JP2000061702A - End face machining method of disc for troidal type continuously variable transmission - Google Patents

End face machining method of disc for troidal type continuously variable transmission

Info

Publication number
JP2000061702A
JP2000061702A JP10240719A JP24071998A JP2000061702A JP 2000061702 A JP2000061702 A JP 2000061702A JP 10240719 A JP10240719 A JP 10240719A JP 24071998 A JP24071998 A JP 24071998A JP 2000061702 A JP2000061702 A JP 2000061702A
Authority
JP
Japan
Prior art keywords
input side
face
disk
input
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10240719A
Other languages
Japanese (ja)
Inventor
Hideki Hashiya
秀樹 橋谷
Masami Tanaka
正美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP10240719A priority Critical patent/JP2000061702A/en
Publication of JP2000061702A publication Critical patent/JP2000061702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)
  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To dissolve high cost of end surface machining by machining both end faces in the axial direction of an input side disc or an output side disc to be a flat face by hard turning of a lathe. SOLUTION: When finish working is executed on both end faces in the axial direction of an input disc 2, the input side disc 2 is supported and fixed with the extreme end of the main spindle 16 of a lathe through a chuck 17 provided on the extreme end part. In this case, by running the outer end face of the input side disc extending over the whole circumference or partially in the circumferential direction against the extreme end part of the main spindle 16, the center axes of the input side disc 2 and the main spindle 16 are conformed to each other. Under this condition, while rotating the main spindle 16 and while abutting the cutting edge of a machining tool 18 such as a cutting tool against the inner end face 13 of the input side disc 2, this inner end face 13 is copyingly worked. As a result of this, the inner end face 13 can be flatly finished by hard turning.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明に係るトロイダル型
無段変速機用ディスクの端面加工方法は、例えば自動車
用変速機として利用されるトロイダル型無段変速機に組
み込む、入力側ディスク又は出力側ディスクの端面を平
坦面に加工する為に利用する。 【0002】 【従来の技術】例えば自動車用変速機として、図5に略
示する様な、トロイダル型無段変速機を使用する事が研
究されている。このトロイダル型無段変速機は、ハーフ
トロイダル型のもので、例えば実開昭62−71465
号公報に記載されている様に、入力軸1の端部に入力側
ディスク2を、出力軸3の端部に出力側ディスク4を、
それぞれ支持している。そして、これら両ディスク2、
4の中心軸と交差する事はないが、この中心軸の方向に
対して直角方向に存在する、図示しない枢軸を中心とし
て揺動するトラニオン20、20により、変位軸5、5
を、傾斜角度の調節を自在に設けている。そして、これ
ら各変位軸5、5に回転自在に支持したパワーローラ
6、6を、上記入力側、出力側両ディスク2、4の間に
挟持している。 【0003】入力側、出力側両ディスク2、4の互いに
対向する内側面2a、4aは、それぞれ断面が円弧形の
凹面とし、各パワーローラ6、6の周面6a、6aは、
球面状の凸面として、これら各パワーローラ6、6の周
面6a、6aと、上記内側面2a、4aとを当接させて
いる。又、上記入力軸1と入力側ディスク2との間に
は、この入力側ディスク2を出力側ディスク4に向け軸
方向に押圧しつつ回転させる、ローディングカム装置7
を設けている。 【0004】このローディングカム装置7は、上記入力
軸1に係合してこの入力軸1と共に回転するカム板8を
備える。このカム板8の片面(図5の右面)には第一の
カム面9を、円周方向に亙る凹凸として形成している。
又、上記入力側ディスク2の外側面(図5の左側面)に
第二のカム面10を、円周方向に亙る凹凸として形成し
ている。そして、この様な第二のカム面10と上記第一
のカム面9との間に複数個のころ12、12を、円輪状
の保持器11に転動自在に保持した状態で挟持してい
る。 【0005】上述の様に構成するトロイダル型無段変速
機の運転時には、上記入力軸1によりカム板8を回転さ
せると、上記第一のカム面9によって複数のころ12、
12が、第二のカム面10に押し付けられる。この結
果、上記入力側ディスク2が、上記出力側ディスク4に
向けて押圧され、両ディスク2、4の内側面2a、4a
と上記各パワーローラ6、6の周面6a、6aとが強く
当接する。又、各ころ12、12と第二のカム面10の
凸部との押圧に基づいて、上記入力側ディスク2が回転
する。そして、入力側ディスク2の回転が上記各パワー
ローラ6、6を介して出力側ディスク4に伝達され、こ
の出力側ディスク4を固定した出力軸3が、上記入力軸
1と逆方向に回転する。 【0006】この様にして入力軸1から出力軸3に回転
運動を伝達する場合に於いて、図5に示す様に、各パワ
ーローラ6、6の周面6a、6aが、入力側ディスク2
の内側面2aの外周寄り部分と、出力側ディスク4の内
側面4aの中心寄り部分とに、それぞれ当接する様に、
各変位軸5、5を傾斜させると、入力軸1と出力軸3と
の間で増速が行なわれる。反対に、各パワーローラ6、
6の周面6a、6aが、入力側ディスク2の内側面2a
の中心寄り部分と、出力側ディスク4の内側面4aの外
周寄り部分とに、それぞれ当接する様に、上記各変位軸
5、5を傾斜させると、入力軸1と出力軸3との間で減
速が行なわれる。これら各変位軸5、5の傾斜角度を中
間にすれば、入力軸1と出力軸3との間で、中間の変速
比を得る事ができる。 【0007】上述の様なトロイダル型無段変速機の入力
側ディスク2及び出力側ディスク4は、クロムモリブデ
ン鋼等、十分な強度並びに表面硬度を得られる金属材料
に、鍛造加工及び切削加工を順次施した後、熱処理を施
して表面硬度を高くする。次いで、内側面2a、4a並
びに軸方向両端面に研削加工を施して、この内側面2
a、4a及び軸方向両端面の形状及び寸法を適正に仕上
げる。このうちの軸方向両端面の研削加工は、従来、平
面研削盤或は円筒研削盤による平面研削加工、或は治具
研削盤による端面研削加工により行なっていた。 【0008】図6は、上述の様にして行なう、入力側デ
ィスク2(又は出力側ディスク4)の端面の加工部位を
示している。即ち、この入力側ディスク2の内側面2a
の内径側に位置する内端面13、この入力側ディスク2
の外側面の内径寄り部分に存在する外端面中央部14、
同じく外端面外周寄り部15を、上述の様な研削加工に
より平坦面に仕上げている。 【0009】 【発明が解決しようとする課題】上述の様にして行な
う、従来のトロイダル型無段変速機用ディスクの端面加
工方法の場合には、次の〜の様な、解決すべき問題
点があった。 内端面13と外端面との直径の差が大きく、そのま
までは研削盤のテーブルにしっかりと支持固定できな
い。この為、専用の取付治具が必要になり、コストが嵩
む。 外端面に互いに同心に設ける、外端面中央部14と
外端面外周寄り部15との間に段差δが存在する。この
為、凹んだ側の外端面中央部14を通常の平面研削で加
工する事は難しく、特殊な工具等を必要とする為、やは
りコストが嵩む。 切削加工後に施す熱処理に伴う変形量が大きく、研
削取代が多くなる為、研削加工では加工時間が長くな
り、やはりコストが嵩む原因となる。 本発明のトロイダル型無段変速機用ディスクの端面加工
方法は、この様な不都合を解消すべく、発明したもので
ある。 【0010】 【課題を解決する為の手段】本発明のトロイダル型無段
変速機用ディスクの端面加工方法は、互いに同心に、且
つ互いに独立した回転自在に支持された入力側、出力側
両ディスクと、これら両ディスクの間部分で、これら両
ディスクの中心軸と交差する事はないが、この中心軸の
方向に対して直角方向となる捻れの位置に存在する複数
本の枢軸と、これら各枢軸を中心として揺動する複数個
のトラニオンと、これら各トラニオンの内側面から突出
した変位軸と、これら各変位軸の周囲に回転自在に支持
された状態で、上記入力側、出力側両ディスクの内側面
同士の間に挟持された複数個のパワーローラとを備えた
トロイダル型無段変速機を構成する、上記入力側ディス
ク又は出力側ディスクの軸方向両端面を、旋盤によるハ
ードターニング加工により平坦面とする。 【0011】 【作用】上述の様に構成する本発明のトロイダル型無段
変速機用ディスクの端面加工方法によれば、入力側、出
力側両ディスクの軸方向両端面の仕上げ加工を、特にコ
ストのかかる治具等を使用する事なく、能率良く行なっ
て、これら入力側、出力側両ディスクを含むトロイダル
型無段変速機のコスト低減を図れる。即ち、 上記入力側、出力側両ディスクを旋盤の主軸の端部
に、チャックにより支持する事により、これら各ディス
クの軸方向両端面の加工を行なえるので、特に専用の治
具を用意する必要がない。 端面の一部で他の部分に比べて軸方向に凹んだ部分
の加工も、特に専用の工具を使用する事なく、容易に行
なえる。 旋盤によるハードターニング加工は、最大で1mm程
度の切り込み量を実現できるので、研削取代が多い場合
でも、加工時間を短くできる。 【0012】 【発明の実施の形態】図1〜2は、本発明の実施の形態
の第1例を示している。例えば入力側ディスク2(出力
側ディスク4の場合も同様)の軸方向両端面に仕上げ加
工を施す場合には、先ず、図1に示す様に、上記入力側
ディスク2を旋盤の主軸16の先端部に、この先端部に
設けたチャック17により支持固定する。この際、上記
入力側ディスク2の外端面を全周に亙り、或は周方向に
関して部分的に上記主軸16の先端部に突き当てる等に
より、これら入力側ディスク2と主軸16との中心軸同
士を一致させる。そして、この状態でこの主軸16を回
転させつつ、バイト等の切削工具18の刃先を、上記入
力側ディスク2の内端面13に突き当てつつ、この内端
面を倣う。この結果、この内端面13が、ハードターニ
ング加工により、平坦面に仕上がる。 【0013】上述の様にして上記入力側ディスク2の内
端面13を平坦面に仕上げたならば、次いで、図2に示
す様にこの入力側ディスク2を反転させて、上記主軸1
6の先端部に支持固定する。この際、既に仕上げ加工を
施してある、上記内端面13を、上記主軸16の先端面
に突き当てて、上記入力側ディスク2の外端面に仕上げ
加工を施す際の基準面として利用する。そして、この状
態でこの主軸16を回転させつつ、バイト等の切削工具
18の刃先を、上記入力側ディスク2の外端面中央部1
4及び外端面外周寄り部15に突き当てつつ、これら各
部14、15を倣う。この結果、これら外端面中央部1
4及び外端面外周寄り部15が、ハードターニング加工
により、平坦面に仕上がる。これら外端面中央部14と
外端面外周寄り部15との間に段差が存在した場合で
も、上記入力側ディスク2の軸方向に亙る上記切削工具
18の送り量を変えるのみで、特に面倒なく、上記外端
面中央部14及び外端面外周寄り部15の仕上げ加工を
行なえる。 【0014】次に、図3は、本発明の実施の形態の第2
例を示している。本例の場合には、旋盤の主軸16の先
端部に、端面を加工すべき入力側ディスク2を支持固定
するのに、ドローバー型のコレットチャック19を使用
している。即ち、このコレットチャック19を上記主軸
16の先端部に、この主軸16と同心に支持固定すると
共に、このコレットチャック19により上記入力側ディ
スク2を、内径側から抑え付けている。この様なドロー
バー型のコレットチャック19を使用する事により、加
工時に於ける上記入力側ディスク2の弾性変形を抑え
て、より高精度の仕上げ加工を行なえる様にしている。 【0015】即ち、上述した第1例の場合には、主軸1
6の先端部に入力側ディスク2を支持固定するのに、チ
ャック17(図1〜2)によりこの入力側ディスク2を
外径側から抑え付けている。この様にして入力側ディス
ク2を上記主軸16に支持固定した場合には、この入力
側ディスク2の弾性変形量が比較的多くなる。これに対
して、本例の様に、ドローバー型のコレットチャック1
9により上記入力側ディスク2を、内径側から抑え付け
れば、加工時に於ける上記入力側ディスク2の弾性変形
を抑えて、より高精度の仕上げ加工を行なえる。又、図
3に示した様に、入力側ディスク2の外端面に仕上げ加
工を施す状態で、既に仕上げ加工を施した内端面13
と、上記コレットチャック19との密着度を高くして、
この内端面13と、外端面中央部14及び外端面外周寄
り部15との平行度を高くできる。 【0016】尚、本発明のトロイダル型無段変速機用デ
ィスクの端面加工方法を実施する場合に、切削工具18
の刃先形状は特に問わないが、刃先の曲率半径を大きく
すれば、仕上げ加工すべき端面の粗さ並びに加工速度の
向上を図れる。即ち、図4(A)に示す様に、先端が尖
った(加工部である先端の曲率半径が小さい)切削工具
18aを使用する場合には、この切削工具18aの送り
速度を遅くしない限り、同図に示す様に、被加工面の粗
さが悪くなる。これに対して、図4(B)に示す様に、
先端が丸まった(加工部である先端の曲率半径が大き
い)切削工具18bを使用する場合には、この切削工具
18bの送り速度を(切削抵抗の面から許容される範囲
内で)特に遅くしなくても、同図に示す様に、被加工面
の粗さが向上する(より平滑な面になる)。 【0017】 【発明の効果】本発明のトロイダル型無段変速機用ディ
スクの端面加工方法は、以上に述べた通り構成され作用
するので、入力側、出力側両ディスクを含むトロイダル
型無段変速機のコストを低減して、トロイダル型無段変
速機の実用化に寄与できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing an end face of a disk for a toroidal type continuously variable transmission, for example, a toroidal type continuously variable transmission used as an automobile transmission. It is used for processing the end surface of the input disk or the output disk into a flat surface. 2. Description of the Related Art The use of a toroidal type continuously variable transmission as schematically shown in FIG. 5 has been studied, for example, as an automobile transmission. This toroidal-type continuously variable transmission is a half-toroidal type.
As described in Japanese Patent Application Laid-Open Publication No. H10-260, the input side disk 2 is provided at the end of the input shaft 1, the output side disk 4 is provided at the end of the output shaft 3,
We support each. And these two disks 2,
The trunnions 20, 20 that do not intersect with the center axis of the axis 4 but exist in the direction perpendicular to the direction of the center axis and swing about a pivot (not shown),
The inclination angle can be freely adjusted. The power rollers 6, 6 rotatably supported by the displacement shafts 5, 5 are sandwiched between the input side and output side disks 2, 4. The inner surfaces 2a and 4a of the input and output disks 2 and 4 facing each other are concave surfaces having an arc-shaped cross section, and the peripheral surfaces 6a and 6a of the power rollers 6 and 6 are
As a spherical convex surface, the peripheral surfaces 6a, 6a of these power rollers 6, 6 are in contact with the inner side surfaces 2a, 4a. A loading cam device 7 is provided between the input shaft 1 and the input side disk 2 to rotate the input side disk 2 while pressing the input side disk 2 toward the output side disk 4 in the axial direction.
Is provided. The loading cam device 7 includes a cam plate 8 which engages with the input shaft 1 and rotates together with the input shaft 1. On one surface (the right surface in FIG. 5) of the cam plate 8, a first cam surface 9 is formed as irregularities extending in the circumferential direction.
Further, a second cam surface 10 is formed on the outer side surface (the left side surface in FIG. 5) of the input side disk 2 as irregularities extending in the circumferential direction. A plurality of rollers 12, 12 are held between the second cam surface 10 and the first cam surface 9 in such a manner that the rollers 12, 12 are rotatably held by a ring-shaped retainer 11. I have. During operation of the toroidal type continuously variable transmission configured as described above, when the cam plate 8 is rotated by the input shaft 1, the plurality of rollers 12,
12 is pressed against the second cam surface 10. As a result, the input side disk 2 is pressed toward the output side disk 4, and the inner side surfaces 2a, 4a
And the peripheral surfaces 6a, 6a of the power rollers 6, 6 come into strong contact. Further, the input side disk 2 rotates based on the pressing between the rollers 12 and 12 and the convex portion of the second cam surface 10. Then, the rotation of the input-side disk 2 is transmitted to the output-side disk 4 via the power rollers 6, 6, and the output shaft 3 to which the output-side disk 4 is fixed rotates in the opposite direction to the input shaft 1. . In the case where the rotational motion is transmitted from the input shaft 1 to the output shaft 3 in this manner, as shown in FIG. 5, the peripheral surfaces 6a of the power rollers 6, 6
The inner side surface 2a of the output side disk 4 and the center side of the inner side surface 4a of the output side disk 4 are respectively brought into contact with each other.
When the displacement shafts 5 and 5 are tilted, the speed increase between the input shaft 1 and the output shaft 3 is performed. Conversely, each power roller 6,
6, the inner surface 2a of the input side disk 2
Of the input shaft 1 and the output shaft 3 by inclining the displacement shafts 5 and 5 so as to abut against the portion near the center of the output disk 4 and the portion near the outer periphery of the inner surface 4a of the output side disk 4 respectively. Deceleration is performed. By setting the inclination angles of the displacement shafts 5 and 5 at an intermediate value, an intermediate speed ratio can be obtained between the input shaft 1 and the output shaft 3. The input side disk 2 and the output side disk 4 of the toroidal type continuously variable transmission as described above are forged and cut in sequence from a metal material such as chromium molybdenum steel having sufficient strength and surface hardness. After the application, heat treatment is performed to increase the surface hardness. Next, the inner side surfaces 2a, 4a and both end surfaces in the axial direction are subjected to grinding processing to
a, 4a and the shape and dimensions of both end faces in the axial direction are properly finished. Conventionally, the grinding process on both end faces in the axial direction has been performed by surface grinding using a surface grinding machine or a cylindrical grinding machine, or end grinding using a jig grinding machine. FIG. 6 shows a processed portion of the end face of the input side disk 2 (or the output side disk 4) performed as described above. That is, the inner side surface 2a of the input side disk 2
The inner end face 13 located on the inner diameter side of the
An outer end surface central portion 14 existing in a portion of the outer surface near the inner diameter,
Similarly, the outer end surface outer peripheral portion 15 is finished to a flat surface by the above-described grinding. In the conventional method for processing the end face of a disk for a toroidal-type continuously variable transmission performed as described above, the following problems to be solved are to be solved. was there. The difference between the diameters of the inner end face 13 and the outer end face is so large that it cannot be firmly supported and fixed to the table of the grinding machine as it is. For this reason, a dedicated mounting jig is required, and the cost is increased. There is a step δ between the outer end surface center portion 14 and the outer end surface outer peripheral portion 15 provided concentrically on the outer end surface. For this reason, it is difficult to process the outer end surface central portion 14 on the concave side by ordinary surface grinding, and a special tool or the like is required, which also increases the cost. Since the amount of deformation accompanying the heat treatment performed after the cutting is large and the grinding allowance is increased, the processing time is long in the grinding, which also increases the cost. The end face machining method for a disk for a toroidal type continuously variable transmission according to the present invention has been invented in order to eliminate such disadvantages. An end face machining method for a disk for a toroidal type continuously variable transmission according to the present invention is directed to an input side disk and an output side disk supported concentrically and independently rotatably. And a plurality of pivots present at a twisted position which does not intersect with the central axes of the two disks at a portion between the two disks, but which is perpendicular to the direction of the central axis. A plurality of trunnions swinging about a pivot, a displacement shaft protruding from the inner surface of each of the trunnions, and both the input side and the output side discs rotatably supported around these displacement axes. The input side disk or the output side disk constitutes a toroidal-type continuously variable transmission having a plurality of power rollers sandwiched between inner side surfaces of the input side disk or the output side disk. A flat surface is formed by turning. According to the method for processing the end face of a disk for a toroidal type continuously variable transmission of the present invention having the structure described above, finishing both the axial end faces of both the input side and output side disks is particularly costly. It is possible to reduce the cost of the toroidal-type continuously variable transmission including both the input side and the output side disks by performing the operation efficiently without using such a jig or the like. That is, by supporting both the input-side and output-side discs at the ends of the main spindle of the lathe by means of chucks, it is possible to machine both end faces in the axial direction of these discs. There is no. Processing of a part of the end face that is recessed in the axial direction as compared with the other part can be easily performed without using a special tool. Hard turning with a lathe can achieve a cutting depth of about 1 mm at the maximum, so that the machining time can be shortened even when the grinding allowance is large. 1 and 2 show a first embodiment of the present invention. For example, when finishing both ends in the axial direction of the input-side disk 2 (the same applies to the output-side disk 4), first, as shown in FIG. Is supported and fixed to the portion by a chuck 17 provided at the distal end. At this time, the center axes of the input side disk 2 and the main shaft 16 are connected to each other by, for example, abutting the outer end surface of the input side disk 2 over the entire circumference or partially in the circumferential direction with the tip of the main shaft 16. To match. In this state, while rotating the main shaft 16, the cutting edge of the cutting tool 18 such as a cutting tool is abutted against the inner end surface 13 of the input side disk 2, and the inner end surface is copied. As a result, the inner end surface 13 is finished to a flat surface by hard turning. After the inner end surface 13 of the input side disk 2 is finished to a flat surface as described above, the input side disk 2 is then turned over as shown in FIG.
6 is supported and fixed. At this time, the inner end surface 13 which has already been finished is abutted against the front end surface of the main shaft 16 and is used as a reference surface when the outer end surface of the input side disk 2 is subjected to finish processing. Then, while rotating the main shaft 16 in this state, the cutting edge of the cutting tool 18 such as a cutting tool is moved to the center 1 of the outer end surface of the input side disk 2.
These parts 14 and 15 are copied while abutting against the outer end face outer peripheral part 15 and the outer end face 4. As a result, these outer end surface central portions 1
4 and the outer end surface outer peripheral portion 15 are finished to a flat surface by hard turning. Even when there is a step between the outer end face center portion 14 and the outer end face outer peripheral portion 15, only the feed amount of the cutting tool 18 in the axial direction of the input side disk 2 is changed, without any trouble. The finish processing of the outer end surface center portion 14 and the outer end surface outer peripheral portion 15 can be performed. FIG. 3 shows a second embodiment of the present invention.
An example is shown. In the case of this example, a drawbar-type collet chuck 19 is used to support and fix the input-side disk 2 whose end face is to be machined to the tip of the spindle 16 of the lathe. That is, the collet chuck 19 is supported and fixed to the tip of the main shaft 16 concentrically with the main shaft 16, and the collet chuck 19 holds down the input side disk 2 from the inner diameter side. By using such a drawbar type collet chuck 19, the elastic deformation of the input side disk 2 at the time of processing is suppressed, so that more accurate finishing can be performed. That is, in the case of the first example described above, the spindle 1
In order to support and fix the input side disk 2 at the tip of the input disk 6, the input side disk 2 is pressed down from the outer diameter side by a chuck 17 (FIGS. 1 and 2). When the input side disk 2 is supported and fixed to the main shaft 16 in this manner, the amount of elastic deformation of the input side disk 2 becomes relatively large. On the other hand, as in this example, the draw bar type collet chuck 1 is used.
If the input side disk 2 is pressed down from the inner diameter side by the step 9, elastic deformation of the input side disk 2 at the time of processing can be suppressed, and more accurate finishing can be performed. Further, as shown in FIG. 3, in the state where the outer end face of the input side disk 2 is subjected to the finish processing, the inner end face 13 which has already been subjected to the finish processing is provided.
And the degree of adhesion with the collet chuck 19 is increased,
The degree of parallelism between the inner end surface 13 and the outer end surface central portion 14 and the outer end surface outer peripheral portion 15 can be increased. When the method for processing the end face of a disk for a toroidal type continuously variable transmission according to the present invention is performed, the cutting tool 18 is used.
The shape of the cutting edge is not particularly limited, but if the radius of curvature of the cutting edge is increased, the roughness of the end face to be finished and the processing speed can be improved. That is, as shown in FIG. 4A, when using a cutting tool 18a having a sharp tip (the radius of curvature of the tip which is a processing portion is small), unless the feed speed of the cutting tool 18a is reduced, As shown in the figure, the roughness of the processed surface is deteriorated. On the other hand, as shown in FIG.
When using a cutting tool 18b with a rounded tip (the radius of curvature of the tip that is a processing portion is large), make the feed speed of the cutting tool 18b particularly slow (within a range allowed from the viewpoint of cutting resistance). Even if it is not provided, as shown in the figure, the roughness of the processed surface is improved (the surface becomes smoother). The method for machining an end face of a disk for a toroidal type continuously variable transmission according to the present invention is constructed and operates as described above. Therefore, the toroidal type continuously variable transmission including both the input side and the output side disks. The cost of the transmission can be reduced, and the toroidal type continuously variable transmission can be contributed to practical use.

【図面の簡単な説明】 【図1】本発明の実施の形態の第1例を示す、ディスク
の内端面に仕上げ加工を施す状態を示す部分切断平面
図。 【図2】同じく外端面に仕上げ加工を施す状態を示す部
分切断平面図。 【図3】本発明の実施の形態の第2例を示す、ディスク
の外端面に仕上げ加工を施す状態を示す部分切断平面
図。 【図4】切削工具の刃先形状と被加工面の性状との関係
の2例を示す部分平面図。 【図5】ディスクを組み込んだトロイダル型無段変速機
の基本構成を、最大増速時の状態で示す側面図。 【図6】端面に仕上げ加工を施すべきディスクのみを取
り出して示す断面図。 【符号の説明】 1 入力軸 2 入力側ディスク 2a 内側面 3 出力軸 4 出力側ディスク 4a 内側面 5 変位軸 6 パワーローラ 6a 周面 7 ローディングカム装置 8 カム板 9 第一のカム面 10 第二のカム面 11 保持器 12 ころ 13 内端面 14 外端面中央部 15 外端面外周寄り部 16 主軸 17 チャック 18、18a、18b 切削工具 19 コレットチャック 20 トラニオン
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cut-away plan view showing a first example of an embodiment of the present invention and showing a state in which finishing processing is performed on an inner end surface of a disk. FIG. 2 is a partially cut plan view showing a state in which the outer end face is subjected to finish processing. FIG. 3 is a partially cutaway plan view showing a state in which finishing processing is performed on the outer end surface of the disk, showing a second example of the embodiment of the present invention. FIG. 4 is a partial plan view showing two examples of the relationship between the shape of the cutting edge of a cutting tool and the properties of a surface to be processed. FIG. 5 is a side view showing the basic configuration of a toroidal-type continuously variable transmission incorporating a disk at the time of maximum speed increase. FIG. 6 is a cross-sectional view showing only a disk to be subjected to finish processing on an end face. [Description of Signs] 1 Input shaft 2 Input side disk 2a Inner surface 3 Output shaft 4 Output side disk 4a Inner surface 5 Displacement shaft 6 Power roller 6a Peripheral surface 7 Loading cam device 8 Cam plate 9 First cam surface 10 Second Cam surface 11 cage 12 roller 13 inner end surface 14 outer end surface central portion 15 outer end surface outer peripheral portion 16 main shaft 17 chucks 18, 18a, 18b cutting tool 19 collet chuck 20 trunnion

Claims (1)

【特許請求の範囲】 【請求項1】 互いに同心に、且つ互いに独立した回転
自在に支持された入力側、出力側両ディスクと、これら
両ディスクの間部分で、これら両ディスクの中心軸と交
差する事はないが、この中心軸の方向に対して直角方向
となる捻れの位置に存在する複数本の枢軸と、これら各
枢軸を中心として揺動する複数個のトラニオンと、これ
ら各トラニオンの内側面から突出した変位軸と、これら
各変位軸の周囲に回転自在に支持された状態で、上記入
力側、出力側両ディスクの内側面同士の間に挟持された
複数個のパワーローラとを備えたトロイダル型無段変速
機を構成する、上記入力側ディスク又は出力側ディスク
の軸方向両端面を、旋盤によるハードターニング加工に
より平坦面とする、トロイダル型無段変速機用ディスク
の端面加工方法。
Claims 1. An input-side and an output-side disk supported concentrically and independently rotatably, and intersects a central axis of the two disks at a portion between the two disks. Although there is no need to do so, a plurality of pivots present at a twist position perpendicular to the direction of the central axis, a plurality of trunnions swinging about these respective pivots, and Displacement shafts protruding from the side surfaces, and a plurality of power rollers sandwiched between inner surfaces of the input side and output side disks while being rotatably supported around the respective displacement shafts. A disk for a toroidal type continuously variable transmission, wherein both end faces in the axial direction of the input side disk or the output side disk constituting the toroidal type continuously variable transmission are flattened by hard turning using a lathe. The end face processing method.
JP10240719A 1998-08-26 1998-08-26 End face machining method of disc for troidal type continuously variable transmission Pending JP2000061702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240719A JP2000061702A (en) 1998-08-26 1998-08-26 End face machining method of disc for troidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240719A JP2000061702A (en) 1998-08-26 1998-08-26 End face machining method of disc for troidal type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2000061702A true JP2000061702A (en) 2000-02-29

Family

ID=17063693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240719A Pending JP2000061702A (en) 1998-08-26 1998-08-26 End face machining method of disc for troidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2000061702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004165A1 (en) * 2000-07-11 2002-01-17 Koyo Seiko Co., Ltd. Method of manufacturing disk for variator
JP2004092650A (en) * 2002-09-03 2004-03-25 Nuovo Pignone Holding Spa Improved method of manufacturing rotor of centrifugal compressor
US7468015B2 (en) 2003-08-11 2008-12-23 Nsk Ltd. Method for manufacturing a variator component of continuously variable transmission, and variator component of continuously variable transmission
US7699747B2 (en) 2001-11-22 2010-04-20 Nsk Ltd. Toroidal-type continuously variable transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004165A1 (en) * 2000-07-11 2002-01-17 Koyo Seiko Co., Ltd. Method of manufacturing disk for variator
US6637107B2 (en) 2000-07-11 2003-10-28 Koyo Seiko Co., Ltd. Method of manufacturing disk for variator
US7699747B2 (en) 2001-11-22 2010-04-20 Nsk Ltd. Toroidal-type continuously variable transmission
JP2004092650A (en) * 2002-09-03 2004-03-25 Nuovo Pignone Holding Spa Improved method of manufacturing rotor of centrifugal compressor
JP2010230012A (en) * 2002-09-03 2010-10-14 Nuovo Pignone Holding Spa Manufacturing method for improved rotor of centrifugal compressor
US7468015B2 (en) 2003-08-11 2008-12-23 Nsk Ltd. Method for manufacturing a variator component of continuously variable transmission, and variator component of continuously variable transmission

Similar Documents

Publication Publication Date Title
JP3758151B2 (en) Toroidal continuously variable transmission
US7118462B2 (en) Disk for toroidal continuously variable transmission and method of machining the same
US7857682B2 (en) Process of and device for machining ball hubs
JP2000061702A (en) End face machining method of disc for troidal type continuously variable transmission
JP2001336593A (en) Loading cam plate for toroidal type continuously variable transmission
JP3783507B2 (en) Machining method of toroidal type continuously variable transmission disk
US7468015B2 (en) Method for manufacturing a variator component of continuously variable transmission, and variator component of continuously variable transmission
JP3395434B2 (en) Toroidal type continuously variable transmission
JP2013035075A (en) Trunnion of toroidal continuously variable transmission and method of machining the same
JPH0861452A (en) Method for forming cam face on member constituting loading cam device for toroidal continuously variable transmission
JP2908996B2 (en) Spherical finishing method and apparatus
JP3760762B2 (en) Burnishing device and burnishing method
JP3851094B2 (en) Toroidal-type continuously variable transmission and processing method of roller used therefor
JP4178220B2 (en) Manufacturing method of disc for variator of full toroidal type continuously variable transmission
JP2004034229A (en) Disk working method of toroidal-type continuously variable transmission
JPS63212454A (en) Spherical face honing method
JP2000202710A (en) Machining method and device for cam face of loading cam mechanism
JP2000061790A (en) Machining method of cam surface of loading cam device and machining device
JP3930296B2 (en) Method for manufacturing disc for variator
JP2000337467A (en) Working method of input shaft for toroidal continuously variable transmission
JP3324669B2 (en) Work holding method and work holding jig
US4358973A (en) Work clamping fixture
JP4569060B2 (en) Trunnion for half toroidal type continuously variable transmission
JP5381797B2 (en) Manufacturing method of toroidal type continuously variable transmission
JP3899742B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322