US20030096672A1 - Toroidal-type continuously variable transmission - Google Patents
Toroidal-type continuously variable transmission Download PDFInfo
- Publication number
- US20030096672A1 US20030096672A1 US10/300,894 US30089402A US2003096672A1 US 20030096672 A1 US20030096672 A1 US 20030096672A1 US 30089402 A US30089402 A US 30089402A US 2003096672 A1 US2003096672 A1 US 2003096672A1
- Authority
- US
- United States
- Prior art keywords
- continuously variable
- variable transmission
- disk
- input
- output disk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H15/00—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
- F16H15/02—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
- F16H15/04—Gearings providing a continuous range of gear ratios
- F16H15/06—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
- F16H15/32—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
- F16H15/36—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
- F16H15/38—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H15/00—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
- F16H15/02—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
- F16H15/04—Gearings providing a continuous range of gear ratios
- F16H15/06—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
- F16H15/32—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
- F16H15/36—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
- F16H15/38—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
- F16H2015/383—Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces with two or more sets of toroid gearings arranged in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4981—Utilizing transitory attached element or associated separate material
Definitions
- the present invention relates to a toroidal-type continuously variable transmission.
- the first continuously variable transmission mechanism comprises a first input disk, a first output disk disposed so as to be opposed to the first input disk and a pair of power rollers respectively held between the first input and output disks
- the second continuously variable transmission mechanism comprises a second input disk, a second output disk disposed so as to be opposed to the second input disk and a pair of power rollers respectively held between the second input and output disks
- the first and second continuously variable transmission mechanisms are disposed such that the first and second input disks are disposed so as to be opposed to each other in the axial direction thereof; the first and second input disks are connected together so as to be rotated in synchronization with each other; and, the first and second output disks can be rotated integrally with each other.
- the unified type output disk cannot be processed with high precision and, especially, the traction surfaces of the unified type output disk are difficult to work.
- the plane of the near-to-inside diameter portion of the unified type output disk must be used as the machining datum surface; and, therefore, when working the traction surfaces, the whirling of the outside diameter portion of the unified type output disk increases, with the result that, when grinding or superfinishing the disk, the traction surfaces cannot be ground with high precision.
- Such poor surface precision of the traction surfaces not only can lower the power transmission efficiency of the unified type output disk but also can make the gear change operation thereof unstable.
- the present invention aims at eliminating the above-mentioned drawbacks found in the conventional toroidal-type continuously variable transmission. Accordingly, it is an object of the invention to provide a toroidal-type continuously variable transmission which uses a unified type output disk allowing its traction surfaces to be processed with high precision, thereby being able not only to enhance the power transmission efficiency thereof but also to prevent the gear change operation from being unstabilized.
- a toroidal-type continuously variable transmission comprising a first continuously variable transmission mechanism and a second continuously variable transmission mechanism: the first continuously variable transmission mechanism including a first input disk, a first output disk disposed so as to be opposed to the first input disk and, a pair of first power rollers respectively held between the first input and output disks; and, the second continuously variable transmission mechanism including a second input disk, a second output disk disposed so as to be opposed to the second input disk and, a pair of second power rollers respectively held between the second input and output disks, wherein the first and second continuously variable transmission mechanisms are disposed coaxially with each other; the first and second input disks are connected together so as to be rotated in synchronization with each other; the first and second output disks can be rotated integrally with each other; the first and second output disks are formed as a unified type output disk including on the two side surfaces thereof traction surfaces to be contacted with the pair of first power
- a machining datum instead of the datum plane, there can also be used a stepped portion which is formed in the end face at the outer-most outside diameter of the unified type output disk. And, the stepped portion may be cut and removed after the traction surfaces of the unified type output disk are processed.
- machining datum instead of the datum plane or stepped portion, there can also be used a groove portion which is formed in the end face at the outer-most outside diameter of the unified type output disk.
- FIG. 1 is a section view of a toroidal-type continuously variable transmission incorporating a unified type output disk according to a first embodiment of the invention
- FIG. 2 is a section view of a unified type output disk according to a second embodiment of the invention.
- FIG. 3 is a section view of a unified type output disk according to a third embodiment of the invention.
- reference character 2 designates an input shaft to which power from an engine (not shown) is input; and, a main shaft 4 is rotatably disposed in such a manner that their respective end faces are butted against each other.
- the first continuously variable transmission mechanism 6 comprises a first input disk 10 a and a first output disk 12 a disposed so as to be opposed to each other, and a pair of power rollers 14 a (only one of the first power rollers 14 a is shown) respectively interposed between the first input and output disks 10 a , 12 a ; and, the second continuously variable transmission mechanism 8 comprises a second input disk 10 b and a second output disk 12 b disposed so as to be opposed to each other, and a pair of power rollers 14 b (only one of the second power rollers 14 b is shown) respectively interposed between the second input and output disks lob, 12 b.
- the mutually opposed surfaces of the respective input disks 10 a , 10 b and output disks 12 a , 12 b are respectively formed as traction surfaces; and, in a state where the first and second power rollers 14 a , 14 b are in contact with the input disks 10 a , 10 b and output disks 12 a , 12 b , the first and second power rollers 14 a , 14 b can be swung.
- This loading cam device 24 comprises a cam flange 22 , which is engaged with the input shaft 2 and can be rotated integrally therewith, and a plurality of rollers 25 rollably held between the cam flange 22 and first input disk 10 a by a retainer 23 .
- the torque of the input shaft 2 can be input through the loading cam device 24 to the first input disk 10 a.
- first and second output disks 12 a , 12 b are respectively connected to an output gear (not shown)
- two kinds of torque respectively transmitted to the first and second output disks 12 a , 12 b are collected together to the output gear, and the thus collected torque is transmitted to an output shaft (not shown) through a drive gear (not shown) in meshing engagement with the output gear.
- a first trunnion (not shown) for supporting the first power roller 14 a of the first continuously variable transmission mechanism 6 is supported by a needle roller bearing (not shown) in such a manner that it can be rotated and can be moved in the vertical direction; and, this needle roller bearing is supported by a yoke 44 , while the yoke 44 is supported on a post 48 which fixedly secured to a casing 46 .
- a second trunnion (not shown) for supporting the second power roller 14 b of the second continuously variable transmission mechanism 8 is supported by a needle roller bearing (not shown) in such a manner that it can be rotated and can be moved in the vertical direction; and, this needle roller bearing is supported by a yoke 50 , while the yoke 50 is supported on a post 49 which fixedly secured to the casing 46 .
- the torque which is input to the first and second input disks 10 a , 10 b , is transmitted through the first and second power rollers 14 a , 14 b to the first and second output disks 12 a , 12 b ; and, at the then time, since the first and second power rollers 14 a , 14 b are controlled and inclinedly rotated by first and second supporting mechanism, gear change ratios, which are responded to inclined rotation angles of the first and second power rollers 14 a , 14 b , are generated in a continuously variable manner between the first input and output disks 10 a , 12 a as well as between the second input and outpost disks 10 b , 12 b.
- the first and second output disks 12 a , 12 b are a unified type output disk which includes traction surfaces 54 a , 54 b , 54 c , 54 d on the two side portions thereof (which is hereinafter referred to as a unified type output disk 12 A).
- a datum plane 56 which serves as a machining datum when working the traction surfaces 54 a , 54 b , 54 c , 54 d .
- the length m of the datum plane 56 in the diameter direction thereof (that is, the direction which intersect at right angles to the axis of the main shaft 4 ) is set at least 2 mm or more. Also, an operation for finishing the datum plane 56 is executed after the unified output disk 12 A is heat treated.
- the unified type output disk 12 A is deformed to a slight degree; however, according to the present embodiment, since the finishing operation of the datum plane 56 is carried out after enforcement of the heat treatment of the unified type output disk 12 A, the influence of the deformation of the unified type output disk 12 A can be eliminated to thereby be able to enhance the plane precision of the datum plane 56 . Therefore, in the case of the unified type output disk 12 A including the datum plane 56 of high plane precision, the working of the traction surfaces 54 a , 54 b , 54 c , 54 d can be executed with high precision.
- FIG. 2 is a half section view of a unified type output disk 58 according to a second embodiment of the invention.
- the unified type output disk 58 includes traction surfaces 58 a , 58 b on the two side portions thereof (by the way, although not shown, on the portion of the disk 58 that is situated lower than the main shaft 4 as well, there are formed other two traction surfaces).
- a stepped portion 60 which serves as a machining datum when working the traction surfaces 58 a , 58 b .
- the length m of the stepped portion 60 in the diameter direction thereof (that is, the direction which intersect at right angles to the axis of the main shaft 4 ) is set at least 2 mm or more.
- an operation for finishing the stepped portion 60 is carried out after enforcement of the heat treatment of the unified type output disk 58 .
- the stepped portion 60 is cut and removed to thereby provide a unified type output disk 58 which does not include the stepped portion 60 .
- the unified-type output disk 58 including the stepped portion 60 provided on the end portion of the outer-most outside diameter portion thereof by working the unified-type output disk 58 including the stepped portion 60 provided on the end portion of the outer-most outside diameter portion thereof, the whirling of the outside diameter portion when working the traction surfaces 58 a , 58 b can be reduced, so that, in the grinding operation or in the superfinishing operation, the traction surfaces 58 a , 58 b can be ground with high precision. Therefore, in the case of a toroidal-type continuously variable transmission incorporating therein the present unified type output disk 58 , the power transmission efficiency thereof can be prevented from being lowered and the gear change operation thereof can be prevented from being unstabilized.
- the operation for finishing the stepped portion 60 is carried out after enforcement of the heat treatment of the unified type output disk 58 , there can be eliminated the influence of the deformation of the unified type output disk 58 , which makes it possible to enhance the plane precision of the wall surface of the stepped portion 60 . Therefore, in the case of the unified type output disk 58 including the stepped portion 60 which is high inplane precision, the traction surfaces 58 a , 58 b can be processed with high precision.
- the weight of the unified type output disk 58 can be reduced, the fuel efficiency thereof can be enhanced and the assembling efficiency can also be improved.
- the controlling performance thereof can be enhanced, so that the responding performance of the output disk 58 to a sudden gear change can be enhanced.
- FIG. 3 is a half section view of a unified output disk 62 according to a third embodiment of the invention.
- the unified type output disk 62 includes traction surfaces 62 a , 62 b on the two side portions thereof (by the way, although not shown, on the portion of the disk 62 that is situated lower than the main shaft 4 as well, there are formed other two traction surfaces).
- a groove portion 64 which serves as a machining datum when working the traction surfaces 62 a , 62 b .
- the length m of the wall surface of the groove portion 64 in the diameter direction thereof (that is, the direction which intersect at right angles to the axis of the main shaft 4 ) is set at least 2 mm or more.
- the operation for finishing the groove portion 64 is carried out after enforcement of the heat treatment of the unified type output disk 62 .
- the traction surfaces 62 a , 62 b may be processed.
- the unified-type output disk 62 including the groove portion 64 formed in the end portion of the outer-most outside diameter portion thereof by working the unified-type output disk 62 including the groove portion 64 formed in the end portion of the outer-most outside diameter portion thereof, the whirling of the outside diameter portion when working the traction surfaces 62 a , 62 b can be reduced, so that, in the grinding operation or in the superfinishing operation, the traction surfaces 62 a , 62 b can be ground with high precision. Therefore, in the case of a toroidal-type continuously variable transmission incorporating the present unified type output disk 62 therein, the power transmission efficiency thereof can be prevented from being lowered and the gear change operation thereof can be prevented from being unstabilized.
- the operation for finishing the groove portion 64 is carried out after enforcement of the heat treatment of the unified type output disk 62 , there can be eliminated the influence of the deformation of the unified type output disk, which makes it possible to enhance the plane precision of the wall surface of the groove portion 64 . Therefore, in the case of the unified type output disk 62 including the groove portion 64 which is high in plane precision, the traction surfaces 62 a , 62 b can be processed with high precision.
- provision of the groove portion 64 can reduce the weight of the unified type output disk 62 , can enhance the fuel efficiency thereof and can improve the assembling efficiency thereof. Also, since the moment of inertia of the output disk 62 is also reduced, the controlling performance thereof can be enhanced, so that the responding performance of the output disk 62 to a sudden gear change can be enhanced.
- a toroidal-type continuously variable transmission of the invention there can be reduced the whirling of the outside diameter portion of a unified type output disk when working the traction surfaces of the present output disk and thus, in the grinding operation and superfinishing operation of the unified type output disk, the traction surfaces thereof can be ground with high precision. Thanks to this, in the case of a toroidal-type continuously variable transmission which incorporates the present unified type output disk therein, the power transmission efficiency thereof can be kept from being lowered and the stability of the gear change operation thereof can be enhanced.
- the toroidal-type continuously variable transmission of the invention since the traction surfaces of a unified type output disk can be ground with high precision, in the case of a toroidal-type continuously variable transmission which incorporates the present unified type output disk therein, the power transmission efficiency thereof can be kept from being lowered and the stability of the gear change operation thereof can be enhanced.
- the weight of the unified type output disk can be reduced, the fuel efficiency thereof can be enhanced and the assembling efficiency can also be improved. Also, since the moment of inertia of the unified type output disk is also reduced, the controlling performance thereof can be enhanced, so that the responding performance of the present output disk to a sudden gear change can be enhanced.
- a toroidal-type continuously variable transmission of the invention since it incorporates therein a unified type output disk which includes a groove portion as a machining datum, the power transmission efficiency thereof can be kept from being lowered and the stability of the gear change operation thereof can be enhanced.
- the operation for finishing the groove portion is carried out after enforcement of the heat treatment of the unified type output disk, there can be eliminated the influence of the deformation of the unified type output disk, which makes it possible to enhance the plane precision of the wall surface of the groove portion. Therefore, the traction surfaces of the unified type output disk can be processed with high precision.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Friction Gearing (AREA)
Abstract
A toroidal-type continuously variable transmission, has a first continuously variable transmission mechanism and a second continuously variable transmission mechanism: wherein the first and second continuously variable transmission mechanisms are disposed coaxially with each other; the first and second input disks are connected together so as to be rotated in synchronization with each other; the first and second output disks are formed as a unified type output disk including traction surfaces on the two side surfaces thereof; on the side portion at the outer-most outside diameter of the unified type output disk, there is formed a datum plane serving as a machining datum when the traction surfaces are processed; and, an operation for finishing the datum plane is carried out after the unified type output disk is heat treated.
Description
- 1. Field of the Invention
- The present invention relates to a toroidal-type continuously variable transmission.
- 2. Description of the Related Art
- Conventionally, as a toroidal-type continuously variable transmission, there is known an apparatus structured such that first and second continuously variable transmission mechanisms are disposed coaxially with each other: specifically, the first continuously variable transmission mechanism comprises a first input disk, a first output disk disposed so as to be opposed to the first input disk and a pair of power rollers respectively held between the first input and output disks; the second continuously variable transmission mechanism comprises a second input disk, a second output disk disposed so as to be opposed to the second input disk and a pair of power rollers respectively held between the second input and output disks; the first and second continuously variable transmission mechanisms are disposed such that the first and second input disks are disposed so as to be opposed to each other in the axial direction thereof; the first and second input disks are connected together so as to be rotated in synchronization with each other; and, the first and second output disks can be rotated integrally with each other.
- By the way, for example, in JP-A-2000-104804 and U.S. Pat. No. 5,607,372, there is disclosed an apparatus in which the above-mentioned first and second output disks are structured as a unified type output disk including on the two sides thereof traction surfaces to be contacted with the above-mentioned pair of first power rollers and the above-mentioned pair of second power rollers.
- However, the unified type output disk cannot be processed with high precision and, especially, the traction surfaces of the unified type output disk are difficult to work.
- That is, when working the traction surfaces, there are necessary surfaces which can be used as machining datum. One of them is a datum surface which can be used to restrict the whirling of the unified type output disk in the rotation direction thereof; and as this datum surface, there is used a portion of the outside diameter portion of the unified type output disk. As the other datum surface, there is necessary a datum plane which is used to fix the unified output disk in the axial direction thereof. However, in the case of the unified type output disk disclosed in either of the above-cited JP-A-2000-104804 or U.S. Pat. No. 5,607,372, the plane of the near-to-inside diameter portion of the unified type output disk must be used as the machining datum surface; and, therefore, when working the traction surfaces, the whirling of the outside diameter portion of the unified type output disk increases, with the result that, when grinding or superfinishing the disk, the traction surfaces cannot be ground with high precision. Such poor surface precision of the traction surfaces not only can lower the power transmission efficiency of the unified type output disk but also can make the gear change operation thereof unstable.
- The present invention aims at eliminating the above-mentioned drawbacks found in the conventional toroidal-type continuously variable transmission. Accordingly, it is an object of the invention to provide a toroidal-type continuously variable transmission which uses a unified type output disk allowing its traction surfaces to be processed with high precision, thereby being able not only to enhance the power transmission efficiency thereof but also to prevent the gear change operation from being unstabilized.
- In attaining the above object, according to a first aspect of the invention, there is provided a toroidal-type continuously variable transmission, comprising a first continuously variable transmission mechanism and a second continuously variable transmission mechanism: the first continuously variable transmission mechanism including a first input disk, a first output disk disposed so as to be opposed to the first input disk and, a pair of first power rollers respectively held between the first input and output disks; and, the second continuously variable transmission mechanism including a second input disk, a second output disk disposed so as to be opposed to the second input disk and, a pair of second power rollers respectively held between the second input and output disks, wherein the first and second continuously variable transmission mechanisms are disposed coaxially with each other; the first and second input disks are connected together so as to be rotated in synchronization with each other; the first and second output disks can be rotated integrally with each other; the first and second output disks are formed as a unified type output disk including on the two side surfaces thereof traction surfaces to be contacted with the pair of first power rollers and the pair of second power rollers; on the side portion at the outer-most outside diameter of the unified type output disk, there is formed a datum plane serving as a machining datum when the traction surfaces are processed; and, an operation for finishing the datum plane is carried out after the unified type output disk is heat treated.
- Also, according to the invention, as a machining datum, instead of the datum plane, there can also be used a stepped portion which is formed in the end face at the outer-most outside diameter of the unified type output disk. And, the stepped portion may be cut and removed after the traction surfaces of the unified type output disk are processed.
- Further, according to the invention, as the machining datum, instead of the datum plane or stepped portion, there can also be used a groove portion which is formed in the end face at the outer-most outside diameter of the unified type output disk.
- FIG. 1 is a section view of a toroidal-type continuously variable transmission incorporating a unified type output disk according to a first embodiment of the invention;
- FIG. 2 is a section view of a unified type output disk according to a second embodiment of the invention; and,
- FIG. 3 is a section view of a unified type output disk according to a third embodiment of the invention.
- Now, description will be given below of an embodiment of a toroidal-type continuously variable transmission according to the invention with reference to the accompanying drawings.
- In FIG. 1,
reference character 2 designates an input shaft to which power from an engine (not shown) is input; and, amain shaft 4 is rotatably disposed in such a manner that their respective end faces are butted against each other. - On the
main shaft 4, there are disposed a first continuouslyvariable transmission mechanism 6 and a second continuouslyvariable transmission mechanism 8 in such a manner that they are coaxial with each other. The first continuouslyvariable transmission mechanism 6 comprises afirst input disk 10 a and afirst output disk 12 a disposed so as to be opposed to each other, and a pair ofpower rollers 14 a (only one of thefirst power rollers 14 a is shown) respectively interposed between the first input andoutput disks variable transmission mechanism 8 comprises asecond input disk 10 b and asecond output disk 12 b disposed so as to be opposed to each other, and a pair ofpower rollers 14 b (only one of thesecond power rollers 14 b is shown) respectively interposed between the second input and output disks lob, 12 b. - The mutually opposed surfaces of the
respective input disks output disks second power rollers input disks output disks second power rollers - And, between the
first input disk 10 a of the first continuouslyvariable transmission mechanism 6 andmain shaft 4, there is interposed aloading cam device 24. Thisloading cam device 24 comprises acam flange 22, which is engaged with theinput shaft 2 and can be rotated integrally therewith, and a plurality ofrollers 25 rollably held between thecam flange 22 andfirst input disk 10 a by aretainer 23. The torque of theinput shaft 2 can be input through theloading cam device 24 to thefirst input disk 10 a. - On the other hand, since the first and
second output disks second output disks - A first trunnion (not shown) for supporting the
first power roller 14 a of the first continuouslyvariable transmission mechanism 6 is supported by a needle roller bearing (not shown) in such a manner that it can be rotated and can be moved in the vertical direction; and, this needle roller bearing is supported by ayoke 44, while theyoke 44 is supported on apost 48 which fixedly secured to acasing 46. - A second trunnion (not shown) for supporting the
second power roller 14 b of the second continuouslyvariable transmission mechanism 8 is supported by a needle roller bearing (not shown) in such a manner that it can be rotated and can be moved in the vertical direction; and, this needle roller bearing is supported by ayoke 50, while theyoke 50 is supported on apost 49 which fixedly secured to thecasing 46. - And, in case where torque is transmitted to the
input shaft 2 as the engine is put into operation, this torque is transmitted not only to thefirst input disk 10 a through theloading cam device 24 but also to thesecond input disk 10 b through themain shaft 4, thereby rotating these first andsecond input disks - The torque, which is input to the first and
second input disks second power rollers second output disks second power rollers second power rollers output disks outpost disks - By the way, the first and
second output disks traction surfaces type output disk 12A). On the side portion of the outer-most outside diameter portion of this unified-type output disk, there is formed adatum plane 56 which serves as a machining datum when working thetraction surfaces datum plane 56 in the diameter direction thereof (that is, the direction which intersect at right angles to the axis of the main shaft 4) is set at least 2 mm or more. Also, an operation for finishing thedatum plane 56 is executed after the unifiedoutput disk 12A is heat treated. - And, referring to the operation for working the
unified output disk 12A, for example, according to a working method disclosed in JP-A-2000-61702, while thedatum plane 56 is matched to the datum surface of a working apparatus such as a lathe, thetraction surfaces - As in the above-mentioned structure, by working the unified-
type output disk 12A including thedatum plane 56 on the side portion of the outer-most outside diameter portion thereof, the whirling of the outside diameter portion when working thetraction surfaces traction surfaces type output disk 12A, the power transmission efficiency thereof can be prevented from being lowered and the gear change operation thereof can be prevented from being unstabilized. - Also, due to heat treatment, the unified
type output disk 12A is deformed to a slight degree; however, according to the present embodiment, since the finishing operation of thedatum plane 56 is carried out after enforcement of the heat treatment of the unifiedtype output disk 12A, the influence of the deformation of the unifiedtype output disk 12A can be eliminated to thereby be able to enhance the plane precision of thedatum plane 56. Therefore, in the case of the unifiedtype output disk 12A including thedatum plane 56 of high plane precision, the working of thetraction surfaces - Next, FIG. 2 is a half section view of a unified
type output disk 58 according to a second embodiment of the invention. - The unified
type output disk 58 according to the second embodiment includestraction surfaces disk 58 that is situated lower than themain shaft 4 as well, there are formed other two traction surfaces). In the end portion of the outer-most outside diameter portion of the present unified type output disk, there is formed astepped portion 60 which serves as a machining datum when working thetraction surfaces stepped portion 60 in the diameter direction thereof (that is, the direction which intersect at right angles to the axis of the main shaft 4) is set at least 2 mm or more. - Also, an operation for finishing the
stepped portion 60 is carried out after enforcement of the heat treatment of the unifiedtype output disk 58. - And, referring to an operation for working the
unified output disk 58, for example, according to a working method disclosed in JP-A-2000-61702, while thestepped portion 60 is matched to the datum recessed portion of a working apparatus such as a lathe, thetraction surfaces - And, in case where the working operation of the
traction surfaces stepped portion 60 is cut and removed to thereby provide a unifiedtype output disk 58 which does not include thestepped portion 60. - As in the above-mentioned structure, by working the unified-
type output disk 58 including thestepped portion 60 provided on the end portion of the outer-most outside diameter portion thereof, the whirling of the outside diameter portion when working thetraction surfaces traction surfaces type output disk 58, the power transmission efficiency thereof can be prevented from being lowered and the gear change operation thereof can be prevented from being unstabilized. - Also, since the operation for finishing the
stepped portion 60 is carried out after enforcement of the heat treatment of the unifiedtype output disk 58, there can be eliminated the influence of the deformation of the unifiedtype output disk 58, which makes it possible to enhance the plane precision of the wall surface of thestepped portion 60. Therefore, in the case of the unifiedtype output disk 58 including thestepped portion 60 which is high inplane precision, thetraction surfaces - Further, because the
stepped portion 60 is cut and removed after all of the working operations of the unifiedtype output disk 58 are completed, the weight of the unifiedtype output disk 58 can be reduced, the fuel efficiency thereof can be enhanced and the assembling efficiency can also be improved. In addition, since the moment of inertia of theoutput disk 58 is also reduced, the controlling performance thereof can be enhanced, so that the responding performance of theoutput disk 58 to a sudden gear change can be enhanced. - Next, FIG. 3 is a half section view of a
unified output disk 62 according to a third embodiment of the invention. - The unified
type output disk 62 according to the third embodiment includestraction surfaces disk 62 that is situated lower than themain shaft 4 as well, there are formed other two traction surfaces). In the end portion of the outer-most outside diameter portion of the present unified type output disk, there is formed agroove portion 64 which serves as a machining datum when working the traction surfaces 62 a, 62 b. The length m of the wall surface of thegroove portion 64 in the diameter direction thereof (that is, the direction which intersect at right angles to the axis of the main shaft 4) is set at least 2 mm or more. - Also, the operation for finishing the
groove portion 64 is carried out after enforcement of the heat treatment of the unifiedtype output disk 62. - And, referring to the operation for working the
unified output disk 62, for example, according to a working method disclosed in JP-A-2000-61702, while thegroove portion 64 is matched to the datum projecting portion of a working apparatus such as a lathe, the traction surfaces 62 a, 62 b may be processed. - As in the above-mentioned structure, by working the unified-
type output disk 62 including thegroove portion 64 formed in the end portion of the outer-most outside diameter portion thereof, the whirling of the outside diameter portion when working the traction surfaces 62 a, 62 b can be reduced, so that, in the grinding operation or in the superfinishing operation, the traction surfaces 62 a, 62 b can be ground with high precision. Therefore, in the case of a toroidal-type continuously variable transmission incorporating the present unifiedtype output disk 62 therein, the power transmission efficiency thereof can be prevented from being lowered and the gear change operation thereof can be prevented from being unstabilized. - Also, since the operation for finishing the
groove portion 64 is carried out after enforcement of the heat treatment of the unifiedtype output disk 62, there can be eliminated the influence of the deformation of the unified type output disk, which makes it possible to enhance the plane precision of the wall surface of thegroove portion 64. Therefore, in the case of the unifiedtype output disk 62 including thegroove portion 64 which is high in plane precision, the traction surfaces 62 a, 62 b can be processed with high precision. - Further, provision of the
groove portion 64 can reduce the weight of the unifiedtype output disk 62, can enhance the fuel efficiency thereof and can improve the assembling efficiency thereof. Also, since the moment of inertia of theoutput disk 62 is also reduced, the controlling performance thereof can be enhanced, so that the responding performance of theoutput disk 62 to a sudden gear change can be enhanced. - By the way, in the above respective embodiments, description has been given of a half-toroidal-type toroidal-type continuously variable transmission; however, even in case where the above-described unified type output disk is employed in a full-toroidal-type toroidal-type continuously variable transmission, there can also be obtained similar operation effects.
