 831' second back surface 832D first recess 833F first base portion 834F electrode portion 841, 841 'back surface 842G first bulging portion 851 , 851H First latent heat storage material 851 ′ Second latent heat storage material 852, 852H First sealing member 852 ′ Second sealing member 853H First wick Ar1, Ar1K First central region Ar1 ′, Ar1K ′ Second central region Ar2 First opposing area Ar2 ′ Second opposing area Ar2K, Ar2K ′ area C electric cable CP center position Cu high frequency current LT biological tissue LT1, LT2 area R1 arrow SpA, SpF sealed space

Claims (10)

  1.  第1把持面を有する第1ジョーと、
     前記第1把持面との間で生体組織を把持する第2把持面を有する第2ジョーと、
     前記第1把持面における第1中央領域を挟んで前記第1ジョーに設けられる第1電極と、
     前記第2把持面における第2中央領域を挟んで前記第2ジョーに設けられる第2電極と、
     前記第1ジョーと前記第2ジョーとの少なくとも一方のジョーに設けられ、前記第1電極と前記第2電極とのうち少なくとも一方の電極に接触して当該電極を冷却する冷却部材と、
     前記第1ジョーと前記第2ジョーとの少なくとも一方のジョーに設けられ、前記第1中央領域と前記第2中央領域との少なくとも一方の領域を構成し、前記第1電極及び前記第2電極よりも前記生体組織への熱抵抗が高い熱抵抗部と、
    を備えるエネルギ処置具。
    A first jaw having a first gripping surface;
    A second jaw having a second gripping surface for gripping a living tissue with the first gripping surface;
    A first electrode provided on the first jaw across a first central region of the first gripping surface;
    A second electrode provided on the second jaw across a second central region of the second gripping surface;
    A cooling member that is provided on at least one of the first jaw and the second jaw, and that cools the electrode by contacting at least one of the first electrode and the second electrode;
    Provided in at least one of the first jaw and the second jaw, and constitutes at least one of the first central region and the second central region, and includes the first electrode and the second electrode. And a heat resistance portion having high heat resistance to the living tissue,
    An energy treatment device comprising:
  2.  前記第1中央領域は、前記第1把持面における中心位置を含む領域であり、
     前記第2中央領域は、前記第2把持面における中心位置を含む領域である
    請求項1に記載のエネルギ処置具。
    The first central region is a region including a center position on the first gripping surface,
    The energy treatment device according to claim 1, wherein the second central region is a region including a center position on the second gripping surface.
  3.  前記熱抵抗部は、前記第1ジョーと前記第2ジョーとのうち、少なくとも前記冷却部材が設けられたジョーに設けられている
    請求項1または2に記載のエネルギ処置具。
    3. The energy treatment device according to claim 1, wherein the thermal resistance portion is provided on a jaw provided with at least the cooling member among the first jaw and the second jaw.
  4.  前記冷却部材は、潜熱蓄熱材と、当該潜熱蓄熱材を封止する封止部材と、
    を備える請求項1~3のいずれか一つに記載のエネルギ処置具。
    The cooling member is a latent heat storage material, a sealing member for sealing the latent heat storage material,
    The energy treatment device according to any one of claims 1 to 3, further comprising:
  5.  前記冷却部材は、前記第1電極及び前記第2電極の少なくとも一方の電極内部に実装されている
    ことを特徴とする請求項1~4のいずれか一つに記載のエネルギ処置具。
    5. The energy treatment device according to claim 1, wherein the cooling member is mounted inside at least one of the first electrode and the second electrode.
  6.  前記冷却部材は、前記第1電極における前記第1把持面から離間した第1背面と前記第2電極における前記第2背面から離間した第2背面との少なくとも一方の背面に配設されている
    請求項1~4のいずれか一つに記載のエネルギ処置具。
    The cooling member is disposed on at least one back surface of a first back surface of the first electrode separated from the first gripping surface and a second back surface of the second electrode spaced from the second back surface. Item 5. The energy treatment device according to any one of Items 1 to 4.
  7.  前記冷却部材は、前記第1電極と前記第2電極との少なくとも一方の電極において、前記第1ジョー及び前記第2ジョーの基端側に配設されている
    請求項1~6のいずれか一つに記載のエネルギ処置具。
    7. The cooling member according to claim 1, wherein at least one of the first electrode and the second electrode is disposed on a proximal end side of the first jaw and the second jaw. The energy treatment device described in 1.
  8.  前記熱抵抗部は、前記第1電極及び前記第2電極とは別体で構成され、前記第1電極及び前記第2電極の熱伝導率よりも低い熱伝導率を有する
    請求項1~7のいずれか一つに記載のエネルギ処置具。
    The heat resistance portion is configured separately from the first electrode and the second electrode, and has a thermal conductivity lower than that of the first electrode and the second electrode. The energy treatment device according to any one of the above.
  9.  前記熱抵抗部は、前記第1電極及び前記第2電極とは別体で構成され、前記第1電極と前記第2電極との少なくとも一方の電極に形成されたコーティング部材である
    請求項1~8のいずれか一つに記載のエネルギ処置具。
    The thermal resistance portion is a coating member that is formed separately from the first electrode and the second electrode, and is formed on at least one of the first electrode and the second electrode. The energy treatment tool according to any one of 8.
  10.  前記熱抵抗部は、前記第1電極と前記第2電極との少なくとも一方の電極に表面加工を施すことで形成され、当該少なくとも一方の電極における他の表面領域に対して表面粗さの粗い領域である
    請求項1~7のいずれか一つに記載のエネルギ処置具。
    The thermal resistance portion is formed by subjecting at least one of the first electrode and the second electrode to surface processing, and is a region having a rough surface relative to the other surface region of the at least one electrode. The energy treatment device according to any one of claims 1 to 7, wherein:
PCT/JP2016/050774 2016-01-13 2016-01-13 Energy treatment tool WO2017122286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050774 WO2017122286A1 (en) 2016-01-13 2016-01-13 Energy treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050774 WO2017122286A1 (en) 2016-01-13 2016-01-13 Energy treatment tool

