US20030050630A1 - Tissue ablation apparatus with a sliding ablation instrument and method - Google Patents
Tissue ablation apparatus with a sliding ablation instrument and method Download PDFInfo
- Publication number
- US20030050630A1 US20030050630A1 US10/211,621 US21162102A US2003050630A1 US 20030050630 A1 US20030050630 A1 US 20030050630A1 US 21162102 A US21162102 A US 21162102A US 2003050630 A1 US2003050630 A1 US 2003050630A1
- Authority
- US
- United States
- Prior art keywords
- ablation
- sheath
- guide sheath
- lumen
- distal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
- A61B2018/00375—Ostium, e.g. ostium of pulmonary vein or artery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00839—Bioelectrical parameters, e.g. ECG, EEG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0212—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1407—Loop
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1497—Electrodes covering only part of the probe circumference
Definitions
- the present invention relates, generally, to ablation instrument systems that use ablative energy to ablate internal bodily tissues. More particularly, the present invention relates to preformed guide apparatus which cooperate with energy delivery arrangements to direct the ablative energy in selected directions along the guide apparatus.
- Atrial arrhythmia may be treated using several methods.
- Pharmacological treatment of atrial fibrillation for example, is initially the preferred approach, first to maintain normal sinus rhythm, or secondly to decrease the ventricular response rate.
- Other forms of treatment include drug therapies, electrical cardioversion, and RF catheter ablation of selected areas determined by mapping.
- other surgical procedures have been developed for atrial fibrillation, including left atrial isolation, transvenous catheter or cryosurgical ablation of His bundle, and the Corridor procedure, which have effectively eliminated irregular ventricular rhythm.
- these procedures have for the most part failed to restore normal cardiac hemodynamics, or alleviate the patient's vulnerability to thromboembolism because the atria are allowed to continue to fibrillate. Accordingly, a more effective surgical treatment was required to cure medically refractory atrial fibrillation of the Heart.
- Atrial fibrillation is characterized by the presence of multiple macroreentrant circuits that are fleeting in nature and can occur anywhere in the atria, it is prudent to interrupt all of the potential pathways for atrial macroreentrant circuits. These circuits, incidentally, have been identified by intraoperative mapping both experimentally and clinically in patients.
- this procedure includes the excision of both atrial appendages, and the electrical isolation of the pulmonary veins. Further, strategically placed atrial incisions not only interrupt the conduction routes of the common reentrant circuits, but they also direct the sinus impulse from the sinoatrial node to the atrioventricular node along a specified route. In essence, the entire atrial myocardium, with the exception of the atrial appendages and the pulmonary veins, is electrically activated by providing for multiple blind alleys off the main conduction route between the sinoatrial node to the atrioventricular node.
- Atrial transport function is thus preserved postoperatively as generally set forth in the series of articles: Cox, Schuessler, Boineau, Canavan, Cain, Lindsay, Stone, Smith, Corr, Change, and D'Agostino, Jr., The Surgical Treatment Atrial Fibrillation (pts. 1-4), 101 T HORAC C ARDIOVASC S URG., 402-426, 569-592 (1991).
- Radio frequency (RF) energy As the ablating energy source. Accordingly, a variety of RF based catheters and power supplies are currently available to electrophysiologists.
- radio frequency energy has several limitations including the rapid dissipation of energy in surface tissues resulting in shallow “burns” and failure to access deeper arrhythmic tissues.
- Another limitation of RF ablation catheters is the risk of clot formation on the energy emitting electrodes. Such clots have an associated danger of causing potentially lethal strokes in the event that a clot is dislodged from the catheter. It is also very difficult to create continuous long lesions with RF ablation instruments.
- microwave frequency energy for example, has long been recognized as an effective energy source for heating biological tissues and has seen use in such hyperthermia applications as cancer treatment and preheating of blood prior to infusions. Accordingly, in view of the drawbacks of the traditional catheter ablation techniques, there has recently been a great deal of interest in using microwave energy as an ablation energy source.
- the advantage of microwave energy is that it is much easier to control and safer than direct current applications and it is capable of generating substantially larger and longer lesions than RF catheters, which greatly simplifies the actual ablation procedures.
- Such microwave ablation systems are described in the U.S. Pat. Nos. 4,641,649 to Walinsky; 5,246,438 to Langberg; 5,405,346 to Grundy, et al.; and 5,314,466 to Stern, et al, each of which is incorporated herein by reference.
- microwave ablation instruments have recently been developed which incorporate microwave antennas having directional reflectors.
- a tapered directional reflector is positioned peripherally around the microwave antenna to direct the waves toward and out of a window portion of the antenna assembly.
- These ablation instruments thus, are capable of effectively transmitting electromagnetic energy in a more specific direction.
- the electromagnetic energy may be transmitted generally perpendicular to the longitudinal axis of the catheter but constrained to a selected radial region of the antenna, or directly out the distal end of the instrument.
- Typical of these designs are described in the U.S. patent application Ser. Nos. 09/178,066, filed Oct. 23, 1998; and 09/333,747, filed Jun. 14, 1999, each of which is incorporated herein by reference.
- the resonance frequency of the microwave antenna is preferably tuned assuming contact between the targeted tissue or blood and a contact region of the antenna assembly extending longitudinally adjacent to the antenna longitudinal axis.
- the resonance frequency will be adversely changed and the antenna will be untuned.
- the portion of the antenna not in contact with the targeted tissue or blood will radiate the electromagnetic radiation into the surrounding air.
- the efficiency of the energy delivery into the tissue will consequently decrease which in turn causes the penetration depth of the lesion to decrease.
- a system for ablating a selected portion of a contact surface of biological tissue is provided.
- the system is particularly suitable to ablate cardiac tissue, and includes an elongated ablation sheath having a preformed shape adapted to substantially conform a predetermined surface thereof with the contact surface of the tissue.
- the ablation sheath defines an ablation lumen extending therethrough along an ablation path proximate to the predetermined surface.
- An elongated ablative device includes a flexible ablation element which cooperate with an ablative energy source which is sufficiently strong for tissue ablation.
- the ablative device is formed and dimensioned for longitudinal sliding receipt through the ablation lumen of the ablation sheath for selective placement of the ablative device along the ablation path created by the ablation sheath.
- the ablation lumen and the ablative device cooperate to position the ablative device proximate to the ablation sheath predetermined surface for selective ablation of the selected portion.
- the ablation sheath in its preshaped form functions as a guide device to guide the ablative device along the ablation path when the predetermined surface of the ablation sheath properly contacts the biological tissue.
- the cooperation between the ablative device and the ablation lumen, as the ablative device is advanced through the lumen positions the ablative device in a proper orientation to facilitate ablation of the targeted tissue during the advancement.
- the ablative device can be easily advanced along the ablation path to generate the desired tissue ablations.
- the ablative device is a microwave antenna assembly which includes a flexible shield device coupled to the antenna substantially shield a surrounding area of the antenna from the electromagnetic field radially generated therefrom while permitting a majority of the field to be directed generally in a predetermined direction toward the ablation sheath predetermined surface.
- the microwave antenna assembly further includes a flexible insulator disposed between the shield device and the antenna. A window portion of the insulator is defined which enables transmission of the directed electromagnetic field in the predetermined direction toward the ablation sheath predetermined surface.
- the antenna, the shield device and the insulator are formed for manipulative bending thereof, as a unit, to one of a plurality of contact positions to generally conform the window portion to the ablation sheath predetermined surface as the insulator and antenna are advanced through the ablation lumen.
- the ablative device provides a key device which is slideably received in a mating slot portion of the ablation lumen.
- the system includes a guide sheath defining a guide lumen formed and dimensioned for sliding receipt of the ablation sheath therethrough. The guide sheath is pre-shaped to facilitate positioning of the ablation sheath toward the selected portion of the contact surface when the ablation sheath is advanced through guide lumen.
- the ablation sheath includes a bendable shape retaining member extending longitudinally therethrough which is adapted to retain the preformed shape of the ablation sheath once positioned out of the guide lumen of the guide sheath.
- the ablative energy is preferably provided by a microwave ablative device.
- Other suitable tissue ablation devices include cryogenic, ultrasonic, laser and radiofrequency, to name a few.
- a method for treatment of a Heart includes forming a penetration through a muscular wall of the Heart into an interior chamber thereof; and positioning a distal end of an elongated ablation sheath through the penetration.
- the ablation sheath defines an ablation lumen extending along an ablation path therethrough.
- the method further includes contacting, or bringing close enough, a predetermined surface of the elongated ablation sheath with a first selected portion of an interior surface of the muscular wall; and passing a flexible ablative device through the ablation lumen of the ablation sheath for selective placement of the ablative device along the ablation path.
- the method includes applying the ablative energy, using the ablative device and the ablation energy source, which is sufficiently strong to cause tissue ablation.
- the passing is performed by incrementally advancing the ablative device along a plurality of positions of the ablation path to produce a substantially continuous lesion.
- the method includes placing a distal end of a guide sheath through the penetration, and then positioning the distal end of the ablation sheath through the guide lumen of the guide sheath.
- piercing the muscular wall with a piercing sheath before the placing event, piercing the muscular wall with a piercing sheath.
- the piercing sheath defines a positioning passage extending therethrough, The placing the distal end of a guide sheath is performed by placing the guide sheath distal end through the positioning passage of the piercing sheath.
- the positioning the distal end event includes advancing the ablation sheath toward the first selected portion of the interior surface of the muscular wall through a manipulation device extending through a second penetration into the Heart interior chamber independent from the first named penetration.
- a system for ablating tissue within a body of a patient including an elongated rail device and an ablative device.
- the raidl device is adapted to be positioned proximate and adjacent to a selected tissue region to be ablated within the body of the patient.
- the ablative device includes a receiving passage configured to slideably receive the rail device longitudinally therethrough. This enables the ablative device to be slideably positioned along the rail substantially adjacent to or in contact with the selected tissue region.
- the ablative device having an energy delivery portion which is adapted to be coupled to an ablative energy source, can then be operated to ablate the selected tissue region.
- the ablative device is adapted to directionally emit the ablative energy from the energy delivery portion.
- a key assembly cooperates between the ablative device and the rail member, thus, to properly align the directionally emitted ablative energy toward the tissue region to be ablated. This primarily performed by providing a rail device with a non-circular transverse cross-sectional dimension.
- the receiving passage of the ablative device further includes a substantially similarly shaped non-circular transverse cross-sectional dimension to enable sliding of the ablative device in a manner continuously aligning the directionally emitted ablative energy toward the tissue region to be ablated as the ablative device advances along the rail device.
- FIGS. 1A and 1B are fragmentary, top perspective views, partially broken-away, of the ablation system constructed in accordance with the present invention, and illustrating advancement of a bendable directional reflective microwave antenna assembly through an ablation lumen of a ablation sheath.
- FIGS. 2 A- 2 D is series of fragmentary, side elevation views, in partial cross-section, of the Heart, and illustrating advancement of the ablation system of present invention into the left atrium for ablation of the targeted tissue.
- FIG. 3 is a fragmentary, side elevation view, in partial cross-section, of the Heart showing a pattern of ablation lesions to treat atrial fibrillation.
- FIGS. 4A and 4B are a series of enlarged, fragmentary, top perspective view of a pigtail ablation sheath of the ablation system of FIGS. 2C and 2D, and exemplifying the ablation sheath being advanced into one of the pulmonary vein orifices.
- FIG. 5 is a front schematic view of a patient's cardiovascular system illustrating the positioning of a transseptal piercing sheath through the septum wall of the patient's Heart.
- FIG. 6 is a fragmentary, side elevation view, in partial cross-section, of another embodiment of the ablation sheath of the present invention employed for lesion formation.
- FIG. 7 is a fragmentary, side elevation view, in partial cross-section, of yet another embodiment of the ablation sheath of the present invention employed for another lesion formation.
- FIG. 8 is an enlarged, front elevation view, in cross-section, of the ablation system of FIG. 1 positioned through the trans-septal piercing sheath.
- FIG. 9 is an enlarged, front elevation view, in cross-section, of the ablation sheath and the antenna assembly of the ablation system in FIG. 8 contacting the targeted tissue.
- FIG. 10 is an enlarged, front elevation view, in cross-section, of the antenna assembly taken substantially along the plane of the line 10 - 10 in FIG. 9.
- FIG. 11 is a diagrammatic top plan view of an alternative embodiment microwave ablation instrument system constructed in accordance with one embodiment of the present invention.
- FIG. 12 is an enlarged, fragmentary, top perspective view of the ablation instrument system of FIG. 11 illustrated in a bent position to conform the ablation sheath to a surface of the tissue to be ablated.
- FIGS. 13 A- 13 D is a series of side elevation views, in cross-section, of the ablation sheath of the present invention illustrating advancement of the ablation device incrementally through the ablation sheath to form plurality of overlapping lesions.
- FIG. 14A is a fragmentary, side elevation view of a laser-type ablation device of the present invention.
- FIG. 14B is a front elevation view of the laser-type energy delivery portion taken along the plane of the line 14 B- 14 B in FIG. 14A.
- FIG. 15A is a fragmentary, side elevation view of a cryogenic-type ablation device of the present invention.
- FIG. 15B is a front elevation view of the cryogenic-type energy delivery portion taken along the plane of the line 15 B- 15 B in FIG. 15A.
- FIG. 16 is a fragmentary, side elevation view, in cross-section, of an ultrasonic-type ablation device of the present invention.
- FIG. 17 is an enlarged, fragmentary, top perspective view of an alternative embodiment ablation sheath having an opened window portion.
- FIG. 18 is a fragmentary, side elevation view of an alternative embodiment ablation assembly employing a rail system.
- FIG. 19 is a front elevation view of the energy delivery portion of the ablation rail system taken along the plane of the line 19 - 19 in FIG. 18.
- FIGS. 20 A- 20 C are cross-sectional views of alternative key systems in accordance with the present invention.
- FIG. 21 is a fragmentary, diagrammatic, front elevation view of a torso applying one embodiment of the present invention through a minimally invasive technique.
- FIG. 22 is a top plan view, in cross-section of the fragmentary, diagrammatic, top plan view of the torso of FIG. 21 applying the minimally invasive technique.
- an ablation system for transmurally ablating a targeted tissue 21 of biological tissue.
- the system 20 is particularly suitable to ablate the epicardial or endocardial tissue 40 of the heart, and more particularly, to treat medically refractory atrial fibrillation of the Heart.
- the ablation system 20 for ablating tissue within a body of a patient includes an elongated flexible tubular member 22 having at least one lumen 25 (FIGS. 1A, 1B, 8 and 9 ) and including a pre-shaped distal end portion (E.g., FIGS.
- An ablative device generally designated 26 , is configured to be slideably received longitudinally within the at least one lumen 25 , and includes an energy delivery portion 27 located near a distal end portion of the ablative device 26 which is adapted to be coupled to an ablative energy source (not shown).
- the ablative device is preferably provided by a microwave ablation device 26 formed to emit microwave energy sufficient to cause tissue ablation.
- the ablative device energy may be provided by a laser ablation device, a Radio Frequency (RF) ablation device, an ultrasound ablation device or a cryoablation device.
- RF Radio Frequency
- the tubular member 22 is in the form of an elongated ablation sheath having, in a preferred embodiment, a resiliently preformed shape adapted to substantially conform a predetermined contact surface 23 of the sheath with the targeted tissue region 21 .
- the ablation sheath is malleable.
- the ablation sheath is flexible.
- the lumen 25 of the tubular member extends therethrough along an ablation path proximate to the predetermined contact surface.
- the ablative device 26 includes a flexible energy delivery portion 27 selectively generating an electromagnetic field which is sufficiently strong for tissue ablation.
- the energy delivery portion 27 is formed and dimensioned for longitudinal sliding receipt through the ablation lumen 25 of the ablation sheath 22 for selective placement of the energy delivery portion along the ablation path.
- the ablation lumen 25 and the ablative device 26 cooperate to position the energy delivery portion 27 proximate to the ablation sheath 22 predetermined contact surface 23 of the sheath for selective transmural ablation of the targeted tissue 21 within the electromagnetic field when the contact surface 23 strategically contacts or is positioned close enough to the targeted tissue 21 .
- the pre-shaped ablation sheath 22 functions to unidirectionally guide or position the energy delivery portion 27 of the ablative device 26 properly along the predetermined ablation path 28 proximate to the targeted tissue region 21 as the energy delivery portion 27 is advanced through the ablation lumen 25 .
- the energy delivery portion 27 which is preferably adapted to emit a directional ablation field, at one of a plurality of positions incrementally along the ablation path (FIGS. 1A and 1B) in the lumen 25 , a single continuous or plurality of spaced-apart lesions can be formed.
- the antenna length may be sufficient to extend along the entire ablation path 28 so that only a single ablation sequence is necessary.
- the method and apparatus of the present invention are applicable to ablate any biological tissue which requires the formation of controlled lesions (as will be described in greater detail below), this ablation system is particularly suitable for ablating endocardial or epicardial tissue of the Heart.
- the present invention may be applied in an intra-coronary configuration where the ablation procedure is performed on the endocardium of any cardiac chamber. Specifically, such ablations may be performed on the isthmus to address atrial flutter, or around the pulmonary vein ostium, electrically isolating the pulmonary veins, to treat medically refractory atrial fibrillation (FIG. 3). This procedure requires the precise formation of strategically placed endocardial lesions 30 - 36 which collectively isolate the targeted regions.
- any of the pulmonary veins may be collectively isolated to treat chronic atrial fibrillation.
- the annular lesion isolating one or more than one pulmonary vein can be linked with another linear lesion joining the mitral valve annulus.
- the annular lesion isolating one or more than one pulmonary vein can be linked with another linear lesion joining the left atrium appendage.
- the pre-shaped ablation sheath 22 and the sliding ablative device 26 may applied to ablate the epicardial tissue 39 of the Heart 40 as well (FIG. 12).
- An annular ablation for instance, may be formed around the pulmonary vein for electrical isolation from the left atrium.
- the lesions may be created along the transverse sinus and oblique sinus as part of the collective ablation pattern to treat atrial fibrillation for example.
- the application of the present invention is preferably performed through minimally invasive techniques. It will be appreciated, however, that the present invention may be applied through open chest techniques as well.
- a flexible pre-shaped tubular member i.e., ablation sheath 22
- ablation sheath 22 in the form of a pigtail
- FIGS. 2C and 2 d which is specifically configured to electrically isolate a pulmonary vein of the Heart 40 .
- the isolating lesions are preferably made on the posterior wall of the left atrium, around the ostium of one, or more than one of a pulmonary vein.
- a distal end of the pigtail-shaped ablation sheath or tubular member 22 is positioned into the left superior pulmonary vein orifice 37 from the left atrium 41 .
- a predetermined contact surface 23 of the ablation sheath is urged adjacent to or into contact with the endocardial surface of the targeted tissue region 21 (FIGS. 2D and 4B).
- the ablative device 26 is advanced through the ablation lumen 25 of the ablation sheath 22 (FIGS. 1A and 1B) which moves the energy delivery portion 27 of the ablative device along the ablation path.
- the directional ablation field may be generated to incrementally ablate (FIGS. 13 A- 13 D) the epicardial surface of the targeted tissue 21 along the ablation path to isolate the Left Superior Pulmonary Vein (LIPV)
- overlapping lesion sections 44 - 44 ′′′ are formed by the ablation field which is directional in one preferred embodiment.
- a continuous lesion or series of lesions can be formed which essentially three-dimensionally “mirror” the shape of the contact surface 23 of the ablation sheath 22 which is positioned adjacent to or in contact with the targeted tissue region.
- These transmural lesions may thus be formed in any shape on the targeted tissue region such as rectilinear, curvilinear or circular in shape. Further, depending upon the desired ablation lines pattern, both opened and closed path formation can be constructed.
- FIGS. 2A, 2D and 5 a minimal invasive application of the present invention is illustrated for use in ablating Heart tissue.
- a conventional transseptal piercing sheath 42 is introduced into the femoral vein 43 through a venous cannula 45 (FIG. 5).
- the piercing sheath is then intravenously advanced into the right atrium 46 of the Heart 40 through the inferior vena cava orifice 47 .
- These piercing sheaths are generally resiliently pre-shaped to direct a conventional piercing device 48 toward the septum wall 50 .
- the piercing device 48 and the piercing sheath 42 are manipulatively oriented and further advanced to pierce through the septum wall 50 , as a unit, of access into the left atrium 41 of the Heart 40 (FIG. 2A).
- a guide sheath 52 of the ablation system 20 is slideably advanced through the positioning passage and into a cardiac chamber such as the left atrium 41 thereof (FIG. 2B).
- the guide sheath 52 is essentially a pre-shaped, open-ended tubular member which is inserted into the coronary circulation to direct and guide the advancing ablation sheath 22 into a selected cardiac chamber (i.e., the left atrium, right atrium, left ventricle or right ventricle) and toward the general direction of the targeted tissue.
- the guide sheath 52 and the ablation sheath 22 telescopically cooperate to position the predetermined contact surface 23 thereof substantially adjacent to or in contact with the targeted tissue region.
- the guide sheath and the ablation sheath cooperate to increase the structural stability of the system as the ablation sheath is rotated and manipulated from its proximal end into ablative contact with the targeted tissue 21 (FIG. 2A).
- the distal curved portions of the ablation sheath 22 which is inherently longer than the guide sheath, is advanced past the distal lumen opening of the guide sheath, these resilient curved portions will retain their original unrestrained shape.
- the same guide sheath 52 may be employed for several different procedures.
- the lesion 30 encircling the left superior pulmonary vein ostium and the Left Inferior Pulmonary Vein Ostium (RIPVO) lesion 31 (FIG. 3) may be formed through the cooperation of the pigtail ablation sheath 22 and the same guide sheath 52 of FIGS. 2B and 2D, while the same guide sheath may also be utilized with a different ablation sheath 22 (FIG. 4) to create the long linear lesion 34 as shown in FIG. 3.
- another guide sheath 52 having a different pre-shaped distal end section may be applied to direct the advancing ablation sheath 22 back toward the in the left and right superior pulmonary vein orifices 53 , 55 .
- several pre-shaped guide sheaths, and the corresponding ablation sheaths, as will be described, cooperate to create a predetermined pattern of lesions (E.g., a MAZE procedure) on the tissue.
- the guide sheath 52 is composed of a flexible material which resiliently retains its designated shape once external forces urged upon the sheath are removed. These external forces, for instance, are the restraining forces caused by the interior walls 56 of the transseptal piercing sheath 42 as the guide sheath 52 is advanced or retracted therethrough. While the guide sheath 52 is flexible, it must be sufficiently rigid so as to substantially retain its original unrestrained shape, and not to be adversely influenced by the ablation sheath 22 , as the ablation sheath is advanced through the lumen of the guide sheath.
- Such flexible, biocompatible materials may be composed of braided Pebax or the like having an outer diameter formed and dimensioned for sliding receipt longitudinally through the positioning passage 51 of the transseptal piercing sheath 42 .
- the outer dimension is therefore preferably cylindrical having an outer diameter in the range of about 0.09 inch to about 0.145 inch, and more preferably about 0.135′′, while having an inner diameter in the range of about 0.05 inch to about 0.125 inch, and more preferably about 0.115′′. This cylindrical dimension enables longitudinal sliding receipt, as well as axial rotation, in the positioning passage 51 to properly place and advance the guide sheath 52 .
- the dimensional tolerance between the cylindrical-shaped, outer peripheral wall of the guide sheath 52 and the interior walls 56 of the transseptal piercing sheath 42 should be sufficiently large to enable reciprocal movement and relative axial rotation therebetween, while being sufficiently small to substantially prevent lateral displacement therebetween as the ablation sheath 22 is urged into contact with the targeted tissue 21 .
- the dimensional tolerance between the transverse cross-sectional periphery of the interior walls 56 of the positioning passage 51 and that of the substantially conforming guide sheath 52 should be in the range of about 0.005 inches to about 0.020 inches.
- metallic braids 57 are preferably incorporated throughout the sheath when the guide sheath is molded to its preformed shape. These braids 57 are preferably provided by 0.002′′ wires composed of 304 stainless steel evenly spaced about the sheath.
- the ablation sheath 22 is advanced through a guide lumen 54 (FIG. 8) of the guide sheath 52 toward the targeted tissue. Similar to the pre-shaped guide sheath 52 , the ablation sheath 22 is pre-shaped in the form of the desired lesions to be formed in the endocardial surface of the targeted tissue 21 . As best viewed in FIGS. 2D, 6 and 7 , each ablation sheath 52 is adapted facilitate an ablation in the targeted tissue 21 generally in the shape thereof. Thus, several pre-shaped ablation sheaths cooperate to form a type of steering system to position the ablation device about the targeted tissue. Collectively, a predetermined pattern of linear and curvilinear lesions (E.g., a MAZE procedure) can be ablated on the targeted tissue region.
- a predetermined pattern of linear and curvilinear lesions E.g., a MAZE procedure
- the ablation sheath 22 is composed of a flexible material which resiliently retains its designated shape once external forces urged upon the sheath are removed. These external forces, for instance, are the restraining forces caused by the interior walls 59 defining the guide lumen 54 of the guide sheath 52 as the ablation sheath 22 is advanced or retracted therethrough.
- Such flexible, biocompatible materials may be composed of Pebax or the like having an outer diameter formed and dimensioned for sliding receipt longitudinally through the guide lumen 54 of the ablation sheath 22 .
- the inner diameter of the guide lumen 54 is preferably in the range of about 0.050 inch to about 0.125 inch, and more preferably about 0.115′′, while the ablation sheath 26 has an outer diameter in the range of about 0.40 inch to about 0.115 inch, and more preferably about 0.105′′.
- the concentric cylindrical dimensions enable longitudinal sliding receipt, as well as axial rotation, of the ablation sheath 22 in the guide lumen 54 to properly place and advance the it toward the targeted tissue 21 .
- the dimensional tolerance between the cylindrical-shaped, outer peripheral wall of the ablation sheath 22 and the interior walls 59 of the guide lumen 54 of the guide sheath 52 should be sufficiently large to enable reciprocal movement and relative axial rotation therebetween, while being sufficiently small to substantially prevent lateral displacement therebetween as the ablation sheath 22 is urged into contact with the targeted tissue 21 .
- the dimensional tolerance between the transverse cross-sectional periphery of the guide lumen 54 and that of the substantially conforming energy delivery portion 27 should be in the range of about 0.001 inches to about 0.005 inches.
- the pre-shaped ablation sheath 22 facilitates guidance of the ablative device 26 along the predetermined ablation path 28 . This is primarily performed by advancing the energy delivery portion 27 of the ablative device 26 through the ablation lumen 25 of the ablation sheath 22 which is preferably off-set from the longitudinal axis 78 thereof As best viewed in FIGS. 8 and 9, this off-set positions the energy delivery portion 27 relatively closer to the predetermined contact surface 23 of the ablation sheath 22 , and hence the targeted tissue 21 .
- the directional field must be continuously aligned with the predetermined contact surface 23 of the ablation sheath 22 as the energy delivery portion 27 is advanced through the ablation lumen 25 since the ablation sheath contact surface 23 is designated to contact or be close enough to the targeted tissue.
- a key structure 48 (FIGS. 1, 8 and 9 ) cooperates between the ablative device 26 and the ablation lumen 25 to orient the directive energy delivery portion 27 of the ablative device continuously toward the targeted tissue region 21 as it is advanced through the lumen.
- This key structure 48 thus, only allows receipt of the energy delivery portion 27 in the lumen in one orientation. More particularly, the key structure 48 continuously aligns a window portion 58 of the energy delivery portion 27 substantially adjacent the predetermined contact surface 23 of the ablation sheath 22 during advancement.
- This window portion 58 enables the transmission of the directed ablative energy from the energy delivery portion 27 , through the contact surface 23 of the ablation sheath 22 and into the targeted tissue region. Consequently, the directional ablative energy emitted from the energy delivery portion will always be aligned with the contact surface 23 of the ablation sheath 22 , which is positioned adjacent to or in contact with the targeted tissue region 21 , to maximize ablation efficiency.
- the ablation sheath 22 is capable of relatively free rotational movement axially in the guide lumen 54 of the guide sheath 52 for maneuverability and positioning of the ablation sheath therein.
- the transverse cross-sectional dimension of the energy delivery portion 27 is configured for sliding receipt in the ablation lumen 25 of the ablation sheath 22 in a manner positioning the directional ablative energy, emitted by the energy delivery portion, continuously toward the predetermined contact surface 23 of the ablation sheath 22 .
- the transverse peripheral dimensions of the energy delivery portion 27 and the ablation lumen 25 are generally D-shaped, and substantially similar in dimension.
- the window portion 58 of the insulator 61 is preferably semi-cylindrical and concentric with the interior wall 62 defining the ablation lumen 25 of the ablation sheath 22 .
- one of the energy delivery portion and the interior wall of the ablation lumen may include a key member and corresponding receiving groove, or the like.
- Such key and receiving groove designs nonetheless, should avoid relatively sharp edges to enable smooth advancement and retraction of the energy delivery portion in the ablation lumen 25 .
- This dimension alignment relationship can be maintain along the length of the predetermined contact surface of the ablation sheath 22 as the energy delivery portion 27 is advanced through the ablation lumen whether in the configuration of FIGS. 2, 6, 7 or 12 .
- a physician may determine that once the predetermined contact surface 23 of the ablation sheath 22 is properly oriented and positioned adjacent or in contact against the targeted tissue 21 , the directional component (as will be discussed) of the energy delivery portion 27 will then be automatically aligned with the targeted tissue as it is advanced through the ablation lumen 25 .
- a series of overlapping lesions 44 - 44 ′′′ (FIGS. 13 A- 13 D) or a single continuous lesion can then be generated.
- the dimensional tolerances therebetween should be sufficiently large to enable smooth relative advancement and retraction of the energy delivery portion 27 around curvilinear geometries, and further enable the passage of gas therebetween. Since the ablation lumen 25 of the ablation sheath 22 is closed ended, gases must be permitted to flow between the energy delivery portion 27 and the interior wall 62 defining the ablation lumen 25 to avoid the compression of gas during advancement of the energy delivery portion therethrough. Moreover, the tolerance must be sufficiently small to substantially prevent axial rotation of the energy delivery portion in the ablation lumen 25 for alignment purposes. The dimensional tolerance between the transverse cross-sectional periphery of the ablation lumen and that of the substantially conforming energy delivery portion 27 , for instance, should be in the range of about 0.001 inches to about 0.005 inches.
- a thermal isolation component (not shown) is disposed longitudinally along, and substantially adjacent to, the ablation lumen 25 .
- the isolation component and the directive component 73 of the energy ablation portion 27 cooperate to form a thermal barrier along the backside of the ablation sheath.
- the isolation component may be provided by an air filled isolation lumen extending longitudinally along, and substantially adjacent to, the ablation lumen 25 .
- the cross-sectional dimension of the isolation lumen may be C-shaped or crescent shaped to partially surround the ablation lumen 25 .
- the isolation lumen may be filled with a thermally refractory material.
- a circulating fluid which is preferably biocompatible, may be disposed in the isolation lumen to provide to increase the thermal isolation.
- Two or more lumens may be provided to increase fluid flow.
- One such biocompatible fluid providing suitable thermal properties is saline solution.
- the ablation sheath 22 is composed of a flexible bio-compatible material, such as PU Pellethane, Teflon or polyethylent, which is capable of shape retention once external forces acting on the sheath are removed.
- PU Pellethane such as Teflon or polyethylent
- the ablation sheath 22 will return to its preformed shape in the interior of the Heart.
- the ablation sheath 22 preferably includes a shape retaining member 63 extending longitudinally through the distal portions of the ablation sheath where shape retention is necessary. As illustrated in FIGS. 1, 8 and 9 , this retaining member 63 is generally extends substantially parallel and adjacent to the ablation lumen 25 to reshape the predetermined contact surface 23 to its desired pre-shaped form once the restraining forces are removed from the sheath. While this shape-memory material must be sufficiently resilient for shape retention, it must also be sufficiently bendable to enable insertion through the guide lumen 54 of the guide sheath 52 .
- the shape retaining member is composed of a superelastic metal, such as Nitinol (NiTi). Moreover, the preferred diameter of this material should be in the range of 0.020 inches to about 0.050 inches, and more preferably about 0.035 inches.
- the ablation sheath 22 When used during a surgical procedure, the ablation sheath 22 is preferably transparent which enables a surgeon to visualize the position of the energy delivery portion 27 of the ablative device 26 through an endoscope or the like. Moreover, the material of ablation sheath 22 must be substantially unaffected by the ablative energy emitted by the energy delivery portion 27 . Thus, as will be apparent, depending upon the type of energy delivery portion and the ablative source applied, the material of the tubular sheath must exhibit selected properties, such as a low loss tangent, low water absorption or low scattering coefficient to name a few, to be unaffected by the ablative energy.
- the ablation sheath 22 is advanced and oriented, relative to the guide sheath 52 , adjacent to or into contact with the targeted tissue region 21 to form a series of over-lapping lesions 44 - 44 ′′′, such as those illustrated in FIGS. 3 and 13A- 13 D.
- the contact surface 23 of the pre-shaped ablation sheath 22 is negotiated into physical contact with the targeted tissue 21 . Such contact increases the precision of the tissue ablation while further facilitating energy transfer between the ablation element and the tissue to be ablated, as will be discussed.
- At least one positioning electrode is disposed on the exterior surface of the ablation sheath for contact with the tissue.
- a plurality of electrodes are positioned along and adjacent the contact surface 23 to assess contact of the elongated and three dimensionally shaped contact surface.
- These electrodes 64 essentially measure whether there is any electrical activity (or electrophysiological signals) to one or the other side of the ablation sheath 22 . When a strong electrical activation signal is detected, or inter-electrode impedance is measured when two or more electrodes are applied, contact with the tissue can be assessed.
- these positioning electrodes may be applied to map the biological tissue prior to or after an ablation procedure, as well as be used to monitor the patient's condition during the ablation process.
- FIG. 10 illustrates two side-by-side electrodes 64 , 65 configured for sensing electrical activity in substantially one direction, in accordance with one aspect of the present invention.
- This electrode arrangement generally includes a pair of longitudinally extending electrode elements 66 , 67 that are disposed on the outer periphery of the ablation sheath 22 .
- the pair of electrode elements 66 , 67 are positioned side by side and arranged to be substantially parallel to one another.
- splitting the electrode arrangement into a pair of distinct elements permits substantial improvements in the resolution of the detected electrophysiological signals. Therefore, the pair of electrode elements 66 , 67 are preferably spaced apart and electrically isolated from one another. It will be appreciated, however, that only one electrode may be employed to sense proper tissue contact. It will also be appreciated that ring or coiled electrodes can also be used.
- the pair of electrode elements 66 , 67 are further arranged to be substantially parallel to the longitudinal axis of the ablation sheath 22 .
- the space between electrodes should be sufficiently small. It is generally believed that too large space may create problems in determining the directional position of the catheter and too small a space may degrade the resolution of the detected electrophysiological signals.
- the distance between the two pair of electrode elements may be between about 0.5 and 2.0 mm.
- the electrode elements 66 , 67 are preferably positioned substantially proximate to the predetermined contact surface 23 of the ablation sheath 22 . More preferably, the electrode elements 66 , 67 are positioned just distal to the distal end of the predetermined contact surface 23 since it is believed to be particularly useful to facilitate mapping and monitoring as well as to position the ablation sheath 22 in the area designated for tissue ablation. For example, during some procedures, a surgeon may need to ascertain where the distal end of the ablation sheath 22 is located in order to ablate the appropriate tissues.
- the electrode elements 66 , 67 may be positioned substantially proximate the proximal end of the predetermined contact surface 23 , at a central portion of the contact surface 23 or a combination thereof. For instance, when attempting to contact the loop-shaped ablation sheath 22 employed to isolate each of left and inferior pulmonary vein orifices 37 , 38 , a central location of the electrodes along the looped-shape contact surface 23 may best sense contact with the targeted tissue. Moreover, while not specifically illustrated, a plurality of electrode arrangements may be disposed along the ablation sheath as well.
- a first set of electrode elements may be disposed distally from the predetermined contact surface, a second set of electrode elements may be disposed proximally to the contact surface, while a third set of electrode elements may be disposed centrally thereof.
- These electrodes may also be used with other types of mapping electrodes, for example, a variety of suitable mapping electrode arrangements are described in detail in U.S. Pat. No. 5,788,692 to Campbell, et al., which is incorporated herein by reference in its entirety. Although only a few positions have been described, it should be understood that the electrode elements may be positioned in any suitable position along the length of the ablation sheath.
- the electrode elements 66 , 67 may be formed from any suitable material, such as stainless steel and iridium platinum.
- the width (or diameter) and the length of the electrode may vary to some extent based on the particular application of the catheter and the type of material chosen.
- the electrodes are preferably dimensioned to minimize electromagnetic field interference, for example, the capturing of the microwave field produced by the antenna.
- the electrodes are arranged to have a length that is substantially larger than the width, and are preferably between about 0.010 inches to about 0.025 inches and a length between about 0.50 inch to about 1.0 inch.
- the electrode arrangement has been shown and described as being parallel plates that are substantially parallel to the longitudinal axis of the ablation sheath 22 and aligned longitudinally (e.g., distal and proximal ends match up), it should be noted that this is not a limitation and that the electrodes can be configured to be angled relative to the longitudinal axis of the ablation sheath 22 (or one another) or offset longitudinally. Furthermore, although the electrodes have been shown and described as a plate, it should be noted that the electrodes may be configured to be a wire or a point such as a solder blob.
- Each of the electrode elements 66 , 67 is electrically coupled to an associated electrode wire 68 , 70 and which extend through ablation sheath 22 to at least the proximal portion of the flexible outer tubing.
- the electrode wires 68 , 70 are electrically isolated from one another to prevent degradation of the electrical signal, and are positioned on opposite sides of the retaining member 63 .
- the connection between the electrodes 64 , 65 and the electrode wires 68 , 70 may be made in any suitable manner such as soldering, brazing, ultrasonic welding or adhesive bonding.
- the longitudinal electrodes can be formed from the electrode wire itself.
- Forming the longitudinal electrodes from the electrode wire, or out of wire in general, is particularly advantageous because the size of wire is generally small and therefore the longitudinal electrodes elements may be positioned closer together thereby forming a smaller arrangement that takes up less space. As a result, the electrodes may be positioned almost anywhere on a catheter or surgical tool.
- These associated electrodes are described in greater detail in U.S. Patent application Ser. No. 09/548,331, filed Apr. 12, 2000, and entitled “ELECTRODE ARRANGE-MENT FOR USE IN A MEDICAL
- the ablative device 26 is preferably in the form of an elongated member, which is designed for insertion into the ablation lumen 25 of the ablation sheath 22 , and which in turn is designed for insertion into a vessel (such as a blood vessel) in the body of a patient.
- a vessel such as a blood vessel
- the present invention may be in the form of a handheld instrument for use in open surgical or minimally invasive procedures (FIG. 12).
- the ablative device 26 typically includes a flexible outer tubing 71 (having one or several lumens therein), a transmission line 72 that extends through the flexible tubing 71 and an energy delivery portion 27 coupled to the distal end of the transmission line 72 .
- the flexible outer tubing 71 may be made of any suitable material such as medical grade polyolefins, fluoropolymers, or polyvinylidene fluoride.
- PEBAX resins from Autochem of Germany have been used with success for the outer tubing of the body of the catheter.
- the ablative energy emitted by the energy delivery portion 27 of the ablative device 26 may be one of several types.
- the energy delivery portion 27 includes a microwave component which generates a electromagnetic field sufficient to cause tissue ablation.
- the ablative energy may also be derived from a laser source, a cryogenic source, an ultrasonic source or a radiofrequency source, to name a few.
- a directive component cooperates with the energy source to control the direction and emission of the ablative energy. This assures that the surrounding tissues of the targeted tissue regions will be preserved. Further, the use of a directional field has several potential advantages over conventional energy delivery structure that generate uniform fields about the longitudinal axis of the energy delivery portion. For example, in the microwave application, by forming a more concentrated and directional electromagnetic field, deeper penetration of biological tissues is enabled, and the targeted tissue region may be ablated without heating as much of the surrounding tissues and/or blood. Additionally, since substantial portions the radiated ablative energy is not emitted in the air or absorbed in the blood or the surrounding tissues, less power is generally required from the power source, and less power is generally lost in the microwave transmission line.
- the energy delivery portion 27 of the ablative device 26 is an antenna assembly configured to directionally emit a majority of an electromagnetic field from one side thereof.
- the antenna assembly 27 preferably includes a flexible antenna 60 , for generating the electromagnetic field, and a flexible reflector 73 as a directive component, for redirecting a portion of the electromagnetic field to one side of the antenna opposite the reflector.
- the resultant electromagnetic field includes components of the originally generated field, and components of the redirected electromagnetic field.
- the directional field will thus be continuously aligned toward the contact surface 23 of the ablation sheath 22 as the antenna assembly is incrementally advanced through the ablation lumen 25 .
- FIG. 11 illustrates that the proximal end of the antenna 60 is preferably coupled directly or indirectly to the inner conductor 75 of a coaxial transmission line 72 .
- a direct connection between the antenna 60 and the inner conductor 75 may be made in any suitable manner such as soldering, brazing, ultrasonic welding or adhesive bonding.
- antenna 60 can be formed from the inner conductor 75 of the transmission line 72 itself. This is typically more difficult from a manufacturing standpoint but has the advantage of forming a more rugged connection between the antenna and the inner conductor.
- a passive component such as a capacitor, an inductor or a stub tuner for example, in order to provide better impedance matching between the antenna assembly and the transmission line, which is a coaxial cable in the preferred embodiment.
- the transmission line 72 is arranged for actuating and/or powering the antenna 60 .
- the transmission line 72 includes an inner conductor 75 , an outer conductor 76 , and a dielectric material 77 disposed between the inner and outer conductors.
- the inner conductor 75 is coupled to the antenna 60 .
- the antenna 60 and the reflector 73 are enclosed (e.g., encapsulated) in a flexible insulative material thereby forming the insulator 61 , to be described in greater detail below, of the antenna assembly 27 .
- the power supply (not shown) includes a microwave generator which may take any conventional form.
- the optimal frequencies are generally in the neighborhood of the optimal frequency for heating water.
- frequencies in the range of approximately 800 MHz to 6 GHz work well.
- the frequencies that are approved by the Federal Communication Commission (FCC) for experimental clinical work includes 915 MHz and 2.45 GHz. Therefore, a power supply having the capacity to generate microwave energy at frequencies in the neighborhood of 2.45 GHz may be chosen.
- a conventional magnetron of the type commonly used in microwave ovens is utilized as the generator. It should be appreciated, however, that any other suitable microwave power source could be substituted in its place, and that the explained concepts may be applied at other frequencies like about 434 MHz or 5.8 GHz (ISM band).
- the antenna assembly 27 includes a longitudinally extending antenna wire 60 that is laterally offset from the transmission line inner conductor 75 to position the antenna closer to the window portion 58 of the insulator 61 upon which the directed electric field is transmitted.
- the antenna 60 illustrated is preferably a longitudinally extending exposed wire that extends distally (albeit laterally offset) from the inner conductor.
- helical coils, flat printed circuit antennas and other antenna geometries will work as well.
- the insulator 61 is preferably provided by a good, lowloss dielectric material which is relatively unaffected by microwave exposure, and thus capable of transmission of the electromagnetic field therethrough. Moreover, the insulator material preferably has a low water absorption so that it is not itself heated by the microwaves. Incidentally, when the emitted ablative energy is microwave in origin, the ablation sheath must also include these material properties. Finally, the insulation material must be capable of substantial flexibility without fracturing or breaking. Such materials include moldable TEFLON®, silicone, or polyethylene, polyimide, etc.
- the field generated by the illustrated antenna will be generally consistent with the length of the antenna. That is, the length of the electromagnetic field is generally constrained to the longitudinal length of the antenna. Therefore, the length of the field may be adjusted by adjusting the length of the antenna. Accordingly, microwave ablation elements having specified ablation characteristics can be fabricated by building them with different length antennas. Additionally, it should be understood that longitudinally extending antennas are not a requirement and that other shapes and configurations may be used.
- the antenna 60 is preferably formed from a conductive material.
- a conductive material such as copper or silver-plated metal work well.
- the diameter of the antenna 60 may vary to some extent based on the particular application of the catheter and the type of material chosen. In microwave systems using a simple exposed wire type antenna, for instance, wire diameters between about 0.010 to about 0.020 inches work well. In the illustrated embodiment, the diameter of the antenna is about 0.013 inches.
- the antenna 60 is positioned closer to the area designated for tissue ablation in order to achieve effective energy transmission between the antenna 60 and the targeted tissue 21 through the predetermined contact surface 23 of the ablation sheath 22 .
- This is best achieved by placing the antenna 60 proximate to the outer peripheral surface of the antenna insulator 61 .
- a longitudinal axis of the antenna 60 is preferably off-set from, but parallel to, a longitudinal axis 78 of the inner conductor 75 in a direction away from the reflector 73 and therefore towards the concentrated electromagnetic field (FIGS. 8 and 9).
- placing the antenna between about 0.010 to about 0.020 inches away from the outer peripheral surface of the antenna insulator works well.
- the antenna is about 0.013 inches away from the outer peripheral surface of the antenna insulator 61 .
- this is not a requirement and that the antenna position may vary according to the specific design of each catheter.
- the directive component or reflector 73 it is positioned adjacent and generally parallel to a first side of the antenna, and is configured to redirect those components of the electromagnetic field contacting the reflector back towards and out of a second side of the antenna assembly 27 opposite the reflector. A majority of the electromagnetic field, consequently, is directed out of the window portion 58 of the insulator 61 in a controlled manner during ablation.
- the antenna 60 is preferably off-set from the reflector 73 (FIGS. 8 and 9). This off-set from the longitudinal axis 78 further positions the antenna 60 closer to the window portion 58 to facilitate ablation by positioning the antenna 60 closer to the targeted tissue region. It has been found that the minimum distance between the reflector and the antenna may be between about 0.020 to about 0.030 inches, in the described embodiment, in order to reduce the coupling. However, the distance may vary according to the specific design of each ablative device.
- the proximal end of the reflector 73 is preferably coupled to the outer conductor 76 of the coaxial transmission line 72 .
- Connecting the reflector to the outer conductor serves to better define the electromagnetic field generated during use. That is, the radiated field is better confined along the antenna, to one side, when the reflector is electrically connected to the outer conductor of the coaxial transmission line.
- the connection between the reflector 73 and the outer conductor 76 may be made in any suitable manner such as soldering, brazing, ultrasonic welding or adhesive bonding.
- the reflector can be formed from the outer conductor of the transmission line itself. This is typically more difficult from a manufacturing standpoint but has the advantage of forming a more rugged connection between the reflector and the outer conductor.
- the proximal end of the reflector 73 is directly contacted against the outer conductor without applying solder or such conductive adhesive bonding.
- the insulator material of the insulator 61 functions as the adhesive to maintain electrical continuity. This is performed by initially molding the antenna wire in the silicone insulator.
- the reflector 73 is subsequently disposed on the molded silicone tube, and is extended over the outer conductor 76 of coaxial cable transmission line 72 .
- a heat shrink tube is then applied over the assembly to firmly maintain the electrical contact between the reflector 73 and the coaxial cable outer conductor 76 .
- the reflector may be directly coupled to a ground source or be electrically floating.
- the antenna 60 typically emits an electromagnetic field that is fairly well constrained to the length of the antenna. Therefore, in some embodiments, the distal end of the reflector 73 extends longitudinally to at about the distal end of the antenna 60 so that the reflector can effectively cooperate with the antenna. This arrangement serves to provide better control of the electromagnetic field during ablation.
- the actual length of the reflector may vary according to the specific design of each catheter. For example, catheters having specified ablation characteristics can be fabricated by building catheters with different length reflectors.
- the reflector 73 is typically composed of a conductive, metallic material or foil.
- the antenna assembly 27 must be relatively flexible in order to negotiate the curvilinear ablation lumen 25 of the ablation sheath 22 as the ablative device it is advanced therethrough, the insulator 61 , the antenna wire and the reflector must collectively be relatively flexible.
- one particularly material suitable for such a reflector is a braided conductive mesh having a proximal end conductively mounted to the distal portion of the outer conductor of the coaxial cable. This conductive mesh is preferably thin walled to the shield assembly yet provide the appropriate microwave shielding properties, as well as enable substantial flexibility of the shield device during bending movement.
- a suitable copper mesh wire should have a diameter in the range of about 0.005 inches to about 0.010 inches, and more preferably about 0.007 inches.
- a good electrical conductor is generally used for the shield assembly in order to reduce the self-heating caused by resistive losses.
- Such conductors includes, but are not restricted to copper, silver and gold.
- Another suitable arrangement may be thin metallic foil reflector 73 which is inherently flexible.
- the foil material can be pleated or folded which resists tearing during bending of the antenna assembly 27 .
- These foils can be composed of copper that has a layer of silver plating formed on its inner peripheral surface. Such silver plating, which can also be applied to the metallic mesh material, is used to increase the conductivity of the reflector. It should be understood, however, that these materials are not a limitation. Furthermore, the actual thickness of the reflector may vary according to the specific material chosen.
- the reflector 73 is preferably configured to have an arcuate or meniscus shape (e.g., crescent), with an arc angle that opens towards the antenna 60 . Flaring the reflector towards the antenna serves to better define the electromagnetic field generated during use. Additionally, the reflector functions to isolate the antenna 60 from the restraining member 63 of the ablation sheath 22 during ablation. Since the restraining member 63 is preferably metallic in composition (most preferably Nitinol), it is desirable minimize electromagnetic coupling with the antenna. Thus, the reflector 73 is preferably configured to permit at most a 180° circumferential radiation pattern from the antenna. In fact, it has been discovered that arc angles greater than about 180° are considerably less efficient. More preferably, the arc angle of the radiation pattern is in the range of about 90° to about 120°.
- the arc angle of the radiation pattern is in the range of about 90° to about 120°.
- any flared shape that opens towards the antenna may work well, regardless of whether it is curvilinear or rectilinear.
- the shape of the reflector need not be uniform.
- a first portion of the reflector e.g., distal
- a second portion e.g., proximal
- Varying the shape of the reflector in this manner may be desirable to obtain a more uniform radiated field.
- the energy transfer between the antenna and the tissue to be ablated tends to increase by decreasing the coverage angle of the reflector, and conversely, the energy transfer between the antenna and the tissue to be ablated tends to decrease by increasing the coverage angle of the reflector. Accordingly, the shape of the reflector may be altered to balance out non-uniformities found in the radiated field of the antenna arrangement.
- the directive component 73 for the microwave antenna assembly 27 can be provided by another dielectric material having a dielectric constant different than that of the insulator material 67 .
- a strong reflection of electromagnetic wave is observed when the wave reaches an interface created by two materials with a different dielectric constant.
- a ceramic loaded polymer can have a dielectric constant comprised between 15 and 55, while the dielectric of a fluoropolymer like Teflon or is comprised between 2 and 3. Such an interface would create a strong reflection of the wave and act as a semi-reflector.
- the longitudinal length of the reflector need not be uniform. That is, a portion of the reflector may be stepped towards the antenna or a portion of the reflector may be stepped away from the antenna. Stepping the reflector in this manner may be desirable to obtain a more uniform radiated field. While not wishing to be bound by theory, it is believed that by placing the reflector closer to the antenna, a weaker radiated field may be obtained, and that by placing the reflector further away from the antenna, a stronger radiated field may be obtained. Accordingly, the longitudinal length of the reflector may be altered to balance out non uniformities found in the radiated field of the antenna arrangement.
- a typical microwave ablation system it is important to match the impedance of the antenna with the impedance of the transmission line. As is well known to those skilled in the art, if the impedance is not matched, the catheter's performance tends to be well below the optimal performance. The decline in performance is most easily seen in an increase in the reflected power from the antenna toward the generator. Therefore, the components of a microwave transmission system are typically designed to provide a matched impedance.
- a typical set impedance of the microwave ablation system may be on the order of fifty (50) ohms.
- an impedance matching device 80 may be provided to facilitate impedance matching between the antenna 60 and the transmission line 72 .
- the impedance matching device 80 is generally disposed proximate the junction between the antenna 60 and the inner conductor 75 .
- the impedance match is designed and calculated assuming that the antenna assembly 27 , in combination with the predetermined contact surface 23 of the ablation sheath 22 , is in resonance to minimize the reflected power, and thus increase the radiation efficiency of the antenna structure.
- the impedance matching device is determined by using a Smith Abacus Model.
- the impedance matching device may be ascertained by measuring the impedance of the antenna with a network analyzer, analyzing the measured value with a Smith Abacus Chart, and selecting the appropriate device.
- the impedance matching device may be any combination of a capacitor, resistor, inductor, stub tuner or stub transmission line, whether in series or in parallel with the antenna.
- An example of the Smith Abacus Model is described in Reference: David K. Cheng, “Field and Wave Electromagnetics,” second edition, Addison-Wesley Publishing, 1989, which is incorporated herein by reference.
- the impedance matching device is a serial capacitor having a capacitance in the range of about 0.6 to about 1.0 picoFarads. In the illustration shown, the serial capacitor has a capacitance of about 0.8 picoFarads.
- the impedance will be matched assuming flush contact between the antenna assembly 27 and the ablation sheath (FIG. 9).
- the window portion 58 of the flexible antenna insulator 61 in flush contact against the interior wall 62 of the ablation lumen 25 , opposite the predetermined contact surface 23 .
- This arrangement may substantially reduce the impedance variance caused by the interface between insulator 61 and the ablation sheath 22 as the directional field is transmitted therethrough.
- the ablation system 20 preferably incorporates a forcing mechanism 81 (FIGS. 8 and 9) adapted to urge the window portion 58 of the antenna assembly 27 into flush contact against the interior wall 62 of the ablation sheath.
- the forcing mechanism cooperates between a support portion 82 of the interior wall 62 of the ablation lumen 25 and the forcing wall portion 83 of the antenna assembly.
- the forcing mechanism When not operational, the forcing mechanism permits relative axial displacement between the ablative device 26 and the ablation sheath for repositioning of the antenna assembly 27 along the ablation path 28 (FIG. 8).
- the forcing mechanism 81 contacts the forcing wall portion 83 to urge window portion 58 flush against the interior wall 62 opposite the predetermined contact surface 23 . Consequently, the impedance match between the antenna and the transmission line is properly achieved and stable even when the antenna is moving in the ablation sheath.
- the forcing mechanism may be provided by an inflatable structure acting between the support portion 82 of the interior wall 62 of the ablation lumen 25 and the forcing wall portion 83 of the antenna assembly device.
- forcing mechanism 81 Upon selective inflation of forcing mechanism 81 (FIG. 9), the window portion 58 will be urged into flush contact with the interior wall 62 of the ablation lumen.
- deflation of the forcing mechanism 81 FIG. 8
- relative axial displacement between the antenna assembly 27 and the ablation sheath may commence.
- the forcing mechanism can be provided by other techniques such as spring devices or the like.
- the ablative energy may be in the form of laser energy sufficient to ablate tissue.
- laser energy examples include CO 2 or Nd: YAG lasers.
- the transmission line 72 is preferably in the form of a fiber optic cable or the like.
- the directive component 73 may be provided by a reflector having a well polished smooth reflective or semi-reflective surface. This preferably metallic reflective surface is configured to reflect the emitted laser energy toward the targeted tissue region.
- functional metallic materials include silver or platinum.
- the directive component of the laser ablative device may be provided between two layers of dielectric materials with a sufficient difference between the refractory indexes.
- at least one dielectric directive component layer functions like the outer dielectric layer of the fiber optic transmission line 72 to obtain “total internal reflection”. Consequently, the laser energy can be emitted away from the dielectric layer.
- total internal reflection may be attained at several angles of incidence. Again, the reflection of the electromagnetic wave is caused by the interface between two media having different dielectric constants. Generally speaking, the higher is the difference between the dielectric constants, the more significant is the internal reflection. In addition, when more than one dielectric layer are involved, interference can be used to direct the laser energy in a preferred direction.
- both the ablation sheath 22 and the ablation device be composed of materials which have a low scattering coefficient and a low factor of absorption. In addition, it is also preferable to use material with low water absorption.
- the laser energy delivery portion can consist of multiple reflective particles embedded in a laser transparent material.
- the laser wave is propagating from the laser generator to the optic fiber transmission line and enter in the laser energy delivery portion.
- the embedded reflective particles diffracts the light, which is reflected toward the tissue to be ablated by the directive component 73 .
- cryogenic energy may be employed as an ablative energy.
- a cryogenic fluid such as a pressurized gas (E.g., Freon) is passed through an inflow lumen 90 in the ablation device transmission line 72 .
- the distal ablative device 26 is preferably provided by a decompression chamber which decompresses the pressurized gas from the inflow lumen 90 therein.
- the temperature of the exterior surface 92 of the decompression chamber is sufficiently reduced to cause tissue ablation upon contact thereof.
- the decompressed gas is then exhausted through the outflow lumen 93 of the transmission line 72 .
- FIG. 15B illustrates that the directive component 73 is in the form of a thermal insulation layer extending longitudinally along one side of the energy delivery portion 27 .
- the C-shaped insulation layer 73 will substantially minimize undesirable cryogenic ablation of the immediate tissue surrounding of the targeted tissue region.
- the isolation layer may define a thin, elongated gap 95 which partially surrounds the decompression chamber 91 . This gap 95 may then be filled with air, or an inert gas, such as CO 2 , to facilitate thermal isolation.
- the isolation gap 95 may also be filled with a powder material having relatively small solid particulates or by air expended polymer. These materials would allow small air gaps between the insulative particles or polymeric matrix for additional insulation thereof.
- the isolation layer may also be provided by a refractory material. Such materials forming an insulative barrier include ceramics, oxides, etc.
- an ultrasound ablation device may also be applied as another viable source of ablation energy.
- a piezoelectric transducer 96 may be supplied as the ablative element which delivers acoustic waves sufficient to ablate tissue. These devices emit ablative energy which can be directed and shaped by applying a directive echogenic component to reflect the acoustic energy.
- a series or array of piezoelectric transducers 96 , 96 ′ and 96 ′′ can be applied to collectively form a desired radiation pattern for tissue ablation. For example, by adjusting the delay between the electrical exciting signal of one transducer and its neighbor, the direction of transmission can be modified. Typical of these transducers include piezoelectric materials like quartz, barium oxides, etc.
- the directive component 73 of the ultrasonic ablation device may be provided by an echogenic material ( 73 - 73 ′′) positioned proximate the piezoelectric transducers.
- This material reflects the acoustic wave and which cooperates with the transducers to direct the ablative energy toward the targeted tissue region.
- echogenic materials are habitually hard. They include, but are not restricted to metals and ceramics for example.
- both the ablation sheath 22 and the ablation device be composed of materials which have low absorption of the acoustic waves, and that provide a good acoustic impedance matching between the tissue and the transducer.
- the thickness and the material chosen for the ablation sheath play in important role to match the acoustic properties of the tissue to be ablated and the transducer.
- An impedance matching jelly can also be used in the ablation sheath to improve the acoustic impedance matching.
- the ablation device may be provided by a radiofrequency (RF) ablation source which apply RF conduction current sufficient to ablate tissue.
- RF radiofrequency
- These conventional ablation instruments generally apply conduction current in the range of about 450 kHz to about 550 kHz.
- Typical of these RF ablation devices include ring electrodes, coiled electrodes or saline electrodes.
- the directive component is preferably composed of an electrically insulative and flexible material, such as plastic or silicone. These biocompatible materials perform the function of directing the conduction current toward a predetermined direction.
- the window portion 58 of the ablation sheath 22 is provided by an opening in the sheath along the ablation path, as opposed to being merely transparent to the energy ablation devices.
- the energy delivery portion 27 of the ablation device 26 may be slideably positioned into direct contact with the tissue for ablation thereof.
- Such direct contact is especially beneficial when it is technically difficult to find a sheath that is merely transparent to the used ablative energy. For example, it would be easier to use a window portion when RF energy is used.
- the ablative RF element could directly touch the tissue to be ablated while the directive element would be the part of the ablation sheath 22 facing away the window portion 58 .
- the window portion could be used by the surgeon to indicate the area where an ablation can potentially be done with the energy ablation device.
- the ablation system 20 may be in the form of a rail system including a rail device 96 upon which the ablation device 26 slides therealong as compared to therethrough.
- FIGS. 18 and 19 illustrate the rail device 96 which is preferably pre-shaped or bendable to proximately conform to the surface of the targeted tissue. Once the rail device 96 is positioned, the ablation device can be advanced or retracted along the path defined by the rail device for ablation of the targeted tissue 21 .
- the ablation device 26 in this arrangement includes a body portion 98 housing the energy delivery portion 27 therein.
- the window portion 58 is preferably extend longitudinally along the outer surface of one side of the housing.
- An opposite side of the housing, and longitudinally oriented substantially parallel to the window portion 58 is a rail receiving passage 97 formed and dimensioned to slideably receive and slide over the rail device 96 longitudinally therethrough.
- the energy delivery portion 27 may be advanced by pushing the body portion 98 through the transmission line 72 .
- the energy delivery portion 27 may be advanced by pulling the body portion 98 along the path of the rail system 20 .
- the directive component 73 of the ablation device 26 is integrally formed with the body portion 98 of the ablation device. This preferably C-shaped component extends partially peripherally around the energy delivery portion 27 to shield the rail device 96 from exposure to the ablative energy. Depending upon the type of ablative energy employed, the material or structure of the directive component 73 can be constructed as set forth above.
- a key structure 48 is employed.
- the transverse cross-sectional dimension of the rail device 96 and matching rail receiving passage 97 is shaped to assure proper directional orientation of the ablative energy. Examples of such key forms are shown in FIGS. 20 A- 20 B.
- the open window embodiment and the rail system embodiment may employ multiple ablative element technology. These include microwave, radiofrequency, laser, ultrasound and cryogenic energy sources.
- the tissue ablation system further includes a temperature sensor which is applied to measure the temperature of the ablated tissue during the ablation.
- the temperature sensor is mounted to the ablation device proximate the energy delivery portion 27 so that the sensor moves together with the energy delivery portion as it is advanced through the ablation sheath.
- the temperature sensor is attached on the ablation sheath.
- a mathematical relationship is used to calculate the tissue temperature from the measured temperature.
- Typical of such temperature sensors include a metallic temperature sensor, a thermocouple, a thermistor, or a non-metallic temperature sensor such as fiber optic temperature sensor.
- the guide sheath 52 and the ablation sheath 22 can be designed and configured to steer the ablative device along any three dimensional path.
- the tissue ablation system of present invention may be adapted for an abundance of uses.
- the distal end portion of the ablation sheath can be configured to form a closed ablation path for the ablation device.
- This design may be employed to ablate around an ostium of an organ, or to electrically isolate one or several pulmonary veins to treat atrial fibrillation.
- a closed ablation path may also utilized to ablate around an aneurysm, such as a cardiac aneurysm or tumor, or any kink of tumor.
- the ablation sheath can be inserted in an organ in order to ablate a deep tumor or to perform any surgical treatment where a tissue ablation is required.
- the distal end portion of the ablation sheath 22 may define a rectilinear or curvilinear open ablation path for the ablation device.
- Such open ablation paths may be applied to ablate on the isthmus between the inferior caval vein (IVC) and the tricuspid valve (TV), to treat regular flutter, or to generate a lesion between the IVC and the SVC, to avoid macro-reentry circuits in the right atrium.
- ablation lesions can be formed between: any of the pulmonary vein ostium to treat atrial fibrillation; the mitral valve and one of the pulmonary veins to avoid macro-reentry circuit around the pulmonary veins in the left atrium; and the left appendage and one of the pulmonary veins to avoid macro-reentry circuit around the pulmonary veins in the left atrium.
- the ablation apparatus may be applied through several techniques.
- the ablation apparatus may be inserted into the coronary circulation to produce strategic lesions along the endocardium of the cardiac chambers (i.e., the left atrium, the right atrium, the left ventricle or the right ventricle).
- the ablation apparatus may be inserted through the chest to produce epicardial lesions on the heart. This insertion may be performed through open surgery techniques, such as by a sternotomy or a thoracotomy, or through minimally invasive techniques, applying a cannula and an endoscope to visualize the location of the ablation apparatus during a surgery.
- the ablation apparatus is also suitable for open surgery applications such as ablating the exterior surfaces of an organ as well, such as the heart, brain, stomach, esophagus, intestine, uterus, liver, pancreas, spleen, kidney or prostate.
- the present invention may also be applied to ablate the inside wall of hollow organs, such as heart, stomach, esophagus, intestine, uterus, bladder or vagina.
- the penetration port formed in the organ by the ablation device must be sealed to avoid a substantial loss of this fluid.
- the seal may be formed by a purse string, a biocompatible glue or by other conventional sealing devices.
- the present invention may be applied in an intracoronary configuration where the ablation device is used to isolate the pulmonary vein from the left atrium.
- FIG. 2C illustrates that a distal end of the ablation sheath 22 is adapted for insertion into the pulmonary vein.
- the distal end of the ablation device may include at least one electrode used to assess the electrical isolation of the vein. This is performed by pacing the distal electrode to “capture” the heart. If pacing captures the heart, the vein is not yet electrically isolated, while, if the heart cannot be captured, the pulmonary vein is electrically isolated from the left atrium.
- a closed annular ablation on the posterior wall of the left atrium around the ostium of the pulmonary vein by applying the pigtail ablation sheath 22 of FIGS. 2 and 4.
- the ablation device may include a lumen to inject a contrasting agent into the organ.
- the contrasting agent facilitates visualization of the pulmonary vein anatomy with a regular angiogram technique. This is important for an intra-coronary procedure since fluoroscopy is used in this technique.
- the premise is to visualize the shape and the distal extremity of the sheaths, as well as the proximal and distal part of the sliding energy delivery portion during an ablative procedure under fluoroscopy. It is essential for the electrophysiologist to be able to identify not only the ablative element but also the path that the ablation sheath will provide to guide the energy delivery portion 27 therealong.
- Another visualization technique may be to employ a plurality of radio-opaque markers spaced-apart along the guide sheath to facilitate location and the shape thereof.
- the radio-opaque element that will show the shape of the sheath.
- This element can be a metallic ring or soldering such as platinum which is biocompatible and very radio-opaque.
- Another example of a radio-opaque element would be the application of a radio-opaque polymer such as a beryllium loaded material.
- radio-opaque markers may be disposed along the proximal, middle and distal ends of the energy delivery portion 27 to facilitate the visualization and the location of the energy delivery portion when the procedure is performed under fluoroscopy.
- a fluoro-opaque element may be placed at the distal extremity.
- Another implementation of this concept would be to have different opacities for the ablation sheath and the, energy delivery portion 27 .
- the energy delivery portion may be more opaque than that of the ablation sheath, and the ablation sheath may be more opaque than the transseptal sheath, when the latter is used.
- the surgical ablation device of the present invention may also be applied minimally invasively to ablate the epicardium of a beating heart through an endoscopic procedure.
- at least one intercostal port 85 or access port is formed in the thorax.
- a dissection tool (not shown) or the like may be utilized to facilitate access the pericardial cavity.
- the pericardium may be dissected to enable access to the epicardium of a beating heart.
- the pericardial reflections may be dissected in order to allow the positioning of the ablation device 26 around the pulmonary veins.
- Another dissection tool (not shown) may also be utilized to puncture the pericardial reflection located in proximity to a pulmonary vein. After the puncture of the pericardial reflection, the ablation sheath can be positioned around one, or more than one pulmonary veins, in order to produce the ablation pattern used to treat the arrhythmia, atrial fibrillation in particular.
- a guide sheath 52 may be inserted through the access port 85 while visualizing the insertion process with an endoscopic device 86 positioned in another access port 87 .
- the ablation sheath 22 may be inserted through the guide sheath, while again visualizing the insertion process with the endoscopic system to position the ablation sheath on the targeted tissue to ablate.
- the ablation device may then be slid through the ablation lumen of the ablation sheath and adjacent the targeted tissue. Similar to the previous ablation techniques, the ablative element of the ablation device may be operated and negotiated in an overlapping manner to form a gap free lesion or a plurality of independent lesions.
- the ablation sheath may also be malleable or flexible. The surgeon can use a surgical instrument, like a forceps, to manipulate, bend and position the ablation sheath.
- the guide sheath, ablation sheath, or ablation element could be controlled by a robot during a robotic minimally invasive surgical procedure.
- the robot could telescopically translate or rotate the guide sheath, the ablation sheath, or the ablation element in order to position the ablation sheath and the ablation element correctly to produce the ablation of tissue.
- the robot could also perform other tasks to facilitate the access of the ablation sheath to the tissue to be ablated.
- These tasks include, but are not limited to: performing the pericardial reflection in the area of a pulmonary vein; performing an incision on the pericardial sac; manipulating, bending or shaping the ablation sheath; or performing an incision on an organ to penetrate the ablation sheath through the penetration hole.
- the concept of using a sliding ablation element in an ablation sheath to ablate from the epicardium of a beating heart can also be applied in open chest surgery.
- a malleable ablation sheath may be beneficial, as compared to a pre-shaped ablation sheath.
- a malleable metallic wire e.g., copper, stainless steel, etc. . . .
- the cardiac surgeon will then shape the ablation sheath to create the ablation path that he wants and will finally produce the ablation line by overlapping several ablations
- a securing device may be applied to secure the ablation sheath against the epicardium.
- Such a securing device may include stitches or the like which may be strung through receiving holes or cracks placed in the ablation sheath.
- Another device to anchor the ablation sheath to the epicardium may be in the form of a biocompatible adhesive, or a suction device.
- a way to visually locate the ablation element within the ablation sheath is provided to the surgeon.
- the ablation sheath is transparent and the ablation element can be directly visualized, or indirectly visualized via an endoscope.
- a marking element that can be directly visually identify along the ablation sheath, or indirectly visualized via an endoscope is used to identify the location of the ablation element within the sheath. The marking element is sliding with the ablation element to show the location of the ablation element.
- a way to indirectly locate the ablation element within the ablation sheath is provided to the surgeon.
- a position finding system is incorporated in the handle of the device to indicate the position of the ablation element within the ablation sheath.
- At least one marker can be directly visually, or indirectly visually identified. These markers can be used in collaboration with the position finding system as reference points to identify the location of the ablation element.
- the ablation system 20 may just as easily apply to endocardial tissue ablations as well.
- the tissue ablations may be performed through either open surgery techniques or through minimal invasive techniques.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Surgical Instruments (AREA)
- Laser Surgery Devices (AREA)
- Endoscopes (AREA)
- Electrotherapy Devices (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 09/751,472, filed Dec. 29, 2000, and entitled “A TISSUE ABLATION APPARATUS WITH A SLIDING ABLATION INSTRUMENT AND METHOD,” a copy of which is hereby incorporated herein by reference.
- 1. Field of Invention
- The present invention relates, generally, to ablation instrument systems that use ablative energy to ablate internal bodily tissues. More particularly, the present invention relates to preformed guide apparatus which cooperate with energy delivery arrangements to direct the ablative energy in selected directions along the guide apparatus.
- 2. Description of the Prior Art
- It is well documented that atrial fibrillation, either alone or as a consequence of other cardiac disease, continues to persist as the most common cardiac arrhythmia. According to recent estimates, more than two million people in the U.S. suffer from this common arrhythmia, roughly 0.15% to 1.0% of the population. Moreover, the prevalence of this cardiac disease increases with age, affecting nearly 8% to 17% of those over 60 years of age.
- Atrial arrhythmia may be treated using several methods. Pharmacological treatment of atrial fibrillation, for example, is initially the preferred approach, first to maintain normal sinus rhythm, or secondly to decrease the ventricular response rate. Other forms of treatment include drug therapies, electrical cardioversion, and RF catheter ablation of selected areas determined by mapping. In the more recent past, other surgical procedures have been developed for atrial fibrillation, including left atrial isolation, transvenous catheter or cryosurgical ablation of His bundle, and the Corridor procedure, which have effectively eliminated irregular ventricular rhythm. However, these procedures have for the most part failed to restore normal cardiac hemodynamics, or alleviate the patient's vulnerability to thromboembolism because the atria are allowed to continue to fibrillate. Accordingly, a more effective surgical treatment was required to cure medically refractory atrial fibrillation of the Heart.
- On the basis of electrophysiologic mapping of the atria and identification of macroreentrant circuits, a surgical approach was developed which effectively creates an electrical maze in the atrium (i.e., the MAZE procedure) and precludes the ability of the atria to fibrillate. Briefly, in the procedure commonly referred to as the MAZE III procedure, strategic atrial incisions are performed to prevent atrial reentry circuits and allow sinus impulses to activate the entire atrial myocardium, thereby preserving atrial transport function postoperatively. Since atrial fibrillation is characterized by the presence of multiple macroreentrant circuits that are fleeting in nature and can occur anywhere in the atria, it is prudent to interrupt all of the potential pathways for atrial macroreentrant circuits. These circuits, incidentally, have been identified by intraoperative mapping both experimentally and clinically in patients.
- Generally, this procedure includes the excision of both atrial appendages, and the electrical isolation of the pulmonary veins. Further, strategically placed atrial incisions not only interrupt the conduction routes of the common reentrant circuits, but they also direct the sinus impulse from the sinoatrial node to the atrioventricular node along a specified route. In essence, the entire atrial myocardium, with the exception of the atrial appendages and the pulmonary veins, is electrically activated by providing for multiple blind alleys off the main conduction route between the sinoatrial node to the atrioventricular node. Atrial transport function is thus preserved postoperatively as generally set forth in the series of articles: Cox, Schuessler, Boineau, Canavan, Cain, Lindsay, Stone, Smith, Corr, Change, and D'Agostino, Jr.,The Surgical Treatment Atrial Fibrillation (pts. 1-4), 101 T
HORAC CARDIOVASC SURG., 402-426, 569-592 (1991). - While this MAZE III procedure has proven effective in ablating medically refractory atrial fibrillation and associated detrimental sequelae, this operational procedure is traumatic to the patient since this is an open-heart procedure and substantial incisions are introduced into the interior chambers of the Heart. Consequently, other techniques have been developed to interrupt atrial fibrillation restore sinus rhythm. One such technique is strategic ablation of the atrial tissues through ablation catheters.
- Most approved ablation catheter systems now utilize radio frequency (RF) energy as the ablating energy source. Accordingly, a variety of RF based catheters and power supplies are currently available to electrophysiologists. However, radio frequency energy has several limitations including the rapid dissipation of energy in surface tissues resulting in shallow “burns” and failure to access deeper arrhythmic tissues. Another limitation of RF ablation catheters is the risk of clot formation on the energy emitting electrodes. Such clots have an associated danger of causing potentially lethal strokes in the event that a clot is dislodged from the catheter. It is also very difficult to create continuous long lesions with RF ablation instruments.
- As such, catheters which utilize other energy sources as the ablation energy source, for example in the microwave frequency range, are currently being developed. Microwave frequency energy, for example, has long been recognized as an effective energy source for heating biological tissues and has seen use in such hyperthermia applications as cancer treatment and preheating of blood prior to infusions. Accordingly, in view of the drawbacks of the traditional catheter ablation techniques, there has recently been a great deal of interest in using microwave energy as an ablation energy source. The advantage of microwave energy is that it is much easier to control and safer than direct current applications and it is capable of generating substantially larger and longer lesions than RF catheters, which greatly simplifies the actual ablation procedures. Such microwave ablation systems are described in the U.S. Pat. Nos. 4,641,649 to Walinsky; 5,246,438 to Langberg; 5,405,346 to Grundy, et al.; and 5,314,466 to Stern, et al, each of which is incorporated herein by reference.
- Most of the existing microwave ablation catheters contemplate the use of longitudinally extending helical antenna coils that direct the electromagnetic energy in all radial directions that are generally perpendicular to the longitudinal axis of the catheter. Although such catheter designs work well for a number of applications, such radial output is inappropriate when the energy needs to be directed toward the tissue to ablate only.
- Consequently, microwave ablation instruments have recently been developed which incorporate microwave antennas having directional reflectors. Typically, a tapered directional reflector is positioned peripherally around the microwave antenna to direct the waves toward and out of a window portion of the antenna assembly. These ablation instruments, thus, are capable of effectively transmitting electromagnetic energy in a more specific direction. For example, the electromagnetic energy may be transmitted generally perpendicular to the longitudinal axis of the catheter but constrained to a selected radial region of the antenna, or directly out the distal end of the instrument. Typical of these designs are described in the U.S. patent application Ser. Nos. 09/178,066, filed Oct. 23, 1998; and 09/333,747, filed Jun. 14, 1999, each of which is incorporated herein by reference.
- In these designs, the resonance frequency of the microwave antenna is preferably tuned assuming contact between the targeted tissue or blood and a contact region of the antenna assembly extending longitudinally adjacent to the antenna longitudinal axis. Hence, should a portion of, or substantially all of, the exposed contact region of the antenna not be in contact with the targeted tissue or blood during ablation, the resonance frequency will be adversely changed and the antenna will be untuned. As a result, the portion of the antenna not in contact with the targeted tissue or blood will radiate the electromagnetic radiation into the surrounding air. The efficiency of the energy delivery into the tissue will consequently decrease which in turn causes the penetration depth of the lesion to decrease.
- This is particularly problematic when the microwave antenna is not in the blood pool, or when the tissue surfaces are substantially curvilinear, or when the targeted tissue for ablation is difficult to access, such as in the interior chambers of the Heart. Since these antenna designs are generally relatively rigid, it is often difficult to maneuver substantially all of the exposed contact region of the antenna into abutting contact against the targeted tissue. In these instances, several ablation instruments, having antennas of varying length and shape, may be necessary to complete just one series of ablations.
- Accordingly, a system for ablating a selected portion of a contact surface of biological tissue is provided. The system is particularly suitable to ablate cardiac tissue, and includes an elongated ablation sheath having a preformed shape adapted to substantially conform a predetermined surface thereof with the contact surface of the tissue. The ablation sheath defines an ablation lumen extending therethrough along an ablation path proximate to the predetermined surface. An elongated ablative device includes a flexible ablation element which cooperate with an ablative energy source which is sufficiently strong for tissue ablation. The ablative device is formed and dimensioned for longitudinal sliding receipt through the ablation lumen of the ablation sheath for selective placement of the ablative device along the ablation path created by the ablation sheath. The ablation lumen and the ablative device cooperate to position the ablative device proximate to the ablation sheath predetermined surface for selective ablation of the selected portion.
- Accordingly, the ablation sheath in its preshaped form functions as a guide device to guide the ablative device along the ablation path when the predetermined surface of the ablation sheath properly contacts the biological tissue. Further, the cooperation between the ablative device and the ablation lumen, as the ablative device is advanced through the lumen, positions the ablative device in a proper orientation to facilitate ablation of the targeted tissue during the advancement. Thus, once the ablation sheath is stationed relative the targeted contact surface, the ablative device can be easily advanced along the ablation path to generate the desired tissue ablations.
- In one embodiment, the ablative device is a microwave antenna assembly which includes a flexible shield device coupled to the antenna substantially shield a surrounding area of the antenna from the electromagnetic field radially generated therefrom while permitting a majority of the field to be directed generally in a predetermined direction toward the ablation sheath predetermined surface. The microwave antenna assembly further includes a flexible insulator disposed between the shield device and the antenna. A window portion of the insulator is defined which enables transmission of the directed electromagnetic field in the predetermined direction toward the ablation sheath predetermined surface. The antenna, the shield device and the insulator are formed for manipulative bending thereof, as a unit, to one of a plurality of contact positions to generally conform the window portion to the ablation sheath predetermined surface as the insulator and antenna are advanced through the ablation lumen.
- In another embodiment, to facilitate alignment of the ablative device assembly in the ablation lumen, the ablative device provides a key device which is slideably received in a mating slot portion of the ablation lumen. In still another embodiment, the system includes a guide sheath defining a guide lumen formed and dimensioned for sliding receipt of the ablation sheath therethrough. The guide sheath is pre-shaped to facilitate positioning of the ablation sheath toward the selected portion of the contact surface when the ablation sheath is advanced through guide lumen.
- The ablation sheath includes a bendable shape retaining member extending longitudinally therethrough which is adapted to retain the preformed shape of the ablation sheath once positioned out of the guide lumen of the guide sheath.
- The ablative energy is preferably provided by a microwave ablative device. Other suitable tissue ablation devices, however, include cryogenic, ultrasonic, laser and radiofrequency, to name a few.
- In another aspect of the present invention, a method for treatment of a Heart includes forming a penetration through a muscular wall of the Heart into an interior chamber thereof; and positioning a distal end of an elongated ablation sheath through the penetration. The ablation sheath defines an ablation lumen extending along an ablation path therethrough. The method further includes contacting, or bringing close enough, a predetermined surface of the elongated ablation sheath with a first selected portion of an interior surface of the muscular wall; and passing a flexible ablative device through the ablation lumen of the ablation sheath for selective placement of the ablative device along the ablation path. Once these events have been performed, the method includes applying the ablative energy, using the ablative device and the ablation energy source, which is sufficiently strong to cause tissue ablation.
- In one embodiment, the passing is performed by incrementally advancing the ablative device along a plurality of positions of the ablation path to produce a substantially continuous lesion. Before the positioning event, the method includes placing a distal end of a guide sheath through the penetration, and then positioning the distal end of the ablation sheath through the guide lumen of the guide sheath.
- In still another embodiment, before the placing event, piercing the muscular wall with a piercing sheath. The piercing sheath defines a positioning passage extending therethrough, The placing the distal end of a guide sheath is performed by placing the guide sheath distal end through the positioning passage of the piercing sheath.
- In yet another configuration, the positioning the distal end event includes advancing the ablation sheath toward the first selected portion of the interior surface of the muscular wall through a manipulation device extending through a second penetration into the Heart interior chamber independent from the first named penetration.
- In another embodiment, a system for ablating tissue within a body of a patient is provided including an elongated rail device and an ablative device. The raidl device is adapted to be positioned proximate and adjacent to a selected tissue region to be ablated within the body of the patient. The ablative device includes a receiving passage configured to slideably receive the rail device longitudinally therethrough. This enables the ablative device to be slideably positioned along the rail substantially adjacent to or in contact with the selected tissue region. The ablative device, having an energy delivery portion which is adapted to be coupled to an ablative energy source, can then be operated to ablate the selected tissue region.
- In this configuration, the ablative device is adapted to directionally emit the ablative energy from the energy delivery portion. A key assembly cooperates between the ablative device and the rail member, thus, to properly align the directionally emitted ablative energy toward the tissue region to be ablated. This primarily performed by providing a rail device with a non-circular transverse cross-sectional dimension. The receiving passage of the ablative device further includes a substantially similarly shaped non-circular transverse cross-sectional dimension to enable sliding of the ablative device in a manner continuously aligning the directionally emitted ablative energy toward the tissue region to be ablated as the ablative device advances along the rail device.
- The assembly of the present invention has other objects and features of advantage which will be more readily apparent from the following description of the best mode of carrying out the invention and the appended claims, when taken in conjunction with the accompanying drawing, in which:
- FIGS. 1A and 1B are fragmentary, top perspective views, partially broken-away, of the ablation system constructed in accordance with the present invention, and illustrating advancement of a bendable directional reflective microwave antenna assembly through an ablation lumen of a ablation sheath.
- FIGS.2A-2D is series of fragmentary, side elevation views, in partial cross-section, of the Heart, and illustrating advancement of the ablation system of present invention into the left atrium for ablation of the targeted tissue.
- FIG. 3 is a fragmentary, side elevation view, in partial cross-section, of the Heart showing a pattern of ablation lesions to treat atrial fibrillation.
- FIGS. 4A and 4B are a series of enlarged, fragmentary, top perspective view of a pigtail ablation sheath of the ablation system of FIGS. 2C and 2D, and exemplifying the ablation sheath being advanced into one of the pulmonary vein orifices.
- FIG. 5 is a front schematic view of a patient's cardiovascular system illustrating the positioning of a transseptal piercing sheath through the septum wall of the patient's Heart.
- FIG. 6 is a fragmentary, side elevation view, in partial cross-section, of another embodiment of the ablation sheath of the present invention employed for lesion formation.
- FIG. 7 is a fragmentary, side elevation view, in partial cross-section, of yet another embodiment of the ablation sheath of the present invention employed for another lesion formation.
- FIG. 8 is an enlarged, front elevation view, in cross-section, of the ablation system of FIG. 1 positioned through the trans-septal piercing sheath.
- FIG. 9 is an enlarged, front elevation view, in cross-section, of the ablation sheath and the antenna assembly of the ablation system in FIG. 8 contacting the targeted tissue.
- FIG. 10 is an enlarged, front elevation view, in cross-section, of the antenna assembly taken substantially along the plane of the line10-10 in FIG. 9.
- FIG. 11 is a diagrammatic top plan view of an alternative embodiment microwave ablation instrument system constructed in accordance with one embodiment of the present invention.
- FIG. 12 is an enlarged, fragmentary, top perspective view of the ablation instrument system of FIG. 11 illustrated in a bent position to conform the ablation sheath to a surface of the tissue to be ablated.
- FIGS.13A-13D is a series of side elevation views, in cross-section, of the ablation sheath of the present invention illustrating advancement of the ablation device incrementally through the ablation sheath to form plurality of overlapping lesions.
- FIG. 14A is a fragmentary, side elevation view of a laser-type ablation device of the present invention.
- FIG. 14B is a front elevation view of the laser-type energy delivery portion taken along the plane of the
line 14B-14B in FIG. 14A. - FIG. 15A is a fragmentary, side elevation view of a cryogenic-type ablation device of the present invention.
- FIG. 15B is a front elevation view of the cryogenic-type energy delivery portion taken along the plane of the
line 15B-15B in FIG. 15A. - FIG. 16 is a fragmentary, side elevation view, in cross-section, of an ultrasonic-type ablation device of the present invention.
- FIG. 17 is an enlarged, fragmentary, top perspective view of an alternative embodiment ablation sheath having an opened window portion.
- FIG. 18 is a fragmentary, side elevation view of an alternative embodiment ablation assembly employing a rail system.
- FIG. 19 is a front elevation view of the energy delivery portion of the ablation rail system taken along the plane of the line19-19 in FIG. 18.
- FIGS.20A-20C are cross-sectional views of alternative key systems in accordance with the present invention.
- FIG. 21 is a fragmentary, diagrammatic, front elevation view of a torso applying one embodiment of the present invention through a minimally invasive technique.
- FIG. 22 is a top plan view, in cross-section of the fragmentary, diagrammatic, top plan view of the torso of FIG. 21 applying the minimally invasive technique.
- While the present invention will be described with reference to a few specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications to the present invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims. It will be noted here that for a better understanding, like components are designated by like reference numerals throughout the various Figures.
- Turning generally now to FIGS.1A-2D, an ablation system, generally designated 20, is provided for transmurally ablating a targeted
tissue 21 of biological tissue. Thesystem 20 is particularly suitable to ablate the epicardial orendocardial tissue 40 of the heart, and more particularly, to treat medically refractory atrial fibrillation of the Heart. Theablation system 20 for ablating tissue within a body of a patient includes an elongated flexibletubular member 22 having at least one lumen 25 (FIGS. 1A, 1B, 8 and 9) and including a pre-shaped distal end portion (E.g., FIGS. 2C, 6 and 7) which is shaped to be positioned adjacent to or in contact with a selectedtissue region 21 within the body of the patient. An ablative device, generally designated 26, is configured to be slideably received longitudinally within the at least onelumen 25, and includes anenergy delivery portion 27 located near a distal end portion of theablative device 26 which is adapted to be coupled to an ablative energy source (not shown). - The ablative device is preferably provided by a
microwave ablation device 26 formed to emit microwave energy sufficient to cause tissue ablation. As will be described in greater detail below, however, the ablative device energy may be provided by a laser ablation device, a Radio Frequency (RF) ablation device, an ultrasound ablation device or a cryoablation device. - The
tubular member 22 is in the form of an elongated ablation sheath having, in a preferred embodiment, a resiliently preformed shape adapted to substantially conform apredetermined contact surface 23 of the sheath with the targetedtissue region 21. In another embodiment, the ablation sheath is malleable. Yet, in another embodiment, the ablation sheath is flexible. Thelumen 25 of the tubular member extends therethrough along an ablation path proximate to the predetermined contact surface. Preferably, as will be described in more detail below, theablative device 26 includes a flexibleenergy delivery portion 27 selectively generating an electromagnetic field which is sufficiently strong for tissue ablation. Theenergy delivery portion 27 is formed and dimensioned for longitudinal sliding receipt through theablation lumen 25 of theablation sheath 22 for selective placement of the energy delivery portion along the ablation path. Theablation lumen 25 and theablative device 26 cooperate to position theenergy delivery portion 27 proximate to theablation sheath 22predetermined contact surface 23 of the sheath for selective transmural ablation of the targetedtissue 21 within the electromagnetic field when thecontact surface 23 strategically contacts or is positioned close enough to the targetedtissue 21. - Accordingly, in one preferred embodiment, the
pre-shaped ablation sheath 22 functions to unidirectionally guide or position theenergy delivery portion 27 of theablative device 26 properly along thepredetermined ablation path 28 proximate to the targetedtissue region 21 as theenergy delivery portion 27 is advanced through theablation lumen 25. By positioning theenergy delivery portion 27, which is preferably adapted to emit a directional ablation field, at one of a plurality of positions incrementally along the ablation path (FIGS. 1A and 1B) in thelumen 25, a single continuous or plurality of spaced-apart lesions can be formed. In other instances, the antenna length may be sufficient to extend along theentire ablation path 28 so that only a single ablation sequence is necessary. - While the method and apparatus of the present invention are applicable to ablate any biological tissue which requires the formation of controlled lesions (as will be described in greater detail below), this ablation system is particularly suitable for ablating endocardial or epicardial tissue of the Heart. For example, the present invention may be applied in an intra-coronary configuration where the ablation procedure is performed on the endocardium of any cardiac chamber. Specifically, such ablations may be performed on the isthmus to address atrial flutter, or around the pulmonary vein ostium, electrically isolating the pulmonary veins, to treat medically refractory atrial fibrillation (FIG. 3). This procedure requires the precise formation of strategically placed endocardial lesions30-36 which collectively isolate the targeted regions. By way of example, any of the pulmonary veins may be collectively isolated to treat chronic atrial fibrillation. The annular lesion isolating one or more than one pulmonary vein can be linked with another linear lesion joining the mitral valve annulus. In another example, the annular lesion isolating one or more than one pulmonary vein can be linked with another linear lesion joining the left atrium appendage.
- In a preferred embodiment, the
pre-shaped ablation sheath 22 and the slidingablative device 26 may applied to ablate theepicardial tissue 39 of theHeart 40 as well (FIG. 12). An annular ablation, for instance, may be formed around the pulmonary vein for electrical isolation from the left atrium. As another example, the lesions may be created along the transverse sinus and oblique sinus as part of the collective ablation pattern to treat atrial fibrillation for example. - The application of the present invention, moreover, is preferably performed through minimally invasive techniques. It will be appreciated, however, that the present invention may be applied through open chest techniques as well.
- Briefly, to illustrate the operation of the present invention, a flexible pre-shaped tubular member (i.e., ablation sheath22) in the form of a pigtail is shown in FIGS. 2C and 2d which is specifically configured to electrically isolate a pulmonary vein of the
Heart 40. The isolating lesions are preferably made on the posterior wall of the left atrium, around the ostium of one, or more than one of a pulmonary vein. - In this example and as illustrated in FIGS. 4A and 4B, a distal end of the pigtail-shaped ablation sheath or
tubular member 22 is positioned into the left superiorpulmonary vein orifice 37 from theleft atrium 41. As theablation sheath 22 is further advanced, apredetermined contact surface 23 of the ablation sheath is urged adjacent to or into contact with the endocardial surface of the targeted tissue region 21 (FIGS. 2D and 4B). Once theablation sheath 22 is properly positioned and oriented, theablative device 26 is advanced through theablation lumen 25 of the ablation sheath 22 (FIGS. 1A and 1B) which moves theenergy delivery portion 27 of the ablative device along the ablation path. When theenergy delivery portion 27 is properly oriented and positioned in theablation lumen 25, the directional ablation field may be generated to incrementally ablate (FIGS. 13A-13D) the epicardial surface of the targetedtissue 21 along the ablation path to isolate the Left Superior Pulmonary Vein (LIPV) - Accordingly, as shown in FIGS.13A-13D, as the
energy delivery portion 27 is incrementally advanced through thelumen 25, overlapping lesion sections 44-44′″ are formed by the ablation field which is directional in one preferred embodiment. Collectively, a continuous lesion or series of lesions can be formed which essentially three-dimensionally “mirror” the shape of thecontact surface 23 of theablation sheath 22 which is positioned adjacent to or in contact with the targeted tissue region. These transmural lesions may thus be formed in any shape on the targeted tissue region such as rectilinear, curvilinear or circular in shape. Further, depending upon the desired ablation lines pattern, both opened and closed path formation can be constructed. - Referring now to FIGS. 2A, 2D and5, a minimal invasive application of the present invention is illustrated for use in ablating Heart tissue. By way of example, a conventional
transseptal piercing sheath 42 is introduced into thefemoral vein 43 through a venous cannula 45 (FIG. 5). The piercing sheath is then intravenously advanced into theright atrium 46 of theHeart 40 through the inferiorvena cava orifice 47. These piercing sheaths are generally resiliently pre-shaped to direct a conventional piercingdevice 48 toward theseptum wall 50. The piercingdevice 48 and the piercingsheath 42 are manipulatively oriented and further advanced to pierce through theseptum wall 50, as a unit, of access into theleft atrium 41 of the Heart 40 (FIG. 2A). - These conventional devices are commonly employed in the industry for accessing the left atrium or ventricle, and have an outer diameter in the range of about 0.16 inch to about 0.175 inch, while having an inner diameter in the range of about 0.09 inch to about 0.135 inch.
- Once the piercing
device 48 is withdrawn from a positioning passage 51 (FIG. 8) of the piercingsheath 42, aguide sheath 52 of theablation system 20 is slideably advanced through the positioning passage and into a cardiac chamber such as theleft atrium 41 thereof (FIG. 2B). Theguide sheath 52 is essentially a pre-shaped, open-ended tubular member which is inserted into the coronary circulation to direct and guide the advancingablation sheath 22 into a selected cardiac chamber (i.e., the left atrium, right atrium, left ventricle or right ventricle) and toward the general direction of the targeted tissue. Thus, theguide sheath 52 and theablation sheath 22 telescopically cooperate to position thepredetermined contact surface 23 thereof substantially adjacent to or in contact with the targeted tissue region. - Moreover, the guide sheath and the ablation sheath cooperate to increase the structural stability of the system as the ablation sheath is rotated and manipulated from its proximal end into ablative contact with the targeted tissue21 (FIG. 2A). As the distal curved portions of the
ablation sheath 22, which is inherently longer than the guide sheath, is advanced past the distal lumen opening of the guide sheath, these resilient curved portions will retain their original unrestrained shape. - The telescopic effect of these two sheaths is used to position the
contact surface 23 of theablation sheath 22 substantially adjacent to or in contact with the targeted tissue. Thus, depending upon the desired lesion formation, thesame guide sheath 52 may be employed for several different procedures. For example, thelesion 30 encircling the left superior pulmonary vein ostium and the Left Inferior Pulmonary Vein Ostium (RIPVO) lesion 31 (FIG. 3) may be formed through the cooperation of thepigtail ablation sheath 22 and thesame guide sheath 52 of FIGS. 2B and 2D, while the same guide sheath may also be utilized with a different ablation sheath 22 (FIG. 4) to create the longlinear lesion 34 as shown in FIG. 3. - In contrast, as illustrated in FIG. 7, another
guide sheath 52 having a different pre-shaped distal end section may be applied to direct the advancingablation sheath 22 back toward the in the left and right superior pulmonary vein orifices 53, 55. Thus, several pre-shaped guide sheaths, and the corresponding ablation sheaths, as will be described, cooperate to create a predetermined pattern of lesions (E.g., a MAZE procedure) on the tissue. - In the preferred embodiment, the
guide sheath 52 is composed of a flexible material which resiliently retains its designated shape once external forces urged upon the sheath are removed. These external forces, for instance, are the restraining forces caused by theinterior walls 56 of the transseptal piercingsheath 42 as theguide sheath 52 is advanced or retracted therethrough. While theguide sheath 52 is flexible, it must be sufficiently rigid so as to substantially retain its original unrestrained shape, and not to be adversely influenced by theablation sheath 22, as the ablation sheath is advanced through the lumen of the guide sheath. Such flexible, biocompatible materials may be composed of braided Pebax or the like having an outer diameter formed and dimensioned for sliding receipt longitudinally through thepositioning passage 51 of the transseptal piercingsheath 42. The outer dimension is therefore preferably cylindrical having an outer diameter in the range of about 0.09 inch to about 0.145 inch, and more preferably about 0.135″, while having an inner diameter in the range of about 0.05 inch to about 0.125 inch, and more preferably about 0.115″. This cylindrical dimension enables longitudinal sliding receipt, as well as axial rotation, in thepositioning passage 51 to properly place and advance theguide sheath 52. Thus, the dimensional tolerance between the cylindrical-shaped, outer peripheral wall of theguide sheath 52 and theinterior walls 56 of the transseptal piercingsheath 42 should be sufficiently large to enable reciprocal movement and relative axial rotation therebetween, while being sufficiently small to substantially prevent lateral displacement therebetween as theablation sheath 22 is urged into contact with the targetedtissue 21. For example, the dimensional tolerance between the transverse cross-sectional periphery of theinterior walls 56 of thepositioning passage 51 and that of the substantially conformingguide sheath 52 should be in the range of about 0.005 inches to about 0.020 inches. - To increase the structural integrity of the
guide sheath 52,metallic braids 57 are preferably incorporated throughout the sheath when the guide sheath is molded to its preformed shape. Thesebraids 57 are preferably provided by 0.002″ wires composed of 304 stainless steel evenly spaced about the sheath. - Once the
guide sheath 52 is properly positioned and oriented relative thetransseptal sheath 42, theablation sheath 22 is advanced through a guide lumen 54 (FIG. 8) of theguide sheath 52 toward the targeted tissue. Similar to thepre-shaped guide sheath 52, theablation sheath 22 is pre-shaped in the form of the desired lesions to be formed in the endocardial surface of the targetedtissue 21. As best viewed in FIGS. 2D, 6 and 7, eachablation sheath 52 is adapted facilitate an ablation in the targetedtissue 21 generally in the shape thereof. Thus, several pre-shaped ablation sheaths cooperate to form a type of steering system to position the ablation device about the targeted tissue. Collectively, a predetermined pattern of linear and curvilinear lesions (E.g., a MAZE procedure) can be ablated on the targeted tissue region. - Again, similar to the
guide sheath 52, theablation sheath 22 is composed of a flexible material which resiliently retains its designated shape once external forces urged upon the sheath are removed. These external forces, for instance, are the restraining forces caused by theinterior walls 59 defining theguide lumen 54 of theguide sheath 52 as theablation sheath 22 is advanced or retracted therethrough. Such flexible, biocompatible materials may be composed of Pebax or the like having an outer diameter formed and dimensioned for sliding receipt longitudinally through theguide lumen 54 of theablation sheath 22. As mentioned, the inner diameter of theguide lumen 54 is preferably in the range of about 0.050 inch to about 0.125 inch, and more preferably about 0.115″, while theablation sheath 26 has an outer diameter in the range of about 0.40 inch to about 0.115 inch, and more preferably about 0.105″. - The concentric cylindrical dimensions enable longitudinal sliding receipt, as well as axial rotation, of the
ablation sheath 22 in theguide lumen 54 to properly place and advance the it toward the targetedtissue 21. Thus, the dimensional tolerance between the cylindrical-shaped, outer peripheral wall of theablation sheath 22 and theinterior walls 59 of theguide lumen 54 of theguide sheath 52 should be sufficiently large to enable reciprocal movement and relative axial rotation therebetween, while being sufficiently small to substantially prevent lateral displacement therebetween as theablation sheath 22 is urged into contact with the targetedtissue 21. For example, the dimensional tolerance between the transverse cross-sectional periphery of theguide lumen 54 and that of the substantially conformingenergy delivery portion 27 should be in the range of about 0.001 inches to about 0.005 inches. - As above-indicated, the
pre-shaped ablation sheath 22 facilitates guidance of theablative device 26 along thepredetermined ablation path 28. This is primarily performed by advancing theenergy delivery portion 27 of theablative device 26 through theablation lumen 25 of theablation sheath 22 which is preferably off-set from thelongitudinal axis 78 thereof As best viewed in FIGS. 8 and 9, this off-set positions theenergy delivery portion 27 relatively closer to thepredetermined contact surface 23 of theablation sheath 22, and hence the targetedtissue 21. Moreover, when using directional fields such as those emitted from theirenergy delivery portion 27, it is important to provide a mechanism for continuously aligning the directional field of theenergy delivery portion 27 with thetissue 21 targeted for ablation. Thus, in this design, the directional field must be continuously aligned with thepredetermined contact surface 23 of theablation sheath 22 as theenergy delivery portion 27 is advanced through theablation lumen 25 since the ablationsheath contact surface 23 is designated to contact or be close enough to the targeted tissue. - If the directional field is not aligned correctly, for example, the energy may be transmitted into surrounding fluids and tissues designated for preservation rather than into the targeted tissue region. Therefore, in accordance with another aspect of the present invention, a key structure48 (FIGS. 1, 8 and 9) cooperates between the
ablative device 26 and theablation lumen 25 to orient the directiveenergy delivery portion 27 of the ablative device continuously toward the targetedtissue region 21 as it is advanced through the lumen. Thiskey structure 48, thus, only allows receipt of theenergy delivery portion 27 in the lumen in one orientation. More particularly, thekey structure 48 continuously aligns awindow portion 58 of theenergy delivery portion 27 substantially adjacent thepredetermined contact surface 23 of theablation sheath 22 during advancement. Thiswindow portion 58, as will be described below, enables the transmission of the directed ablative energy from theenergy delivery portion 27, through thecontact surface 23 of theablation sheath 22 and into the targeted tissue region. Consequently, the directional ablative energy emitted from the energy delivery portion will always be aligned with thecontact surface 23 of theablation sheath 22, which is positioned adjacent to or in contact with the targetedtissue region 21, to maximize ablation efficiency. By comparison, theablation sheath 22 is capable of relatively free rotational movement axially in theguide lumen 54 of theguide sheath 52 for maneuverability and positioning of the ablation sheath therein. - As mentioned, the transverse cross-sectional dimension of the
energy delivery portion 27 is configured for sliding receipt in theablation lumen 25 of theablation sheath 22 in a manner positioning the directional ablative energy, emitted by the energy delivery portion, continuously toward thepredetermined contact surface 23 of theablation sheath 22. In one example, as shown in FIGS. 8 and 9, the transverse peripheral dimensions of theenergy delivery portion 27 and theablation lumen 25 are generally D-shaped, and substantially similar in dimension. Thus, thewindow portion 58 of theinsulator 61, as will be discussed, is preferably semi-cylindrical and concentric with theinterior wall 62 defining theablation lumen 25 of theablation sheath 22. It will be appreciated, however, that any geometric configuration may be applied to ensure unitary or aligned insertion. As another example, one of the energy delivery portion and the interior wall of the ablation lumen may include a key member and corresponding receiving groove, or the like. Such key and receiving groove designs, nonetheless, should avoid relatively sharp edges to enable smooth advancement and retraction of the energy delivery portion in theablation lumen 25. - This dimension alignment relationship can be maintain along the length of the predetermined contact surface of the
ablation sheath 22 as theenergy delivery portion 27 is advanced through the ablation lumen whether in the configuration of FIGS. 2, 6, 7 or 12. In this manner, a physician may determine that once thepredetermined contact surface 23 of theablation sheath 22 is properly oriented and positioned adjacent or in contact against the targetedtissue 21, the directional component (as will be discussed) of theenergy delivery portion 27 will then be automatically aligned with the targeted tissue as it is advanced through theablation lumen 25. Upon selected ablation by the ablative energy, a series of overlapping lesions 44-44′″ (FIGS. 13A-13D) or a single continuous lesion can then be generated. - It will further be appreciated that the dimensional tolerances therebetween should be sufficiently large to enable smooth relative advancement and retraction of the
energy delivery portion 27 around curvilinear geometries, and further enable the passage of gas therebetween. Since theablation lumen 25 of theablation sheath 22 is closed ended, gases must be permitted to flow between theenergy delivery portion 27 and theinterior wall 62 defining theablation lumen 25 to avoid the compression of gas during advancement of the energy delivery portion therethrough. Moreover, the tolerance must be sufficiently small to substantially prevent axial rotation of the energy delivery portion in theablation lumen 25 for alignment purposes. The dimensional tolerance between the transverse cross-sectional periphery of the ablation lumen and that of the substantially conformingenergy delivery portion 27, for instance, should be in the range of about 0.001 inches to about 0.005 inches. - To further facilitate preservation of the fluids and tissues along the backside of the ablation sheath22 (i.e., the side opposite the
contact surface 23 of the sheath), a thermal isolation component (not shown) is disposed longitudinally along, and substantially adjacent to, theablation lumen 25. Thus, during activation of the ablative device, the isolation component and thedirective component 73 of theenergy ablation portion 27 cooperate to form a thermal barrier along the backside of the ablation sheath. - For instance, the isolation component may be provided by an air filled isolation lumen extending longitudinally along, and substantially adjacent to, the
ablation lumen 25. The cross-sectional dimension of the isolation lumen may be C-shaped or crescent shaped to partially surround theablation lumen 25. In another embodiment, the isolation lumen may be filled with a thermally refractory material. - In still another embodiment, a circulating fluid, which is preferably biocompatible, may be disposed in the isolation lumen to provide to increase the thermal isolation. Two or more lumens may be provided to increase fluid flow. One such biocompatible fluid providing suitable thermal properties is saline solution.
- Similar to the composition of the
guide sheath 52, theablation sheath 22 is composed of a flexible bio-compatible material, such as PU Pellethane, Teflon or polyethylent, which is capable of shape retention once external forces acting on the sheath are removed. By way of example, when the distal portions of theablation sheath 22 are advanced past the interior walls of theguide lumen 54 of theguide sheath 52, theablation sheath 22 will return to its preformed shape in the interior of the Heart. - To facilitate shape retention, the
ablation sheath 22 preferably includes ashape retaining member 63 extending longitudinally through the distal portions of the ablation sheath where shape retention is necessary. As illustrated in FIGS. 1, 8 and 9, this retainingmember 63 is generally extends substantially parallel and adjacent to theablation lumen 25 to reshape thepredetermined contact surface 23 to its desired pre-shaped form once the restraining forces are removed from the sheath. While this shape-memory material must be sufficiently resilient for shape retention, it must also be sufficiently bendable to enable insertion through theguide lumen 54 of theguide sheath 52. In the preferred form, the shape retaining member is composed of a superelastic metal, such as Nitinol (NiTi). Moreover, the preferred diameter of this material should be in the range of 0.020 inches to about 0.050 inches, and more preferably about 0.035 inches. - When used during a surgical procedure, the
ablation sheath 22 is preferably transparent which enables a surgeon to visualize the position of theenergy delivery portion 27 of theablative device 26 through an endoscope or the like. Moreover, the material ofablation sheath 22 must be substantially unaffected by the ablative energy emitted by theenergy delivery portion 27. Thus, as will be apparent, depending upon the type of energy delivery portion and the ablative source applied, the material of the tubular sheath must exhibit selected properties, such as a low loss tangent, low water absorption or low scattering coefficient to name a few, to be unaffected by the ablative energy. - As previously indicated, the
ablation sheath 22 is advanced and oriented, relative to theguide sheath 52, adjacent to or into contact with the targetedtissue region 21 to form a series of over-lapping lesions 44-44′″, such as those illustrated in FIGS. 3 and 13A-13D. Preferably, thecontact surface 23 of thepre-shaped ablation sheath 22 is negotiated into physical contact with the targetedtissue 21. Such contact increases the precision of the tissue ablation while further facilitating energy transfer between the ablation element and the tissue to be ablated, as will be discussed. - To assess proper contact and positioning of the
contact surface 23 of theablation sheath 22 against the targetedtissue 21, at least one positioning electrode, generally designated 64, is disposed on the exterior surface of the ablation sheath for contact with the tissue. Preferably a plurality of electrodes are positioned along and adjacent thecontact surface 23 to assess contact of the elongated and three dimensionally shaped contact surface. These electrodes 64 essentially measure whether there is any electrical activity (or electrophysiological signals) to one or the other side of theablation sheath 22. When a strong electrical activation signal is detected, or inter-electrode impedance is measured when two or more electrodes are applied, contact with the tissue can be assessed. Once the physician has properly situated and oriented the sheath, they may commence advancement of theenergy delivery portion 27 through theablation lumen 25. Additionally, these positioning electrodes may be applied to map the biological tissue prior to or after an ablation procedure, as well as be used to monitor the patient's condition during the ablation process. - To facilitate discussion of the above aspects of the present invention, FIG. 10 illustrates two side-by-
side electrodes 64, 65 configured for sensing electrical activity in substantially one direction, in accordance with one aspect of the present invention. This electrode arrangement generally includes a pair of longitudinally extendingelectrode elements ablation sheath 22. The pair ofelectrode elements electrode elements - The pair of
electrode elements ablation sheath 22. In order to ensure that the electrode elements are sensing electrical activity in substantially the same direction, the space between electrodes should be sufficiently small. It is generally believed that too large space may create problems in determining the directional position of the catheter and too small a space may degrade the resolution of the detected electrophysiological signals. By way of example, the distance between the two pair of electrode elements may be between about 0.5 and 2.0 mm. - The
electrode elements predetermined contact surface 23 of theablation sheath 22. More preferably, theelectrode elements predetermined contact surface 23 since it is believed to be particularly useful to facilitate mapping and monitoring as well as to position theablation sheath 22 in the area designated for tissue ablation. For example, during some procedures, a surgeon may need to ascertain where the distal end of theablation sheath 22 is located in order to ablate the appropriate tissues. In another embodiment, theelectrode elements predetermined contact surface 23, at a central portion of thecontact surface 23 or a combination thereof. For instance, when attempting to contact the loop-shapedablation sheath 22 employed to isolate each of left and inferior pulmonary vein orifices 37, 38, a central location of the electrodes along the looped-shape contact surface 23 may best sense contact with the targeted tissue. Moreover, while not specifically illustrated, a plurality of electrode arrangements may be disposed along the ablation sheath as well. By way of example, a first set of electrode elements may be disposed distally from the predetermined contact surface, a second set of electrode elements may be disposed proximally to the contact surface, while a third set of electrode elements may be disposed centrally thereof. These electrodes may also be used with other types of mapping electrodes, for example, a variety of suitable mapping electrode arrangements are described in detail in U.S. Pat. No. 5,788,692 to Campbell, et al., which is incorporated herein by reference in its entirety. Although only a few positions have been described, it should be understood that the electrode elements may be positioned in any suitable position along the length of the ablation sheath. - The
electrode elements - Although the electrode arrangement has been shown and described as being parallel plates that are substantially parallel to the longitudinal axis of the
ablation sheath 22 and aligned longitudinally (e.g., distal and proximal ends match up), it should be noted that this is not a limitation and that the electrodes can be configured to be angled relative to the longitudinal axis of the ablation sheath 22 (or one another) or offset longitudinally. Furthermore, although the electrodes have been shown and described as a plate, it should be noted that the electrodes may be configured to be a wire or a point such as a solder blob. - Each of the
electrode elements electrode wire ablation sheath 22 to at least the proximal portion of the flexible outer tubing. In most embodiments, theelectrode wires member 63. The connection between theelectrodes 64, 65 and theelectrode wires - INSTRUMENT”, and incorporated by reference.
- Referring now to FIGS. 1, 8,9 and 11, the
ablative device 26 is preferably in the form of an elongated member, which is designed for insertion into theablation lumen 25 of theablation sheath 22, and which in turn is designed for insertion into a vessel (such as a blood vessel) in the body of a patient. It will be understood, however, that the present invention may be in the form of a handheld instrument for use in open surgical or minimally invasive procedures (FIG. 12). - The
ablative device 26 typically includes a flexible outer tubing 71 (having one or several lumens therein), atransmission line 72 that extends through theflexible tubing 71 and anenergy delivery portion 27 coupled to the distal end of thetransmission line 72. The flexibleouter tubing 71 may be made of any suitable material such as medical grade polyolefins, fluoropolymers, or polyvinylidene fluoride. By way of example, PEBAX resins from Autochem of Germany have been used with success for the outer tubing of the body of the catheter. - In accordance with another aspect of the present invention, the ablative energy emitted by the
energy delivery portion 27 of theablative device 26 may be one of several types. Preferably, theenergy delivery portion 27 includes a microwave component which generates a electromagnetic field sufficient to cause tissue ablation. As mentioned, as will be discussed in greater detail below, the ablative energy may also be derived from a laser source, a cryogenic source, an ultrasonic source or a radiofrequency source, to name a few. - Regardless of the source of the energy, a directive component cooperates with the energy source to control the direction and emission of the ablative energy. This assures that the surrounding tissues of the targeted tissue regions will be preserved. Further, the use of a directional field has several potential advantages over conventional energy delivery structure that generate uniform fields about the longitudinal axis of the energy delivery portion. For example, in the microwave application, by forming a more concentrated and directional electromagnetic field, deeper penetration of biological tissues is enabled, and the targeted tissue region may be ablated without heating as much of the surrounding tissues and/or blood. Additionally, since substantial portions the radiated ablative energy is not emitted in the air or absorbed in the blood or the surrounding tissues, less power is generally required from the power source, and less power is generally lost in the microwave transmission line.
- In the preferred form, the
energy delivery portion 27 of theablative device 26 is an antenna assembly configured to directionally emit a majority of an electromagnetic field from one side thereof. Theantenna assembly 27, as shown in FIGS. 9 and 11, preferably includes aflexible antenna 60, for generating the electromagnetic field, and aflexible reflector 73 as a directive component, for redirecting a portion of the electromagnetic field to one side of the antenna opposite the reflector. Correspondingly, the resultant electromagnetic field includes components of the originally generated field, and components of the redirected electromagnetic field. During aligned insertion of theantenna assembly 27 into theablation lumen 25, via thekey structure 48, the directional field will thus be continuously aligned toward thecontact surface 23 of theablation sheath 22 as the antenna assembly is incrementally advanced through theablation lumen 25. - FIG. 11 illustrates that the proximal end of the
antenna 60 is preferably coupled directly or indirectly to theinner conductor 75 of acoaxial transmission line 72. A direct connection between theantenna 60 and theinner conductor 75 may be made in any suitable manner such as soldering, brazing, ultrasonic welding or adhesive bonding. In other embodiments,antenna 60 can be formed from theinner conductor 75 of thetransmission line 72 itself. This is typically more difficult from a manufacturing standpoint but has the advantage of forming a more rugged connection between the antenna and the inner conductor. As will be described in more detail below, in some implementations, it may be desirable to indirectly couple the antenna to the inner conductor through a passive component, such a capacitor, an inductor or a stub tuner for example, in order to provide better impedance matching between the antenna assembly and the transmission line, which is a coaxial cable in the preferred embodiment. - Briefly, the
transmission line 72 is arranged for actuating and/or powering theantenna 60. Typically, in microwave devices, a coaxial transmission line is used, and therefore, thetransmission line 72 includes aninner conductor 75, anouter conductor 76, and adielectric material 77 disposed between the inner and outer conductors. In most instances, theinner conductor 75 is coupled to theantenna 60. Further, theantenna 60 and thereflector 73 are enclosed (e.g., encapsulated) in a flexible insulative material thereby forming theinsulator 61, to be described in greater detail below, of theantenna assembly 27. - The power supply (not shown) includes a microwave generator which may take any conventional form. When using microwave energy for tissue ablation, the optimal frequencies are generally in the neighborhood of the optimal frequency for heating water. By way of example, frequencies in the range of approximately 800 MHz to 6 GHz work well. Currently, the frequencies that are approved by the Federal Communication Commission (FCC) for experimental clinical work includes 915 MHz and 2.45 GHz. Therefore, a power supply having the capacity to generate microwave energy at frequencies in the neighborhood of 2.45 GHz may be chosen. A conventional magnetron of the type commonly used in microwave ovens is utilized as the generator. It should be appreciated, however, that any other suitable microwave power source could be substituted in its place, and that the explained concepts may be applied at other frequencies like about 434 MHz or 5.8 GHz (ISM band).
- In the preferred embodiment, the
antenna assembly 27 includes a longitudinally extendingantenna wire 60 that is laterally offset from the transmission lineinner conductor 75 to position the antenna closer to thewindow portion 58 of theinsulator 61 upon which the directed electric field is transmitted. Theantenna 60 illustrated is preferably a longitudinally extending exposed wire that extends distally (albeit laterally offset) from the inner conductor. However it should be appreciated that a wide variety of other antenna geometries may be used as well. By way of example, helical coils, flat printed circuit antennas and other antenna geometries will work as well. - Briefly, the
insulator 61 is preferably provided by a good, lowloss dielectric material which is relatively unaffected by microwave exposure, and thus capable of transmission of the electromagnetic field therethrough. Moreover, the insulator material preferably has a low water absorption so that it is not itself heated by the microwaves. Incidentally, when the emitted ablative energy is microwave in origin, the ablation sheath must also include these material properties. Finally, the insulation material must be capable of substantial flexibility without fracturing or breaking. Such materials include moldable TEFLON®, silicone, or polyethylene, polyimide, etc. - As will be appreciated by those familiar with antenna design, the field generated by the illustrated antenna will be generally consistent with the length of the antenna. That is, the length of the electromagnetic field is generally constrained to the longitudinal length of the antenna. Therefore, the length of the field may be adjusted by adjusting the length of the antenna. Accordingly, microwave ablation elements having specified ablation characteristics can be fabricated by building them with different length antennas. Additionally, it should be understood that longitudinally extending antennas are not a requirement and that other shapes and configurations may be used.
- The
antenna 60 is preferably formed from a conductive material. By way of example, copper or silver-plated metal work well. Further, the diameter of theantenna 60 may vary to some extent based on the particular application of the catheter and the type of material chosen. In microwave systems using a simple exposed wire type antenna, for instance, wire diameters between about 0.010 to about 0.020 inches work well. In the illustrated embodiment, the diameter of the antenna is about 0.013 inches. - In a preferred embodiment, the
antenna 60 is positioned closer to the area designated for tissue ablation in order to achieve effective energy transmission between theantenna 60 and the targetedtissue 21 through thepredetermined contact surface 23 of theablation sheath 22. This is best achieved by placing theantenna 60 proximate to the outer peripheral surface of theantenna insulator 61. More specifically, a longitudinal axis of theantenna 60 is preferably off-set from, but parallel to, alongitudinal axis 78 of theinner conductor 75 in a direction away from thereflector 73 and therefore towards the concentrated electromagnetic field (FIGS. 8 and 9). By way of example, placing the antenna between about 0.010 to about 0.020 inches away from the outer peripheral surface of the antenna insulator works well. In the illustrated embodiment, the antenna is about 0.013 inches away from the outer peripheral surface of theantenna insulator 61. However, it should be noted that this is not a requirement and that the antenna position may vary according to the specific design of each catheter. - Referring now to the directive component or
reflector 73, it is positioned adjacent and generally parallel to a first side of the antenna, and is configured to redirect those components of the electromagnetic field contacting the reflector back towards and out of a second side of theantenna assembly 27 opposite the reflector. A majority of the electromagnetic field, consequently, is directed out of thewindow portion 58 of theinsulator 61 in a controlled manner during ablation. - To reduce undesirable electromagnetic coupling between the antenna and the
reflector 73, theantenna 60 is preferably off-set from the reflector 73 (FIGS. 8 and 9). This off-set from thelongitudinal axis 78 further positions theantenna 60 closer to thewindow portion 58 to facilitate ablation by positioning theantenna 60 closer to the targeted tissue region. It has been found that the minimum distance between the reflector and the antenna may be between about 0.020 to about 0.030 inches, in the described embodiment, in order to reduce the coupling. However, the distance may vary according to the specific design of each ablative device. - The proximal end of the
reflector 73 is preferably coupled to theouter conductor 76 of thecoaxial transmission line 72. Connecting the reflector to the outer conductor serves to better define the electromagnetic field generated during use. That is, the radiated field is better confined along the antenna, to one side, when the reflector is electrically connected to the outer conductor of the coaxial transmission line. The connection between thereflector 73 and theouter conductor 76 may be made in any suitable manner such as soldering, brazing, ultrasonic welding or adhesive bonding. In other embodiments, the reflector can be formed from the outer conductor of the transmission line itself. This is typically more difficult from a manufacturing standpoint but has the advantage of forming a more rugged connection between the reflector and the outer conductor. - In one embodiment, to improve flexibility at the electrical connection with the
outer conductor 76 and entirely along the energy delivery device, the proximal end of thereflector 73 is directly contacted against the outer conductor without applying solder or such conductive adhesive bonding. In this design, the insulator material of theinsulator 61 functions as the adhesive to maintain electrical continuity. This is performed by initially molding the antenna wire in the silicone insulator. Thereflector 73 is subsequently disposed on the molded silicone tube, and is extended over theouter conductor 76 of coaxialcable transmission line 72. A heat shrink tube is then applied over the assembly to firmly maintain the electrical contact between thereflector 73 and the coaxial cableouter conductor 76. In other embodiments, the reflector may be directly coupled to a ground source or be electrically floating. - As previously noted, the
antenna 60 typically emits an electromagnetic field that is fairly well constrained to the length of the antenna. Therefore, in some embodiments, the distal end of thereflector 73 extends longitudinally to at about the distal end of theantenna 60 so that the reflector can effectively cooperate with the antenna. This arrangement serves to provide better control of the electromagnetic field during ablation. However, it should be noted that the actual length of the reflector may vary according to the specific design of each catheter. For example, catheters having specified ablation characteristics can be fabricated by building catheters with different length reflectors. - Furthermore, the
reflector 73 is typically composed of a conductive, metallic material or foil. However, since theantenna assembly 27 must be relatively flexible in order to negotiate thecurvilinear ablation lumen 25 of theablation sheath 22 as the ablative device it is advanced therethrough, theinsulator 61, the antenna wire and the reflector must collectively be relatively flexible. Thus, one particularly material suitable for such a reflector is a braided conductive mesh having a proximal end conductively mounted to the distal portion of the outer conductor of the coaxial cable. This conductive mesh is preferably thin walled to the shield assembly yet provide the appropriate microwave shielding properties, as well as enable substantial flexibility of the shield device during bending movement. For example, a suitable copper mesh wire should have a diameter in the range of about 0.005 inches to about 0.010 inches, and more preferably about 0.007 inches. A good electrical conductor is generally used for the shield assembly in order to reduce the self-heating caused by resistive losses. Such conductors includes, but are not restricted to copper, silver and gold. - Another suitable arrangement may be thin
metallic foil reflector 73 which is inherently flexible. However, to further increase flexibility, the foil material can be pleated or folded which resists tearing during bending of theantenna assembly 27. These foils can be composed of copper that has a layer of silver plating formed on its inner peripheral surface. Such silver plating, which can also be applied to the metallic mesh material, is used to increase the conductivity of the reflector. It should be understood, however, that these materials are not a limitation. Furthermore, the actual thickness of the reflector may vary according to the specific material chosen. - Referring back to FIG. 11, the
reflector 73 is preferably configured to have an arcuate or meniscus shape (e.g., crescent), with an arc angle that opens towards theantenna 60. Flaring the reflector towards the antenna serves to better define the electromagnetic field generated during use. Additionally, the reflector functions to isolate theantenna 60 from the restrainingmember 63 of theablation sheath 22 during ablation. Since the restrainingmember 63 is preferably metallic in composition (most preferably Nitinol), it is desirable minimize electromagnetic coupling with the antenna. Thus, thereflector 73 is preferably configured to permit at most a 180° circumferential radiation pattern from the antenna. In fact, it has been discovered that arc angles greater than about 180° are considerably less efficient. More preferably, the arc angle of the radiation pattern is in the range of about 90° to about 120°. - While the reflector is shown and described as having an arcuate shape, it will be appreciated that a plurality of forms may be provided to accommodate different antenna shapes or to conform to other external factors necessary to complete a surgical procedure. For example, any flared shape that opens towards the antenna may work well, regardless of whether it is curvilinear or rectilinear.
- Further still, it should be noted that the shape of the reflector need not be uniform. For example, a first portion of the reflector (e.g., distal) may be configured with a first shape (e.g., 90° arc angle) and a second portion (e.g., proximal) of the reflector may be configured with a second shape (e.g., 120° arc angle). Varying the shape of the reflector in this manner may be desirable to obtain a more uniform radiated field. It is believed that the energy transfer between the antenna and the tissue to be ablated tends to increase by decreasing the coverage angle of the reflector, and conversely, the energy transfer between the antenna and the tissue to be ablated tends to decrease by increasing the coverage angle of the reflector. Accordingly, the shape of the reflector may be altered to balance out non-uniformities found in the radiated field of the antenna arrangement.
- In another configuration, the
directive component 73 for themicrowave antenna assembly 27 can be provided by another dielectric material having a dielectric constant different than that of theinsulator material 67. Indeed, a strong reflection of electromagnetic wave is observed when the wave reaches an interface created by two materials with a different dielectric constant. For example, a ceramic loaded polymer can have a dielectric constant comprised between 15 and 55, while the dielectric of a fluoropolymer like Teflon or is comprised between 2 and 3. Such an interface would create a strong reflection of the wave and act as a semi-reflector. - It should also be noted that the longitudinal length of the reflector need not be uniform. That is, a portion of the reflector may be stepped towards the antenna or a portion of the reflector may be stepped away from the antenna. Stepping the reflector in this manner may be desirable to obtain a more uniform radiated field. While not wishing to be bound by theory, it is believed that by placing the reflector closer to the antenna, a weaker radiated field may be obtained, and that by placing the reflector further away from the antenna, a stronger radiated field may be obtained. Accordingly, the longitudinal length of the reflector may be altered to balance out non uniformities found in the radiated field of the antenna arrangement. These associated reflectors are described in greater detail in U.S. patent application Ser. Nos. 09/178,066, entitled “DIRECTIONAL REFLECTOR SHIELD ASSEMBLY FOR A MICROWAVE ABLATION INSTRUMENT, and 09/484,548 entitled “A MICROWAVE ABLATION INSTRUMENT WITH FLEXIBLE ANTENNA ASSEMBLY AND METHOD”, each of which is incorporated by reference.
- In a typical microwave ablation system, it is important to match the impedance of the antenna with the impedance of the transmission line. As is well known to those skilled in the art, if the impedance is not matched, the catheter's performance tends to be well below the optimal performance. The decline in performance is most easily seen in an increase in the reflected power from the antenna toward the generator. Therefore, the components of a microwave transmission system are typically designed to provide a matched impedance. By way of example, a typical set impedance of the microwave ablation system may be on the order of fifty (50) ohms.
- Referring back to FIGS. 10 and 11, and in accordance with one embodiment of the present invention, an impedance matching device80 may be provided to facilitate impedance matching between the
antenna 60 and thetransmission line 72. The impedance matching device 80 is generally disposed proximate the junction between theantenna 60 and theinner conductor 75. For the most part, the impedance match is designed and calculated assuming that theantenna assembly 27, in combination with thepredetermined contact surface 23 of theablation sheath 22, is in resonance to minimize the reflected power, and thus increase the radiation efficiency of the antenna structure. - In one embodiment, the impedance matching device is determined by using a Smith Abacus Model. In the Smith Abacus Model, the impedance matching device may be ascertained by measuring the impedance of the antenna with a network analyzer, analyzing the measured value with a Smith Abacus Chart, and selecting the appropriate device. By way of example, the impedance matching device may be any combination of a capacitor, resistor, inductor, stub tuner or stub transmission line, whether in series or in parallel with the antenna. An example of the Smith Abacus Model is described in Reference: David K. Cheng, “Field and Wave Electromagnetics,” second edition, Addison-Wesley Publishing, 1989, which is incorporated herein by reference. In one preferred implementation, the impedance matching device is a serial capacitor having a capacitance in the range of about 0.6 to about 1.0 picoFarads. In the illustration shown, the serial capacitor has a capacitance of about 0.8 picoFarads.
- As above-mentioned, the impedance will be matched assuming flush contact between the
antenna assembly 27 and the ablation sheath (FIG. 9). In accordance with the present invention, as theantenna assembly 27 is advanced through theablation lumen 25, before selective ablation, it is desirable to position thewindow portion 58 of theflexible antenna insulator 61 in flush contact against theinterior wall 62 of theablation lumen 25, opposite thepredetermined contact surface 23. This arrangement may substantially reduce the impedance variance caused by the interface betweeninsulator 61 and theablation sheath 22 as the directional field is transmitted therethrough. In comparison, if thewindow portion 58 were not required to be positioned in flush contact against theinterior wall 62 of the ablation lumen, pockets of air or fluid, or the like, may be disposed intermittently therebetween which would result in a greater degree of impedance variations at this interface. Consequently, the above-indicated impedance matching techniques would be less effective. - To assure such flush contact during selective directional ablation and advancement along the sheath ablation lumen, the
ablation system 20 preferably incorporates a forcing mechanism 81 (FIGS. 8 and 9) adapted to urge thewindow portion 58 of theantenna assembly 27 into flush contact against theinterior wall 62 of the ablation sheath. Preferably, the forcing mechanism cooperates between asupport portion 82 of theinterior wall 62 of theablation lumen 25 and the forcingwall portion 83 of the antenna assembly. - When not operational, the forcing mechanism permits relative axial displacement between the
ablative device 26 and the ablation sheath for repositioning of theantenna assembly 27 along the ablation path 28 (FIG. 8). Upon selective operation, the forcingmechanism 81 contacts the forcingwall portion 83 to urgewindow portion 58 flush against theinterior wall 62 opposite thepredetermined contact surface 23. Consequently, the impedance match between the antenna and the transmission line is properly achieved and stable even when the antenna is moving in the ablation sheath. - In one embodiment, the forcing mechanism may be provided by an inflatable structure acting between the
support portion 82 of theinterior wall 62 of theablation lumen 25 and the forcingwall portion 83 of the antenna assembly device. Upon selective inflation of forcing mechanism 81 (FIG. 9), thewindow portion 58 will be urged into flush contact with theinterior wall 62 of the ablation lumen. Upon selective deflation of the forcing mechanism 81 (FIG. 8), relative axial displacement between theantenna assembly 27 and the ablation sheath may commence. The forcing mechanism can be provided by other techniques such as spring devices or the like. - In accordance with another aspect of the present invention, the ablative energy may be in the form of laser energy sufficient to ablate tissue. Example of such laser components include CO2 or Nd: YAG lasers. To transmit the beams, the
transmission line 72 is preferably in the form of a fiber optic cable or the like. - In this design, as shown in FIGS. 14A and 14B, the
directive component 73 may be provided by a reflector having a well polished smooth reflective or semi-reflective surface. This preferably metallic reflective surface is configured to reflect the emitted laser energy toward the targeted tissue region. By way of example, functional metallic materials include silver or platinum. In another configuration, similar to the difference in dielectric constants of themicrowave ablation device 26, the directive component of the laser ablative device may be provided between two layers of dielectric materials with a sufficient difference between the refractory indexes. Here, at least one dielectric directive component layer functions like the outer dielectric layer of the fiberoptic transmission line 72 to obtain “total internal reflection”. Consequently, the laser energy can be emitted away from the dielectric layer. By providing more than one dielectric layer, “total internal reflection” may be attained at several angles of incidence. Again, the reflection of the electromagnetic wave is caused by the interface between two media having different dielectric constants. Generally speaking, the higher is the difference between the dielectric constants, the more significant is the internal reflection. In addition, when more than one dielectric layer are involved, interference can be used to direct the laser energy in a preferred direction. - Moreover, when the ablative energy is laser based, it will be appreciated that it is desirable that both the
ablation sheath 22 and the ablation device be composed of materials which have a low scattering coefficient and a low factor of absorption. In addition, it is also preferable to use material with low water absorption. - It will be appreciated that a plurality of designs can be used for the laser energy delivery portion. For example, the laser energy delivery portion can consist of multiple reflective particles embedded in a laser transparent material. The laser wave is propagating from the laser generator to the optic fiber transmission line and enter in the laser energy delivery portion. The embedded reflective particles diffracts the light, which is reflected toward the tissue to be ablated by the
directive component 73. - In yet another alternative embodiment, cryogenic energy may be employed as an ablative energy. Briefly, as shown in FIGS. 15A and 15B, in these cryogenic ablation device designs, a cryogenic fluid, such as a pressurized gas (E.g., Freon) is passed through an
inflow lumen 90 in the ablationdevice transmission line 72. The distalablative device 26 is preferably provided by a decompression chamber which decompresses the pressurized gas from theinflow lumen 90 therein. Upon decompression or expansion of the pressurized gas in thedecompression chamber 91, the temperature of theexterior surface 92 of the decompression chamber is sufficiently reduced to cause tissue ablation upon contact thereof. The decompressed gas is then exhausted through theoutflow lumen 93 of thetransmission line 72. - FIG. 15B illustrates that the
directive component 73 is in the form of a thermal insulation layer extending longitudinally along one side of theenergy delivery portion 27. By forming a good thermal insulator with a low thermal conductivity, the C-shapedinsulation layer 73 will substantially minimize undesirable cryogenic ablation of the immediate tissue surrounding of the targeted tissue region. In one configuration, the isolation layer may define a thin,elongated gap 95 which partially surrounds thedecompression chamber 91. Thisgap 95 may then be filled with air, or an inert gas, such as CO2, to facilitate thermal isolation. Theisolation gap 95 may also be filled with a powder material having relatively small solid particulates or by air expended polymer. These materials would allow small air gaps between the insulative particles or polymeric matrix for additional insulation thereof. The isolation layer may also be provided by a refractory material. Such materials forming an insulative barrier include ceramics, oxides, etc. - Referring now to FIG. 16, an ultrasound ablation device may also be applied as another viable source of ablation energy. For example, a
piezoelectric transducer 96 may be supplied as the ablative element which delivers acoustic waves sufficient to ablate tissue. These devices emit ablative energy which can be directed and shaped by applying a directive echogenic component to reflect the acoustic energy. Moreover, a series or array ofpiezoelectric transducers - In this configuration, the
directive component 73 of the ultrasonic ablation device may be provided by an echogenic material (73-73″) positioned proximate the piezoelectric transducers. This material reflects the acoustic wave and which cooperates with the transducers to direct the ablative energy toward the targeted tissue region. By way of example, such echogenic materials are habitually hard. They include, but are not restricted to metals and ceramics for example. - Moreover, when the ablative energy is ultrasonic based, it will be appreciated that it is desirable that both the
ablation sheath 22 and the ablation device be composed of materials which have low absorption of the acoustic waves, and that provide a good acoustic impedance matching between the tissue and the transducer. In that way, the thickness and the material chosen for the ablation sheath play in important role to match the acoustic properties of the tissue to be ablated and the transducer. An impedance matching jelly can also be used in the ablation sheath to improve the acoustic impedance matching. - Lastly, the ablation device may be provided by a radiofrequency (RF) ablation source which apply RF conduction current sufficient to ablate tissue. These conventional ablation instruments generally apply conduction current in the range of about 450 kHz to about 550 kHz. Typical of these RF ablation devices include ring electrodes, coiled electrodes or saline electrodes.
- To selectively direct the RF energy, the directive component is preferably composed of an electrically insulative and flexible material, such as plastic or silicone. These biocompatible materials perform the function of directing the conduction current toward a predetermined direction.
- In an alternative embodiment, as best viewed in FIG. 17, the
window portion 58 of theablation sheath 22 is provided by an opening in the sheath along the ablation path, as opposed to being merely transparent to the energy ablation devices. In this manner, when theablation sheath 22 is properly positioned with the window portion placed proximate and adjacent the targeted tissue, theenergy delivery portion 27 of theablation device 26 may be slideably positioned into direct contact with the tissue for ablation thereof. Such direct contact is especially beneficial when it is technically difficult to find a sheath that is merely transparent to the used ablative energy. For example, it would be easier to use a window portion when RF energy is used. The ablative RF element could directly touch the tissue to be ablated while the directive element would be the part of theablation sheath 22 facing away thewindow portion 58. Furthermore, during surgical ablation, the window portion could be used by the surgeon to indicate the area where an ablation can potentially be done with the energy ablation device. - In yet another embodiment, the
ablation system 20 may be in the form of a rail system including arail device 96 upon which theablation device 26 slides therealong as compared to therethrough. FIGS. 18 and 19 illustrate therail device 96 which is preferably pre-shaped or bendable to proximately conform to the surface of the targeted tissue. Once therail device 96 is positioned, the ablation device can be advanced or retracted along the path defined by the rail device for ablation of the targetedtissue 21. - The
ablation device 26 in this arrangement includes abody portion 98 housing theenergy delivery portion 27 therein. Thewindow portion 58 is preferably extend longitudinally along the outer surface of one side of the housing. An opposite side of the housing, and longitudinally oriented substantially parallel to thewindow portion 58 is arail receiving passage 97 formed and dimensioned to slideably receive and slide over therail device 96 longitudinally therethrough. In one configuration, theenergy delivery portion 27 may be advanced by pushing thebody portion 98 through thetransmission line 72. Alternatively, theenergy delivery portion 27 may be advanced by pulling thebody portion 98 along the path of therail system 20. - As best viewed in FIG. 19, the
directive component 73 of theablation device 26 is integrally formed with thebody portion 98 of the ablation device. This preferably C-shaped component extends partially peripherally around theenergy delivery portion 27 to shield therail device 96 from exposure to the ablative energy. Depending upon the type of ablative energy employed, the material or structure of thedirective component 73 can be constructed as set forth above. - To assure the directional position and orientation of the
window portion 58 of the ablative device toward the targeted tissue, akey structure 48 is employed. Generally, the transverse cross-sectional dimension of therail device 96 and matchingrail receiving passage 97 is shaped to assure proper directional orientation of the ablative energy. Examples of such key forms are shown in FIGS. 20A-20B. - As with the previous embodiments, the open window embodiment and the rail system embodiment may employ multiple ablative element technology. These include microwave, radiofrequency, laser, ultrasound and cryogenic energy sources.
- In accordance with another aspect of the present invention, the tissue ablation system further includes a temperature sensor which is applied to measure the temperature of the ablated tissue during the ablation. In one embodiment, the temperature sensor is mounted to the ablation device proximate the
energy delivery portion 27 so that the sensor moves together with the energy delivery portion as it is advanced through the ablation sheath. In another embodiment, the temperature sensor is attached on the ablation sheath. - To determine the temperature of the ablated tissue, a mathematical relationship is used to calculate the tissue temperature from the measured temperature. Typical of such temperature sensors include a metallic temperature sensor, a thermocouple, a thermistor, or a non-metallic temperature sensor such as fiber optic temperature sensor.
- In accordance with the present invention, the
guide sheath 52 and theablation sheath 22 can be designed and configured to steer the ablative device along any three dimensional path. Thus, the tissue ablation system of present invention may be adapted for an abundance of uses. For instance, the distal end portion of the ablation sheath can be configured to form a closed ablation path for the ablation device. This design may be employed to ablate around an ostium of an organ, or to electrically isolate one or several pulmonary veins to treat atrial fibrillation. A closed ablation path may also utilized to ablate around an aneurysm, such as a cardiac aneurysm or tumor, or any kink of tumor. In other example, the ablation sheath can be inserted in an organ in order to ablate a deep tumor or to perform any surgical treatment where a tissue ablation is required. - In other instances, the distal end portion of the
ablation sheath 22 may define a rectilinear or curvilinear open ablation path for the ablation device. Such open ablation paths may be applied to ablate on the isthmus between the inferior caval vein (IVC) and the tricuspid valve (TV), to treat regular flutter, or to generate a lesion between the IVC and the SVC, to avoid macro-reentry circuits in the right atrium. Other similar ablation lesions can be formed between: any of the pulmonary vein ostium to treat atrial fibrillation; the mitral valve and one of the pulmonary veins to avoid macro-reentry circuit around the pulmonary veins in the left atrium; and the left appendage and one of the pulmonary veins to avoid macro-reentry circuit around the pulmonary veins in the left atrium. - The ablation apparatus may be applied through several techniques. By way of example, the ablation apparatus may be inserted into the coronary circulation to produce strategic lesions along the endocardium of the cardiac chambers (i.e., the left atrium, the right atrium, the left ventricle or the right ventricle). Alternatively, the ablation apparatus may be inserted through the chest to produce epicardial lesions on the heart. This insertion may be performed through open surgery techniques, such as by a sternotomy or a thoracotomy, or through minimally invasive techniques, applying a cannula and an endoscope to visualize the location of the ablation apparatus during a surgery.
- The ablation apparatus is also suitable for open surgery applications such as ablating the exterior surfaces of an organ as well, such as the heart, brain, stomach, esophagus, intestine, uterus, liver, pancreas, spleen, kidney or prostate. The present invention may also be applied to ablate the inside wall of hollow organs, such as heart, stomach, esophagus, intestine, uterus, bladder or vagina. When the hollow organ contains bodily fluid, the penetration port formed in the organ by the ablation device must be sealed to avoid a substantial loss of this fluid. By way of example, the seal may be formed by a purse string, a biocompatible glue or by other conventional sealing devices.
- As mentioned, the present invention may be applied in an intracoronary configuration where the ablation device is used to isolate the pulmonary vein from the left atrium. FIG. 2C illustrates that a distal end of the
ablation sheath 22 is adapted for insertion into the pulmonary vein. In this embodiment, the distal end of the ablation device may include at least one electrode used to assess the electrical isolation of the vein. This is performed by pacing the distal electrode to “capture” the heart. If pacing captures the heart, the vein is not yet electrically isolated, while, if the heart cannot be captured, the pulmonary vein is electrically isolated from the left atrium. As an example, a closed annular ablation on the posterior wall of the left atrium around the ostium of the pulmonary vein by applying thepigtail ablation sheath 22 of FIGS. 2 and 4. - In yet another configuration, the ablation device may include a lumen to inject a contrasting agent into the organ. For instance, the contrasting agent facilitates visualization of the pulmonary vein anatomy with a regular angiogram technique. This is important for an intra-coronary procedure since fluoroscopy is used in this technique. The premise, of course, is to visualize the shape and the distal extremity of the sheaths, as well as the proximal and distal part of the sliding energy delivery portion during an ablative procedure under fluoroscopy. It is essential for the electrophysiologist to be able to identify not only the ablative element but also the path that the ablation sheath will provide to guide the
energy delivery portion 27 therealong. - Another visualization technique may be to employ a plurality of radio-opaque markers spaced-apart along the guide sheath to facilitate location and the shape thereof. By applying the radio-opaque element that will show the shape of the sheath. This element can be a metallic ring or soldering such as platinum which is biocompatible and very radio-opaque. Another example of a radio-opaque element would be the application of a radio-opaque polymer such as a beryllium loaded material. Similarly, radio-opaque markers may be disposed along the proximal, middle and distal ends of the
energy delivery portion 27 to facilitate the visualization and the location of the energy delivery portion when the procedure is performed under fluoroscopy. - To facilitate identification of the distal end portion of the ablation sheath, a fluoro-opaque element may be placed at the distal extremity. Another implementation of this concept would be to have different opacities for the ablation sheath and the,
energy delivery portion 27. For example, the energy delivery portion may be more opaque than that of the ablation sheath, and the ablation sheath may be more opaque than the transseptal sheath, when the latter is used. - The surgical ablation device of the present invention may also be applied minimally invasively to ablate the epicardium of a beating heart through an endoscopic procedure. As view in FIGS. 21 and 22, at least one
intercostal port 85 or access port is formed in the thorax. A dissection tool (not shown) or the like may be utilized to facilitate access the pericardial cavity. For instance, the pericardium may be dissected to enable access to the epicardium of a beating heart. The pericardial reflections may be dissected in order to allow the positioning of theablation device 26 around the pulmonary veins. Another dissection tool (not shown) may also be utilized to puncture the pericardial reflection located in proximity to a pulmonary vein. After the puncture of the pericardial reflection, the ablation sheath can be positioned around one, or more than one pulmonary veins, in order to produce the ablation pattern used to treat the arrhythmia, atrial fibrillation in particular. - For example, a
guide sheath 52 may be inserted through theaccess port 85 while visualizing the insertion process with anendoscopic device 86 positioned in anotheraccess port 87. Once theguide sheath 52 is properly positioned byhandle 88, theablation sheath 22 may be inserted through the guide sheath, while again visualizing the insertion process with the endoscopic system to position the ablation sheath on the targeted tissue to ablate. The ablation device may then be slid through the ablation lumen of the ablation sheath and adjacent the targeted tissue. Similar to the previous ablation techniques, the ablative element of the ablation device may be operated and negotiated in an overlapping manner to form a gap free lesion or a plurality of independent lesions. The ablation sheath may also be malleable or flexible. The surgeon can use a surgical instrument, like a forceps, to manipulate, bend and position the ablation sheath. - In accordance with yet another aspect of the present invention, the guide sheath, ablation sheath, or ablation element could be controlled by a robot during a robotic minimally invasive surgical procedure. The robot could telescopically translate or rotate the guide sheath, the ablation sheath, or the ablation element in order to position the ablation sheath and the ablation element correctly to produce the ablation of tissue. The robot could also perform other tasks to facilitate the access of the ablation sheath to the tissue to be ablated. These tasks include, but are not limited to: performing the pericardial reflection in the area of a pulmonary vein; performing an incision on the pericardial sac; manipulating, bending or shaping the ablation sheath; or performing an incision on an organ to penetrate the ablation sheath through the penetration hole.
- In accordance with yet another aspect of the present invention, the concept of using a sliding ablation element in an ablation sheath to ablate from the epicardium of a beating heart can also be applied in open chest surgery. In this procedure, a malleable ablation sheath may be beneficial, as compared to a pre-shaped ablation sheath. For example, a malleable metallic wire (e.g., copper, stainless steel, etc. . . . ) could be integrated into the ablation sheath. The cardiac surgeon will then shape the ablation sheath to create the ablation path that he wants and will finally produce the ablation line by overlapping several ablations
- In this technique, it is important to note that the ablation sheath must be stabilized against the epicardium since the ablation sheath will define the ablation path of the energy delivery portion. Should the ablation sheath be inadvertently move during the process, the final ablation line may be undesirably discontinuous. Thus, a securing device may be applied to secure the ablation sheath against the epicardium. Such a securing device may include stitches or the like which may be strung through receiving holes or cracks placed in the ablation sheath. Another device to anchor the ablation sheath to the epicardium may be in the form of a biocompatible adhesive, or a suction device.
- In accordance with yet another aspect of the present invention, a way to visually locate the ablation element within the ablation sheath is provided to the surgeon. In one embodiment of the invention, the ablation sheath is transparent and the ablation element can be directly visualized, or indirectly visualized via an endoscope. In yet another embodiment of the application, a marking element that can be directly visually identify along the ablation sheath, or indirectly visualized via an endoscope, is used to identify the location of the ablation element within the sheath. The marking element is sliding with the ablation element to show the location of the ablation element.
- In accordance with yet another aspect of the present invention, a way to indirectly locate the ablation element within the ablation sheath is provided to the surgeon. A position finding system is incorporated in the handle of the device to indicate the position of the ablation element within the ablation sheath. At least one marker can be directly visually, or indirectly visually identified. These markers can be used in collaboration with the position finding system as reference points to identify the location of the ablation element.
- While the present invention has been primarily described and applied for epicardial tissue ablations, it will be appreciated that the
ablation system 20 may just as easily apply to endocardial tissue ablations as well. The tissue ablations may be performed through either open surgery techniques or through minimal invasive techniques. - Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/211,621 US20030050630A1 (en) | 2000-12-29 | 2002-08-02 | Tissue ablation apparatus with a sliding ablation instrument and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/751,472 US20020087151A1 (en) | 2000-12-29 | 2000-12-29 | Tissue ablation apparatus with a sliding ablation instrument and method |
US10/211,621 US20030050630A1 (en) | 2000-12-29 | 2002-08-02 | Tissue ablation apparatus with a sliding ablation instrument and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/751,472 Division US20020087151A1 (en) | 2000-12-29 | 2000-12-29 | Tissue ablation apparatus with a sliding ablation instrument and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030050630A1 true US20030050630A1 (en) | 2003-03-13 |
Family
ID=25022126
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/751,472 Abandoned US20020087151A1 (en) | 2000-12-29 | 2000-12-29 | Tissue ablation apparatus with a sliding ablation instrument and method |
US09/872,652 Expired - Fee Related US6802840B2 (en) | 2000-12-29 | 2001-06-01 | Medical instrument positioning tool and method |
US10/177,840 Abandoned US20030069575A1 (en) | 2000-12-29 | 2002-06-21 | Tissue ablation system with a sliding ablating device and method |
US10/211,621 Abandoned US20030050630A1 (en) | 2000-12-29 | 2002-08-02 | Tissue ablation apparatus with a sliding ablation instrument and method |
US10/211,685 Abandoned US20030050631A1 (en) | 2000-12-29 | 2002-08-02 | Tissue ablation apparatus with a sliding ablation instrument and method |
US10/301,975 Abandoned US20030109868A1 (en) | 2000-12-29 | 2002-11-21 | Medical instrument positioning tool and method |
US10/949,014 Expired - Fee Related US7303560B2 (en) | 2000-12-29 | 2004-09-24 | Method of positioning a medical instrument |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/751,472 Abandoned US20020087151A1 (en) | 2000-12-29 | 2000-12-29 | Tissue ablation apparatus with a sliding ablation instrument and method |
US09/872,652 Expired - Fee Related US6802840B2 (en) | 2000-12-29 | 2001-06-01 | Medical instrument positioning tool and method |
US10/177,840 Abandoned US20030069575A1 (en) | 2000-12-29 | 2002-06-21 | Tissue ablation system with a sliding ablating device and method |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/211,685 Abandoned US20030050631A1 (en) | 2000-12-29 | 2002-08-02 | Tissue ablation apparatus with a sliding ablation instrument and method |
US10/301,975 Abandoned US20030109868A1 (en) | 2000-12-29 | 2002-11-21 | Medical instrument positioning tool and method |
US10/949,014 Expired - Fee Related US7303560B2 (en) | 2000-12-29 | 2004-09-24 | Method of positioning a medical instrument |
Country Status (6)
Country | Link |
---|---|
US (7) | US20020087151A1 (en) |
EP (1) | EP1395190A2 (en) |
JP (2) | JP2005512668A (en) |
AU (1) | AU2001298066A1 (en) |
CA (1) | CA2433416A1 (en) |
WO (1) | WO2003053259A2 (en) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020193786A1 (en) * | 1998-10-23 | 2002-12-19 | Dany Berube | Directional microwave ablation instrument with off-set energy delivery portion |
US20030163128A1 (en) * | 2000-12-29 | 2003-08-28 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20050143721A1 (en) * | 2003-10-30 | 2005-06-30 | Medical Cv, Inc. | Malleable energy wand for maze procedure |
US20050182392A1 (en) * | 2003-10-30 | 2005-08-18 | Medical Cv, Inc. | Apparatus and method for guided ablation treatment |
US20050209589A1 (en) * | 2003-10-30 | 2005-09-22 | Medical Cv, Inc. | Assessment of lesion transmurality |
US20050217909A1 (en) * | 2002-02-22 | 2005-10-06 | Etienne Guay | Three-wheeled vehicle having a split radiator and an interior storage compartment |
US20060084960A1 (en) * | 2003-10-30 | 2006-04-20 | Medicalcv Inc. | Guided ablation with end-fire fiber |
US20070073280A1 (en) * | 2005-09-16 | 2007-03-29 | Medicalcv, Inc. | End-fire guided ablation |
US20070073281A1 (en) * | 2005-09-16 | 2007-03-29 | Medicalcv, Inc. | Guided ablation with motion control |
US20070203480A1 (en) * | 1999-05-04 | 2007-08-30 | Dinesh Mody | Surgical microwave ablation assembly |
US20070265610A1 (en) * | 2006-05-12 | 2007-11-15 | Thapliyal Hira V | Device for Ablating Body Tissue |
US20080188850A1 (en) * | 2007-02-06 | 2008-08-07 | Microcube, Llc | Delivery system for delivering a medical device to a location within a patient's body |
US20090251228A1 (en) * | 2008-04-03 | 2009-10-08 | Sony Corporation | Voltage-controlled variable frequency oscillation circuit and signal processing circuit |
US20090312673A1 (en) * | 2008-06-14 | 2009-12-17 | Vytronus, Inc. | System and method for delivering energy to tissue |
US20100049099A1 (en) * | 2008-07-18 | 2010-02-25 | Vytronus, Inc. | Method and system for positioning an energy source |
US20100113928A1 (en) * | 2008-10-30 | 2010-05-06 | Vytronus, Inc. | System and method for delivery of energy to tissue while compensating for collateral tissue |
US20100113985A1 (en) * | 2008-10-30 | 2010-05-06 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US20100114094A1 (en) * | 2008-10-30 | 2010-05-06 | Vytronus, Inc. | System and method for anatomical mapping of tissue and planning ablation paths therein |
US20100125198A1 (en) * | 2008-11-17 | 2010-05-20 | Vytronus, Inc. | Systems and methods for ablating body tissue |
US20100152582A1 (en) * | 2008-06-13 | 2010-06-17 | Vytronus, Inc. | Handheld system and method for delivering energy to tissue |
US20110152853A1 (en) * | 2009-12-18 | 2011-06-23 | Prakash Manley | Microwave Ablation System With Dielectric Temperature Probe |
US8518063B2 (en) | 2001-04-24 | 2013-08-27 | Russell A. Houser | Arteriotomy closure devices and techniques |
US8568404B2 (en) | 2010-02-19 | 2013-10-29 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US8961541B2 (en) | 2007-12-03 | 2015-02-24 | Cardio Vascular Technologies Inc. | Vascular closure devices, systems, and methods of use |
US8961551B2 (en) | 2006-12-22 | 2015-02-24 | The Spectranetics Corporation | Retractable separating systems and methods |
US8992567B1 (en) | 2001-04-24 | 2015-03-31 | Cardiovascular Technologies Inc. | Compressible, deformable, or deflectable tissue closure devices and method of manufacture |
US9028520B2 (en) | 2006-12-22 | 2015-05-12 | The Spectranetics Corporation | Tissue separating systems and methods |
US9155588B2 (en) | 2008-06-13 | 2015-10-13 | Vytronus, Inc. | System and method for positioning an elongate member with respect to an anatomical structure |
US9220924B2 (en) | 2008-10-30 | 2015-12-29 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US9283040B2 (en) | 2013-03-13 | 2016-03-15 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9291663B2 (en) | 2013-03-13 | 2016-03-22 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US9345460B2 (en) | 2001-04-24 | 2016-05-24 | Cardiovascular Technologies, Inc. | Tissue closure devices, device and systems for delivery, kits and methods therefor |
US9413896B2 (en) | 2012-09-14 | 2016-08-09 | The Spectranetics Corporation | Tissue slitting methods and systems |
USD765243S1 (en) | 2015-02-20 | 2016-08-30 | The Spectranetics Corporation | Medical device handle |
US9456872B2 (en) | 2013-03-13 | 2016-10-04 | The Spectranetics Corporation | Laser ablation catheter |
USD770616S1 (en) | 2015-02-20 | 2016-11-01 | The Spectranetics Corporation | Medical device handle |
US9603618B2 (en) | 2013-03-15 | 2017-03-28 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9668765B2 (en) | 2013-03-15 | 2017-06-06 | The Spectranetics Corporation | Retractable blade for lead removal device |
US9737323B2 (en) | 2008-11-17 | 2017-08-22 | Vytronus, Inc. | Systems and methods for imaging and ablating body tissue |
US9883885B2 (en) | 2013-03-13 | 2018-02-06 | The Spectranetics Corporation | System and method of ablative cutting and pulsed vacuum aspiration |
US9925366B2 (en) | 2013-03-15 | 2018-03-27 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US9980743B2 (en) | 2013-03-15 | 2018-05-29 | The Spectranetics Corporation | Medical device for removing an implanted object using laser cut hypotubes |
US10136913B2 (en) | 2013-03-15 | 2018-11-27 | The Spectranetics Corporation | Multiple configuration surgical cutting device |
US10363057B2 (en) | 2008-07-18 | 2019-07-30 | Vytronus, Inc. | System and method for delivering energy to tissue |
US10383691B2 (en) | 2013-03-13 | 2019-08-20 | The Spectranetics Corporation | Last catheter with helical internal lumen |
US10405924B2 (en) | 2014-05-30 | 2019-09-10 | The Spectranetics Corporation | System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port |
US10448999B2 (en) | 2013-03-15 | 2019-10-22 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US10835279B2 (en) | 2013-03-14 | 2020-11-17 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US10842532B2 (en) | 2013-03-15 | 2020-11-24 | Spectranetics Llc | Medical device for removing an implanted object |
US10856940B2 (en) | 2016-03-02 | 2020-12-08 | Covidien Lp | Ablation antenna including customizable reflectors |
US11298568B2 (en) | 2008-10-30 | 2022-04-12 | Auris Health, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US12053203B2 (en) | 2014-03-03 | 2024-08-06 | Spectranetics, Llc | Multiple configuration surgical cutting device |
Families Citing this family (418)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6161543A (en) | 1993-02-22 | 2000-12-19 | Epicor, Inc. | Methods of epicardial ablation for creating a lesion around the pulmonary veins |
US7052493B2 (en) | 1996-10-22 | 2006-05-30 | Epicor Medical, Inc. | Methods and devices for ablation |
US6311692B1 (en) * | 1996-10-22 | 2001-11-06 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6805128B1 (en) | 1996-10-22 | 2004-10-19 | Epicor Medical, Inc. | Apparatus and method for ablating tissue |
US6719755B2 (en) | 1996-10-22 | 2004-04-13 | Epicor Medical, Inc. | Methods and devices for ablation |
US7992572B2 (en) | 1998-06-10 | 2011-08-09 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease |
US7425212B1 (en) * | 1998-06-10 | 2008-09-16 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
US7027869B2 (en) | 1998-01-07 | 2006-04-11 | Asthmatx, Inc. | Method for treating an asthma attack |
US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease |
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
US8709007B2 (en) | 1997-10-15 | 2014-04-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Devices and methods for ablating cardiac tissue |
US7921855B2 (en) | 1998-01-07 | 2011-04-12 | Asthmatx, Inc. | Method for treating an asthma attack |
US7214230B2 (en) * | 1998-02-24 | 2007-05-08 | Hansen Medical, Inc. | Flexible instrument |
US7090683B2 (en) * | 1998-02-24 | 2006-08-15 | Hansen Medical, Inc. | Flexible instrument |
US6949106B2 (en) | 1998-02-24 | 2005-09-27 | Endovia Medical, Inc. | Surgical instrument |
US8414598B2 (en) | 1998-02-24 | 2013-04-09 | Hansen Medical, Inc. | Flexible instrument |
US7775972B2 (en) * | 1998-02-24 | 2010-08-17 | Hansen Medical, Inc. | Flexible instrument |
US7713190B2 (en) | 1998-02-24 | 2010-05-11 | Hansen Medical, Inc. | Flexible instrument |
US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy |
US8181656B2 (en) * | 1998-06-10 | 2012-05-22 | Asthmatx, Inc. | Methods for treating airways |
US8308719B2 (en) | 1998-09-21 | 2012-11-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Apparatus and method for ablating tissue |
US20070066972A1 (en) * | 2001-11-29 | 2007-03-22 | Medwaves, Inc. | Ablation catheter apparatus with one or more electrodes |
US6702811B2 (en) | 1999-04-05 | 2004-03-09 | Medtronic, Inc. | Ablation catheter assembly with radially decreasing helix and method of use |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
CA2377583A1 (en) | 1999-07-19 | 2001-01-25 | Epicor, Inc. | Apparatus and method for ablating tissue |
US20060095032A1 (en) | 1999-11-16 | 2006-05-04 | Jerome Jackson | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US20040215235A1 (en) | 1999-11-16 | 2004-10-28 | Barrx, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US8251070B2 (en) | 2000-03-27 | 2012-08-28 | Asthmatx, Inc. | Methods for treating airways |
US7104987B2 (en) | 2000-10-17 | 2006-09-12 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US20030083654A1 (en) * | 2000-12-29 | 2003-05-01 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US7766894B2 (en) | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US20030135204A1 (en) | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
US8414505B1 (en) | 2001-02-15 | 2013-04-09 | Hansen Medical, Inc. | Catheter driver system |
US7699835B2 (en) * | 2001-02-15 | 2010-04-20 | Hansen Medical, Inc. | Robotically controlled surgical instruments |
US7054939B2 (en) * | 2001-06-28 | 2006-05-30 | Bellsouth Intellectual Property Corportion | Simultaneous visual and telephonic access to interactive information delivery |
US6702835B2 (en) | 2001-09-07 | 2004-03-09 | Core Medical, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
US6776784B2 (en) | 2001-09-06 | 2004-08-17 | Core Medical, Inc. | Clip apparatus for closing septal defects and methods of use |
US20060052821A1 (en) | 2001-09-06 | 2006-03-09 | Ovalis, Inc. | Systems and methods for treating septal defects |
JP2005502417A (en) * | 2001-09-19 | 2005-01-27 | ウロロジックス, インコーポレイテッド | Microwave ablation device |
US20030065318A1 (en) * | 2001-09-28 | 2003-04-03 | Rajesh Pendekanti | Method and tool for epicardial ablation around pulmonary vein |
US7128739B2 (en) * | 2001-11-02 | 2006-10-31 | Vivant Medical, Inc. | High-strength microwave antenna assemblies and methods of use |
US6878147B2 (en) * | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
AU2002365882A1 (en) * | 2001-11-29 | 2003-06-17 | Medwaves, Inc. | Radio-frequency-based catheter system with improved deflection and steering mechanisms |
US7399300B2 (en) * | 2001-12-04 | 2008-07-15 | Endoscopic Technologies, Inc. | Cardiac ablation devices and methods |
US7099717B2 (en) | 2002-01-03 | 2006-08-29 | Afx Inc. | Catheter having improved steering |
US7967816B2 (en) | 2002-01-25 | 2011-06-28 | Medtronic, Inc. | Fluid-assisted electrosurgical instrument with shapeable electrode |
US7192427B2 (en) * | 2002-02-19 | 2007-03-20 | Afx, Inc. | Apparatus and method for assessing transmurality of a tissue ablation |
US8347891B2 (en) * | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US20140018880A1 (en) | 2002-04-08 | 2014-01-16 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for monopolar renal neuromodulation |
US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
US7197363B2 (en) | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
US6752767B2 (en) | 2002-04-16 | 2004-06-22 | Vivant Medical, Inc. | Localization element with energized tip |
US6932813B2 (en) * | 2002-05-03 | 2005-08-23 | Scimed Life Systems, Inc. | Ablation systems including insulated energy transmitting elements |
US20030233126A1 (en) * | 2002-06-12 | 2003-12-18 | Alfred E. Mann Institute For Biomedical Engineering | Injection devices and methods for testing implants |
US7063698B2 (en) | 2002-06-14 | 2006-06-20 | Ncontact Surgical, Inc. | Vacuum coagulation probes |
US7572257B2 (en) | 2002-06-14 | 2009-08-11 | Ncontact Surgical, Inc. | Vacuum coagulation and dissection probes |
US6893442B2 (en) | 2002-06-14 | 2005-05-17 | Ablatrics, Inc. | Vacuum coagulation probe for atrial fibrillation treatment |
US8235990B2 (en) | 2002-06-14 | 2012-08-07 | Ncontact Surgical, Inc. | Vacuum coagulation probes |
US9439714B2 (en) | 2003-04-29 | 2016-09-13 | Atricure, Inc. | Vacuum coagulation probes |
US20040106937A1 (en) * | 2002-06-21 | 2004-06-03 | Afx, Inc. | Clamp accessory and method for an ablation instrument |
EP1723921B1 (en) * | 2002-11-27 | 2008-06-25 | Medical Device Innovations Limited | Tissue ablating apparatus |
US7387629B2 (en) | 2003-01-21 | 2008-06-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter design that facilitates positioning at tissue to be diagnosed or treated |
AU2003901390A0 (en) * | 2003-03-26 | 2003-04-10 | University Of Technology, Sydney | Microwave antenna for cardiac ablation |
US20040199154A1 (en) * | 2003-04-02 | 2004-10-07 | Cryocath Technologies Inc. | Device for tissue ablation |
US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
US8021387B2 (en) * | 2003-07-11 | 2011-09-20 | Biosense Webster, Inc. | Trans-septal sheath with splitting dilating needle and method for its use |
US7311703B2 (en) * | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
CA2938411C (en) | 2003-09-12 | 2019-03-05 | Minnow Medical, Llc | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US7282050B2 (en) * | 2003-10-31 | 2007-10-16 | Medtronic, Inc. | Ablation of exterior of stomach to treat obesity |
US7252665B2 (en) * | 2003-10-31 | 2007-08-07 | Medtronic, Inc | Ablation of stomach lining to reduce stomach acid secretion |
US7056286B2 (en) | 2003-11-12 | 2006-06-06 | Adrian Ravenscroft | Medical device anchor and delivery system |
KR100624161B1 (en) * | 2003-12-15 | 2006-09-18 | 임현철 | Apparatus for pressing a blood vessel |
US7150745B2 (en) | 2004-01-09 | 2006-12-19 | Barrx Medical, Inc. | Devices and methods for treatment of luminal tissue |
US20050165312A1 (en) * | 2004-01-26 | 2005-07-28 | Knowles Heather B. | Acoustic window for ultrasound probes |
US8046049B2 (en) | 2004-02-23 | 2011-10-25 | Biosense Webster, Inc. | Robotically guided catheter |
US20070016180A1 (en) * | 2004-04-29 | 2007-01-18 | Lee Fred T Jr | Microwave surgical device |
US20070055224A1 (en) * | 2004-04-29 | 2007-03-08 | Lee Fred T Jr | Intralumenal microwave device |
EP1748726B1 (en) * | 2004-05-26 | 2010-11-24 | Medical Device Innovations Limited | Tissue detection and ablation apparatus |
CA2576884C (en) * | 2004-08-12 | 2017-11-07 | Medtronic, Inc. | Catheter apparatus for treatment of heart arrhythmia |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
AU2005302563A1 (en) * | 2004-10-28 | 2006-05-11 | Medicalcv, Inc. | Apparatus and method for guided ablation treatment |
WO2006052940A2 (en) * | 2004-11-05 | 2006-05-18 | Asthmatx, Inc. | Medical device with procedure improvement features |
US7949407B2 (en) | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods |
US20070093802A1 (en) * | 2005-10-21 | 2007-04-26 | Danek Christopher J | Energy delivery devices and methods |
US7156570B2 (en) * | 2004-12-30 | 2007-01-02 | Cotapaxi Custom Design And Manufacturing, Llc | Implement grip |
US7481225B2 (en) * | 2005-01-26 | 2009-01-27 | Ethicon Endo-Surgery, Inc. | Medical instrument including an end effector having a medical-treatment electrode |
US7278992B2 (en) * | 2005-02-01 | 2007-10-09 | Ethicon Endo-Surgery, Inc. | Medical instrument having medical-treatment electrode |
US20060241476A1 (en) * | 2005-02-10 | 2006-10-26 | Loubser Paul G | Apparatus and method for holding a transesophageal echocardiography probe |
US20060235372A1 (en) * | 2005-04-06 | 2006-10-19 | Ward Jim L | Facilitating tools for cardiac tissue ablation |
AU2006239877B2 (en) | 2005-04-21 | 2012-11-01 | Boston Scientific Scimed, Inc. | Control methods and devices for energy delivery |
US7740627B2 (en) * | 2005-04-29 | 2010-06-22 | Medtronic Cryocath Lp | Surgical method and apparatus for treating atrial fibrillation |
US7794455B2 (en) * | 2005-04-29 | 2010-09-14 | Medtronic Cryocath Lp | Wide area ablation of myocardial tissue |
US8092464B2 (en) * | 2005-04-30 | 2012-01-10 | Warsaw Orthopedic, Inc. | Syringe devices and methods useful for delivering osteogenic material |
US7799019B2 (en) | 2005-05-10 | 2010-09-21 | Vivant Medical, Inc. | Reinforced high strength microwave antenna |
US7727191B2 (en) * | 2005-05-13 | 2010-06-01 | Medtronic Cryocath Lp | Compliant balloon catheter |
US8932208B2 (en) | 2005-05-26 | 2015-01-13 | Maquet Cardiovascular Llc | Apparatus and methods for performing minimally-invasive surgical procedures |
WO2006138382A2 (en) | 2005-06-14 | 2006-12-28 | Micrablate, Llc | Microwave tissue resection tool |
EP1906858B1 (en) | 2005-07-01 | 2016-11-16 | Hansen Medical, Inc. | Robotic catheter system |
US8579936B2 (en) | 2005-07-05 | 2013-11-12 | ProMed, Inc. | Centering of delivery devices with respect to a septal defect |
US7615012B2 (en) * | 2005-08-26 | 2009-11-10 | Cardiac Pacemakers, Inc. | Broadband acoustic sensor for an implantable medical device |
US7846179B2 (en) | 2005-09-01 | 2010-12-07 | Ovalis, Inc. | Suture-based systems and methods for treating septal defects |
US9259267B2 (en) * | 2005-09-06 | 2016-02-16 | W.L. Gore & Associates, Inc. | Devices and methods for treating cardiac tissue |
US20070073278A1 (en) * | 2005-09-16 | 2007-03-29 | Johnson Kevin C | Cardiac Ablation Dosing |
US20070073277A1 (en) | 2005-09-16 | 2007-03-29 | Medicalcv, Inc. | Controlled guided ablation treatment |
US7410410B2 (en) * | 2005-10-13 | 2008-08-12 | Sae Magnetics (H.K.) Ltd. | Method and apparatus to produce a GRM lapping plate with fixed diamond using electro-deposition techniques |
US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
US8702694B2 (en) * | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US20070135686A1 (en) * | 2005-12-14 | 2007-06-14 | Pruitt John C Jr | Tools and methods for epicardial access |
JP4744284B2 (en) * | 2005-12-19 | 2011-08-10 | 株式会社デージーエス・コンピュータ | Treatment child |
US9962168B2 (en) | 2005-12-20 | 2018-05-08 | CroJor, LLC | Method and apparatus for performing minimally invasive arthroscopic procedures |
US10702285B2 (en) | 2005-12-20 | 2020-07-07 | Quantum Medical Innovations, LLC | Method and apparatus for performing minimally invasive arthroscopic procedures |
US8679097B2 (en) * | 2005-12-20 | 2014-03-25 | Orthodynamix Llc | Method and devices for minimally invasive arthroscopic procedures |
WO2007075989A2 (en) * | 2005-12-20 | 2007-07-05 | Orthodynamix Llc | Method and devices for minimally invasive arthroscopic procedures |
US20070198046A1 (en) * | 2006-02-17 | 2007-08-23 | Medicalcv, Inc. | Surgical visualization tool |
EP1997233B1 (en) | 2006-03-13 | 2014-03-05 | Novo Nordisk A/S | Secure pairing of electronic devices using dual means of communication |
CN101401314B (en) * | 2006-03-13 | 2013-04-24 | 诺沃-诺迪斯克有限公司 | Medical system comprising dual purpose communication means |
US10363092B2 (en) * | 2006-03-24 | 2019-07-30 | Neuwave Medical, Inc. | Transmission line with heat transfer ability |
US8672932B2 (en) * | 2006-03-24 | 2014-03-18 | Neuwave Medical, Inc. | Center fed dipole for use with tissue ablation systems, devices and methods |
JP5094132B2 (en) * | 2006-04-07 | 2012-12-12 | 株式会社デージーエス・コンピュータ | RF wave irradiation element for subject lesion |
WO2007123518A1 (en) * | 2006-04-21 | 2007-11-01 | Cedars-Sinai Medical Center | Multiple imaging and/or spectroscopic modality probe |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20100198065A1 (en) * | 2009-01-30 | 2010-08-05 | VyntronUS, Inc. | System and method for ultrasonically sensing and ablating tissue |
EP2024259B1 (en) | 2006-06-08 | 2019-08-21 | Bannerman, Brett | Medical device with articulating shaft |
US10376314B2 (en) * | 2006-07-14 | 2019-08-13 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
EP2043543B1 (en) | 2006-07-14 | 2019-08-21 | Neuwave Medical, Inc. | Energy delivery system |
US11389235B2 (en) * | 2006-07-14 | 2022-07-19 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
EP2046227A2 (en) * | 2006-08-03 | 2009-04-15 | Hansen Medical, Inc. | Systems for performing minimally invasive procedures |
WO2008034107A2 (en) * | 2006-09-14 | 2008-03-20 | Lazure Technologies, Llc | Tissue ablation and removal |
US8068921B2 (en) | 2006-09-29 | 2011-11-29 | Vivant Medical, Inc. | Microwave antenna assembly and method of using the same |
JP5142112B2 (en) * | 2006-10-10 | 2013-02-13 | クレオ・メディカル・リミテッド | Surgical antenna |
GB0620061D0 (en) * | 2006-10-10 | 2006-11-22 | Medical Device Innovations Ltd | Oesophageal treatment apparatus and method |
EP2455034B1 (en) | 2006-10-18 | 2017-07-19 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
EP2076193A4 (en) | 2006-10-18 | 2010-02-03 | Minnow Medical Inc | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
AU2007310986B2 (en) | 2006-10-18 | 2013-07-04 | Boston Scientific Scimed, Inc. | Inducing desirable temperature effects on body tissue |
US7931647B2 (en) * | 2006-10-20 | 2011-04-26 | Asthmatx, Inc. | Method of delivering energy to a lung airway using markers |
US7766909B2 (en) * | 2006-11-08 | 2010-08-03 | Boston Scientific Scimed, Inc. | Sphincterotome with stiffening member |
JP4598197B2 (en) * | 2006-11-09 | 2010-12-15 | Hoya株式会社 | Endoscopic treatment tool |
US7912270B2 (en) * | 2006-11-21 | 2011-03-22 | General Electric Company | Method and system for creating and using an impact atlas |
US20080255550A1 (en) * | 2006-11-30 | 2008-10-16 | Minos Medical | Systems and methods for less invasive neutralization by ablation of tissue including the appendix and gall bladder |
US20080161705A1 (en) * | 2006-12-29 | 2008-07-03 | Podmore Jonathan L | Devices and methods for ablating near AV groove |
US10932848B2 (en) * | 2007-02-06 | 2021-03-02 | Microcube, Llc | Delivery system for delivering a medical device to a location within a patient's body |
US8308725B2 (en) * | 2007-03-20 | 2012-11-13 | Minos Medical | Reverse sealing and dissection instrument |
DE102007014739A1 (en) * | 2007-03-20 | 2008-09-25 | Karl Storz Gmbh & Co. Kg | Deflectable autoclavable endoscope |
US9314298B2 (en) | 2007-04-17 | 2016-04-19 | St. Jude Medical, Atrial Fibrillation Divisions, Inc. | Vacuum-stabilized ablation system |
US8597288B2 (en) * | 2008-10-01 | 2013-12-03 | St. Jude Medical, Artial Fibrillation Division, Inc. | Vacuum-stabilized ablation system |
EP2767308B1 (en) | 2007-04-19 | 2016-04-13 | Miramar Labs, Inc. | Devices, and systems for non-invasive delivery of microwave therapy |
US20100211059A1 (en) * | 2007-04-19 | 2010-08-19 | Deem Mark E | Systems and methods for creating an effect using microwave energy to specified tissue |
US9149331B2 (en) | 2007-04-19 | 2015-10-06 | Miramar Labs, Inc. | Methods and apparatus for reducing sweat production |
WO2009075903A1 (en) | 2007-04-19 | 2009-06-18 | The Foundry, Inc. | Systems and methods for creating an effect using microwave energy to specified tissue |
US7998139B2 (en) | 2007-04-25 | 2011-08-16 | Vivant Medical, Inc. | Cooled helical antenna for microwave ablation |
US8641711B2 (en) | 2007-05-04 | 2014-02-04 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US8353901B2 (en) | 2007-05-22 | 2013-01-15 | Vivant Medical, Inc. | Energy delivery conduits for use with electrosurgical devices |
US9023024B2 (en) | 2007-06-20 | 2015-05-05 | Covidien Lp | Reflective power monitoring for microwave applications |
US8784338B2 (en) | 2007-06-22 | 2014-07-22 | Covidien Lp | Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size |
US8251992B2 (en) | 2007-07-06 | 2012-08-28 | Tyco Healthcare Group Lp | Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation |
EP2170202A1 (en) | 2007-07-06 | 2010-04-07 | Barrx Medical, Inc. | Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding |
US8235983B2 (en) | 2007-07-12 | 2012-08-07 | Asthmatx, Inc. | Systems and methods for delivering energy to passageways in a patient |
AU2008279121B2 (en) | 2007-07-24 | 2013-09-19 | Boston Scientific Scimed, Inc. | System and method for controlling power based on impedance detection, such as controlling power to tissue treatment devices |
US8273012B2 (en) | 2007-07-30 | 2012-09-25 | Tyco Healthcare Group, Lp | Cleaning device and methods |
US8646460B2 (en) * | 2007-07-30 | 2014-02-11 | Covidien Lp | Cleaning device and methods |
US20090043301A1 (en) * | 2007-08-09 | 2009-02-12 | Asthmatx, Inc. | Monopolar energy delivery devices and methods for controlling current density in tissue |
US8562602B2 (en) * | 2007-09-14 | 2013-10-22 | Lazure Technologies, Llc | Multi-layer electrode ablation probe and related methods |
US20090076500A1 (en) * | 2007-09-14 | 2009-03-19 | Lazure Technologies, Llc | Multi-tine probe and treatment by activation of opposing tines |
CN101854977B (en) | 2007-09-14 | 2015-09-09 | 拉热尔技术有限公司 | Prostate cancer ablation |
US8651146B2 (en) | 2007-09-28 | 2014-02-18 | Covidien Lp | Cable stand-off |
JP2010540160A (en) | 2007-10-05 | 2010-12-24 | マッケ カーディオバスキュラー,エルエルシー | Apparatus and method for minimally invasive surgical procedures |
US8280525B2 (en) | 2007-11-16 | 2012-10-02 | Vivant Medical, Inc. | Dynamically matched microwave antenna for tissue ablation |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US8998892B2 (en) | 2007-12-21 | 2015-04-07 | Atricure, Inc. | Ablation device with cooled electrodes and methods of use |
US8353907B2 (en) * | 2007-12-21 | 2013-01-15 | Atricure, Inc. | Ablation device with internally cooled electrodes |
US9043018B2 (en) * | 2007-12-27 | 2015-05-26 | Intuitive Surgical Operations, Inc. | Medical device with orientable tip for robotically directed laser cutting and biomaterial application |
US9198726B2 (en) * | 2007-12-31 | 2015-12-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Photodynamic-based cardiac ablation device and method via the esophagus |
US20090192485A1 (en) * | 2008-01-28 | 2009-07-30 | Heuser Richard R | Snare device |
US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
FR2928532B1 (en) * | 2008-03-13 | 2011-12-02 | Optomed | ENHANCED ELECTRONIC ENDOSCOPE |
EP2271276A4 (en) | 2008-04-17 | 2013-01-23 | Miramar Labs Inc | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
US8272383B2 (en) | 2008-05-06 | 2012-09-25 | Nxthera, Inc. | Systems and methods for male sterilization |
US8052605B2 (en) | 2008-05-07 | 2011-11-08 | Infraredx | Multimodal catheter system and method for intravascular analysis |
AU2009244058B2 (en) | 2008-05-09 | 2015-07-02 | Nuvaira, Inc | Systems, assemblies, and methods for treating a bronchial tree |
US8425500B2 (en) * | 2008-05-19 | 2013-04-23 | Boston Scientific Scimed, Inc. | Method and apparatus for protecting capillary of laser fiber during insertion and reducing metal cap degradation |
US8206380B2 (en) * | 2008-06-13 | 2012-06-26 | Advanced Caridiac Therapeutics Inc. | Method and apparatus for measuring catheter contact force during a medical procedure |
US8343149B2 (en) * | 2008-06-26 | 2013-01-01 | Vivant Medical, Inc. | Deployable microwave antenna for treating tissue |
US8608739B2 (en) | 2008-07-22 | 2013-12-17 | Covidien Lp | Electrosurgical devices, systems and methods of using the same |
US9089700B2 (en) | 2008-08-11 | 2015-07-28 | Cibiem, Inc. | Systems and methods for treating dyspnea, including via electrical afferent signal blocking |
AU2015215971B2 (en) * | 2008-08-25 | 2016-11-03 | Covidien Lp | Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material |
US8211098B2 (en) * | 2008-08-25 | 2012-07-03 | Vivant Medical, Inc. | Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material |
US8403924B2 (en) | 2008-09-03 | 2013-03-26 | Vivant Medical, Inc. | Shielding for an isolation apparatus used in a microwave generator |
US20100100093A1 (en) * | 2008-09-16 | 2010-04-22 | Lazure Technologies, Llc. | System and method for controlled tissue heating for destruction of cancerous cells |
US8242782B2 (en) | 2008-09-30 | 2012-08-14 | Vivant Medical, Inc. | Microwave ablation generator control system |
US20100082083A1 (en) * | 2008-09-30 | 2010-04-01 | Brannan Joseph D | Microwave system tuner |
US8346370B2 (en) * | 2008-09-30 | 2013-01-01 | Vivant Medical, Inc. | Delivered energy generator for microwave ablation |
US8287527B2 (en) * | 2008-09-30 | 2012-10-16 | Vivant Medical, Inc. | Microwave system calibration apparatus and method of use |
US8180433B2 (en) * | 2008-09-30 | 2012-05-15 | Vivant Medical, Inc. | Microwave system calibration apparatus, system and method of use |
US8248075B2 (en) * | 2008-09-30 | 2012-08-21 | Vivant Medical, Inc. | System, apparatus and method for dissipating standing wave in a microwave delivery system |
US8174267B2 (en) * | 2008-09-30 | 2012-05-08 | Vivant Medical, Inc. | Intermittent microwave energy delivery system |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
WO2010042461A1 (en) | 2008-10-06 | 2010-04-15 | Sharma Virender K | Method and apparatus for tissue ablation |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US9980774B2 (en) | 2008-10-21 | 2018-05-29 | Microcube, Llc | Methods and devices for delivering microwave energy |
US11219484B2 (en) | 2008-10-21 | 2022-01-11 | Microcube, Llc | Methods and devices for delivering microwave energy |
US11291503B2 (en) | 2008-10-21 | 2022-04-05 | Microcube, Llc | Microwave treatment devices and methods |
WO2010048335A1 (en) | 2008-10-21 | 2010-04-29 | Microcube, Llc | Methods and devices for applying energy to bodily tissues |
EP2349452B1 (en) | 2008-10-21 | 2016-05-11 | Microcube, LLC | Microwave treatment devices |
KR20110086831A (en) * | 2008-10-22 | 2011-08-01 | 미라마 랩스 인코포레이티드 | Systems, apparatus, methods, and procedures for the non-invasive treatment of tissue using microwave energy |
LT2352453T (en) * | 2008-11-06 | 2018-05-10 | Nxthera, Inc. | Systems and methods for treatment of prostatic tissue |
CA2742566A1 (en) | 2008-11-06 | 2010-05-14 | Nxthera, Inc. | Systems and methods for treatment of bph |
BRPI0921122A2 (en) | 2008-11-06 | 2016-02-16 | Nxthera Inc | prostate therapy system. |
JP5406933B2 (en) | 2008-11-10 | 2014-02-05 | マイクロキューブ, エルエルシー | Method and apparatus for applying energy to body tissue |
CN102271603A (en) | 2008-11-17 | 2011-12-07 | 明诺医学股份有限公司 | Selective accumulation of energy with or without knowledge of tissue topography |
US8372033B2 (en) | 2008-12-31 | 2013-02-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter having proximal heat sensitive deflection mechanism and related methods of use and manufacturing |
US8388611B2 (en) * | 2009-01-14 | 2013-03-05 | Nxthera, Inc. | Systems and methods for treatment of prostatic tissue |
US20100179416A1 (en) * | 2009-01-14 | 2010-07-15 | Michael Hoey | Medical Systems and Methods |
WO2010088301A1 (en) * | 2009-01-27 | 2010-08-05 | Boveda Marco Medical Llc | Catheters and methods for performing electrophysiological interventions |
US8118808B2 (en) | 2009-03-10 | 2012-02-21 | Vivant Medical, Inc. | Cooled dielectrically buffered microwave dipole antenna |
US8728139B2 (en) | 2009-04-16 | 2014-05-20 | Lazure Technologies, Llc | System and method for energy delivery to a tissue using an electrode array |
US9833277B2 (en) * | 2009-04-27 | 2017-12-05 | Nxthera, Inc. | Systems and methods for prostate treatment |
US8235981B2 (en) | 2009-06-02 | 2012-08-07 | Vivant Medical, Inc. | Electrosurgical devices with directional radiation pattern |
US8954161B2 (en) | 2012-06-01 | 2015-02-10 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for radiometrically measuring temperature and detecting tissue contact prior to and during tissue ablation |
US8926605B2 (en) | 2012-02-07 | 2015-01-06 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for radiometrically measuring temperature during tissue ablation |
US9277961B2 (en) | 2009-06-12 | 2016-03-08 | Advanced Cardiac Therapeutics, Inc. | Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated |
US9226791B2 (en) | 2012-03-12 | 2016-01-05 | Advanced Cardiac Therapeutics, Inc. | Systems for temperature-controlled ablation using radiometric feedback |
WO2011008903A2 (en) | 2009-07-15 | 2011-01-20 | Uab Research Foundation | Catheter having temperature controlled anchor and related methods |
WO2011017168A2 (en) | 2009-07-28 | 2011-02-10 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US9005217B2 (en) * | 2009-08-12 | 2015-04-14 | Biosense Webster, Inc. | Robotic drive for catheter |
CA2774265C (en) | 2009-09-18 | 2019-02-19 | Viveve, Inc. | Vaginal remodeling device and methods |
US8906007B2 (en) * | 2009-09-28 | 2014-12-09 | Covidien Lp | Electrosurgical devices, directional reflector assemblies coupleable thereto, and electrosurgical systems including same |
WO2011056684A2 (en) | 2009-10-27 | 2011-05-12 | Innovative Pulmonary Solutions, Inc. | Delivery devices with coolable energy emitting assemblies |
EP2496189A4 (en) | 2009-11-04 | 2016-05-11 | Nitinol Devices And Components Inc | Alternating circumferential bridge stent design and methods for use thereof |
US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
US9149328B2 (en) | 2009-11-11 | 2015-10-06 | Holaira, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
WO2011066445A2 (en) * | 2009-11-30 | 2011-06-03 | Medwaves, Inc. | Radio frequency ablation system with tracking sensor |
US8926602B2 (en) * | 2010-01-28 | 2015-01-06 | Medtronic Cryocath Lp | Triple balloon catheter |
US20110213353A1 (en) * | 2010-02-26 | 2011-09-01 | Lee Anthony C | Tissue Ablation System With Internal And External Radiation Sources |
US10111768B1 (en) | 2010-03-01 | 2018-10-30 | Mwest, Llc | System, method and apparatus for placing therapeutic devices in a heart |
US9033996B1 (en) | 2010-03-01 | 2015-05-19 | Michael B. West | System, method and apparatus for placing therapeutic devices in a heart |
EP2372208B1 (en) * | 2010-03-25 | 2013-05-29 | Tenaris Connections Limited | Threaded joint with elastomeric seal flange |
CN102821710B (en) | 2010-03-25 | 2016-06-22 | 恩克斯特拉公司 | System and method for prostate treatment |
US10039601B2 (en) | 2010-03-26 | 2018-08-07 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
US8409188B2 (en) * | 2010-03-26 | 2013-04-02 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
KR20130108067A (en) | 2010-04-09 | 2013-10-02 | 베식스 바스큘라 인코포레이티드 | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US9526911B1 (en) | 2010-04-27 | 2016-12-27 | Lazure Scientific, Inc. | Immune mediated cancer cell destruction, systems and methods |
US8568397B2 (en) * | 2010-04-28 | 2013-10-29 | Covidien Lp | Induction sealing |
WO2011140087A2 (en) | 2010-05-03 | 2011-11-10 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US8647336B2 (en) * | 2010-06-16 | 2014-02-11 | Medtronic Ablation Frontiers Llc | Cryogenic medical device with thermal guard and method |
US8740893B2 (en) | 2010-06-30 | 2014-06-03 | Covidien Lp | Adjustable tuning of a dielectrically loaded loop antenna |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US20120065630A1 (en) * | 2010-09-15 | 2012-03-15 | Nir Berzak | Cryosurgical instrument for treating large volume of tissue |
JP2012075800A (en) * | 2010-10-05 | 2012-04-19 | Inter Noba Kk | Catheter |
EP2624791B1 (en) | 2010-10-08 | 2017-06-21 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
CN202654229U (en) | 2010-10-25 | 2013-01-09 | 美敦力Af卢森堡有限责任公司 | Catheter device for curing human patients by renal denervation |
US20120116486A1 (en) | 2010-10-25 | 2012-05-10 | Medtronic Ardian Luxembourg S.A.R.L. | Microwave catheter apparatuses, systems, and methods for renal neuromodulation |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9119647B2 (en) * | 2010-11-12 | 2015-09-01 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US9308041B2 (en) | 2010-12-22 | 2016-04-12 | Biosense Webster (Israel) Ltd. | Lasso catheter with rotating ultrasound transducer |
WO2012100095A1 (en) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US8376948B2 (en) | 2011-02-17 | 2013-02-19 | Vivant Medical, Inc. | Energy-delivery device including ultrasound transducer array and phased antenna array |
US8317703B2 (en) | 2011-02-17 | 2012-11-27 | Vivant Medical, Inc. | Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same |
US10278774B2 (en) | 2011-03-18 | 2019-05-07 | Covidien Lp | Selectively expandable operative element support structure and methods of use |
WO2013013156A2 (en) | 2011-07-20 | 2013-01-24 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
JP6106669B2 (en) | 2011-07-22 | 2017-04-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | A neuromodulation system having a neuromodulation element that can be placed in a helical guide |
US9387031B2 (en) | 2011-07-29 | 2016-07-12 | Medtronic Ablation Frontiers Llc | Mesh-overlayed ablation and mapping device |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
US9439720B2 (en) | 2011-09-01 | 2016-09-13 | Iogyn, Inc. | Tissue extraction devices and methods |
PL2755614T3 (en) | 2011-09-13 | 2018-04-30 | Nxthera, Inc. | Systems for prostate treatment |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
WO2013055815A1 (en) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Off -wall electrode device for nerve modulation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
WO2013058962A1 (en) | 2011-10-18 | 2013-04-25 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
CN108095821B (en) | 2011-11-08 | 2021-05-25 | 波士顿科学西美德公司 | Orifice renal nerve ablation |
EP2779929A1 (en) | 2011-11-15 | 2014-09-24 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US10456196B2 (en) * | 2011-12-15 | 2019-10-29 | Biosense Webster (Israel) Ltd. | Monitoring and tracking bipolar ablation |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
CN104220020B (en) | 2011-12-21 | 2017-08-08 | 纽华沃医药公司 | One kind ablation antenna assembly |
CA2859989C (en) | 2011-12-23 | 2020-03-24 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
CN104135958B (en) | 2011-12-28 | 2017-05-03 | 波士顿科学西美德公司 | By the apparatus and method that have the new ablation catheter modulation nerve of polymer ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
ES2829585T3 (en) | 2012-01-25 | 2021-06-01 | Nevro Corp | Cable anchors and associated systems and methods |
WO2013123089A1 (en) * | 2012-02-17 | 2013-08-22 | Cohen Nathaniel L | Apparatus for using microwave energy for insect and pest control and methods thereof |
US8968290B2 (en) * | 2012-03-14 | 2015-03-03 | Covidien Lp | Microwave ablation generator control system |
US10335222B2 (en) | 2012-04-03 | 2019-07-02 | Nxthera, Inc. | Induction coil vapor generator |
US10966780B2 (en) * | 2012-04-17 | 2021-04-06 | Covidien Lp | Electrosurgical instrument having a coated electrode |
DE112013002175T5 (en) | 2012-04-24 | 2015-01-22 | Cibiem, Inc. | Endovascular catheters and procedures for ablation of the carotid body |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
CN107157576B (en) | 2012-05-11 | 2019-11-26 | 美敦力Af卢森堡有限责任公司 | The renal nerve conditioning system of processing for human patients |
WO2013181660A1 (en) | 2012-06-01 | 2013-12-05 | Cibiem, Inc. | Methods and devices for cryogenic carotid body ablation |
EP2854681A4 (en) | 2012-06-01 | 2016-02-17 | Cibiem Inc | Percutaneous methods and devices for carotid body ablation |
US9770293B2 (en) | 2012-06-04 | 2017-09-26 | Boston Scientific Scimed, Inc. | Systems and methods for treating tissue of a passageway within a body |
WO2014005155A1 (en) | 2012-06-30 | 2014-01-03 | Cibiem, Inc. | Carotid body ablation via directed energy |
WO2014018153A1 (en) | 2012-07-24 | 2014-01-30 | Boston Scientific Scimed, Inc. | Electrodes for tissue treatment |
US9370398B2 (en) * | 2012-08-07 | 2016-06-21 | Covidien Lp | Microwave ablation catheter and method of utilizing the same |
WO2014032016A1 (en) | 2012-08-24 | 2014-02-27 | Boston Scientific Scimed, Inc. | Intravascular catheter with a balloon comprising separate microporous regions |
US9113911B2 (en) | 2012-09-06 | 2015-08-25 | Medtronic Ablation Frontiers Llc | Ablation device and method for electroporating tissue cells |
CN104780859B (en) | 2012-09-17 | 2017-07-25 | 波士顿科学西美德公司 | Self-positioning electrode system and method for renal regulation |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US9662165B2 (en) | 2012-10-02 | 2017-05-30 | Covidien Lp | Device and method for heat-sensitive agent application |
US9370392B2 (en) | 2012-10-02 | 2016-06-21 | Covidien Lp | Heat-sensitive optical probes |
JP6074051B2 (en) | 2012-10-10 | 2017-02-01 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Intravascular neuromodulation system and medical device |
US9272132B2 (en) | 2012-11-02 | 2016-03-01 | Boston Scientific Scimed, Inc. | Medical device for treating airways and related methods of use |
US9283374B2 (en) | 2012-11-05 | 2016-03-15 | Boston Scientific Scimed, Inc. | Devices and methods for delivering energy to body lumens |
US9095321B2 (en) | 2012-11-21 | 2015-08-04 | Medtronic Ardian Luxembourg S.A.R.L. | Cryotherapeutic devices having integral multi-helical balloons and methods of making the same |
TW201438660A (en) | 2012-12-20 | 2014-10-16 | Shlomo Ben-Haim | Multi point treatment probes and methods of using thereof |
US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
EP3964151A3 (en) | 2013-01-17 | 2022-03-30 | Virender K. Sharma | Apparatus for tissue ablation |
US10617300B2 (en) * | 2013-02-13 | 2020-04-14 | The Board Of Trustees Of The University Of Illinois | Injectable and implantable cellular-scale electronic devices |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
JP2016513563A (en) | 2013-03-14 | 2016-05-16 | エヌエックスセラ インコーポレイテッド | System and method for treating prostate cancer |
US9179974B2 (en) | 2013-03-15 | 2015-11-10 | Medtronic Ardian Luxembourg S.A.R.L. | Helical push wire electrode |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
EP2967734B1 (en) | 2013-03-15 | 2019-05-15 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US9814618B2 (en) | 2013-06-06 | 2017-11-14 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use |
CA2914488C (en) * | 2013-06-14 | 2021-12-21 | Lc Therapeutics, Inc. | Methods of performing cardiac surgical procedures and kits for practicing the same |
CN105473091B (en) | 2013-06-21 | 2020-01-21 | 波士顿科学国际有限公司 | Renal denervation balloon catheter with co-movable electrode supports |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9265935B2 (en) | 2013-06-28 | 2016-02-23 | Nevro Corporation | Neurological stimulation lead anchors and associated systems and methods |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
WO2015006480A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
WO2015006573A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
EP3024405A1 (en) | 2013-07-22 | 2016-06-01 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
JP2016527959A (en) | 2013-07-22 | 2016-09-15 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Renal nerve ablation medical device |
WO2015013502A2 (en) | 2013-07-24 | 2015-01-29 | Miramar Labs, Inc. | Apparatus and methods for the treatment of tissue using microwave energy |
EP3335658B1 (en) | 2013-08-09 | 2020-04-22 | Boston Scientific Scimed, Inc. | Expandable catheter |
WO2015027096A1 (en) | 2013-08-22 | 2015-02-26 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
US20150073515A1 (en) | 2013-09-09 | 2015-03-12 | Medtronic Ardian Luxembourg S.a.r.I. | Neuromodulation Catheter Devices and Systems Having Energy Delivering Thermocouple Assemblies and Associated Methods |
EP3043733A1 (en) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
EP3057488B1 (en) | 2013-10-14 | 2018-05-16 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
AU2014334574B2 (en) | 2013-10-15 | 2017-07-06 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
CN105636538B (en) | 2013-10-18 | 2019-01-15 | 波士顿科学国际有限公司 | Foley's tube with flexible wire and its correlation technique for using and manufacturing |
JP2016534842A (en) | 2013-10-25 | 2016-11-10 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Embedded thermocouples in denervation flex circuits |
JP2015089489A (en) * | 2013-11-07 | 2015-05-11 | 株式会社アライ・メッドフォトン研究所 | Medical device and phototherapeutic apparatus |
AU2014360318B2 (en) | 2013-12-05 | 2019-10-31 | Rfemb Holdings, Llc | Cancer immunotherapy by radiofrequency electrical membrane breakdown (RF-EMB) |
JP6422975B2 (en) | 2013-12-10 | 2018-11-14 | エヌエックスセラ インコーポレイテッド | Steam ablation system and method |
US9968395B2 (en) | 2013-12-10 | 2018-05-15 | Nxthera, Inc. | Systems and methods for treating the prostate |
JP6382989B2 (en) | 2014-01-06 | 2018-08-29 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device with tear resistant flexible circuit assembly |
US10123836B2 (en) * | 2014-01-24 | 2018-11-13 | Atricure, Inc. | Methods to prevent stress remodeling of atrial tissue |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
EP3116408B1 (en) | 2014-03-12 | 2018-12-19 | Cibiem, Inc. | Ultrasound ablation catheter |
WO2015160574A1 (en) * | 2014-04-17 | 2015-10-22 | Adagio Medical, Inc. | Endovascular near critical fluid based cryoablation catheter having plurality of preformed treatment shapes |
US10736690B2 (en) | 2014-04-24 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters and associated systems and methods |
WO2016081606A1 (en) | 2014-11-19 | 2016-05-26 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for high-resolution mapping of tissue |
CN107148249B (en) | 2014-11-19 | 2022-02-22 | Epix 疗法公司 | Ablation devices, systems, and methods using high resolution electrode assemblies |
EP3220841B1 (en) | 2014-11-19 | 2023-01-25 | EPiX Therapeutics, Inc. | High-resolution mapping of tissue with pacing |
WO2016084215A1 (en) * | 2014-11-28 | 2016-06-02 | オリンパス株式会社 | Ablation device |
CN112168329A (en) | 2015-01-29 | 2021-01-05 | 波士顿科学医学有限公司 | Steam ablation system and method |
JP6723249B2 (en) | 2015-01-30 | 2020-07-15 | アールエフイーエムビー ホールディングス リミテッド ライアビリティ カンパニー | System and method for ablating soft tissue |
US9636164B2 (en) | 2015-03-25 | 2017-05-02 | Advanced Cardiac Therapeutics, Inc. | Contact sensing systems and methods |
EP4275633A3 (en) | 2015-05-13 | 2023-11-22 | Nxthera, Inc. | Systems and methods for treating the bladder with condensable vapor |
WO2017004576A1 (en) | 2015-07-02 | 2017-01-05 | The Board Of Trustees Of The University Of Illinois | Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics |
JP6833310B2 (en) * | 2015-07-27 | 2021-02-24 | オリンパス株式会社 | Endoscope system |
JP7191694B2 (en) | 2015-09-30 | 2022-12-19 | ジ・エ・エッメ・エッセ・エッレ・エッレ | Device for electromagnetic ablation of tissue |
CN108463186A (en) | 2015-10-26 | 2018-08-28 | 纽韦弗医疗设备公司 | Apparatus for securing a medical device and associated methods |
CN113367788B (en) | 2015-10-26 | 2024-09-06 | 纽韦弗医疗设备公司 | Energy delivery system and use thereof |
CN109069624A (en) | 2016-01-15 | 2018-12-21 | 瑞美控股有限责任公司 | The immunization therapy of cancer |
WO2017160808A1 (en) | 2016-03-15 | 2017-09-21 | Advanced Cardiac Therapeutics, Inc. | Improved devices, systems and methods for irrigated ablation |
EP3442456B1 (en) | 2016-04-15 | 2020-12-09 | Neuwave Medical, Inc. | System for energy delivery |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
EP3554404A4 (en) * | 2016-12-16 | 2020-07-22 | Nanospectra Biosciences, Inc. | Devices and the use thereof in methods for ablation therapy |
AU2017382873B2 (en) | 2016-12-21 | 2023-06-01 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
WO2018129466A1 (en) | 2017-01-06 | 2018-07-12 | Nxthera, Inc. | Transperineal vapor ablation systems and methods |
CN118058827A (en) * | 2017-03-03 | 2024-05-24 | 明尼苏达大学校董事会 | Material and treatment using piezoelectric embolic material |
EP3612120A1 (en) * | 2017-04-18 | 2020-02-26 | Glenn Van Langenhove | Improved device for ablation |
WO2018200865A1 (en) | 2017-04-27 | 2018-11-01 | Epix Therapeutics, Inc. | Determining nature of contact between catheter tip and tissue |
WO2018226752A1 (en) * | 2017-06-05 | 2018-12-13 | St. Jude Medical, Cardiology Division, Inc. | Pulmonary antrum radial-linear ablation devices |
US11013552B2 (en) * | 2017-06-28 | 2021-05-25 | Cilag Gmbh International | Electrosurgical cartridge for use in thin profile surgical cutting and stapling instrument |
US10765475B2 (en) * | 2017-10-31 | 2020-09-08 | Biosense Webster (Israel) Ltd. | All-in-one spiral catheter |
IL275963B1 (en) * | 2018-01-10 | 2024-09-01 | Adagio Medical Inc | Cryoablation element with conductive liner |
US20190246876A1 (en) | 2018-02-15 | 2019-08-15 | Neuwave Medical, Inc. | Compositions and methods for directing endoscopic devices |
US20190247117A1 (en) | 2018-02-15 | 2019-08-15 | Neuwave Medical, Inc. | Energy delivery devices and related systems and methods thereof |
US11672596B2 (en) | 2018-02-26 | 2023-06-13 | Neuwave Medical, Inc. | Energy delivery devices with flexible and adjustable tips |
WO2019191415A1 (en) * | 2018-03-29 | 2019-10-03 | Intuitive Surgical Operations, Inc. | Systems and methods related to flexible antennas |
CA3102080A1 (en) | 2018-06-01 | 2019-12-05 | Santa Anna Tech Llc | Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems |
CN108938080B (en) * | 2018-07-26 | 2024-02-09 | 南京康友医疗科技有限公司 | Flexible microwave ablation needle under ultrasonic endoscope |
AU2019322257A1 (en) * | 2018-08-13 | 2021-01-28 | The University Of Sydney | Catheter ablation device with temperature monitoring |
CN109009427B (en) * | 2018-09-04 | 2024-04-30 | 北京恒福思特科技发展有限责任公司 | Microwave surgical instrument with ultrasonic function |
CN109276312B (en) * | 2018-10-22 | 2021-04-13 | 苏州恒瑞迪生医疗科技有限公司 | Microwave ablation needle antenna comprising movable choke ring or ring |
BR112021008320A2 (en) | 2018-11-27 | 2021-08-03 | Neuwave Medical, Inc. | endoscopic system for energy application |
CN113194859A (en) | 2018-12-13 | 2021-07-30 | 纽韦弗医疗设备公司 | Energy delivery device and related system |
JP2022517950A (en) * | 2019-01-11 | 2022-03-11 | マイトリックス, インコーポレイテッド | Devices and methods for catheter-based cardiac procedures |
US11832879B2 (en) | 2019-03-08 | 2023-12-05 | Neuwave Medical, Inc. | Systems and methods for energy delivery |
WO2020264084A1 (en) | 2019-06-27 | 2020-12-30 | Boston Scientific Scimed, Inc. | Detection of an endoscope to a fluid management system |
US20210138239A1 (en) | 2019-09-25 | 2021-05-13 | Swift Sync, Llc | Transvenous Intracardiac Pacing Catheter |
CN112754604B (en) * | 2019-11-05 | 2022-02-01 | 重庆迈科唯医疗科技有限公司 | Ultrasonic knife host, ultrasonic knife system and automatic matching method for impedance of transducer of ultrasonic knife system |
CN111938810A (en) * | 2020-08-24 | 2020-11-17 | 柯晋 | Microwave ablation puncture orienting device |
US20230088132A1 (en) | 2021-09-22 | 2023-03-23 | NewWave Medical, Inc. | Systems and methods for real-time image-based device localization |
CN118714963A (en) | 2022-02-18 | 2024-09-27 | 纽韦弗医疗设备公司 | Coupling device and related system |
US20240285332A1 (en) | 2023-02-24 | 2024-08-29 | Neuwave Medical, Inc. | Temperature regulating devices and related systems and methods |
Family Cites Families (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US335590A (en) * | 1886-02-09 | Velocipede | ||
US1586645A (en) | 1925-07-06 | 1926-06-01 | Bierman William | Method of and means for treating animal tissue to coagulate the same |
US3598108A (en) | 1969-02-28 | 1971-08-10 | Khosrow Jamshidi | Biopsy technique and biopsy device |
US3827436A (en) | 1972-11-10 | 1974-08-06 | Frigitronics Of Conn Inc | Multipurpose cryosurgical probe |
DE7305040U (en) | 1973-02-10 | 1973-06-20 | Lindemann H | ELECTROCOAGULATION FORCEPS FOR TUBE STERILIZATION USING BIPOLAR HIGH-FREQUENCY HEAT RADIATION |
US3886944A (en) | 1973-11-19 | 1975-06-03 | Khosrow Jamshidi | Microcautery device |
NL7502008A (en) | 1974-02-25 | 1975-08-27 | German Schmitt | INTRAKARDIAL STIMULATING ELECTRODE. |
DE2513868C2 (en) * | 1974-04-01 | 1982-11-04 | Olympus Optical Co., Ltd., Tokyo | Bipolar electrodiathermy forceps |
US4033357A (en) | 1975-02-07 | 1977-07-05 | Medtronic, Inc. | Non-fibrosing cardiac electrode |
US4045056A (en) | 1975-10-14 | 1977-08-30 | Gennady Petrovich Kandakov | Expansion compensator for pipelines |
US4073287A (en) * | 1976-04-05 | 1978-02-14 | American Medical Systems, Inc. | Urethral profilometry catheter |
DE2646229A1 (en) * | 1976-10-13 | 1978-04-20 | Erbe Elektromedizin | HIGH FREQUENCY SURGICAL EQUIPMENT |
US4245624A (en) * | 1977-01-20 | 1981-01-20 | Olympus Optical Co., Ltd. | Endoscope with flexible tip control |
FR2421628A1 (en) * | 1977-04-08 | 1979-11-02 | Cgr Mev | LOCALIZED HEATING DEVICE USING VERY HIGH FREQUENCY ELECTROMAGNETIC WAVES, FOR MEDICAL APPLICATIONS |
US4204549A (en) | 1977-12-12 | 1980-05-27 | Rca Corporation | Coaxial applicator for microwave hyperthermia |
GB2022640B (en) | 1978-05-25 | 1982-08-11 | English Card Clothing | Interlocking card-clothing wire |
US4448198A (en) | 1979-06-19 | 1984-05-15 | Bsd Medical Corporation | Invasive hyperthermia apparatus and method |
US4476872A (en) | 1980-03-07 | 1984-10-16 | The Kendall Company | Esophageal probe with disposable cover |
US4462412A (en) | 1980-04-02 | 1984-07-31 | Bsd Medical Corporation | Annular electromagnetic radiation applicator for biological tissue, and method |
JPS5725863A (en) | 1980-07-23 | 1982-02-10 | Olympus Optical Co | Endoscope with microwave heater |
US4565200A (en) * | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
US4416276A (en) | 1981-10-26 | 1983-11-22 | Valleylab, Inc. | Adaptive, return electrode monitoring system |
JPS58173541A (en) * | 1982-04-03 | 1983-10-12 | 銭谷 利男 | Operation by microwave |
US4445892A (en) | 1982-05-06 | 1984-05-01 | Laserscope, Inc. | Dual balloon catheter device |
US4465079A (en) | 1982-10-13 | 1984-08-14 | Medtronic, Inc. | Biomedical lead with fibrosis-inducing anchoring strand |
US4583556A (en) | 1982-12-13 | 1986-04-22 | M/A-Com, Inc. | Microwave applicator/receiver apparatus |
DE3300694A1 (en) | 1983-01-11 | 1984-08-09 | Siemens AG, 1000 Berlin und 8000 München | BIPOLAR ELECTRODE FOR MEDICAL APPLICATIONS |
DE3306402C2 (en) | 1983-02-24 | 1985-03-07 | Werner Prof. Dr.-Ing. 6301 Wettenberg Irnich | Monitoring device for a high-frequency surgical device |
US4655219A (en) | 1983-07-22 | 1987-04-07 | American Hospital Supply Corporation | Multicomponent flexible grasping device |
US4601296A (en) | 1983-10-07 | 1986-07-22 | Yeda Research And Development Co., Ltd. | Hyperthermia apparatus |
US4522212A (en) | 1983-11-14 | 1985-06-11 | Mansfield Scientific, Inc. | Endocardial electrode |
US5143073A (en) | 1983-12-14 | 1992-09-01 | Edap International, S.A. | Wave apparatus system |
USRE33590E (en) | 1983-12-14 | 1991-05-21 | Edap International, S.A. | Method for examining, localizing and treating with ultrasound |
CH662669A5 (en) * | 1984-04-09 | 1987-10-15 | Straumann Inst Ag | GUIDE DEVICE FOR AT LEAST PARTIAL INSERTION IN A HUMAN OR ANIMAL BODY, WITH A HELM AT LEAST MADE FROM A LADDER. |
US4573473A (en) * | 1984-04-13 | 1986-03-04 | Cordis Corporation | Cardiac mapping probe |
US4800899A (en) * | 1984-10-22 | 1989-01-31 | Microthermia Technology, Inc. | Apparatus for destroying cells in tumors and the like |
US4564200A (en) * | 1984-12-14 | 1986-01-14 | Loring Wolson J | Tethered ring game with hook configuration |
US5192278A (en) * | 1985-03-22 | 1993-03-09 | Massachusetts Institute Of Technology | Multi-fiber plug for a laser catheter |
DE3511107A1 (en) | 1985-03-27 | 1986-10-02 | Fischer MET GmbH, 7800 Freiburg | DEVICE FOR BIPOLAR HIGH-FREQUENCY COAGULATION OF BIOLOGICAL TISSUE |
US4641646A (en) * | 1985-04-05 | 1987-02-10 | Kenneth E. Schultz | Endotracheal tube/respirator tubing connecting lock mechanism and method of using same |
US4841990A (en) | 1985-06-29 | 1989-06-27 | Tokyo Keiki Co., Ltd. | Applicator for use in hyperthermia |
US4891483A (en) * | 1985-06-29 | 1990-01-02 | Tokyo Keiki Co. Ltd. | Heating apparatus for hyperthermia |
US4660571A (en) | 1985-07-18 | 1987-04-28 | Cordis Corporation | Percutaneous lead having radially adjustable electrode |
US4681122A (en) | 1985-09-23 | 1987-07-21 | Victory Engineering Corp. | Stereotaxic catheter for microwave thermotherapy |
US4699147A (en) | 1985-09-25 | 1987-10-13 | Cordis Corporation | Intraventricular multielectrode cardial mapping probe and method for using same |
US4785815A (en) | 1985-10-23 | 1988-11-22 | Cordis Corporation | Apparatus for locating and ablating cardiac conduction pathways |
US4763668A (en) | 1985-10-28 | 1988-08-16 | Mill Rose Laboratories | Partible forceps instrument for endoscopy |
US4641649A (en) * | 1985-10-30 | 1987-02-10 | Rca Corporation | Method and apparatus for high frequency catheter ablation |
US4643186A (en) * | 1985-10-30 | 1987-02-17 | Rca Corporation | Percutaneous transluminal microwave catheter angioplasty |
US4924864A (en) | 1985-11-15 | 1990-05-15 | Danzig Fred G | Apparatus and article for ligating blood vessels, nerves and other anatomical structures |
US4700716A (en) | 1986-02-27 | 1987-10-20 | Kasevich Associates, Inc. | Collinear antenna array applicator |
IL78755A0 (en) | 1986-05-12 | 1986-08-31 | Biodan Medical Systems Ltd | Applicator for insertion into a body opening for medical purposes |
EP0393021A1 (en) | 1986-09-12 | 1990-10-24 | Oral Roberts University | Radio frequency surgical tool |
US4825880A (en) | 1987-06-19 | 1989-05-02 | The Regents Of The University Of California | Implantable helical coil microwave antenna |
US5097845A (en) * | 1987-10-15 | 1992-03-24 | Labthermics Technologies | Microwave hyperthermia probe |
US4841988A (en) | 1987-10-15 | 1989-06-27 | Marquette Electronics, Inc. | Microwave hyperthermia probe |
FR2622098B1 (en) | 1987-10-27 | 1990-03-16 | Glace Christian | METHOD AND AZIMUTAL PROBE FOR LOCATING THE EMERGENCY POINT OF VENTRICULAR TACHYCARDIES |
US4832048A (en) | 1987-10-29 | 1989-05-23 | Cordis Corporation | Suction ablation catheter |
US4924863A (en) | 1988-05-04 | 1990-05-15 | Mmtc, Inc. | Angioplastic method for removing plaque from a vas |
AU3696989A (en) | 1988-05-18 | 1989-12-12 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
US5178620A (en) * | 1988-06-10 | 1993-01-12 | Advanced Angioplasty Products, Inc. | Thermal dilatation catheter and method |
US4938217A (en) | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Electronically-controlled variable focus ultrasound hyperthermia system |
US4881543A (en) | 1988-06-28 | 1989-11-21 | Massachusetts Institute Of Technology | Combined microwave heating and surface cooling of the cornea |
US4920978A (en) | 1988-08-31 | 1990-05-01 | Triangle Research And Development Corporation | Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia |
US5147355A (en) | 1988-09-23 | 1992-09-15 | Brigham And Womens Hospital | Cryoablation catheter and method of performing cryoablation |
US4932420A (en) | 1988-10-07 | 1990-06-12 | Clini-Therm Corporation | Non-invasive quarter wavelength microwave applicator for hyperthermia treatment |
US4966597A (en) | 1988-11-04 | 1990-10-30 | Cosman Eric R | Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection |
US5150717A (en) | 1988-11-10 | 1992-09-29 | Arye Rosen | Microwave aided balloon angioplasty with guide filament |
US5108390A (en) | 1988-11-14 | 1992-04-28 | Frigitronics, Inc. | Flexible cryoprobe |
US4960134A (en) | 1988-11-18 | 1990-10-02 | Webster Wilton W Jr | Steerable catheter |
US5230349A (en) | 1988-11-25 | 1993-07-27 | Sensor Electronics, Inc. | Electrical heating catheter |
US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
GB2226497B (en) * | 1988-12-01 | 1992-07-01 | Spembly Medical Ltd | Cryosurgical probe |
US4976711A (en) | 1989-04-13 | 1990-12-11 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
JP2722132B2 (en) | 1989-05-03 | 1998-03-04 | 日機装株式会社 | Device and method for alleviating stenosis from the lumen |
US5007437A (en) | 1989-06-16 | 1991-04-16 | Mmtc, Inc. | Catheters for treating prostate disease |
DE69021798D1 (en) * | 1989-06-20 | 1995-09-28 | Rocket Of London Ltd | Apparatus for supplying electromagnetic energy to a part of a patient's body. |
US5104393A (en) | 1989-08-30 | 1992-04-14 | Angelase, Inc. | Catheter |
US5100388A (en) * | 1989-09-15 | 1992-03-31 | Interventional Thermodynamics, Inc. | Method and device for thermal ablation of hollow body organs |
US5114403A (en) | 1989-09-15 | 1992-05-19 | Eclipse Surgical Technologies, Inc. | Catheter torque mechanism |
US5044375A (en) | 1989-12-08 | 1991-09-03 | Cardiac Pacemakers, Inc. | Unitary intravascular defibrillating catheter with separate bipolar sensing |
CA2089739A1 (en) * | 1990-09-14 | 1992-03-15 | John H. Burton | Combined hyperthermia and dilation catheter |
US5172699A (en) | 1990-10-19 | 1992-12-22 | Angelase, Inc. | Process of identification of a ventricular tachycardia (VT) active site and an ablation catheter system |
US5171255A (en) | 1990-11-21 | 1992-12-15 | Everest Medical Corporation | Biopsy device |
US5085659A (en) * | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
US5139496A (en) | 1990-12-20 | 1992-08-18 | Hed Aharon Z | Ultrasonic freeze ablation catheters and probes |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
US5147357A (en) | 1991-03-18 | 1992-09-15 | Rose Anthony T | Medical instrument |
JPH06507097A (en) | 1991-04-10 | 1994-08-11 | ビーティージー・インターナショナル・インコーポレーテッド | Defibrillator, temporary pacer catheter, and its implantation method |
US5207674A (en) | 1991-05-13 | 1993-05-04 | Hamilton Archie C | Electronic cryogenic surgical probe apparatus and method |
WO1992021285A1 (en) * | 1991-05-24 | 1992-12-10 | Ep Technologies, Inc. | Combination monophasic action potential/ablation catheter and high-performance filter system |
DE4122050C2 (en) | 1991-07-03 | 1996-05-30 | Gore W L & Ass Gmbh | Antenna arrangement with supply line for medical heat application in body cavities |
US5861002A (en) * | 1991-10-18 | 1999-01-19 | Desai; Ashvin H. | Endoscopic surgical instrument |
US5230334A (en) | 1992-01-22 | 1993-07-27 | Summit Technology, Inc. | Method and apparatus for generating localized hyperthermia |
US5222501A (en) | 1992-01-31 | 1993-06-29 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5295955A (en) * | 1992-02-14 | 1994-03-22 | Amt, Inc. | Method and apparatus for microwave aided liposuction |
US5242441A (en) | 1992-02-24 | 1993-09-07 | Boaz Avitall | Deflectable catheter with rotatable tip electrode |
US5263493A (en) | 1992-02-24 | 1993-11-23 | Boaz Avitall | Deflectable loop electrode array mapping and ablation catheter for cardiac chambers |
AU4026793A (en) * | 1992-04-10 | 1993-11-18 | Cardiorhythm | Shapable handle for steerable electrode catheter |
US5281217A (en) * | 1992-04-13 | 1994-01-25 | Ep Technologies, Inc. | Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns |
WO1993020768A1 (en) * | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Steerable microwave antenna systems for cardiac ablation |
US5314466A (en) | 1992-04-13 | 1994-05-24 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
US5281215A (en) * | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Cryogenic catheter |
US5281213A (en) * | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Catheter for ice mapping and ablation |
US5295484A (en) * | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5248312A (en) | 1992-06-01 | 1993-09-28 | Sensor Electronics, Inc. | Liquid metal-filled balloon |
WO1994002077A2 (en) * | 1992-07-15 | 1994-02-03 | Angelase, Inc. | Ablation catheter system |
GB9215042D0 (en) | 1992-07-15 | 1992-08-26 | Microwave Engineering Designs | Microwave treatment apparatus |
US5322507A (en) * | 1992-08-11 | 1994-06-21 | Myriadlase, Inc. | Endoscope for treatment of prostate |
US5720718A (en) * | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
US5470308A (en) * | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5293869A (en) * | 1992-09-25 | 1994-03-15 | Ep Technologies, Inc. | Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole |
EP0719113A1 (en) * | 1992-11-13 | 1996-07-03 | American Cardiac Ablation Co., Inc. | Fluid cooled electrosurgical probe |
US5391147A (en) * | 1992-12-01 | 1995-02-21 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location and/or radius and method |
US5385146A (en) | 1993-01-08 | 1995-01-31 | Goldreyer; Bruce N. | Orthogonal sensing for use in clinical electrophysiology |
IT1266217B1 (en) * | 1993-01-18 | 1996-12-27 | Xtrode Srl | ELECTROCATHETER FOR MAPPING AND INTERVENTION ON HEART CAVITIES. |
US6161543A (en) * | 1993-02-22 | 2000-12-19 | Epicor, Inc. | Methods of epicardial ablation for creating a lesion around the pulmonary veins |
US5797960A (en) * | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5383922A (en) * | 1993-03-15 | 1995-01-24 | Medtronic, Inc. | RF lead fixation and implantable lead |
US5405346A (en) | 1993-05-14 | 1995-04-11 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter |
US5454807A (en) * | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
US5630837A (en) * | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
US5571088A (en) * | 1993-07-01 | 1996-11-05 | Boston Scientific Corporation | Ablation catheters |
US5494039A (en) * | 1993-07-16 | 1996-02-27 | Cryomedical Sciences, Inc. | Biopsy needle insertion guide and method of use in prostate cryosurgery |
US5487757A (en) * | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US5496312A (en) * | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5417208A (en) | 1993-10-12 | 1995-05-23 | Arrow International Investment Corp. | Electrode-carrying catheter and method of making same |
US5582609A (en) * | 1993-10-14 | 1996-12-10 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US5673695A (en) * | 1995-08-02 | 1997-10-07 | Ep Technologies, Inc. | Methods for locating and ablating accessory pathways in the heart |
US5545193A (en) | 1993-10-15 | 1996-08-13 | Ep Technologies, Inc. | Helically wound radio-frequency emitting electrodes for creating lesions in body tissue |
US5599345A (en) * | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment apparatus |
US5730127A (en) * | 1993-12-03 | 1998-03-24 | Avitall; Boaz | Mapping and ablation catheter system |
US5484433A (en) * | 1993-12-30 | 1996-01-16 | The Spectranetics Corporation | Tissue ablating device having a deflectable ablation area and method of using same |
US5405375A (en) | 1994-01-21 | 1995-04-11 | Incontrol, Inc. | Combined mapping, pacing, and defibrillating catheter |
US5873828A (en) * | 1994-02-18 | 1999-02-23 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and treatment system |
US5492126A (en) * | 1994-05-02 | 1996-02-20 | Focal Surgery | Probe for medical imaging and therapy using ultrasound |
US5593405A (en) * | 1994-07-16 | 1997-01-14 | Osypka; Peter | Fiber optic endoscope |
US6030382A (en) * | 1994-08-08 | 2000-02-29 | Ep Technologies, Inc. | Flexible tissue ablatin elements for making long lesions |
US6558375B1 (en) * | 2000-07-14 | 2003-05-06 | Cardiofocus, Inc. | Cardiac ablation instrument |
DE69517153T2 (en) * | 1994-11-02 | 2001-02-01 | Olympus Optical Co., Ltd. | INSTRUMENT WORKING WITH ENDOSCOPE |
US5603697A (en) * | 1995-02-14 | 1997-02-18 | Fidus Medical Technology Corporation | Steering mechanism for catheters and methods for making same |
US5707369A (en) * | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5785707A (en) * | 1995-04-24 | 1998-07-28 | Sdgi Holdings, Inc. | Template for positioning interbody fusion devices |
US5606974A (en) * | 1995-05-02 | 1997-03-04 | Heart Rhythm Technologies, Inc. | Catheter having ultrasonic device |
US5718241A (en) * | 1995-06-07 | 1998-02-17 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias with no discrete target |
US5868737A (en) * | 1995-06-09 | 1999-02-09 | Engineering Research & Associates, Inc. | Apparatus and method for determining ablation |
JPH11507856A (en) * | 1995-06-23 | 1999-07-13 | ガイラス・メディカル・リミテッド | Electrosurgical instruments |
US5788692A (en) | 1995-06-30 | 1998-08-04 | Fidus Medical Technology Corporation | Mapping ablation catheter |
US5863290A (en) * | 1995-08-15 | 1999-01-26 | Rita Medical Systems | Multiple antenna ablation apparatus and method |
US5590657A (en) * | 1995-11-06 | 1997-01-07 | The Regents Of The University Of Michigan | Phased array ultrasound system and method for cardiac ablation |
US5843050A (en) * | 1995-11-13 | 1998-12-01 | Micro Therapeutics, Inc. | Microcatheter |
US5733280A (en) * | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
IL125259A (en) * | 1996-01-08 | 2002-12-01 | Biosense Inc | Apparatus for myocardial revascularization |
US6182664B1 (en) * | 1996-02-19 | 2001-02-06 | Edwards Lifesciences Corporation | Minimally invasive cardiac valve surgery procedure |
US6032077A (en) * | 1996-03-06 | 2000-02-29 | Cardiac Pathways Corporation | Ablation catheter with electrical coupling via foam drenched with a conductive fluid |
US5733281A (en) * | 1996-03-19 | 1998-03-31 | American Ablation Co., Inc. | Ultrasound and impedance feedback system for use with electrosurgical instruments |
US5725523A (en) * | 1996-03-29 | 1998-03-10 | Mueller; Richard L. | Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications |
US6027497A (en) * | 1996-03-29 | 2000-02-22 | Eclipse Surgical Technologies, Inc. | TMR energy delivery system |
AUPN957296A0 (en) * | 1996-04-30 | 1996-05-23 | Cardiac Crc Nominees Pty Limited | A system for simultaneous unipolar multi-electrode ablation |
NL1003024C2 (en) * | 1996-05-03 | 1997-11-06 | Tjong Hauw Sie | Stimulus conduction blocking instrument. |
US5861021A (en) * | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US6016848A (en) * | 1996-07-16 | 2000-01-25 | W. L. Gore & Associates, Inc. | Fluoropolymer tubes and methods of making same |
US5720775A (en) * | 1996-07-31 | 1998-02-24 | Cordis Corporation | Percutaneous atrial line ablation catheter |
US5718226A (en) * | 1996-08-06 | 1998-02-17 | University Of Central Florida | Photonically controlled ultrasonic probes |
US6126682A (en) * | 1996-08-13 | 2000-10-03 | Oratec Interventions, Inc. | Method for treating annular fissures in intervertebral discs |
US5800494A (en) | 1996-08-20 | 1998-09-01 | Fidus Medical Technology Corporation | Microwave ablation catheters having antennas with distal fire capabilities |
US5741249A (en) * | 1996-10-16 | 1998-04-21 | Fidus Medical Technology Corporation | Anchoring tip assembly for microwave ablation catheter |
US6311692B1 (en) * | 1996-10-22 | 2001-11-06 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6719755B2 (en) * | 1996-10-22 | 2004-04-13 | Epicor Medical, Inc. | Methods and devices for ablation |
US6237605B1 (en) | 1996-10-22 | 2001-05-29 | Epicor, Inc. | Methods of epicardial ablation |
US5785706A (en) * | 1996-11-18 | 1998-07-28 | Daig Corporation | Nonsurgical mapping and treatment of cardiac arrhythmia using a catheter contained within a guiding introducer containing openings |
US5871481A (en) * | 1997-04-11 | 1999-02-16 | Vidamed, Inc. | Tissue ablation apparatus and method |
US6024740A (en) * | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6012457A (en) * | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US5873896A (en) * | 1997-05-27 | 1999-02-23 | Uab Research Foundation | Cardiac device for reducing arrhythmia |
US6514249B1 (en) * | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
US6056743A (en) * | 1997-11-04 | 2000-05-02 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization device and method |
US6010516A (en) * | 1998-03-20 | 2000-01-04 | Hulka; Jaroslav F. | Bipolar coaptation clamps |
US6016811A (en) * | 1998-09-01 | 2000-01-25 | Fidus Medical Technology Corporation | Method of using a microwave ablation catheter with a loop configuration |
US6245062B1 (en) | 1998-10-23 | 2001-06-12 | Afx, Inc. | Directional reflector shield assembly for a microwave ablation instrument |
AU1727400A (en) * | 1998-11-16 | 2000-06-05 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US6178354B1 (en) * | 1998-12-02 | 2001-01-23 | C. R. Bard, Inc. | Internal mechanism for displacing a slidable electrode |
US6190382B1 (en) * | 1998-12-14 | 2001-02-20 | Medwaves, Inc. | Radio-frequency based catheter system for ablation of body tissues |
US6174309B1 (en) * | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
US6508774B1 (en) * | 1999-03-09 | 2003-01-21 | Transurgical, Inc. | Hifu applications with feedback control |
US6179776B1 (en) * | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
US6325797B1 (en) * | 1999-04-05 | 2001-12-04 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
US6696844B2 (en) * | 1999-06-04 | 2004-02-24 | Engineering & Research Associates, Inc. | Apparatus and method for real time determination of materials' electrical properties |
US6287302B1 (en) | 1999-06-14 | 2001-09-11 | Fidus Medical Technology Corporation | End-firing microwave ablation instrument with horn reflection device |
US6689062B1 (en) * | 1999-11-23 | 2004-02-10 | Microaccess Medical Systems, Inc. | Method and apparatus for transesophageal cardiovascular procedures |
US6602224B1 (en) * | 1999-12-22 | 2003-08-05 | Advanced Cardiovascular Systems, Inc. | Medical device formed of ultrahigh molecular weight polyolefin |
US6309388B1 (en) * | 1999-12-23 | 2001-10-30 | Mayo Foundation For Medical Education And Research | Symmetric conization electrocautery device |
US6663622B1 (en) * | 2000-02-11 | 2003-12-16 | Iotek, Inc. | Surgical devices and methods for use in tissue ablation procedures |
AU2001241843A1 (en) * | 2000-03-10 | 2001-09-24 | General Mills Marketing, Inc. | Scoopable dough and products resulting therefrom |
US6692491B1 (en) * | 2000-03-24 | 2004-02-17 | Scimed Life Systems, Inc. | Surgical methods and apparatus for positioning a diagnostic or therapeutic element around one or more pulmonary veins or other body structures |
US6673068B1 (en) * | 2000-04-12 | 2004-01-06 | Afx, Inc. | Electrode arrangement for use in a medical instrument |
US20020107514A1 (en) * | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with parallel jaws |
US6546935B2 (en) * | 2000-04-27 | 2003-04-15 | Atricure, Inc. | Method for transmural ablation |
US6511478B1 (en) * | 2000-06-30 | 2003-01-28 | Scimed Life Systems, Inc. | Medical probe with reduced number of temperature sensor wires |
US6743225B2 (en) * | 2001-03-27 | 2004-06-01 | Uab Research Foundation | Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates |
US6648883B2 (en) * | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
US6685715B2 (en) * | 2001-05-02 | 2004-02-03 | Novare Surgical Systems | Clamp having bendable shaft |
US6740080B2 (en) * | 2001-08-31 | 2004-05-25 | Cardiac Pacemakers, Inc. | Ablation system with selectable current path means |
US6761716B2 (en) * | 2001-09-18 | 2004-07-13 | Cardiac Pacemakers, Inc. | System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time |
US6997719B2 (en) * | 2002-06-26 | 2006-02-14 | Ethicon, Inc. | Training model for endoscopic vessel harvesting |
-
2000
- 2000-12-29 US US09/751,472 patent/US20020087151A1/en not_active Abandoned
-
2001
- 2001-06-01 US US09/872,652 patent/US6802840B2/en not_active Expired - Fee Related
- 2001-12-28 WO PCT/US2001/049686 patent/WO2003053259A2/en active Search and Examination
- 2001-12-28 AU AU2001298066A patent/AU2001298066A1/en not_active Abandoned
- 2001-12-28 EP EP01275085A patent/EP1395190A2/en not_active Withdrawn
- 2001-12-28 JP JP2003554021A patent/JP2005512668A/en not_active Withdrawn
- 2001-12-28 CA CA002433416A patent/CA2433416A1/en not_active Abandoned
-
2002
- 2002-06-21 US US10/177,840 patent/US20030069575A1/en not_active Abandoned
- 2002-08-02 US US10/211,621 patent/US20030050630A1/en not_active Abandoned
- 2002-08-02 US US10/211,685 patent/US20030050631A1/en not_active Abandoned
- 2002-11-21 US US10/301,975 patent/US20030109868A1/en not_active Abandoned
-
2004
- 2004-09-24 US US10/949,014 patent/US7303560B2/en not_active Expired - Fee Related
- 2004-12-24 JP JP2004373838A patent/JP4131414B2/en not_active Expired - Fee Related
Cited By (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020193786A1 (en) * | 1998-10-23 | 2002-12-19 | Dany Berube | Directional microwave ablation instrument with off-set energy delivery portion |
US20070203480A1 (en) * | 1999-05-04 | 2007-08-30 | Dinesh Mody | Surgical microwave ablation assembly |
US20030163128A1 (en) * | 2000-12-29 | 2003-08-28 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US8992567B1 (en) | 2001-04-24 | 2015-03-31 | Cardiovascular Technologies Inc. | Compressible, deformable, or deflectable tissue closure devices and method of manufacture |
US9345460B2 (en) | 2001-04-24 | 2016-05-24 | Cardiovascular Technologies, Inc. | Tissue closure devices, device and systems for delivery, kits and methods therefor |
US8518063B2 (en) | 2001-04-24 | 2013-08-27 | Russell A. Houser | Arteriotomy closure devices and techniques |
US20050217909A1 (en) * | 2002-02-22 | 2005-10-06 | Etienne Guay | Three-wheeled vehicle having a split radiator and an interior storage compartment |
US7267674B2 (en) | 2003-10-30 | 2007-09-11 | Medical Cv, Inc. | Apparatus and method for laser treatment |
US20060084960A1 (en) * | 2003-10-30 | 2006-04-20 | Medicalcv Inc. | Guided ablation with end-fire fiber |
US7169142B2 (en) | 2003-10-30 | 2007-01-30 | Medical Cv, Inc. | Malleable energy wand for maze procedure |
US20050143721A1 (en) * | 2003-10-30 | 2005-06-30 | Medical Cv, Inc. | Malleable energy wand for maze procedure |
US7338485B2 (en) | 2003-10-30 | 2008-03-04 | Medical Cv, Inc. | Cardiac lesions with continuity testing |
US7232437B2 (en) | 2003-10-30 | 2007-06-19 | Medical Cv, Inc. | Assessment of lesion transmurality |
US7163534B2 (en) | 2003-10-30 | 2007-01-16 | Medical Cv, Inc. | Laser-based maze procedure for atrial fibrillation |
US7238179B2 (en) | 2003-10-30 | 2007-07-03 | Medical Cv, Inc. | Apparatus and method for guided ablation treatment |
US20050209589A1 (en) * | 2003-10-30 | 2005-09-22 | Medical Cv, Inc. | Assessment of lesion transmurality |
US7137977B2 (en) | 2003-10-30 | 2006-11-21 | Medical Cv, Inc. | Atraumatic laser tip for atrial fibrillation treatment |
US7238180B2 (en) | 2003-10-30 | 2007-07-03 | Medicalcv Inc. | Guided ablation with end-fire fiber |
US20050182392A1 (en) * | 2003-10-30 | 2005-08-18 | Medical Cv, Inc. | Apparatus and method for guided ablation treatment |
US20070073281A1 (en) * | 2005-09-16 | 2007-03-29 | Medicalcv, Inc. | Guided ablation with motion control |
US20070073280A1 (en) * | 2005-09-16 | 2007-03-29 | Medicalcv, Inc. | End-fire guided ablation |
US8607800B2 (en) | 2006-05-12 | 2013-12-17 | Vytronus, Inc. | Method for ablating body tissue |
US20110230798A1 (en) * | 2006-05-12 | 2011-09-22 | Vytronus, Inc. | Method for ablating body tissue |
US20070265610A1 (en) * | 2006-05-12 | 2007-11-15 | Thapliyal Hira V | Device for Ablating Body Tissue |
US10349966B2 (en) | 2006-05-12 | 2019-07-16 | Vytronus, Inc. | Method for ablating body tissue |
US10052121B2 (en) | 2006-05-12 | 2018-08-21 | Vytronus, Inc. | Method for ablating body tissue |
US8511317B2 (en) | 2006-05-12 | 2013-08-20 | Vytronus, Inc. | Method for ablating body tissue |
US9737325B2 (en) | 2006-05-12 | 2017-08-22 | Vytronus, Inc. | Method for ablating body tissue |
US20070265609A1 (en) * | 2006-05-12 | 2007-11-15 | Thapliyal Hira V | Method for Ablating Body Tissue |
US7942871B2 (en) | 2006-05-12 | 2011-05-17 | Vytronus, Inc. | Device for ablating body tissue |
US7950397B2 (en) | 2006-05-12 | 2011-05-31 | Vytronus, Inc. | Method for ablating body tissue |
US10980565B2 (en) | 2006-05-12 | 2021-04-20 | Auris Health, Inc. | Method for ablating body tissue |
US8146603B2 (en) | 2006-05-12 | 2012-04-03 | Vytronus, Inc. | Method for ablating body tissue |
US8961551B2 (en) | 2006-12-22 | 2015-02-24 | The Spectranetics Corporation | Retractable separating systems and methods |
US10869687B2 (en) | 2006-12-22 | 2020-12-22 | Spectranetics Llc | Tissue separating systems and methods |
US10537354B2 (en) | 2006-12-22 | 2020-01-21 | The Spectranetics Corporation | Retractable separating systems and methods |
US9801650B2 (en) | 2006-12-22 | 2017-10-31 | The Spectranetics Corporation | Tissue separating systems and methods |
US9289226B2 (en) | 2006-12-22 | 2016-03-22 | The Spectranetics Corporation | Retractable separating systems and methods |
US9028520B2 (en) | 2006-12-22 | 2015-05-12 | The Spectranetics Corporation | Tissue separating systems and methods |
US9808275B2 (en) | 2006-12-22 | 2017-11-07 | The Spectranetics Corporation | Retractable separating systems and methods |
US8657815B2 (en) | 2007-02-06 | 2014-02-25 | Microcube, Llc | Delivery system for delivering a medical device to a location within a patient's body |
US20080188850A1 (en) * | 2007-02-06 | 2008-08-07 | Microcube, Llc | Delivery system for delivering a medical device to a location within a patient's body |
US8961541B2 (en) | 2007-12-03 | 2015-02-24 | Cardio Vascular Technologies Inc. | Vascular closure devices, systems, and methods of use |
US20090251228A1 (en) * | 2008-04-03 | 2009-10-08 | Sony Corporation | Voltage-controlled variable frequency oscillation circuit and signal processing circuit |
US20100152582A1 (en) * | 2008-06-13 | 2010-06-17 | Vytronus, Inc. | Handheld system and method for delivering energy to tissue |
US9155588B2 (en) | 2008-06-13 | 2015-10-13 | Vytronus, Inc. | System and method for positioning an elongate member with respect to an anatomical structure |
US20090312673A1 (en) * | 2008-06-14 | 2009-12-17 | Vytronus, Inc. | System and method for delivering energy to tissue |
US20100049099A1 (en) * | 2008-07-18 | 2010-02-25 | Vytronus, Inc. | Method and system for positioning an energy source |
US10363057B2 (en) | 2008-07-18 | 2019-07-30 | Vytronus, Inc. | System and method for delivering energy to tissue |
US11207549B2 (en) | 2008-07-18 | 2021-12-28 | Auris Health, Inc. | System and method for delivering energy to tissue |
US10368891B2 (en) | 2008-07-18 | 2019-08-06 | Vytronus, Inc. | System and method for delivering energy to tissue |
US9192789B2 (en) | 2008-10-30 | 2015-11-24 | Vytronus, Inc. | System and method for anatomical mapping of tissue and planning ablation paths therein |
US11298568B2 (en) | 2008-10-30 | 2022-04-12 | Auris Health, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US20100113928A1 (en) * | 2008-10-30 | 2010-05-06 | Vytronus, Inc. | System and method for delivery of energy to tissue while compensating for collateral tissue |
US9833641B2 (en) | 2008-10-30 | 2017-12-05 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US9220924B2 (en) | 2008-10-30 | 2015-12-29 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US8414508B2 (en) | 2008-10-30 | 2013-04-09 | Vytronus, Inc. | System and method for delivery of energy to tissue while compensating for collateral tissue |
US20100113985A1 (en) * | 2008-10-30 | 2010-05-06 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US10850133B2 (en) | 2008-10-30 | 2020-12-01 | Auris Health, Inc. | System and method for anatomical mapping of tissue and planning ablation paths therein |
US9033885B2 (en) | 2008-10-30 | 2015-05-19 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US20100114094A1 (en) * | 2008-10-30 | 2010-05-06 | Vytronus, Inc. | System and method for anatomical mapping of tissue and planning ablation paths therein |
US9907983B2 (en) | 2008-10-30 | 2018-03-06 | Vytronus, Inc. | System and method for ultrasound ablation of tissue while compensating for collateral tissue |
US9737323B2 (en) | 2008-11-17 | 2017-08-22 | Vytronus, Inc. | Systems and methods for imaging and ablating body tissue |
US20100125198A1 (en) * | 2008-11-17 | 2010-05-20 | Vytronus, Inc. | Systems and methods for ablating body tissue |
US10154831B2 (en) | 2008-11-17 | 2018-12-18 | Vytronus, Inc. | Methods for imaging and ablating body tissue |
US8475379B2 (en) | 2008-11-17 | 2013-07-02 | Vytronus, Inc. | Systems and methods for ablating body tissue |
US8882759B2 (en) | 2009-12-18 | 2014-11-11 | Covidien Lp | Microwave ablation system with dielectric temperature probe |
US20110152853A1 (en) * | 2009-12-18 | 2011-06-23 | Prakash Manley | Microwave Ablation System With Dielectric Temperature Probe |
US9968401B2 (en) | 2009-12-18 | 2018-05-15 | Covidien Lp | Microwave ablation system with dielectric temperature probe |
US9839477B2 (en) | 2010-02-19 | 2017-12-12 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US8568404B2 (en) | 2010-02-19 | 2013-10-29 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US9724122B2 (en) | 2012-09-14 | 2017-08-08 | The Spectranetics Corporation | Expandable lead jacket |
US10368900B2 (en) | 2012-09-14 | 2019-08-06 | The Spectranetics Corporation | Tissue slitting methods and systems |
US10531891B2 (en) | 2012-09-14 | 2020-01-14 | The Spectranetics Corporation | Tissue slitting methods and systems |
US9763692B2 (en) | 2012-09-14 | 2017-09-19 | The Spectranetics Corporation | Tissue slitting methods and systems |
US9949753B2 (en) | 2012-09-14 | 2018-04-24 | The Spectranetics Corporation | Tissue slitting methods and systems |
US9413896B2 (en) | 2012-09-14 | 2016-08-09 | The Spectranetics Corporation | Tissue slitting methods and systems |
US11596435B2 (en) | 2012-09-14 | 2023-03-07 | Specrtranetics Llc | Tissue slitting methods and systems |
US10265520B2 (en) | 2013-03-13 | 2019-04-23 | The Spetranetics Corporation | Alarm for lead insulation abnormality |
US10485613B2 (en) | 2013-03-13 | 2019-11-26 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9283040B2 (en) | 2013-03-13 | 2016-03-15 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9291663B2 (en) | 2013-03-13 | 2016-03-22 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US9456872B2 (en) | 2013-03-13 | 2016-10-04 | The Spectranetics Corporation | Laser ablation catheter |
US10799293B2 (en) | 2013-03-13 | 2020-10-13 | The Spectranetics Corporation | Laser ablation catheter |
US10383691B2 (en) | 2013-03-13 | 2019-08-20 | The Spectranetics Corporation | Last catheter with helical internal lumen |
US9937005B2 (en) | 2013-03-13 | 2018-04-10 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9883885B2 (en) | 2013-03-13 | 2018-02-06 | The Spectranetics Corporation | System and method of ablative cutting and pulsed vacuum aspiration |
US9925371B2 (en) | 2013-03-13 | 2018-03-27 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US10835279B2 (en) | 2013-03-14 | 2020-11-17 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US11925380B2 (en) | 2013-03-14 | 2024-03-12 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US10448999B2 (en) | 2013-03-15 | 2019-10-22 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US11925334B2 (en) | 2013-03-15 | 2024-03-12 | Spectranetics Llc | Surgical instrument for removing an implanted object |
US10219819B2 (en) | 2013-03-15 | 2019-03-05 | The Spectranetics Corporation | Retractable blade for lead removal device |
US9918737B2 (en) | 2013-03-15 | 2018-03-20 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9925366B2 (en) | 2013-03-15 | 2018-03-27 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US10842532B2 (en) | 2013-03-15 | 2020-11-24 | Spectranetics Llc | Medical device for removing an implanted object |
US10524817B2 (en) | 2013-03-15 | 2020-01-07 | The Spectranetics Corporation | Surgical instrument including an inwardly deflecting cutting tip for removing an implanted object |
US9980743B2 (en) | 2013-03-15 | 2018-05-29 | The Spectranetics Corporation | Medical device for removing an implanted object using laser cut hypotubes |
US9668765B2 (en) | 2013-03-15 | 2017-06-06 | The Spectranetics Corporation | Retractable blade for lead removal device |
US9956399B2 (en) | 2013-03-15 | 2018-05-01 | The Spectranetics Corporation | Medical device for removing an implanted object |
US10052129B2 (en) | 2013-03-15 | 2018-08-21 | The Spectranetics Corporation | Medical device for removing an implanted object |
US10314615B2 (en) | 2013-03-15 | 2019-06-11 | The Spectranetics Corporation | Medical device for removing an implanted object |
US11160579B2 (en) | 2013-03-15 | 2021-11-02 | Spectranetics Llc | Multiple configuration surgical cutting device |
US10849603B2 (en) | 2013-03-15 | 2020-12-01 | Spectranetics Llc | Surgical instrument for removing an implanted object |
US9603618B2 (en) | 2013-03-15 | 2017-03-28 | The Spectranetics Corporation | Medical device for removing an implanted object |
US10136913B2 (en) | 2013-03-15 | 2018-11-27 | The Spectranetics Corporation | Multiple configuration surgical cutting device |
US12053203B2 (en) | 2014-03-03 | 2024-08-06 | Spectranetics, Llc | Multiple configuration surgical cutting device |
US10405924B2 (en) | 2014-05-30 | 2019-09-10 | The Spectranetics Corporation | System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port |
USD770616S1 (en) | 2015-02-20 | 2016-11-01 | The Spectranetics Corporation | Medical device handle |
USD765243S1 (en) | 2015-02-20 | 2016-08-30 | The Spectranetics Corporation | Medical device handle |
USD806245S1 (en) | 2015-02-20 | 2017-12-26 | The Spectranetics Corporation | Medical device handle |
USD819204S1 (en) | 2015-02-20 | 2018-05-29 | The Spectranetics Corporation | Medical device handle |
USD854682S1 (en) | 2015-02-20 | 2019-07-23 | The Spectranetics Corporation | Medical device handle |
US10856940B2 (en) | 2016-03-02 | 2020-12-08 | Covidien Lp | Ablation antenna including customizable reflectors |
Also Published As
Publication number | Publication date |
---|---|
US20030050631A1 (en) | 2003-03-13 |
JP2005137916A (en) | 2005-06-02 |
JP4131414B2 (en) | 2008-08-13 |
US20030069575A1 (en) | 2003-04-10 |
WO2003053259A2 (en) | 2003-07-03 |
US20030109868A1 (en) | 2003-06-12 |
AU2001298066A8 (en) | 2003-07-09 |
US7303560B2 (en) | 2007-12-04 |
AU2001298066A1 (en) | 2003-07-09 |
CA2433416A1 (en) | 2003-07-03 |
US6802840B2 (en) | 2004-10-12 |
US20060217694A1 (en) | 2006-09-28 |
JP2005512668A (en) | 2005-05-12 |
US20020128636A1 (en) | 2002-09-12 |
US20020087151A1 (en) | 2002-07-04 |
WO2003053259A3 (en) | 2003-12-24 |
EP1395190A2 (en) | 2004-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7303560B2 (en) | Method of positioning a medical instrument | |
EP1608279B1 (en) | A tissue ablation system with a sliding ablating device | |
US20030083654A1 (en) | Tissue ablation system with a sliding ablating device and method | |
US7226446B1 (en) | Surgical microwave ablation assembly | |
US7033352B1 (en) | Flexible ablation instrument | |
US6817999B2 (en) | Flexible device for ablation of biological tissue | |
US7192427B2 (en) | Apparatus and method for assessing transmurality of a tissue ablation | |
US6471696B1 (en) | Microwave ablation instrument with a directional radiation pattern | |
US6976986B2 (en) | Electrode arrangement for use in a medical instrument | |
US7052491B2 (en) | Vacuum-assisted securing apparatus for a microwave ablation instrument | |
US20090157068A1 (en) | Intraoperative electrical conduction mapping system | |
JP2005324029A (en) | Non-contact tissue cauterization device and its use method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: MAQUET CARDIOVASCULAR LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOSTON SCIENTIFIC LIMITED;BOSTON SCIENTIFIC SCIMED, INC.;CORVITA CORPORATION;AND OTHERS;REEL/FRAME:020462/0322 Effective date: 20080102 Owner name: MAQUET CARDIOVASCULAR LLC,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOSTON SCIENTIFIC LIMITED;BOSTON SCIENTIFIC SCIMED, INC.;CORVITA CORPORATION;AND OTHERS;REEL/FRAME:020462/0322 Effective date: 20080102 |