JP2004092650A - Improved method of manufacturing rotor of centrifugal compressor - Google Patents

Improved method of manufacturing rotor of centrifugal compressor Download PDF

Info

Publication number
JP2004092650A
JP2004092650A JP2003309547A JP2003309547A JP2004092650A JP 2004092650 A JP2004092650 A JP 2004092650A JP 2003309547 A JP2003309547 A JP 2003309547A JP 2003309547 A JP2003309547 A JP 2003309547A JP 2004092650 A JP2004092650 A JP 2004092650A
Authority
JP
Japan
Prior art keywords
tool
rotor
machining
disc
improved method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003309547A
Other languages
Japanese (ja)
Other versions
JP2004092650A5 (en
Inventor
Paolo Mola
パオロ・モラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuovo Pignone Holding SpA
Nuovo Pignone SpA
Original Assignee
Nuovo Pignone Holding SpA
Nuovo Pignone SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuovo Pignone Holding SpA, Nuovo Pignone SpA filed Critical Nuovo Pignone Holding SpA
Publication of JP2004092650A publication Critical patent/JP2004092650A/en
Publication of JP2004092650A5 publication Critical patent/JP2004092650A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/16Working surfaces curved in two directions
    • B23C3/18Working surfaces curved in two directions for shaping screw-propellers, turbine blades, or impellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/14Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49243Centrifugal type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49329Centrifugal blower or fan
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a rotor (10) of a centrifugal compressor produced from an integral structured disk at low cost, allowing obtaining the optimal dimensional accuracy meeting a corresponding expectation value. <P>SOLUTION: A disk has a radial cavity (12) formed within a rotor (10) by processing the disk in a radial direction in a manner to remove chip using at least a tool (29) of a value-controlling device. Since there is no distortion caused by welding, the optimal dimensional accuracy meeting design requirements can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、遠心圧縮機のロータの改良された製造方法に関する。 The present invention relates to an improved method for manufacturing a rotor of a centrifugal compressor.

 遠心圧縮機という用語は、通常、1つ又は複数のロータ或いはインペラを用いて流体に圧力の変化に必要なエネルギーを与えることによって、圧縮性流体を該流体が受けられた時の圧力よりも大きい圧力で戻す機械を定義するものである。 The term centrifugal compressor typically uses one or more rotors or impellers to impart the necessary energy to the fluid to change the pressure, so that the compressive fluid is greater than the pressure at which the fluid was received. It defines a machine that returns with pressure.

 各ロータは、該ロータの中心に向かって集束する一定数の通路を形成するように半径方向に配置された一定数のブレードを含む。 Each rotor includes a number of blades arranged radially to form a number of passages converging towards the center of the rotor;

 遠心圧縮機、特に高圧タイプの遠心圧縮機は、通常、公知の方法で三次元的に試験されるロータを備える。 Centrifugal compressors, especially high pressure type centrifugal compressors, usually have a rotor which is three-dimensionally tested in a known manner.

 より具体的には、遠心圧縮機用のこれらロータの主要部品は、ハブ、シュラウド及びブレードである。 More specifically, the main components of these rotors for centrifugal compressors are hubs, shrouds and blades.

 ガスが高濃度であるために、圧縮機、特に高圧タイプの圧縮機の技術分野における真に重要な問題は、ロータの安定性を保証する問題である。 Due to the high concentration of gas, a truly important problem in the technical field of compressors, especially high-pressure type compressors, is to ensure the stability of the rotor.

 ガスの濃度に比例し、かつガスのラビリンスにより生じる合成力は、ロータに有害な影響を与える容認できない分数調波振動を引き起こす可能性がある。 合成 The resultant force, which is proportional to the concentration of the gas and is generated by the labyrinth of the gas, can cause unacceptable subharmonic oscillations that have a detrimental effect on the rotor.

 事実、これらの力に対するロータの感度は、ロータの可撓性と共に多かれ少なかれ比例的に増大する。 In fact, the sensitivity of the rotor to these forces increases more or less proportionally with the flexibility of the rotor.

 その上に、ロータの全体的な動的性能は、このタイプの用途にとっては特に重要であり、同一作動条件(つまり、同じ軸受、同じ温度、同じガス圧力等をもつ)にあるロータの剛性を増大させるための最も簡単な方法は、大きい直径を有するシャフトを用いる方法である。 In addition, the overall dynamic performance of the rotor is particularly important for this type of application, as it increases the stiffness of the rotor under the same operating conditions (ie, having the same bearing, the same temperature, the same gas pressure, etc.). The simplest way to increase is to use a shaft with a large diameter.

 従って、公知技術においては、シャフト及びハブの両方の直径を増大させて、外乱に対する剛性及び非感受性を増大させるようにし、従って、遠心圧縮機の高圧における特有の回転力学的性能を増強するようにされてきた。 Accordingly, in the prior art, the diameter of both the shaft and the hub is increased to increase stiffness and insensitivity to disturbances, and thus to enhance the inherent rotational dynamic performance of the centrifugal compressor at high pressure. It has been.

 従って、スペーサーが排除されたので、シャフト上に空気力学的通路が直接得られる。 Thus, the aerodynamic passage is obtained directly on the shaft, since the spacer has been eliminated.

 より具体的には、2つのリングが軸方向位置を保つようにされ、前方のリングは二部品からなり、後方のリングは単一部品からなる。さらに、高レベルの硬度を有する材料の被覆がシャフトを保護する。 More specifically, the two rings are kept axially positioned, the front ring is made of two parts and the rear ring is made of a single part. In addition, a coating of a material having a high level of hardness protects the shaft.

 これらの特徴は、空気力学的通路が変更されないことを保証し、またこの構成がシャフトの剛性を増大させるのに特に有効であることを意味する。しかしながら、これらの変更は、遠心圧縮機用のこれらロータの製造に対して異なる技術を考慮に入れなければならないことを意味する。 These features ensure that the aerodynamic passage is not altered and also mean that this arrangement is particularly effective in increasing the stiffness of the shaft. However, these changes mean that different techniques have to be taken into account for the manufacture of these rotors for centrifugal compressors.

 公知技術を具体的に参照すると、従来の方法ではブレードはハブをミル加工することによって得られ、続いて部品を結合するために溶接が開口の内部から行なわれることに注目すべきである。 With specific reference to the prior art, it should be noted that in conventional methods, the blade is obtained by milling the hub, followed by welding from inside the opening to join the parts.

 低流量係数を有するロータに対しては、別の技術が用いられるが、その場合、開口があまりにも狭いので内部から溶接を行なうことができない。この技術では、2つの部品はシュラウド側から溶接される。 Another technique is used for rotors with low flow coefficients, but in that case the opening is too narrow to allow welding from within. In this technique, the two parts are welded from the shroud side.

 従って、溶接を行なった後に、形成された残留張力を減らすために用いられる熱処理を更に行なうことが必要になることが分かるであろう。 It will therefore be seen that after the welding has been performed, it is necessary to perform further heat treatments used to reduce the residual tension formed.

 従って、本発明の目的は、前述の技術を改良することであり、特に、対応する期待値と一致する最適の寸法精度を得ることを可能にする、遠心圧縮機のロータの改良された製造方法を提示することである。 It is therefore an object of the present invention to improve the above-mentioned technique, in particular an improved method of manufacturing a rotor of a centrifugal compressor, which makes it possible to obtain an optimum dimensional accuracy consistent with the corresponding expected values. It is to present.

 本発明の別の目的は、高レベルの構造的強度を有するインペラを得ることを可能にする、遠心圧縮機のロータの改良された製造方法を提示することである。 Another object of the present invention is to provide an improved method of manufacturing a rotor of a centrifugal compressor, which makes it possible to obtain an impeller having a high level of structural strength.

 本発明の別の目的は、特に信頼性があり、簡単かつ機能的であり、しかも公知技術のコストに比較して低コストである、遠心圧縮機のロータの改良された製造方法を提示することである。 It is another object of the present invention to provide an improved method of manufacturing a rotor of a centrifugal compressor, which is particularly reliable, simple and functional, and at a low cost compared to the costs of the known art. It is.

 本発明によるこれらの目的及び他の目的は、請求項1に記載したような、遠心圧縮機のロータの改良された製造方法を提示することにより達成される。 These and other objects according to the present invention are achieved by providing an improved method of manufacturing a rotor of a centrifugal compressor as claimed in claim 1.

 遠心圧縮機のロータの改良された製造方法の更なる特徴は、後続の請求項に記載されている。 Additional features of the improved method of manufacturing a rotor of a centrifugal compressor are set forth in the following claims.

 遠心圧縮機のロータの本発明による改良された製造方法により、構造的な切れ目がないロータが得られる利点がある。 Advantageously, the improved method of manufacturing the rotor of a centrifugal compressor according to the invention results in a rotor with no structural breaks.

 更に、非常に優れた機械的特性を有するロータを製造することが可能になる。 Furthermore, it becomes possible to manufacture a rotor having very good mechanical properties.

 空気力学的表面の加工は、自動加工により、従っていかなる手動による介入も回避して行なわれる利点がある。 The machining of aerodynamic surfaces has the advantage that it is performed by automatic machining and thus avoids any manual intervention.

 更に、遠心圧縮機のロータの本発明による改良された製造方法によると、溶接により生じる歪みも無いために、設計要件に応じた最適の寸法精度が得られる。 Furthermore, according to the improved manufacturing method of the rotor of the centrifugal compressor according to the present invention, since there is no distortion caused by welding, an optimum dimensional accuracy according to design requirements can be obtained.

 得られた表面品質は、非常に良好であり、事実上欠陥が全く無く、しかも最適の空気力学的効率を有する。 表面 The surface quality obtained is very good, virtually free of defects and has optimal aerodynamic efficiency.

 溶接作業を排除することによって、インペラを製造するために必要なサイクル時間の最大70%までの節減が得られる。 Eliminating welding operations can save up to 70% of the cycle time required to manufacture the impeller.

 より規則正しい表面が得られる結果として、釣合わせ作業が容易になることに注目されたい。 Note that a more regular surface results in easier balancing.

 これらの利点のすべては、ガスの高圧かつ高濃度のために、有害な周期的な力が生じる可能性がある高圧再噴射機械において特に顕著である。本発明による方法を用いることによって、ロータの内部にもはや冶金学的な途切れは無く、このことによりこれらの力の決定的な減少をもたらす。 All of these advantages are particularly pronounced in high pressure re-injection machines where detrimental periodic forces can occur due to the high pressure and concentration of gas. By using the method according to the invention, there is no longer any metallurgical interruption in the interior of the rotor, which leads to a decisive reduction of these forces.

 結局、公知技術で用いられる溶接は、特に低い流量率を有するインペラの場合においてロータブレードの幅の5%又はそれ以上の変動をもたらす歪みを生じる。これに反して、本発明による方法によると、1%又は2%の加工精度が保証される。 Ultimately, the welding used in the prior art produces distortions that result in variations of 5% or more in the width of the rotor blades, especially in the case of impellers with low flow rates. In contrast, the method according to the invention guarantees a processing accuracy of 1% or 2%.

 遠心圧縮機のロータの本発明による改良された製造方法の特徴及び利点は、添付の概略図を参照して非限定的な実施例によってなされる以下の説明からより鮮明になりかつより明らかになるであろう。 The features and advantages of the improved method of manufacturing a rotor of a centrifugal compressor according to the present invention will become more clear and more apparent from the following description made by way of non-limiting example with reference to the accompanying schematic drawings. Will.

 ここで本発明による方法を、関連する図を具体的に参照して説明する。 The method according to the invention will now be described with specific reference to the relevant figures.

 全体を符号10で示すロータを本発明の方法により製造するためには、出発点は、通常スチールで作られた一体構造ディスクである。 To manufacture a rotor, generally designated 10, by the method of the present invention, the starting point is a monolithic disc, usually made of steel.

 次に、数値制御機械を用いて処理が行なわれる。 Next, processing is performed using a numerical control machine.

 近年、複数の制御された軸を有するこれらの機械に用いられる工具は、金属材料を除去する能力を著しく増強することが可能になってきており、更にそれら機械は、様々な種類の加工を行なうことができるという事実のために設定時間を減少させる。その上に、これらの最近の工具により、特に複雑な形態の加工が可能である。 In recent years, the tools used on these machines with multiple controlled axes have been able to significantly enhance their ability to remove metallic materials, and they also perform various types of machining. Reduce the set time due to the fact that you can. In addition, these modern tools allow machining of particularly complex forms.

 例えば、最新の制御ソフトウェアの開発の結果として、過去には3つの異なる設定が必要であったが、最近までは3つの別々の工具が必要であったという事実を考慮することなく、一部の工具では、単一設定により被加工物をミル加工し、折り曲げ加工し、かつ穿孔加工することができる。 For example, some did not take into account the fact that in the past three different settings were required as a result of the development of modern control software, but until recently three separate tools were required. With a tool, the workpiece can be milled, bent and drilled with a single setting.

 図1は、一体構造ディスクが、外径から開始して空洞の外側部分が形成されるまで、工具20により半径方向に加工される方法を示す。 FIG. 1 shows how a monolithic disc is machined radially by a tool 20 starting from the outer diameter and forming the outer part of the cavity.

 工具20は、連続したテラス成形加工をしながら前進し、該工具が一体構造ディスクの円形リングの全幅に対して中間深さに到達するまで、加工する。 The tool 20 advances while performing a continuous terrace forming process, and processes until the tool reaches an intermediate depth with respect to the full width of the circular ring of the monolithic disc.

 図2は、一体構造ディスクが、内径から開始して、工具20により半径方向に加工される方法を示す。 FIG. 2 shows how the monolithic disc is machined radially by the tool 20, starting from the inner diameter.

 工具20は、連続するテラス加工をしながら前進し、既に形成された外側空洞に到達し、従って必要とする半径方向の空洞12を形成するまで、加工する。 The tool 20 moves forward with continuous terrace machining until it reaches the already formed outer cavity and thus forms the required radial cavity 12.

 図3及び図4は、このタイプの半径方向空洞12を形成している工具20を示す。 FIGS. 3 and 4 show a tool 20 forming a radial cavity 12 of this type.

 本発明はまた、最初に内側から加工され、次に外側から加工される一体構造ディスクに関するものであることは明らかである。1つ又はそれ以上の数値制御機械の2つの制御された軸に配置された2つの工具を用いて、2つの加工作業が同時に行なわれるようなケースも少なくない。 It is clear that the invention also relates to a monolithic disc which is first machined from the inside and then machined from the outside. In many cases, two machining operations are performed simultaneously using two tools located on two controlled axes of one or more numerically controlled machines.

 各半径方向空洞12の成形は、2つの別個の段階で行なわれ、第1の段階は外径から開始され、ディスクの内部で到達することができる最も遠い位置まで前進し、また第2の段階は、内径から、すなわち、ロータ10の取入口縁部近傍の区域から開始され、外側に向かって進む加工により、形成しようとするダクトを完成させるのが好都合であることを強調しておく。 The shaping of each radial cavity 12 takes place in two separate stages, the first stage starting from the outer diameter and progressing to the furthest position that can be reached inside the disc, and the second stage It is emphasized that it is advantageous to complete the duct to be formed by machining starting from the inner diameter, i.e. from the area near the inlet edge of the rotor 10, and proceeding outward.

 前記2つの段階の前に、加工の実現可能性を判断するために予備段階が行なわれることに注目することも有用である。換言すれば、2つの段階が重ね合わされることになるかどうかと必要な工具20が利用できるかどうかとを確認する(工具の寸法を評価することによって判断される)ことができなければならない。 It is also useful to note that prior to the two steps, a preliminary step is performed to determine the feasibility of the machining. In other words, it must be possible to determine whether the two stages will be superimposed and whether the required tool 20 is available (determined by evaluating the dimensions of the tool).

 これらの状態の1つ又は両方が存在しない場合には、異常が示されて、これによって加工計画が中断される。 If one or both of these conditions do not exist, an anomaly is indicated, which interrupts the machining plan.

 こういうわけで、最も短いものから開始して加工時に1つより多い工具20の組立体を使用することを可能にしなければならないが、この最も短いものもまた、利用できる工具20の組の範囲内に入れられる第1の工具となることになる。 Thus, it must be possible to use more than one assembly of tools 20 during machining, starting from the shortest, but this shortest also falls within the available set of tools 20. Will be the first tool to be inserted into the tool.

 用いられることになる工具20の直径は、ブレード基部の接合部における半径に応じて選定されなければならない。 The diameter of the tool 20 to be used must be chosen according to the radius at the joint of the blade base.

 削り屑を除去する技術は、ポケット(中心から開始して外径に向かって連続し、行なわれる加工に基づいた)という名称で知られている種類の技術であり、連続したテラス成形加工によって得られる深さを有し、その深さの程度は選択される工具20に対応しかつ得られる仕上げのレベルに対応するものでなければならない。こういう理由で、準備の段階の間に、これらのデータが変数として入力されることが行なわれる。 The technique of removing shavings is a technique of the kind known as pockets (based on the processing performed, starting from the center and continuing toward the outer diameter) and is obtained by a continuous terrace forming operation. The depth must be such that it corresponds to the tool 20 selected and to the level of finish obtained. For this reason, during the preparation phase, these data are entered as variables.

 最大深さが得られるまで工具20の軸の単一傾斜を用いて、また工具20の設計によるアンダカットにより加工する可能性も用いて、行なわれなければならない第1の段階のいわゆるポケット形成の後に、工具20に異なる傾斜を取らせるコマンドが軸に伝達されなければならない。 With a single inclination of the axis of the tool 20 until the maximum depth is obtained, and also with the possibility of machining by undercut by the design of the tool 20, the first stage of so-called pocketing must be performed. Later, a command that causes the tool 20 to assume a different tilt must be transmitted to the axis.

 この方法により、より大きい深さを得ることが可能になる。 方法 This method makes it possible to obtain a greater depth.

 この傾斜の増大は、5つの制御された軸を有する数値制御機械によって実施されるのが有利である。 Advantageously, this increase in tilt is performed by a numerically controlled machine having five controlled axes.

 空洞を完成させるために幾つかの再配置加工が必要である場合には、加工は、可能な最大深さに到達するまで連続して実行される。 幾 つ か If several repositioning operations are required to complete the cavity, the operations are performed continuously until the maximum possible depth is reached.

 仕上げ面と外部輪郭により構成される寸法との干渉を防止するために、工具20の全体寸法を考慮に入れなければならない。工具ホルダの全体寸法もまた、該工具ホルダがいかなる表面とも衝突しないことを保証するために、点検されなければならない。 The overall dimensions of the tool 20 must be taken into account in order to prevent interference between the finished surface and the dimensions constituted by the outer contour. The overall dimensions of the tool holder must also be checked to ensure that the tool holder does not collide with any surface.

 この目的のために、加工が外部から行なわれている段階においては、ほとんどの場合、工具20の軸の振動が負の方向に常に起こることになるので、考慮すべき寸法のうちでもマンドレル支持体及び回転テーブルの寸法を考慮に入れなければなない。 For this purpose, in most cases where the machining is being carried out externally, the vibration of the axis of the tool 20 will always occur in the negative direction, so that the mandrel support, even within the dimensions considered, And the dimensions of the turntable must be taken into account.

 この方法には、全て公知のタイプである工具20が用いられることに注目されたい。 注目 Note that this method uses a tool 20 of all known types.

 削り屑を除去する加工が行なわれた後に、インペラは熱処理を施されることができ、次いで、ロータの寸法検査、釣合い検査、及び動的検査の段階が行なわれることになることが分かるであろう。 It can be seen that after processing to remove the swarf has been performed, the impeller can be heat treated, and then the steps of rotor dimensional inspection, balance inspection, and dynamic inspection will be performed. Would.

 以上に述べた説明により、遠心圧縮機のロータの本発明による改良された製造方法の特徴を明らかにし、また対応する利点を明らかにした。 The foregoing description has characterized the improved method of manufacturing a rotor of a centrifugal compressor according to the present invention and has identified corresponding advantages.

 それらの利点をより正確かつ明確に記載するために、ここで以下の結びの考慮事項及びコメントを行なう。 The following closing considerations and comments are now provided to more accurately and clearly state their benefits.

 第一に、本発明による方法においては、ロータ上に構造的切れ目が全くないということが分かる。 Firstly, it can be seen that in the method according to the invention there are no structural cuts on the rotor.

 その上に、次ぎのことを思い出されたい。 上 On top of that, please remember the following:

 ・ロータの機械的特性が非常に優れている。 ・ The mechanical properties of the rotor are very good.

 ・自動加工により、従っていかなる手動による介入をも回避して、空気力学的表面を加工することができる。 The aerodynamic surface can be machined by automatic machining, thus avoiding any manual intervention.

 ・溶接により生じる歪みがないためにもより、設計要件に応じた最適の寸法精度となる。 ・ Because there is no distortion caused by welding, the optimum dimensional accuracy is obtained according to the design requirements.

 ・表面品質は極めて良好であり、事実上欠陥が全く無く、しかも最適の空気力学的効率を有する。 The surface quality is extremely good, virtually free of defects and has optimal aerodynamic efficiency.

 ・溶接作業を排除することにより、インペラの製造のためのサイクル時間を最大70%まで削減する。 Reduce cycle time for impeller manufacturing by up to 70% by eliminating welding operations.

 ・より規則正しい表面が得られるので釣合わせ作業が容易になる。 ・ Because a more regular surface is obtained, the balancing work becomes easier.

 これらの利点の全ては、高圧再噴射機械において特に重要である。 All of these benefits are particularly important in high pressure re-injection machines.

 実際に、これらの機械内で生じるガスの高い圧力及び高い濃度は、空気力学的領域、特に排出流路内の不釣合いに関連する圧力パルスを発生させる可能性があり、これらのパルスにより、有害な周期的な力が発生する。 In fact, the high pressures and concentrations of gas generated in these machines can generate pressure pulses related to imbalance in the aerodynamic region, especially in the exhaust flow path, and these pulses can cause harmful effects. Periodic force is generated.

 本発明による方法を用いることにより、ロータの内部にもはや冶金学的途切れはなく、これは、明らかにこの種の問題を排除するのに大きな進歩である。 By using the method according to the invention, there is no longer any metallurgical break inside the rotor, which is a significant advance in eliminating this kind of problem.

 その上に、公知技術で用いられる溶接は、特に低い流量率を有するインペラの場合においてロータブレードの幅の5%又はそれ以上の変動をもたらす可能性がある歪みを生じる。
これに反して、本発明による方法によると、1%又は2%の加工精度が保証され、このことが、計画された性能レベルと達成された性能レベルとの最適な一致を可能にする。
Moreover, the welding used in the prior art produces distortions which can lead to fluctuations of the rotor blade width of 5% or more, especially in the case of impellers having low flow rates.
In contrast, the method according to the invention guarantees a processing accuracy of 1% or 2%, which allows an optimal match between the planned performance level and the achieved performance level.

 最後に、本発明思想に固有である新規性の原則から逸脱することなく、遠心圧縮機のロータの、本発明の主題である改良された製造方法に対して多くの他の変更を行なうことができることは明らかである。 Finally, many other modifications may be made to the improved method of manufacturing the rotor of a centrifugal compressor without departing from the principles of novelty inherent in the inventive concept. Clearly what you can do.

 本発明の実用的な実施においては、必要に応じて、任意の材料、寸法及び形態を用いることができ、また技術的に等価である他のもので置き換えることができることも明らかである。 It is clear that in practical implementations of the invention, any materials, dimensions and forms can be used, if necessary, and can be replaced by others which are technically equivalent.

 なお、特許請求の範囲に記載された符号は、理解容易のためであってなんら発明の技術的範囲を実施例に限縮するものではない。 The reference numerals described in the claims are for easy understanding and do not limit the technical scope of the invention to the embodiments.

本発明の方法によりロータ自体の外径から開始して加工をしている工具を示す、遠心圧縮機のロータの斜視図。1 is a perspective view of a rotor of a centrifugal compressor, showing a tool working from the outer diameter of the rotor itself according to the method of the invention. 本発明の方法によりロータ自体の内径から開始して加工をしている工具を示す、遠心圧縮機のロータの斜視図。1 is a perspective view of a rotor of a centrifugal compressor, showing a tool working from the inner diameter of the rotor itself according to the method of the invention. 本発明の方法によりロータ自体の内径及び外径から開始して加工をしている工具を示す、ロータの一部の平面断面図。FIG. 4 is a cross-sectional plan view of a portion of a rotor showing a tool working from the inner and outer diameters of the rotor itself in accordance with the method of the present invention. 本発明の方法によりロータ自体の上部平面及び外径から開始して加工をしている工具を示す、ロータの一部の側面断面図。FIG. 4 is a side cross-sectional view of a portion of a rotor showing a tool working from the top plane and the outer diameter of the rotor itself in accordance with the method of the present invention.