Publications (1)

Publication Number Publication Date
WO2017122286A1 true WO2017122286A1 (en) 2017-07-20

Family

ID=59311096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050774 WO2017122286A1 (en) 2016-01-13 2016-01-13 Energy treatment tool

Country Status (1)

Country Link
WO (1) WO2017122286A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599350A (en) * 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
JPH1033551A (en) * 1996-07-29 1998-02-10 Olympus Optical Co Ltd Bipolar forceps
JP2003245285A (en) * 2002-01-23 2003-09-02 Ethicon Endo Surgery Inc Feedback light apparatus and method for use with electrosurgical instrument
JP2007319683A (en) * 2006-05-30 2007-12-13 Sherwood Services Ag Electrosurgical instrument for directing energy delivery and protecting adjacent tissue
JP2012016591A (en) * 2010-07-08 2012-01-26 Tyco Healthcare Group Lp Optimal geometry for creating current density in bipolar electrode configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599350A (en) * 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
JPH1033551A (en) * 1996-07-29 1998-02-10 Olympus Optical Co Ltd Bipolar forceps
JP2003245285A (en) * 2002-01-23 2003-09-02 Ethicon Endo Surgery Inc Feedback light apparatus and method for use with electrosurgical instrument
JP2007319683A (en) * 2006-05-30 2007-12-13 Sherwood Services Ag Electrosurgical instrument for directing energy delivery and protecting adjacent tissue
JP2012016591A (en) * 2010-07-08 2012-01-26 Tyco Healthcare Group Lp Optimal geometry for creating current density in bipolar electrode configuration

Similar Documents

Publication Publication Date Title
JP5631716B2 (en) Therapeutic treatment device
JP5931604B2 (en) Therapeutic treatment device
US6656177B2 (en) Electrosurgical systems and techniques for sealing tissue
US20150327909A1 (en) Treatment apparatus
US20150080887A1 (en) Surgical device using energy
JP5622551B2 (en) THERAPEUTIC TREATMENT DEVICE AND ITS CONTROL METHOD
US20150282870A1 (en) Electrosurgical devices including transverse electrode configurations and methods relating to the same
US9782218B2 (en) Thermocoagulation/cutting device
CN107072709B (en) Treatment tool and treatment system
JP6250234B2 (en) Medical equipment
WO2017122286A1 (en) Energy treatment tool
JP2012161566A (en) Therapeutical treatment device and method for controlling the same
WO2017195334A1 (en) Energy treatment tool
JP5704985B2 (en) Therapeutic treatment device
JP6062130B1 (en) Treatment tool
US11759250B2 (en) Electrode configurations for electrical flux delivery instruments, and related systems and methods
WO2018198339A1 (en) Energy treatment tool and treatment system
US20190142504A1 (en) Treatment tool
WO2019186656A1 (en) Treatment instrument
US20200038094A1 (en) Treatment system
US20190110831A1 (en) Treatment tool
US20200038092A1 (en) Treatment tool
WO2019229860A1 (en) Treatment tool
WO2017163410A1 (en) Energy treatment tool
WO2014148199A1 (en) Therapeutic treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP