WO2012147652A1 - Puncture treatment support method, puncture treatment support device, and program for puncture treatment support device - Google Patents

Puncture treatment support method, puncture treatment support device, and program for puncture treatment support device Download PDF

Info

Publication number
WO2012147652A1
WO2012147652A1 PCT/JP2012/060725 JP2012060725W WO2012147652A1 WO 2012147652 A1 WO2012147652 A1 WO 2012147652A1 JP 2012060725 W JP2012060725 W JP 2012060725W WO 2012147652 A1 WO2012147652 A1 WO 2012147652A1
Authority
WO
WIPO (PCT)
Prior art keywords
tomographic
puncture
plane
target point
image
Prior art date
Application number
PCT/JP2012/060725
Other languages
French (fr)
Japanese (ja)
Inventor
岩田 完成
岩田 靖
川村 雅文
誠之 中塚
英樹 屋代
Original Assignee
株式会社デージーエス・コンピュータ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デージーエス・コンピュータ filed Critical 株式会社デージーエス・コンピュータ
Publication of WO2012147652A1 publication Critical patent/WO2012147652A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions

Definitions

  • the present invention relates to a method, a support device, and a puncture treatment support program for assisting puncture of a puncture tool in a subject and performing a treatment such as cryotherapy.
  • a stomach camera In modern medical practice, many devices are used for inspecting or treating by intruding or puncturing an intruder or puncture device into the body of a subject.
  • a stomach camera For example, a stomach camera, a monitoring optical fiber, a sampling device for cutting and collecting tissue, an injection device for injecting a drug into a specific site, a therapeutic device for irradiating a lesion site with energy such as heat or electromagnetic waves, etc.
  • a fluoroscopic monitoring method for obtaining and displaying a fluoroscopic image in real time for monitoring by such an intruder or a puncture tool and monitoring an intrusion by obtaining a fluoroscopic monitoring method or an X-ray CT tomographic image in real time and displaying them in two or three dimensions are monitored.
  • CT monitoring method There is a CT monitoring method.
  • the CT monitoring method is a treatment in which a CT image and / or a three-dimensional image thereof are displayed in real time while performing CT imaging of an intrusion route and an affected area, and an intruder is invaded and treated while the operator monitors the display screen. It is to do the law. Therefore, this CT monitoring method is suitable for monitoring a complicated part or a deepened part of the body (lung, heart, prostate, pancreas, etc.).
  • the latest example using CT monitoring method is a cryotherapy method that measures necrosis of malignant tumor such as lung cancer tissue.
  • This freezing treatment method is based on the principle that the cells at the lesion site are frozen and then thawed, and the inside of the cells is destroyed by the generation of a difference in salt concentration in the process of thawing, leading to cell death.
  • Two high-pressure gases are used for freezing and thawing.
  • high-pressure argon gas is used as a gas for raising the temperature
  • high-pressure helium gas is used as a gas for lowering the temperature.
  • a hollow metallic puncture device called a guide needle is used. Under the CT monitoring described above, the puncture device is punctured into a patient (subject) and the tip thereof is guided to the affected part in the body, and the two gases are alternately discharged from the inside of the hollow portion or the outside of the hollow portion to the outside portion. Then, cryotherapy to the affected area is performed using the heat exchange action.
  • Non-patent document 1 as shown below exists as a document of such a general cryotherapy method.
  • Non-Patent Document 2 as shown below as a document explaining a mechanical system including a therapeutic child used for a cryotherapy method, and a treatment method and an actual case.
  • the present inventors have invented a treatment device that can realize this cryotherapy more safely, and have already filed patent applications (for example, Patent Documents 1 and 2 below).
  • Non-Patent Document 2 describes a technique in which a puncture state of a puncture device serving as a therapeutic child is photographed in real time with an X-ray CT apparatus, and this is reconstructed and displayed as a tomographic image in real time.
  • the X-ray CT apparatus is multi-slice imaging, and obtains and displays a large number of tomographic images at one time. The intrusion of the treatment child can be monitored, and it can be viewed as an image in almost real time along the tracking to the affected part position and the procedure.
  • this puncture tool uses a stainless steel double tube (coaxial needle) whose tip protrudes like a blade.
  • a stainless steel double tube coaxial needle
  • a long and thin guide needle is inserted along the central axis of the double tube, and the guide needle is punctured to the affected area.
  • the double tube is penetrated to the affected part along the guide needle, and the double tube is further advanced to penetrate the tumor.
  • the guide needle is removed, and the frozen terminal body is inserted and loaded along the hollow shaft in the double tube instead.
  • the terminal tip that becomes the freezing / thawing portion of the freezing terminal main body is brought into contact with or close to the rounded inner surface of the double tube.
  • the freezing terminal body is connected to a high-pressure argon gas inlet and a high-pressure helium gas inlet via a switching valve. After the filling is confirmed, the switching valve is switched to inject high-pressure helium gas, then high-pressure argon gas is injected, and freezing and thawing are performed in a short time. This cycle may be repeated multiple times. A series of these operations are performed while observing and confirming under CT monitoring with displaying a real-time CT image.
  • the route (Shooting Route) connecting the puncture point (Skin Point) on the body surface where the puncture device is punctured and the target lesion point (Tumor Point) serving as the affected part is seen from only one predetermined direction. Since it is a tomographic image, it is difficult to accurately grasp whether the puncture tool is moving accurately along a predetermined route. That is, since the tomographic image viewed only from one predetermined direction is a two-dimensional image in the X and Y directions, it is difficult to grasp the shift in the line-of-sight direction of the tomographic image that is the Z direction.
  • the present inventors in addition to the tomographic image viewed from one predetermined direction as shown in the above-mentioned Patent Document 3, etc., the second shifted by a predetermined angle (for example, 90 °) with respect to the tomographic image.
  • a predetermined angle for example, 90 °
  • Devised a novel therapeutic device path display device that simultaneously displays the tomographic images of the patient.
  • this therapeutic element path display device it is possible to accurately guide the puncture tool along a predetermined path by simultaneously displaying two tomographic images and grasping the shift in the line-of-sight direction of the tomographic image in the Z direction. It becomes.
  • the puncture tool can be guided along a predetermined path, but the puncture target point has a predetermined size such as a tumor, It is not easy to accurately grasp which position of a lesion site having a shape.
  • the purpose of the present invention is to provide a novel device that can accurately grasp the position of a puncture target point with respect to a lesion site viewed from the puncture route direction during puncture treatment.
  • a puncture treatment support method, a puncture treatment support device, and a puncture treatment support device program are provided.
  • the first invention is a method for supporting a subject to perform a predetermined treatment by puncturing a subject with a puncture tool from outside the body and reaching the tip to a target point in the body, Based on the image data acquisition step of acquiring 3D image data obtained by superimposing tomographic images obtained by tomographic imaging of a subject in a direction orthogonal to the tomographic plane, and the 3D image data acquired in the image data acquisition step A puncture point setting step for setting a puncture point and a target point of a puncture device for puncturing the subject, and a puncture path connecting the puncture point and the target point from the three-dimensional image data acquired in the image data acquisition step A first tomographic image acquisition step for acquiring a tomographic image of the first tomographic plane including the puncture path connecting the puncture point and the target point from the three-dimensional image data acquired in the image data acquisition step; A second tomographic image acquisition step of acquiring a tomographic image of a second tom
  • a third tomographic image acquisition step for acquiring a tomographic image of a third tomographic plane that includes the first and second tomographic planes and forms a predetermined angle with the first and second tomographic planes; and a tomographic image of the first to third tomographic planes
  • a tomographic image display step for displaying the puncture treatment support method.
  • the two tomographic images be displayed at the same time to grasp the shift in the line-of-sight direction of the tomographic image and accurately guide the puncture device along the predetermined path, but also the third tomographic plane Since the tomographic images can be displayed at the same time, the position of the puncture target point of the puncture tool with respect to the lesion site viewed from the direction of the invasion path can be accurately grasped.
  • the tomographic imaging referred to in the present invention specifically refers to computed tomography (CT imaging) using radiation such as X-rays or MRI (Magnetic Resonance Imaging) tomography using magnetism, This refers to tomography using ultrasonic inspection (Ultrasonography, US Echo) (the same applies to the following inventions and embodiments).
  • CT imaging computed tomography
  • MRI Magnetic Resonance Imaging
  • Ultrasonography, US Echo ultrasonic inspection
  • a second invention further comprises a fourth tomographic image acquisition step of acquiring one or more fourth tomographic planes parallel to the third tomographic plane in the first invention
  • the tomographic image display step comprises:
  • a puncture treatment support method characterized by displaying the tomographic plane of the fourth tomographic plane acquired in the fourth tomographic image acquiring step together with the tomographic images of the first to third tomographic planes. According to such a method, the tomographic image of the third tomographic plane and the tomographic plane of the fourth tomographic plane are displayed simultaneously or alternately so that the size and shape of the lesion site viewed from the direction of the invasion path can be accurately determined. I can grasp it.
  • the third invention is the puncture treatment support method according to the first or second invention, wherein the predetermined angle between the first tomographic plane and the second tomographic plane is 90 °. According to such a method, it is possible to more accurately grasp the deviation of the puncture tool from the intrusion route during the intrusion.
  • the fourth invention is the puncture treatment support method according to any one of the first to third inventions, wherein the predetermined angle between the first tomographic plane and the third tomographic plane is 90 °. According to such a method, the position of the puncture target point of the puncture device with respect to the lesion site viewed from the intrusion route direction can be grasped more accurately.
  • the tomographic image display step includes the target point by the puncture tool during freezing treatment with the puncture tool punctured at the target point of the tomographic image of the third tomographic plane.
  • This is a puncture treatment support method characterized by displaying a virtual frozen region centering on the. According to such a method, it is possible to accurately grasp how much region should be frozen with respect to a lesion site (tumor) serving as a puncture target point.
  • a sixth aspect of the invention is an apparatus for assisting in performing predetermined treatment by puncturing a subject from outside the body and having the tip of the puncture tool reach a target point in the body, in which tomographic imaging of the subject is performed.
  • Three-dimensional image data acquisition means for acquiring three-dimensional image data obtained by superimposing the obtained tomographic images in a direction orthogonal to the tomographic plane, and the subject based on the three-dimensional image data acquired by the image data acquisition means
  • a puncture point setting means for setting a puncture point and a target point of a puncture tool to be punctured, and a first tomography including a puncture path connecting the puncture point and the target point from the three-dimensional image data acquired by the image data acquisition means
  • a first tomographic image acquisition unit for acquiring a tomographic image of a plane; a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition unit; and the first tomographic plane Make a certain angle to Second to
  • two tomographic images can be displayed at the same time so as to grasp the shift in the line-of-sight direction of the tomographic image and accurately guide the puncture tool along a predetermined route.
  • the tomographic image of the third tomographic plane can be displayed at the same time, the position of the puncture target point of the puncture tool relative to the lesion site viewed from the direction of the invasion path can be accurately grasped.
  • a seventh invention further comprises a fourth tomographic image acquisition means for acquiring one or a plurality of fourth tomographic planes parallel to the third tomographic plane in the sixth invention, wherein the tomographic image display means comprises: A puncture treatment support apparatus for displaying a tomographic image of the fourth tomographic plane acquired by the fourth tomographic image acquiring means together with the tomographic images of the first to third tomographic planes.
  • the tomographic image of the third tomographic plane and the tomographic plane of the fourth tomographic plane are displayed simultaneously or alternately so that the lesion site viewed from the direction of the invasion path is displayed. The size and shape can be accurately grasped.
  • the eighth invention is the puncture treatment support device according to the sixth or seventh invention, wherein the predetermined angle between the first tomographic plane and the second tomographic plane is 90 °. According to such an apparatus, as in the third aspect of the invention, it is possible to grasp the displacement of the puncture tool with respect to the entry path more accurately during the entry.
  • a ninth invention is the puncture treatment support apparatus according to any of the sixth to eighth inventions, wherein the predetermined angle between the first tomographic plane and the third tomographic plane is 90 °. According to such an apparatus, the position of the puncture target point of the puncture device with respect to the lesion site viewed from the intrusion route direction can be grasped more accurately as in the fourth aspect of the invention.
  • the tomographic image display means performs the freezing treatment with the puncture device that has punctured the target point of the tomographic image of the third tomographic plane, and the target point by the puncture device.
  • This is a puncture treatment support device characterized by displaying a virtual frozen region centering on the. According to such an apparatus, it is possible to accurately grasp how much of the region should be frozen with respect to a lesion site (tumor) serving as a puncture target point, as in the fifth invention.
  • An eleventh invention is a computer program for supporting a subject to perform a predetermined treatment by puncturing a subject with a puncture tool from outside the body and reaching a target point in the body, and the computer is connected to the subject.
  • the 3D image data acquisition means for acquiring 3D image data obtained by superimposing tomographic images obtained by tomographic imaging in a direction orthogonal to the tomographic plane, and the 3D image data acquired by the image data acquisition means
  • a puncture point setting unit that sets a puncture point and a target point of a puncture device that punctures the subject, and a puncture path that connects the puncture point and the target point from the three-dimensional image data acquired by the image data acquisition unit
  • a first tomographic image acquisition unit that acquires a tomographic image of a first tomographic plane; a puncture path that connects the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition unit; and Second tomographic image acquisition means for acquiring a tomographic image of
  • the computer functions as fourth tomographic image acquisition means for acquiring one or a plurality of fourth tomographic planes parallel to the third tomographic plane
  • the display means is a puncture treatment support program for displaying the tomographic image of the fourth tomographic plane acquired by the fourth tomographic image acquiring means together with the tomographic images of the first to third tomographic planes.
  • the tomographic image of the third tomographic plane and the tomographic plane of the fourth tomographic plane are displayed simultaneously or alternately, so that the lesion site viewed from the direction of the invasion path is displayed. The size and shape can be accurately grasped.
  • the thirteenth invention is the puncture treatment support program according to the eleventh or twelfth invention, wherein the predetermined angle between the first tomographic plane and the second tomographic plane is 90 °. According to such a program, as in the third aspect of the invention, it is possible to more accurately grasp the deviation of the puncture tool from the intrusion route during intrusion.
  • the fourteenth invention is the puncture treatment support program according to any of the eleventh to thirteenth inventions, wherein the predetermined angle between the first tomographic plane and the third tomographic plane is 90 °. According to such a program, the position of the puncture target point of the puncture tool with respect to the lesion site viewed from the intrusion route direction can be grasped more accurately as in the fourth invention.
  • the tomographic image display means performs the freezing treatment with the puncture device that has punctured the target point of the tomographic image of the third tomographic plane, and the target point by the puncture device.
  • This is a puncture treatment support program characterized by displaying a virtual freezing region centering on. According to such a program, as in the fifth aspect, it is possible to accurately grasp how much region should be frozen with respect to a lesion site (tumor) that is a puncture target point.
  • the puncture tool can be accurately moved along a predetermined path. Can be guided. Further, since the tomographic image of the third tomographic plane can be displayed at the same time, the position of the puncture target point of the puncture tool with respect to the lesion site viewed from the invasion path direction can be accurately grasped. Further, since the tomographic image of the third tomographic plane parallel to the tomographic image of the third tomographic plane can be displayed, the size and shape of the lesion site viewed from the direction of the invasion path can be accurately grasped.
  • the virtual frozen region of the target point by the puncture tool can be displayed together on the tomographic image of the third tomographic plane, it is possible to accurately determine how much region should be frozen with respect to the lesion site serving as the puncture target point. I can grasp it.
  • FIG. 6 is a life diagram showing the relationship among a puncture insertion point S, a puncture target point T, and a tomographic plane for a subject 110.
  • A is a diagram showing a tomographic image of the tomographic plane Mk including the puncture insertion point S
  • (B) is a diagram showing a tomographic image of the tomographic plane Mi including the puncture target point T.
  • FIG. It is a figure which shows A tomographic plane containing the puncture path
  • route R which connects the puncture insertion point S and the puncture target point T.
  • FIG. 11 is a schematic diagram illustrating a relationship among an X, Y, Z coordinate system, an A tomographic plane, a puncture insertion point S, a puncture target point T, and a puncture route R with respect to the subject 110 in FIG.
  • FIG. 11 is a schematic diagram illustrating a relationship among an X, Y, Z coordinate system, an A tomographic plane, a puncture insertion point S, a puncture target point T, and a puncture route R with respect to the subject 110 in FIG.
  • FIG. 11 is a schematic diagram illustrating a relationship among an X, Y, Z coordinate system, a B tomographic plane, a puncture insertion point S, a puncture target point T, and a puncture route R with respect to the subject 110 in FIG.
  • FIG. 11 is a schematic diagram illustrating a relationship among an X, Y, Z coordinate system, a C tomographic plane, a puncture insertion point S, a puncture target point T, and a puncture route R with respect to the subject 110 in FIG. It is a figure which shows the tomographic image (1st tomographic image) of A tomographic plane in FIG. It is a figure which shows the tomographic image (2nd tomographic image) of the B tomographic plane in FIG.
  • FIG. 18 is a three-dimensional contour image created from a plurality of CT tomographic images shown in FIG.
  • a composition showing the relationship between the A tomographic plane (a), the B tomographic plane (b), the C tomographic plane (c), the puncture insertion point S, the puncture target point T, and the puncture route (Shoting Route) for the three-dimensional image in FIG. It is an image.
  • FIG. 1 is a diagram showing a relationship between a tomographic plane (plane) in a subject 110 obtained by a multi-scan CT imaging apparatus (not shown) and the coordinate system XYZ.
  • a tomographic plane plane
  • the tomographic plane itself can be defined as an XY coordinate system
  • the body axis direction can be defined as a Z coordinate system
  • an arbitrary point of the subject 110 can be defined by an X, Y, Z coordinate system.
  • the pitch of the tomographic plane in the body axis direction is 1 mm or less, for example, 1/100 mm.
  • the tomographic image is a CT image obtained by CT measurement, and a CT image of a new tomographic surface may be obtained by interpolation in order to make the pitch fine.
  • FIG. 2 shows a puncture insertion point S when a puncture tool (not shown) is inserted into the body from the outer skin of the subject 110, and a puncture target point (arrival) set at a lesion site in the body.
  • the S point on the tomographic plane Mk is designated as the puncture insertion point
  • the puncture target point T on the tomographic plane Mi is designated as the puncture target.
  • 3A is a tomographic image of the tomographic plane Mk in which the puncture insertion point S is set
  • FIG. 3B is a tomographic image of the tomographic plane Mi in which the puncture target point T is set
  • the puncture insertion point S is the subject 110.
  • the skin position and the T point are set at the lesion site in the subject 110.
  • FIG. 4 is a diagram showing a setting example of the A tomographic plane that is a new tomographic plane including the puncture insertion point S and the puncture target point T.
  • the A tomographic plane is not parallel to the original CT tomographic plane (... Mi,... Mj,... Mk,...) Obtained by a multi-scan CT imaging apparatus or the like.
  • FIG. 5 shows an example of a tomographic image (first tomographic image) composed of calculated pixel values on the A tomographic plane.
  • the calculated pixel value is on the A tomographic plane, it is obtained by calculating from the pixel values of the measured CT tomographic plane (... Mi,... Mj,... Mk,). This calculation method will be described later.
  • FIG. 6 is a diagram showing an example of setting the B fault plane, which is another new fault plane having a predetermined angle ⁇ with the A fault plane.
  • the B tomographic plane is a plane including the puncture insertion point S and the puncture target point T as in the A tomographic plane, and the angle ⁇ is, for example, 90 ° (orthogonal).
  • FIG. 7 is a tomographic image (second tomographic image) of the B tomographic plane, and all are obtained by calculating from pixel values calculated by a method described later.
  • tomographic images first and second tomographic images
  • the puncture insertion point S which are two tomographic planes including the puncture insertion point S and the puncture target point T
  • the insertion angle ⁇ of the puncture device can be set and evaluated. If it is determined that another puncture insertion point S, puncture target point T, and insertion angle ⁇ are set appropriately, these S, T, and ⁇ are separately reset, and the same display is performed for evaluation. Just do it.
  • FIG. 8 is a diagram showing a setting example of the C tomographic plane that includes only the puncture target point T that is the arrival point of the puncture tool and forms a predetermined angle ⁇ with respect to the A tomographic plane and the B tomographic plane.
  • This C tomographic plane is a plane that crosses the puncture route R of the A tomographic plane and the B tomographic plane, and the angle ⁇ is, for example, 90 ° (orthogonal).
  • FIG. 9 is a tomographic image (third tomographic image) of the C tomographic plane, which is obtained by calculation from pixel values calculated by a method described later.
  • FIG. 10 to FIG. 16 explain the relationship between the three tomographic planes A, B, and C and their tomographic images in an easy-to-understand manner.
  • the symbol X is the height direction of the subject 110 that is in the supine state
  • Y is the width direction of the subject 110 that is also in the supine state
  • Z is the body of the subject 110 that is also in the supine state.
  • the axial direction is shown.
  • a puncture insertion point S and a puncture target point T and a puncture route R (Shoting Route) that connects these points S and T with straight lines are shown.
  • FIG. 11 shows an example in which the A tomographic plane, which is the first new tomographic plane passing through the puncture insertion point S and the puncture target point T, is shown.
  • FIG. An example of acquiring a B tomographic plane that is a second new tomographic plane passing through the puncture target point T is shown.
  • the B tomographic plane is a plane rotated with respect to the A tomographic plane by a predetermined angle ⁇ (for example, 90 °) about the puncture route R connecting the puncture insertion point S and the puncture target point T.
  • for example, 90 °
  • FIG. 13 shows a setting example of a C tomographic plane (third tomographic plane) that includes only the puncture target point T and forms a predetermined angle ⁇ with respect to the A tomographic plane and the B tomographic plane.
  • the C tomographic plane is a plane that is crossed at a predetermined angle (for example, 90 °) at the end point (puncture target point T) of the puncture route R of the A tomographic plane and the B tomographic plane.
  • FIGS. 14 to 16 show examples of tomographic images of these three tomographic planes A, B, and C.
  • FIG. FIG. 14 is an example of a first tomographic image which is a cross-sectional image of the A tomographic plane.
  • the puncture path R from the puncture insertion point S to the puncture target point T viewed from about the X-axis direction, the puncture target point T, and The shape of the lesion site Q is shown.
  • the lesion site Q has a slightly elliptical shape, and it can be seen that the puncture target point T is set at a position slightly deviated from the center of the lesion site Q.
  • FIG. 15 is an example of a second tomographic image that is a cross-sectional image of the B tomographic plane.
  • the puncture path R from the puncture insertion point S to the puncture target point T viewed from the Z-axis direction, and the puncture target point
  • the shape of T and its lesion site Q is shown.
  • the lesion site Q has a vertically long oval shape, and it can be seen that the puncture target point T is set at a position slightly deviated from the center of the lesion site Q.
  • FIG. 16 is an example of a third tomographic image which is a cross-sectional image of the C tomographic plane, and shows the shape of the puncture target point T and its lesion site Q viewed from about the Y-axis direction.
  • the lesion site Q has a horizontally long saddle shape, and it can be seen that the puncture target point T is set at a position deviated to the left from the center of the lesion site Q.
  • FIG. 17 shows a plurality of CT tomograms obtained based on actual data with the body axis direction (Z direction) of the actual subject as an axis.
  • FIG. 18 shows these CT tomograms. It is the three-dimensional outline image created from In the drawing, S is a puncture point (Skin Point), and T is a puncture target point (Target Point) (the same applies hereinafter).
  • FIG. 19 shows the A tomographic plane (a), B tomographic plane (b), C tomographic plane (c) (Tumor Plane), puncture insertion point S, puncture target point T, and puncture path for the three-dimensional image in FIG. It is a synthesized image showing the relationship with (Shoting Route).
  • FIG. 20 shows the relationship between the tomographic image (a) of the A tomographic plane with respect to the three-dimensional contour image in FIG. 18 and the puncture route (Shoting Route), and FIG. 21 shows the three-dimensional image in FIG. The relationship between the tomographic image (b) of the B tomographic plane and the puncture route (Shoting Route) is shown. Furthermore, FIG. 22 shows the relationship between the tomographic image (c) of the C tomographic plane and the puncture target point T with respect to the three-dimensional contour image in FIG. As shown in these images, a tomographic image of an arbitrary part and angle can be accurately grasped based on a three-dimensional contour image obtained from a plurality of CT tomographic images.
  • a fault plane that is the first fault plane
  • B fault plane that is the second fault plane
  • the A tomographic plane is an infinite number of planes including the puncture insertion point S and the puncture target point T. Therefore, in advance, there are some A tomographic plane candidates that are on the puncture route R, have no intruding obstacles (for example, blood vessels and bones), and are easy to monitor the route.
  • B tomographic plane candidates orthogonal to each of these candidates are determined. It is necessary that the obstacle is not on the puncture route R even if it is in the B tomographic plane candidate.
  • planes having no obstacles and having easy-to-monitor paths are determined as A fault plane and B fault plane. These determination methods are performed while viewing the screen by the surgeon, but there is also a method performed by software (a computer program for supporting puncture treatment).
  • the A fault plane and the B fault plane are not necessarily orthogonal.
  • a plane other than the orthogonal plane may be selected as the B tomographic plane.
  • a plane with an angle other than the orthogonal plane may be suitable for route monitoring.
  • the C tomographic plane even when the C tomographic plane is set, there are some A tomographic plane candidates that facilitate confirmation of the relationship between the puncture target point T and the lesion site Q. Therefore, the C fault plane, the A fault plane, and the B fault plane do not necessarily have to be orthogonal. For example, when an appropriate orthogonal plane cannot be found, a plane other than the orthogonal plane may be selected as the C tomographic plane. Further, a plane having an angle other than the orthogonal plane may be suitable for confirming the relationship between the puncture target point T and the lesion site Q.
  • Each of the tomographic planes A to C has a matrix configuration of m × n pixels.
  • This pixel value calculation is performed using three-dimensional image data of a subject 110 centered on a lesion site Q acquired by a multi-scan CT imaging apparatus or the like, dedicated image processing software (computer program), and an information processing apparatus (computer) using them. System).
  • the angle between the A fault plane and the CT tomographic plane is a predetermined angle ⁇ other than 90 °. ing. This is because the puncture insertion point S is the outer skin surface and the puncture target point T is inside the body, so that the A tomographic plane including S and T is at an angle other than 90 ° with respect to the CT tomographic plane.
  • the pixel position on the A tomographic plane is J, K
  • the pixel position on the CT tomographic plane is X, Y
  • the coordinate in the body axis direction of the CT tomographic plane is Z
  • the CT tomographic plane is M1, M2 from the front. ... Mn.
  • These CT tomographic planes M1, M2,... Mn are arranged in the body axis direction which is the Z direction
  • the A tomographic plane cuts the CT tomographic planes M1, M2,. It is a relationship that
  • this be the pixel value of the corresponding coordinates of the A tomographic plane.
  • the coordinates X and Y do not have a pixel value as in the non-hatched pixel position in FIG. 24.
  • the approximate pixel value calculated by approximation from the pixel values such as two or four points around the coordinates X and Y Is a pixel value of coordinates J and K. This calculation may be an average value or a proportional distribution value considering a distance difference. You may use the pixel value of the most different position as it is, without calculating.
  • the three tomographic planes A Each tomographic image (first to third tomographic image) of the tomographic plane, the B tomographic plane, and the C tomographic plane can be obtained.
  • the puncture treatment support method of the present invention displays a normal CT tomographic image and performs two new tomographic planes including a puncture insertion point S and a puncture target point T when performing the puncture cryotherapy as described above.
  • a new tomographic plane (C tomographic plane) including the puncture target point T is set in addition to (A tomographic plane and B tomographic plane), and tomographic images of these three tomographic planes (A to C tomographic planes) are displayed. It is a thing. This makes it possible to simultaneously display tomographic images of two tomographic planes (A tomographic plane and B tomographic plane) including the puncture route R connecting the puncture insertion point S and the puncture target point.
  • FIG. 23 shows the relationship between a tumor (focal site) and a virtual frozen region in a tomographic image of the C tomographic plane (third tomographic image: Tumor Plane).
  • T is a puncture point reached by a puncture tool, which will be described later, and a concentric circle extending around the puncture point T is an isotherm centered on the puncture point T.
  • the size of the frozen region of the tumor has a positive correlation with the freezing time at the puncture target point T. That is, for example, FIG. 23A shows that the virtual freezing region is a part of the tumor because the freezing time is short, and FIG.
  • FIG. 23B shows that the freezing time is shorter than that in FIG. Since it is long, it indicates that the virtual frozen region covers almost the entire tumor.
  • FIG. 23 (C) shows that the virtual frozen region has reached a healthy tissue around the tumor because the freezing time is longer than that in FIG. 23 (B). Since the minimum freezing temperature of the bed part Q such as a tumor is about ⁇ 3 ° C., the contour (outer edge portion) of the virtual frozen region is about ⁇ 3 ° C., and the central portion of the virtual frozen region is about ⁇ 180 ° C.
  • the relationship between the freezing area and the freezing time for a tumor (focal site Q) in such puncture cryotherapy has been previously known as data depending on the freezing refrigerant used, the type of tumor, the location, and the like. For this reason, the relationship between the freezing region and the freezing time for these tumors (focal sites) is made data-based by the configuration described later, and the tomographic image of the C tomographic plane obtained by the method described above (c)
  • optimal cryotherapy can be supported by displaying a virtual freezing region as shown in FIG.
  • the freezing time is short (for example, about several minutes), and the virtual frozen region is a part of the tumor, so that a sufficient therapeutic effect cannot be obtained.
  • FIG. 23B since the freezing time is longer than this (for example, around 10 minutes) and the virtual frozen region covers almost the entire tumor (lesion site), a sufficient therapeutic effect is expected.
  • FIG. 23C since the freezing time is longer and the virtual freezing area is larger than this, it is expected that not only the tumor but also the surrounding healthy tissue will be adversely affected.
  • the frozen region by the puncture cryotherapy is not limited to a concentric circle (round circle) centered on the puncture target point T as shown in FIG. It is also possible to set a frozen region having a heat directing characteristic in the direction.
  • FIG. 25 shows the basics of the puncture treatment support apparatus (computer system) 120 incorporating the three-dimensional image data of the subject 110 for puncture treatment support and dedicated image processing software (computer program) as described above. It is a system diagram.
  • This puncture treatment support device 120 includes a computing device (CPU) 121, a main storage device (RAM) 122, an input device 123 such as a keyboard (KB), a display device 124 such as a monitor, and a read-only storage device (ROM). ) 126 and other devices are connected.
  • CPU computing device
  • RAM main storage device
  • KB keyboard
  • KB keyboard
  • ROM read-only storage device
  • the ROM stores an operating system (OS) for operation and a dedicated image processing program (computer program), and the RAM 122 stores tomographic images of a plurality of tomographic planes acquired in advance as shown in FIG.
  • the three-dimensional image data and the like are stored and read by the operation of the CPU 121 according to the instruction of the keyboard 123, and the tomographic images created by the image processing program are sequentially displayed on the monitor 124, or on a plurality of monitors 124 or divided screens.
  • a tomographic image is displayed simultaneously. From there, the surgeon looks at the display screen and instructs the puncture insertion point S and the puncture target point T. When displaying each tomographic image sequentially, it takes time. Therefore, there is a method in which all the tomographic images are displayed three-dimensionally and the puncture insertion point S and the puncture target point T are designated therefrom.
  • the A tomographic plane and the B tomographic plane passing through the puncture insertion point S and the puncture target point T and the C tomographic plane including the puncture target point T are designated manually or automatically.
  • an instruction is given using the keyboard 123.
  • the CPU 121 calculates the tomographic image data D1, D2, and D3 of the A to C tomographic planes.
  • FIG. 26 shows the processing flow in FIG. First, three-dimensional CT image data is acquired and stored in the memory 122 in the first step S100, and the process proceeds to the next step 102.
  • step S102 CT tomograms of necessary CT tomographic planes are sequentially displayed, and one of the tomographic planes Mk serving as the puncture insertion point S and any other tomographic plane Mi serving as the puncture target point T are displayed. Is selected and instructed to proceed to the next step S104.
  • Step S104 designates the puncture insertion point S and the puncture target point T on each of the tomographic planes Mk and Mi, and proceeds to the next step S106.
  • step S106 the A tomographic plane passing through the puncture insertion point S and the puncture target point T and the B tomographic plane intersecting the A tomographic plane at a predetermined angle ⁇ are designated, and the process proceeds to the next step S108.
  • step S108 the CT pixel values of the designated A tomographic plane and B tomographic plane are calculated to obtain the respective tomographic image data D1 and D2, and the process proceeds to the next step S110.
  • step S110 the tomographic image data D1 and D2 are respectively displayed as tomographic images (first tomographic image and second tomographic image) of the A tomographic plane and the B tomographic plane, and the process proceeds to the next determination step S112.
  • this determination step S112 it is checked whether or not the set puncture route R is an appropriate route by looking at the image. If it is inappropriate (No), the process returns to step S102, and if it is appropriate (Yes)
  • the tomographic planes Mj and Mk, the tomographic image data D1 and D2, the A tomographic plane, the B tomographic plane, and the insertion angle ⁇ are determined, and the process proceeds to the next step S116.
  • step S116 a C tomographic plane that includes only the puncture target point T and is substantially orthogonal to the A tomographic plane is set, the CT pixel value is calculated to obtain tomographic image data D3, and the process proceeds to the last step S118.
  • the tomographic image data D3 is displayed as a tomographic image of the C tomographic plane (third tomographic image), and the process is terminated.
  • the coordinates X, Y, and Z of the puncture target point T are different from each other when viewed on the X, Y, and Z axes, and T1 (X, Y, Z), T2 ( X, Y, Z), T3 (X3, Y3, Z3), etc.
  • one of the points is determined as the puncture target point, and the other point is the CT monitor under the puncture tool. Take the way to move.
  • the puncture route R is checked in advance by the combination of the puncture insertion point S and the puncture target points T1, S and T2, and S and T3, and the new tomographic plane and the corresponding new tomographic image are calculated and displayed. It is preferable to check the obstacles for all puncture target points T.
  • CT image forming method for monitoring the puncturing process along the puncture route R in real time.
  • a CT tomogram of a tomographic plane only in the vicinity of the puncture tool as a center is measured and reconstructed, and CT tomograms of other tomographic planes use past tomographic images obtained so far.
  • an in-width tomographic plane of i i ⁇ ⁇ in the vicinity of Zi ( ⁇ is a nearby value, and several to tens of faults And obtain a tomographic image.
  • CT measurement and reconstruction can be performed while maintaining real-time characteristics.
  • FIG. 27 is an overall configuration diagram of this cryotherapy apparatus 50.
  • the cryotherapy apparatus 50 includes a CT scanner 51, an image processing unit 52, a display unit 53, an operation unit 54, a drive control unit 55, a planning unit 56, a treatment element (puncture tool) 57, and a gas supply.
  • the unit 58 and the monitoring unit 59 are mainly provided.
  • the CT scanner 51, the image processing unit 52, the display unit 53, and the operation unit 54 are original CT apparatuses. Using this CT apparatus, a plurality of tomographic images are acquired in advance to form a three-dimensional image. There is also an example in which an interpolation image for filling the gap from a plurality of tomographic images is used as a three-dimensional image.
  • the CT scanner 51 is also used to obtain a real-time CT image during the puncturing operation. This real-time image is also obtained by superimposing the puncture operation of the treatment element (puncture tool) 57 in the monitoring unit 59, and is used for puncture monitoring and treatment monitoring.
  • the planning unit 56 cooperates with the image processing unit 52 based on data obtained in advance or based on this and shape (and / or structure) data of the treatment element 57 (puncture insertion point S). Then, the treatment site (puncture target point T) and the progression route (puncture route R) of the treatment child are determined by data processing to create plan data. In addition, a gas supply control method based on heat retention and physical property values (including physiological values) of the lesion site is determined.
  • the drive control unit 55 performs drive control such as movement of the treatment element (puncture tool) 57 and supply control of the gas supply unit 58 based on the plan data of the plan unit 56, and performs alternating operations of freezing and thawing.
  • the monitoring unit 59 monitors drive control. There are two types of monitoring: CT image monitoring and control mechanism monitoring.
  • the monitoring unit 59 may be combined with the display unit 53.
  • a part of the image processing unit 52 and the planning unit 56 corresponds to the route display device.
  • This treatment device 50 is an example using a freezing terminal as a treatment child, and there is a prior application regarding the freezing terminal and its treatment device.
  • the cryotherapy apparatus 50 of the present invention performs the following processing and operations.
  • the puncture insertion point S and the puncture target point T (lesion position) of the freezing terminal as the puncture tool are determined. This determination is made by selecting from a plurality of CT tomographic images imaged and reconstructed in the body axis direction (Z direction) as described above, and for example, the coordinate position (Xa, Ya) of the tomographic plane Zi is set as the puncture insertion point S and the tomographic plane Zj. The coordinate position (Xb, Yb) is set as the puncture target point T.
  • CT tomograms are displayed one after another along the body axis direction, and the operator specifies the tomographic planes Zi and Zj, and the puncture insertion point S and puncture target point T as coordinates on the plane.
  • the three-dimensional contour image of the three-dimensional image along the body axis is determined.
  • the puncture operation is started by the operation of the drive control unit 56.
  • the monitoring is performed by the monitoring unit 59.
  • CT tomography and reconstruction are performed by an X-ray CT apparatus, for example, by multi-slice measurement (a structure that enables imaging of a plurality of cross sections at one time) to obtain a CT tomogram.
  • the imaging range is in the vicinity of the tip of the freezing terminal (puncture tool), and the tip position advances as the freezing terminal punctures.
  • CT imaging and reconstruction are performed one after another in the vicinity of the tip. A CT tomogram is obtained.
  • the latest tomographic image obtained under CT monitoring is stored in the memory by the monitoring unit 59 and displayed one after another on the display unit 53 to be used for monitoring the progress of the puncture tool.
  • the image processing unit 52 and the planning unit 56 perform CT on each plane of the A tomographic plane, the B tomographic plane, and the C tomographic plane determined in (2), which is one of the features of the present invention.
  • the pixel value is calculated, embedded tomographic image data D1, D2, and D3 are acquired corresponding to the pixel position (coordinate position) on each plane and displayed on the display device.
  • the plurality of tomographic planes included in the vicinity of the tip of the freezing terminal have the tomographic images obtained in real time, and the other tomographic planes before that It has the acquired tomographic image.
  • the previous tomographic image includes a tomographic image obtained before entering the puncturing operation or a previous tomographic image obtained by photographing on the near side of the tip position when the tip position advances.
  • the puncture route R of the frozen terminal can be monitored in real time by displaying the latest CT tomographic image and the tomographic images of the A tomographic plane, B tomographic plane, and C tomographic plane. If there is a situation where the puncture route R is shifted, the direction of the freezing terminal can be corrected by viewing the latest tomographic image and the tomographic images on the A tomographic plane, the B tomographic plane, and the C tomographic plane. For example, it is possible to determine whether the distance on the A tomographic plane is 2 mm or the distance on the B tomographic plane is 3 mm, and the operation for returning it to the correct puncture route R is performed on the frozen terminal. At this time, if the freezing terminal is automatically moved by the actuator, a correction operation command is given, or if it is manually performed by the operator, it is manually returned to the normal route.
  • the puncture route R and the puncture target point T can be set again, or the determination of the freezing range can be accurately performed.
  • the puncture route support method of the present invention can also be used for creating and confirming a puncture route R.
  • For planning and confirmation of the puncture route R real-time properties are not necessary, and thus all tomographic images that have been imaged and reconstructed in advance are used for creation and confirmation.
  • Tomographic images of the two A tomographic planes and the B tomographic plane passing through the puncture insertion point S and the puncture target point T are created (calculated) and displayed to display the puncture insertion point S.
  • the puncture target point T is set.
  • the puncture target point T is a lesion site, it is usually fixed, but its position can be corrected by viewing the tomographic image of the C tomographic plane as described above.
  • the puncture target point T is set, the point is where the puncture insertion point S is set.
  • the tomographic images of the A tomographic plane and the B tomographic plane are created and displayed, searched and determined.
  • the same display can be performed to check whether the setting is appropriate or not when confirming the route to the puncture insertion point S and the puncture target point T created by another method. In the above example, the case of a freezing terminal is used.
  • an element for inspection or treatment that peels off the affected area an element that enters for monitoring of the affected area (micro camera or optical fiber) Terminal) and ultrasonic waves can be applied to various elements such as an element that irradiates an affected area with energy such as electromagnetic waves.
  • FIG. 28 shows a processing flow of a treatment apparatus using a freezing terminal as a treatment child (puncture tool).
  • a plurality of CT image data (several tens or more) are acquired along the body axis direction (Z direction), and the process proceeds to the next step S202.
  • the treatment parameter including the puncture insertion point S that is an intrusion parameter, the puncture target point T of the lesion site Q to be treated, and the insertion angle ⁇ is determined, and the process proceeds to the next step S202.
  • This is due to the CT apparatus.
  • an image stored in the memory of the subject 110 acquired in advance by the CT apparatus and stored in the memory may be used.
  • the treatment element Puncture tool
  • the puncture route support apparatus 120 of the present invention In the next step S202, the treatment element (puncture tool) is operated (automatic, semi-automatic, manual) using the puncture route support apparatus 120 of the present invention.
  • actual puncturing and treatment operations are performed using the parameters.
  • the treatment if the treatment child (puncture device) reaches the lesion site Q that is the puncture target point T, the lesion site Q is necrotized by repeating freezing and thawing at the tip of the freezing terminal. This operation may be automatic, semi-automatic, or manual.
  • FIG. 29 is a schematic view of the therapeutic element 100 serving as a freezing terminal that is also one of the puncture devices.
  • This therapeutic element 100 includes a double tube (an example of a single tube, the same applies hereinafter) 1, a freezing terminal body 2 and a conduit 6 connected thereto, a switching valve 5, a high-pressure helium gas supply source 3, and a high-pressure argon. And a gas supply source 4.
  • the therapeutic element 100 may be considered as a linear component having a length of approximately (L1 + L2).
  • the target point T and the puncture route R can be calculated.
  • FIG. 30 is a specific example of a freezing terminal.
  • Reference numeral 40 denotes a freezing terminal main body, which is made of a material having low thermal conductivity, for example, metal, and has a heat exchange mechanism 41 therein.
  • a high-pressure gas flows in through the switching valve 5 and is discharged from the tip opening portion 42 to the inside of the main body 40 and exhausted to the outside.
  • symbols 31 and 32 are the cocks for each gas.
  • FIG. 31 (a) shows an example of one cycle in which the freezing peak temperature and the thawing peak temperature are set to the same absolute value T1 (actually -T1 during freezing and + T1 during thawing). Since it is preferable that the thermal energy is offset by both, the area determined by (temperature) × (time) during freezing and thawing is the same area (S1).
  • FIG. 31B shows an example in which the absolute values of the freezing peak temperature and the thawing peak temperature are T1 and T2 (T1> T2). Since T1> T2, the thawing period is set longer than the freezing period in order to achieve the same area S1.
  • FIGS. 31A and 31B there may be an example of one cycle of one freezing and two thawings.
  • Fig. 31 (c) is an example of two-cycle donation with freezing and thawing. There are also examples of more than 3 cycles. Although the area was the same for freezing and thawing, strict identity is not required if the goal of necrosis of the lesion can be achieved. Since a human treatment site has a body temperature of 38 ° C., an actual temperature characteristic is often determined in consideration of such body temperature. In order to realize such various temperature characteristics (temperature changes), the gas supply of both helium and argon to the treatment element may be controlled using the amount and time as parameters.
  • the realization of temperature characteristics (temperature change) and determination of the gas supply control method will be described.
  • (1) Taking into account the thermal constants such as the specific heat and conductivity of the lesion site Q of the subject 110 and the physical constants such as the shape of the lesion site Q incorporating the volume weight, the time change of the temperature of the object is measured. decide.
  • (2) The temperature change with respect to the time around the puncture target point T in consideration of the thermal constant and physical constant of the subject 110 can be calculated, and the dynamic change with respect to the set temperature or the set time leading to the dynamic change can be determined. Determine as follows.
  • (3) The rotation angle of the puncture device is determined so that the thermal time change in the vicinity of the determined puncture device target point T has a set target temperature change.
  • the time change of the thermal temperature around the puncture target point T and the vicinity thereof is determined for the insertion of a plurality of puncture tools having different heat retention properties.
  • the intruder having the plurality of thermal directions repeats the temporal change of the thermal temperature at the arrival point and in the vicinity thereof under the geometrical constant determined as described above, and the test operation is performed.
  • the entry start position to the subject 110, the arrival point on the outline of the puncture tool, the entry direction, the angle and rotation angle of the puncture tool, and the puncture route R from the puncture insertion point S to the puncture target point T One of them is obtained and determined, and the temperature distribution and temporal change of the surrounding objects are determined.
  • Gas amount and supply sequence (timing) such that the gas changeover switch of the gas inflow passage for switching the heat generation and heat absorption of the heat exchanger provided at the tip of the puncture tool becomes a predetermined temperature change near the arrival point.
  • the gas supply control method is determined.
  • puncture is performed according to the intrusion parameters, and after the puncture target point T is reached, gas supply is performed by the gas supply control method.
  • FIG. 32 shows a processing flow considering temperature characteristics.
  • new steps S203-1, S203-2, and S203-3 are added between step S202 and step S204.
  • step S203-1 the above-described temperature characteristic is determined, and the gas supply control method is calculated based on the determination.
  • step S203-2 a treatment simulation is performed based on the parameters calculated in step S202, the temperature characteristics, and the gas supply control method. If it is determined that there is no therapeutic effect as a result of the simulation, the process returns to step S202. If it is determined that there is a therapeutic effect, the process proceeds to step S203-3 and a final decision is made.
  • FIG. 33 to FIG. 36 show another embodiment of the present invention.
  • a fourth tomographic plane (D tomographic plane) parallel to the C tomographic plane is obtained.
  • a tomographic image of the D tomographic plane (fourth tomographic image) is displayed simultaneously or sequentially with the C tomographic plane.
  • the tomographic image (fourth tomographic plane) of the fourth tomographic plane (D tomographic plane) parallel to the tomographic image (third tomographic image) of the third tomographic plane (C tomographic plane) is displayed.
  • the size and shape of the lesion site Q viewed from the route R direction can be accurately grasped.
  • Figure 34 shows a third tomogram (C tomographic plane) and the fourth tomogram position away several mm from its C tomographic plane which is parallel as shown in FIG. 16 (D 1 slice plane) It can be seen that the shape of the lesion site Q is smaller on the left and right.
  • FIG. 35 shows a fourth tomogram (D 2 tomographic plane) at a position several mm away from the D 1 tomographic plane in FIG. 34, and the lesion site Q has a smaller shape. Recognize.
  • FIG. 36 there is shown a fourth tomogram location remote D 2 even several mm from the tomographic plane of FIG. 35 (D 3 tomographic plane), the shape of the lesion region Q is even smaller I understand.
  • the number of the fourth tomographic planes (D tomographic planes) (D 1 , D 2 , D 3 ...) And their intervals are not particularly limited. The larger the number, the greater the interval. The smaller the size, the more accurately the size and shape of the lesion site can be grasped.

Abstract

Provided are a novel puncture treatment support method, puncture treatment support device, and program for a puncture treatment support device, whereby the position of a puncture target point relative to a lesion site viewed from the puncture path direction can be accurately ascertained during a puncture treatment. Three-dimensional image data relating to a subject (110) is acquired by CT imaging, and a puncture point (S) and target point (T) for a puncture tool for puncturing the subject (110) are set on the basis of this data. A tomographic image of a first tomographic plane and a tomographic image of a second tomographic plane, which comprise a puncture path (R) linking the set puncture point (S) and target point (T), are acquired, a tomographic image of a third tomographic plane comprising the target point (T) and forming a predetermined angle (β) with the first and second tomographic planes is acquired, and the tomographic images are displayed. This makes it possible to accurately ascertain the position of a puncture target point (T) relative to a lesion site (Q) viewed from the direction of the puncture path (R) during a puncture treatment.

Description

穿刺治療支援方法および穿刺治療支援装置ならびに穿刺治療支援装置用プログラムPuncture treatment support method, puncture treatment support device, and program for puncture treatment support device
 本発明は、被検体内に穿刺具を穿刺して凍結療法等の治療を行うことを支援する方法および支援装置ならびに穿刺治療支援プログラムに関する。 The present invention relates to a method, a support device, and a puncture treatment support program for assisting puncture of a puncture tool in a subject and performing a treatment such as cryotherapy.
 現代の医療現場では、被検体の体内に侵入具や穿刺具など侵入、穿刺させて検査や治療などを行う装置が多く用いられている。例えば、胃カメラ、監視用光ファイバー、組織を切り取って採取する採取具、特定の部位に薬剤を注入する注入具、病巣部位に熱や電磁波などのエネルギーを照射して治療を行う治療具などである。 In modern medical practice, many devices are used for inspecting or treating by intruding or puncturing an intruder or puncture device into the body of a subject. For example, a stomach camera, a monitoring optical fiber, a sampling device for cutting and collecting tissue, an injection device for injecting a drug into a specific site, a therapeutic device for irradiating a lesion site with energy such as heat or electromagnetic waves, etc. .
 こうした侵入具や穿刺具による監視用に透視像をリアルタイムで得て表示して侵入を監視する透視監視法やX線CT断層像をリアルタイムで得て二次元または三次元表示させて侵入を監視するCT監視法がある。これら透視監視法やCT監視法は、術者が画面を見ながら監視し、この監視画像から術者が位置やルートを決定確認しながら、医療を施すやり方をとる。 A fluoroscopic monitoring method for obtaining and displaying a fluoroscopic image in real time for monitoring by such an intruder or a puncture tool and monitoring an intrusion by obtaining a fluoroscopic monitoring method or an X-ray CT tomographic image in real time and displaying them in two or three dimensions are monitored. There is a CT monitoring method. These fluoroscopic monitoring methods and CT monitoring methods take a method of performing medical treatment while an operator observes while looking at the screen and the operator determines and confirms the position and route from the monitoring image.
 CT監視法とは、侵入経路および患部をCT撮影しながらリアルタイムでCT画像およびまたはその三次元化した画像を表示させ、その表示画面を術者が監視しながら侵入具の侵入および治療を行う治療法を行うものである。従って、このCT監視法は、複雑な部位や身体の深化した部位(肺や心臓、前立腺や膵臓等)での監視に向いている。 The CT monitoring method is a treatment in which a CT image and / or a three-dimensional image thereof are displayed in real time while performing CT imaging of an intrusion route and an affected area, and an intruder is invaded and treated while the operator monitors the display screen. It is to do the law. Therefore, this CT monitoring method is suitable for monitoring a complicated part or a deepened part of the body (lung, heart, prostate, pancreas, etc.).
 CT監視法を使用した最新例として、肺癌組織などの悪性腫瘍の壊死をはかる凍結治療法がある。この凍結治療法とは、病巣部位の細胞を凍結させた後、融解させ、その融解の過程で塩濃度の差の発生等により細胞内を破壊し、細胞死に至らしめるという原理による。凍結と融解には2つの高圧ガスを使う。高圧のガスは急激に体積を膨張させると分子の種類により急激に温度を上げるものと、急激に温度を下げるものとがあり、これは物理現象の1つであるジュール-トムソン(Joule-Thompson)効果と呼ばれる。 The latest example using CT monitoring method is a cryotherapy method that measures necrosis of malignant tumor such as lung cancer tissue. This freezing treatment method is based on the principle that the cells at the lesion site are frozen and then thawed, and the inside of the cells is destroyed by the generation of a difference in salt concentration in the process of thawing, leading to cell death. Two high-pressure gases are used for freezing and thawing. There are two types of high-pressure gas, one with a sudden increase in volume and one with a sudden decrease in temperature. This is one of the physical phenomena, Joule-Thompson. Called the effect.
 そして、例えば温度を上げるガスとして高圧アルゴンガスを使用し、温度を下げるガスとして高圧ヘリウムガスを使用する。この凍結治療には、ガイドニードルとも呼ばれる中空の金属性の穿刺具を用いる。前述したCT監視下で、この穿刺具を患者(被検体)に穿刺してその先端を体内の患部まで誘導し、上記2つのガスを交互に中空内からまたは中空部の先端から外部へ放出し、熱交換作用を利用して患部への凍結療法を行う。 For example, high-pressure argon gas is used as a gas for raising the temperature, and high-pressure helium gas is used as a gas for lowering the temperature. For this cryotherapy, a hollow metallic puncture device called a guide needle is used. Under the CT monitoring described above, the puncture device is punctured into a patient (subject) and the tip thereof is guided to the affected part in the body, and the two gases are alternately discharged from the inside of the hollow portion or the outside of the hollow portion to the outside portion. Then, cryotherapy to the affected area is performed using the heat exchange action.
 このような一般的な凍結治療法の文献として、以下に示すような非特許文献1がある。さらに、凍結治療法に用いる治療子を含む機械系、およびその治療のやり方と実際事例とを解説した文献として、以下に示すような非特許文献2がある。また、本発明者らは、この凍結治療法をより安全に実現可能な治療装置を発明し、既に特許出願をしている(例えば、以下の特許文献1および2など)。 Non-patent document 1 as shown below exists as a document of such a general cryotherapy method. Furthermore, there is Non-Patent Document 2 as shown below as a document explaining a mechanical system including a therapeutic child used for a cryotherapy method, and a treatment method and an actual case. In addition, the present inventors have invented a treatment device that can realize this cryotherapy more safely, and have already filed patent applications (for example, Patent Documents 1 and 2 below).
 非特許文献2は、治療子となる穿刺具の穿刺状態をリアルタイムでX線CT装置で撮影してこれをリアルタイムで断層画像として再構成して表示させ、手技を行うとしたものである。X線CT装置は、マルチスライス撮影であり、1回で多数の断層像を得て表示させる。治療子の侵入を監視でき、患部位置への追跡、手技に沿ってほぼリアルタイムで画像としてみることができる。 Non-Patent Document 2 describes a technique in which a puncture state of a puncture device serving as a therapeutic child is photographed in real time with an X-ray CT apparatus, and this is reconstructed and displayed as a tomographic image in real time. The X-ray CT apparatus is multi-slice imaging, and obtains and displays a large number of tomographic images at one time. The intrusion of the treatment child can be monitored, and it can be viewed as an image in almost real time along the tracking to the affected part position and the procedure.
 一方、この穿刺具は、先端が刃物状に突起するステンレス製の二重管(コアキシャルニードル)を使う。治療に当っては、この二重管を体表面にあてがった状態で、二重管の中心軸に沿って長く細い誘導針を挿入し、その誘導針を患部まで穿刺する。次に、その誘導針に沿って二重管を患部まで侵入させ、さらに二重管を進めて腫瘍を貫通させる。 On the other hand, this puncture tool uses a stainless steel double tube (coaxial needle) whose tip protrudes like a blade. In the treatment, with the double tube placed on the body surface, a long and thin guide needle is inserted along the central axis of the double tube, and the guide needle is punctured to the affected area. Next, the double tube is penetrated to the affected part along the guide needle, and the double tube is further advanced to penetrate the tumor.
 この後で上記誘導針を抜いて、代わりに凍結端子本体を二重管内の中空の軸に沿って挿通装填する。この際に凍結端子本体の凍結・解凍部位となる端子先端は、二重管の先端の丸みを帯びた内面に当接または近接した位置とする。凍結端子本体は高圧アルゴンガス注入口と高圧ヘリウムガス注入口へと切替バルブを介してつながる。充填確認後に切替バルブを切替えて高圧ヘリウムガスを注入し、次いで高圧アルゴンガスを注入し、凍結と解凍とを短時間で実行する。このサイクルを複数回繰返すこともある。これらの一連の動作はリアルタイムでのCT画像を表示させてのCT監視下で、観察確認しながら行う。 After this, the guide needle is removed, and the frozen terminal body is inserted and loaded along the hollow shaft in the double tube instead. At this time, the terminal tip that becomes the freezing / thawing portion of the freezing terminal main body is brought into contact with or close to the rounded inner surface of the double tube. The freezing terminal body is connected to a high-pressure argon gas inlet and a high-pressure helium gas inlet via a switching valve. After the filling is confirmed, the switching valve is switched to inject high-pressure helium gas, then high-pressure argon gas is injected, and freezing and thawing are performed in a short time. This cycle may be repeated multiple times. A series of these operations are performed while observing and confirming under CT monitoring with displaying a real-time CT image.
特許第4448818号公報Japanese Patent No. 4448818 特開2007-167101号公報JP 2007-167101 A 特開2007-209651号公報JP 2007-209651 A
  ところで、このCT画像は、穿刺具を穿刺する体表面上の穿刺点(Skin Point)と患部となる目標病巣点(Tumor Point)を結ぶ経路(Shooting Route)を、所定の一方向からのみ見た断層像であるため、穿刺具が所定の経路に沿って正確に移動しているかを正確に把握することが難しい。つまり、所定の一方向からのみ見た断層像はXおよびY方向の二次元画像であるため、Z方向となる断層像の視線方向のずれを把握することは難しい。 By the way, in this CT image, the route (Shooting Route) connecting the puncture point (Skin Point) on the body surface where the puncture device is punctured and the target lesion point (Tumor Point) serving as the affected part is seen from only one predetermined direction. Since it is a tomographic image, it is difficult to accurately grasp whether the puncture tool is moving accurately along a predetermined route. That is, since the tomographic image viewed only from one predetermined direction is a two-dimensional image in the X and Y directions, it is difficult to grasp the shift in the line-of-sight direction of the tomographic image that is the Z direction.
  そこで、本発明者らは、前記の特許文献3などに示すように所定の一方向から見た断層像に加えて、その断層像に対して所定の角度(例えば、90°)ずらした第2の断層像を同時に表示する新規な治療子経路表示装置を案出した。この治療子経路表示装置によれば2つの断層像を同時に表示することでZ方向となる断層像の視線方向のずれを把握して穿刺具を所定の経路に沿って正確に誘導することが可能となる。 Therefore, the present inventors, in addition to the tomographic image viewed from one predetermined direction as shown in the above-mentioned Patent Document 3, etc., the second shifted by a predetermined angle (for example, 90 °) with respect to the tomographic image. Devised a novel therapeutic device path display device that simultaneously displays the tomographic images of the patient. According to this therapeutic element path display device, it is possible to accurately guide the puncture tool along a predetermined path by simultaneously displaying two tomographic images and grasping the shift in the line-of-sight direction of the tomographic image in the Z direction. It becomes.
  しかしながら、前記のように2つの断層像を同時に表示する方法では穿刺具を所定の経路に沿って誘導することは可能であるものの、その穿刺目標点が、腫瘍などのように所定の大きさ、形状を有する病巣部位のどの位置に当たるのかを正確に把握することは容易ではない。 However, in the method of displaying two tomographic images simultaneously as described above, the puncture tool can be guided along a predetermined path, but the puncture target point has a predetermined size such as a tumor, It is not easy to accurately grasp which position of a lesion site having a shape.
 そこで、本発明はこれらの課題を解決するために案出されたものであり、その目的は、穿刺治療に際し、穿刺経路方向から見た病巣部位に対する穿刺目標点の位置を正確に把握できる新規な穿刺治療支援方法および穿刺治療支援装置ならびに穿刺治療支援装置用プログラムを提供するものである。 Therefore, the present invention has been devised to solve these problems. The purpose of the present invention is to provide a novel device that can accurately grasp the position of a puncture target point with respect to a lesion site viewed from the puncture route direction during puncture treatment. A puncture treatment support method, a puncture treatment support device, and a puncture treatment support device program are provided.
 前記課題を解決するために第1の発明は、被検体に体外から穿刺具を穿刺してその先端を体内の目標点に到達させて所定の治療を行うことを支援する方法であって、前記被検体の断層画像撮影で得た断層像を断層面と直交する方向に重ねて得られる三次元画像データを取得する画像データ取得ステップと、前記画像データ取得ステップで取得した三次元画像データに基づいて前記被検体に穿刺する穿刺具の穿刺点と目標点とを設定する穿刺点設定ステップと、前記画像データ取得ステップで取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含む第1の断層面の断層像を取得する第1断層像取得ステップと、前記画像データ取得ステップで取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含み、かつ前記第1の断層面に対して所定の角度をなす第2の断層面の断層像を取得する第2断層像取得ステップと、前記画像データ取得ステップで取得した三次元画像データから前記目標点を含み、かつ前記第1および第2の断層面と所定の角度をなす第3の断層面の断層像を取得する第3断層像取得ステップと、前記第1乃至第3の断層面の断層像を表示する断層像表示ステップと、を含むことを特徴とする穿刺治療支援方法である。 In order to solve the above-mentioned problem, the first invention is a method for supporting a subject to perform a predetermined treatment by puncturing a subject with a puncture tool from outside the body and reaching the tip to a target point in the body, Based on the image data acquisition step of acquiring 3D image data obtained by superimposing tomographic images obtained by tomographic imaging of a subject in a direction orthogonal to the tomographic plane, and the 3D image data acquired in the image data acquisition step A puncture point setting step for setting a puncture point and a target point of a puncture device for puncturing the subject, and a puncture path connecting the puncture point and the target point from the three-dimensional image data acquired in the image data acquisition step A first tomographic image acquisition step for acquiring a tomographic image of the first tomographic plane including the puncture path connecting the puncture point and the target point from the three-dimensional image data acquired in the image data acquisition step; A second tomographic image acquisition step of acquiring a tomographic image of a second tomographic plane having a predetermined angle with respect to the first tomographic plane; and the target point from the three-dimensional image data acquired in the image data acquisition step. A third tomographic image acquisition step for acquiring a tomographic image of a third tomographic plane that includes the first and second tomographic planes and forms a predetermined angle with the first and second tomographic planes; and a tomographic image of the first to third tomographic planes And a tomographic image display step for displaying the puncture treatment support method.
 このような方法によれば、2つの断層像を同時に表示することで断層像の視線方向のずれを把握して穿刺具を所定の経路に沿って正確に誘導できるだけでなく、第3の断層面の断層像を同時に表示できるため、侵入経路方向から見た病巣部位に対する穿刺具の穿刺目標点の位置を正確に把握することができる。なお、本発明でいう、断層画像撮影とは、具体的には、X線などの放射線を用いたコンピュータ断層撮影(Computed Tomography:CT撮影)や磁気を用いたMRI(Magnetic Resonance Imaging)断層撮影、超音波などを用いた超音波検査(Ultrasonography、US Echo)利用した断層撮影などをいう(以下の発明及び実施の形態でも同じである)。 According to such a method, not only can the two tomographic images be displayed at the same time to grasp the shift in the line-of-sight direction of the tomographic image and accurately guide the puncture device along the predetermined path, but also the third tomographic plane Since the tomographic images can be displayed at the same time, the position of the puncture target point of the puncture tool with respect to the lesion site viewed from the direction of the invasion path can be accurately grasped. The tomographic imaging referred to in the present invention specifically refers to computed tomography (CT imaging) using radiation such as X-rays or MRI (Magnetic Resonance Imaging) tomography using magnetism, This refers to tomography using ultrasonic inspection (Ultrasonography, US Echo) (the same applies to the following inventions and embodiments).
 第2の発明は、第1の発明において、前記第3の断層面と平行な第4の断層面を1乃至複数枚取得する第4断層像取得ステップをさらに備え、前記断層像表示ステップは、第1乃至第3の断層面の断層像と共に前記第4断層像取得ステップで取得した第4の断層面の断層面を表示することを特徴とする穿刺治療支援方法である。このような方法によれば、第3の断層面の断層像と第4の断層面の断層面を同時または交互に表示することで侵入経路方向から見た病巣部位の大きさや形状なども正確に把握することができる。 A second invention further comprises a fourth tomographic image acquisition step of acquiring one or more fourth tomographic planes parallel to the third tomographic plane in the first invention, wherein the tomographic image display step comprises: A puncture treatment support method characterized by displaying the tomographic plane of the fourth tomographic plane acquired in the fourth tomographic image acquiring step together with the tomographic images of the first to third tomographic planes. According to such a method, the tomographic image of the third tomographic plane and the tomographic plane of the fourth tomographic plane are displayed simultaneously or alternately so that the size and shape of the lesion site viewed from the direction of the invasion path can be accurately determined. I can grasp it.
 第3の発明は第1または第2の発明において、前記第1の断層面と第2の断層面との所定の角度は90°であることを特徴とする穿刺治療支援方法である。このような方法によれば、侵入中において侵入経路に対する穿刺具のずれをより正確に把握できる。 The third invention is the puncture treatment support method according to the first or second invention, wherein the predetermined angle between the first tomographic plane and the second tomographic plane is 90 °. According to such a method, it is possible to more accurately grasp the deviation of the puncture tool from the intrusion route during the intrusion.
 第4の発明は、第1乃至第3の発明において、前記第1の断層面と第3の断層面との所定の角度は90°であることを特徴とする穿刺治療支援方法である。このような方法によれば、侵入経路方向から見た病巣部位に対する穿刺具の穿刺目標点の位置をより正確に把握することができる。 The fourth invention is the puncture treatment support method according to any one of the first to third inventions, wherein the predetermined angle between the first tomographic plane and the third tomographic plane is 90 °. According to such a method, the position of the puncture target point of the puncture device with respect to the lesion site viewed from the intrusion route direction can be grasped more accurately.
 第5の発明は、第1乃至第4の発明において、前記断層像表示ステップは、前記第3断層面の断層像の目標点に穿刺した穿刺具による凍結治療に際し、前記穿刺具による前記目標点を中心とした仮想凍結領域を併せて表示することを特徴とする穿刺治療支援方法である。このような方法によれば、穿刺目標点となる病巣部位(腫瘍)に対してどの程度の領域を凍結すればよいかを正確に把握することができる。 According to a fifth aspect of the present invention, in the first to fourth aspects, the tomographic image display step includes the target point by the puncture tool during freezing treatment with the puncture tool punctured at the target point of the tomographic image of the third tomographic plane. This is a puncture treatment support method characterized by displaying a virtual frozen region centering on the. According to such a method, it is possible to accurately grasp how much region should be frozen with respect to a lesion site (tumor) serving as a puncture target point.
 第6の発明は、被検体に体外から穿刺具を穿刺してその先端を体内の目標点に到達させて所定の治療を行うことを支援する装置であって、前記被検体の断層画像撮影で得た断層像を断層面と直交する方向に重ねて得られる三次元画像データを取得する三次元画像データ取得手段と、前記画像データ取得手段で取得した三次元画像データに基づいて前記被検体に穿刺する穿刺具の穿刺点と目標点とを設定する穿刺点設定手段と、前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含む第1の断層面の断層像を取得する第1断層像取得手段と、前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含み、かつ前記第1の断層面に対して所定の角度をなす第2の断層面の断層像を取得する第2断層像取得手段と、前記画像データ取得手段で取得した三次元画像データから前記目標点を含み、かつ前記第1および第2の断層面と所定の角度をなす第3の断層面の断層像を取得する第3断層像取得手段と、前記第1乃至第3の断層面の断層像を表示する断層像表示手段と、を備えることを特徴とする穿刺治療支援装置である。 A sixth aspect of the invention is an apparatus for assisting in performing predetermined treatment by puncturing a subject from outside the body and having the tip of the puncture tool reach a target point in the body, in which tomographic imaging of the subject is performed. Three-dimensional image data acquisition means for acquiring three-dimensional image data obtained by superimposing the obtained tomographic images in a direction orthogonal to the tomographic plane, and the subject based on the three-dimensional image data acquired by the image data acquisition means A puncture point setting means for setting a puncture point and a target point of a puncture tool to be punctured, and a first tomography including a puncture path connecting the puncture point and the target point from the three-dimensional image data acquired by the image data acquisition means A first tomographic image acquisition unit for acquiring a tomographic image of a plane; a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition unit; and the first tomographic plane Make a certain angle to Second tomographic image acquisition means for acquiring a tomographic image of two tomographic planes, and the target point from the three-dimensional image data acquired by the image data acquisition means, and the first and second tomographic planes and a predetermined A third tomographic image acquisition unit configured to acquire a tomographic image of the third tomographic plane forming an angle; and a tomographic image display unit configured to display the tomographic images of the first to third tomographic planes. This is a puncture treatment support device.
 このような装置によれば、第1の発明と同様に2つの断層像を同時に表示することで断層像の視線方向のずれを把握して穿刺具を所定の経路に沿って正確に誘導できるだけでなく、第3の断層面の断層像を同時に表示できるため、侵入経路方向から見た病巣部位に対する穿刺具の穿刺目標点の位置を正確に把握することができる。 According to such an apparatus, similarly to the first invention, two tomographic images can be displayed at the same time so as to grasp the shift in the line-of-sight direction of the tomographic image and accurately guide the puncture tool along a predetermined route. In addition, since the tomographic image of the third tomographic plane can be displayed at the same time, the position of the puncture target point of the puncture tool relative to the lesion site viewed from the direction of the invasion path can be accurately grasped.
 第7の発明は、第6の発明において、前記第3の断層面と平行な第4の断層面を1乃至複数枚取得する第4断層像取得手段をさらに備え、前記断層像表示手段は、第1乃至第3の断層面の断層像と共に前記第4断層像取得手段で取得した第4の断層面の断層像を表示することを特徴とする穿刺治療支援装置である。このような装置によれば、第2の発明と同様に第3の断層面の断層像と第4の断層面の断層面を同時または交互に表示することで侵入経路方向から見た病巣部位の大きさや形状なども正確に把握することができる。 A seventh invention further comprises a fourth tomographic image acquisition means for acquiring one or a plurality of fourth tomographic planes parallel to the third tomographic plane in the sixth invention, wherein the tomographic image display means comprises: A puncture treatment support apparatus for displaying a tomographic image of the fourth tomographic plane acquired by the fourth tomographic image acquiring means together with the tomographic images of the first to third tomographic planes. According to such an apparatus, similarly to the second invention, the tomographic image of the third tomographic plane and the tomographic plane of the fourth tomographic plane are displayed simultaneously or alternately so that the lesion site viewed from the direction of the invasion path is displayed. The size and shape can be accurately grasped.
 第8の発明は、第6または第7の発明において、前記第1の断層面と第2の断層面との所定の角度は90°とする穿刺治療支援装置である。このような装置によれば、第3の発明と同様に侵入中において侵入経路に対する穿刺具のずれをより正確に把握できる。 The eighth invention is the puncture treatment support device according to the sixth or seventh invention, wherein the predetermined angle between the first tomographic plane and the second tomographic plane is 90 °. According to such an apparatus, as in the third aspect of the invention, it is possible to grasp the displacement of the puncture tool with respect to the entry path more accurately during the entry.
 第9の発明は、第6乃至第8の発明において、前記第1の断層面と第3の断層面との所定の角度は90°とする穿刺治療支援装置である。このような装置によれば、第4の発明と同様に侵入経路方向から見た病巣部位に対する穿刺具の穿刺目標点の位置をより正確に把握することができる。 A ninth invention is the puncture treatment support apparatus according to any of the sixth to eighth inventions, wherein the predetermined angle between the first tomographic plane and the third tomographic plane is 90 °. According to such an apparatus, the position of the puncture target point of the puncture device with respect to the lesion site viewed from the intrusion route direction can be grasped more accurately as in the fourth aspect of the invention.
 第10の発明は、第6乃至第9の発明において、前記断層像表示手段は、前記第3断層面の断層像の目標点に穿刺した穿刺具による凍結治療に際し、前記穿刺具による前記目標点を中心とした仮想凍結領域を併せて表示することを特徴とする穿刺治療支援装置である。このような装置によれば、第5の発明と同様に穿刺目標点となる病巣部位(腫瘍)に対してどの程度の領域を凍結すればよいかを正確に把握することができる。 According to a tenth aspect of the present invention, in the sixth to ninth aspects, the tomographic image display means performs the freezing treatment with the puncture device that has punctured the target point of the tomographic image of the third tomographic plane, and the target point by the puncture device. This is a puncture treatment support device characterized by displaying a virtual frozen region centering on the. According to such an apparatus, it is possible to accurately grasp how much of the region should be frozen with respect to a lesion site (tumor) serving as a puncture target point, as in the fifth invention.
 第11の発明は、被検体に体外から穿刺具を穿刺してその先端を体内の目標点に到達させて所定の治療を行うことを支援するコンピュータプログラムであって、コンピュータを、前記被検体の断層画像撮影で得た断層像を断層面と直交する方向に重ねて得られる三次元画像データを取得する三次元画像データ取得手段と、前記画像データ取得手段で取得した三次元画像データに基づいて前記被検体に穿刺する穿刺具の穿刺点と目標点とを設定する穿刺点設定手段と、前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含む第1の断層面の断層像を取得する第1断層像取得手段と、前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含み、かつ前記第1の断層面に対して所定の角度をなす第2の断層面の断層像を取得する第2断層像取得手段と、前記画像データ格納手段で格納した三次元画像データから前記目標点を含み、かつ前記第1および第2の断層面と所定の角度をなす第3の断層面の断層像を取得する第3断層像取得手段と、前記第1乃至第3の断層面の断層像を表示する断層像表示手段と、して機能させることを特徴とする穿刺治療支援プログラムである。 An eleventh invention is a computer program for supporting a subject to perform a predetermined treatment by puncturing a subject with a puncture tool from outside the body and reaching a target point in the body, and the computer is connected to the subject. Based on the 3D image data acquisition means for acquiring 3D image data obtained by superimposing tomographic images obtained by tomographic imaging in a direction orthogonal to the tomographic plane, and the 3D image data acquired by the image data acquisition means A puncture point setting unit that sets a puncture point and a target point of a puncture device that punctures the subject, and a puncture path that connects the puncture point and the target point from the three-dimensional image data acquired by the image data acquisition unit A first tomographic image acquisition unit that acquires a tomographic image of a first tomographic plane; a puncture path that connects the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition unit; and Second tomographic image acquisition means for acquiring a tomographic image of a second tomographic plane that makes a predetermined angle with respect to one tomographic plane; and the target point from the three-dimensional image data stored in the image data storage means, And displaying a tomographic image of a third tomographic plane that forms a predetermined angle with the first and second tomographic planes, and displaying a tomographic image of the first to third tomographic planes. A puncture treatment support program which functions as a tomographic image display means.
 このようなプログラムによれば、第1の発明と同様に2つの断層像を同時に表示することで断層像の視線方向のずれを把握して穿刺具を所定の経路に沿って正確に誘導できるだけでなく、第3の断層面の断層像を同時に表示できるため、侵入経路方向から見た病巣部位に対する穿刺具の穿刺目標点の位置を正確に把握することができる。 According to such a program, similarly to the first invention, it is possible to display two tomographic images at the same time to grasp the shift in the line-of-sight direction of the tomographic image and accurately guide the puncture tool along a predetermined route. In addition, since the tomographic image of the third tomographic plane can be displayed at the same time, the position of the puncture target point of the puncture tool relative to the lesion site viewed from the direction of the invasion path can be accurately grasped.
 第12の発明は、第11の発明において、前記コンピュータを、前記第3の断層面と平行な第4の断層面を1乃至複数枚取得する第4断層像取得手段として機能させ、前記断層像表示手段は、第1乃至第3の断層面の断層像と共に前記第4断層像取得手段で取得した第4の断層面の断層像を表示することを特徴とする穿刺治療支援プログラムである。このようなプログラムによれば、第2の発明と同様に第3の断層面の断層像と第4の断層面の断層面を同時または交互に表示することで侵入経路方向から見た病巣部位の大きさや形状なども正確に把握することができる。 In a twelfth aspect based on the eleventh aspect, the computer functions as fourth tomographic image acquisition means for acquiring one or a plurality of fourth tomographic planes parallel to the third tomographic plane, and The display means is a puncture treatment support program for displaying the tomographic image of the fourth tomographic plane acquired by the fourth tomographic image acquiring means together with the tomographic images of the first to third tomographic planes. According to such a program, similar to the second invention, the tomographic image of the third tomographic plane and the tomographic plane of the fourth tomographic plane are displayed simultaneously or alternately, so that the lesion site viewed from the direction of the invasion path is displayed. The size and shape can be accurately grasped.
 第13の発明は、第11または第12の発明において、前記第1の断層面と第2の断層面との所定の角度は90°とすることを特徴とする穿刺治療支援プログラムである。このようなプログラムによれば、第3の発明と同様に侵入中において侵入経路に対する穿刺具のずれをより正確に把握できる。 The thirteenth invention is the puncture treatment support program according to the eleventh or twelfth invention, wherein the predetermined angle between the first tomographic plane and the second tomographic plane is 90 °. According to such a program, as in the third aspect of the invention, it is possible to more accurately grasp the deviation of the puncture tool from the intrusion route during intrusion.
 第14の発明は、第11乃至第13の発明において、前記第1の断層面と第3の断層面との所定の角度は90°とすることを特徴とする穿刺治療支援プログラムである。このようなプログラムによれば、第4の発明と同様に侵入経路方向から見た病巣部位に対する穿刺具の穿刺目標点の位置をより正確に把握することができる。 The fourteenth invention is the puncture treatment support program according to any of the eleventh to thirteenth inventions, wherein the predetermined angle between the first tomographic plane and the third tomographic plane is 90 °. According to such a program, the position of the puncture target point of the puncture tool with respect to the lesion site viewed from the intrusion route direction can be grasped more accurately as in the fourth invention.
 第15の発明は、第11乃至第14の発明において、前記断層像表示手段は、前記第3断層面の断層像の目標点に穿刺した穿刺具による凍結治療に際し、前記穿刺具による前記目標点を中心とした仮想凍結領域を併せて表示することを特徴とする穿刺治療支援プログラムである。このようなプログラムによれば、第5の発明と同様に穿刺目標点となる病巣部位(腫瘍)に対してどの程度の領域を凍結すればよいかを正確に把握することができる。 According to a fifteenth aspect, in the eleventh to fourteenth aspects, the tomographic image display means performs the freezing treatment with the puncture device that has punctured the target point of the tomographic image of the third tomographic plane, and the target point by the puncture device. This is a puncture treatment support program characterized by displaying a virtual freezing region centering on. According to such a program, as in the fifth aspect, it is possible to accurately grasp how much region should be frozen with respect to a lesion site (tumor) that is a puncture target point.
 本発明によれば、穿刺点と目標点とを結ぶ侵入経路を含む2つの断層像を同時に表示することで断層像の視線方向のずれを把握して穿刺具を所定の経路に沿って正確に誘導できる。また、第3の断層面の断層像を同時に表示できるため、侵入経路方向から見た病巣部位に対する穿刺具の穿刺目標点の位置を正確に把握することができる。また、第3の断層面の断層像と平行な第3の断層面の断層像を表示できるため、侵入経路方向から見た病巣部位の大きさや形状なども正確に把握することができる。また、第3断層面の断層像上に穿刺具による目標点の仮想凍結領域を併せて表示できることから、穿刺目標点となる病巣部位に対してどの程度の領域を凍結すればよいかを正確に把握することができる。 According to the present invention, by displaying simultaneously two tomographic images including an intrusion path connecting a puncture point and a target point, a shift in the line-of-sight direction of the tomographic image can be grasped and the puncture tool can be accurately moved along a predetermined path. Can be guided. Further, since the tomographic image of the third tomographic plane can be displayed at the same time, the position of the puncture target point of the puncture tool with respect to the lesion site viewed from the invasion path direction can be accurately grasped. Further, since the tomographic image of the third tomographic plane parallel to the tomographic image of the third tomographic plane can be displayed, the size and shape of the lesion site viewed from the direction of the invasion path can be accurately grasped. In addition, since the virtual frozen region of the target point by the puncture tool can be displayed together on the tomographic image of the third tomographic plane, it is possible to accurately determine how much region should be frozen with respect to the lesion site serving as the puncture target point. I can grasp it.
被検体110に対するX、Y、Z座標系と複数のCT断層面との関係を示す説明図である。It is explanatory drawing which shows the relationship between the X, Y, Z coordinate system with respect to the subject 110, and several CT tomographic planes. 被検体110に対する穿刺挿入点Sと穿刺目標点Tと断層面との関係を示す生命図である。FIG. 6 is a life diagram showing the relationship among a puncture insertion point S, a puncture target point T, and a tomographic plane for a subject 110. (A)は穿刺挿入点Sを含む断層面Mkの断層像を示す図、(B)は穿刺目標点Tを含む断層面Miの断層像を示す図である。(A) is a diagram showing a tomographic image of the tomographic plane Mk including the puncture insertion point S, and (B) is a diagram showing a tomographic image of the tomographic plane Mi including the puncture target point T. FIG. 穿刺挿入点Sと穿刺目標点Tとを結ぶ穿刺経路Rを含むA断層面を示す図である。It is a figure which shows A tomographic plane containing the puncture path | route R which connects the puncture insertion point S and the puncture target point T. FIG. A断層面の断層像(第1の断層像)を示す図である。It is a figure which shows the tomogram (1st tomogram) of A tomographic plane. 穿刺挿入点Sと穿刺目標点Tとを結ぶ穿刺経路Rを含みかつA断層面に対して所定の角度αずれたB断層面を示す図である。It is a figure which shows the B tomographic plane which included the puncture path | route R which connects the puncture insertion point S and the puncture target point T, and shifted | deviated the predetermined angle (alpha) with respect to A tomographic plane. B断層面の断層像(第2の断層像)を示す図である。It is a figure which shows the tomographic image (2nd tomographic image) of B tomographic plane. 穿刺目標点Tのみを含みかつA断層面に対して所定の角度ずれたC断層面を示す図である。It is a figure which shows C tomographic plane which included only the puncture target point T, and shifted | deviated the predetermined angle with respect to A tomographic plane. C断層面の断層像(第3の断層像)を示す図である。It is a figure which shows the tomogram (3rd tomogram) of C tomographic plane. 別の角度から見た被検体110に対するX、Y、Z座標系とA断層面、B断層面、C断層面との関係および穿刺挿入点S、穿刺目標点T、穿刺経路Rとの関係を示す模式図である。The relationship between the X, Y, Z coordinate system and the A tomographic plane, the B tomographic plane, and the C tomographic plane and the relationship with the puncture insertion point S, the puncture target point T, and the puncture route R with respect to the subject 110 viewed from another angle. It is a schematic diagram shown. 図10における被検体110に対するX、Y、Z座標系とA断層面および穿刺挿入点S、穿刺目標点T、穿刺経路Rとの関係を示す模式図である。FIG. 11 is a schematic diagram illustrating a relationship among an X, Y, Z coordinate system, an A tomographic plane, a puncture insertion point S, a puncture target point T, and a puncture route R with respect to the subject 110 in FIG. 図10における被検体110に対するX、Y、Z座標系とB断層面および穿刺挿入点S、穿刺目標点T、穿刺経路Rとの関係を示す模式図である。FIG. 11 is a schematic diagram illustrating a relationship among an X, Y, Z coordinate system, a B tomographic plane, a puncture insertion point S, a puncture target point T, and a puncture route R with respect to the subject 110 in FIG. 図10における被検体110に対するX、Y、Z座標系とC断層面および穿刺挿入点S、穿刺目標点T、穿刺経路Rとの関係を示す模式図である。FIG. 11 is a schematic diagram illustrating a relationship among an X, Y, Z coordinate system, a C tomographic plane, a puncture insertion point S, a puncture target point T, and a puncture route R with respect to the subject 110 in FIG. 図10におけるA断層面の断層像(第1の断層像)を示す図である。It is a figure which shows the tomographic image (1st tomographic image) of A tomographic plane in FIG. 図10におけるB断層面の断層像(第2の断層像)を示す図である。It is a figure which shows the tomographic image (2nd tomographic image) of the B tomographic plane in FIG. 図10におけるC断層面の断層像(第3の断層像)を示す図である。It is a figure which shows the tomographic image (3rd tomographic image) of C tomographic plane in FIG. 被検体の体軸方向(Z方向)を軸とした複数のCT断層像を示す図である。It is a figure which shows the some CT tomogram centering on the body-axis direction (Z direction) of a subject. 図17に示す複数のCT断層像から作成した三次元輪郭画像である。18 is a three-dimensional contour image created from a plurality of CT tomographic images shown in FIG. 図18における三次元画像に対するA断層面(a)、B断層面(b)、C断層面(c)および穿刺挿入点S、穿刺目標点T、穿刺経路(Shoting Route)との関係を示す合成画像である。A composition showing the relationship between the A tomographic plane (a), the B tomographic plane (b), the C tomographic plane (c), the puncture insertion point S, the puncture target point T, and the puncture route (Shoting Route) for the three-dimensional image in FIG. It is an image. 図18における三次元画像に対するA断層面の断層像(a)と穿刺経路(Shoting Route)との関係を示す図である。It is a figure which shows the relationship between the tomogram (a) of the A tomographic plane with respect to the three-dimensional image in FIG. 18, and a puncture path | route (Shoting Route). 図18における三次元画像に対するB断層面の断層像(b)と穿刺経路(Shoting Route)との関係を示す図である。It is a figure which shows the relationship between the tomogram (b) of the B tomographic plane with respect to the three-dimensional image in FIG. 18, and a puncture path | route (Shoting Route). 図18における三次元画像に対するC断層面の断層像(c)と穿刺目標点Tとの関係を示す図である。It is a figure which shows the relationship between the tomographic image (c) of the C tomographic plane with respect to the three-dimensional image in FIG. C断層面の断層像(第3の断層像)における腫瘍と仮想凍結領域との関係を示す図である。It is a figure which shows the relationship between the tumor and virtual frozen area | region in the tomogram (3rd tomogram) of a C tomographic plane. A断層面、B断層面、C断層面の各画素位置での画素値マトリックス図である。It is a pixel value matrix figure in each pixel position of A tomographic plane, B tomographic plane, and C tomographic plane. 本発明に係る穿刺経路支援装置120の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the puncture route assistance apparatus 120 which concerns on this invention. 本発明に係る穿刺経路支援方法のA断層面、B断層面、C断層面2を作り表示するための処理フローである。It is a processing flow for making and displaying the A tomographic plane, the B tomographic plane, and the C tomographic plane 2 of the puncture route support method according to the present invention. 本発明に係る穿刺経路支援方法を利用可能な穿刺凍結治療装置50の構成を示すブロック図である。It is a block diagram which shows the structure of the puncture cryotherapy apparatus 50 which can utilize the puncture route assistance method which concerns on this invention. 穿刺凍結治療装置50での処理フローである。It is a processing flow in the puncture cryotherapy apparatus 50. 穿刺具としての凍結端子の二重管の実施例を示す図である。It is a figure which shows the Example of the double tube of the freezing terminal as a puncture device. 凍結端子の具体例を示す図である。It is a figure which shows the specific example of a freezing terminal. 凍結端子による凍結と解凍とのサイクル例図である。It is a cycle example figure of freezing and thawing by a freezing terminal. 穿刺凍結治療装置50による他の処理フローである。It is another processing flow by the puncture cryotherapy apparatus 50. 本発明の他の実施の形態を示す説明図である。It is explanatory drawing which shows other embodiment of this invention. 第4の断層像の一つであるD断層面の一例を示す図である。Is a diagram illustrating an example of a D 1 fault plane which is one fourth of the tomographic image. 第4の断層像の一つであるD断層面の一例を示す図である。Is a diagram illustrating an example of a D 2 fault plane is one of the fourth tomogram. 第4の断層像の一つであるD断層面の一例を示す図である。Is a diagram illustrating an example of a D 3 tomographic plane which is one fourth of the tomographic image.
 次に、本発明の穿刺治療支援方法の実施の一形態を添付図面を参照しながら説明する。
 図1は、マルチスキャンCT撮像装置(図示せず)などで得られる被検体110における断層面(平面)と座標系X-Y-Zとの関係を示す図である。断層面は体軸方向に所定のピッチで多数枚有しており、図では模式的に、Mi、Mj、Mkという3つの断層面を示している。
Next, an embodiment of the puncture treatment support method of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a relationship between a tomographic plane (plane) in a subject 110 obtained by a multi-scan CT imaging apparatus (not shown) and the coordinate system XYZ. There are a large number of tomographic planes at a predetermined pitch in the body axis direction, and the figure schematically shows three tomographic planes Mi, Mj, and Mk.
 断層面そのものはX-Y座標系とし、体軸方向をZ座標系として、被検体110の任意の点は、X,Y,Zの座標系で定義できる。断層面の体軸方向でのピッチは、1mm以下、例えば100分の1mmである。断層面の画像はCT計測で得たCT画像であり、また、ピッチを細かくするために補間によって新断層面のCT画像を得る場合もある。 The tomographic plane itself can be defined as an XY coordinate system, the body axis direction can be defined as a Z coordinate system, and an arbitrary point of the subject 110 can be defined by an X, Y, Z coordinate system. The pitch of the tomographic plane in the body axis direction is 1 mm or less, for example, 1/100 mm. The tomographic image is a CT image obtained by CT measurement, and a CT image of a new tomographic surface may be obtained by interpolation in order to make the pitch fine.
 図2は、被検体110に対してその外皮から体内へ穿刺具(図示せず)を穿刺挿入する際の穿刺挿入点Sと、その体内にある病巣部位などに設定される穿刺目標点(到達点)Tを示した図である。断層面Mk上のS点を穿刺挿入点、断層面Mi上の穿刺目標点Tを穿刺目標と指定した例を示している。図3(A)は穿刺挿入点Sを設定した断層面Mkの断層像、図3(B)は穿刺目標点Tを設定した断層面Miの断層像であり、穿刺挿入点Sは被検体110の外皮位置、T点は被検体110内の病巣部位に設定している。 FIG. 2 shows a puncture insertion point S when a puncture tool (not shown) is inserted into the body from the outer skin of the subject 110, and a puncture target point (arrival) set at a lesion site in the body. Point) FIG. In this example, the S point on the tomographic plane Mk is designated as the puncture insertion point, and the puncture target point T on the tomographic plane Mi is designated as the puncture target. 3A is a tomographic image of the tomographic plane Mk in which the puncture insertion point S is set, and FIG. 3B is a tomographic image of the tomographic plane Mi in which the puncture target point T is set, and the puncture insertion point S is the subject 110. The skin position and the T point are set at the lesion site in the subject 110.
 図4は、穿刺挿入点Sと穿刺目標点Tとを含む新たな断層面であるA断層面の設定例を示した図である。このA断層面はマルチスキャンCT撮像装置などで得られる本来のCT断層面(…Mi、…Mj、…Mk、…)と非平行となっている。図5は、このA断層面上での算出画素値から成る断層像(第1断層像)の一例を示したものである。ここで、算出画素値とは、A断層面上でのものであることから、計測したCT断層面(…Mi、…Mj、…Mk、…)の画素値から算出して得たものである。この算出方法については後述する。 FIG. 4 is a diagram showing a setting example of the A tomographic plane that is a new tomographic plane including the puncture insertion point S and the puncture target point T. The A tomographic plane is not parallel to the original CT tomographic plane (... Mi,... Mj,... Mk,...) Obtained by a multi-scan CT imaging apparatus or the like. FIG. 5 shows an example of a tomographic image (first tomographic image) composed of calculated pixel values on the A tomographic plane. Here, since the calculated pixel value is on the A tomographic plane, it is obtained by calculating from the pixel values of the measured CT tomographic plane (... Mi,... Mj,... Mk,...). . This calculation method will be described later.
 図6は、このA断層面と所定の角度αをなす別の新たな断層面であるB断層面の設定例を示した図である。このB断層面はA断層面と同じく穿刺挿入点Sと穿刺目標点Tとを含む平面であり、角度αは、例えば90°(直交)となっている。そして、図7は、このB断層面の断層像(第2断層像)であり、いずれも後述するような方法で算出された画素値から算出して得られる。 FIG. 6 is a diagram showing an example of setting the B fault plane, which is another new fault plane having a predetermined angle α with the A fault plane. The B tomographic plane is a plane including the puncture insertion point S and the puncture target point T as in the A tomographic plane, and the angle α is, for example, 90 ° (orthogonal). FIG. 7 is a tomographic image (second tomographic image) of the B tomographic plane, and all are obtained by calculating from pixel values calculated by a method described later.
 この穿刺挿入点Sと穿刺目標点Tとを含む2つの断層面であるA断層面とB断層面との断層像(第1および第2断層像)を表示することで、穿刺挿入点Sから穿刺目標点Tに至る穿刺経路Rがどんなものであるか、その途中に障害物があるかがわかることになり、穿刺挿入点Sから穿刺目標点Tへの監視が可能となる。また、穿刺具の挿入角度θの設定および評価も可能となる。そして、もし、さらに別の穿刺挿入点S、穿刺目標点Tおよび挿入角度θの設定がよいと判断されれば、別個にこれらS、T、θを設定し直し、同様の表示を行って評価をすればよい。 By displaying tomographic images (first and second tomographic images) of the A tomographic plane and the B tomographic plane, which are two tomographic planes including the puncture insertion point S and the puncture target point T, from the puncture insertion point S It is possible to know what the puncture route R leading to the puncture target point T is, and whether there is an obstacle on the way, and monitoring from the puncture insertion point S to the puncture target point T becomes possible. Also, the insertion angle θ of the puncture device can be set and evaluated. If it is determined that another puncture insertion point S, puncture target point T, and insertion angle θ are set appropriately, these S, T, and θ are separately reset, and the same display is performed for evaluation. Just do it.
  さらに図8は、穿刺具の到達点である穿刺目標点Tのみを含み、かつA断層面とB断層面に対して所定の角度βをなすC断層面の設定例を示した図である。このC断層面は、A断層面およびB断層面の穿刺経路Rを横断する平面であり、角度βは、例えば90°(直交)となっている。そして、図9は、このC断層面の断層像(第3断層像)であり、後述するような方法で算出された画素値から算出して得られる。 FIG. 8 is a diagram showing a setting example of the C tomographic plane that includes only the puncture target point T that is the arrival point of the puncture tool and forms a predetermined angle β with respect to the A tomographic plane and the B tomographic plane. This C tomographic plane is a plane that crosses the puncture route R of the A tomographic plane and the B tomographic plane, and the angle β is, for example, 90 ° (orthogonal). FIG. 9 is a tomographic image (third tomographic image) of the C tomographic plane, which is obtained by calculation from pixel values calculated by a method described later.
  図10乃至図16は、これらA、B、Cの3つの断層面の関係、およびその断層像をよりわかりやすく説明したものである。図10において、符号Xは、例えば仰向け状態となった被検体110の高さ方向、Yは同じく仰向け状態となった被検体110の幅方向、Zは同じく仰向け状態となった被検体110の体軸方向を示している。また、穿刺挿入点Sと穿刺目標点Tおよびこれら各点S、Tを直線で結ぶ穿刺経路R(Shoting Route)を示している。 FIG. 10 to FIG. 16 explain the relationship between the three tomographic planes A, B, and C and their tomographic images in an easy-to-understand manner. In FIG. 10, for example, the symbol X is the height direction of the subject 110 that is in the supine state, Y is the width direction of the subject 110 that is also in the supine state, and Z is the body of the subject 110 that is also in the supine state. The axial direction is shown. In addition, a puncture insertion point S and a puncture target point T and a puncture route R (Shoting Route) that connects these points S and T with straight lines are shown.
 図11は、穿刺挿入点Sと穿刺目標点Tとを通る第1の新断層面であるA断層面を取得する例を示したものであり、また、図12は、同じく穿刺挿入点Sと穿刺目標点Tとを通る第2の新断層面であるB断層面を取得する例を示したものである。そして、このB断層面はA断層面に対して、穿刺挿入点Sと穿刺目標点Tとを結ぶ穿刺経路Rを軸として所定の角度α(例えば、90°)回転した平面となっている。 FIG. 11 shows an example in which the A tomographic plane, which is the first new tomographic plane passing through the puncture insertion point S and the puncture target point T, is shown. FIG. An example of acquiring a B tomographic plane that is a second new tomographic plane passing through the puncture target point T is shown. The B tomographic plane is a plane rotated with respect to the A tomographic plane by a predetermined angle α (for example, 90 °) about the puncture route R connecting the puncture insertion point S and the puncture target point T.
  図13は、穿刺目標点Tのみを含み、かつA断層面とB断層面に対して所定の角度βをなすC断層面(第3の断層面)の設定例を示したものであり、このC断層面は、A断層面およびB断層面の穿刺経路Rの終点(穿刺目標点T)で所定の角度(例えば90°)で横断するような状態の平面となっている。 FIG. 13 shows a setting example of a C tomographic plane (third tomographic plane) that includes only the puncture target point T and forms a predetermined angle β with respect to the A tomographic plane and the B tomographic plane. The C tomographic plane is a plane that is crossed at a predetermined angle (for example, 90 °) at the end point (puncture target point T) of the puncture route R of the A tomographic plane and the B tomographic plane.
  図14乃至図16は、これらA、B、Cの3つの断層面の断層像の一例を示したものである。図14は、A断層面の断面像である第1の断層像の一例であり、凡そX軸方向から見た穿刺挿入点Sから穿刺目標点Tまでの穿刺経路Rと、穿刺目標点Tとその病巣部位Qの形状を示したものである。この例では、病巣部位Qはやや楕円形をしており、穿刺目標点Tはこの病巣部位Qの中心からやや外れた位置に設定されているのがわかる。 FIGS. 14 to 16 show examples of tomographic images of these three tomographic planes A, B, and C. FIG. FIG. 14 is an example of a first tomographic image which is a cross-sectional image of the A tomographic plane. The puncture path R from the puncture insertion point S to the puncture target point T viewed from about the X-axis direction, the puncture target point T, and The shape of the lesion site Q is shown. In this example, the lesion site Q has a slightly elliptical shape, and it can be seen that the puncture target point T is set at a position slightly deviated from the center of the lesion site Q.
  また、図15は、B断層面の断面像である第2の断層像の一例であり、凡そZ軸方向から見た穿刺挿入点Sから穿刺目標点Tまでの穿刺経路Rと、穿刺目標点Tとその病巣部位Qの形状を示したものである。この例では、病巣部位Qは縦長の楕円形をしており、穿刺目標点Tはこの病巣部位Qの中心からやや外れた位置に設定されているのがわかる。 FIG. 15 is an example of a second tomographic image that is a cross-sectional image of the B tomographic plane. The puncture path R from the puncture insertion point S to the puncture target point T viewed from the Z-axis direction, and the puncture target point The shape of T and its lesion site Q is shown. In this example, the lesion site Q has a vertically long oval shape, and it can be seen that the puncture target point T is set at a position slightly deviated from the center of the lesion site Q.
  さらに、図16は、C断層面の断面像である第3の断層像の一例であり、凡そY軸方向から見た穿刺目標点Tとその病巣部位Qの形状を示したものである。この例では、病巣部位Qは横長の瓢箪形状をしており、穿刺目標点Tはこの病巣部位Qの中心から左側に外れた位置に設定されているのがわかる。 Furthermore, FIG. 16 is an example of a third tomographic image which is a cross-sectional image of the C tomographic plane, and shows the shape of the puncture target point T and its lesion site Q viewed from about the Y-axis direction. In this example, the lesion site Q has a horizontally long saddle shape, and it can be seen that the puncture target point T is set at a position deviated to the left from the center of the lesion site Q.
 図17は、実際の被検体の体軸方向(Z方向)を軸とした実データに基づいて得られた複数のCT断層像を示したものであり、図18は、これら複数のCT断層像から作成した三次元輪郭画像である。なお、図中Sは穿刺点(Skin Point)、Tは穿刺目標点(Target Point)である(以下同じ)。また、図19は、図18における三次元画像に対するA断層面(a)、B断層面(b)、C断層面(c)(Tumor Plane)および穿刺挿入点S、穿刺目標点T、穿刺経路(Shoting Route)との関係を示す合成画像である。 FIG. 17 shows a plurality of CT tomograms obtained based on actual data with the body axis direction (Z direction) of the actual subject as an axis. FIG. 18 shows these CT tomograms. It is the three-dimensional outline image created from In the drawing, S is a puncture point (Skin Point), and T is a puncture target point (Target Point) (the same applies hereinafter). FIG. 19 shows the A tomographic plane (a), B tomographic plane (b), C tomographic plane (c) (Tumor Plane), puncture insertion point S, puncture target point T, and puncture path for the three-dimensional image in FIG. It is a synthesized image showing the relationship with (Shoting Route).
 また、図20は、図18における三次元輪郭画像に対するA断層面の断層像(a)と穿刺経路(Shoting Route)との関係を示したものであり、図21は、図18における三次元画像に対するB断層面の断層像(b)と穿刺経路(Shoting Route)との関係を示したものである。さらに、図22は、図18における三次元輪郭画像に対するC断層面の断層像(c)と穿刺目標点Tとの関係を示したものである。これらの画像に示すように、複数のCT断層像から得られた三次元輪郭画像に基づいて任意の部位、角度の断層像を正確に把握することができる。 20 shows the relationship between the tomographic image (a) of the A tomographic plane with respect to the three-dimensional contour image in FIG. 18 and the puncture route (Shoting Route), and FIG. 21 shows the three-dimensional image in FIG. The relationship between the tomographic image (b) of the B tomographic plane and the puncture route (Shoting Route) is shown. Furthermore, FIG. 22 shows the relationship between the tomographic image (c) of the C tomographic plane and the puncture target point T with respect to the three-dimensional contour image in FIG. As shown in these images, a tomographic image of an arbitrary part and angle can be accurately grasped based on a three-dimensional contour image obtained from a plurality of CT tomographic images.
 次に、これら新たな3つの断層面であるA断層面、B断層面、C断層面の設定を説明する。先ず、第1の断層面であるA断層面と、第2の断層面であるB断層面の設定について説明する。これらA断層面とB断層面とが互いに直交する平面であるとすると、A断層面を定めると、B断層面は1つしかなく一義的に定まる。しかし、A断層面は穿刺挿入点Sと穿刺目標点Tとを含む平面であり無数に存在する。そこで、事前に、穿刺経路R上にあって侵入の障害物(例えば血管や骨など)がなく、経路監視のしやすいA断層面候補がいくつか存在する。一方、このいくつかの候補についてそれぞれに直交するB断層面候補が定まる。B断層面候補にあっても障害物が穿刺経路R上にないことが必要である。 Next, the setting of these three new fault planes, A fault plane, B fault plane, and C fault plane, will be described. First, the setting of the A fault plane that is the first fault plane and the B fault plane that is the second fault plane will be described. Assuming that the A fault plane and the B fault plane are orthogonal to each other, when the A fault plane is determined, there is only one B fault plane and it is uniquely determined. However, the A tomographic plane is an infinite number of planes including the puncture insertion point S and the puncture target point T. Therefore, in advance, there are some A tomographic plane candidates that are on the puncture route R, have no intruding obstacles (for example, blood vessels and bones), and are easy to monitor the route. On the other hand, B tomographic plane candidates orthogonal to each of these candidates are determined. It is necessary that the obstacle is not on the puncture route R even if it is in the B tomographic plane candidate.
 こうした各候補の中で、障害物がなく、監視しやすい経路を有する平面をA断層面とB断層面として決定する。これらの決定法は、術者によって画面を見ながら行うが、ソフトウェア(穿刺治療支援用コンピュータプログラム)によって行うやり方もある。 Among these candidates, planes having no obstacles and having easy-to-monitor paths are determined as A fault plane and B fault plane. These determination methods are performed while viewing the screen by the surgeon, but there is also a method performed by software (a computer program for supporting puncture treatment).
 ここで、A断層面とB断層面とは必ずしも直交させなくてもよい。例えば、適切な直交平面が見いだせなかった場合には、直交平面以外の平面をB断層面として選ぶようにしてよい。また、直交平面以外の角度の平面が経路監視に適する場合もある。このような場合も、A断層面に対応する所定の回転角度β(≠90°)の関係にあるB断層面を事前に決定しておく。例えばβ=60°の事例では、A断層面に対して2つのB断層面(60°、120°)があり、どれかに特定する。 Here, the A fault plane and the B fault plane are not necessarily orthogonal. For example, when an appropriate orthogonal plane cannot be found, a plane other than the orthogonal plane may be selected as the B tomographic plane. Further, a plane with an angle other than the orthogonal plane may be suitable for route monitoring. Also in such a case, the B tomographic plane having a predetermined rotational angle β (≠ 90 °) corresponding to the A tomographic plane is determined in advance. For example, in the case of β = 60 °, there are two B fault planes (60 °, 120 °) with respect to the A fault plane, and one of them is specified.
  一方、C断層面を設定する場合も穿刺目標点Tと病巣部位Qとの関係を確認しやすいA断層面候補がいくつか存在する。そのため、C断層面とA断層面およびB断層面とは必ずしも直交させなくてもよい。例えば、適切な直交平面が見いだせなかった場合には、直交平面以外の平面をC断層面として選ぶようにしてよい。また、直交平面以外の角度の平面が穿刺目標点Tと病巣部位Qとの関係の確認に適する場合もある。 On the other hand, even when the C tomographic plane is set, there are some A tomographic plane candidates that facilitate confirmation of the relationship between the puncture target point T and the lesion site Q. Therefore, the C fault plane, the A fault plane, and the B fault plane do not necessarily have to be orthogonal. For example, when an appropriate orthogonal plane cannot be found, a plane other than the orthogonal plane may be selected as the C tomographic plane. Further, a plane having an angle other than the orthogonal plane may be suitable for confirming the relationship between the puncture target point T and the lesion site Q.
 次に、これら新たな3つの断層面であるA断層面、B断層面、C断層面の断層像を得るための各断層面上の画素値の算出方法を図24を用いて説明する。A乃至Cの各断層面は、いずれもm×nの画素数のマトリックス構成である。この画素値算出は、マルチスキャンCT撮像装置などによって取得した病巣部位Qを中心とした被検体110の三次元画像データと専用の画像処理ソフトウェア(コンピュータプログラム)とこれらを用いた情報処理装置(コンピュータシステム)によって行うことができる。 Next, a method of calculating pixel values on each tomographic plane for obtaining the tomographic images of these three new tomographic planes, the A fault plane, the B fault plane, and the C fault plane will be described with reference to FIG. Each of the tomographic planes A to C has a matrix configuration of m × n pixels. This pixel value calculation is performed using three-dimensional image data of a subject 110 centered on a lesion site Q acquired by a multi-scan CT imaging apparatus or the like, dedicated image processing software (computer program), and an information processing apparatus (computer) using them. System).
 先ず、最初に選択したA断層面とCT断層面とが完全に一致しない場合(一致しない場合が殆どである)、A断層面とCT断層面の角度は90°以外の所定の角度γとなっている。穿刺挿入点Sが外皮表面であって穿刺目標点Tが体内部であるため、SとTとを含むA断層面は、CT断層面に対して90°以外の角度になるからである。そして、A断層面上の画素位置をJ,Kとし、CT断層面の画素位置をX,Yとし、CT断層面の体軸方向の座標をZとし、さらにCT断層面を手前からM1、M2、…Mnとする。こうしたCT断層面M1、M2、…MnがZ方向である体軸方向に並んであり、これに角度γでA断層面がCT断層面M1、M2、…Mnを切断(角度γでの交差)するような関係である。 First, when the A tomographic plane selected first and the CT tomographic plane do not completely match (in most cases, they do not match), the angle between the A fault plane and the CT tomographic plane is a predetermined angle γ other than 90 °. ing. This is because the puncture insertion point S is the outer skin surface and the puncture target point T is inside the body, so that the A tomographic plane including S and T is at an angle other than 90 ° with respect to the CT tomographic plane. Then, the pixel position on the A tomographic plane is J, K, the pixel position on the CT tomographic plane is X, Y, the coordinate in the body axis direction of the CT tomographic plane is Z, and the CT tomographic plane is M1, M2 from the front. ... Mn. These CT tomographic planes M1, M2,... Mn are arranged in the body axis direction which is the Z direction, and the A tomographic plane cuts the CT tomographic planes M1, M2,. It is a relationship that
 そこで、その全交差位置でのA断層面の座標J,Kとそれに交差するCT断層面M1、M2、…Mnの座標X,Yに図24の斜線画素位置のような画素値があれば、それをA断層面の対応座標の画素値とする。座標X,Yに、図24の非斜線画素位置のように画素値がない場合が多く、この場合には座標X,Yの周囲2点とか4点とかの画素値から近似算出した近似画素値を座標J,Kの画素値とする。この算出は、平均値とするとか、距離差を考慮した比例配分値とするとかである。算出しないで、最も違い位置の画素値をそのまま利用してもよい。 Therefore, if the coordinates J, K of the A tomographic plane at all the intersection positions and the coordinates X, Y of the CT tomographic planes M1, M2,. Let this be the pixel value of the corresponding coordinates of the A tomographic plane. In many cases, the coordinates X and Y do not have a pixel value as in the non-hatched pixel position in FIG. 24. In this case, the approximate pixel value calculated by approximation from the pixel values such as two or four points around the coordinates X and Y Is a pixel value of coordinates J and K. This calculation may be an average value or a proportional distribution value considering a distance difference. You may use the pixel value of the most different position as it is, without calculating.
 このように被検体110の三次元画像データと専用の画像処理ソフトウェアと情報処理装置を用いて同様にB断層面とC断層面との画素値を算出することによって、3つの断層面であるA断層面、B断層面、C断層面の各断層像(第1乃至第3断層像)を得ることができる。 In this way, by calculating the pixel values of the B tomographic plane and the C tomographic plane using the three-dimensional image data of the subject 110, the dedicated image processing software, and the information processing apparatus, the three tomographic planes A Each tomographic image (first to third tomographic image) of the tomographic plane, the B tomographic plane, and the C tomographic plane can be obtained.
 そして、本発明の穿刺治療支援方法は、前述したような穿刺凍結治療を行うに際して、通常のCT断層像を表示させると共に、穿刺挿入点Sと穿刺目標点Tとを含む新たな2つの断層面(A断層面とB断層面)に加えて穿刺目標点Tを含む新たな断層面(C断層面)を設定し、これら3つの断層面(A乃至C断層面)の断層像を表示するようにしたものである。これによって、穿刺挿入点Sと穿刺目標点とを結ぶ穿刺経路Rを含む2つの断層面(A断層面とB断層面)の断層像を同時に表示することが可能となるため、断層像の視線方向のずれを把握して穿刺具を所定の経路Rに沿って正確に誘導できる。さらに、これに加えて第3の断層面であるC断層面の断層像も同時に表示できるため、侵入経路R方向から見た病巣部位Qに対する穿刺具の穿刺目標点Tの位置を正確に把握することができる。 The puncture treatment support method of the present invention displays a normal CT tomographic image and performs two new tomographic planes including a puncture insertion point S and a puncture target point T when performing the puncture cryotherapy as described above. A new tomographic plane (C tomographic plane) including the puncture target point T is set in addition to (A tomographic plane and B tomographic plane), and tomographic images of these three tomographic planes (A to C tomographic planes) are displayed. It is a thing. This makes it possible to simultaneously display tomographic images of two tomographic planes (A tomographic plane and B tomographic plane) including the puncture route R connecting the puncture insertion point S and the puncture target point. It is possible to accurately guide the puncture device along the predetermined route R by grasping the deviation in direction. In addition to this, since the tomographic image of the C tomographic plane, which is the third tomographic plane, can be displayed at the same time, the position of the puncture target point T of the puncture tool with respect to the lesion site Q viewed from the intrusion route R direction can be accurately grasped. be able to.
  この結果、穿刺目標点Tの位置を最適な位置に設定し直したり、前記のような穿刺凍結治療などを行うに際して最適な凍結範囲を設定できるなどといった的確な治療を行うことが可能となる。例えば、図16に示すように病巣部位Qが瓢箪形状で穿刺目標点Tがその中央部よりも左側にずれている場合には、その穿刺目標点Tの位置を中央部よりに設定し直したり、その穿刺目標点Tを中心として病巣部位Qの全体をカバーできるようにその凍結範囲を設定するなどといった適切な治療を行うことができる。 As a result, it is possible to perform an accurate treatment such as resetting the position of the puncture target point T to an optimum position, or setting an optimum freezing range when performing the puncture cryotherapy as described above. For example, as shown in FIG. 16, when the lesion site Q has a saddle shape and the puncture target point T is shifted to the left side of the central portion, the position of the puncture target point T is reset from the central portion. Appropriate treatment such as setting the freezing range so as to cover the entire lesion site Q around the puncture target point T can be performed.
  次に図23は、C断層面の断層像(第3の断層像:Tumor Plane)における腫瘍(病巣部位)と仮想凍結領域との関係を示したものである。図中Tは後述する穿刺具が到達する穿刺点であり、この穿刺点Tを中心に広がる同心円は、この穿刺点Tを中心とした等温線であって、後述する穿刺凍結療法(凍結治療装置)における腫瘍の仮想凍結領域を示したものである。ここで、ヘリウムガスなどを用いた実際の穿刺凍結療法では、腫瘍の凍結領域の大きさは、穿刺目標点Tにおける凍結時間と正の相関関係となっている。すなわち、例えば図23(A)は、凍結時間が短いため、その仮想凍結領域が腫瘍の一部となっていることを示し、図23(B)は、凍結時間が図23(A)よりも長いため、その仮想凍結領域が腫瘍のほぼ全体に亘っていることを示している。これに対し、図23(C)は、凍結時間が図23(B)よりも長いため、その仮想凍結領域が腫瘍の周囲の健全な組織にまで到達していることを示している。なお、腫瘍など病床部位Qの最低凍結温度は約-3℃であるため、仮想凍結領域の輪郭(外縁部)は約-3℃、仮想凍結領域の中心部は約-180℃となる。 Next, FIG. 23 shows the relationship between a tumor (focal site) and a virtual frozen region in a tomographic image of the C tomographic plane (third tomographic image: Tumor Plane). In the figure, T is a puncture point reached by a puncture tool, which will be described later, and a concentric circle extending around the puncture point T is an isotherm centered on the puncture point T. ) Shows the virtual frozen region of the tumor. Here, in actual puncture cryotherapy using helium gas or the like, the size of the frozen region of the tumor has a positive correlation with the freezing time at the puncture target point T. That is, for example, FIG. 23A shows that the virtual freezing region is a part of the tumor because the freezing time is short, and FIG. 23B shows that the freezing time is shorter than that in FIG. Since it is long, it indicates that the virtual frozen region covers almost the entire tumor. On the other hand, FIG. 23 (C) shows that the virtual frozen region has reached a healthy tissue around the tumor because the freezing time is longer than that in FIG. 23 (B). Since the minimum freezing temperature of the bed part Q such as a tumor is about −3 ° C., the contour (outer edge portion) of the virtual frozen region is about −3 ° C., and the central portion of the virtual frozen region is about −180 ° C.
 このような穿刺凍結療法における腫瘍(病巣部位Q)に対する凍結領域と凍結時間との関係は、使用する凍結用の冷媒や腫瘍の種類、場所などによって予めデータとして判明している。このため、後述するような構成によってこれらの腫瘍(病巣部位)に対する凍結領域と凍結時間との関係をテータベース化しておき、前述のような方法によって得られたC断層面の断層像(c)上に、図23に示すような仮想凍結領域を表示することによって最適な凍結療法を支援することができる。 The relationship between the freezing area and the freezing time for a tumor (focal site Q) in such puncture cryotherapy has been previously known as data depending on the freezing refrigerant used, the type of tumor, the location, and the like. For this reason, the relationship between the freezing region and the freezing time for these tumors (focal sites) is made data-based by the configuration described later, and the tomographic image of the C tomographic plane obtained by the method described above (c) In addition, optimal cryotherapy can be supported by displaying a virtual freezing region as shown in FIG.
 図23の例では、図23(A)は、凍結時間が短く(例えば数分程度)仮想凍結領域が腫瘍の一部となっているため、十分な治療効果が得られない。一方、図23(B)は、これよりも凍結時間が長く(例えば10分前後)仮想凍結領域が腫瘍(病巣部位)のほぼ全体に亘っているため、十分な治療効果が予想される。これに対し、図23(C)は、さらにこれよりも凍結時間が長く仮想凍結領域がさらに大きいため、腫瘍のみならず、その周囲の健全な組織にまで悪影響を及ぼすことが予想される。 In the example of FIG. 23, in FIG. 23A, the freezing time is short (for example, about several minutes), and the virtual frozen region is a part of the tumor, so that a sufficient therapeutic effect cannot be obtained. On the other hand, in FIG. 23B, since the freezing time is longer than this (for example, around 10 minutes) and the virtual frozen region covers almost the entire tumor (lesion site), a sufficient therapeutic effect is expected. On the other hand, in FIG. 23C, since the freezing time is longer and the virtual freezing area is larger than this, it is expected that not only the tumor but also the surrounding healthy tissue will be adversely affected.
 したがって、前述したようなC断層像をモニター上に表示するに際して、その画像と共にその画像上に図23に示すような腫瘍(病巣部位)と仮想凍結領域との関係を表示すれば、病巣部位の穿刺目標点Tのみならず、その穿刺目標点Tを中心とした凍結領域と凍結時間との関係をよりわかりやすく表示できるため、最適な凍結療法を支援することができる。なお、後述するように穿刺凍結療法による凍結領域は、図23のように穿刺目標点Tを中心とした同心円(真円)に限られるものでなく、後述するように穿刺目標点Tから任意の方向に熱指向特性をもった凍結領域を設定することも可能である。 Therefore, when the C tomographic image as described above is displayed on the monitor, if the relationship between the tumor (focal site) and the virtual frozen region as shown in FIG. Since not only the puncture target point T but also the relationship between the freezing region around the puncture target point T and the freezing time can be displayed in an easy-to-understand manner, optimal cryotherapy can be supported. As will be described later, the frozen region by the puncture cryotherapy is not limited to a concentric circle (round circle) centered on the puncture target point T as shown in FIG. It is also possible to set a frozen region having a heat directing characteristic in the direction.
 次に、図25は前述したような本発明の穿刺治療支援用の被検体110の三次元画像データと専用の画像処理ソフトウェア(コンピュータプログラム)を組み込んだ穿刺治療支援装置(コンピュータシステム)120の基本システム図である。この穿刺治療支援装置120は、共通バス125に演算装置(CPU)121、主記憶装置(RAM)122、キーボード(KB)などの入力装置123、モニターなどの表示装置124、読み出し専用記憶装置(ROM)126などの各種デバイスをつなげた構成となっている。 Next, FIG. 25 shows the basics of the puncture treatment support apparatus (computer system) 120 incorporating the three-dimensional image data of the subject 110 for puncture treatment support and dedicated image processing software (computer program) as described above. It is a system diagram. This puncture treatment support device 120 includes a computing device (CPU) 121, a main storage device (RAM) 122, an input device 123 such as a keyboard (KB), a display device 124 such as a monitor, and a read-only storage device (ROM). ) 126 and other devices are connected.
 そして、ROMには操作用のオペレーティングシステム(OS)と専用の画像処理プログラム(コンピュータプログラム)などが格納されると共に、RAM122には図1に示した如き予め取得された複数断層面の断層像からなる三次元画像データなどが格納され、これらをキーボード123の指示によりCPU121の働きで読み出し、画像処理プログラムによって作成された断層像をモニター124上に順に、または複数のモニター124上あるいは分割画面に各断層像を同時に表示する。そこから術者が表示画面を見て、穿刺挿入点Sと穿刺目標点Tを指示する。各断層像を順次表示させる場合には、手間がかかるため、全断層像を三次元的に表示させて、そこから穿刺挿入点Sと穿刺目標点Tを指示するやり方もある。 The ROM stores an operating system (OS) for operation and a dedicated image processing program (computer program), and the RAM 122 stores tomographic images of a plurality of tomographic planes acquired in advance as shown in FIG. The three-dimensional image data and the like are stored and read by the operation of the CPU 121 according to the instruction of the keyboard 123, and the tomographic images created by the image processing program are sequentially displayed on the monitor 124, or on a plurality of monitors 124 or divided screens. A tomographic image is displayed simultaneously. From there, the surgeon looks at the display screen and instructs the puncture insertion point S and the puncture target point T. When displaying each tomographic image sequentially, it takes time. Therefore, there is a method in which all the tomographic images are displayed three-dimensionally and the puncture insertion point S and the puncture target point T are designated therefrom.
 さらに図25では、穿刺挿入点Sと穿刺目標点Tを通るA断層面およびB断層面ならびに穿刺目標点Tを含むC断層面を手動または自動にて指定する。例えば、キーボード123で指示する。CPU121は、この指示を受けて、A乃至C断層面の各断層像データD1、D2、D3を算出する。 Further, in FIG. 25, the A tomographic plane and the B tomographic plane passing through the puncture insertion point S and the puncture target point T and the C tomographic plane including the puncture target point T are designated manually or automatically. For example, an instruction is given using the keyboard 123. In response to this instruction, the CPU 121 calculates the tomographic image data D1, D2, and D3 of the A to C tomographic planes.
 図26は、図25での処理フローを示したものである。先ず、最初のステップS100で三次元CT画像データを取得してメモリ122に格納して次のステップ102に移行する。ステップS102は、必要なCT断層面のCT断層像を順次表示させて、その中から穿刺挿入点Sとなるいずれかの断層面Mkと、穿刺目標点Tとなる他のいずれかの断層面Miを選択し指示して次のステップS104に移行する。 FIG. 26 shows the processing flow in FIG. First, three-dimensional CT image data is acquired and stored in the memory 122 in the first step S100, and the process proceeds to the next step 102. In step S102, CT tomograms of necessary CT tomographic planes are sequentially displayed, and one of the tomographic planes Mk serving as the puncture insertion point S and any other tomographic plane Mi serving as the puncture target point T are displayed. Is selected and instructed to proceed to the next step S104.
 ステップS104は、これら各断層面Mk、Mi上でそれぞれ穿刺挿入点Sと穿刺目標点Tを指定して次のステップS106に移行する。ステップS106では穿刺挿入点Sと穿刺目標点Tを通るA断層面およびこのA断層面に対して所定の角度αで交差するB断層面を指定して次のステップS108に移行する。ステップS108では指定されたこれらA断層面およびB断層面のCT画素値を算出して各断層像データD1,D2を求めて次のステップS110に移行する。 Step S104 designates the puncture insertion point S and the puncture target point T on each of the tomographic planes Mk and Mi, and proceeds to the next step S106. In step S106, the A tomographic plane passing through the puncture insertion point S and the puncture target point T and the B tomographic plane intersecting the A tomographic plane at a predetermined angle α are designated, and the process proceeds to the next step S108. In step S108, the CT pixel values of the designated A tomographic plane and B tomographic plane are calculated to obtain the respective tomographic image data D1 and D2, and the process proceeds to the next step S110.
 ステップS110では、各断層像データD1,D2をA断層面およびB断層面の断層像(第1断層像、第2断層像)としてそれぞれ表示して次の判断ステップS112に移行する。そして、この判断ステップS112では、その画像を見て設定した穿刺経路Rが適切な経路か否かをチェックし、不適切であれば(No)ステップS102に戻り、適切であれば(Yes)これら断層面Mj、Mk、断層像データD1、D2およびA断層面、B断層面ならびに挿入角度θとして決定して次のステップS116に移行する。 In step S110, the tomographic image data D1 and D2 are respectively displayed as tomographic images (first tomographic image and second tomographic image) of the A tomographic plane and the B tomographic plane, and the process proceeds to the next determination step S112. In this determination step S112, it is checked whether or not the set puncture route R is an appropriate route by looking at the image. If it is inappropriate (No), the process returns to step S102, and if it is appropriate (Yes) The tomographic planes Mj and Mk, the tomographic image data D1 and D2, the A tomographic plane, the B tomographic plane, and the insertion angle θ are determined, and the process proceeds to the next step S116.
 ステップS116では、穿刺目標点Tのみを含みA断層面とほぼ直交するC断層面を設定し、そのCT画素値を算出して断層像データD3を求めて最後のステップS118に移行する。そして、最後のステップS118では、この断層像データD3をC断層面の断層像(第3断層像)として表示して処理を終了する。 In step S116, a C tomographic plane that includes only the puncture target point T and is substantially orthogonal to the A tomographic plane is set, the CT pixel value is calculated to obtain tomographic image data D3, and the process proceeds to the last step S118. In the last step S118, the tomographic image data D3 is displayed as a tomographic image of the C tomographic plane (third tomographic image), and the process is terminated.
 病巣部位Qが複数個点在している場合には、X、Y、Z軸で見ると穿刺目標点Tの座標X、Y、Zがそれぞれ異なり、T1(X、Y、Z)、T2(X、Y、Z)、T3(X3、Y3、Z3)、…であったりすることであり、基本的にはどれか1点を穿刺目標点として定め、他点はCT監視下で穿刺具を移動させるやり方をとる。この場合、事前に穿刺挿入点Sと穿刺目標点T1、SとT2、SとT3の如き組合せで穿刺経路Rのチェックを前述の如き新断層面とそれに対応する新断層像を算出し、表示させて行い、すべての穿刺目標点Tに関しての障害等チェックを行うことが好ましい。 When a plurality of lesion sites Q are scattered, the coordinates X, Y, and Z of the puncture target point T are different from each other when viewed on the X, Y, and Z axes, and T1 (X, Y, Z), T2 ( X, Y, Z), T3 (X3, Y3, Z3), etc. Basically, one of the points is determined as the puncture target point, and the other point is the CT monitor under the puncture tool. Take the way to move. In this case, the puncture route R is checked in advance by the combination of the puncture insertion point S and the puncture target points T1, S and T2, and S and T3, and the new tomographic plane and the corresponding new tomographic image are calculated and displayed. It is preferable to check the obstacles for all puncture target points T.
 次に、このような穿刺経路Rに沿った穿刺作業工程をリアルタイムで監視するCT画像の形成法について説明する。前記のような穿刺作業工程をリアルタイムで監視するためには、CT断層面M1、M2、…Mnのすべてについて穿刺具の位置いかんを問わず、その都度、計測し再構成する必要はない。穿刺具の現在位置を中心とするその近辺のみの断層面のCT断層像を計測・再構成し、それ以外の断層面のCT断層像はそれ迄に得た過去の断層像を利用する。例えば、ある時点での穿刺具の先端位置をZiとしたとき、Zi近傍のi=i±γの幅内断層面(γは近傍値であり、数個の断層数~数10個の断層数となる値である)で計測を行い、断層像を得る。かくして、リアルタイム性を維持してCT計測・再構成が可能となる。この場合、A断層面、B断層面についてのCT断層面の中でi=i±γの断層面がリアルタイム性を維持したCT画素値を提供し、その他の断層面はその時点以前に計測・再構成したCT画素値である。 Next, a CT image forming method for monitoring the puncturing process along the puncture route R in real time will be described. In order to monitor the puncturing operation process as described above in real time, it is not necessary to measure and reconfigure every CT tomographic plane M1, M2,... Mn regardless of the position of the puncture tool. A CT tomogram of a tomographic plane only in the vicinity of the puncture tool as a center is measured and reconstructed, and CT tomograms of other tomographic planes use past tomographic images obtained so far. For example, when the tip position of the puncture tool at a certain point in time is Zi, an in-width tomographic plane of i = i ± γ in the vicinity of Zi (γ is a nearby value, and several to tens of faults And obtain a tomographic image. Thus, CT measurement and reconstruction can be performed while maintaining real-time characteristics. In this case, CT plane values where the tomographic plane of i = i ± γ maintains the real-time property among the CT tomographic planes for the A fault plane and the B fault plane, and the other fault planes are measured and measured before that time. This is a reconstructed CT pixel value.
 次に、本発明の穿刺治療支援方法を実現するための凍結治療装置の一例を説明する。図27は、この凍結治療装置50の全体構成例図である。この凍結治療装置50は、CTスキャナ51と、画像処理部52と、表示部53と、操作部54と、駆動制御部55と、計画部56と、治療子(穿刺具)57と、ガス供給部58と、監視部59とを主に備える。 Next, an example of a cryotherapy apparatus for realizing the puncture treatment support method of the present invention will be described. FIG. 27 is an overall configuration diagram of this cryotherapy apparatus 50. The cryotherapy apparatus 50 includes a CT scanner 51, an image processing unit 52, a display unit 53, an operation unit 54, a drive control unit 55, a planning unit 56, a treatment element (puncture tool) 57, and a gas supply. The unit 58 and the monitoring unit 59 are mainly provided.
 CTスキャナ51と画像処理部52と表示部53と操作部54とは、本来のCT装置である。このCT装置を利用して事前に複数の断層像を取得し、三次元画像を形成しておく。複数の断層像からさらにその隙間を埋め合わせるための補間画像を三次元画像として利用する例もある。 The CT scanner 51, the image processing unit 52, the display unit 53, and the operation unit 54 are original CT apparatuses. Using this CT apparatus, a plurality of tomographic images are acquired in advance to form a three-dimensional image. There is also an example in which an interpolation image for filling the gap from a plurality of tomographic images is used as a three-dimensional image.
 CTスキャナ51は、穿刺動作時のリアルタイムCT画像を得るのにも利用する。そしてこのリアルタイム画像は、監視部59での治療子(穿刺具)57の穿刺動作をも併せて重ねて得ており、穿刺の追跡監視・治療監視に利用する。計画部56は、画像処理部52と共同して、事前に得たデータに基づいて、またはこれと治療子57の形状(およびまたは構造)データとに基づいて穿刺開始位置(穿刺挿入点S)、治療部位(穿刺目標点T)、その治療子の進行ルート(穿刺経路R)の決定をデータ処理にて行い計画データを作成する。また、熱持性や病巣部位の物性値(生理値を含む)に基づくガス供給制御法を決定する。 The CT scanner 51 is also used to obtain a real-time CT image during the puncturing operation. This real-time image is also obtained by superimposing the puncture operation of the treatment element (puncture tool) 57 in the monitoring unit 59, and is used for puncture monitoring and treatment monitoring. The planning unit 56 cooperates with the image processing unit 52 based on data obtained in advance or based on this and shape (and / or structure) data of the treatment element 57 (puncture insertion point S). Then, the treatment site (puncture target point T) and the progression route (puncture route R) of the treatment child are determined by data processing to create plan data. In addition, a gas supply control method based on heat retention and physical property values (including physiological values) of the lesion site is determined.
 駆動制御部55は、計画部56の計画データに基づいて治療子(穿刺具)57の移動等の駆動制御ならびにガス供給部58の供給制御を行い、凍結と解凍との交互動作を行う。監視部59は、駆動制御の監視を行う。監視には、CT画像による監視と制御の仕組みの監視とがある。監視部59は、表示部53が兼務してもよい。ここで、画像処理部52および計画部56の一部が前記経路表示装置に相当する。この治療装置50は、治療子として凍結端子を用いた例であり、凍結端子およびその治療装置については先に示した先願がある。 The drive control unit 55 performs drive control such as movement of the treatment element (puncture tool) 57 and supply control of the gas supply unit 58 based on the plan data of the plan unit 56, and performs alternating operations of freezing and thawing. The monitoring unit 59 monitors drive control. There are two types of monitoring: CT image monitoring and control mechanism monitoring. The monitoring unit 59 may be combined with the display unit 53. Here, a part of the image processing unit 52 and the planning unit 56 corresponds to the route display device. This treatment device 50 is an example using a freezing terminal as a treatment child, and there is a prior application regarding the freezing terminal and its treatment device.
 本発明の凍結治療装置50は、以下の処理および動作を行う。 The cryotherapy apparatus 50 of the present invention performs the following processing and operations.
 (1)先ず、前述したように穿刺具である凍結端子の穿刺挿入点Sと穿刺目標点T(病巣位置)とを決定する。この決定は、前述したように体軸方向(Z方向)に撮影・再構成した複数のCT断層像から選び、例えば断層面Ziの座標位置(Xa,Ya)を穿刺挿入点S、断層面Zjの座標位置(Xb,Yb)を穿刺目標点Tとする。選択の仕方は、例えばCT断層像を次々に体軸方向に沿って表示させ、操作者がZi、Zjの断層面、およびその面上の座標としての穿刺挿入点Sと穿刺目標点Tを指定するやり方、または上記先願と同じく、体軸上に沿う三次元画像の三次元輪郭画像を見て決定する。 (1) First, as described above, the puncture insertion point S and the puncture target point T (lesion position) of the freezing terminal as the puncture tool are determined. This determination is made by selecting from a plurality of CT tomographic images imaged and reconstructed in the body axis direction (Z direction) as described above, and for example, the coordinate position (Xa, Ya) of the tomographic plane Zi is set as the puncture insertion point S and the tomographic plane Zj. The coordinate position (Xb, Yb) is set as the puncture target point T. For example, CT tomograms are displayed one after another along the body axis direction, and the operator specifies the tomographic planes Zi and Zj, and the puncture insertion point S and puncture target point T as coordinates on the plane. In the same manner as in the previous application, the three-dimensional contour image of the three-dimensional image along the body axis is determined.
 (2)穿刺挿入点Sと穿刺目標点Tとを通るA断層面およびそれに直交または所定の角度αをなすB断層面、ならびにA断層面に直交または所定の角度βをなし、かつ穿刺目標点Tのみを含むC断面層を決定する。これは画像処理部52と計画部56と用いて専用のソフトウェア(プログラム)による処理を利用する。 (2) The A tomographic plane passing through the puncture insertion point S and the puncture target point T, the B tomographic plane orthogonal to the A tomographic plane, and the A tomographic plane orthogonal to the A tomographic plane or having the predetermined angle β and the puncture target point A C cross-sectional layer including only T is determined. This uses processing by dedicated software (program) using the image processing unit 52 and the planning unit 56.
 (3)駆動制御部56の働きにより穿刺動作を開始する。その監視は、監視部59で行う。穿刺動作の監視のために、X線CT装置によって、例えばマルチスライス計測(1回で複数断面の撮影を可能にする構造)によりCT撮影・再構成を行いCT断層像を得る。撮影範囲は、凍結端子(穿刺具)の先端部近傍であり、凍結端子の穿刺の進行に併せて先端位置が進行し、その進行に応じて先端部近傍を次々にCT撮影・再構成を行いCT断層像を得る。 (3) The puncture operation is started by the operation of the drive control unit 56. The monitoring is performed by the monitoring unit 59. In order to monitor the puncturing operation, CT tomography and reconstruction are performed by an X-ray CT apparatus, for example, by multi-slice measurement (a structure that enables imaging of a plurality of cross sections at one time) to obtain a CT tomogram. The imaging range is in the vicinity of the tip of the freezing terminal (puncture tool), and the tip position advances as the freezing terminal punctures. CT imaging and reconstruction are performed one after another in the vicinity of the tip. A CT tomogram is obtained.
 (4)CT監視下で得た最新断層像は、監視部59によって、メモリに記憶させた上で次々に表示部53に表示して穿刺具の進行の監視に利用する。これと併せて、画像処理部52と計画部56とで、本願発明の特徴の1つである前記(2)で決定したA断層面、B断層面、C断層面の各平面上でのCT画素値を算出し、各平面上の画素位置(座標位置)対応に埋め込み断層像データD1、D2、D3を取得し、これを表示装置に表示する。この3つの断層像データD1、D2、D3を得るに際して、凍結端子の先端近傍に含まれる複数の断層面は、リアルタイムで得た断層画像を持つものであり、それ以外の断層面はそれ以前に得られた断層画像を持つものである。ここで、以前の断層像とは、穿刺動作に入る前に撮影して得た断層像または先端位置の進行時にその先端位置よりも手前側で撮影して得た直前の断層像を含む。 (4) The latest tomographic image obtained under CT monitoring is stored in the memory by the monitoring unit 59 and displayed one after another on the display unit 53 to be used for monitoring the progress of the puncture tool. In addition to this, the image processing unit 52 and the planning unit 56 perform CT on each plane of the A tomographic plane, the B tomographic plane, and the C tomographic plane determined in (2), which is one of the features of the present invention. The pixel value is calculated, embedded tomographic image data D1, D2, and D3 are acquired corresponding to the pixel position (coordinate position) on each plane and displayed on the display device. When obtaining the three tomographic image data D1, D2, and D3, the plurality of tomographic planes included in the vicinity of the tip of the freezing terminal have the tomographic images obtained in real time, and the other tomographic planes before that It has the acquired tomographic image. Here, the previous tomographic image includes a tomographic image obtained before entering the puncturing operation or a previous tomographic image obtained by photographing on the near side of the tip position when the tip position advances.
 (5)このように凍結端子の穿刺経路Rを最新のCT断層像およびA断層面、B断層面、C断層面の断層像が表示されることでリアルタイムで監視できる。もし、穿刺経路Rをずれる様子があれば最新の断層像およびA断層面、B断層面、C断層面上の断層像を見て凍結端子の方向の修正が可能となる。例えば、A断層面上で距離にして2mmずれとかB断層面上で距離にして3mmずれとかの判断が可能となり、それを正しい穿刺経路Rに戻す操作を凍結端子に対して行う。このとき凍結端子がアクチュエーターで自動的に動くのであれば、その修正動作指令を与えたり、操作者の手動で行っているのであれば、手動操作で正規経路に戻す。 (5) In this way, the puncture route R of the frozen terminal can be monitored in real time by displaying the latest CT tomographic image and the tomographic images of the A tomographic plane, B tomographic plane, and C tomographic plane. If there is a situation where the puncture route R is shifted, the direction of the freezing terminal can be corrected by viewing the latest tomographic image and the tomographic images on the A tomographic plane, the B tomographic plane, and the C tomographic plane. For example, it is possible to determine whether the distance on the A tomographic plane is 2 mm or the distance on the B tomographic plane is 3 mm, and the operation for returning it to the correct puncture route R is performed on the frozen terminal. At this time, if the freezing terminal is automatically moved by the actuator, a correction operation command is given, or if it is manually performed by the operator, it is manually returned to the normal route.
  また、C断層面上の断層像(第3断層像)も同時に見ることができるため、病巣部位Qの大きさ、形状、病巣部位Qにおける穿刺目標点Tの位置などもリアルタイムで正確に監視できる。この結果、後述するように穿刺目標点Tが最適でなかったりした場合には、再度穿刺経路Rや穿刺目標点Tを設定し直したり、凍結範囲の判断などを的確に行うことができる。 In addition, since a tomographic image (third tomographic image) on the C tomographic plane can be simultaneously viewed, the size and shape of the lesion site Q, the position of the puncture target point T in the lesion site Q, etc. can be accurately monitored in real time. . As a result, when the puncture target point T is not optimal as will be described later, the puncture route R and the puncture target point T can be set again, or the determination of the freezing range can be accurately performed.
 本発明の穿刺経路支援方法は、穿刺経路Rの計画作成や確認用にも使用できる。穿刺経路Rの計画作成や確認用では、リアルタイム性は不要であるので、すべて作成や確認のために事前に撮影・再構成した断層像を使う。こうした断層像を記憶装置に格納させた上で穿刺挿入点S、穿刺目標点Tとを通る2つのA断層面、B断層面の断層像を作成(算出)し、表示させて穿刺挿入点S、穿刺目標点Tとを設定する。ここで、穿刺目標点Tは病巣部位であるため、通常は固定であるが、前記のようにC断層面の断層像を見ることでその位置を修正することができる。 The puncture route support method of the present invention can also be used for creating and confirming a puncture route R. For planning and confirmation of the puncture route R, real-time properties are not necessary, and thus all tomographic images that have been imaged and reconstructed in advance are used for creation and confirmation. After storing such tomographic images in the storage device, tomographic images of the two A tomographic planes and the B tomographic plane passing through the puncture insertion point S and the puncture target point T are created (calculated) and displayed to display the puncture insertion point S. The puncture target point T is set. Here, since the puncture target point T is a lesion site, it is usually fixed, but its position can be corrected by viewing the tomographic image of the C tomographic plane as described above.
 そして、穿刺目標点Tが設定されれば穿刺挿入点Sをどこに設定するかがポイントである。かかる適切な穿刺挿入点Sを得るためにA断層面、B断層面の断層像を作成表示させ、探索し確定する。以上は作成用であるが、別法により作成した穿刺挿入点S、穿刺目標点Tとの経路確認時にも、同様の表示を行って適切な設定であるか否かを確認できる。以上の例では、凍結端子の事例としたが、それ以外の治療子、例えば患部をはぎとってくる、検査や治療のための素子、患部の監視のために侵入する素子(超小型カメラや光ファイバー端子)、超音波は電磁波などのエネルギーを患部に照射する素子、等種々のものに適用できる。 If the puncture target point T is set, the point is where the puncture insertion point S is set. In order to obtain such an appropriate puncture insertion point S, the tomographic images of the A tomographic plane and the B tomographic plane are created and displayed, searched and determined. Although the above is for preparation, the same display can be performed to check whether the setting is appropriate or not when confirming the route to the puncture insertion point S and the puncture target point T created by another method. In the above example, the case of a freezing terminal is used. However, other therapeutic elements, for example, an element for inspection or treatment that peels off the affected area, an element that enters for monitoring of the affected area (micro camera or optical fiber) Terminal) and ultrasonic waves can be applied to various elements such as an element that irradiates an affected area with energy such as electromagnetic waves.
 図28は、凍結端子を治療子(穿刺具)とする治療装置の処理フローを示す。最初のステップS200では、CT画像データを体軸方向(Z方向)に沿って複数枚(数十枚以上)取得して次のステップS202に移行する。ステップS202では、侵入用パラメータである穿刺挿入点S、治療対象である病巣部位Qの穿刺目標点T、挿入角度θより成る治療子パラメータを決定して次のステップS202に移行する。これはCT装置による。また、事前にCT装置で取得してメモリに格納した被検体110のメモリへの格納画像を用いることもある。次のステップS202では、本発明の穿刺経路支援装置120を利用して治療子(穿刺具)の操作(自動、半自動、手動)を行う。そして、最後のステップS206では、そのパラメータを用いての実際の穿刺および治療の動作を行う。治療に際しては、治療子(穿刺具)が穿刺目標点Tである病巣部位Qに到達したならば、凍結と解凍とを凍結端子の先端部で繰返させて病巣の部位Qの壊死を行う。この動作も自動、半自動、手動のいずれでもよい。 FIG. 28 shows a processing flow of a treatment apparatus using a freezing terminal as a treatment child (puncture tool). In the first step S200, a plurality of CT image data (several tens or more) are acquired along the body axis direction (Z direction), and the process proceeds to the next step S202. In step S202, the treatment parameter including the puncture insertion point S that is an intrusion parameter, the puncture target point T of the lesion site Q to be treated, and the insertion angle θ is determined, and the process proceeds to the next step S202. This is due to the CT apparatus. In addition, an image stored in the memory of the subject 110 acquired in advance by the CT apparatus and stored in the memory may be used. In the next step S202, the treatment element (puncture tool) is operated (automatic, semi-automatic, manual) using the puncture route support apparatus 120 of the present invention. In the final step S206, actual puncturing and treatment operations are performed using the parameters. In the treatment, if the treatment child (puncture device) reaches the lesion site Q that is the puncture target point T, the lesion site Q is necrotized by repeating freezing and thawing at the tip of the freezing terminal. This operation may be automatic, semi-automatic, or manual.
 図29は、穿刺具の1つでもある凍結端子となる治療子100の概略図である。この治療子100は、二重管(一重管の例もある。以下同じ。)1と凍結端子本体2およびそれにつながる管路6と、切替バルブ5と、高圧ヘリウムガス供給源3と、高圧アルゴンガス供給源4とから成る。二重管1の長さL1、凍結端子本体2の外部露出部の長さL2とすると、この治療子100は、略(L1+L2)の長さの直線成分と考えてよく、かかる直線成分を刃物状の最先端20Bを先頭に穿刺挿入点Sから病巣部位Qの1点である穿刺目標点Tにまで侵入させてゆくことを想定して、そのときの挿入角度θ、穿刺挿入点S、穿刺目標点T、穿刺経路Rを算出できる。 FIG. 29 is a schematic view of the therapeutic element 100 serving as a freezing terminal that is also one of the puncture devices. This therapeutic element 100 includes a double tube (an example of a single tube, the same applies hereinafter) 1, a freezing terminal body 2 and a conduit 6 connected thereto, a switching valve 5, a high-pressure helium gas supply source 3, and a high-pressure argon. And a gas supply source 4. When the length L1 of the double tube 1 and the length L2 of the externally exposed portion of the freezing terminal main body 2 are assumed, the therapeutic element 100 may be considered as a linear component having a length of approximately (L1 + L2). Assuming that the leading edge 20B is intruded from the puncture insertion point S to the puncture target point T, which is one point of the lesion site Q, the insertion angle θ, the puncture insertion point S, and the puncture The target point T and the puncture route R can be calculated.
 図30は凍結端子の具体例である。40が凍結端子本体であり、熱伝導性の低い素材、例えば金属より成り、その内部には、熱交換機構41を持つ。切替バルブ5を介して高圧ガスが流入し、その先端開放部42から本体40の内側に放出し外部へ排気を行う。ここで、符号31、32は各ガス毎のコックである。 FIG. 30 is a specific example of a freezing terminal. Reference numeral 40 denotes a freezing terminal main body, which is made of a material having low thermal conductivity, for example, metal, and has a heat exchange mechanism 41 therein. A high-pressure gas flows in through the switching valve 5 and is discharged from the tip opening portion 42 to the inside of the main body 40 and exhausted to the outside. Here, the codes | symbols 31 and 32 are the cocks for each gas.
 次に、この温度特性(温度変化)について説明する。その具体例を図31に示す。図31(a)は、凍結ピーク温度と解凍ピーク温度とを同一絶対値T1(実際には凍結時-T1、解凍時+T1)とした1サイクル例である。両者で熱エネルギーが相殺されることが好ましいため、凍結時と解凍時との(温度)×(時間)で定まる面積は同一面積(S1)とする。図31(b)は、凍結ピーク温度と解凍ピーク温度との絶対値をT1、T2(T1>T2)とした例である。T1>T2の故に、同一面積S1の達成のために、解凍期間を凍結期間よりも大きくとる。なお、図31(a)、(b)の変形例として、凍結1回、解凍2回で1サイクルの如き例もありうる。 Next, this temperature characteristic (temperature change) will be described. A specific example is shown in FIG. FIG. 31 (a) shows an example of one cycle in which the freezing peak temperature and the thawing peak temperature are set to the same absolute value T1 (actually -T1 during freezing and + T1 during thawing). Since it is preferable that the thermal energy is offset by both, the area determined by (temperature) × (time) during freezing and thawing is the same area (S1). FIG. 31B shows an example in which the absolute values of the freezing peak temperature and the thawing peak temperature are T1 and T2 (T1> T2). Since T1> T2, the thawing period is set longer than the freezing period in order to achieve the same area S1. In addition, as a modified example of FIGS. 31A and 31B, there may be an example of one cycle of one freezing and two thawings.
 図31(c)は凍結と解凍との2サイクル供与例である。3サイクル以上の例もある。なお、面積を凍結と解凍とで同一としたが、病巣の壊死という目的達成が得られるのであれば、厳密な同一性は必要ない。人間の治療部位には38℃とかの体温がある故に、かかる体温を考慮して、実際の温度特性を定めることが多い。かかる種々の温度特性(温度変化)を実現するためには、治療子へのヘリウムとアルゴンとの両者のガス供給を、量と時間とをパラメータとして制御すればよい。 Fig. 31 (c) is an example of two-cycle donation with freezing and thawing. There are also examples of more than 3 cycles. Although the area was the same for freezing and thawing, strict identity is not required if the goal of necrosis of the lesion can be achieved. Since a human treatment site has a body temperature of 38 ° C., an actual temperature characteristic is often determined in consideration of such body temperature. In order to realize such various temperature characteristics (temperature changes), the gas supply of both helium and argon to the treatment element may be controlled using the amount and time as parameters.
 温度特性(温度変化)の実現化およびガス供給制御法の決定について説明する。(1)被検体110の病巣部位Qの比熱、導伝率などの熱的定数および体積重量を取り入れた病巣部位Qの形状などの物理的定数を考慮して、その物体の温度の時間変化を決定する。(2)被検体110の熱的定数、物理定数を考慮した穿刺具目標点Tの周辺の時間に対する温度変化を計算し、設定温度に対する動的変化または動的変化に至る設定時間を決定し得るように定める。(3)この定めた穿刺具目標点T近傍の熱的時間変化について設定目的の温度変化となる様に穿刺具の回転角を決定する。(4)各熱持性の異なる複数の穿刺具の挿入に対する、穿刺具目標点Tおよびその近傍周辺の熱的温度の時間変化を決定する。 The realization of temperature characteristics (temperature change) and determination of the gas supply control method will be described. (1) Taking into account the thermal constants such as the specific heat and conductivity of the lesion site Q of the subject 110 and the physical constants such as the shape of the lesion site Q incorporating the volume weight, the time change of the temperature of the object is measured. decide. (2) The temperature change with respect to the time around the puncture target point T in consideration of the thermal constant and physical constant of the subject 110 can be calculated, and the dynamic change with respect to the set temperature or the set time leading to the dynamic change can be determined. Determine as follows. (3) The rotation angle of the puncture device is determined so that the thermal time change in the vicinity of the determined puncture device target point T has a set target temperature change. (4) The time change of the thermal temperature around the puncture target point T and the vicinity thereof is determined for the insertion of a plurality of puncture tools having different heat retention properties.
 (5)この複数の熱的方向性を有した侵入具が上記決定された幾可学的定数のもとで侵入具が到達点およびその近傍において熱的温度の時間変化を繰り返し、試験操作を行いその結果から被検体110への侵入開始位置、穿刺具の輪郭上の到達点、侵入方向、穿刺具の角度および回転角、穿刺挿入点Sから穿刺目標点Tまでの穿刺経路Rの少なくともいずれか1つを求め決定し、かつ周辺物体の温度分布および時間変化を決定する。(6)穿刺具の先端に装備された熱交換器の発熱、吸熱を切換えるガス流入路のガス切換えスイッチを到達点近傍の定められた温度変化になるようなガス量と供給シーケンス(タイミング)とのガス供給制御法を求める。治療時には、侵入用パラメータに従って穿刺を行い、穿刺目標点T到達後には上記ガス供給制御法によってガス供給を行う。 (5) The intruder having the plurality of thermal directions repeats the temporal change of the thermal temperature at the arrival point and in the vicinity thereof under the geometrical constant determined as described above, and the test operation is performed. As a result, at least one of the entry start position to the subject 110, the arrival point on the outline of the puncture tool, the entry direction, the angle and rotation angle of the puncture tool, and the puncture route R from the puncture insertion point S to the puncture target point T One of them is obtained and determined, and the temperature distribution and temporal change of the surrounding objects are determined. (6) Gas amount and supply sequence (timing) such that the gas changeover switch of the gas inflow passage for switching the heat generation and heat absorption of the heat exchanger provided at the tip of the puncture tool becomes a predetermined temperature change near the arrival point. The gas supply control method is determined. At the time of treatment, puncture is performed according to the intrusion parameters, and after the puncture target point T is reached, gas supply is performed by the gas supply control method.
 図32は、温度特性を考慮した処理フローを示す。図28に比べて、ステップS202とステップS204との間に新たなステップS203-1、S203-2、S203-3を追加したものである。ステップS203-1では、前述の温度特性の決定、およびそれに基づくガス供給制御法の算出を行う。ステップS203-2はステップS202で算出したパラメータ、温度特性、ならびにガス供給制御法に基づく治療シミュレーションを行う。シミュレーションの結果、治療効果がないとの判定であればステップS202へ戻る。治療効果があるとの判定であればステップS203-3へ進み、最終決定を行う。 FIG. 32 shows a processing flow considering temperature characteristics. Compared with FIG. 28, new steps S203-1, S203-2, and S203-3 are added between step S202 and step S204. In step S203-1, the above-described temperature characteristic is determined, and the gas supply control method is calculated based on the determination. In step S203-2, a treatment simulation is performed based on the parameters calculated in step S202, the temperature characteristics, and the gas supply control method. If it is determined that there is no therapeutic effect as a result of the simulation, the process returns to step S202. If it is determined that there is a therapeutic effect, the process proceeds to step S203-3 and a final decision is made.
  図33乃至図36は本発明の他の実施の形態を示したものである。図33に示すように本実施の形態では、第3の断層面(C断層面)の断層像(第3断層像)に加え、さらにこのC断層面と平行な第4の断層面(D断層面)を1枚以上取得してそのD断層面の断層像(第4断層像)をC断層面と同時または順次表示するようにしたものである。このように第3の断層面(C断層面)の断層像(第3断層像)と平行な第4の断層面(D断層面)の断層像(第4断層面)を表示することで侵入経路R方向から見た病巣部位Qの大きさや形状なども正確に把握することができる。 FIG. 33 to FIG. 36 show another embodiment of the present invention. As shown in FIG. 33, in the present embodiment, in addition to a tomographic image (third tomographic image) of the third tomographic plane (C tomographic plane), a fourth tomographic plane (D tomographic plane) parallel to the C tomographic plane is obtained. And a tomographic image of the D tomographic plane (fourth tomographic image) is displayed simultaneously or sequentially with the C tomographic plane. As described above, the tomographic image (fourth tomographic plane) of the fourth tomographic plane (D tomographic plane) parallel to the tomographic image (third tomographic image) of the third tomographic plane (C tomographic plane) is displayed. The size and shape of the lesion site Q viewed from the route R direction can be accurately grasped.
 例えば、図34は、図16で示した第3の断層像(C断層面)と平行であってそのC断層面から数mm離れた位置の第4の断層像(D断層面)を示したものであり、病巣部位Qの形状が左右に小さくなっているのがわかる。また、図35は、図34のD断層面から数mm離れた位置の第4の断層像(D断層面)を示したものであり、病巣部位Qの形状が小さくなっているのがわかる。また、図36は、図35のD断層面からさらに数mm離れた位置の第4の断層像(D断層面)を示したものであり、病巣部位Qの形状がさらに小さくなっているのがわかる。これらの複数のD断層面を複数のモニターに同時にまたは1つのモニターに順に表示することで、この病巣部位Qは、穿刺目標点(到達点)Tから離れる従って上下・左右方向に徐々に小さくなっていることがよくわかる。 For example, Figure 34 shows a third tomogram (C tomographic plane) and the fourth tomogram position away several mm from its C tomographic plane which is parallel as shown in FIG. 16 (D 1 slice plane) It can be seen that the shape of the lesion site Q is smaller on the left and right. FIG. 35 shows a fourth tomogram (D 2 tomographic plane) at a position several mm away from the D 1 tomographic plane in FIG. 34, and the lesion site Q has a smaller shape. Recognize. Further, FIG. 36, there is shown a fourth tomogram location remote D 2 even several mm from the tomographic plane of FIG. 35 (D 3 tomographic plane), the shape of the lesion region Q is even smaller I understand. By displaying these multiple D tomographic planes simultaneously on a plurality of monitors or sequentially on one monitor, the lesion site Q is gradually reduced in the vertical and horizontal directions as it moves away from the puncture target point (arrival point) T. You can see that
 これによって1回の凍結治療で穿刺目標点(到達点)Tを中心とした腫瘍部位の全体を凍結可能な否かなどを正確に判断できる。また、例えば2回以上に亘って腫瘍部位を凍結させる必要がある場合でも最適な穿刺目標点(到達点)Tを定めることができるため、より的確な凍結治療を実施することができる。なお、この第4の断層面(D断層面)の数(D,D,D…)やその間隔などは特に限定されるものでなく、数が多くなればなるほど、また、その間隔が狭くなるほどより正確に病巣部位の大きさや形状なども正確に把握することができる。 This makes it possible to accurately determine whether or not the entire tumor site centered on the puncture target point (arrival point) T can be frozen in one freezing treatment. Further, for example, even when the tumor site needs to be frozen twice or more times, an optimal puncture target point (arrival point) T can be determined, so that more accurate cryotherapy can be performed. The number of the fourth tomographic planes (D tomographic planes) (D 1 , D 2 , D 3 ...) And their intervals are not particularly limited. The larger the number, the greater the interval. The smaller the size, the more accurately the size and shape of the lesion site can be grasped.
 100…治療子(穿刺具)
 110…被検体
  120…穿刺治療支援装置
  M…断層面
  Q…病巣部位
 R…穿刺経路
  S…穿刺挿入点
  T…穿刺目標点
100 ... Treatment child (puncture device)
DESCRIPTION OF SYMBOLS 110 ... Subject 120 ... Puncture treatment support device M ... Tomographic plane Q ... Focal site R ... Puncture route S ... Puncture insertion point T ... Puncture target point

Claims (15)

  1.  被検体に体外から穿刺具を穿刺してその先端を体内の目標点に到達させて所定の治療を行うことを支援する方法であって、
     前記被検体の断層画像撮影で得た断層像を断層面と直交する方向に重ねて得られる三次元画像データを取得する画像データ取得ステップと、
     前記画像データ取得ステップで取得した三次元画像データに基づいて前記被検体に穿刺する穿刺具の穿刺点と目標点とを設定する穿刺点設定ステップと、
     前記画像データ取得ステップで取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含む第1の断層面の断層像を取得する第1断層像取得ステップと、
     前記画像データ取得ステップで取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含み、かつ前記第1の断層面に対して所定の角度をなす第2の断層面の断層像を取得する第2断層像取得ステップと、
     前記画像データ取得ステップで取得した三次元画像データから前記目標点を含み、かつ前記第1および第2の断層面と所定の角度をなす第3の断層面の断層像を取得する第3断層像取得ステップと、
     前記第1乃至第3の断層面の断層像を表示する断層像表示ステップと、を含むことを特徴とする穿刺治療支援方法。
    A method for supporting a subject to perform a predetermined treatment by puncturing a puncture tool from outside the body and causing the tip to reach a target point in the body,
    An image data acquisition step of acquiring three-dimensional image data obtained by superimposing a tomographic image obtained by tomographic imaging of the subject in a direction orthogonal to a tomographic plane;
    A puncture point setting step for setting a puncture point and a target point of a puncture device that punctures the subject based on the three-dimensional image data acquired in the image data acquisition step;
    A first tomographic image acquisition step of acquiring a tomographic image of a first tomographic plane including a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired in the image data acquisition step;
    A tomographic image of a second tomographic plane that includes a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired in the image data acquisition step and forms a predetermined angle with respect to the first tomographic plane. A second tomographic image acquisition step of acquiring
    A third tomographic image that acquires a tomographic image of a third tomographic plane that includes the target point and forms a predetermined angle with the first and second tomographic planes from the three-dimensional image data acquired in the image data acquisition step. An acquisition step;
    And a tomographic image display step for displaying a tomographic image of the first to third tomographic planes.
  2.  請求項1に記載の穿刺治療支援方法において、
     前記第3の断層面と平行な第4の断層面を1乃至複数枚取得する第4断層像取得ステップをさらに備え、
     前記断層像表示ステップは、第1乃至第3の断層面の断層像と共に前記第4断層像取得ステップで取得した第4の断層面の断層像を表示することを特徴とする穿刺治療支援方法。
    The puncture treatment support method according to claim 1,
    A fourth tomographic image acquisition step of acquiring one or more fourth tomographic planes parallel to the third tomographic plane;
    The tomographic image display step displays the tomographic image of the fourth tomographic plane acquired in the fourth tomographic image acquiring step together with the tomographic images of the first to third tomographic planes.
  3.  請求項1または2に記載の穿刺治療支援方法において、
     前記第1の断層面と第2の断層面との所定の角度は90°であることを特徴とする穿刺治療支援方法。
    The puncture treatment support method according to claim 1 or 2,
    A puncture treatment support method, wherein a predetermined angle between the first tomographic plane and the second tomographic plane is 90 °.
  4.  請求項1乃至3のいずれかに記載の穿刺治療支援方法において、
     前記第1の断層面と第3の断層面との所定の角度は90°であることを特徴とする穿刺治療支援方法。
    The puncture treatment support method according to any one of claims 1 to 3,
    A puncture treatment support method, wherein the predetermined angle between the first tomographic plane and the third tomographic plane is 90 °.
  5.  請求項1乃至4のいずれかに記載の穿刺治療支援方法において、
     前記断層像表示ステップは、前記第3断層面の断層像の目標点に穿刺した穿刺具による凍結治療に際し、前記穿刺具による前記目標点を中心とした仮想凍結領域を併せて表示することを特徴とする穿刺治療支援方法。
    The puncture treatment support method according to any one of claims 1 to 4,
    In the tomographic image display step, a virtual frozen region centered on the target point by the puncture tool is displayed together with the cryotherapy by the puncture tool punctured at the target point of the tomographic image of the third tomographic plane. A puncture treatment support method.
  6.  被検体に体外から穿刺具を穿刺してその先端を体内の目標点に到達させて所定の治療を行うことを支援する装置であって、
     前記被検体の断層画像撮影で得た断層像を断層面と直交する方向に重ねて得られる三次元画像データを取得する三次元画像データ取得手段と、
     前記画像データ取得手段で取得した三次元画像データに基づいて前記被検体に穿刺する穿刺具の穿刺点と目標点とを設定する穿刺点設定手段と、
     前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含む第1の断層面の断層像を取得する第1断層像取得手段と、
     前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含み、かつ前記第1の断層面に対して所定の角度をなす第2の断層面の断層像を取得する第2断層像取得手段と、
      前記画像データ取得手段で取得した三次元画像データから前記目標点を含み、かつ前記第1および第2の断層面と所定の角度をなす第3の断層面の断層像を取得する第3断層像取得手段と、
     前記第1乃至第3の断層面の断層像を表示する断層像表示手段と、を備えることを特徴とする穿刺治療支援装置。
    A device that assists in performing a predetermined treatment by puncturing a subject with a puncture tool from outside the body and causing the tip to reach a target point in the body,
    Three-dimensional image data acquisition means for acquiring three-dimensional image data obtained by superimposing tomographic images obtained by tomographic imaging of the subject in a direction orthogonal to the tomographic plane;
    A puncture point setting means for setting a puncture point and a target point of a puncture tool for puncturing the subject based on the three-dimensional image data acquired by the image data acquisition means;
    First tomographic image acquisition means for acquiring a tomographic image of a first tomographic plane including a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition means;
    A tomographic image of a second tomographic plane that includes a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition means and forms a predetermined angle with respect to the first tomographic plane. Second tomographic image acquisition means for acquiring
    A third tomographic image that acquires a tomographic image of a third tomographic plane that includes the target point and forms a predetermined angle with the first and second tomographic planes from the three-dimensional image data acquired by the image data acquisition means. Acquisition means;
    A puncture treatment support apparatus comprising: a tomographic image display means for displaying a tomographic image of the first to third tomographic planes.
  7.  請求項6に記載の穿刺治療支援装置において、
     前記第3の断層面と平行な第4の断層面を1乃至複数枚取得する第4断層像取得手段をさらに備え、
     前記断層像表示手段は、第1乃至第3の断層面の断層像と共に前記第4断層像取得手段で取得した第4の断層面の断層像を表示することを特徴とする穿刺治療支援装置。
    The puncture treatment support device according to claim 6,
    A fourth tomographic image acquisition means for acquiring one or more fourth tomographic planes parallel to the third tomographic plane;
    The puncture treatment support apparatus, wherein the tomographic image display means displays the tomographic image of the fourth tomographic plane acquired by the fourth tomographic image acquiring means together with the tomographic images of the first to third tomographic planes.
  8.  請求項6または7に記載の穿刺治療支援装置において、
     前記第1の断層面と第2の断層面との所定の角度は90°とする穿刺治療支援装置。
    The puncture treatment support device according to claim 6 or 7,
    A puncture treatment support apparatus in which a predetermined angle between the first tomographic plane and the second tomographic plane is 90 °.
  9.  請求項6乃至8のいずれかに記載の穿刺治療支援装置において、
     前記第1の断層面と第3の断層面との所定の角度は90°とする穿刺治療支援装置。
    The puncture treatment support device according to any one of claims 6 to 8,
    A puncture treatment support apparatus in which a predetermined angle between the first tomographic plane and the third tomographic plane is 90 °.
  10.  請求項6乃至9のいずれかに記載の穿刺治療支援装置において、
     前記断層像表示手段は、前記第3断層面の断層像の目標点に穿刺した穿刺具による凍結治療に際し、前記穿刺具による前記目標点を中心とした仮想凍結領域を併せて表示することを特徴とする穿刺治療支援装置。
    The puncture treatment support device according to any one of claims 6 to 9,
    The tomographic image display means also displays a virtual frozen region centered on the target point by the puncture tool in combination with a puncture tool punctured at the target point of the tomographic image of the third tomographic plane. A puncture treatment support device.
  11.  被検体に体外から穿刺具を穿刺してその先端を体内の目標点に到達させて所定の治療を行うことを支援するコンピュータプログラムであって、
     コンピュータを、
     前記被検体の断層画像撮影で得た断層像を断層面と直交する方向に重ねて得られる三次元画像データを取得する三次元画像データ取得手段と、
     前記画像データ取得手段で取得した三次元画像データに基づいて前記被検体に穿刺する穿刺具の穿刺点と目標点とを設定する穿刺点設定手段と、
     前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含む第1の断層面の断層像を取得する第1断層像取得手段と、
     前記画像データ取得手段で取得した三次元画像データから前記穿刺点と目標点とを結ぶ穿刺経路を含み、かつ前記第1の断層面に対して所定の角度をなす第2の断層面の断層像を取得する第2断層像取得手段と、
     前記画像データ格納手段で格納した三次元画像データから前記目標点を含み、かつ前記第1および第2の断層面と所定の角度をなす第3の断層面の断層像を取得する第3断層像取得手段と、
     前記第1乃至第3の断層面の断層像を表示する断層像表示手段と、して機能させることを特徴とする穿刺治療支援プログラム。
    A computer program for supporting a subject to perform a predetermined treatment by puncturing a subject with a puncture tool from outside the body and causing the tip to reach a target point in the body,
    Computer
    Three-dimensional image data acquisition means for acquiring three-dimensional image data obtained by superimposing tomographic images obtained by tomographic imaging of the subject in a direction orthogonal to the tomographic plane;
    A puncture point setting means for setting a puncture point and a target point of a puncture tool for puncturing the subject based on the three-dimensional image data acquired by the image data acquisition means;
    First tomographic image acquisition means for acquiring a tomographic image of a first tomographic plane including a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition means;
    A tomographic image of a second tomographic plane that includes a puncture path connecting the puncture point and a target point from the three-dimensional image data acquired by the image data acquisition means and forms a predetermined angle with respect to the first tomographic plane. Second tomographic image acquisition means for acquiring
    A third tomographic image that acquires a tomographic image of a third tomographic plane that includes the target point and forms a predetermined angle with the first and second tomographic planes from the three-dimensional image data stored in the image data storage means. Acquisition means;
    A puncture treatment support program which functions as tomogram display means for displaying tomograms of the first to third tomographic planes.
  12.  請求項11に記載の穿刺治療支援プログラムにおいて、
      前記コンピュータを、
     前記第3の断層面と平行な第4の断層面を1乃至複数枚取得する第4断層像取得手段として機能させ、
     前記断層像表示手段は、第1乃至第3の断層面の断層像と共に前記第4断層像取得手段で取得した第4の断層面の断層像を表示することを特徴とする穿刺治療支援プログラム。
    The puncture treatment support program according to claim 11,
    The computer,
    Functioning as fourth tomographic image acquisition means for acquiring one or more fourth tomographic planes parallel to the third tomographic plane;
    The puncture treatment support program, wherein the tomographic image display means displays the tomographic image of the fourth tomographic plane acquired by the fourth tomographic image acquiring means together with the tomographic images of the first to third tomographic planes.
  13.  請求項11または12に記載の穿刺治療支援プログラムにおいて、
     前記第1の断層面と第2の断層面との所定の角度は90°とすることを特徴とする穿刺治療支援プログラム。
    The puncture treatment support program according to claim 11 or 12,
    A puncture treatment support program, wherein a predetermined angle between the first tomographic plane and the second tomographic plane is 90 °.
  14.  請求項11乃至13のいずれかに記載の穿刺治療支援プログラムにおいて、
     前記第1の断層面と第3の断層面との所定の角度は90°とすることを特徴とする穿刺治療支援プログラム。
    The puncture treatment support program according to any one of claims 11 to 13,
    A puncture treatment support program, wherein a predetermined angle between the first tomographic plane and the third tomographic plane is 90 °.
  15.  請求項11乃至14のいずれかに記載の穿刺治療支援プログラムにおいて、
     前記断層像表示手段は、前記第3断層面の断層像の目標点に穿刺した穿刺具による凍結治療に際し、前記穿刺具による前記目標点を中心とした仮想凍結領域を併せて表示することを特徴とする穿刺治療支援プログラム。
    The puncture treatment support program according to any one of claims 11 to 14,
    The tomographic image display means also displays a virtual frozen region centered on the target point by the puncture tool in combination with a puncture tool punctured at the target point of the tomographic image of the third tomographic plane. A puncture treatment support program.
PCT/JP2012/060725 2011-04-27 2012-04-20 Puncture treatment support method, puncture treatment support device, and program for puncture treatment support device WO2012147652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099897 2011-04-27
JP2011-099897 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147652A1 true WO2012147652A1 (en) 2012-11-01

Family

ID=47072172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060725 WO2012147652A1 (en) 2011-04-27 2012-04-20 Puncture treatment support method, puncture treatment support device, and program for puncture treatment support device

Country Status (2)

Country Link
JP (1) JPWO2012147652A1 (en)
WO (1) WO2012147652A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106456076A (en) * 2014-04-14 2017-02-22 蜜蜂医疗公司 Device for maintaining a user's vein in position and device for puncturing or injecting into a user's vein
CN112545617A (en) * 2020-12-04 2021-03-26 扬州大学 Optimal puncture geometric parameter determination method for joint cavity effusion treatment
CN112603534A (en) * 2020-12-04 2021-04-06 扬州大学 Method for determining optimal nodal line position in joint cavity effusion treatment process
CN113081258A (en) * 2021-03-09 2021-07-09 扬州大学 Method for calibrating optimal point of hydrops aspiration by puncture in joint cavity treatment
CN113197664A (en) * 2021-04-23 2021-08-03 扬州大学 Strange elimination-based synovitis tenderness point specific position quantitative analysis method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189935A (en) * 1992-09-16 1994-07-12 Toshiba Medical Eng Co Ltd Positioning scan method and magnetic resonance imaging device
JPH1133011A (en) * 1997-07-15 1999-02-09 Hitachi Medical Corp Image forming method by magnetic resonance imaging
JP2002045372A (en) * 2000-08-02 2002-02-12 Olympus Optical Co Ltd Surgical navigation device
JP2004141269A (en) * 2002-10-22 2004-05-20 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2004518475A (en) * 2001-02-05 2004-06-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Diagnostic imaging method
JP2004275500A (en) * 2003-03-17 2004-10-07 Ge Medical Systems Global Technology Co Llc Therapeutic equipment
JP2007209651A (en) * 2006-02-13 2007-08-23 Dgs Computer:Kk Therapeutic element passage display device
JP2008061858A (en) * 2006-09-08 2008-03-21 Toshiba Corp Puncture treatment navigation apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189935A (en) * 1992-09-16 1994-07-12 Toshiba Medical Eng Co Ltd Positioning scan method and magnetic resonance imaging device
JPH1133011A (en) * 1997-07-15 1999-02-09 Hitachi Medical Corp Image forming method by magnetic resonance imaging
JP2002045372A (en) * 2000-08-02 2002-02-12 Olympus Optical Co Ltd Surgical navigation device
JP2004518475A (en) * 2001-02-05 2004-06-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Diagnostic imaging method
JP2004141269A (en) * 2002-10-22 2004-05-20 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2004275500A (en) * 2003-03-17 2004-10-07 Ge Medical Systems Global Technology Co Llc Therapeutic equipment
JP2007209651A (en) * 2006-02-13 2007-08-23 Dgs Computer:Kk Therapeutic element passage display device
JP2008061858A (en) * 2006-09-08 2008-03-21 Toshiba Corp Puncture treatment navigation apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106456076A (en) * 2014-04-14 2017-02-22 蜜蜂医疗公司 Device for maintaining a user's vein in position and device for puncturing or injecting into a user's vein
JP2017514644A (en) * 2014-04-14 2017-06-08 ビー・ヘルスケア Device for holding a user's vein in place and device for drilling or injecting the user's vein
CN112545617A (en) * 2020-12-04 2021-03-26 扬州大学 Optimal puncture geometric parameter determination method for joint cavity effusion treatment
CN112603534A (en) * 2020-12-04 2021-04-06 扬州大学 Method for determining optimal nodal line position in joint cavity effusion treatment process
CN112603534B (en) * 2020-12-04 2022-11-29 扬州大学 Method for determining optimal nodal line position in joint cavity effusion treatment process
CN112545617B (en) * 2020-12-04 2022-12-30 扬州大学 Optimal puncture geometric parameter determination method for joint cavity effusion treatment
CN113081258A (en) * 2021-03-09 2021-07-09 扬州大学 Method for calibrating optimal point of hydrops aspiration by puncture in joint cavity treatment
CN113081258B (en) * 2021-03-09 2022-12-30 扬州大学 Optimal point calibration method for puncturing effusion drainage in joint cavity treatment
CN113197664A (en) * 2021-04-23 2021-08-03 扬州大学 Strange elimination-based synovitis tenderness point specific position quantitative analysis method
CN113197664B (en) * 2021-04-23 2022-11-29 扬州大学 Strange elimination-based synovitis tender point specific position quantitative analysis method

Also Published As

Publication number Publication date
JPWO2012147652A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
US11045162B2 (en) Hybrid imaging apparatus and methods for interactive procedures
US8556888B2 (en) Methods and apparatuses for performing and monitoring thermal ablation
AU2015339687B2 (en) Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same
CN111248998B (en) System and method for ultrasound image guided ablation antenna placement
US7871406B2 (en) Methods for planning and performing thermal ablation
US8364242B2 (en) System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
JP5348889B2 (en) Puncture treatment support device
JP4448818B2 (en) Medical equipment
US20090196480A1 (en) Methods And Apparatuses For Planning, Performing, Monitoring And Assessing Thermal Ablation
US20080033417A1 (en) Apparatus for planning and performing thermal ablation
US20080033418A1 (en) Methods for monitoring thermal ablation
WO2012147652A1 (en) Puncture treatment support method, puncture treatment support device, and program for puncture treatment support device
JP4807830B2 (en) Diagnostic imaging apparatus and treatment support system
CN109758233A (en) A kind of diagnosis and treatment integrated operation robot system and its navigation locating method
EP2068736A1 (en) Methods and systems for planning, performing and monitoring thermal ablation
WO2015087206A1 (en) Method and system for electromagnetic tracking with magnetic trackers for respiratory monitoring
Moncharmont et al. Phantom evaluation of a navigation system for out-of-plane CT-guided puncture
JP5731267B2 (en) Treatment support system and medical image processing apparatus
CN116327365B (en) Biopsy system based on electromagnetic positioning and navigation method
JP2007209651A (en) Therapeutic element passage display device
JP4744284B2 (en) Treatment child
WO2023161775A1 (en) Mri based navigation
CN113488177A (en) Lung modeling method and system based on image data
Neshat et al. Development of a 3D ultrasound-guided system for thermal ablation of liver tumors
Bert et al. Applicator Reconstruction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013512329

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12777817

Country of ref document: EP

Kind code of ref document: A1