符号の説明Explanation of reference numerals

 10 ロータ
 12 半径方向空洞
 20 工具
DESCRIPTION OF SYMBOLS 10 Rotor 12 Radial cavity 20 Tool

Claims (21)

一体構造ディスクから製造された、遠心圧縮機のロータ(10)の改良された製造方法であって、前記ディスクを、数値制御機械の少なくとも1つの工具(20)により、切り屑を除去するように半径方向に加工して、前記ロータ(10)内に半径方向空洞(12)を形成することを特徴とする改良方法。 An improved method of manufacturing a rotor (10) of a centrifugal compressor manufactured from a monolithic disc, the disc being removed by at least one tool (20) of a numerical control machine. An improved method characterized by processing radially to form a radial cavity (12) in the rotor (10). 第1の工具(20)が、前記ディスクの外径から開始して、前記半径方向空洞(12)の外側部分が形成されるまで加工することを特徴とする、請求項1に記載の改良方法。 Method according to claim 1, characterized in that the first tool (20) works starting from the outer diameter of the disc until the outer part of the radial cavity (12) is formed. . 前記第1の工具(20)が、連続したテラス成形加工をしながら前進し、前記一体構造ディスクの円形リングの全幅に対して中間深さに到達するまで加工することを特徴とする、請求項2に記載の改良方法。 The first tool (20) is advanced with a continuous terrace forming operation and works until reaching an intermediate depth with respect to the full width of the circular ring of the monolithic disc. 3. The improved method according to 2. 第2の工具(20)が、前記ディスクの内径から開始して、該第2の工具が前記外側空洞に到達し、従って前記半径方向空洞(12)を完成するまで、加工することを特徴とする、請求項3に記載の改良方法。 Starting from the inner diameter of the disk, machining a second tool (20) until the second tool reaches the outer cavity and thus completes the radial cavity (12). 4. The method of claim 3, wherein 前記第1の工具(20)及び前記第2の工具(20)が、前記数値制御機械の同一工具(20)であることを特徴とする、請求項4に記載の改良方法。 Method according to claim 4, characterized in that the first tool (20) and the second tool (20) are identical tools (20) of the numerical control machine. 前記第1の工具(20)及び前記第2の工具(20)は、それら工具(20)が少なくとも1つの数値制御機械により制御される2つの軸に配置された状態で、同時に加工することを特徴とする、請求項4に記載の改良方法。 The first tool (20) and the second tool (20) may be machined simultaneously with the tools (20) arranged on two axes controlled by at least one numerically controlled machine. The method according to claim 4, characterized in that it is characterized by: 第2の工具(20)が、前記ディスクの内径から、前記半径方向空洞(12)の内側部分が形成されるまで加工することを特徴とする、請求項1に記載の改良方法。 Method according to claim 1, characterized in that a second tool (20) works from the inner diameter of the disc until an inner part of the radial cavity (12) is formed. 前記第2の工具(20)が、連続したテラス成形加工をしながら前進し、前記一体構造ディスクの円形リングの全幅に対して中間深さに到達するまで加工することを特徴とする、請求項7に記載の改良方法。 The second tool (20) is advanced with a continuous terrace forming operation and works until reaching an intermediate depth relative to the full width of the circular ring of the monolithic disc. 8. The improved method according to 7. 第1の工具(20)が、前記ディスクの外径から開始して、該第1の工具が前記内側空洞に到達し、従って前記半径方向空洞(12)を完成するまで、加工することを特徴とする、請求項8に記載の改良方法。 A first tool (20) starting from the outer diameter of the disc and working until the first tool reaches the inner cavity and thus completes the radial cavity (12). The improved method according to claim 8, wherein 前記第1の工具(20)及び前記第2の工具(20)が、前記数値制御機械の同一工具(20)であることを特徴とする、請求項9に記載の改良方法。 Method according to claim 9, characterized in that the first tool (20) and the second tool (20) are identical tools (20) of the numerical control machine. 前記工具(20)を用いて加工する前に、該加工の実現可能性を判断するために、すなわち、該加工中に前記工具(20)の重畳があるかどうかを確認するために、予備段階が行なわれることを特徴とする、請求項6に記載の改良方法。 Before machining with the tool (20), a preliminary step is performed to determine the feasibility of the machining, i.e. to check whether there is a superposition of the tool (20) during the machining. 7. The method according to claim 6, wherein the following is performed. 前記重畳がある場合には、異常があることが示されて、これによって加工計画が中断されることを特徴とする、請求項11に記載の改良方法。 12. The improvement method according to claim 11, wherein when the superimposition is present, an abnormality is indicated, whereby the machining plan is interrupted. 前記工具(20)が、利用可能な工具のなかから最も短いものを用いて開始され、連続して用いられることを特徴とする、請求項1に記載の改良方法。 Method according to claim 1, characterized in that the tool (20) is started with the shortest available tool and is used continuously. 前記工具(20)の直径が、ブレード基部における接合部の半径に応じて選定されることを特徴とする、請求項1に記載の改良方法。 Method according to claim 1, characterized in that the diameter of the tool (20) is selected according to the radius of the joint at the blade base. 削り屑を除去する前記加工が、ポケットの名称で知られている種類の加工であることを特徴とする、請求項1に記載の改良方法。 The method according to claim 1, wherein the process for removing shavings is a type of process known by the name of a pocket. 最大深さに到達するまで前記工具(20)の軸の単一傾斜を用いて、また前記工具(20)の設計によるアンダカットにより加工する可能性も用いて行なわれる第1の段階のいわゆるポケット形成の後に、前記工具(20)に異なる傾斜を取らせるコマンドが、前記軸に伝達されることを特徴とする、請求項15に記載の改良方法。 The so-called pocket of the first stage, which is performed using a single inclination of the axis of the tool (20) until the maximum depth is reached, and also with the possibility of machining by undercut according to the design of the tool (20). A method according to claim 15, characterized in that, after forming, a command causing the tool (20) to assume a different inclination is transmitted to the shaft. 前記異なる傾斜は、5つの制御された軸を有する数値制御機械により実施されることを特徴とする、請求項16に記載の改良方法。 17. The method of claim 16, wherein the different tilts are performed by a numerically controlled machine having five controlled axes. 削り屑を除去する前記加工の後に、前記ロータ(10)は、熱処理を施されることを特徴とする、請求項1に記載の改良方法。 2. The method according to claim 1, wherein the rotor (10) is subjected to a heat treatment after the machining for removing shavings. 前記熱処理に続いて、前記ロータ(10)の寸法検査、釣合い検査及び動的検査の段階が行なわれることを特徴とする、請求項18に記載の改良方法。 19. Method according to claim 18, characterized in that the heat treatment is followed by dimensional, balancing and dynamic inspection steps of the rotor (10). 前記ロータ(10)がスチールで作られていることを特徴とする、請求項1に記載の改良方法。 Method according to claim 1, characterized in that the rotor (10) is made of steel. 実質的に記載されかつ請求されたような、また特定された目的のような全ての、遠心圧縮機のロータ(10)の改良された製造方法。 An improved method of manufacturing a rotor (10) of a centrifugal compressor, substantially all as described and claimed and for the specified purpose.
JP2003309547A 2002-09-03 2003-09-02 Improved method of manufacturing rotor of centrifugal compressor Withdrawn JP2004092650A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT001876A ITMI20021876A1 (en) 2002-09-03 2002-09-03 IMPROVED PROCEDURE FOR MAKING A ROTOR OF ONE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010109810A Division JP2010230012A (en) 2002-09-03 2010-05-12 Manufacturing method for improved rotor of centrifugal compressor

Publications (2)

Publication Number Publication Date
JP2004092650A true JP2004092650A (en) 2004-03-25
JP2004092650A5 JP2004092650A5 (en) 2006-10-19

Family

ID=31503943

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2003309547A Withdrawn JP2004092650A (en) 2002-09-03 2003-09-02 Improved method of manufacturing rotor of centrifugal compressor
JP2010109810A Withdrawn JP2010230012A (en) 2002-09-03 2010-05-12 Manufacturing method for improved rotor of centrifugal compressor
JP2013217004A Withdrawn JP2014040838A (en) 2002-09-03 2013-10-18 Improved method for production of rotor of centrifugal compressor
JP2015125220A Withdrawn JP2015206368A (en) 2002-09-03 2015-06-23 Improved process of manufacture of rotor of centrifugal compressor
JP2017006377A Withdrawn JP2017106470A (en) 2002-09-03 2017-01-18 Improved process of manufacture of rotor of centrifugal compressor

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2010109810A Withdrawn JP2010230012A (en) 2002-09-03 2010-05-12 Manufacturing method for improved rotor of centrifugal compressor
JP2013217004A Withdrawn JP2014040838A (en) 2002-09-03 2013-10-18 Improved method for production of rotor of centrifugal compressor
JP2015125220A Withdrawn JP2015206368A (en) 2002-09-03 2015-06-23 Improved process of manufacture of rotor of centrifugal compressor
JP2017006377A Withdrawn JP2017106470A (en) 2002-09-03 2017-01-18 Improved process of manufacture of rotor of centrifugal compressor

Country Status (6)

Country Link
US (1) US7305762B2 (en)
EP (1) EP1396309B1 (en)
JP (5) JP2004092650A (en)
AU (1) AU2003236386B2 (en)
IT (1) ITMI20021876A1 (en)
NO (1) NO339013B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291862A (en) * 2006-04-21 2007-11-08 Hitachi Plant Technologies Ltd Double suction volute pump, impeller thereof and method for manufacturing impeller
WO2010041431A1 (en) * 2008-10-06 2010-04-15 三菱重工業株式会社 Method of manufacturing impeller for centrifugal rotary machine
JP2010285919A (en) * 2009-06-10 2010-12-24 Mitsubishi Heavy Ind Ltd Method of manufacturing impeller of centrifugal rotary machine and impeller of centrifugal rotary machine
JP2016535681A (en) * 2013-10-17 2016-11-17 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Polishing method for airfoil machine parts
US9644482B2 (en) 2011-12-22 2017-05-09 Mitsubishi Heavy Industries, Ltd. Method for manufacturing machine component, and rotary machine equipped with impeller manufactured by means of this method
JP2019052596A (en) * 2017-09-15 2019-04-04 ぷらかい株式会社 Impeller for turbo fan, turbo fan, and manufacturing method of impeller for turbo fan
US10443605B2 (en) 2013-11-21 2019-10-15 Mitsubishi Heavy Industries Compressor Corporation Impeller, rotary machine, and impeller manufacturing method
US10994347B2 (en) 2016-09-05 2021-05-04 Mitsubishi Heavy Industries Compressor Corporation Method for manufacturing centrifugal rotary machine and method for manufacturing impeller thereof
WO2021201153A1 (en) * 2020-03-31 2021-10-07 株式会社牧野フライス製作所 Cutting tool and method for machining workpiece

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20050064A1 (en) * 2005-01-20 2006-07-21 Nuovo Pignone Spa METHOD OF WORKING OF A SEMI-FINISHED PRODUCT FOR OBTAINING A IMPELLER EQUIPPED WITH A PLURALITY OF PALLETS MADE OF THE SAME SAME
US7632073B2 (en) * 2005-06-08 2009-12-15 Dresser-Rand Company Impeller with machining access panel
US7628586B2 (en) * 2005-12-28 2009-12-08 Elliott Company Impeller
ATE454237T1 (en) * 2006-04-12 2010-01-15 Sulzer Markets & Technology Ag MACHINING PROCESS
US8313300B2 (en) * 2007-06-14 2012-11-20 Christianson Systems, Inc. Rotor for centrifugal compressor
CN101332526B (en) * 2007-06-29 2010-06-09 通用电气公司 Electro-eroding rough machining method
US7856834B2 (en) * 2008-02-20 2010-12-28 Trane International Inc. Centrifugal compressor assembly and method
US9353765B2 (en) 2008-02-20 2016-05-31 Trane International Inc. Centrifugal compressor assembly and method
DE102008010252A1 (en) * 2008-02-20 2009-08-27 Rolls-Royce Deutschland Ltd & Co Kg Method and tool for annulus machining a gas turbine rotor with integrally molded blades
US8328519B2 (en) 2008-09-24 2012-12-11 Pratt & Whitney Canada Corp. Rotor with improved balancing features
US8342804B2 (en) 2008-09-30 2013-01-01 Pratt & Whitney Canada Corp. Rotor disc and method of balancing
EP2177298A1 (en) * 2008-10-20 2010-04-21 Sulzer Markets and Technology AG Manufacturing procedure for closed discs
CN101708559B (en) * 2009-12-10 2011-03-02 西北工业大学 Five-coordinate plunge milling machining method of closed type bladed disc
US9004868B2 (en) * 2010-05-19 2015-04-14 The New York Blower Company Industrial fan impeller having a tapered blade and method
AU2010356458B2 (en) * 2010-06-28 2015-09-10 Daido Die & Mold Steel Solutions Co. Ltd. Elbow formed by cutting and method for manufacturing same
JP5606358B2 (en) * 2011-02-24 2014-10-15 三菱重工業株式会社 Impeller, rotor provided with the same, and method for manufacturing impeller
JP2013047479A (en) * 2011-08-29 2013-03-07 Mitsubishi Heavy Ind Ltd Impeller and rotary machine with the same, and method for manufacturing impeller
JP5842557B2 (en) * 2011-11-11 2016-01-13 株式会社Ihi Blade finishing method and blade parts
JP5907723B2 (en) 2011-12-26 2016-04-26 三菱重工業株式会社 Manufacturing method of rotating machine
JP5863499B2 (en) 2012-02-17 2016-02-16 三菱重工業株式会社 Heat treatment method
EP2669042A1 (en) * 2012-05-30 2013-12-04 Sulzer Markets and Technology AG Method for producing a workpiece using a cutting device
KR101501477B1 (en) 2013-03-25 2015-03-12 두산중공업 주식회사 Centrifugal Compressor
CN103212760B (en) * 2013-04-08 2016-01-13 南京航空航天大学 A kind of runner processing method between uiform section blade profile integral impeller with ring leaf
KR101465052B1 (en) 2013-04-12 2014-11-25 두산중공업 주식회사 Shrouds of centrifugal compressor impeller and method of manufacturing the same
ITCO20130019A1 (en) * 2013-05-17 2014-11-18 Nuovo Pignone Srl IMPELLER WITH CIRCULAR RETROGYATED PIPES.
WO2015015668A1 (en) * 2013-07-31 2015-02-05 野田金型有限会社 Elbow manufacturing method, cutting tool, and elbow
US9091277B1 (en) 2014-04-25 2015-07-28 Computer Assisted Manufacturing Technology Corporation Systems and methods for manufacturing a shrouded impeller
KR102208490B1 (en) * 2014-07-07 2021-01-27 한화에어로스페이스 주식회사 Method for manufacturing rotation part of rotary machine
FR3041553B1 (en) * 2015-09-28 2018-03-23 Snecma PROCESS FOR PRODUCING A STEEL CORE FOR TURBOPOMPE AND STEEL CORE FOR TURBOPOMPE
ITUB20161145A1 (en) * 2016-02-29 2017-08-29 Exergy Spa Method for the construction of bladed rings for radial turbomachinery and bladed ring obtained by this method
JP6693827B2 (en) * 2016-07-22 2020-05-13 株式会社放電精密加工研究所 Method of manufacturing integrated impeller
US20190107122A1 (en) * 2017-10-05 2019-04-11 Asia Vital Components (China) Co., Ltd. Slim pump structure
US10378509B2 (en) * 2017-10-06 2019-08-13 Iap, Inc. Turbine rotor for redirecting fluid flow including sinuously shaped blades and a solid conical center core
CN109079208A (en) * 2018-07-20 2018-12-25 沈阳透平机械股份有限公司 The processing method and device of centrifugal compressor leaf dish based on boring machine right-angle head
CN109590559B (en) * 2019-02-20 2020-11-13 航天科工哈尔滨风华有限公司 Five-axis electric spark machining closed impeller track planning method
CN110315116B (en) * 2019-05-31 2020-07-31 沈阳透平机械股份有限公司 Technological method for machining side edge of ternary impeller blade milled by cover disc
CN114258461B (en) * 2019-08-13 2024-08-16 谷轮有限合伙公司 Method for manufacturing a shrouded impeller, shrouded impeller and compressor
CN110948024A (en) * 2019-11-29 2020-04-03 中国航发沈阳黎明航空发动机有限责任公司 Method for machining eccentric narrow groove of annular part
CN115091151B (en) * 2022-06-28 2024-03-22 四川成飞集成科技股份有限公司 Method for machining contour guide sliding mounting surface of wedge die

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2396488A (en) * 1943-05-20 1946-03-12 Bristol Aeroplane Co Ltd Milling or like machine
JP2000061702A (en) * 1998-08-26 2000-02-29 Nippon Seiko Kk End face machining method of disc for troidal type continuously variable transmission
JP2002120127A (en) * 2000-10-13 2002-04-23 Citizen Watch Co Ltd Tool position correction method on numerical control lathe and control device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865918A (en) * 1928-06-30 1932-07-05 Junkers Hugo Impeller and method of making same
US1959703A (en) * 1932-01-26 1934-05-22 Birmann Rudolph Blading for centrifugal impellers or turbines
US2429324A (en) * 1943-12-30 1947-10-21 Meisser Christian Rotor for centrifugal compressors
US2962941A (en) * 1955-08-03 1960-12-06 Avco Mfg Corp Apparatus for producing a centrifugal compressor rotor
DE2616308A1 (en) * 1976-04-12 1977-10-20 Borsig Gmbh Numerically controlled five axis dimensional machining - combines blade scroll and twist on solid impeller
SU1325778A1 (en) * 1983-11-09 1990-07-23 Производственное Объединение Турбостроения "Ленинградский Металлический Завод" Method of processing channels
CA1204315A (en) * 1984-02-08 1986-05-13 Pratt & Whitney Canada Inc. Multiple cutter pass flank milling
JPS61109608A (en) * 1984-11-01 1986-05-28 Mitsubishi Heavy Ind Ltd Method of machining impeller
US4596750A (en) * 1985-03-15 1986-06-24 Westinghouse Electric Corp. Support tube for high temperature solid electrolyte electrochemical cell
DE3603582C1 (en) * 1986-02-06 1987-03-05 Bayerische Motoren Werke Ag Method for machining a channel arranged in a casting
JP2531148B2 (en) * 1986-09-04 1996-09-04 ソニー株式会社 Free curved surface processing information generation method
JPH01100607A (en) * 1987-10-14 1989-04-18 Mitsubishi Electric Corp Numeric value controller
JPH01257797A (en) * 1988-04-05 1989-10-13 Kawasaki Heavy Ind Ltd Diffuser of centrifugal compressor and manufacture thereof
DE3816674A1 (en) * 1988-05-17 1989-11-23 Klein Schanzlin & Becker Ag Method of manufacturing a centrifugal pump impeller
JPH0335913A (en) * 1989-06-30 1991-02-15 Okuma Mach Works Ltd Spherical cutting edge tool and machining method by same tool
JPH06193545A (en) * 1992-12-22 1994-07-12 Nemoto Kikaku Kogyo Kk Impeller
JP3291827B2 (en) * 1993-03-18 2002-06-17 株式会社日立製作所 Impeller, diffuser, and method of manufacturing the same
US5438755A (en) * 1993-11-17 1995-08-08 Giberson; Melbourne F. Method of making a monolithic shrouded impeller
JPH08155788A (en) * 1994-12-02 1996-06-18 Kuraimu N C D:Kk Method for rough machining of metal mold material
JPH08229770A (en) * 1995-02-27 1996-09-10 Honda Motor Co Ltd Preparing method for five-axis nc data
JP3168865B2 (en) * 1995-03-20 2001-05-21 株式会社日立製作所 Impeller for multistage centrifugal compressor and method of manufacturing the same
JP3116129B2 (en) * 1995-08-07 2000-12-11 株式会社牧野フライス製作所 Processing method
JP3305204B2 (en) * 1996-06-24 2002-07-22 三菱重工業株式会社 Processing method of radiation impeller
US6112133A (en) * 1998-02-27 2000-08-29 Imcs, Inc. Visual system and method for generating a CNC program for machining parts with planar and curvilinear surfaces
US6077002A (en) * 1998-10-05 2000-06-20 General Electric Company Step milling process
DE19912715A1 (en) 1999-03-20 2000-09-21 Abb Research Ltd Compressor wheel has nave and running blades of one-piece aluminum structure and hollow core and at end of nave
JP4392913B2 (en) * 1999-11-02 2010-01-06 シチズンホールディングス株式会社 Numerically controlled automatic lathe and processing method of workpiece by this numerically controlled automatic lathe
JP2002014711A (en) * 2000-06-28 2002-01-18 Nissan Motor Co Ltd Method for searching for unmachined corner part machining area for contour machining and method for generating unmachined corner part machining area using the method
JP2002036020A (en) * 2000-07-31 2002-02-05 Ishikawajima Harima Heavy Ind Co Ltd Machining method of large impeller
US6354780B1 (en) * 2000-09-15 2002-03-12 General Electric Company Eccentric balanced blisk
JP4657436B2 (en) * 2000-10-26 2011-03-23 シチズンホールディングス株式会社 Automatic programming method and automatic programming apparatus
IT1319495B1 (en) 2000-11-30 2003-10-20 Nuovo Pignone Spa PROCEDURE FOR THE CONSTRUCTION OF A ROTOR FOR COMPRESSOR-CENTRIFUGHI.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2396488A (en) * 1943-05-20 1946-03-12 Bristol Aeroplane Co Ltd Milling or like machine
JP2000061702A (en) * 1998-08-26 2000-02-29 Nippon Seiko Kk End face machining method of disc for troidal type continuously variable transmission
JP2002120127A (en) * 2000-10-13 2002-04-23 Citizen Watch Co Ltd Tool position correction method on numerical control lathe and control device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291862A (en) * 2006-04-21 2007-11-08 Hitachi Plant Technologies Ltd Double suction volute pump, impeller thereof and method for manufacturing impeller
WO2010041431A1 (en) * 2008-10-06 2010-04-15 三菱重工業株式会社 Method of manufacturing impeller for centrifugal rotary machine
JP2010089190A (en) * 2008-10-06 2010-04-22 Mitsubishi Heavy Ind Ltd Method for manufacturing impeller of centrifugal rotating machine
US20110108526A1 (en) * 2008-10-06 2011-05-12 Hisanori Kishimoto Method of manufacturing impeller for centrifugal rotating machine
US8581136B2 (en) 2008-10-06 2013-11-12 Mitsubishi Heavy Industries, Ltd. Method of manufacturing by electric discharge machining an impeller for centrifugal rotating machine
JP2010285919A (en) * 2009-06-10 2010-12-24 Mitsubishi Heavy Ind Ltd Method of manufacturing impeller of centrifugal rotary machine and impeller of centrifugal rotary machine
US9644482B2 (en) 2011-12-22 2017-05-09 Mitsubishi Heavy Industries, Ltd. Method for manufacturing machine component, and rotary machine equipped with impeller manufactured by means of this method
JP2016535681A (en) * 2013-10-17 2016-11-17 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Polishing method for airfoil machine parts
US10722996B2 (en) 2013-10-17 2020-07-28 Nuovo Pignone Srl Airfoil machine components polishing method
US10443605B2 (en) 2013-11-21 2019-10-15 Mitsubishi Heavy Industries Compressor Corporation Impeller, rotary machine, and impeller manufacturing method
US10994347B2 (en) 2016-09-05 2021-05-04 Mitsubishi Heavy Industries Compressor Corporation Method for manufacturing centrifugal rotary machine and method for manufacturing impeller thereof
JP2019052596A (en) * 2017-09-15 2019-04-04 ぷらかい株式会社 Impeller for turbo fan, turbo fan, and manufacturing method of impeller for turbo fan
WO2021201153A1 (en) * 2020-03-31 2021-10-07 株式会社牧野フライス製作所 Cutting tool and method for machining workpiece

Also Published As

Publication number Publication date
NO339013B1 (en) 2016-11-07
US7305762B2 (en) 2007-12-11
NO20033879L (en) 2004-03-04
JP2017106470A (en) 2017-06-15
JP2010230012A (en) 2010-10-14
US20040093727A1 (en) 2004-05-20
AU2003236386B2 (en) 2009-05-07
NO20033879D0 (en) 2003-09-02
EP1396309A1 (en) 2004-03-10
EP1396309B1 (en) 2012-10-10
JP2015206368A (en) 2015-11-19
ITMI20021876A1 (en) 2004-03-04
AU2003236386A1 (en) 2004-03-18
JP2014040838A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP2004092650A (en) Improved method of manufacturing rotor of centrifugal compressor
JP5352482B2 (en) Manufacturing method of blisk type rotor wheel tip
JP5437559B2 (en) Method for machining turbine engine components
US7303461B1 (en) Method of machining airfoils by disc tools
US8286348B2 (en) Method of manufacturing and refinishing integrally bladed rotors
RU2493950C2 (en) Method of making monoblock impeller with vane retaining ring to be removed before milling
RU2493951C2 (en) Method of making monoblock impeller with vane retaining ring to be removed before milling
RU2492984C2 (en) Method of making one-piece impeller with vane retaining ring
US20090282680A1 (en) Method for the fabrication of integrally bladed rotors
US7069654B2 (en) Rotor balancing
JP4145299B2 (en) Turbine rotor machining using cup-shaped tools
US9970309B2 (en) Method for producing a rotor of a charging apparatus
JP2013013994A (en) Spherical cutter and method for machining curved slot
RU2493947C2 (en) Perfected method of &#34;blisk&#34;-type solid rotor with auxiliary vane support ring spaced from vanes edges
US11338374B2 (en) Method for manufacturing a thin-walled part
RU2493949C2 (en) Method of making monoblock impeller with vane retaining ring to be removed before milling
JP2017078367A (en) Manufacturing method of blisk, intermediate product of blisk, and blisk
US8689441B2 (en) Method for machining a slot in a turbine engine rotor disk
RU2749240C2 (en) Method of manufacturing or repairing a part of a rotary machine, as well as a part manufactured or repaired using such a method
JP2017532213A (en) Method and machine tool for generating machining program
JP2016037927A (en) Turbine rotor shaft and manufacturing method of turbine rotor shaft

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090907

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100525

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110113

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120229