JP4744284B2 - Treatment child - Google Patents

Treatment child Download PDF

Info

Publication number
JP4744284B2
JP4744284B2 JP2005364659A JP2005364659A JP4744284B2 JP 4744284 B2 JP4744284 B2 JP 4744284B2 JP 2005364659 A JP2005364659 A JP 2005364659A JP 2005364659 A JP2005364659 A JP 2005364659A JP 4744284 B2 JP4744284 B2 JP 4744284B2
Authority
JP
Japan
Prior art keywords
treatment
freezing
metal tube
tube
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005364659A
Other languages
Japanese (ja)
Other versions
JP2007167101A (en
Inventor
完成 岩田
靖 岩田
雅文 川村
誠之 中塚
陽太郎 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DGS COMPUTER
Original Assignee
DGS COMPUTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DGS COMPUTER filed Critical DGS COMPUTER
Priority to JP2005364659A priority Critical patent/JP4744284B2/en
Publication of JP2007167101A publication Critical patent/JP2007167101A/en
Application granted granted Critical
Publication of JP4744284B2 publication Critical patent/JP4744284B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、凍結治療に使用する治療装置の治療子(治療具)に関する。   The present invention relates to a treatment device (treatment device) of a treatment device used for cryotherapy.

医療装置の中には、被検体の体内に侵入具を侵入(穿刺を含む)させる装置がある。例えば胃カメラ、監視用光ファイバー、組織を切り取って採取する採取具、特定の部位に薬剤を注入する注入具、病巣部位に熱や電磁場などのエネルギーを照射して治療を行う治療具などがある。
こうした侵入具の侵入監視用に透視像をリアルタイムで得て表示して侵入を監視する透視監視法、X線CT断層像をリアルタイムで得て二次元又は三次元表示させて侵入を監視するCT監視法がある。
こうした透視監視法、CT監視法は、術者が画面を見ながら監視し、この監視画像から術者が位置やルートを決定確認しながら、医療を施すやり方をとる。
CT監視法とは、侵入経路及び患部をCT撮影しながらリアルタイムでCT画像及び又はその三次元化した画像を表示させ、この表示画面を術者が監視しながら侵入具の進行及び治療を行う治療法を指す。CT監視法は、複雑な部位や身体の深化した部位(肺や心臓、前立腺や膵臓等)での監視に向いている。このCT監視法を使用した最新例として、肺癌組織の壊死をはかる凍結治療法がある。この凍結療法とは、肺癌部位細胞を凍結させ、その後で融解させ、その融解の過程で塩濃度の差の発生等により細胞内を破壊し、細胞死に至らしめるという原理による。凍結と融解には、2つの高圧ガスを使う。高圧のガスは急激に体積を膨張させると、分子の種類により急激に温度を上げるものと、急激に温度を下げるものとがあり、これは物理現学の1つであるJoule-Thompson効果と呼ばれる。そこで、温度を揚げる方に高圧アルゴンガスを、温度を下げる方にヘリウムガスを使用する。治療には、中空の金属性の治療子(治療具と同義。ガイドニードルとも呼ばれる)を用いる。CT監視下で、この治療子を患部まで誘導し、上記2つのガスを交互に中空内から又は中空部の先端から外部へ放出し、熱交換作用を利用して患部への凍結療法を行う。
Among medical devices, there are devices that allow an intruder to enter (including puncture) into the body of a subject. For example, there are a gastric camera, a monitoring optical fiber, a collection tool for cutting and collecting tissue, an injection tool for injecting a drug into a specific site, and a treatment tool for treating a lesion site by irradiating energy such as heat or electromagnetic field.
For intrusion monitoring of such an intruder, a fluoroscopic monitoring method in which a fluoroscopic image is obtained and displayed in real time to monitor the intrusion, and CT monitoring in which an X-ray CT tomographic image is obtained in real time and displayed in two or three dimensions to monitor the invasion. There is a law.
Such fluoroscopy monitoring method and CT monitoring method are a method in which an operator performs monitoring while looking at a screen, and an operator performs medical treatment while determining and confirming the position and route from the monitoring image.
The CT monitoring method is a treatment in which a CT image and / or a three-dimensional image thereof are displayed in real time while performing CT imaging of an intrusion route and an affected part, and an operator advances and treats the intruder while monitoring the display screen. Refers to the law. The CT monitoring method is suitable for monitoring a complex part or a deepened part of the body (lung, heart, prostate, pancreas, etc.). The latest example using this CT monitoring method is a cryotherapy method for necrosis of lung cancer tissue. This cryotherapy is based on the principle that the lung cancer site cells are frozen and then thawed, and the inside of the cells is destroyed by the generation of a difference in salt concentration in the process of thawing, leading to cell death. Two high-pressure gases are used for freezing and thawing. When the volume of high-pressure gas expands suddenly, there are ones that rapidly increase the temperature depending on the type of molecule and ones that rapidly decrease the temperature. This is called the Joule-Thompson effect, which is one of the physical phenomena. . Therefore, high-pressure argon gas is used to raise the temperature, and helium gas is used to lower the temperature. For treatment, a hollow metallic treatment child (synonymous with a treatment tool, also called a guide needle) is used. Under CT monitoring, this therapeutic child is guided to the affected part, and the two gases are alternately discharged from the inside of the hollow or the tip of the hollow part to the outside, and cryotherapy is performed on the affected part using the heat exchange action.

こうした一般的な凍結療法の文献として、非特許文献1がある。更に、凍結療法に用いる治療子を含む機械系、及びその治療のやり方と実際事例とを解説した文献として、非特許文献2がある。
雑誌「医学のあゆみ」(Vol.206No.3,2003.7.19)。川村他著「肺癌の凍結融解壊死療法」(P229〜P231)。 雑誌「低温医学」(30巻、2004)。中塚、川村他著「CT透視を用いた肺悪性腫瘍に対する経皮的凍結療法の実際」(P9〜P15)。
There is Non-Patent Document 1 as a document of such general cryotherapy. Furthermore, there is Non-Patent Document 2 as a document that describes a mechanical system including a therapeutic element used for cryotherapy, and a method and an actual case of the treatment.
The magazine “Ayumi of Medicine” (Vol. 206 No. 3, 2003. 7.19). Kawamura et al., “Freeze-thaw necrosis therapy for lung cancer” (P229-P231). Magazine "Cryogenic Medicine" (30, 2004). Nakatsuka, Kawamura et al., “Percutaneous cryotherapy for lung malignant tumor using CT fluoroscopy” (P9-P15).

文献2は、治療子の穿刺状態を、リアルタイムでX線CT装置で撮影してこれをリアルタイムで断層画像として再構成して表示させ、手技を行うとしたものである。X線CT装置は、マルチスライス撮影であり、一回で多数の断層像を得て表示させる。治療子の進行を監視でき、患部位置への追跡、手技に沿ってほぼリアルタイムで画像としてみることができる。   Document 2 is a technique in which the puncture state of the treatment child is photographed with an X-ray CT apparatus in real time, reconstructed and displayed as a tomographic image in real time, and a procedure is performed. The X-ray CT apparatus is multi-slice imaging, and obtains and displays a large number of tomographic images at one time. The progress of the treatment child can be monitored, and it can be viewed as an image in almost real time along the tracking and procedure to the affected area.

一方、治療子は、先端が刃物状に突起するステンレス製の二重管(コアキシャルニードル)を使う。治療に当っては、この二重管を体表面にあてがった状態で、二重管の中心軸に沿って長く細い誘導針を挿入し、その誘導針を患部まで穿刺する。次にその誘導針に沿って二重管を患部まで進行させ、更に二重管を進めて腫瘍を貫通させる。   On the other hand, the treatment element uses a stainless steel double tube (coaxial needle) whose tip protrudes like a blade. In the treatment, with the double tube placed on the body surface, a long and thin guide needle is inserted along the central axis of the double tube, and the guide needle is punctured to the affected area. Next, the double tube is advanced to the affected area along the guide needle, and the double tube is further advanced to penetrate the tumor.

この後で上記誘導針を抜いて、代りに凍結端子を二重管内の中空の軸に沿って挿通装填する。この際凍結端子の凍結・解凍部位となる端子先端は、二重管の先端のまるみを帯びた内面に当接又は近接した位置とする。凍結端子は高圧アルゴンガス注入口と高圧ヘリウムガス注入口へと切替バルブを介してつながる。充填確認後に切替バルブを切替えて高圧ヘリウムガスを注入し、次いで高圧アルゴンガスを注入し、凍結と解凍とを短時間で実行する。このサイクルを複数回繰返すこともある。これらの一連の動作はリアルタイムでのCT画像を表示させてのCT監視下で、観察確認しながら行う。   Thereafter, the guide needle is removed, and a freezing terminal is inserted and loaded along the hollow shaft in the double tube instead. At this time, the terminal tip which becomes the freezing / thawing portion of the freezing terminal is set to a position in contact with or close to the rounded inner surface of the tip of the double tube. The freezing terminal is connected to a high-pressure argon gas inlet and a high-pressure helium gas inlet via a switching valve. After the filling is confirmed, the switching valve is switched to inject high-pressure helium gas, then high-pressure argon gas is injected, and freezing and thawing are performed in a short time. This cycle may be repeated multiple times. A series of these operations are performed while observing and confirming under CT monitoring with displaying a real-time CT image.

上記二重管は、最先端が、その前方方向に、円形の丸みを帯びた形状をなす。従って、凍結端子をその内側に装着して凍結・解凍を行った場合、熱の指向特性は、先端からその前方方向(即ち深さ方向)には、その円形の丸みを帯びた形状に沿ったものとなるが、先端部の周囲方向(即ち深さに直交する横方向)には、均一な指向特性となる。
治療部位や患部は種々の深さや横への拡がりを持つ故に、二重管の最先端形状の役割は重要である。
本発明の目的は、深さや横への種々の有効な指向特性を可能にする治療子を提供することにある。
The above-mentioned double tube has a rounded shape at the front end, in the forward direction. Therefore, when the freezing terminal is attached to the inside and the freezing / thawing is performed, the directivity characteristic of the heat follows the rounded shape in the forward direction (that is, the depth direction) from the tip. However, the directivity is uniform in the peripheral direction of the tip (that is, in the lateral direction perpendicular to the depth).
Since the treatment site and the affected area have various depths and lateral spreads, the role of the leading edge shape of the double tube is important.
An object of the present invention is to provide a therapeutic element that enables various effective directional characteristics in depth and lateral direction.

本発明は、被検体内部に穿刺可能な中空金属管と、この管の中心軸に沿って挿通・装着可能な凍結端子と、この凍結端子につながり、凍結と解凍とのガスを交互に切り替えて供給するガス供給部とを備え、上記金属管の先端近傍の、周囲外方向又は内部内方向に、少なくとも1つの突起形状を有するものとする治療子を開示する。
更に本発明は、前記三次元数式データに対して、医療時の被検体の姿勢等の被検体変動補正を行い、この補正後の三次元数式データと被検体侵入具の形状を表す数式データとから、被検体への侵入開始位置、侵入具の輪郭上の到達点、侵入方向、侵入具の角度及び回転角、開始位置から到達点までの進行ルート、の少なくともいずれか1つを求め決定するものとした医療装置を開示する。
更に本発明は、前記金属管は円筒とする治療子を開示する。
更に本発明は、被検体内部に穿刺可能な中空金属管と、この管の中心軸に沿って挿通・装着可能な凍結端子と、この凍結端子につながり、凍結と解凍とのガスを交互に切り替えて供給するガス供給部とを備え、上記金属管の先端よりも管側の外周又は内周に、この先端へ移動可能な突起形状体を具えるものとした治療子を開示する。
更に本発明は、前記挿通・装着後の管の外部に位置する凍結端子に、操作部を設けた治療子を開示する。
更に本発明は、前記記金属管の代わりに、プラスチック管を用いるものとした治療子を開示する。
The present invention relates to a hollow metal tube that can be punctured inside a subject, a freezing terminal that can be inserted / attached along the central axis of the tube, and a freezing terminal that is connected to the freezing terminal and alternately switches between freezing and thawing gases. There is disclosed a therapeutic device comprising a gas supply unit to be supplied and having at least one protrusion shape in the outer circumferential direction or the inner inner direction near the tip of the metal tube.
Further, the present invention performs subject variation correction such as the posture of the subject at the time of medical treatment on the three-dimensional formula data, and the corrected three-dimensional formula data and formula data representing the shape of the subject intruder. To determine and determine at least one of the entry start position to the subject, the arrival point on the contour of the entry tool, the entry direction, the angle and rotation angle of the entry tool, and the travel route from the start position to the arrival point. A medical device intended is disclosed.
Furthermore, the present invention discloses a treatment element in which the metal tube is a cylinder.
Furthermore, the present invention provides a hollow metal tube that can be punctured inside a subject, a freezing terminal that can be inserted / attached along the central axis of the tube, and a gas that connects to the freezing terminal and alternately switches between freezing and thawing gases. And a gas supply section for supplying the therapeutic tube, and a treatment element comprising a protrusion-shaped body movable to the distal end on the outer periphery or inner periphery on the tube side of the distal end of the metal tube.
Furthermore, the present invention discloses a treatment element in which an operation part is provided on a freezing terminal located outside the tube after insertion and attachment.
Furthermore, the present invention discloses a treatment element in which a plastic tube is used instead of the metal tube.

本発明によれば、治療に有効な熱指向特性の治療子の実現がはかれる。   According to the present invention, it is possible to realize a therapeutic element having a heat directing characteristic effective for treatment.

〔発明の概要〕
本発明は、凍結端子を持つ治療子に関し、二重管等の管の先端部の周囲に、外方向に熱指向特性を持つ少なくとも1つの突起形状部を設けた。これにより、その突起部の外方向への熱指向特性が大きくなり、その方向にある治療病巣への集中的な熱エネルギーの供給を可能にする。
[Summary of the Invention]
The present invention relates to a treatment element having a freezing terminal, and at least one protrusion-shaped portion having a heat directing characteristic in an outward direction is provided around a distal end portion of a tube such as a double tube. Thereby, the heat directing characteristic toward the outward direction of the protrusion is increased, and the concentrated heat energy can be supplied to the treatment lesion in that direction.

更に本発明は、突起部が凍結端子の進行に連動して移動可能な構成とすることで、穿刺時やその完了時に凍結端子の進行に連動して突起部を先端まで移動できる。   Further, according to the present invention, the protrusion can be moved in conjunction with the progress of the freezing terminal, so that the protrusion can be moved to the tip in conjunction with the progress of the freezing terminal at the time of puncturing or completion thereof.

更に本発明は、二重管等の管の外部に位置する凍結端子の部位に操作部を設けたことで、凍結端子の回転角度や侵入角度を自在に可能にする。   Furthermore, according to the present invention, the operation portion is provided at a portion of the freezing terminal located outside the tube such as a double tube, so that the rotation angle and the intrusion angle of the freezing terminal can be freely made.

更に、本発明は、凍結端子を有する治療子を使用する治療装置に好適である。そこで、従来にない新しい治療装置の基本的な考え方を述べる。
人体の内部構造は反射波や透過波を利用して見ることができる。例えば前者では超音波、後者ではX線がある。特に後者の波長の短い透過性の高い電磁波(X線など)を利用したCTや各種のX線装置は透過性と理論分解能の有利さを得て現実にきわめて有用に発展している。そしてCT装置ではこの電磁波の人体構造による透過量の相違により得られた画像(以下単に画像と称する)を一定の破断面を平面として得られる濃度を変量とするXYの2次元平面データとして得られる。この平面は座標中心を定めれぱこの座標中心を軸とする平行平面の奥行き(Z)方向への配列として数学的に取り扱うことが出来る。即ち3次元配列データとして取り扱うことが出来る。
Furthermore, the present invention is suitable for a treatment apparatus using a treatment child having a freezing terminal. Therefore, the basic concept of a new treatment device that has never existed before will be described.
The internal structure of the human body can be seen using reflected and transmitted waves. For example, there are ultrasonic waves in the former and X-rays in the latter. In particular, the latter CT and various X-ray devices using electromagnetic waves (X-rays, etc.) having a short wavelength and high transparency have been developed to be very useful in practice because of the advantages of transparency and theoretical resolution. In the CT apparatus, an image (hereinafter simply referred to as an image) obtained by the difference in the amount of transmission of electromagnetic waves due to the human body structure is obtained as XY two-dimensional plane data with the density obtained as a constant fracture surface as a plane. . This plane can be handled mathematically as an array in the depth (Z) direction of a parallel plane with the coordinate center defined and the axis as the axis. That is, it can be handled as three-dimensional array data.

そこで、治療装置では、奥行き位置ZnでのZn平面における画像が透過波の反射透過特性から得られる人体の構造情報を持っている事からこの画像を数学的にたたみこみ処理など空間フィルタを用いた輪郭特徴抽出を行なう。この抽出された輪郭特徴は離散的であるため、必ずしも構造輪郭を正しく表してはいない。これらの輪郭データを統計的取得データとして最小二乗法などの数学的手法を用いて函数式とする。更に近接したZn−1、Zn+1の函数式とにより詳述しない数学的方法でZ軸方向に3次元函数式として統一する。Zn−1、Zn、Zn+1が100分の1ミリ程度に細かに得られることからこれらによって得られる3次元函数式はかなり現実の人体を忠実に表現することができる。なお、Zn画像の取得にあたっては透過X線を一段と強化するために人体に注入される造映物質の有無を問わない。これらの補助操作は血管、癌組織、などの周囲の物質と透過性の差異の少ない構造も対照にすることが容易であると考えられる。   Therefore, in the treatment apparatus, since the image on the Zn plane at the depth position Zn has the structure information of the human body obtained from the reflected transmission characteristics of the transmitted wave, this image is contoured using a spatial filter such as mathematical convolution processing. Perform feature extraction. Since the extracted contour feature is discrete, it does not necessarily represent the structural contour correctly. These contour data are used as statistically acquired data as a mathematical formula using a mathematical method such as a least square method. Further, the three-dimensional function is unified in the Z-axis direction by a mathematical method not described in detail by the close function of Zn-1 and Zn + 1. Since Zn-1, Zn, and Zn + 1 are finely obtained to about 1/100 mm, the three-dimensional function obtained by these can fairly represent the actual human body faithfully. In obtaining the Zn image, it does not matter whether there is a projection substance injected into the human body in order to further enhance the transmitted X-rays. It is considered that these auxiliary operations can easily contrast structures with little difference in permeability with surrounding substances such as blood vessels and cancer tissues.

以上は治療装置の原理であるが、更に発展させた別治療装置を説明する。
前述の三次元人体データは治療前に計測した過去のものであり、治療時には姿勢等が変わったり、臓器の移動等もあり、いわゆる体動変化(乖離)がある。即ち、3次元的人体モデルはあらかじめ個体により異なり、姿勢によっても異なる。対象癌組織はもちろん個別である。これらはCT装置などによりあらかじめ観測、測定され、対象人体を充分データ化している。姿勢等手術操作の場面での解離をなくさねぱならない。そのために医師によって設定された人体の特定な部分に光反射シールを複数個所設定し、そこで更なる発展した発明では、計算機が認識して定めた人体内部の特定点、例えば骨格特徴点などを詳述しない方法で自動検出し、すでに保有している3次元輪郭関数と座標軸変換を数学的手法を用いて行い、治療子の挿入操作に原理上物理的寸法等の誤差をなくする方法をとる。
The above is the principle of the treatment apparatus, but another treatment apparatus that has been further developed will be described.
The above-mentioned three-dimensional human body data is the past measured before treatment, and there is a so-called body motion change (deviation) due to changes in posture, movement of organs, etc. during treatment. That is, the three-dimensional human body model is different depending on the individual in advance and also depending on the posture. Of course, the target cancer tissue is individual. These are observed and measured in advance by a CT apparatus or the like, and the target human body is converted into sufficient data. Dissociation in the surgical operation scene such as posture must be eliminated. For this purpose, a plurality of light reflecting stickers are set in specific parts of the human body set by a doctor, and in a further developed invention, specific points inside the human body, which are recognized and determined by the computer, such as skeletal feature points, are detailed. A method of automatically detecting by a method not described, performing a three-dimensional contour function and coordinate axis conversion already possessed using a mathematical method, and eliminating errors such as physical dimensions in principle in the insertion of a therapeutic element.

更なる別治療装置では、人体に挿入すべき治療子は形状(構造を含む)が定まっている故にこれを数学的に規定し、データとして3次元数式として表現する。そして上記3次元函数式とこの形状を示す数式とから、治療に役立つ合理的な、経皮挿入点、治療部位(位置)、形状に合致した進入方向、進入時の治療子の回転角度(例えば形状に方向性のある治療子)、進入ルート等の各治療子パラメータを数学的データ処理にて一意的に算出する。また経皮挿入点は重要パラメータである故に、パラメータの幾つか、例えば経皮挿入点は術者の高度な判断で人的に決定しておき、その他のパラメータを算出する例もある。   In another treatment apparatus, since the shape of a therapeutic element to be inserted into the human body is determined (including the structure), this is mathematically defined and expressed as a three-dimensional mathematical expression as data. Then, from the above three-dimensional function and the mathematical expression indicating this shape, a rational percutaneous insertion point useful for treatment, a treatment site (position), an approach direction matching the shape, and a rotation angle of the treatment element at the time of entry (for example, Each treatment parameter such as a treatment having a directional shape) and an approach route is uniquely calculated by mathematical data processing. In addition, since the percutaneous insertion point is an important parameter, some parameters, for example, the percutaneous insertion point, are determined by the operator's advanced judgment and other parameters are calculated.

更に、この一意に定まる方法とそれを適用した治療子操作にかかる別治療装置を説明する。
治療子の好適例は肺癌治療子であり、従来文献で述べたものに関係する。そこで、第1の治療子は、従来例で述べた肺癌治療用の二重管である。従って、この治療子は、周囲方向に方向性のない先端形状であり、且つ長手方向でみれば二重管に対してその中軸方向に外部から凍結端子が挿通されている故に、進行方向や挿入方向でみれば両者合せて直線的な形状体と規定できる。即ち、直線上の形状をなす治療子は、体内に入る部分(二重管とその先端)Aとその延長部分(外部に露出した凍結端子の一部)Bとよりなる。B部分は別に定める制御用可視レーザーを問わない光源の反射能を持ち、X,Y,Z軸に対して数学的取扱いが出来るものとする。
第2の治療子は、凍結端子の外部に位置する部位の途中に、この端子に直交するように、操作用のタッチ部Cを固着した例である。このタッチ部Cを操作することで、凍結端子の進行及び回転をはかる。タッチ部Cの位置、形状も数学的に規律できる故に、操作内容もデータ化可能である。
第3の治療子は、凍結端子の先端が、特定の熱指向特性を持つように形状化させた例である。例えば特定の方向にビーム化した熱指向特性がある。治療部位に正確に熱エネルギーを送る目的に使用する。かかる治療子も、形状の数式化、これに伴う熱エネルギーの指向特性の数式化が可能である。更に、第2の治療子で述べたタッチ部Cを付加することで、熱指向特性を特定の方向(角度)に向けさせる治療子を提供する。
Furthermore, this unique method and another treatment apparatus for treating a child using the method will be described.
A preferred example of a therapeutic child is a lung cancer therapeutic child, which is related to those described in the prior art. Therefore, the first therapeutic element is the double tube for lung cancer treatment described in the conventional example. Therefore, this therapeutic element has a tip shape having no direction in the peripheral direction, and when viewed in the longitudinal direction, the freezing terminal is inserted from the outside in the central axis direction with respect to the double tube, so that the traveling direction or insertion When viewed in the direction, both can be defined as a linear shape body. That is, the therapeutic element having a linear shape is composed of a part (double tube and its tip) A entering the body and an extension part (a part of the freezing terminal exposed to the outside) B. The B portion has the reflectivity of a light source regardless of the control visible laser defined separately, and can be mathematically handled with respect to the X, Y, and Z axes.
The second therapeutic element is an example in which a touch part C for operation is fixed in the middle of a part located outside the freezing terminal so as to be orthogonal to the terminal. By operating the touch part C, the freezing terminal is advanced and rotated. Since the position and shape of the touch part C can be mathematically regulated, the operation content can also be converted into data.
The third therapeutic element is an example in which the tip of the freezing terminal is shaped so as to have a specific heat directivity characteristic. For example, there is a heat directivity characteristic that is beamed in a specific direction. Used to accurately deliver heat energy to the treatment site. Such a therapeutic child can also formulate the shape and formulate the directivity characteristic of the thermal energy. Furthermore, by providing the touch part C described in the second therapeutic element, a therapeutic element that directs the heat directivity characteristic in a specific direction (angle) is provided.

治療子の操作に係る別治療装置を説明する。
第1は全自動化した例である。治療子の二重管及び凍結端子(又は凍結端子のタッチ部を含む)それぞれに共通又は個別にアクチュエータを取りつける。これらのアクチュエータを、先に数学的に決定したデータに従ってX−Y−Z制御手段(例えばコンピュータ)によって制御し、二重管の穿刺、凍結端子の進行をはかる。
第2は半自動化した例である。どこまでを自動化し、どこまでを手動化するかは、種々ありうる。
第3は手動化例である。
かくして高度な医師によって判断された経皮的位置及びパスが一意に定められれば挿入操作及びシミュレーション操作(仮想的に行なわれる操作)を問わず、また自動、医師の手動を問わず、目的位置に到達するやいなやは、あらかじめ確認かつ試行出来る特徴がある。
Another treatment apparatus related to the operation of the treatment child will be described.
The first is a fully automated example. An actuator is attached to each of the double tube and the freezing terminal (or the touch part of the freezing terminal) of the treatment child in common or individually. These actuators are controlled by XYZ control means (for example, a computer) according to the data determined mathematically in advance to puncture the double tube and advance the freezing terminal.
The second is a semi-automated example. There are various ways to automate and to what extent.
The third is a manual example.
Thus, if the percutaneous position and path determined by an advanced doctor are uniquely determined, the insertion position and the simulation operation (virtual operation) can be performed automatically, regardless of the manual operation of the doctor. As soon as it reaches, there is a feature that can be confirmed and tried in advance.

更なる別治療装置を説明する。
凍結端子を用いた治療子は、凍結と解凍とを交互に行っているが、更なる別発明では治療部位の熱的な物性情報をもとにした熱エネルギーを与えるようにする。熱的な物性情報とは、温度、比熱、熱伝導性、組織状態等である。熱エネルギーのパラメータは、時間帯、回数、凍結温度、解凍温度等である。広義には、治療子の侵入角度や回転角度も関係する。こうしたパラメータは、経験的に決定しても、数式的に決定してもよい。
更に、別治療装置として、パラメータの決定法を提案する。パラメータには、治療子の侵入角度や回転角度、治療位置などの第1のパラメータと、熱エネルギーに関する上記した第2のパラメータがある。これらのパラメータは、経験的に、又は実施試行シミュレーション試行を繰返し行いながら決定する。
A further alternative treatment device will be described.
A therapeutic child using a freezing terminal alternately performs freezing and thawing. However, in still another invention, thermal energy is applied based on thermal physical property information of the treatment site. Thermal physical property information includes temperature, specific heat, thermal conductivity, and tissue state. The parameters of thermal energy are time zone, number of times, freezing temperature, thawing temperature, and the like. In a broad sense, the invasion angle and rotation angle of the therapeutic element are also related. Such parameters may be determined empirically or mathematically.
Furthermore, a parameter determination method is proposed as another treatment apparatus. The parameters include a first parameter such as an intrusion angle, a rotation angle, and a treatment position of the therapeutic element, and the second parameter related to thermal energy. These parameters are determined empirically or through repeated trial runs.

〔治療装置の説明〕
図2は、CT断層像を重ねて三次元画像を得るモデル図であって、併せて座標系X−Y−Zの設定例を示す。例えば、1番目の断層像のA点は(X1、Y1、Z1)、k番目の断層像のB点は(Xk、Yk、Zk)と定義できる。患者の複数の断層像10をCT装置で事前に取得しておく。
尚、図2では、隣り合う断層像が隙間を持っているようだが、実際には隙間の間隔は100分の1ミリメートル程度であり、実際の患者の人体に極めて近い画像である。補間して間隔を更に小さく例も含む。
[Description of treatment device]
FIG. 2 is a model diagram for obtaining a three-dimensional image by superimposing CT tomographic images, and also shows an example of setting the coordinate system XYZ. For example, the point A of the first tomogram can be defined as (X1, Y1, Z1), and the point B of the kth tomogram can be defined as (Xk, Yk, Zk). A plurality of tomographic images 10 of a patient are acquired in advance by a CT apparatus.
In FIG. 2, it appears that adjacent tomographic images have gaps, but the gap spacing is actually about 1/100 mm, which is an image very close to the actual human body of the patient. An example is also included in which the interval is further reduced by interpolation.

一方、断層像の座標系をX−Yとし、重ね方向の座標系をZとすると、断層像の任意の位置は(X,Y,Z)で定義できる。   On the other hand, if the coordinate system of the tomographic image is XY and the coordinate system in the overlapping direction is Z, an arbitrary position of the tomographic image can be defined by (X, Y, Z).

図1は、新規な治療装置の全体の処理フローを示す。
先ず、CT画像データを取得する(ステップS1)。これは図2に示したものである。その取得タイミングは、治療直前、その前日を問わない。治療に先立って取得しておく。
次に、輪郭抽出を行う(ステップS2)。この輪郭抽出は、輪郭抽出用空間フィルタとCT画像データとのたたみ込み演算によって行う。輪郭には、体表面、皮膚、骨、臓器、癌病巣部位等種々であり、これらの輪郭を含めた抽出を行う。輪郭抽出は、治療子との交点算出、他輪郭との相対位置関係の把握に役立つ。CT断層像データ毎の輪郭は、画素単位に抽出されている故に離散的であり、且つZ方向でみると、各断層位置は離散的な位置関係となっている。そこで、各断層像データ毎に、最小自棄法等を使って2次元の関数化を行うと共に、更にZ方向で各2次元関数の3次元関数化を最小自乗法等によって行う(ステップS3)。これによって、輪郭の3次元関数を得る。
ステップS4では、治療子の侵入用パラメータの算出を行う。この算出は、治療子の形状を表現した3次元関数と前記算出した輪郭の3次元関数とを用いて、治療子が輪郭線上の治療部位に安全、確実、迅速に到着するに必要な治療子のパラメータの算出である。
治療子のパラメータには、治療子の侵入入口となる体表面位置、治療子が到達する治療部位の位置、治療子の体表面位置への侵入方向(角度)、体表面侵入口での治療子自体の回転角度、及び侵入のルート(系路)がある。
このパラメータの中で、侵入位置は、術者の指定による例が多い。また、治療子自体の回転角度とは、治療子自体の先端の形状に方向性を有するときの、治療子自体をどのような角度にすべきかを指定するパラメータである。
FIG. 1 shows the overall processing flow of the novel treatment device.
First, CT image data is acquired (step S1). This is shown in FIG. The acquisition timing does not matter immediately before treatment or the day before. Obtain prior to treatment.
Next, contour extraction is performed (step S2). This contour extraction is performed by a convolution operation between the contour extraction spatial filter and the CT image data. There are various contours such as the body surface, skin, bones, organs, cancer lesions, etc., and these contours are extracted. The contour extraction is useful for calculating the intersection with the therapeutic element and grasping the relative positional relationship with other contours. The contour for each CT tomographic image data is discrete because it is extracted in pixel units, and when viewed in the Z direction, each tomographic position has a discrete positional relationship. Therefore, for each tomographic image data, a two-dimensional function is formed by using the least self-discard method or the like, and further, a three-dimensional function of each two-dimensional function in the Z direction is performed by the least square method or the like (step S3). As a result, a three-dimensional function of the contour is obtained.
In step S4, a parameter for entering the treatment child is calculated. This calculation uses a three-dimensional function expressing the shape of the treatment element and the calculated three-dimensional function of the contour, and the treatment element necessary for the treatment element to safely, surely, and quickly arrive at the treatment site on the contour line. Is the calculation of the parameters.
The parameters of the treatment element include the position of the body surface that serves as the entry point of the treatment element, the position of the treatment site that the treatment element reaches, the direction (angle) of entry of the treatment element into the body surface position, and the treatment element at the entrance to the body surface. There is its own rotation angle and the route of entry (system path).
Among these parameters, the intrusion position is often specified by the operator. The rotation angle of the treatment element itself is a parameter for designating what angle the treatment element itself should have when the shape of the tip of the treatment element itself is directional.

パラメータの算出の仕方を説明する。
抽出輪郭モデルと治療子モデルと治療部位モデルとの関係例を図3に示す。図3でE1,E2,E3,E4はそれぞれ異なる抽出輪郭モデル、Mは治療子モデルであり、輪郭モデルE3が癌病巣モデルとする。これらの各モデルE1,E2,E3,Mはそれぞれ3次元的な形状であるが、図では抽画の関係上、便宜的に2次元化したものとしている。
侵入入口をP1とし、これは術者によって設定されたものとする。そこで、輪郭モデル上で病巣モデルE3が見つかったとすると、P1点からその病巣モデルまでの治療子モデルMの侵入角度θ1、治療子モデル自体の回転角度φ1が一意的にわかる。尚、P0点はy軸の線上の点とすると、ここから侵入すれば輪郭モデルE4にぶつかる。従って、術者がこの判断した結果として侵入入口P1を選んだことになる。
A method of calculating parameters will be described.
FIG. 3 shows an example of the relationship between the extracted contour model, the treatment model, and the treatment site model. In FIG. 3, E1, E2, E3, and E4 are different extracted contour models, M is a therapeutic model, and the contour model E3 is a cancer lesion model. Each of these models E1, E2, E3, and M has a three-dimensional shape, but in the figure, it is assumed to be two-dimensional for convenience because of drawing.
Assume that the entrance is P1, which is set by the surgeon. Therefore, if a lesion model E3 is found on the contour model, the intrusion angle θ1 of the treatment model M from the point P1 to the lesion model and the rotation angle φ1 of the treatment model itself are uniquely known. If the point P0 is a point on the y-axis line, if it enters from here, it will hit the contour model E4. Therefore, the surgeon has selected the entrance P1 as a result of this determination.

治療子モデルMは、図4の如き治療子100である。治療子100は、二重管1と回転等の操作部21Aを有する凍結端子2(21Aを持たない例もある)、及びそれにつながる管路6、切替バルブ5、高圧ヘリウムガス供給源3、高圧アルゴンガス供給源4、より成る。管1の長さL1、凍結端子2のの外部露出部の長さL2とすると、この治療子100は略(L1+L2)の長さの直線成分と考えてよく、かかる直線成分を刃物状の最先端20BからP1から病巣部位E3にまで侵入させてゆくことを想定して、その時のθ1,φ1,P2,P1→P2(ルート)を算出できる。
ステップS5は、算出した侵入用パラメータを操作データとして決定し、ステップS6はその操作データをもとに、治療子の侵入操作を自動又は半自動、又は手動にて行う。ステップS7は、点P2に到達したことを確認して、凍結・解凍による治療を行う。
The therapeutic element model M is a therapeutic element 100 as shown in FIG. The therapeutic element 100 includes a freezing terminal 2 (which may not have 21A) having a double tube 1 and an operation unit 21A such as a rotation, and a pipe 6 connected thereto, a switching valve 5, a high pressure helium gas supply source 3, a high pressure An argon gas supply source 4; Assuming that the length L1 of the tube 1 and the length L2 of the externally exposed portion of the freezing terminal 2, the therapeutic element 100 may be considered as a linear component having a length of approximately (L1 + L2). Assuming that the distal end 20B penetrates from P1 to the lesion site E3, θ1, φ1, P2, P1 → P2 (route) at that time can be calculated.
In step S5, the calculated intrusion parameter is determined as operation data, and in step S6, the therapeutic element intrusion operation is performed automatically, semi-automatically, or manually based on the operation data. In step S7, it is confirmed that the point P2 has been reached, and treatment by freezing / thawing is performed.

その他に、病巣までの誘導手段として、誘導針があり、これは、誘導時に挿通させる。誘導完了時に、この誘導針に代って凍結端子を挿入する。誘導針の考え方は前記文献2と同様である。   In addition, as a guiding means to the lesion, there is a guiding needle, which is inserted at the time of guiding. When the induction is completed, a freezing terminal is inserted in place of this induction needle. The concept of the induction needle is the same as that in Document 2.

より発展した実施例を説明する。図2の重ね三次元画像は、あくまで治療前に撮影した過去の断層像に基づく。治療時においては、この過去の撮影時とは異なった姿勢になることがある。これによって、三次元画像上で設定した開始位置、目標位置、ルート等のパラメータが実際の治療時の身体と一致しない恐れもある。   A more advanced embodiment will be described. The superimposed three-dimensional image in FIG. 2 is based solely on past tomographic images taken before treatment. At the time of treatment, the posture may be different from that at the time of the past photographing. As a result, parameters such as a start position, a target position, and a route set on the three-dimensional image may not coincide with the body at the time of actual treatment.

そこで、術者により患者の身体の複数箇所に微少なマーカシールをはり付けておき、コンピュータが認識して定めた人体内部の特定点(例えば胃の一部、肩骨の突起物とか)を自動検出し、すでに保有している3次元輪郭関数と座標軸変換を数学的手法を用いて行い、治療子の侵入操作に原理上物理的寸法等の誤差(歪み)をなくす(いわゆる体動補正)。これによって適正な、挿入開始位置、到達点、ルート等のパラメータの算出をはかる。
更に上記被検体変動補正を行ったデータを元に被検体への侵入位置、侵入具の到達点、侵入方向、侵入具の角度及び回転角、開始位置から到達点までの進行ルートを定めて試験操作を繰返し行ない、その結果から被検体への侵入開始位置、侵入具の輪郭上の到達点、侵入方向、侵入具の角度及び回転角、開始位置から到達点までの進行ルート、の少なくともいずれか1つを変更決定すると、精度の向上をはかれる。
Therefore, the operator attaches small marker seals to multiple locations on the patient's body, and automatically identifies specific points inside the human body (for example, part of the stomach, shoulder bone projections, etc.) that the computer recognizes and determines. The detected three-dimensional contour function and coordinate axis conversion are performed using a mathematical method to eliminate errors (distortions) such as physical dimensions in principle in the invasion operation of the therapeutic element (so-called body motion correction). As a result, appropriate parameters such as the insertion start position, the arrival point, and the route are calculated.
Furthermore, based on the data subjected to the above-mentioned subject variation correction, a test is performed by determining the intrusion position, the arrival point of the intruder, the intrusion direction, the angle and rotation angle of the intruder, and the travel route from the start position to the arrival point. Repeat the operation, and based on the results, at least one of the entry start position to the subject, the arrival point on the contour of the entry tool, the entry direction, the angle and rotation angle of the entry tool, and the travel route from the start position to the arrival point If one is determined to be changed, the accuracy can be improved.

〔治療子の説明〕
次に形状に方向性を持つ本発明の治療子、特に管の構造に関する実施例を説明する。管の先端は、凍結と解凍との2つの動作部位であり、いわゆる熱交換機能を果たす。癌病巣である病巣部位も種々の形状を有し、どのような方向から穿刺するのが効率的凍結法であるかも重要な検討事項である。更に病巣に近接する正常組織を凍結・解凍(特に凍結)から保護する必要もある。そこで方向性のある熱の指向特性に大小を持たせて病巣部位に応じた集中的に熱エネルギー付与のための熱分布特性を与える。これが図5に示す管の実施例図である。
[Explanation of treatment child]
Next, an embodiment relating to the therapeutic element of the present invention having directionality in shape, particularly a tube structure will be described. The tip of the tube is two operating parts, freezing and thawing, and performs a so-called heat exchange function. The lesion site, which is a cancer lesion, also has various shapes, and it is an important consideration to determine from what direction puncture is an efficient freezing method. Furthermore, it is necessary to protect normal tissues in the vicinity of the lesion from freezing and thawing (especially freezing). Therefore, the direction of heat directivity with directionality is made large and small, and heat distribution characteristics for giving thermal energy in a concentrated manner according to the lesion site are given. This is an embodiment of the tube shown in FIG.

図5(a)は、二重金属管1の最先端20Bの直前の先端部20Aの周囲の一部を突起させて突起部20を設けた例である。その矢印断面は、図5(b)に示すように外方に向かって丸みを帯びた形状であり、その熱指向特性は図5(c)となる。先端部20Aの最先端20Bは穿刺の先端で刃物状であり、穿刺しやすく、且つ深部方向に熱指向特性を持たせるようにする例もある。
図6(a)は、先端部20Aに、2つの突起部21,22を持たせて熱指向特性を細長くさせた例である。これによって、図6(b)に示すようにy方向の(+)方向に鋭い熱指向特性を持たせた。
先端部20A及び20Bは、凍結・解凍に関与する部位である。
図7に、この先端形状に特徴を持つ治療子の使用例を示す。図7(a)は、球形状の癌病巣23の側面に治療子100を穿刺させて癌病巣23をその指向特性に基づいて熱エネルギーを与えて壊死させる例を示す。この癌病巣23は、組織的にしっかりした例であり、病巣23に直接穿刺させるよりは囲りから壊死させるに適したものである。
図7(b)は癌病巣24の内部左側に穿刺し、右側への方向性を持つ治療子100で治療させた例である。これも、病巣全体の壊死に役立つ。
FIG. 5A is an example in which a protruding portion 20 is provided by protruding a part of the periphery of the distal end portion 20A immediately before the leading edge 20B of the double metal tube 1. The cross section of the arrow has a shape that is rounded outward as shown in FIG. 5 (b), and its heat directivity characteristic is as shown in FIG. 5 (c). The tip 20B of the tip 20A has a blade shape at the tip of puncture, and there is an example in which puncture is easy and heat directivity characteristics are given in the deep direction.
FIG. 6A shows an example in which the tip portion 20A is provided with two protrusions 21 and 22 so that the heat directing characteristics are elongated. As a result, as shown in FIG. 6B, a sharp heat directing characteristic was given in the (+) direction of the y direction.
The tip portions 20A and 20B are sites involved in freezing / thawing.
FIG. 7 shows an example of use of a therapeutic element characterized by this tip shape. FIG. 7A shows an example in which the therapeutic element 100 is punctured on the side surface of the spherical cancer lesion 23 and the cancer lesion 23 is necrotized by applying thermal energy based on its directivity. This cancer lesion 23 is a structurally solid example, and is more suitable for necrosis from the surrounding rather than puncturing the lesion 23 directly.
FIG. 7B is an example in which the left side inside the cancer lesion 24 is punctured and treated with the therapeutic element 100 having rightward directionality. This also helps necrosis of the entire lesion.

図7(c)は、血管24が近くにあり、この血管24から遠ざけて病巣23を治療を行なうときの事例である。血管24の反対側(右側)に治療子100を穿刺した。これは、血管を傷つけないことの他に、血管の温度の治療への影響を少なくしたいこと、の目的を持つ。図7(d)は、2つ以上の治療子100A,100Bを用いて、病巣23の両側に穿刺して同時治療を行なった例である。図7(d)は、病巣サイズが大きい事例に効果を持つ。
以上の各実施例で、突起形状の種類や態様は、どのような指向特性を持たせるかで定まる。突起形状の代わりに内側方向に凹部を持たせるやり方もある。指向特性を実現する突起形状(凹部を含む)は、計算機によって求めることができる。種々の突起形状の管を用意しておき、病巣や治療の目的に沿って使い分けるやり方もある。
FIG. 7C shows a case where the blood vessel 24 is nearby and the lesion 23 is treated away from the blood vessel 24. The treatment child 100 was punctured on the opposite side (right side) of the blood vessel 24. This has the purpose of not only damaging blood vessels but also reducing the effect of blood vessel temperature on treatment. FIG. 7D shows an example in which two or more treatment elements 100A and 100B are used to puncture both sides of the lesion 23 and perform simultaneous treatment. FIG. 7D is effective for cases where the lesion size is large.
In each of the embodiments described above, the type and form of the protrusion shape are determined by what directivity characteristics are given. There is also a method of providing a recess in the inner direction instead of the protrusion shape. The projection shape (including the concave portion) that realizes the directivity can be obtained by a computer. There is a way to prepare tubes with various protrusions and use them properly according to the focus and purpose of treatment.

図8(a)は、二重管の他の実施例図である。図5では、固定突起形状化したが、図8では可動翼30を二重管1の外部側面に沿って設けておき、この可動翼30を、管の先端部まで図8(b)の如く移動させ、図4の如き突起状形状化させる。可動翼30は例えばスプリングで移動させる。これは、例えば凍結端子の進行に応じてスプリングを凍結端子に連動させるやり方をとる。この場合、可動翼30が人体を傷つけないように周囲に丸みを作っておく。
使い方は、人体挿入時には、図8(a)の如くしておき、患部到達時に図8(b)の如く移動させて使う。
FIG. 8A is a diagram showing another embodiment of the double pipe. In FIG. 5, the fixed protrusion shape is formed. However, in FIG. 8, the movable wing 30 is provided along the outer side surface of the double pipe 1, and the movable wing 30 is extended to the tip of the pipe as shown in FIG. It is made to move and is formed into a protruding shape as shown in FIG. The movable blade 30 is moved by, for example, a spring. For example, the spring is interlocked with the freezing terminal in accordance with the progress of the freezing terminal. In this case, a roundness is made around the movable wing 30 so as not to damage the human body.
When the human body is inserted, it is used as shown in FIG. 8A, and when it reaches the affected part, it is moved as shown in FIG. 8B.

図9は、凍結端子2の途中に操作に便となる操作タッチ部21Aを設けた実施例を示す。タッチ部21Aは手で握れる程度の大きさがあればよく、例えば端子2の直交方向に若干延びたバー形状体である。タッチ部21Aによって、凍結端子2の進行、端子自体の回転(Φ)を確実に行える利点がある。このタッチ部にアクチュエーターをつけておくことで、自動化、半自動化の操作が可能となる。
更なる実施例を説明する。
(1)温度特性(温度変化)について。
その具体例を図12に示す。図12(a)は、凍結ピーク温度と解凍ピーク温度とを同一絶対値T1(実際には凍結時−T1、解凍時+T1)とした1サイクル例である。両者で熱エネルギーが相殺されることが好ましいため、凍結時と解凍時との(温度)×(時間)で定まる面積は同一面積(S1)とする。図12(b)は、凍結ピーク温度と解凍ピーク温度との絶対値をT1、T2(T1>T2)とした例である。T1>T2の故に、同一面積S1の達成のために、解凍期間を凍結期間よりも大きくとる。尚、12(a)、(b)の変形例として、凍結1回、解凍2回で1サイクルの如き例もありうる。
図12(c)は凍結と解凍との2サイクル供与例である。3サイクル以上の例もある。
尚、面積を凍結と解凍とで同一としたが、病巣の壊死という目的達成が得られるのであれば、厳密な同一性は必要ない。人間の治療部位には38℃とかの体温がある故に、かかる体温を考慮して、実際の温度特性を定めることが多い。
かかる種々の温度特性(温度変化)を実現するためには、治療子100へのヘリウムとアルゴンとの両者のガス供給を、量と時間とをパラメータとして制御すればよい。
(2)温度特性(温度変化)の実現化及びガス供給制御法の決定。
i.上記三次元数式データに対して、それぞれを構成する物体の比熱、導伝率などの熱的定数及び体積重量を取り入れた物体形状などの物理的定数を考慮して、その物体の温度の時間変化を決定する。
ii.上記三次元数式データで表される被検体の熱的定数、物理定数を考慮した侵入具到達点周辺の時間に対する温度変化を計算し、設定温度に対する動的変化又は動的変化に至る設定時間を決定し得る如く定める。
iii.この定めた到達点近傍の熱的時間変化について設定目的の温度変化となる様に侵入具の回転角を決定する。
iv.この到達点物体に複数の侵入具を挿入し、到達点物体及びその近傍周辺の物体の熱的温度の時間変化を決定する。
v.この複数の熱的方向性を有した侵入具が上記決定された幾可学的定数のもとで侵入具が到達点及びその近傍において熱的温度の時間変化を繰り返し、試験操作を行いその結果から被検体への侵入開始位置、侵入具の輪郭上の到達点、侵入方向、侵入具の角度及び回転角、開始位置から到達点までの進行ルート、の少なくともいずれか1つを求め決定しかつ周辺物体の温度分布及び時間変化を決定する。
vi.上記侵入具の先端に装備された熱交換器の発熱、吸熱を切換えるガス流入路のガス切換えスイッチを到達点近傍の定められた温度変化になるようなガス量と供給シーケンス(タイミング)とのガス供給制御法を求める。治療時には、侵入用パラメータに従って穿刺を行い、治療部位到達後には上記ガス供給制御法によってガス供給を行う。
FIG. 9 shows an embodiment in which an operation touch part 21 </ b> A is provided in the middle of the freezing terminal 2 for convenience of operation. The touch part 21 </ b> A only needs to be large enough to be grasped by a hand, and is, for example, a bar-shaped body slightly extending in the direction orthogonal to the terminals 2. The touch part 21A has an advantage that the freezing terminal 2 can be reliably advanced and the terminal itself can be rotated (Φ). By attaching an actuator to this touch part, automation and semi-automation can be performed.
Further embodiments will be described.
(1) About temperature characteristics (temperature change).
A specific example is shown in FIG. FIG. 12A shows an example of one cycle in which the freezing peak temperature and the thawing peak temperature are set to the same absolute value T1 (actually -T1 during freezing and + T1 during thawing). Since it is preferable that the thermal energy be offset by both, the area determined by (temperature) × (time) during freezing and thawing is the same area (S1). FIG. 12B shows an example in which the absolute values of the freezing peak temperature and the thawing peak temperature are T1 and T2 (T1> T2). Since T1> T2, in order to achieve the same area S1, the thawing period is set longer than the freezing period. In addition, as a modified example of 12 (a) and (b), there can be an example of one cycle of one freezing and two thawings.
FIG. 12 (c) shows a two-cycle donation example of freezing and thawing. There are also examples of more than 3 cycles.
Although the area is the same for freezing and thawing, strict identity is not required if the goal of necrosis of the lesion can be achieved. Since a human treatment site has a body temperature of 38 ° C., an actual temperature characteristic is often determined in consideration of such body temperature.
In order to realize such various temperature characteristics (temperature changes), the gas supply of both helium and argon to the treatment element 100 may be controlled using the amount and time as parameters.
(2) Realization of temperature characteristics (temperature change) and determination of gas supply control method.
i. For the above three-dimensional mathematical data, taking into account the thermal constants such as the specific heat and conductivity of the objects that make up each, and the physical constants such as the object shape incorporating the volume weight, the temperature of the object Determine the time change.
ii. Calculate the temperature change with respect to the time around the intruder arrival point considering the thermal and physical constants of the subject represented by the above three-dimensional mathematical data, and calculate the dynamic change with respect to the set temperature or the set time to the dynamic change. It is determined so that it can be determined.
iii. The rotation angle of the intruder is determined so that the thermal change in the vicinity of the determined arrival point becomes the set temperature change.
iv. A plurality of intruders are inserted into the reaching point object, and the temporal change of the thermal temperature of the reaching point object and the objects in the vicinity thereof is determined.
v. The intruder having the plurality of thermal directions is subjected to the test operation by repeating the temporal change of the thermal temperature at the arrival point and the vicinity thereof under the determined geometrical constant as a result. Determining and determining at least one of the entry start position from the object to the subject, the arrival point on the contour of the entry tool, the entry direction, the angle and rotation angle of the entry tool, and the travel route from the start position to the arrival point; Determine the temperature distribution and temporal changes of surrounding objects.
vi. A gas changeover switch in the gas inflow passage that switches between heat generation and heat absorption of the heat exchanger installed at the tip of the intruder is a gas with a gas amount and a supply sequence (timing) such that the temperature changes in the vicinity of the arrival point. Find the supply control method. At the time of treatment, puncture is performed according to the intrusion parameters, and gas supply is performed by the gas supply control method after reaching the treatment site.

図13は、温度特性を考慮した処理フローを示す。図1に比べて、ステップS4とS6との間に新たなステップS8、S9、S10を付加した。ステップS8では、前述の温度特性の決定、及びそれに基づくガス供給制御法の算出を行う。ステップS9はステップS4、S8で算出したパラメータ、温度特性、並びにガス供給制御法に基づく治療シミュレーションを行う。シミュレーションの結果、治療効果がないとの判定であればステップS4へ戻る。治療効果があるとの判定であればステップS10へ進み、最終決定を行う。   FIG. 13 shows a processing flow in consideration of temperature characteristics. Compared to FIG. 1, new steps S8, S9, and S10 are added between steps S4 and S6. In step S8, the above-described temperature characteristics are determined and the gas supply control method is calculated based thereon. In step S9, treatment simulation based on the parameters calculated in steps S4 and S8, temperature characteristics, and the gas supply control method is performed. If it is determined that there is no therapeutic effect as a result of the simulation, the process returns to step S4. If it is determined that there is a therapeutic effect, the process proceeds to step S10 and a final decision is made.

図10は凍結端子の具体例図である。40が凍結端子本体であり、熱伝導性の低い素材、例えば金属より成り、その内部には、熱交換機構41を持つ。切替バルブ5を介して高圧ガスが流入し、その先端開放部42から本体40の内側に放出し外部へ排気を行う。尚、31、32は各ガス毎のコックである。   FIG. 10 is a specific example of a freezing terminal. Reference numeral 40 denotes a freezing terminal main body, which is made of a material having low thermal conductivity, for example, metal, and has a heat exchange mechanism 41 therein. A high-pressure gas flows in through the switching valve 5 and is discharged from the tip opening portion 42 to the inside of the main body 40 and exhausted to the outside. In addition, 31 and 32 are cocks for each gas.

〔治療装置の具体例〕
図11は、治療装置50の全体構成例図である。治療装置50は、CTスキャナ51、画像処理装置52、表示部53、操作部54、駆動制御部55、計画部56、治療子57、ガス供給部58、監視部59、を具える。
[Specific examples of treatment devices]
FIG. 11 is an overall configuration example diagram of the treatment apparatus 50. The treatment device 50 includes a CT scanner 51, an image processing device 52, a display unit 53, an operation unit 54, a drive control unit 55, a planning unit 56, a therapeutic element 57, a gas supply unit 58, and a monitoring unit 59.

CTスキャナ51と画像処理装置と、表示部53と操作部54とは、本来のCT装置である。このCTの装置を利用して事前に複数の断層像を取得し、三次元画像を形成しておく。複数の断層像から、更にその隙間を埋め合わせるための補間画像を三次元画像として利用する例もある。   The CT scanner 51, the image processing device, the display unit 53, and the operation unit 54 are original CT devices. Using this CT apparatus, a plurality of tomographic images are acquired in advance to form a three-dimensional image. There is also an example in which an interpolation image for filling a gap is used as a three-dimensional image from a plurality of tomographic images.

CT装置51は、穿刺動作時のリアルタイムCT画像を得るのにも利用する。そしてこのリアルタイム画像は、監視部59での治療子57の穿刺動作をも併せて重ねて得ており、穿刺の追跡監視・治療監視に利用する。
計画部56は、事前に得た三次元画像データに基づいて、又はこれと治療子57の形状(及び又は構造)データとに基づいて穿刺開始位置、治療部位、その治療子の進行ルートの決定をデータ処理にて行い計画データを作成する。
The CT apparatus 51 is also used to obtain a real-time CT image during a puncturing operation. This real-time image is also obtained by superimposing the puncture operation of the therapeutic element 57 in the monitoring unit 59, and is used for puncture monitoring and treatment monitoring.
The planning unit 56 determines the puncture start position, the treatment site, and the progression route of the treatment element based on the three-dimensional image data obtained in advance or based on the shape (and / or structure) data of the treatment element 57. To create plan data.

駆動制御部55は、計画部56の計画データに基づいて治療子57の移動等の駆動制御並びにガス供給部58の供給制御を行い、凍結と解凍との交互動作を行う。
監視部59は、駆動制御の監視を行う。監視には、CT画像による監視と制御の仕組みの監視とがある。監視部59は、表示部53が兼務してもよい。
The drive control unit 55 performs drive control such as movement of the therapeutic element 57 and supply control of the gas supply unit 58 based on the plan data of the plan unit 56, and performs alternating operations of freezing and thawing.
The monitoring unit 59 monitors drive control. There are two types of monitoring: CT image monitoring and control mechanism monitoring. The monitoring unit 59 may be combined with the display unit 53.

以上は、治療子の例であるが、前述の他の侵入具でも、本発明の基本的な考え方は適用できる。
尚、金属管を二重管としたが、一重管の例もある。更に金属管の他に硬質プラスチック管の例や他の素材例もあり得る。
The above is an example of a therapeutic element, but the basic idea of the present invention can be applied to the other intruders described above.
Although the metal tube is a double tube, there is an example of a single tube. In addition to metal pipes, there can be examples of rigid plastic pipes and other examples of materials.

治療装置の処理フローである。It is a processing flow of a treatment apparatus. 三次元画像例図である。It is an example figure of a three-dimensional image. 輪郭モデルと治療子の進入例と治療パラメータの説明モデル図である。It is an explanatory model figure of the contour model, the treatment example of the treatment child, and treatment parameters. 本発明の治療子の説明図である。It is explanatory drawing of the treatment child of this invention. 本発明の金属管の他の形状を示す図及び熱特性図である。It is a figure which shows the other shape of the metal tube of this invention, and a thermal characteristic figure. 本発明の金属管の他の形状を示す図及び熱特性図である。It is a figure which shows the other shape of the metal tube of this invention, and a thermal characteristic figure. 方向性の形状を持つ治療子による治療説明図である。It is treatment explanatory drawing by the treatment child with a directional shape. 本発明の金属管の他の構成を示す図である。It is a figure which shows the other structure of the metal tube of this invention. 本発明の治療子例を示す図である。It is a figure which shows the treatment child example of this invention. 本発明の凍結端子の具体例を示す図である。It is a figure which shows the specific example of the freezing terminal of this invention. 本発明の治療装置例を示す図である。It is a figure which shows the example of a treatment apparatus of this invention. 本発明の温度変化図を示す。The temperature change figure of this invention is shown. 本発明の温度特性に基づく処理フロー例図を示す。The processing flow example figure based on the temperature characteristic of this invention is shown.

符号の説明Explanation of symbols

1 一重又は二重の金属管
2 凍結端子
100 治療子
20、21、22 突起形状部
30 加動片
DESCRIPTION OF SYMBOLS 1 Single or double metal tube 2 Freezing terminal 100 Treatment element 20, 21, 22 Protrusion-shaped part 30 Moving piece

Claims (3)

被検体内部に穿刺可能な中空金属管と、この管の中心軸に沿って挿通・装着可能な凍結端子と、この凍結端子につながり、凍結と解凍とのガスを交互に切り替えて供給するガス供給部とを備え、上記金属管の先端近傍の、周囲外方向又は内部内方向に、該金属管の外形で定まる金属管周囲への熱指向特性に加えて加味される部分熱指向特性を付与する突起形状部を配置可能とし、この突起形状部は、操作部によって移動可能なものとする治療子。 A hollow metal tube that can be punctured inside the subject, a freezing terminal that can be inserted and mounted along the central axis of this tube, and a gas supply that connects to this freezing terminal and alternately switches between freezing and thawing gases And providing a partial heat directivity characteristic in addition to the heat directivity characteristic to the periphery of the metal tube determined by the outer shape of the metal tube in the outer periphery direction or the inner inner direction near the tip of the metal tube. A treatment element in which a protrusion-shaped part can be arranged, and the protrusion-shaped part can be moved by an operation unit . 上記突起形状部の配置位置は、上記被検体の治療対象部位に応じて定めた位置とする請求項1記載の治療子。The therapeutic element according to claim 1, wherein an arrangement position of the protrusion-shaped portion is a position determined according to a treatment target site of the subject. 上記中空金属管は、円筒形状とする請求項1又は2記載の治療子。The therapeutic element according to claim 1 or 2, wherein the hollow metal tube has a cylindrical shape.
JP2005364659A 2005-12-19 2005-12-19 Treatment child Expired - Fee Related JP4744284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364659A JP4744284B2 (en) 2005-12-19 2005-12-19 Treatment child

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364659A JP4744284B2 (en) 2005-12-19 2005-12-19 Treatment child

Publications (2)

Publication Number Publication Date
JP2007167101A JP2007167101A (en) 2007-07-05
JP4744284B2 true JP4744284B2 (en) 2011-08-10

Family

ID=38294461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364659A Expired - Fee Related JP4744284B2 (en) 2005-12-19 2005-12-19 Treatment child

Country Status (1)

Country Link
JP (1) JP4744284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160981A1 (en) 2012-04-27 2013-10-31 株式会社デージーエス・コンピュータ Cylindrical probe outer casing for cryosurgery device, and treatment unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233031B2 (en) 2008-07-15 2013-07-10 株式会社デージーエス・コンピュータ Cryotherapy planning device and cryotherapy device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823575A (en) * 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
JPS62142544A (en) * 1985-11-20 1987-06-25 トムスキ ゴスダルストベンニ メデイツインスキ インステイテユト Low temperature ultrasonic knife
JP2000060867A (en) * 1998-01-05 2000-02-29 Galil Medical Ltd System and method for mri cryosurgery
JP2000513963A (en) * 1996-06-24 2000-10-24 アレゲーニー・シンガー リサーチ インスティチュート Cryosurgery method and apparatus
JP2001502788A (en) * 1996-10-07 2001-02-27 クライオジェン インコーポレイテッド Pre-cooling system for Joule Thomson probe
JP2004512075A (en) * 2000-10-24 2004-04-22 ガリル メディカル リミテッド Multiple cryoprobe device and method
JP2004531290A (en) * 2000-12-07 2004-10-14 ルビコー メディカル インコーポレイテッド Methods and instruments for high frequency electrosurgery
JP2005137916A (en) * 2000-12-29 2005-06-02 Afx Inc Tissue ablation device using slide ablation device
JP2005534460A (en) * 2002-08-05 2005-11-17 ゴア エンタープライズ ホールディングス,インコーポレイティド Improved apparatus and method for cryosurgery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823575A (en) * 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
JPS62142544A (en) * 1985-11-20 1987-06-25 トムスキ ゴスダルストベンニ メデイツインスキ インステイテユト Low temperature ultrasonic knife
JP2000513963A (en) * 1996-06-24 2000-10-24 アレゲーニー・シンガー リサーチ インスティチュート Cryosurgery method and apparatus
JP2001502788A (en) * 1996-10-07 2001-02-27 クライオジェン インコーポレイテッド Pre-cooling system for Joule Thomson probe
JP2000060867A (en) * 1998-01-05 2000-02-29 Galil Medical Ltd System and method for mri cryosurgery
JP2004512075A (en) * 2000-10-24 2004-04-22 ガリル メディカル リミテッド Multiple cryoprobe device and method
JP2004531290A (en) * 2000-12-07 2004-10-14 ルビコー メディカル インコーポレイテッド Methods and instruments for high frequency electrosurgery
JP2005137916A (en) * 2000-12-29 2005-06-02 Afx Inc Tissue ablation device using slide ablation device
JP2005534460A (en) * 2002-08-05 2005-11-17 ゴア エンタープライズ ホールディングス,インコーポレイティド Improved apparatus and method for cryosurgery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160981A1 (en) 2012-04-27 2013-10-31 株式会社デージーエス・コンピュータ Cylindrical probe outer casing for cryosurgery device, and treatment unit

Also Published As

Publication number Publication date
JP2007167101A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4448818B2 (en) Medical equipment
Boctor et al. Three‐dimensional ultrasound‐guided robotic needle placement: an experimental evaluation
US8155416B2 (en) Methods and apparatuses for planning, performing, monitoring and assessing thermal ablation
US6423009B1 (en) System, employing three-dimensional ultrasonographic imaging, for assisting in guiding and placing medical instruments
US7871406B2 (en) Methods for planning and performing thermal ablation
US20080033417A1 (en) Apparatus for planning and performing thermal ablation
WO1998023214A9 (en) System, employing three-dimensional ultrasonographic imaging, for assisting in guiding and placing medical instruments
US20080283771A1 (en) System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
Burdette et al. The ACUSITT ultrasonic ablator: the first steerable needle with an integrated interventional tool
KR20200085762A (en) Robotic device for minimally incised medical intervention on soft tissue
JP2013135738A (en) Operation support system
US20080033418A1 (en) Methods for monitoring thermal ablation
CN109758233A (en) A kind of diagnosis and treatment integrated operation robot system and its navigation locating method
KR20130109792A (en) Robot system and control method thereof for surgery
JP4807830B2 (en) Diagnostic imaging apparatus and treatment support system
WO2008112005A1 (en) Methods and systems for planning, performing and monitoring thermal ablation
JP2011182983A (en) Treatment support device and treatment support system
WO2012147652A1 (en) Puncture treatment support method, puncture treatment support device, and program for puncture treatment support device
JP5731267B2 (en) Treatment support system and medical image processing apparatus
Chanel et al. Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: An in vitro study
JP2007209651A (en) Therapeutic element passage display device
JP4744284B2 (en) Treatment child
Vaida et al. A new robotic system for minimally invasive treatment of liver tumours
Unger et al. Robot-assisted ultrasound-guided tracking of anatomical structures for the application of focused ultrasound
CN116807598A (en) Ablation guiding method, system, device and readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

LAPS Cancellation because of no payment of annual fees