- As has been described heretofore, according to a toroidal-type continuously variable transmission of the invention, there can be reduced the whirling of the outside diameter portion of a unified type output disk when working the traction surfaces of the present output disk and thus, in the grinding operation and superfinishing operation of the unified type output disk, the traction surfaces thereof can be ground with high precision. Thanks to this, in the case of a toroidal-type continuously variable transmission which incorporates the present unified type output disk therein, the power transmission efficiency thereof can be kept from being lowered and the stability of the gear change operation thereof can be enhanced.
- Also, since the operation for finishing the datum plane is carried out after enforcement of the heat treatment of the unified type output disk, there can be eliminated the influence of the deformation of the unified type output disk, thereby being able to enhance the plane precision of the datum plane. Thanks to this, the working of the traction surfaces of the unified type output disk can be executed with high precision.
- And, according to the toroidal-type continuously variable transmission of the invention, since the traction surfaces of a unified type output disk can be ground with high precision, in the case of a toroidal-type continuously variable transmission which incorporates the present unified type output disk therein, the power transmission efficiency thereof can be kept from being lowered and the stability of the gear change operation thereof can be enhanced.
- Also, since the operation for finishing the stepped portion is carried out after enforcement of the heat treatment of the unified type output disk, there can be eliminated the influence of the deformation of the unified type output disk, which makes it possible to enhance the plane precision of the wall surface of the stepped portion. Therefore, the traction surfaces of the unified type output disk can be processed with high precision.
- And, according to the invention, because the stepped portion is cut and removed after all of the working operations of the unified type output disk are completed, the weight of the unified type output disk can be reduced, the fuel efficiency thereof can be enhanced and the assembling efficiency can also be improved. Also, since the moment of inertia of the unified type output disk is also reduced, the controlling performance thereof can be enhanced, so that the responding performance of the present output disk to a sudden gear change can be enhanced.
- Further, according to a toroidal-type continuously variable transmission of the invention, since it incorporates therein a unified type output disk which includes a groove portion as a machining datum, the power transmission efficiency thereof can be kept from being lowered and the stability of the gear change operation thereof can be enhanced.
- Also, because the operation for finishing the groove portion is carried out after enforcement of the heat treatment of the unified type output disk, there can be eliminated the influence of the deformation of the unified type output disk, which makes it possible to enhance the plane precision of the wall surface of the groove portion. Therefore, the traction surfaces of the unified type output disk can be processed with high precision.
Claims (4)
1. A toroidal-type continuously variable transmission, comprising a first continuously variable transmission mechanism and a second continuously variable transmission mechanism: said first continuously variable transmission mechanism including a first input disk, a first output disk disposed so as to be opposed to said first input disk and, a pair of first power rollers respectively held between said first input and output disks; and, said second continuously variable transmission mechanism including a second input disk, a second output disk disposed so as to be opposed to said second input disk and, a pair of second power rollers respectively held between said second input and output disks,
wherein said first and second continuously variable transmission mechanisms are disposed coaxially with each other;
said first and second input disks are connected together so as to be rotated in synchronization with each other;
said first and second output disks can be rotated integrally with each other;
said first and second output disks are formed as a unified type output disk including on the two side surfaces thereof traction surfaces to be contacted with said pair of first power rollers and said pair of second power rollers;
on the side portion at the outer-most outside diameter of said unified type output disk, there is formed a datum plane serving as a machining datum when said traction surfaces are processed; and,
an operation for finishing said datum plane is carried out after said unified type output disk is heat treated.
2. A toroidal-type continuously variable transmission comprising a first continuously variable transmission mechanism and a second continuously variable transmission mechanism: said first continuously variable transmission mechanism including a first input disk, a first output disk disposed so as to be opposed to said first input disk and, a pair of first power rollers respectively held between said first input and output disks; and, said second continuously variable transmission mechanism including a second input disk, a second output disk disposed so as to be opposed to said second input disk, and a pair of second power rollers respectively held between said second input and output disks,
wherein said first and second continuously variable transmission mechanisms are disposed coaxially with each other;
said first and second input disks are connected together so as to be rotated in synchronization with each other;
said first and second output disks can be rotated integrally with each other;
said first and second output disks are formed as a unified type output disk including on the two side surfaces thereof traction surfaces to be contacted with said pair of first power rollers and said pair of second power rollers;
on the end face at the outer-most outside diameter of said unified type output disk, there is formed a stepped portion projected from said end face and serving as a machining datum when said traction surfaces are processed; and,
an operation for finishing said stepped portion is carried out after said unified type output disk is heat treated.
3. The toroidal-type continuously variable transmission as set forth in claim 2 , wherein said stepped portion is cut and removed after said traction surfaces are processed.
4. A toroidal-type continuously variable transmission, comprising a first continuously variable transmission mechanism and a second continuously variable transmission mechanism: said first continuously variable transmission mechanism including a first input disk, a first output disk disposed so as to be opposed to said first input disk, and, a pair of first power rollers respectively held between said first input and output disks; and, said second continuously variable transmission mechanism including a second input disk, a second output disk disposed so as to be opposed to said second input disk, and, a pair of second power rollers respectively held between said second input and output disks,
wherein said first and second continuously variable transmission mechanisms are disposed coaxially with each other;
said first and second input disks are connected together so as to be rotated in synchronization with each other;
said first and second output disks can be rotated integrally with each other;
said first and second output disks are formed as a unified type output disk including on the two side surfaces thereof traction surfaces to be contacted with said pair of first power rollers and said pair of second power rollers;
in the end face at the outer-most outside diameter of said unified type output disk, there is formed a groove portion serving as a machining datum when said traction surfaces are processed; and,
an operation for finishing said groove portion is carried out after said unified type output disk is heat treated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/505,915 US7699747B2 (en) | 2001-11-22 | 2006-08-18 | Toroidal-type continuously variable transmission |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001357151A JP3758151B2 (en) | 2001-11-22 | 2001-11-22 | Toroidal continuously variable transmission |
JPP.2001-357151 | 2001-11-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/505,915 Division US7699747B2 (en) | 2001-11-22 | 2006-08-18 | Toroidal-type continuously variable transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030096672A1 true US20030096672A1 (en) | 2003-05-22 |
Family
ID=19168533
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/300,894 Abandoned US20030096672A1 (en) | 2001-11-22 | 2002-11-21 | Toroidal-type continuously variable transmission |
US11/505,915 Expired - Lifetime US7699747B2 (en) | 2001-11-22 | 2006-08-18 | Toroidal-type continuously variable transmission |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/505,915 Expired - Lifetime US7699747B2 (en) | 2001-11-22 | 2006-08-18 | Toroidal-type continuously variable transmission |
Country Status (2)
Country | Link |
---|---|
US (2) | US20030096672A1 (en) |
JP (1) | JP3758151B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030181146A1 (en) * | 2000-02-16 | 2003-09-25 | Nsk Ltd. | Disc for toroidal type continuously variable transmission and working method therefor |
US20170097073A1 (en) * | 2014-03-11 | 2017-04-06 | Nsk Ltd. | Toroidal continuously variable transmission |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7011600B2 (en) | 2003-02-28 | 2006-03-14 | Fallbrook Technologies Inc. | Continuously variable transmission |
AU2005294611B2 (en) | 2004-10-05 | 2011-10-06 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
KR101577354B1 (en) | 2005-10-28 | 2015-12-16 | 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 | Electromotive drives |
EP1954959B1 (en) | 2005-11-22 | 2013-05-15 | Fallbrook Intellectual Property Company LLC | Continuously variable transmission |
US7434764B2 (en) * | 2005-12-02 | 2008-10-14 | Sikorsky Aircraft Corporation | Variable speed gearbox with an independently variable speed tail rotor system for a rotary wing aircraft |
CA2976893C (en) | 2005-12-09 | 2019-03-12 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
EP1811202A1 (en) | 2005-12-30 | 2007-07-25 | Fallbrook Technologies, Inc. | A continuously variable gear transmission |
US7882762B2 (en) | 2006-01-30 | 2011-02-08 | Fallbrook Technologies Inc. | System for manipulating a continuously variable transmission |
CN102251854B (en) | 2006-06-26 | 2013-02-13 | 福博科技术公司 | Continuously variable transmission |
WO2008057507A1 (en) | 2006-11-08 | 2008-05-15 | Fallbrook Technologies Inc. | Clamping force generator |
EP2125469A2 (en) | 2007-02-01 | 2009-12-02 | Fallbrook Technologies Inc. | System and methods for control of transmission and/or prime mover |
WO2008100792A1 (en) | 2007-02-12 | 2008-08-21 | Fallbrook Technologies Inc. | Continuously variable transmissions and methods therefor |
EP2700843A3 (en) | 2007-02-16 | 2017-11-08 | Fallbrook Intellectual Property Company LLC | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
CN101720397B (en) | 2007-04-24 | 2013-01-02 | 福博科技术公司 | Electric traction drives |
US8641577B2 (en) | 2007-06-11 | 2014-02-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
JP5450405B2 (en) | 2007-07-05 | 2014-03-26 | フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー | Continuously variable transmission |
CN101861482B (en) | 2007-11-16 | 2014-05-07 | 福博科知识产权有限责任公司 | Controller for variable transmission |
US8321097B2 (en) | 2007-12-21 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
US8313405B2 (en) | 2008-02-29 | 2012-11-20 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
US8317651B2 (en) | 2008-05-07 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Assemblies and methods for clamping force generation |
US8535199B2 (en) | 2008-06-06 | 2013-09-17 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
CN102084155B (en) | 2008-06-23 | 2014-06-11 | 福博科知识产权有限责任公司 | Continuously variable transmission |
CA2732668C (en) | 2008-08-05 | 2017-11-14 | Fallbrook Technologies Inc. | Methods for control of transmission and prime mover |
US8469856B2 (en) | 2008-08-26 | 2013-06-25 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8167759B2 (en) | 2008-10-14 | 2012-05-01 | Fallbrook Technologies Inc. | Continuously variable transmission |
EP2669550B1 (en) | 2009-04-16 | 2019-01-09 | Fallbrook Intellectual Property Company LLC | Continuously variable transmission |
US20110015031A1 (en) * | 2009-07-20 | 2011-01-20 | Jean-Francois Dionne | Continuously variable transmission (cvt) having a coaxial input/output arrangement and enhanced embedded torque transfer |
US8512195B2 (en) | 2010-03-03 | 2013-08-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
WO2012064617A1 (en) | 2010-11-09 | 2012-05-18 | Aram Novikov | Multi-core electric machines |
US8888643B2 (en) | 2010-11-10 | 2014-11-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
AU2012240435B2 (en) | 2011-04-04 | 2016-04-28 | Fallbrook Intellectual Property Company Llc | Auxiliary power unit having a continuously variable transmission |
JP6175450B2 (en) | 2012-01-23 | 2017-08-02 | フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー | Infinitely variable transmission, continuously variable transmission, method, assembly, subassembly and components thereof |
KR102433297B1 (en) | 2013-04-19 | 2022-08-16 | 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 | Continuously variable transmission |
US10047861B2 (en) | 2016-01-15 | 2018-08-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
EP3430287B1 (en) | 2016-03-18 | 2020-12-23 | Fallbrook Intellectual Property Company LLC | Continuously variable transmissions systems and methods |
US10023266B2 (en) | 2016-05-11 | 2018-07-17 | Fallbrook Intellectual Property Company Llc | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions |
US11215268B2 (en) | 2018-11-06 | 2022-01-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
US11174922B2 (en) | 2019-02-26 | 2021-11-16 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5607372A (en) * | 1995-01-13 | 1997-03-04 | The Torax Company, Inc. | Co-axial drive for a toroidal drive type transmission |
US5980420A (en) * | 1997-03-22 | 1999-11-09 | Mazda Motor Corporation | Control system for toroidal type continuously variable transmission |
US6074324A (en) * | 1997-11-12 | 2000-06-13 | Nsk Ltd. | Toroidal type continuously variable transmission |
US6656080B2 (en) * | 2000-10-25 | 2003-12-02 | Nissan Motor Co., Ltd. | Cooling and lubricating mechanism of toroidal continuously variable transmission |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1026734A (en) * | 1964-01-01 | 1966-04-20 | Nat Res Dev | Improvements in or relating to continuously variable ratio transmission units |
JP2619497B2 (en) | 1988-09-29 | 1997-06-11 | 豊田工機株式会社 | Grinding device with end face measuring device |
JP2000104804A (en) | 1998-07-31 | 2000-04-11 | Mazda Motor Corp | Continuously variable transmission |
JP2000061702A (en) | 1998-08-26 | 2000-02-29 | Nippon Seiko Kk | End face machining method of disc for troidal type continuously variable transmission |
JP3783507B2 (en) * | 2000-02-16 | 2006-06-07 | 日本精工株式会社 | Machining method of toroidal type continuously variable transmission disk |
JP3997689B2 (en) * | 2000-06-07 | 2007-10-24 | 日本精工株式会社 | Half toroidal CVT disc grinding method |
-
2001
- 2001-11-22 JP JP2001357151A patent/JP3758151B2/en not_active Expired - Fee Related
-
2002
- 2002-11-21 US US10/300,894 patent/US20030096672A1/en not_active Abandoned
-
2006
- 2006-08-18 US US11/505,915 patent/US7699747B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5607372A (en) * | 1995-01-13 | 1997-03-04 | The Torax Company, Inc. | Co-axial drive for a toroidal drive type transmission |
US5980420A (en) * | 1997-03-22 | 1999-11-09 | Mazda Motor Corporation | Control system for toroidal type continuously variable transmission |
US6074324A (en) * | 1997-11-12 | 2000-06-13 | Nsk Ltd. | Toroidal type continuously variable transmission |
US6656080B2 (en) * | 2000-10-25 | 2003-12-02 | Nissan Motor Co., Ltd. | Cooling and lubricating mechanism of toroidal continuously variable transmission |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030181146A1 (en) * | 2000-02-16 | 2003-09-25 | Nsk Ltd. | Disc for toroidal type continuously variable transmission and working method therefor |
US6893376B2 (en) * | 2000-02-16 | 2005-05-17 | Nsk Ltd. | Disc for toroidal type continuously variable transmission and working method therefor |
US20170097073A1 (en) * | 2014-03-11 | 2017-04-06 | Nsk Ltd. | Toroidal continuously variable transmission |
US10487929B2 (en) * | 2014-03-11 | 2019-11-26 | Nsk Ltd. | Toroidal continuously variable transmission |
Also Published As
Publication number | Publication date |
---|---|
US20060276299A1 (en) | 2006-12-07 |
JP3758151B2 (en) | 2006-03-22 |
US7699747B2 (en) | 2010-04-20 |
JP2003156112A (en) | 2003-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7699747B2 (en) | Toroidal-type continuously variable transmission | |
JP3456267B2 (en) | Toroidal type continuously variable transmission | |
US4192154A (en) | Constant velocity universal joint | |
US5454277A (en) | Intermittent torque transmission device | |
JP5077834B2 (en) | Toroidal continuously variable transmission | |
KR20020029405A (en) | Method of manufacturing disk for variator | |
JP3849404B2 (en) | Loading cam plate for toroidal type continuously variable transmission | |
US7468015B2 (en) | Method for manufacturing a variator component of continuously variable transmission, and variator component of continuously variable transmission | |
JPH09324837A (en) | Worm gear reducer | |
US5669274A (en) | Method for forming cam face on structure member of loading cam device for toroidal-type continuously variable transmission | |
JPH01288625A (en) | Tripod type constant velocity joint | |
JP3768747B2 (en) | Planetary roller friction transmission and ring roller manufacturing method | |
US6374477B1 (en) | Method for working input shaft for toroidal-type continuously variable transmission | |
US20020025879A1 (en) | Trunnion for half-toroidal-type continuously variable transmission and method for working same | |
JP2004019874A (en) | Machining method of variator parts for toroidal type continuously variable transmission | |
JP2006029354A (en) | Toroidal continuously variable transmission | |
JP2863529B2 (en) | Rolling ball type transmission | |
JP2000220712A (en) | Toroidal type continuously variable transmission | |
JP2004190737A (en) | Toroidal continuously variable transmission | |
JP2017031994A (en) | Continuously variable transmission | |
JP2000199553A (en) | Disc and toroidal type continuously variable gear shifting device having the disc | |
JP2005076818A (en) | Loading cam mechanism for toroidal type continuously variable transmission | |
JP2013100842A (en) | Toroidal type continuously variable transmission and machining method for component thereof | |
JP2001317568A (en) | Power transmission device | |
JP2005030445A (en) | Toroidal-type continuously variable transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NSK LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMANISHI, TAKASHI;REEL/FRAME:013515/0837 Effective date: 20021118 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |